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Simple Summary: The traditional transhumant system of rearing dairy cows in mountain areas 

expects animals to remain indoors in the valley during the cold season, whereas during the summer 

they are moved to pastures at progressively higher altitudes. The animals transferred from the 

valley farm to the alpine pasture must adapt to various management changes. This study aimed to 

evaluate whether a gradual inclusion of fresh grass in the diet of dairy cows in the valley farm can 

improve the performance and milk characteristics during summer grazing. Three groups of six 

animals each were considered: one group was kept in the stable, one was transferred from the valley 

to the summer farm without adaptation, and the other was progressively adapted to grazing with a 

feeding adaptation period. Compared to animals kept indoors, grazing animals had similar 

performance and milk characteristics, higher rumination time and, with respect to volatile 

compounds in milk, higher concentrations of alcohols, aldehydes, hydrocarbons, and ketones but 

lower concentrations of organic acids, phenolic compounds, and dimethyl sulfone, regardless of the 

feeding adaptation. In conclusion, the gradual inclusion of fresh grass in the diet in the valley farm 

did not improve the performance and milk characteristics during summer grazing. 

Abstract: According to the alpine transhumance system, dairy cows are moved from indoor feeding 

with conserved forage to fresh herbage feeding on pasture. The aim of this study was to assess, as a 

feeding adaptation technique, the effect of a gradual inclusion of fresh herbage in the diet of Italian 

Simmental dairy cows before their transfer to alpine pasture on performance, behavior, and milk 

characteristics. Eighteen cows were assigned to three groups: animals transferred to alpine pasture 

with a 10-d feeding adaptation period consisting in gradual access to a pasture close to the valley 

farm (GT), animals transferred to alpine pasture without a feeding adaptation period (AT), and 

animals kept in the valley farm (IND). During the first two weeks of summer grazing, GT and AT 

showed higher rumination time and different concentrations of ketones, hydrocarbons, organic 

acids, toluene, alcohols, phenols, and dimethyl sulfone in milk as compared to IND, whereas no 

differences were found in milk yield, composition, or coagulation properties. No differences 

between GT and AT were evident for the studied variables. The feeding adaptation technique used 

in this study did not influence the performance and milk characteristics of Italian Simmental dairy 

cows grazing on alpine pasture. 
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1. Introduction 

Over the last few decades, mountain agricultural systems have undergone many economic, 

technological, and societal changes [1]. These changes have led to a reduction in the number of dairy 

farms, a significant increase in the average herd size, and a contraction of pasture areas. A general 

movement from grass-based to indoor systems has occurred, especially in valley areas [2,3]. However, 

mountain dairy farms are important for the manufacture of many products with specific features 

[4,5], for the environment [6], and for the provision of ecosystem services [7,8]. The traditional 

extensive system of rearing dairy cows in mountain areas is called “vertical transhumance” and 

consists of animals being kept in valley farms from autumn to early spring followed by the transfer 

of herds to high alpine pastures, gradually exploiting pastures at higher altitudes [9]. Nowadays, the 

system consists of dairy cows being moved from valley farms directly to high alpine pastures. In 

some areas of the Italian Alps, this practice may affect more than half of the farms [10]. Overall, during 

the first period of grazing, dairy cows have to face many stressful environmental and management 

changes, such as a different diet, hypoxia related to altitude, harsh climate conditions, increase in 

physical activity, change of milking system, and modification of social conditions [11,12]. Of these 

changes, one of the most important is the change in diet [13]. In fact, the animals are fed with a hay-

based diet during the cold season and a fresh herbage-based diet during summer. This sudden 

change in feeding can cause many metabolic and physiological imbalances. In particular, the abrupt 

inclusion of fresh herbage in the diet alters the metabolism of fatty acids [14,15], favors the 

redistribution of energy towards maintenance requirements with a negative effect on milk 

production [16], influences dry matter intake [17] and milk composition [18], impairs the possibility 

to recover body reserves [19], and can even modify animal behavior [20]. Moreover, during the first 

few weeks after being moved from a total mixed ration (TMR) to fresh herbage, Schären et al. [21] 

observed a reduction in rumen fermentation activity in German Holstein cows, also leading to 

variations in the oxidation of dietary fatty acids and, therefore, in volatile organic compounds (VOCs) 

in milk [22]. 

Several studies have focused on the effects of summer grazing on milk characteristics [23,24] and 

milk VOCs [25,26]. In particular, summer grazing increases the fat content but decreases the protein 

content of milk [24], and it makes the fatty acid profile more favorable for human health [23]. 

Moreover, grazing can increase some milk VOCs such as terpenes [25], sulfur compounds, and 

alcohols [26]. Very scarce information is available on useful techniques to improve the feeding 

adaptation of animals to mountain grazing. Considering that the abrupt inclusion of grazing can 

negatively affect animal performance and alter rumen fermentation and milk characteristics, we 

hypothesize that a gradual inclusion of fresh herbage in the diet before the transfer to alpine pasture 

can favor the adaptation of dairy cows to alpine pasture in the short term. Furthermore, the 

experiment aimed to study the differences between grazing and indoor management in terms of 

performance, milk characteristics, and animal behavior. 

