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ABSTRACT

Change detection from multi-temporal remote sensing images is an effective way to identify
the burned areas after forest fires. However, the complex image scenario and the similar
spectral signatures in multispectral bands may lead to many false positive errors, which
make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change
detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR
(NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed
approach is validated on three Landsat-8 data sets presenting various fire disaster events
worldwide. Compared to eight index-based detection methods that developed in the litera-
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ture, the proposed approach has the best performance in terms of class separability (2.49, 1.74
and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas.
Simultaneously, it can also better suppress the complex irrelevant changes in the background.

Introduction

As one of the major natural disasters, wildfires often
lead to ecosystem imbalance and local structural
damages. From WWF’s point of view, the extent of
burned areas increased dramatically in recent years in
regions such as the western United States, southeast
Australia and Europe (Hirschberger, 2016). More
communities should focus on the increasing fire risk
to prevent deadly threats. Accordingly, more accurate
and real-time data should be acquired, and more
advanced techniques should be designed to monitor
wildfires.

Traditional ground surveys are often difficult and
costly to carry out due to many limitations such as
complex terrain morphology, large scene and bad
weather conditions; in particular, in the burned area
detection case this task is almost impossible. Remote
sensing satellites are able to quickly locate fire spots by
analyzing multitemporal remote sensing images cov-
ering the fire scenario. In the past decades, extensive
studies have been carried out on the detection of the
burned areas (Quintano et al., 2018; Teodoro &
Amaral, 2019). High temporal resolution satellite
images such as EOS/MODIS and NOAA/AVHRR
are widely utilized to identify fire spots and to produce
coarse fire maps. However, they cannot accurately
depict the burned areas and their temporal changes
due to their low spatial resolution. Medium-resolution
satellites such as Landsat series greatly improve the

capability to detect the burned areas at a finer scale
(i.e. with spatial resolution of 30 m). The latest
Landsat-8 OLI sensor can acquire multispectral
images covering several spectral wavelength ranges,
where the near-infrared (NIR) band (0.85-0.88 pm)
and two short wave infrared (SWIR) bands (1.57-
1.65 pm and 2.11-2.29 pm) are quite often used in
burned areas identification. A variety of methods have
been employed for burned area detection including
spectral indices (Tucker, 1979), surface temperature
inversion (Mukherjee et al, 2018), Principal
Component Analysis (PCA) (Richards, 1984), images
classification (Mitri & Gitas, 2004), neural network
(Gémez & Martin, 2011) and spectral mixture analysis
(Smith et al., 2007). Spectral features are more intui-
tive and effective in identifying different land-cover
objects, thus the spectral index-based method
becomes popular in burned area detection due to its
simple implementation and high accuracy.

In particular, there are mainly two kinds of spectral
indices that can be used for burned area detection,
including vegetation index and fire index. Since the
forest fires have occurred with the vegetation changes
(loss of trees), the distinction between burned and
unburned areas can be achieved by some vegetation
indices, such as Normalized Difference Vegetation
Index (NDVI) (Tucker, 1979), Global Environmental
Monitoring Index (GEMI) (Pinty & Verstraete, 1992),
among others. Many fire indices were specifically
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designed based on carbon signal and the temperature
after the burning of land-cover features. The post-fire
spectral signal will lead to a rapid increase and
decrease in the reflectance of SWIR and NIR, respec-
tively. Based on this theory, the Normalized Burned
Ratio (NBR) (Garcia & Caselles, 1991), the
Normalized Difference SWIR (NDSWIR) (Gerard
et al, 2003) and the Burning Area Index (BAI)
(Martin & Chuvieco, 1998) fire indices were designed
to detect the burned areas. Some researchers found
that the combination of the SWIR bands showed
a strong spectral separation on burned and unburned
areas. Therefore, the mid-infrared bi-spectral index
(MIRBI) (Trigg & Flasse, 2001) was designed with
these bands. Moreover, burned areas could show
a temperature of 5-6°C higher than unburned areas
within 1 month after burning (Garcia & Caselles,
1991); thus, the thermal infrared (TIR) bands usually
are utilized to detect the burned areas during the fire
occurrence period. Both the NBR-Thermal (NBRT)
(Smith et al., 2007) and the NIR-SWIR Temperature
Version 2 (NSTV2) (Veraverbeke et al., 2011) indices
introduce the bright temperature (BT) obtained by the
TIR band to improve the fire detection accuracy.
However, these indices only consider the abrupt
changes such as vegetation to burned area, low tem-
perature to high temperature, while interferences
coming from other land-cover changes are ignored.
This will lead to an increase of false positive errors in
the burned area detection.

