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Abstract: Tree species classification at individual tree crowns (ITCs) level, using remote-sensing data,
requires the availability of a sufficient number of reliable reference samples (i.e., training samples)
to be used in the learning phase of the classifier. The classification performance of the tree species
is mainly affected by two main issues: (i) an imbalanced distribution of the tree species classes,
and (ii) the presence of unreliable samples due to field collection errors, coordinate misalignments,
and ITCs delineation errors. To address these problems, in this paper, we present a weighted Support
Vector Machine (wSVM)-based approach for the detection of tree species at ITC level. The proposed
approach initially extracts (i) different weights associated to different classes of tree species, to mitigate
the effect of the imbalanced distribution of the classes; and (ii) different weights associated to different
training samples according to their importance for the classification problem, to reduce the effect
of unreliable samples. Then, in order to exploit different weights in the learning phase of the
classifier a wSVM algorithm is used. The features to characterize the tree species at ITC level are
extracted from both the elevation and intensity of airborne light detection and ranging (LiDAR) data.
Experimental results obtained on two study areas located in the Italian Alps show the effectiveness of
the proposed approach.

Keywords: LiDAR; tree species classification; support vector machines; weighed support
vector machines

1. Introduction

Tree species classification has an important role in a wide range of applications, from forest
management to biodiversity mapping. Indeed, with tree species maps, it is possible to increase
the value of forest inventories [1], plan for sustainable forest management [2,3], and monitor forest
biodiversity [4]. Along with the development of remote-sensing technology, the number of studies
on tree species classification has increased over the last decades. In the literature, many studies
have been carried out on species mapping in different forest environments, from tropical (e.g., [5]) to
boreal (e.g., [6]). Based on different types of remote-sensing data, different approaches to tree species
classification have been proposed. Airborne hyperspectral data are considered to be the most accurate
data sources for classification of tree species [7]. However, these data have many constraints in the
acquisition phase (e.g., the time of the acquisition and the weather are influencing the data acquired),
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and they need a complex preprocessing when dealing with data over large areas composed by many
stripes acquired in different days.

In the forestry and ecology domains, a type of data that is widely used to predict forest structural
characteristics is light detection and ranging (LiDAR) data. In many countries, these data are frequently
available in many forest areas, as they are acquired also for other purposes (e.g., digital terrain
models extraction). The information contained in LiDAR data about the elevation of trees is very
useful to predict, for example, trees’ aboveground biomass, but this information, combined with the
intensity information related to trees spectral characteristics, could be used to extract a wide range
of useful features for species classification. For example, the separation between broadleaves and
coniferous trees can be accomplished by comparing the canopy height models (CHM) of the two
acquisitions in summer and winter, as broadleaves often obtain a remarkably lower value in winter
periods [8,9]. Another promising property of LiDAR is its features related to the recorded intensity
(e.g., [10,11]); these intensity features can distinguish not only between coniferous and broadleaves but
also among coniferous species [8]. Currently, the majority of the studies using LiDAR data for tree
species classification have been developed in boreal forests (e.g., [12–17]), where the species number is
usually limited to three, while very few studies used such features in other biomes (e.g., [18–21]).

In order to get a detailed tree species classification map, it is necessary to work either at pixel or at
individual tree crown (ITC) level. In the case of ITC level, ITCs should be automatically delineated on
remote-sensing data, and then a unique species should be assigned to each ITC. This allows for a more
informative map compared to a pixel-level map, and, potentially, it is possible to assign to each ITC the
height, the aboveground biomass, and other structural characteristics. In the literature, a large majority
of the tree species classification papers focus on ITC level mapping, using both manually delineated or
automatically delineated ITCs [22]. Regarding the automatic delineation of the ITCs, a wide range of
literature exists [23,24].

Accurate tree species classification requires reliable ground reference data for all the available tree
species, in order to properly train the classifier. In operational scenarios, gathering a sufficient number of
training samples for each tree species to be classified is difficult due to the time needed for this operation
that is reflected in a high cost of the field data collection. In general, the main issues that decrease the quality
of the training samples in the case of tree species classification can be summarized as follows.

• Class imbalance (or biased sampling) problem: In a forest, not all the tree species are present in
the same amount. There are always majority species that represent usually the dominant species
and cover the majority of the canopy, and minority species for which, in the extreme cases, only
few trees per hectare are present. This results in a class imbalanced training set that, for minority
classes, leads to (i) poor estimations of the true underlying distributions of the samples and
(ii) reduced information given to the classification algorithm by the considered training samples.

• Field data positions accuracy: Localization of the exact position of a tree in a forest is a particularly
difficult task, and it is usually done by using a global positioning system (GPS) device. In some
cases, the accuracy could be particularly low, especially in a dense forest or in mountain areas,
where the GPS accuracy is usually low. When mapping tree species at tree level, an error of more
than one meter could lead to inaccurate classification results.

