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Background: Obesity is a condition with a complex pathophysiology characterized

by both chronic low-grade inflammation and changes in the gut microbial ecosystem.

These alterations can affect the metabolism of tryptophan (TRP), an essential amino acid

and precursor of serotonin (5-HT), kynurenine (KYN), and indoles. This study aimed to

investigate alterations in KYN and microbiota-mediated indole routes of TRP metabolism

in obese subjects relatively to non-obese controls and to determine their relationship with

systemic inflammation.

Methods: Eighty-five obese adults (avg. BMI = 40.48) and 42 non-obese control

individuals (avg. BMI = 24.03) were recruited. Plasma levels of TRP catabolites

were assessed using Ultra High Performance Liquid Chromatography-ElectroSpray-

Ionization-Tandem Mass Spectrometry. High-sensitive C-reactive protein (hsCRP) and

high-sensitive interleukin 6 (hsIL-6) were measured in the serum as markers of systemic

inflammation using enzyme-linked immunosorbent assay.

Results: Both KYN and microbiota-mediated indole routes of TRP metabolism were

altered in obese subjects, as reflected in higher KYN/TRP ratio and lower 5-HT and

indoles levels, relatively to non-obese controls. HsIL-6 and hsCRP were increased in

obesity and were overall associated with TRP metabolic pathways alterations.

Conclusion: These results indicate for the first time that KYN and indole TRP metabolic

pathways are concomitantly altered in obese subjects and highlight their respective

associations with obesity-related systemic inflammation.

Keywords: obesity, inflammation, tryptophan, kynurenine, indoles

INTRODUCTION

Obesity is a metabolic disorder characterized by a chronic low-grade inflammatory state, as
reflected in increased levels of circulating inflammatory markers, including pro-inflammatory
cytokines and the acute phase protein C-reactive protein (CRP) (1–4). Systemic inflammation
in obesity originates primarily from the adipose tissue, in which adipocytes and infiltrated
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immune cells accumulate and secrete inflammatory factors (2–
5). Additionally, changes in the gut microbiota composition
and permeability that have been highly documented in obesity
(6–9), were also found to play a role in obesity-related
inflammation (10, 11).

A growing body of evidence indicates that inflammation is
associated with alterations in the metabolism of tryptophan
(TRP) (12, 13), an essential amino acid and biochemical
precursor of serotonin (5-HT), kynurenine (KYN) and indoles
(14). One mechanism likely to be involved in this effect relies on
the induction of the enzyme indoleamine-2,3-dioxygenase (IDO)
by pro-inflammatory cytokines (13, 15). IDO is responsible
for the catabolism of TRP along the KYN pathway, likely
resulting in reduced 5-HT synthesis. Consistent with this
notion, activation of the KYN pathway has been documented in
several studies conducted in obese subjects (16–19). Alterations
in TRP metabolism in obese subjects may also arise from
the gut microbiota, which has been shown to be disrupted
both at compositional and functional levels in obesity (20–
22). Accordingly, a greater ratio of Firmicutes/Bacteroidetes,
along with disrupted intestinal permeability and increased
endotoxemia have been repeatedly documented in obese subjects
(6–9). Diet and nutritional habits represent themain contributors
to obesity-related alterations in the gut microbiota given their
major role in shaping intestinal bacteria environment. In the
gut, TRP is metabolized by specific intestinal bacteria (23) into
indole, indole-3-acetic acid (IAA), indole-3-acrylic acid (IA),
indole-3-carboxalaldehyde (ICAld), indole-3-lactic acid (ILA),
indole-3-propionic acid (IPA), indole-3-ethanol (IE), indole-3-
acetonitrile (IACN), and indole-3-carboxylic acid (ICA) (24).
In adults, the most abundant catabolite is indole, followed
by IAA and IPA (25–27). Despite strong evidence of gut
microbiota changes in obesity, little is known on the impact
of these alterations on gut-derived TRP metabolism along the
indole pathway.