The current existing vegetation spectral indices
can reflect the burned area changes due to the
vegetation decrease in the pre-fire and post-fire
images. Nevertheless, it should be noted that
other land-cover features might have similar spec-
tral behaviours in some specific bands such as NIR
and SWIR bands. This will lead to an increase in
commission errors in the background. In order to
overcome this limitation and improve the perfor-
mance of burned area detection, a burned area
change detection (CD) approach based on a new
fire index named Normalized Burned Ratio SWIR
(NBRSWIR) is proposed. In particular, the
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designed new index takes advantages of two SWIR
bands in Landsat-8 OLI data. It can increase the
spectral separability of burned and unburned areas,
while it is capable to suppress the background
information such as water, outperforming other
indices. It is worth noting that the proposed
approach is useful and effective for automatic
burned area detection in multitemporal images
without relying on any ground reference data.

Data and methodology
Data and preprocessing

Considering the land coverage complexity, processing
difficulty and data availability, three data sets presenting
wildfire events were selected, including the Sockeye Fire
(SF), the Sampson Flat Fire (SFF) and the Grampians
National Park Fire (GNPEF). In particular, the SF was
located in Alaska, USA, and the wildfire broke out on
14 June 2015. The combination of dry, hot weather and
strong winds contributed to a rapid spread of the fire
and generated a lot of smoke. The SFF occurred in
Adelaide, Australia. On 2 January 2015, the hot weather
and strong wind ignited the fire and over 120 square
kilometres of forest burned until 7 January. On
15 January 2014, lightning sparked a brushfire in the
Grampians National Park of southeast Australia and
sparked many small fire spots.

For the three data sets used in the experiments, the
Level-1 C products of Landsat-8 OLI data with 30 m
spatial resolution were downloaded from the U.S.
Geological Survey (USGS) website (https://earthex
plorer.usgs.gov/). Radiometric and atmospheric cor-
rections were carried out by using the ENVI software.
Table 1 shows the detailed information of the three bi-
temporal image pairs including both the before- and
after-fire images.

Bi-temporal images of the three data sets (i.e. SF,
SFF and GNPF) are presented in Figure 1(a-c), respec-
tively. The burned areas are shown in dark red (see
Figure 1 row 2) in the after-fire images and in white in
the change reference (CR) images (see Figure 1 row 3).

Table 1. Characteristics of the three Landsat-8 OLI data sets and the change reference (CR) maps.

Latitude and longitude

CR maps (pixels)

Burned Unburned

Country Data sets Fire status (image center point) Date Scene Size (pixels) area area
United States SF Before-fire 151.55377 W 2015/05/30 411 x 526 16127 200059
61.45352 N
After-fire 151.56502 W 2015/06/15
61.45364 N
Australia SFF Before-fire 139.03294E 2014/02/02 1304 x 788 105749 921803
34.60658 S
After-fire 139.04276E 2015/01/04
34.60674 S
Australia GNPF Before-fire 142.84686E 2014/01/02 4422 x 3452 587406 14677338
37.46987 S
After-fire 142.83838E 2014/01/28

37.46998 S
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Figure 1. False-colour composite (7, 5, 4 bands) of the bi-temporal-burned images acquired by Landsat-8 OLI sensor. First row:
before-fire images; second row: after-fire images (burned images), and third row: the corresponding CR images. Columns (a-c)

represent the SF, SFF and GNPF three data sets, respectively.

The CR images were produced through careful visual
interpretation and multitemporal comparison.