• Errors in ITCs delineation: Automatic ITCs delineation methods are not perfect, and they are usually
associated with a delineation error that could be quite high in the case of broadleaves trees. Moreover,
the quality of the delineated ITCs depends on the considered remote-sensing data, i.e., low spatial
resolution images or low point density LiDAR data could provide inaccurate delineations.

• Matching errors between field data and remote sensing data: Trees measured in the field should be
associated to an ITC delineated on the remote-sensing data. This procedure is subject to possible
errors due to misalignments between the field positions and the remote-sensing data, and also
because multiple adjacent trees measured in the field could be identified as just one crown by the
automatic ITC delineation algorithm.
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In the literature, to the best of our knowledge, very few studies focused on addressing the
abovementioned problems of the training dataset [5,25,26]. As an example, in [5] imbalanced class
problem is investigated with two strategies: (i) creating a dataset where each class has the same amount
of training samples equal to the number of samples of the smallest class; and (ii) allowing a different cost
parameter for each class while using the SVM classifier. Most of the other state-of-the-art techniques
exploit semi-supervised methods to combine the information from both labeled and unlabeled sets [25],
whereas in the case of unreliable training set none of them has proved to be effective.

In this paper, we introduce a weighted Support Vector Machine (wSVM)-based approach to tree
species classification, at individual tree crown level, using LiDAR data. The proposed approach aims
at addressing problems associated with imbalanced, biased, and unreliable training sets for tree species
classification at ITC level. To this end, weights of tree species samples and classes are initially defined
based on three different strategies. The first strategy exploits the class abundances to weight differently
the samples of the different classes. The second strategy exploits the training samples and their
distribution in the feature space to weight differently each training sample, while the third strategy
exploits the unlabeled samples (that could be extracted from the study area) and their distribution
in the feature space to weight differently each training sample. Then, a wSVM algorithm that gives
more importance to the labeled training samples with high weights and less importance to those of
lower weights while modeling the SVM separating hyperplane is applied. Experiments carried out on
two study areas located in the Italian Alps demonstrated the effectiveness of the proposed approach.
The main contribution of this work to the current literature is the development of three novel weighting
strategies to drive the learning phase of the wSVM, and the application of such techniques in the
domain of tree species classification using LiDAR data. The use of LiDAR data for species classification
in temperate forests also represent an interesting finding as, compared to spectral data, not many
studies exist that use only LiDAR data for species classification, especially in such biome. In particular,
we show that, by using LiDAR data, it is possible to accurately map the main conifer species that
dominates the forests in the Alps.

2. Materials and Methods

2.1. Datasets Description

In this study, we considered two datasets located in the Autonomous Province of Trento (Italy):
(i) Pellizzano and (ii) Lavarone. Figure 1 shows the location of the study areas.

Figure 1. Location of the two considered study areas: (1) Pellizzano and (2) Lavarone. In the inset is
the location of the Autonomous Province of Trento in Italy.
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2.1.1. Dataset 1: Pellizzano

The Pellizzano study area (32 km2) is located in the municipality of Pellizzano (46◦17’22”N,
10◦46’05”E) in the Italian Alps (see Figure 1), and its altitude varies between 900 and 2200 m. Most of
the total land area of the municipality is covered by productive forest, with a high number of
different species, and patches of both pure and mixed tree species. The dominant species are Norway
spruce (Picea abies (L.) H. Karst) that accounts for 65% of the total stem volume and European Larch
(Larix decidua Mill.) with around 25%. The remaining 10% consists of other conifers, such as silver
fir (Abies alba Mill.), Swiss stone pine (Pinus cembra L.), and some broadleaves such as silver birch
(Betula pendula Roth), common alder (Alnus glutinosa (L.) Gaertn.), sycamore maple (Acer pseudoplatanus
L.), and rowan (Sorbus aucuparia (L.) Crantz.).

The species, height, and locations of 5517 trees were collected in the summers of 2013 and 2014.
However, the position and the species were only recorded for 3039 trees. These trees were located in
the field across all the landscape, and the sampling was done in order to locate the largest number
of species. The remaining trees were sampled inside 52 angle count sampling plots, and for these
trees also the diameter at breast height and the height were measured. The height was measured by
using a Haglöf Vertex hypsometer. For more information about the collection of the reference data,
the reader is referred to [27]. Due to the low number of field samples for some species, the tree species
were grouped into six classes: (i) sliver fir (199 trees); (ii) green alder (249 trees), (iii) European larch
(1034 trees); (iv) other broadleaves (1150; all the broadleaves different from green alder), (v) Norway
spruce (2553 trees); and (vi) pines (197 trees; Swiss stone pine, Scots pine, and Austrian pine).

Airborne LiDAR data were acquired between 7 and 9 September 2012, using a Riegl LMS-Q680i
laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria). The scan frequency was
400 kHz, with a 60◦ field of view. Up to four returns per pulse were recorded, and the mean point
density was approximately 48 pulses m−2.