Altogether, these data suggest that obesity may contribute to
concomitant alterations in TRP metabolism, through parallel
pathways, involving both inflammation and the microbiota.
Moreover, the relationship between these two pathways
remains to be determined, in particular the possibility that
inflammatory processes relate to indoles production. Supporting
this scenario, gut-derived inflammatory processes, including
endotoxemia (9), in obesity could disrupt gut homeostasis
and function leading thus to substantial alterations in the
metabolism of indoles. In addition, indoles represent potent
modulators of immune function. They can act as ligands of
the aryl hydrocarbon receptor (AHR), a transcription factor
widely expressed by cells in the immune system and whose
activation can alter innate and adaptive immune responses
(28, 29). For instance, ICAld produced by Lactobacillus
spp. was found to attenuate intestinal inflammation by
regulating IL-22 mucosal homeostasis via an AHR-dependant
mechanism (30).

The aim of the present study was to investigate the KYN and
indole pathways of TRP metabolism in obese subjects relatively
to non-obese controls and to determine their relationship with
systemic inflammation.

METHODS

Study Participants
Obese Subjects
Eighty-five adult obese subjects with severe or morbid obesity,
awaiting a gastric surgery, were recruited from the services of
digestive and parietal surgery of two private clinics (Tivoli and
Jean-Villar) in Bordeaux, France. Participants met criteria for
obesity surgery, i.e., BMI ≥ 40 kg/m2 or ≥ 35 kg/m2 with at least
one comorbidity [e.g., hypertension [HT], type-2 diabetes [T2D],
obstructive sleep apnea [OSA], dysthyroidism].

Non-obese Controls
Forty-two non-obese volunteers (BMI< 30 kg/m2) with no acute
or chronic immune/inflammatory condition were included as
control participants. A level of high-sensitive (hs) CRP above 5
mg/L, indicative of low-grade inflammation (31), was considered
as an exclusion criterion in this group of participants. Control
subjects were recruited by phone interview conducted by the
contract research organization CEN Nutriment (Dijon, France).

In both groups, exclusion criteria were: age > 65 years
old; acute or chronic inflammatory conditions (other than
obesity or obesity-related comorbidities); diagnosis of severe or
uncontrolled medical illness; and current treatment with anti-
inflammatory agents. All participants provided written informed
consent after reading a complete description of the study. The
study was approved by the Institutional Committee of Protection
of Persons (CPP; registration numbers 2010/36 and 2016/40 for
obese and non-obese subjects, respectively).

Measurements
Socio-Demographic and Clinical Characteristics
Socio-demographic and clinical characteristics, including
anthropometric data, medical history and current treatment,
were collected by trained professionals for all participants at
inclusion. BMI was calculated as weight (kg)/height (m)2.

Biological Measurements
The same day as clinical assessments, fasting blood samples
were collected in plain or EDTA-containing tubes for serum
and plasma, respectively. After 30–45min at room temperature,
samples were centrifuged (4,000 rpm, 20min at 4◦C for plasma
and 3,200 rpm, 10min at 4◦C for serum) and stored at −80◦C
until further analysis.

Inflammatory Markers
Serum concentrations of hsCRP and high-sensitive interleukin
6 (hsIL-6) were determined by enzyme-linked immunosorbent
assay (ELISA) according to the manufacturer’s specifications
(hsCRP: CYT298, Millipore, Billerica, Massachusetts; hsIL-6:
R&D Systems, Minneapolis, Minnesota). Assays sensitivity and
intra-/inter-assay variability were, respectively, 0.20 ng/mL, ±
4.6% and ± 6.0% for hsCRP and 0.031 pg/mL, ± 4.1% and ±

3.9% for hsIL-6.

Tryptophan Metabolites
Plasma concentrations of free TRP, 5-HT, 5-hydroxyindole-
3-acetic acid (5-HIAA), KYN, IAA, ICAld, ILA, IPA, and
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indoxyl sulfate (IS) were determined by Ultra High Performance
Liquid Chromatography-ElectroSpay-Ionization-Tandem Mass
Spectrometry (UHPLC-ESI-MS/MS), as described in detail
elsewhere (32). This technique was developed and validated
for the targeted quantification of TRP and tyrosine derived
metabolites in human plasma and urine. The ratio KYN/TRP was
calculated as an index of TRP breakdown along the KYN pathway
indicative of IDO activation.