2. Materials and Methods  

The study was conducted in accordance with EU Directive 2010/63/EU and Italian legislation 

(Legislative Decree no. 26, 4 March 2014), and adhered to the rules of the University of Udine. The 

ethical committee of the University of Udine was consulted. Since no invasive procedure was applied 

and the procedures adopted were routine, formal ethical approval was not required. 

2.1. Experimental Design 

Ten days before their transfer from the valley to the summer farm, 18 healthy Italian Simmental 

dairy cows with previous grazing experience belonging to the same farm (Tesero, TN, Italy, 1000 m 
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above sea level) were randomly selected and assigned to three experimental groups: animals 

transferred to summer grazing with a feeding adaptation period (GT), animals transferred to summer 

grazing without a feeding adaptation period (AT), and animals kept in the valley farm throughout 

the experimental period (IND). The groups were homogeneous in terms of live weight (mean ± 

standard error (SE); 647 ± 18 kg), height at the withers (1.34 ± 0.08 m), lactation stage (195 ± 8 d in 

milk), number of lactations (1.9 ± 0.3), body condition score (BCS; 3.24 ± 0.07 points), milk yield (21.9 

± 1.1 kg/d of fat- and protein-corrected milk (FPCM)), and milk composition (70,020 ± 14,650 cells/mL 

somatic cell count (SCC); 3.45% ± 0.04% protein, 3.64% ± 0.09% fat, 2.69% ± 0.04% casein). The 

experimental period lasted 24 d, 10 d before and 14 d after the transfer of animals (groups GT and 

AT) to the summer farm (Malga Juribello, Paneveggio Pale San Martino Natural Park, TN, lat. 

46°29’66’’, long. 11°78’67’’, 1860 m above sea level). Before the start of the experimental period, all 

animals were indoor housed in a cubicle system and were fed ad libitum with the same TMR (dry 

matter (DM) basis) composed of 25% grass silage, 25% grass hay, and 50% concentrate (maize meal, 

wheat meal, whole soybean, barley meal, soybean meal, molasses, vitamins, and minerals). This diet 

was maintained throughout the experimental period for the IND group. Before summer grazing, the 

same diet was also offered ad libitum to the GT and AT groups. However, with the aim of improving 

the feeding adaptation to summer grazing, the GT group was still fed ad libitum with the same TMR 

but also gradually introduced to a pasture-based diet. In particular, GT had access to a pasture close 

to the farm, less than 50 m in walking distance, for 1 h/d, days 9–10; 3 h/d, days 7–8; 5 h/d, days 5–6; 

7 h/d, days 3–4; 9 h/d, days 1–2 before the transfer to the summer farm. The pasture was an 

Arrhenatherion elatioris W. Koch 1926 alliance mainly composed of Arrhenatherum elatius, Poa pratensis, 

Trisetum flavescens, Dactylis glomerata, and Alopecurus pratensis. Transportation by truck from the 

valley to the summer farm (including loading and unloading) lasted 90 min. Dairy cows in the GT 

and AT groups grazed together in a herd of 140 cows in a 19-ha alpine pasture under a shepherd-

guided grazing system. The alpine pasture was a Poion alpinae Oberd. 1950 alliance mainly composed 

of Poa alpina, Phleum alpinum, Trifolium pratense, Trifolium repens, Alchemilla vulgaris, and Carum carvi. 

During summer grazing, GT and AT received 5 kg DM of a concentrate composed of wheat bran, 

corn, sugar beet pulps, sunflower, molasses, vitamins, and minerals. The concentrate was fed in 

twice-daily meals during milking. The animals were kept day and night on pasture. Samples of TMR, 

pasture and concentrate were collected every 3 days, dried at 65 °C in a forced draft oven for 48 h, 

and analyzed for crude protein (CP) and ether extract (EE) following Association of Official 

Agricultural Chemists [27], and for neutral detergent fiber (NDF) following Goering and Van Soest 

[28]. The diets were formulated and the energetic values of feed were assessed according to Baumont 

et al. [29]. Furthermore, the energetic value of feed was expressed as net energy for lactation (NEL). 

Considering TMR, the hay had 12.2% DM CP, 60.3% NDF, and 4.6 MJ NEL/kg DM; the herbage silage 

had 14.3% DM CP, 57.5% NDF, and 4.3 MJ NEL/kg DM; and the concentrate had 15.5% DM CP and 

8.1 MJ NEL/kg DM. The pasture close to the farm had 15.1% DM CP, 69.9% NDF, and 5.1 MJ NEL/kg 

DM; the alpine pasture had 15.2% DM CP, 56.8% NDF, and 5.2 MJ NEL/kg DM; the concentrate 

offered to animals in the alpine farm had 12.4% DM CP and 7.0 MJ NEL/kg DM. 