2.1.2. Dataset 2: Lavarone

The study area (4 km2) is located in the municipality of Lavarone (45◦57’30.09”N, 11◦16’25.17”E)
in the Italian Alps (see Figure 1). The area has a complex structure that contains patches of mixed and
pure species composition. The altitude varies from 1200 to 1600 m above the sea level. The dominant
tree species are Norway spruce (Picea abies (L.) H. Karst.) at about 47% of the total stem volume, silver
fir (Abies alba Mill.) at about 36%, and European beech (Fagus sylvatica L.) at about 13%. Other relevant
species are European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.), which account for
about 4%.

The species, height, and locations of 5655 trees were collected in the summers of 2016 and 2018.
The field measurements of 2016 were done in 41 plots of 15 meters radius: the position, the species,
and the DBH of 4812 trees were measured. The remaining trees (843) were measured in 2018, and they
were sampled across all the landscape, and the sampling was done in order to locate the largest number
of species. Due to the low number of field samples for some species, the tree species were grouped into
five classes: (i) sliver fir (2164 trees); (ii) European larch (113 trees); (iii) broadleaves (1795 trees; all the
broadleaves species), (iv) Norway spruce (1437 trees); and (v) Scots pine (146 trees).

LiDAR data were acquired by an Optech ALTM 3100EA sensor with a maximum scan angle of
21 degrees. The mean point density was 21.5 points per square meter for the first return, while the
pulse density was 14.4 pulses m−2. Up to four returns per pulse were measured.

2.2. LiDAR Data Preprocessing

The LiDAR point cloud was normalized to create a canopy height model (CHM) by subtracting
the DTM from the z values of the LiDAR pulses. This operation was carried out by using the module
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lasground of the LAStools software (https://rapidlasso.com/). The intensity value of each LiDAR point
was range-calibrated, using the following equation:

IC = I ∗
( R

Rs

)α
(1)

where IC is the calibrated intensity, I the raw intensity, R is the sensor-to-target range, and Rs is the
reference range or average flying height. We considered an exponential factor α of 2.5 [10] since the
environmental factors can be considered stable and the same acquisition parameters and instruments
were maintained during the survey [28].

2.3. ITCs Delineation

The automatic ITCs delineation was performed by using the method implemented in the R
package itcSegment and used in [27]. The algorithm follows three steps: (1) smoothing of the canopy
height model: a Gaussian low-pass filter is applied to the rasterized CHM to smooth the surface and to
reduce the number of potential local maxima; (2) local maxima extraction: a circular moving window of
variable size is applied to the smoothed CHM to find a set of potential treetops (local maxima). A pixel
of the CHM is labeled as local maxima if its value is greater than all other values in the window while
being greater than some minimum height above ground. The window size is adapted according to
the height of the central pixel of the window, which is predetermined in a user-defined look up table;
(3) crown region growing: the algorithm iteratively searches for possible neighboring pixels to grow the
crown of the tree around each local maxima. A pixel belongs to a specific region only if its vertical
distance from the local maximum is less than a predefined percentage of the local maximum height,
and less than a predefined maximum difference. The process repeats until no further pixel is added to
any region. Once the region is fully grown, a 2D convex hull is applied, resulting in polygons that
represent individual trees (ITCs).

To generate the reference ITCs dataset for species classification, a matching process between
delineated ITCs and reference ground observations was applied. The adopted matching procedure
followed two steps: (1) candidate search: all ground reference trees falling inside an ITC were considered
as matching candidates; (2) candidate vote: selected candidates were ranked by their difference in height
with the delineated ITCs and their Euclidian distance to the local maxima. A distance metric D was
estimated by considering both parameters to select the best candidate as follows:

D =

√
(xCAN − xITC)

2 + (yCAN − yITC)
2 + w ∗ (hCAN − hITC)

2 (2)

where (xCAN, yCAN, hCAN) and (xITC, yITC, hITC) denote the locations and heights of the field measured
trees and the delineated ITCs, respectively; and w is the user-defined weight. Here, the value of w is
set as 0.5 [29].

The matched ITCs were divided into training and test sets that were defined in order to have
similar distributions in terms of species, tree height, and spatial location. In Table 1, a summary of the
training and test sets for the two datasets is presented.

Table 1. Number of training and test ITCs for the Pellizzano and Lavarone datasets.

Dataset 1: Pellizzano Dataset 2: Lavarone

Class Name Training Set Test Set Class Name Training Set Test Set

Sliver fir 52 51 Sliver fir 232 231
Green alder 80 79 European larch 35 34

European larch 313 312 Broadleaves 108 108
Other broadleaves 343 343 Norway spruce 253 252

Norway spruce 697 696 Scots pine 37 36
Pines 56 56

https://rapidlasso.com/
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2.4. Feature Extraction

From each delineated ITC, features were extracted in order to build the classification models.
In particular, two sets of features were considered: (i) 46 elevation and intensity features derived
directly from the LiDAR point cloud; and (ii) three topography features derived from the DTM.
The features are summarized in Table 2.