Data Analysis
Raw values for serum inflammatory markers as well as for
plasma levels of TRP, 5-HT, 5-HIAA, IAA, ICAld, ILA, IPA,
and IS were log-transformed due to non-normality, as assessed
by the Shapiro-Wilk test. Extreme values (>3SD above the
mean) were observed for IL-6 (N = 1 non-obese participant),
5-HIAA (N = 1 obese participant) and IAA (N = 2 obese
participants). Accordingly, these values were considered outliers
and were individually excluded from data analyses performed
on biological markers. Of note, values for hsIL-6 were missing
in two non-obese controls. Socio-demographic and clinical
characteristics of the two experimental groups were compared
using Student’s t-tests for continuous variables or Chi-square
tests for categorical variables. Levels of hsCRP, hsIL-6, TRP, and
markers of its metabolic pathways were compared between the
two groups using analyses of covariance (ANCOVAs) controlling
for age, gender, and comorbidities. The relationship between
inflammatory markers, BMI, and TRP metabolism (KYN/TRP
and indoles) was estimated in the whole population under study
and separately in the obese group using multiple regression
analyses, adjusted for age, gender, and comorbidities. Statistical
analyses were performed with SPSS Statistics version 25. All
probabilities were two-sided with the degree of significance set
at p < 0.05.

RESULTS

Socio-Demographic and Clinical
Characteristics of Study Participants
Socio-demographic and clinical characteristics of study
participants are presented in Table 1. There were no significant
differences between obese subjects and non-obese controls in
terms of age (t = 0.410, p = 0.683) and gender (Chi2 = 0.144, p
= 0.705). As expected, BMI and weight were significantly higher
in the obese group compared to the non-obese one (BMI: t =
22.48, p < 0.0001; weight: t = 16.62, p < 0.0001). Similarly, the
prevalence of HT was higher in obese subjects (Chi2 = 8.451, p
=0.004), as well as T2D and OSA that were only present in the
obese population.

TRP Metabolic Pathways Are Altered in
Obese Subjects Compared to Healthy
Participants
Compared to non-obese controls, obese subjects exhibited
decreased circulating levels of TRP [F(1,122) = 37.79, p < 0.0001]
together with increased KYN/TRP ratio [F(1,122) = 9.77, p <

0.01], indicative of IDO activation and TRP breakdown along

TABLE 1 | Characteristics of study participants.

Non-obese participants Obese participants p

Sample size, n 42 85

Age, years (SD) 37.74 (7.48) 38.52 (111.14) 0.683

Women, n (%) 35 (83.33) 73 (85.88) 0.705

BMI, kg/m² (SD) 24.03 (3.52) 40.48 (4.05) <0.0001

Weight, kg (SD) 68.18 (11.55) 111.20 (14.68) <0.0001

Comorbidities

HTA, n (%) 1 (2.38) 19 (22.35) 0.004

T2D, n (%) 0 (0) 10 (11.77) 0.021

Dyst, n (%) 1 (2.38) 9 (10.59) 0.106

OSA, n (%) 0 (0) 27 (45.0) <0.001

Continuous variables are presented as mean and standard deviation and compared using

Student’s t-test, whereas categorical variables are presented as n (%) and compared by

chi-square test. BMI, body mass index; HTA, hypertension; T2D, type 2 diabetes; Dyst,

dysthyroidism; OSA, obstructive sleep apnea.