2.2. Measurements 

Environmental temperature and rainfall were recorded by two public automatic weather 

stations located near the valley and summer farms throughout the experimental period. BCS of 

animals was assessed 17 and 24 d (weekly during grazing) after the beginning of the experiment, 

following Edmonson et al. [30]. Throughout the experimental period, the dairy cows were equipped 

with a noseband pressure sensor and a pedometer (RumiWatch system, ITIN-HOCH GmbH, Liestal, 

Switzerland) for assessing the feeding and locomotion behavior, as reported by Romanzin et al. [31]. 

The variables recorded were eating and rumination time (min/d); eating and rumination chews (n/d); 

number of rumination boli (n/d); lying, walking and standing time (min/d); number of steps (n/d). 

The feeding and locomotion behavior recorded 10 d after the beginning of the experiment (during 

the grazing period), excluding milking time, was considered for analyses. 
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2.3. Sampling and Analysis 

Individual milk yield was recorded and samples were collected 14, 17, 21, and 24 d after the 

beginning of the experiment, considering both evening and morning milking. Milk samples were 

refrigerated without preservative for milk coagulation properties (MCP) and VOCs, and with 

preservative for the other analyses. In particular, milk samples were analyzed for fat, protein, lactose, 

casein, urea, β-hydroxybutyrate (BHB), and acetone using MilkoScan FT6000 (FOSS Electric, 

Hillerød, Denmark) and calibrated according to the International Dairy Federation Standard [32]; for 

somatic cell count (SCC) using Foss-o-Matic (FOSS Electric, Hillerød, Denmark) and calibrated 

according to the International Dairy Federation Standard [33]; and for coagulation properties (MCP). 

The analysis of MCP was based on the 9-MilCA method, which mimics dairy cheese making, as 

reported by Cipolat Gotet et al. [34]. Individual morning and evening milk samples were analyzed 

separately, and the average values weighted by the corresponding milk yield were considered for 

statistical analysis. Milk yield was analyzed as FPCM [35]. At each sampling time, but considering 

only morning milking, VOCs were measured by solid-phase microextraction (SPME) GC-MS. This 

method has been optimized previously [36]. Briefly, 5 mL of milk was poured into a 20 mL glass vial 

with 4-methyl-2-pentanone used as an internal standard. VOCs were extracted at 40 °C with a 

Divinylbenzene-Carboxen–Polydimethylsiloxane SPME (2 cm length) and then desorbed in the 

injector port (250 °C) of the GC interfaced with a mass detector (electron ionization; internal 

ionization source; 70 eV) scanning from m/z 33 to m/z 300 (GC Clarus 500, PerkinElmer, Norwalk, 

CT). SPME analysis was automated by an auto-sampling system (CTC combiPAL, CTC Analysis AG, 

Zwingen, Switzerland). Separation was achieved on a HP-Innowax fused-silica capillary column (30 

m, 0.32 mm inner diameter, 0.5 μm film thickness; Agilent Technologies, Palo Alto, CA). The 

temperature program was set as follows: 40 °C for 3 min, 180 °C for 6 min at 4 °C min−1, 220 °C for 3 

min at 3 °C min−1. Helium at a flow rate of 2 mL/min was used as a carrier gas. The transfer line 

temperature was kept at 220 °C. Linear retention indices (LRI) were calculated under the same 

chromatographic conditions, injecting C7-C30 n-alkane series (Supelco, Bellefonte, PA). Compounds 

were identified by using the mass spectra matching the National Institute of Standards and 

Technology-2014/Wiley 7.0 libraries and comparing the calculated LRI with those available from the 

literature.  

2.4. Statistical Analysis 

The statistical analyses were performed using R software, version 3.4.0 [37]. The normality and 

homoscedasticity of data were tested using Shapiro–Wilk and Levene tests, respectively. When 

appropriate, variables were transformed for parametric testing. The effects of the adaptation method 

(GT, AT, IND) on the variables related to milk characteristics during summer grazing were assessed 

with a mixed model for repeated measures, as suggested by Wang and Goonewardene [38], 

considering the adaptation method as a fixed factor and the day of sampling as a repeated factor. 

Individual animals were treated as a random factor. The interaction of adaptation method × day of 

sampling was also considered. If this interaction was significant, the differences between adaptation 

methods for the specific day of sampling were evaluated, following Park et al. [39]. Fisher’s least 

significant difference was used as a post-hoc test. The same model was considered for BCS and for 

the variables related to feeding and locomotion behavior, but instead of the day of sampling, the day 

of assessment and the day of measurement were considered, respectively. VOCs were also subjected 

to principal components analysis (PCA) using SIMCA-P+12.0 (Umetrics, Umea, Sweden). Data were 

log-transformed and scaled to unit variance before PCA. 

In the manuscript, values are reported as mean ± SE. Differences were considered significant at 

p ≤ 0.05. 