Table 2. Description of the extracted features. “Z” means that the feature was extracted from the
elevation values of the LiDAR points; “I” means that the feature was extracted from the intensity values
of the LiDAR points; “P” refers to the corresponding percentile; and “R” refers to the corresponding
return number.

Metric Description

Zmax Maximum Z
Zmean Mean Z

Zsd Standard deviation of Z distribution
Zskew Skewness of Z distribution
Zkurt Kurtosis of Z distribution

Zentropy Entropy of Z distribution
ZqP Ph percentile of height distribution, with P from 5 to 95 at steps of 5

ZpcumP Cumulative percentage of points in the Pth layer, with P from 5 to 95 at steps of 5
Itot Sum of intensities for each return

Imax Maximum intensity
Imean Mean intensity

Isd Standard deviation of intensity
Iskew Skewness of intensity distribution
Ikurt Kurtosis of intensity distribution

IpcumzqP Percentage of intensity returned below the Pth percentile of Z, with P from 5 to 95
pRth Percentage of Rth return, with R from 1 to 4
Slope Properties of the tangent plane to the surface
DTM Digital terrain model value (m)
aspect Compass direction in which the slope faces to

3. Proposed Weighted SVM-Based Approach for Tree Species Classification

In the recent years, SVM has been widely applied to classification problems in forestry applications [22].
In the standard SVM, all training samples have equal importance, and thus in the case of incomplete
(poor) training sets (those with mislabeled imbalanced training samples), which are common in tree species
classification, this may result in reduced classification performances. In this paper, we present a wSVM-based

approach that weights the training samples in order to overcome such problems. Let S =
{
(xi, yi, si)

}N

i = 1
be

a set of labeled training samples, where xi is the i-th training sample, yi is the corresponding class label
from a pool of classes K = k1, . . . , kΨ, and si is its weight. Then, in the wSVM, the optimization problem is
defined as follows:

1
2 ||w||

2
2 + C

N∑
i=1

siξi

subject to :
{

yi(ω.Φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , i

(3)

where Φ() is the mapping function that projects the samples from the original feature space to a higher
dimensional space, and b is the bias. C is a regularization (i.e., penalty) parameter. From Equation (3),
it can be seen that, in the wSVM, the penalty value C of misclassification for each training sample has
a different weighting effect that is driven by si. A possible solution in the case of imbalanced classes
in tree species classification problems is to allow a different penalty parameter for each tree species
class. Specifically, samples of each class can be associated with different penalty values defined by
class weights, so that the decision boundary can pay more attention to the minority classes.
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The sample weight, si, could be defined by two components: a component dealing with the
importance of the sample in describing the class distribution to which it belongs (which is called as
intraclass weight) and a second component related to the importance to give to that specific class
(which is called as interclass weight). Given this assumption, si is formulated as follows:

si = CWk ∗ SWi (4)

where CWk is the interclass weight for the class k to which the sample xi belongs to, and SWi is the
intraclass weight of the sample xi. It is worth noting that the reason to have two components to define
a weight, si, is to jointly consider the imbalanced class problem and the presence of mislabeled samples.

3.1. Interclass Weight

For a training set that has Ψ classes, we propose to define the interclass weight CWk as follows:

CWk =
max(Nk)

Nk
, k = 1, . . . , Ψ (5)

where Nk is the number of samples that belong to the k-th class. When this ratio is very large, we can
lose information associated with the majority classes. This problem can be addressed by setting the
class weight of majority classes as follows:

CWmajor = mean(CWk) (6)

3.2. Intraclass Weight

To define the intraclass weights, we consider that training samples associated with the highest
density regions of the feature space are much more important than those located in the low-density
regions. This assumption is based on the fact that (i) samples in high-density regions are statistically
very representative of the underlying class distribution, and (ii) the classification results on samples
located in the high density patterns of the feature space affect more the overall accuracy of the
classification process than those obtained on samples within low-density regions. Thus, we describe
two approaches that define higher weights for the samples located in the high-density regions of
the feature space, while giving reduced weights to those that fall into the low-density regions of the
feature space. The first approach is based on k-means clustering and uses only the training samples,
whereas the second approach is based on the mean distance among the samples and exploits a set of
unlabeled samples.