Change detection methods for burned area
detection

Taking into account accuracy and efficiency, spectral
index-based methods represent the most popular and
applicable group of methods for extracting burned
areas (Veraverbeke et al., 2011). Indices applied to
burned area extraction included single date and bi-
temporal approaches (Epting et al., 2005). The former
identifies the burned areas in the post-fire image.
Although it is less time consuming, it is always difficult
to correctly separate different land-cover classes espe-
cially for those having highly spectral similarity in
specific spectral wavelength ranges (i.e. senescent
vegetation) (Koutsias et al., 1999; Pereira, 1999).
Compared with the single date approach, the bi-
temporal CD method can eliminate irrelevant land-
cover features, but also increases the contrast between
the unchanged background (unburned areas) and the
change target (burned areas) towards the temporal
difference. Hence, the latter is more suitable for detect-
ing burned area changes especially from the unsuper-
vised point of view.

Burned area CD methods based on typical indices
Constructing a suitable index is the key to implement
the index-based CD methods for burned area detection
(Liu et al., 2019). To this end, we analysed in detail the
spectral signatures of several typical land-cover features
from different data sets (see Figure 2). The most signifi-
cant spectral difference between the forestland and
burned areas appears in the NIR (0.87 um) and SWIR2
(2.2 um) bands (see Figure 2). In NIR, the reflectance of
forestland reaches the peak and far over the burned area.
After that, it decreases rapidly and much lower than the
burned area in SWIR2 band. The burned areas have the
opposite behaviour with forestland in NIR and SWIR
(see the black lines in Figure 2(a-c)), but this theory
neglects other land-cover types with the similar change
(i.e. water, smoke and bareland) as the burned area.
After experiments carried out by using the NDVI,
GEMI, NBR, BAI, NDSWIR, NBRT and NSTV2 indices
(see Table 2), the obtained results showed that many
commission errors were generated due to wrongly detec-
tion in water, smoke and other features. This may be
caused by the following reasons: (1) Existing spectral
indices consider the changes between forestland and
burned areas whereas ignoring the irrelevant background
changes (e.g. forestland changed into bareland); (2) The
reflectivity of water is very low (almost 0) throughout the
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Figure 2. Spectral curves of typical land-cover classes on the (a) SF, (b) SFF and (c) GNPF data sets and the spectral curve of water

from the (d) USGS digital spectral library.

Table 2. Popular spectral indices used for fire detection.

Category Name Formula Reference
Vegetation index Normalized Difference Vegetation Index (NDVI) NDVI = % Tucker, 1979

Global Environment Monitoring Index (GEMI)

Normalized Burned Ratio (NBR)
Burned Area Index (BAI)

Normalized Difference SWIR (NDSWIR)

The Mid-Infrared Bispectral Index (MIRBI)
Normalized Burn Ratio Thermal (NBRT)

NIR-SWIR-Temperature Version 2 (NSTV2)

Fire index

GEMI = y(1 — 0.25y) — 8015 Pinty & Verstraete, 1992

_ 2(NIR2—R?)+1.5NIR+0.5R

NIR+R+0.5
NBR = MR-SWE2 Garcia & Caselles, 1991
BAl = G one Ay 1—R)2+20.O6—NIR)1 Martin & Chuvieco, 1998
NDSWIR = NE=SME Gerard et al., 2003

MIRBI = 10SWIR2 — 9.8SWIR1 + 2
_ NIR—SWIR2xT
gy ;.
- +
NSTV2 = NIR-(SWIR24T)

Trigg & Flasse, 2001
Smith et al., 2007

Veraverbeke et al., 2011

R: Red (Band 4); NIR: Near-Infrared (Band 5); SWIR1: Short Wave Infrared 1 (Band 6); SWIR2: Short Wave Infrared 2 (Band 7); T: BT/10000 (Band 10).

whole spectrum range. Therefore, the magnitude of the
water is much lower than any other class (usually lower
10™"). When performing the band ratio operation, a small
value in the numerator will amplify the water pixels.

Proposed burned area CD method based on the
new-designed fire index

Comparing the average spectral curves of irrelevant land-
cover features with burned areas in Figure 2(a—c), we can
see that: (1) The reflectance values of burned areas
increase in the wavelength range of 0.45-2.35 um; (2)
These typical features such as forestland and bareland
decrease within the wavelength range of 1.57-2.29 pm;
(3) The reflectance of water is close to 0 in the whole
spectral range. The standard spectrum of water (obtained

from the USGS digital spectral library) within the wave-
length range of Landsat-8 OLI is illustrated in Figure 2(d).
A decreasing trend of the water reflectance is clearly
shown. Especially for the SWIR wavelength range
(1.57-2.29 pm), the reflectance values are below 0.02.
To further validate this, we manually selected different
waterbodies as ROIs (Regions of Interest) on three data

Table 3. Water reflection value on three data sets.