3. Results and Discussion 

3.1. Weather Conditions 
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During grazing time, the average temperature was 9.6 °C (min. 5.9 °C, max. 13.1 °C); the median 

precipitation was 4.0 mm/d (min. 0 mm/d, max. 30 mm/d). There were 11 rainy days, but the 

precipitation was more than 5.0 mm on just 3 days. During the same time, in the valley farm the 

average temperature was 17.2 °C (min. 13.7 °C, max. 19.5 °C), the median precipitation was 0 mm/d 

(min. 0 mm/d, max. 23 mm/d; data not reported in tables). The average sunrise was at 5:21 a.m., and 

the average sunset was at 9:07 p.m., giving an average length of day of approximatively 16 h. Since 

all the experimental groups were kept within the thermo-neutral zone for dairy cattle [40], the 

productive performance can be considered not affected by the environmental conditions. 

3.2. Body Conditions Score and Milk Yield, Composition, and Coagulation Properties 

Table 1 reports the results for BCS and milk yield and composition. No effect of adaptation 

method on BCS or milk yield was found (p > 0.05). However, the interaction of adaptation method × 

day of assessment was significant for BCS. In the IND group, the BCS increased from 17 to 24 d (3.20 

± 0.12 points vs. 3.27 ± 0.10 points; p < 0.05); conversely, the BCS of GT (3.19 ± 0.13 points vs. 3.10 ± 

0.11 points; p > 0.05) and of AT (3.33 ± 0.06 points vs. 3.29 ± 0.05 points; p > 0.05) remained constant. 

The animals were in late lactation, so an increase in BCS should be expected. However, several studies 

have shown that it is difficult for dairy cows to restore their body reserves during summer grazing 

on alpine pasture [41–43] due to the high energy expenditure of their physical activity. Furthermore, 

the length of the grazing period in this experiment may not be enough to observe variations in animal 

BCS. Considering milk composition, fat, protein, lactose, urea, SCC, and casein were not affected by 

adaptation method (p > 0.05). However, for fat, casein, and urea, a significant interaction of adaptation 

method × day of sampling was found (p < 0.05). AT had higher fat content in milk than IND only at 

21 d after the beginning of the experiment (4.42% vs. 3.68%; p < 0.05) while GT showed intermediate 

values (4.18%). Grazing animals (GT and AT) had higher casein in their milk than IND animals only 

at the second sampling time (3.95%, 3.88%, and 3.22% for GT, AT, and IND, respectively; p < 0.05). 

Considering urea, 4 days after the beginning of summer grazing (first sampling time), IND showed 

the lowest value (15.04 ± 2.25 mg/dL; p < 0.01) while GT had a lower value than AT (24.38 ± 0.93 vs. 

28.86 ± 1.95 mg/dL; p = 0.09). Within the subsequent samplings, no differences between the 

experimental groups were detected (p > 0.05). Milk urea increases with increasing dietary protein-to-

energy ratio; therefore, the higher values observed in grazing animals could be due to the higher level 

of fermentable protein that characterizes the pasture at the beginning of the grazing season [44]. 

However, the fact that GT tended to have a lower level of milk urea than AT during the first few days 

of the upland grazing season could be due to rumen micro-organisms that adapted faster to the new 

feeding. In general, all the experimental groups showed urea contents in milk within the range of 

normality proposed by Bendelja et al. [45], i.e., 15–30 mg/dL. The contents of acetone and BHB were 

affected by adaptation method (p < 0.05), but also the interaction of adaptation method × day of 

sampling was significant (p < 0.05). Both acetone and BHB are indicators of ketosis and of a negative 

energy balance in cows if their concentration in milk exceeds 0.70 and 0.15 mmol/L, respectively 

[46,47]. The results indicated that the animals in the present study were not in a state of negative 

energy balance. 

Table 1. Mean values of body condition score (BCS) and milk yield, composition, and coagulation 

properties (MCP) (n = 18). 

Item 
Adaptation Method 

SEM 
p-Value 

GT AT IND AM D AM × D 

BCS (points) 3.15 3.31 3.23 0.058 0.52 0.41 0.02 

FPCM (kg) 18.9 22.2 22.9 1.23 0.78 0.39 0.16 

Fat (%) 4.00 4.07 3.77 0.084 0.36 0.01 0.01 

Protein (%) 3.54 3.52 3.52 0.032 0.94 <0.01 0.05 

Lactose (%) 4.70 4.69 4.70 0.052 0.14 0.49 0.36 

Urea (mg/dL) 16.98 19.23 17.79 0.714 0.43 <0.01 <0.01 

SCC (×1000 cells/mL) 90.4 109.8 206.6 57.06 0.79 0.05 0.49 

Casein (%) 2.82 2.80 2.73 0.027 0.39 <0.01 <0.01 
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Acetone (mmol/L) 0.021 b 0.033 ab 0.057 a 0.006 0.04 <0.01 <0.01 