3.2.1. Intraclass Weight Based on k-Means Clustering

In this approach, the training samples of each class are initially divided into G clusters. Then, the density
of each cluster is used to estimate the density of the samples in the feature space. If most of the training
samples associated to the same class are grouped into one cluster, while the remaining samples are sparsely
distributed, the training samples located in that cluster are considered much more reliable than those in the
other clusters. Hence, higher weights are assigned to the samples located in the clusters characterized by
a higher number of samples. The proposed approach can be summarized as follows:

1. The k-means clustering is applied to the samples of each class in the training set independently from the
samples of other classes to identify a set Ω = {c1, c2, . . . , cG} of G-clusters. The number G of clusters is
defined as the square root of the half of the total number of samples in that class (as suggested in [30]);

2. For each cluster ci, a weight is determined as the number of samples located in that cluster.
In this way, labeled samples that fall into the high-density clusters are more important for the
classification problem and vice versa;

3. Weights are normalized in the interval [0, 1].
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These three operations are repeated for each class.

3.2.2. Intraclass Weight Based on Unlabeled Data

In this approach, the importance of each training sample is defined according to the distribution of
the unlabeled samples. We assume that the importance of each training sample depends on its density
in the feature space, i.e., training samples associated with the highest-density regions of the feature
space are much more important than those located in the low-density regions. Thus, samples located
in the high-density regions of the feature space are associated with the higher weights, while those
that fall into the low-density regions of the feature space are associated to the lower weights. In this
paper, unlabeled samples are associated to ITCs automatically delineated for which features have been
extracted from LiDAR data but that were not matched with any field measured tree. The proposed
approach aims at measuring the density di of the unlabeled samples around the training sample xi

in the feature space. The density di is estimated by considering the mean Euclidean distance of the
training sample xi to the P-nearest neighbour samples. By this way, a high-density region is considered
as a region of the feature space where the mean Euclidean distance among the samples is small.
The proposed approach for the estimation of sample weights can be summarized as follows:

1. The Euclidean distance between each training sample and all the available unlabeled samples
is computed;

2. The mean value of the distance between each training sample xi and the P nearest unlabeled
samples in the feature space is computed. The value of P varies depending on the class and is
estimated as the square root of the total number of samples of each class in the training set;

3. Weights are assigned according to the mean distance calculated during step 2: a small distance is
related to the fact that the density around that sample is high, and thus a high value of the weight
is assigned to that sample;

4. Weights are normalized in the range [0, 1].

4. Results

4.1. Design of Experiments

The classification accuracy was assessed for both datasets in terms of overall accuracy (OA), kappa
accuracy (KA), mean class accuracy (MCA), and producer’s accuracy (PA). The MCA was computed
as the mean value of the PAs. Four classifiers were tested: (i) a standard SVM; (ii) a wSVM with only
interclass weights (wSVMCW); (iii) a wSVM with interclass weights and intraclass weights based on
k-means clustering (wSVMkmeans); and (iv) a wSVM with interclass weights and intraclass weights
based on unlabeled data (wSVMUneighbor). For each classifier, we also provided the computational time
(in seconds) required to train the classifier. The standard SVM and the wSVM classifiers used were
the ones implemented in R in the package locClass [31]. In both cases, we used a radial basis kernel
function (RBF), and the one-against-one multiclass strategy. The algorithms for the computation of the
sample weights were implemented in R. The model selection for all considered classifiers was based on
a grid-searching method: the values considered for the kernel width ranged from 2−5 to 25 (11 values),
while the values for the cost parameter C ranged from 1 to 128 (8 values).

To validate the robustness of the wSVMkmeans classifier compared to the standard SVM, wrongly
labeled samples were added to the training set in order to observe the classification performance of each
classifier. Those wrongly labeled samples were randomly taken from the pool of the unlabeled samples,
and random labels were assigned among the classes considered in each dataset. The maximum number
of wrongly labeled samples added to the original training set was set as one-third of the total training
samples. In particular, we added a maximum of 500 and 200 wrongly labeled samples for Pellizzano
and Lavarone, respectively. To ensure the distribution of classes in the training set was not changed,
the proportion of samples belonging to each class was kept the same as in the training set. The number of
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wrongly labeled samples added to the training set started from 20 and increased by 20 at each iteration,
until it reached the maximum. Since the procedure of adding wrongly labeled samples was a random
process, each iteration was repeated 100 times, and the average accuracy is given in the results.

4.2. Dataset 1: Pellizzano

Table 3 reports the classification accuracies obtained by the four classifiers considered on the
Pellizzano dataset. The wSVMs classifiers provided higher accuracies compared to the standard SVM
classifier, particularly with the KA and the MCA. The most significant improvement was on the MCA,
as it increased from 62.2%, using the standard SVM, to an average of 72%, using the wSVMs classifiers.
This increase in MCA was mainly due to the increase of PAs of the minority classes (i.e., silver fir
and pines). The use of the wSVMUneighbor slightly increased the MCA with respect to the wSVMCW ,
while wSVMkmeans improved MCA with 1.5% compared to wSVMCW . Regarding the computational
time, it can be seen that there were no big differences between the processing time of the standard
SVM classifier, the wSVMCW , and the wSVMkmeans classifiers. In contrast, the wSVMUneighbor required
an order of magnitude higher processing time compared to the standard SVM.