Data sets Band Min value Max value Mean value
SF SWIR1 0.0044 0.0317 0.0104
SWIR2 0.0031 0.0151 0.0060
SFF SWIR1 0.0012 0.0176 0.0026
SWIR2 0.0012 0.0094 0.0020
GNPF SWIR1 0.0016 0.0126 0.0062
SWIR2 0.0020 0.0125 0.0056
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sets: the statistics are provided in Table 3. As one can see,
the reflectance values of water are all lower than 0.02
except for the maximum value of the SWIRI band on
the SF study area. Besides, in the whole Landsat-8 multi-
spectral range, the reflectivity value of water is lower
than 0.1, whereas other land-cover features are basically
higher than 0.1. Therefore, from the above observations,
we can conclude that spectral reflectance values of other
land-cover features are at least one order of magnitude
higher than water (see Figure 2).

Based on the above important observations, a new
fire index NBRSWIR is proposed to identify the
burned areas while separating them from other irrele-
vant classes and suppressing the water. This index
utilizes two SWIR bands (SWIR1 and SWIR2) of
Landsat-8 OLI. First, in the numerator, the constant
value of 0.02 is subtracted in order to set the changes
in water close to zero or even negative. Second,
a decimal 0.1 (the minimum threshold) is added in
the denominator, in order to avoid the positive ampli-
fication of some abnormal water changes. These two
small constants will not largely impact on other land-
cover features when considering the differencing ratio
formulation.

SWIR2 — SWIRI — 0.02
NBRSWIR = (1)
SWIR2 + SWIRL + 0.1

Let I; and I, be the index maps generated on before-
fire and after-fire images, respectively. The difference
image dI can be computed to represent the significant
changes occurred on the bi-temporal images that are
associated with the burned area changes.

Then, the “maximum between-class variance” algo-
rithm (Otsu algorithm; Otsu, 1979) is adopted to
extract the binary CD result, assuming that the differ-
ence image has L grey levels [1, 2, ..., L]. According to
the Otsu algorithm, the image can be divided into the
burned and unburned area classes by a threshold
t (1 <t < L). The between-class variance g is defined as:

8t = Wpt X Wypp X (.“b,t - .”nb,t)z @)

where w, and w,, represent the proportions of
burned and unburned areas. y, and y,, are the
mean values for two class samples. The optimal
threshold T maximizing the interclass variance is esti-

mated by an iterative process (Otsu, 1979):
T = argmax{g } (3)
1<t<L

Finally, the difference image is segmented by T to
generate the binary CD result.

Quantitative analysis methods

For a comparison purpose, the proposed new fire
index NBRSWIR is compared with other eight popular
spectral indices (see Table 2), including: (1) vegetation
indices: NDVI and GEMI; (2) fire indices: NBR, BAI,

Table 4. Sample on three data sets.

Data sets  Category  Sample ratio (%)  Sample number (pixels)

SF Burned 1.0 161
Unburned 1.0 2001

SFF Burned 1.0 1057
Unburned 1.0 9218

GNPF Burned 0.1 587
Unburned 0.1 14677

NDSWIR, MIRBI, NBRT and NSTV2 (Epting et al.,
2005; Lozano et al., 2007; Veraverbeke et al., 2011). For
an objective evaluation, two quantitative methods are
implemented. First, the separation index (SI)
(Kaufman & Remer, 1994) is used to evaluate the
separation ability of two classes in the difference
map, which is defined as:

‘H — Uy
gy

4
Of + Opf )

where pr (4,0 and o (0,0 are the mean value and
standard deviation value for burn (unburned) area
samples. Higher SI values show better separation
between two classes (Lasaponara, 2006). Note that
burned and unburned samples are randomly gener-
ated according to the CR images (see Table 4).
Furthermore, an assessment based on the confusion
matrix is carried out to evaluate the detection accuracy
of the burned areas by using different index-based CD
approaches. Five indicators: Overall Accuracy (OA),
Kappa Coefficient (K), Commission Error (CE),
Omission Error (OE) and Total Error (TE) are calcu-
lated to analyse in detail the detection performance.