BHB (mmol/L) 0.039 b 0.051 b 0.092 a 0.006 <0.01 <0.01 0.02 

RCT (min) 31.95 24.03 24.15 1.857 0.17 0.80 0.01 

k20 (min) 8.36 5.94 7.02 0.612 0.30 0.05 0.21 

a45 (mm) 26.01 34.59 30.60 2.770 0.47 <0.01 0.38 

a60 (mm) 30.26 35.11 32.89 1.510 0.44 <0.01 0.76 

GT = dairy cows adapted to fresh herbage feeding before grazing; AT = dairy cows not adapted to 

fresh herbage feeding before grazing; IND = dairy cows kept in cubicle system; SEM = standard error 

of the mean; AM = adaptation method; D = day of assessment for BCS-sampling day for milk yield 

and composition; FPCM = fat and protein corrected milk; SCC= somatic cells count; BHB: β-

hydroxybutyrate; RCT = rennet coagulation time; k 20 = time from milk gelation to 20 mm of curd 

firmness equivalent; a 45, a60 = curd firmness recorded after 45 and 60 min from rennet addition; a,b: 

means statistically different. 

As shown in Table 1, the MCP were not affected by adaptation method (p > 0.05), and the average 

values fall within the ranges proposed by Cecchinato et al. [48]. Many studies have reported that 

dairy cows grazing on mountain pasture produce milk with impaired MCP [49,50]. The reasons for 

this may be a high NDF and/or low protein content in forage, and in general, a low level of protein 

in milk that could be related to the possible negative energy balance of dairy cows during grazing 

[12]. In fact, Bovolenta et al. [51] observed an improvement in milk coagulation time and curd 

firmness when the supplement offered to grazing animals was increased from 1.8 to 5.3 kg DM/day. 

As previously discussed, the energy balance condition of the animals and the similar protein contents 

in milk can explain the lack of significant differences in MCP observed in the present experiment. 

Additionally, Saha et al. [24] observed similar MCP in milk produced from indoor-fed cows to that 

produced from grazing cows supplemented with 5 kg/d of concentrate. 

The few differences observed between experimental groups could be partially due to animal 

breed. Indeed, genotype can affect the effectiveness of animal responses to environmental changes 

[52], and Italian Simmental is a dual-purpose breed that is spreading in the Alpine area thanks to its 

good adaptability to mountain grazing conditions [53]. 

3.3. Milk Volatiles Organic Compounds 

In Table 2, the VOCs in milk are reported. A total of 50 VOCs belonging to alcohols (8), aldehydes 

(8), hydrocarbons (10), ketones (6), organic acids (11), phenolic compounds (3), terpenes (1), sulfur 

compounds (1), and lactones (2) were identified. Toso et al. [54] and Villeneuve et al. [26] reported 41 

and 50 volatile compounds, respectively, in the milk of dairy cows fed with hay and silage-based 

diets. The sum of alcohols (mainly due to 1-pentanol, 1-hexanol, and 1-heptanol concentrations) and 

the sum of hydrocarbons (mainly due to toluene, limonene, and dimethyl sulfone concentrations) 

were higher in milk from grazing animals than in milk from the IND group (p < 0.05). However, for 

limonene and for the sum of hydrocarbons, the interaction of adaptation method × day of sampling 

was significant (p < 0.05). The sum of aldehydes was higher in the AT than the IND group (p < 0.05) 

with intermediate values shown in GT, reflecting the results for hexanal concentrations. The sum of 

ketones as well as the concentration of 2-pentanone were higher in milk from grazing animals than 

in milk from the IND group (p < 0.05). Conversely, the sum of organic acids (mainly due to butanoic, 

hexanoic, octanoic, and decanoic concentrations) and phenolic compounds were lower in milk from 

grazing animals than in milk from the IND group (p < 0.05). No effect of adaptation method on 

lactones was found (p > 0.05). Bergamaschi and Bittante [55] highlighted that volatile compounds can 

derive from the degradation of fat and protein by enzymes naturally present in milk and associated 

with the presence of somatic cells. However, as previously reported, in the present experiment the 

SCC was similar between experimental groups. More importantly, milk volatile compounds can also 

derive directly from the diet of the animals; from the metabolism of carotenoids, amino acids, and 

carbohydrates; and from the oxidation of unsaturated fatty acids (UFA) in milk [22]. Herbage is 

particularly rich in UFA such as linolenic acid [23]. Although ruminal micro-organisms saturate part 

of the dietary UFA, milk from grazing cows is richer in polyunsaturated fatty acids (PUFA) [56]. 
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Therefore, milk from grazing animals is more susceptible to oxidation [22]. However, the extent of 

this biohydrogenation as well as the metabolism of carotenoids, amino acids, and carbohydrates 

depend on rumen conditions, particularly different bacterial populations [57]. In agreement with the 

results obtained for milk characteristics and animal feeding behavior, the milk VOCs seem more 

related to the forage offered to animals, herbage vs. silage/hay, rather than to the different rumen 

condition that could be derived from the feeding adaptation technique adopted, GT vs. AT. Indeed, 

it is interesting to note that 1-pentanol and 1-hexanol, which derive from fatty acid oxidation [22] 

were highest in the milk of grazing animals; conversely, the concentration of 3-methyl-1-butanol, 

which derives from amino acid metabolism in the rumen, was similar between experimental groups. 