Table 3. Pellizzano dataset: overall classification accuracies (in %) and processing time (in seconds) of
the different classifiers.

Classifier OA MCA KA Processing Time

SVM 79.2 62.2 69.2 57.96
wSVMCW 80.7 71.4 72.1 60.70
wSVMkmeans 79.1 72.9 70.2 58.25
wSVMUneighbor 80.8 71.5 72.4 898.87

In Table 4, the PAs for each class are presented. Using the wSVMCW classifier, the classification
accuracy of the minority classes significantly improved compared to that obtained by the standard
SVM: for sliver fir class, the PA increased from 5.9% to 39.2%, and for pines class, the PA increased
from 35.7% to 53.6%. For the other four classes, the wSVMCW provided better results than the standard
SVM except for the Norway spruce (its producer’s accuracy decreased of 1.7%). Comparing the
performance of wSVMkmeans classifier with the performance of wSVMCW classifier, the accuracies on
minority classes improved significantly: 7.8% for sliver fir and 7.1% for pines. PA of European larch
and the other broadleaves did not show any large change, while Norway spruce PA decreased by 4.6%.
Considering the wSVMUneighbor classifier, the performances on all classes were very similar to the ones
of the wSVMCW . In general, the performances of the wSVMs classifiers were good since the majority
classes (Norway spruce and other broadleaves) still achieved high accuracies (over 80%), while the
minority classes (silver fir and pines) experienced a significant improvement. Looking at the confusion
matrices (Table 5), we can see that silver fir and European larch are mainly mixing with Norway spruce,
while the pines are mainly mixing with the European larch. Regarding the broadleaves, we can see
that the green alder has few samples confused with the other broadleaves, while the other broadleaves
are mixing mainly with Norway spruce and European larch.

Figure 2 illustrates the results of adding wrongly labeled samples to the training set for the
standard SVM and wSVMkmeans. In the case of the standard SVM classifier, all three accuracy metrics
(i.e., OA, KA, and MCA) decreased when the number of wrongly labeled samples in the training set
was increased. Considering the wSVMkmeans the accuracies remained high, even with a high number of
wrongly labeled samples in the training set. As an example, with 500 added wrongly labeled samples,
the difference in OA and KA between the standard SVM and the wSVMkmeans was approximately 3%,
while the difference in MCA was around 5%.
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Table 4. Pellizzano dataset: producer’s accuracy for each class.

Classifier Sliver
Fir

Green
Alder

European
Larch

Other
Broadleaves

Norway
Spruce Pines

SVM 5.9 91.1 67.9 82.8 89.9 35.7
wSVMCW 39.2 94.9 68.6 83.7 88.2 53.6
wSVMkmeans 47.1 93.7 68.3 84.0 83.6 60.7
wSVMUneighbor 39.2 93.7 71.2 84.5 87.1 53.6

Table 5. Pellizzano dataset: confusion matrices on the test set for the considered classifiers. SF = silver
fir. GA = green alder. EL = European larch. OB = other broadleaves. NS = Norway spruce. P = Pine.

SVM SF GA EL OB NS P wSVMCW SF GA EL OB NS P
SF 3 0 0 1 0 2 SF 20 0 6 7 19 3
GA 0 72 0 4 0 0 GA 0 75 2 4 1 1
EL 5 0 212 15 33 23 EL 3 0 214 12 28 11
OB 5 6 16 284 36 8 OB 3 3 16 287 30 9
NS 38 1 81 37 626 3 NS 24 1 66 25 614 2
P 0 0 3 2 1 20 P 1 0 8 8 4 30

wSVMkmeans SF GA EL OB NS P wSVMUneighbor SF GA EL OB NS P
SF 24 0 7 9 24 3 SF 20 0 3 5 14 3
GA 0 74 2 5 0 1 GA 0 74 1 4 0 0
EL 6 0 213 11 45 10 EL 5 0 222 15 36 12
OB 3 3 20 288 37 8 OB 3 4 17 290 36 9
NS 17 1 61 22 582 0 NS 22 1 61 22 606 2
P 1 1 9 8 8 34 P 1 0 8 7 4 30

To investigate how the wrongly labeled samples affect the PA of each class, Figure 3 illustrates the
variation in PAs values, using the standard SVM and the wSVMk−means classifiers, while adding wrongly
labeled samples to the training set. In the case of the wSVMk−means classifier, it can be seen that the PAs
values did not have any remarkable change compared to the starting case (when zero wrongly labeled
samples added). The PAs of the two minority classes fluctuated, but they were always above 40%, even at
the last step of the experiment. The behavior was opposite in the case of the standard SVM classifier:
while the PAs of majority classes remained stable, the PAs of minority classes decreased to 0%.