Results and discussion
Qualitative analysis

Qualitative analysis was made by visually comparing
different spectral difference image dI based on the
proposed and the reference indices. In particular,
NBRSWIR, MIRBI, NBR, NBRT and NSTV2 indices
with the highest CD accuracies are analysed in detail
(more details could be found in the next subsection).

Figure 3 shows the comparison of five spectral
index difterence maps and their binary detection
results at local scale on the SF data set. The red area
in the original image (see Figure 3(a)) is the largest
burned area and that produced the heavy smoke. In
this fire scenario, many small waterbodies were ran-
domly distributed. For instance, the highlighted subset
2 (see Figure 3 row 1) is a burned area affected by the
smoke. The NBR, NBRT and NSTV2 difference maps
display a lower grayscale contrast. So a large number
of pixels were not discriminated in the CD results (see
Figure 3(b-2-e-2)). Moreover, these difference maps
also present a high intensity in the river (see the subset
2 in Figure 3 row 1), which led to many commission
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(d-2) (e-2) -2)

Figure 3. The spectral index difference maps and their binary detection results at local scale on the SF data set. (a) Original image
(7, 5, 4 bands); (b) MIRBI; (c) NBR; (d) NBRT; (e) NSTV2; (f) NBRSWIR, where row 1 represents the difference maps, row 2 and row 3
represent the two local binary detection results of a river (subset 1) and an enlarged burned area (subset 2).

(a-2) (b-2) (c-2) (d-2) (e-2) (f-2)

Figure 4. The spectral index difference maps and their binary detection results at local scale on the SFF data set. (a) Original image
(7,5, 4 bands); (b) MIRBI; (c) NBR; (d) NBRT; (e) NSTV2; (f) NBRSWIR, where rows 1-2 represent the difference maps, row 3 and row
4 represent the two local binary detection results of a salt field (subset 1) and a reservoir (subset 2).
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errors in the final CD results (see Figure 3(b-1-e-1)).
Compared with other indices, the global contrast of
the NBRSWIR difference map (see Figure 3(f)) is more
significant. By taking advantages of the proposed
index, the enhancement of burned area reduced the
omission errors (see Figure 3(f-1)), and the good sup-
pression on the water decreased the commission pixels
(see Figure 3(f-2)).

The post-fire image on the SFF data set was about
a year after the pre-fire image. Such large temporal
difference leads to more complex and new land-cover
changes occurred in the unburned background (e.g.
vegetation to bareland). In Figure 4, subset 1 is a salt
field close to the seaside, subset 2 represents
a reservoir. According to the difference maps based
on MIRBI, NBR, NBRT and NSTV2, many pixels
associated with these two subsets showed high change
values as the burned areas (see Figure 4(b-e)). This
leads to numerous commission errors in the final CD
results as shown in Figure 4(b-2-e-2). However, the
proposed NBRSWIR resulted in better performance
with the advantages to suppress those false alarms as
can be seen in Figure 4(f-1,f-2).

On the GNPF data set, subsets 1-3 (see Figure
5(a-f)) represent an enlarged burned area and two

(a-2) (b-2) (c-2)

waterbodies, respectively. In the reference indices,
difference maps and their subset CD results, false
alarms occurred on the water areas were more
serious than in the proposed approach, which can
be seen in Figure 5 row 3. There are also more
omission errors for the burned areas in reference
index-based methods when comparing with the
NBRSWIR CD result in Figure 5 row 4.

From the above visual evaluations on the three data
sets, we can see that the difference map and binary CD
result obtained by NBRSWIR can provide a more
satisfactory result than the other reference methods.