Villeneuve et al. [26] found significantly or numerically higher concentrations of 1-pentanol, 1-

hexanol, and 1-heptanol in the milk of cows fed with pasture than in the milk of those fed with 

timothy hay. The sum of aldehydes was higher in AT than IND, and GT showed a similar value to 

IND, reflecting the result of hexanal concentration. Conversely, heptanal was higher in the milk of 

grazing animals than in the milk of IND animals. Aldehydes derive mainly from lipid oxidation. 

Hexanal is a product of the oxidation of oleic acid and linoleic acid, which are also present in 

concentrates; it is a transient product and can be converted to 1-hexanol [22]. Toluene concentration 

was higher in milk from grazing animals. Since it derives from the degradation of β-carotene in the 

rumen, toluene is considered a marker of the use of pasture by animals [22], as also shown by 

Villeneuve et al. [26]. Therefore, the results of the present study reflect the higher fresh herbage intake 

in grazing animals. A similar hypothesis can be drawn for the higher content of ketones observed in 

grazing animals. Indeed, ketones derive mainly from the oxidation of dietary PUFA. The content of 

butanoic and hexanoic acids was lower in milk from grazing animals than in milk from IND animals. 

These organic acids derive from lipolysis and de-novo synthesis in the mammary gland [22], which 

is reduced by high dietary levels of UFA and linolenic acid in particular. The results of the present 

experiment are in agreement with the findings of Lee et al. [58], who observed a reduction in short 

chain fatty acids in milk obtained from grazing animals with respect to milk obtained from indoor-

fed animals. In the present experiment, dimethyl sulfone was higher in the milk of grazing animals 

than in that of IND animals. Dimethyl sulfone derives from the metabolism of methionine in the 

rumen [22]. In agreement with this result, Coppa et al. [25] also observed a higher content of dimethyl 

sulfone in the milk of cows fed with pasture-based diets than in that produced by animals fed with 

hay-based diets. The above-cited authors explain that fresh herbage has a higher methionine content 

and a higher protein-to-readily digestible carbohydrates ratio than dry forage. Conversely, the level 

of dimethyl sulfone was similar in milk from GT and AT, further confirming the hypothesis that the 

rumen conditions were similar between these groups. In general, the results of this study showed 

that the milk VOCs were influenced little by the feeding adaptation technique adopted. 

Table 2. Mean values of volatiles organic compounds (μg/kg equivalent of 4-methyl-2-pentanone 

[36]) in milk (n = 18). 

Volatile Organic Compound 
Adaptation Method 

SEM 
p-Value 

GT AT IND AM D AM × D 

Alcohols        

3-methyl-1-butanol 1.55 2.06 2.73 0.580 0.80 0.04 0.23 

1-pentanol 4.84 a 5.37 a 0.81 b 0.352 <0.01 0.16 0.23 

2,3-octanediol 0.45 a 0.91 a 0.07 b 0.089 <0.01 0.12 0.18 

1-hexanol 7.21 a 8.80 a 0.91 b 1.322 <0.01 0.31 0.62 

1-octen-3-ol 0.47 a 0.62 a 0.09 b 0.046 <0.01 0.18 0.25 

1-heptanol 0.85 a 1.14 a 0.04 b 0.152 <0.01 0.21 0.44 

2-ethyl-1-hexanol 0.86 ab 1.07 a 0.68 b 0.042 0.01 <0.01 <0.01 

1-octanol 0.25 a 0.39 a 0.03 b 0.037 <0.01 0.01 0.19 

Sum, alcohols 16.48 a 20.36 a 5.36 b 1.798 <0.01 0.13 0.52 

Aldehydes        

3-methylbutanal 1.07 b 0.42 b 4.73 a 0.348 <0.01 0.34 0.26 

hexanal 17.47 ab 35.14 a 5.81 b 3.354 0.02 0.48 0.34 

heptanal 2.74 a 6.68 a 0.21 b 0.712 <0.01 0.34 0.13 
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(E)-2-heptenal  0.15 a 0.27 a 0.01 b 0.026 <0.01 0.29 0.58 