Figure 4 shows the classification map for the Pellizzano area obtained using the wSVMkmeans.
It can be seen that, in Pellizzano, tree species are localized in different areas. In the northern part of
the study site, the dominant tree species are broadleaves, in the middle of the area there is mainly
Norway spruce, while in the southern part (that is also the one at the highest altitude) there are mainly
European larch and green alder.

Figure 2. Pellizzano dataset: performances of the SVM (left panel) and the wSVMkmeans (right panel)
classifiers when wrongly labeled samples are added.
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Figure 3. Pellizzano dataset: variation of PA on each class, using SVM (left panel) and wSVMkmeans

(right panel), adding wrongly labeled samples.

Figure 4. Pellizzano dataset: ITCs classification map, using wSVMkmeans.

4.3. Dataset 2: Lavarone

The results on the Lavarone dataset are quite similar to the ones of the Pellizzano dataset.
Compared to the standard SVM classifier, the wSVMkmeans increased the OA of 2.7%, and the KA of
4.4%, while wSVMUneighbor obtained similar results as wSVMkmeans (see Table 6). By using the wSVMCW
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classifier, the MCA increased from 68.8% to 77.8%, while by using the wSVMkmeans, it reached 81.2%,
and using the wSVMUneighbor, it reached 76.9%. In general, compared to the standard SVM, wSVM
classifiers increased the accuracy by approximately 12%. Regarding the computational time, as in the
case of Pellizzano, only the wSVMUneighbor had computational time in a different order of magnitude
than the other three classifiers.

Table 6. Lavarone dataset: classification accuracies and processing time of the different classifiers.

Classifiers OA MCA Kappa Processing Time (s)

SVM 80.2 68.8 71.1 20.86
wSVMCW 81.4 77.8 73.5 19.72
wSVMkmeans 82.9 81.2 75.5 21.49
wSVMUneighbor 82.6 76.9 74.9 530.75

European larch and Scots pine (that are minority classes in this dataset) were not properly classified
by the standard SVM (Table 7). While using the wSVMCW classifier, their PAs improved significantly:
35.3% for European larch and 16.7% for Scots pine. On the other hand, the accuracy of the broadleaves
class decreased by 5.6% by using wSVMCW .

Table 7. Lavarone dataset: producer’s accuracy for each class.

Classifiers Sliver
Fir Broadleaves European

Larch
Norway
Spruce

Scots
Pine

SVM 86.1 84.3 38.2 82.5 52.8
wSVMCW 87.0 78.7 73.5 80.2 69.4
wSVMkmeans 84.4 80.6 82.4 83.7 75.0
wSVMUneighbor 87.9 78.7 67.6 83.7 66.7

By comparing the performances of the two wSVM classifiers based on both intraclass and interclass
sample weights (wSVMkmeans and wSVMUneighbor) with the wSVMCW classifier, it can be seen that there
was not a significant improvement by using the wSVMUneighbor classifier, while with the wSVMkmeans

classifier, the accuracies were higher in most of the cases. In greater detail, the PA of European larch
gained nearly 9%, reaching to 82.4%. This accuracy was equal to the classification accuracy of the
majority classes. Scots pine also achieved a sharp increase to 75% compared to 69.4% obtained by the
wSVMCW classifier. The confusion matrices (Table 8) showed that silver fir and European larch were
mainly mixing with Norway spruce, and, similarly, Norway spruce was mainly mixing with silver fir.

Table 8. Lavarone dataset: confusion matrices on the test set for the considered classifiers. SF = silver
fir. B = broadleaves. EL = European larch. NS = Norway spruce. SP = Scots pine.

SVM SF B EL NS SP wSVMCW SF B EL NS SP
SF 199 9 0 28 0 SF 201 12 1 23 0
B 3 91 2 8 2 B 4 85 0 8 2

EL 0 1 13 2 0 EL 2 2 25 11 1
NS 28 7 18 208 15 NS 23 7 7 202 8
SP 1 0 1 6 19 SP 1 2 1 8 25

wSVMkmeans SF B EL NS SP wSVMUneighbor SF B EL NS SP
SF 195 7 0 19 0 SF 203 13 0 23 0
B 4 87 0 8 1 B 4 85 0 8 1

EL 1 3 28 7 0 EL 0 2 23 5 0
NS 31 11 5 211 8 NS 24 7 10 211 11
SP 0 0 1 7 27 SP 0 1 1 5 24

Figure 5 shows the results obtained by adding wrongly labeled samples to the training set. As it
can be seen, the wSVMkmeans classifier is more robust to noise compared to the standard SVM. In greater
detail, when 200 wrongly labeled samples were added, the decrease in OA was 3.3% for the standard



Remote Sens. 2019, 11, 2948 13 of 18

SVM and 2.8% for the wSVMkmeans; for MCA, the decrease was by 10.8% and 4.2%, and for KA, it was
by 5.6% and 4.1%.