Quantitative analysis

Regarding the quantitative analysis, the separation
between burned and unburned areas in different
index difference maps is first evaluated. More signifi-
cant is the separability and more accurate burned
areas are expected to be extracted in the next binary
detection step. As shown in Figure 6, different index
difference maps have different separability perfor-
mances. In general, the fire indices performed better
than the vegetation indices in terms of general higher

(e-2) (f-2)

Figure 5. The spectral index difference maps and their binary detection results at local scale on the GNPF data set. (a) Original
image (7, 5, 4 bands); (b) MIRBI; (c) NBR; (d) NBRT; (e) NSTV2; (f) NBRSWIR, where rows 1-2 represent the difference maps, row 3
and row 4 represent the local binary detection results of a small-burned area (subset 1) and a lake (subset 2). The subset 3

represents a reservoir in rows 1-2.
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Table 5. The accuracy evaluation of the detection results on
three data sets.

CE OE TE
Data sets Index OA (%) K (pixels)
SF NBRSWIR  98.93  0.9257 2005 319 2324
NBR 98.91 0.9225 1580 785 2365
NBRT 98.73  0.9042 620 2118 2738
MIRBI 98.19  0.8800 3625 297 3922

NSTV2 98.13
NDSWIR 96.34

0.8721 3102 951 4053
0.7596 5750 2160 7910

GEMI 89.41 0.5335 22757 141 22898
BAI 84.75 03169 27320 5658 32978
NDVI 80.22 03386 41846 922 42768
SFF NBRSWIR 9857  0.9272 14640 21 14661
NBR 97.59 0.8755 18028 6718 24746
NSTV2 9751 0.8729 19883 5671 25554
NBRT 97.01 0.8343 12453 18229 30682
MIRBI 96.38 0.8203 29404 7780 37184
BAI 95.78 0.7680 19965 23424 43389
NDSWIR 9439 07135 36088 21579 57667
NDVI 91.06 04787 37477 54418 91895
GEMI 8345 04036 145105 24964 170069
GNPF NSTV2 99.52 09336 24354 49127 73481
NBRSWIR  99.51 09340 40589 34381 74970
NBRT 9945 09238 31600 52971 84571
NBR 9936 0.9126 44628 53391 98019
NDSWIR 98.68 0.8252 111956 89139 201095
MIRBI 9847 0.8164 194855 38964 233819
NDVI 98.29 0.7723 139134 121744 260878
BAI 98.06 0.7708 237776 58922 296698
GEMI 96.00 0.6268 578707 31454 610161

separability values. Among all indices, the proposed
NBRSWIR outperformed all the others with the high-
est SI values equal to 2.49, 1.74 and 2.06 in three data
sets, respectively.

The numeric detection accuracy results are pro-
vided in Table 5. For SF and SFF data sets, the pro-
posed method achieves the highest performance with
OA values equal to 98.93% and 98.57%, respectively.
For the GNPF data set, the accuracies of NSTV2 and
the proposed NBRSWIR are quite similar. NSTV2 is
just slightly higher in terms of OA values than the
NBRSWIR (99.52% compared to 99.51%), but with

more than 10000 pixels omission error respect to the
proposed NBRSWIR.

To sum up, experimental results obtained on all
data sets confirmed that the NBRSWIR CD method
has its clear advantages in burned areas detection.
Then followed by the typical fire index-based CD
methods including the NBR, NSTV2, NBRT, MIRBI
and NDSWIR. The two vegetation indices (GEMI,
NDVI) show poor accuracy on the three data sets
analysed, which indicates that the vegetation indices
may not be suitable for burned area detection in prac-
tical applications at a fine level.

Conclusions

In this paper, a novel-burned area change detection
method based on the design of a new fire index (i.e.
NBRSWIR) for Landsat-8 OLI has been proposed. Its
aim is to extract the burned area in a more accurate
and automatic way. The obtained experimental results
on three real bi-temporal Landsat-8 OLI data sets
confirmed that the proposed approach outperforms
the other index-based CD methods. In particular, it
is more effective to enhance the burned area from the
temporal change point of view and to implement an
unsupervised detection without relying on the ground
truth, and can as well suppress the other land-cover
features such as waterbodies, the smoke and the salt
field. For future developments, the spectral-spatial
joint approach will be carefully analyzed in order to
highlight the burned changed areas and further sup-
press the irrelevant background changes. In addition,
multitemporal Sentinel-2 data (with two SWIR bands,
11 and 12) will also be considered to detect burned
areas with its higher spatial and temporal resolution
and as complement of the Landsat mission.
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