nonanal 0.67 ab 1.01 a 0.34 b 0.077 0.01 <0.01 0.54 

benzaldehyde 0.37 ab 0.53 a 0.24 b 0.029 0.01 0.06 0.26 

4-ethylbenzaldehyde 0.02 ab 0.03 a <0.01 b 0.004 0.03 0.38 0.44 

2,4-dimethylbenzaldehyde 0.01 0.02 <0.01 0.004 0.07 0.45 0.22 

Sum, aldehydes 22.50 ab 44.10 a 11.38 b 4.038 0.04 0.25 0.66 

Hydrocarbons        

decane 1.95 2.09 2.47 0.451 0.16 <0.01 <0.01 

toluene 26.30 a 29.40 a 0.55 b 1.808 <0.01 <0.01 0.07 

ethyl benzene 0.19 b 0.85 a 0.33 b 0.133 0.01 0.59 0.18 

p-xilene 0.08 0.26 0.13 0.042 0.07 0.81 0.11 

m-xilene 0.15 b 0.38 a 0.17 b 0.054 0.01 0.45 0.08 

o-xilene 0.15 b 0.30 a 0.20 a 0.035 0.03 <0.01 <0.01 

1,3-di-tert-butylbenzene 0.98 b 1.01 ab 1.63 a 0.064 <0.01 <0.01 <0.01 

pentadecane 0.06 0.09 0.02 0.021 0.42 0.14 0.26 

hexadecane 0.05 0.10 0.05 0.008 0.44 0.36 0.69 

heptadecane 0.04 0.06 0.03 0.008 0.60 0.62 0.22 

Sum, hydrocarbons 29.95 a 34.53 a 5.61 b 5.174 <0.01 <0.01 <0.01 

Ketones        

2-butanone 2.11 2.13 1.68 0.131 0.29 0.38 0.62 

2-pentanone 1.51 a 1.79 a 1.02 b 0.111 0.01 0.71 0.08 

2-heptanone 4.48 6.27 1.04 1.412 0.49 0.75 0.95 

2-nonanone 3.17 4.90 0.26 1.214 0.35 0.67 0.88 

2-undecanone 0.03 0.04 0.02 0.009 0.52 0.95 0.56 

acetophenone 0.10 0.13 0.06 0.011 0.30 0.76 0.92 

Sum, ketones 11.40 a 15.26 a 4.08 b 2.660 0.05 0.74 0.70 

Organic acids        

acetic acid 0.24 0.19 0.15 0.020 0.22 0.62 0.20 

butanoic acid 2.54 b 2.95 b 6.35 a 0.460 0.01 0.73 0.97 

pentanoic acid 0.05 0.05 0.05 0.008 0.67 0.09 0.13 

hexanoic acid 5.44 b 6.75 b 14.80 a 1.179 0.01 0.66 0.76 

4-methyl hexanoic acid 0.01 <0.01 <0.01 0.005 0.43 0.37 0.43 

heptanoic acid 0.13 b 0.15 b 0.26 a 0.014 0.01 0.47 0.46 

octanoic acid 4.47 b 5.14 b 13.18 a 0.828 <0.01 0.39 0.94 

nonanoic acid 0.65 b 0.62 b 1.12 a 0.077 0.05 0.68 0.69 

decanoic acid 2.45 b 2.53 b 6.11 a 1.230 <0.01 0.14 0.41 

9-decenoic acid 0.10 b 0.12 b 0.30 a 0.019 <0.01 0.41 0.73 

dodecanoic acid 0.34 b 0.32 b 0.63 a 0.037 0.01 0.75 0.28 

Sum, organic acids 16.41 b 18.82 b 42.94 a 9.102 <0.01 0.15 0.51 

Phenolic compounds        

phenol 0.37 b 0.37 b 0.42 a 0.008 <0.01 1.00 0.92 

p-cresol 0.23 0.21 0.25 0.008 0.14 0.67 0.99 

m-cresol 0.69 b 0.63 b 0.83 a 0.023 <0.01 0.70 0.98 

Sum, phenolic compounds 1.28 b 1.20 b 1.49 a 0.036 0.01 0.80 0.97 

Terpene        

limonene 0.41 a 0.41 a 0.01 b 0.051 0.01 <0.01 0.01 

Sulphur compound        

dimethyl sulfone 3.41 a 4.83 a 1.91 b 0.230 <0.01 0.23 0.12 

Lactones        

γ-butyrolactone 0.36 0.46 0.25 0.033 0.24 0.59 0.80 

δ-decalactone 0.09 0.10 0.13 0.009 0.10 0.16 0.67 

Sum, lactones 0.45 0.55 0.38 0.033 0.56 0.22 0.42 

GT = dairy cows adapted to fresh herbage feeding before grazing; AT = dairy cows not adapted to 

fresh herbage feeding before grazing; IND = dairy cows kept in cubicle system; SEM = standard error 

of the mean; AM: adaptation method; D = day of sampling; a,b: means statistically different. 

Figure 1 shows an overall illustration of VOCs in experimental milk. The first and second 

principal components (PCs) explained 29.1% and 17.9% of the total variance, respectively. The IND 
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group’s milk was separated on the first PC from those of GT and AT (Figure 1a) and was mainly 

positively related to organic acids (Figure 1b). Milk from the GT and AT groups could not be clearly 

separated (Figure 1a), and was mainly positively related to alcohols, aldehydes, and toluene (Figure 

1b). It is also interesting to note that variability in milk volatile compounds is higher for the AT group 

(Figure 1a), mainly because of the higher amount of aromatic hydrocarbons. 