FIGURE 1 | TRP metabolism along the KYN and 5-HT pathways in obese

subjects compared to non-obese controls. (A) Plasma levels of TRP were

decreased whereas the KYN/TRP ratio was increased in obese subjects (n =

85) compared to non-obese controls (n = 42). (B) Similarly, plasma levels of

5-HT were decreased whereas 5-HIAA was increased in obese subjects (n =

84–85). Statistical analyses were performed on log-transformed data using

ANCOVA controlling for age, gender and comorbidities. Data are expressed as

mean + SEM. ****p < 0.0001, **p < 0.01, *p < 0.05.

the KYN pathway (Figure 1A). In line with the impact of
this pathway on 5-HT synthesis, plasma levels of 5-HT were
significantly decreased in obese subjects [F(1,122) = 10.83, p <

0.01] whereas levels of 5-HIAA [F(1,121) = 5.57, p < 0.05] were
increased (Figure 1B).

Moreover, levels of IAA, ILA and IPA were all significantly
decreased in obese subjects compared to non-obese controls
[IAA: F(1,120) = 19.53, p < 0.0001; ILA: F(1,122) = 64.34, p <
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0.0001; IPA: F(1,122) =13.89, p < 0.001] (Figure 2). In contrast,
levels of ICAld were not altered [F(1,122) = 0.29, p = 0.59]. IS, an
indole-derived metabolite produced in the liver from free indole,
was also significantly decreased in the obese group [(F(1,122) =
21.83, p < 0.0001].

Consistent with these results, BMI was positively
associated with KYN/TRP ratio and 5-HIAA, but
negatively correlated with levels of IAA, ILA, IPA, IS,
TRP, and 5-HT in the whole population under study (data
not shown).

Systemic Inflammation Correlates With
Alterations in TRP Metabolic Pathways
As expected, serum levels of hsCRP [F(1,122) = 102.50, p <

0.0001] and hsIL-6 [F(1,119) = 54.71, p < 0.0001] were increased
in obese subjects compared to non-obese controls (Figure 3).
In line with this, hsCRP and hsIL-6 were positively associated
with BMI in the whole population under study and were
correlated to each other (data not shown). Increased levels of
hsCRP and hsIL-6 were associated with reduced levels of TRP
together with increased KYN/TRP ratios in the whole population,
consistent with the inflammatory characteristic of this pathway.
No significant correlations were found between inflammation
and markers of 5-HT pathway (Table 2).

Interestingly, both hsCRP and hsIL-6 levels were negatively
associated with plasma levels of IAA, ILA, IPA, and IS (Table 2).
While no significant correlations were observed between
inflammatory markers and ICAld levels in the whole population

FIGURE 3 | Systemic inflammation in obese subjects compared to non-obese

controls. Serum levels of hsCRP and hsIL-6 were significantly increased in the

obese population (n = 85) compared to non-obese controls (n = 39–42).

Statistical analyses were performed on log-transformed data using ANCOVA

controlling for age, gender and comorbidities. Data are expressed as mean +

SEM. ****p < 0.0001. hsCRP, high-sensitive C-reactive protein; hsIL-6,

high-sensitive interleukin-6.

FIGURE 2 | Indole metabolites in obese subjects compared to non-obese controls. With the exception of ICAld, all indoles were significantly decreased in obese

subjects (n = 83–85) compared to non-obese controls (n = 42). Statistical analyses were performed on log-transformed data using ANCOVA controlling for age,

gender and comorbidities. Data are expressed as mean + SEM. ****p < 0.0001; ***p < 0.001.
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TABLE 2 | Association between hsCRP, hsIL-6, and markers of tryptophan metabolism in the whole population.

TRP KYN/TRP 5-HT 5-HIAA IAA ICAld ILA IPA IS

hsCRP −0.397**** 0.190* −0.088 0.133 −0.332*** −0.078 −0.501**** −0.268** −0.339***

hsIL-6 −0.380**** 0.300** −0.158 0.068 −0.290** −0.108 −0.397**** −0.244** −0.304***

Multiple regression analyses controlling for gender, age and comorbidities (β coefficient). IAA, indole-3-acetic acid; ICAld, indole-3-carboxaldehyde; ILA, indole-3-lactic acid; IPA,

indole-3-propionic acid; IS, indoxyl sulfate; KYN/TRP, kynurenine/tryptophan; 5-HT, serotonin; 5-HIAA, 5-hydroxyindole-3-acetic acid. ****p< 0.0001, ***p< 0.001, **p< 0.01, *p< 0.05.

under study, this metabolite was significantly correlated with
hsIL-6 levels in the group of obese subjects (β = −0.261, p< 0.05,
data not shown).