 

 

Figure 1. Principal component analysis of volatile organic compounds (VOCs) showing experimental 

groups’ milks (a); GT = dairy cows adapted to fresh herbage feeding before grazing; AT = dairy cows 

not adapted to fresh herbage feeding before grazing; IND = dairy cows kept in a cubicle system) and 

individual VOCs (b). 

3.4. Feeding and Locomotion Behavior 

The feeding behavior of animals is reported in Table 3. No effect of adaptation method on the 

number of eating chews was found (p > 0.05). However, although a significant level was not achieved, 

eating time was numerically higher in AT and GT than in IND. Beauchemin [59] reported that eating 

time increases with increasing dietary particle size. Grazing animals had lower rumination time (p < 

0.01), rumination chews (p < 0.01), and number of boli per day (p < 0.05) than IND. Ruminating time 

depends on many factors. Beauchemin [59] explained that, for low-yielding cows, a compensatory 
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mechanism between ruminating and eating times can be observed; in other words, the more time is 

spent eating, the less time is spent ruminating. Moreover, the shorter ruminating time observed in 

grazing animals could be due to the higher degradability of fresh forage than that of indoor feed. This 

hypothesis could also contribute to explaining the lower number of rumination chews and number 

of boli per day highlighted in grazing animals. Ocak [60] reported a higher rate of degradation in the 

rumen for fresh forage than for dry forage. It is well known that rumination times are linked to correct 

ruminal functionality. In the present study, the average ruminating time of IND was very similar to 

that reported by De Vries et al. [61], 555 min/d, in healthy cows fed with a 60:40 forage-to-concentrate 

ratio. The ruminating times observed in grazing animals were lower than those reported by 

Romanzin et al. [31], 473 min/d, but within the range reviewed by Braun et al. [62], 240–584 min/d. 

The locomotion behavior of animals is reported in Table 3. As expected, grazing animals showed 

much higher walking time and number of steps per day than IND (p < 0.05). For these variables, the 

interaction of adaptation method × day of measurement was also significant (p < 0.01) but ordinal 

from the perspective of the adaptation method factor. This means that grazing animals had a higher 

walking time and number of steps than indoor-housed animals per day of measurement. Thus, the 

effect of adaptation method can be considered separately from the day of measurement effect [63]. 

Conversely, no effect of adaptation method on standing time was found (p > 0.05). 

Table 3. Mean values of variables related to feeding and locomotion behavior (n = 18). 

Item 
Adaptation Method 

SEM 
p-Value 

GT AT IND AM D AM × D 

Eating time (min/d) 444.8 503.4 421.1 17.20 0.14 0.03 0.67 

Eating chews (n/d) 31,188 34,876 30,919 1392.5 0.47 0.01 0.44 

Rumination time (min/d) 370.1 b 334.9 b 520.6 a 9.39 <0.01 <0.01 0.21 

Rumination chews (n/d) 23,089 b 21,001 b 30,017 a 1104.2 0.01 <0.01 0.34 

Boluses (n/d) 402.3 b 394.0 b 494.1 a 14.41 0.01 <0.01 0.74 

Lying time (min/d) 588.7 582.4 670.5 18.73 0.13 <0.01 0.08 

Walking time (min/d) 135.0 a 143.7 a 48.6 b 3.62 <0.01 <0.01 <0.01 

Standing time (min/d) 716.7 714.3 721.3 17.41 0.93 <0.01 0.34 

Steps (n/d) 3894 a 4047 a 1104 b 105.5 <0.01 <0.01 <0.01 

GT = dairy cows adapted to fresh herbage feeding before grazing; AT = dairy cows not adapted to 

fresh herbage feeding before grazing; IND = dairy cows kept in cubicle system; SEM = standard error 

of the mean; AM = adaptation method; D = day of measurements; a,b: means statistically different. 

4. Conclusions 

Since many farmers report negative effects of the direct transfer of dairy cows from indoor 

housing in the valley to summer farms, this study aimed to verify possible beneficial effects of a 

feeding adaptation before summer grazing. In the present experiment, in which the Italian Simmental 

dual-purpose breed was used, grazing animals showed similar performance and milk characteristics 

but different feeding behavior and milk VOCs compared to animals kept indoors in the valley farm 

in the short term, regardless of feeding adaptation. Indeed, during the first two weeks, grazing 

animals showed higher rumination time and number of rumination chews and boli, and different 

concentrations of ketones, hydrocarbons, organic acids, toluene, alcohols, phenols, and dimethyl 

sulfone in their milk as compared to indoor-housed animals. The observed differences seemed to be 

more related to the fresh herbage intake rather than to the feeding adaptation technique used. Further 

studies involving longer adaptation periods, high-producing breeds, and different stages of lactation 

are needed. 
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