DISCUSSION

There is an increasing emphasis on the interplay between obesity,
inflammation, and TRP metabolism. While most of the research
in inflammatory conditions has been focused on the KYN route
of TRP metabolism, notably through activation of the enzyme
IDO, here we assessed whether obesity-related inflammation
may also impact the microbial route of TRP metabolism. To
our knowledge, this is the first study showing concomitant
alterations in the KYN and indole pathways of TRP metabolism
in obesity.

In line with previous reports (17, 19), obese subjects exhibited
higher serum levels of inflammatory markers together with
reduced plasma levels of TRP and increased KYN/TRP ratio,
indicative of inflammation-driven IDO activation. Interestingly,
and consistent with the inflammatory component of the KYN
pathway, the ratio of KYN/TRP was significantly associated
with levels of systemic inflammation in the whole population
under study. Alterations were also found in plasmatic markers
of the 5-HT pathway, with obese subjects exhibiting reduced 5-
HT and increased 5-HIAA levels. These findings are consistent
with the hypothesis of an IDO-driven shift of TRP degradation
toward the KYN pathway at the detriment of 5-HT pathway
in obesity.

In addition, our results indicate that obesity is associated
with significant reductions in microbial-derived indoles, notably
IAA, ILA, and IPA. These alterations may rely on changes in
microbiota composition and function, as described in obesity.
Similarly, IS, an indole-derived metabolite produced in the
liver, was also decreased in obese subjects, probably due to the
low availability of its substrate, indole. Supporting this notion,
reduced indole levels have been documented in children with
class II-III obesity when compared to their healthy counterparts
(33). Interestingly, findings from the present study reveal
significant relationships between circulating levels of indoles
and inflammatory markers. In particular, plasma levels of IPA,
IAA, ILA, and IS were negatively correlated with serum levels
of hsCRP and hsIL-6 in the whole population under study.
Noteworthy, ICAld was the only indole metabolite that was
not affected by obesity per se but showed an association with
inflammatory markers, especially hsIL-6, in the group of obese
subjects. The nature of this association needs to be disentangled

in future studies. To our knowledge, this report is the first
to demonstrate a concomitant alteration of host (KYN) and
microbial (indole) TRP metabolic pathways, both relating on
systemic inflammation, in obesity. While inflammation is known
to induce KYN pathway activation (13, 34), the direction of
its relationship with the indole pathway is unclear and remains
to be investigated in future studies. Data from the literature
is heterogeneous and suggests that this relationship may be
bidirectional. Not only indoles have been described as potent
regulators of immune/inflammatory processes (30, 35, 36) but
also gut inflammation, often described in obesity (6–9), is likely
to modify microbiota-driven indoles production.

The present study bears some limitations. First, we did
not assess fecal levels of indoles nor perform a microbiota
characterization of study participants, which would add an
important piece of data to this work. Second, only hsCRP and
hsIL-6 were measured as markers of systemic inflammation.
Although those markers are probably the most used in
the literature to evaluate chronic low-grade inflammation
(37), a more comprehensive spectrum of inflammatory
factors is needed to assess the influence of obesity-related
inflammation on microbial TRP metabolism. Finally, no record
on food consumption was available in the study. Since diet
is a key source of TRP (38), this information would help
clarifying to what extent the differences in TRP levels observed
between obese and non-obese subjects are linked to different
dietary habits.

In conclusion, the present study demonstrates for the first
time concomitant alterations in KYN and indole TRP metabolic
pathways in obese subjects and highlights their respective
associations with obesity-related systemic inflammation.
These findings point to TRP metabolism as an important
component of obesity. While the relevance of this mechanism
to the pathophysiology and management of obesity and its
comorbidities remains to be determined, this opens new avenues
for future research.
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