Figure 5. Lavarone dataset: performances of the SVM (left panel) and the wSVMkmeans (right panel)
classifiers when wrongly labeled samples are added.

Figure 6 illustrates the variation in PAs values by using the standard SVM and the wSVMkmeans

classifiers, while adding wrongly labeled samples in the training set. In the case of the wSVMkmeans

classifier, it can be seen that all the classes reached a PA higher than 60%, and they did not seem
particularly affected by the presence of wrongly labeled samples. In contrast, in the case of the standard
SVM classifier, like in Pellizzano, the PAs of minority classes remarkably decreased. For European
larch, the accuracy decreased from 39% to 0%, meaning that no tree of this class could be detected
anymore, while for Scots pine, the PA decreased from around 52% to approximately 35%, when 200
wrongly labeled samples were added.

Figure 6. Lavarone dataset: variation of PA on each class, using SVM (left panel) and wSVMkmeans

(right panel), adding wrongly labeled samples.
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The classification map of Lavarone, using the wSVMkmeans, classifier is shown in Figure 7. As it
can be seen, Norway spruce and sliver fir are concentrated in the western part of the area, while
broadleaves mainly grow in the eastern part of the area. Minority classes are sparsely distributed over
the area.

Figure 7. Lavarone dataset: ITCs classification map, using wSVMk−means.

5. Discussion

In this study, a wSVM-based approach for tree species classification at ITC level, using LiDAR
data, was presented. In the proposed approach, the wSVM weights of the training samples are assigned
in order to reach two objectives: (i) to reduce the effect of the imbalanced distribution of the classes in
the training set; and (ii) to reflect the importance level of each training sample in order to reduce the
effect of wrongly labeled samples.

Regarding the problem of the imbalance class distribution in the training set in tree species
classification, our study provides a possible solution by assigning different class weights to different
classes. Indeed, with the proposed weights, all the minority species in both datasets analyzed
experienced an increase in classification accuracy. In particular, for coniferous species having a small
number of training samples, the improvement was significant compared to the results achieved with
a standard supervised SVM (Tables 4 and 7). Using the proposed wSVM-based approach, the accuracy
of majority species remained generally stable, with some cases where there was a slight decrease,
while minority species experienced a high gain in accuracy. It is worth noting that there should exist
a tradeoff among minority and majority classes in order to achieve the target of the classification.
Since wSVM assigns different weights to different classes (or samples), it forces the new separating
hyperplane to pay more attention on the minority classes samples, thus leading to a misclassification
of some majority classes samples. In our specific cases, Norway spruce experienced a slight decrease,
and, even though it remained over 80%, this can represent a problem, as it is the dominant species
in the analyzed areas, which accounts for half of the total stem volume. Thus, the weighting scheme
should be adjusted by the user depending on its target.

The effectiveness of the wSVM-based approach with respect to the standard SVM for the
improvement of the classification accuracy on the minority species is related to two main reasons: (i) as
a result of using interclass weights, class imbalance problems are significantly diminished; and (ii) as
a results of using intraclass weights, the effect of wrongly labeled samples to contribute to the definition
of the SVM hyperplane is reduced.

Regarding the presence of wrongly labeled samples in the training set, we showed that the
proposed approach is effective in dealing with them. For both datasets, the wSVM approach was better
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at dealing with the presence of wrongly labeled samples than the standard one. As an example, in the
Pellizzano dataset, after adding 200 wrongly labeled samples to the training set, the supervised SVM
could not detect minority classes anymore, while the proposed wSVM was able to keep the accuracies
stable. This is a great advantage in tree species classification since the process of field data collection
could have many sources of errors due to positioning accuracy, but also to the ITCs delineation and to
the matching procedure among ITCs and field data.

Despite the classification performances, two other important criteria should be considered when
evaluating a new classifier: (i) the number of parameters to be tuned and (ii) the processing time
of the classifier. Regarding the number of parameters, the proposed approach based on wSVM and
intraclass weights requires one additional parameter compared to a standard SVM. For wSVMUneighbor,
the additional parameter is the number, U, of nearest neighboring samples for each training sample
to consider in the computation of the distance. For the wSVMkmeans, the additional parameter is the
number of clusters in which to divide the training samples of each class. In our experiments with
wSVMUneighbor, we noticed that there is not a significant change in classification accuracy when varying
U. This could be explained by the fact that, since we have many unlabeled samples (about 475,000 for
Pellizzano and 100,000 for Lavarone) in both datasets, the distances between the samples will be not
too different, and thus the sample weights may not work effectively. In the case of wSVMkmeans, G is
defined as the square root of the half of the total number of samples in that class, as in [30]. During our
experiments, we varied G, and we noticed that the value of G defined by that equation allowed us to
have among the best classification results.

The high computational time required for the training of the wSVMUneighbor is related to the
number of unlabeled samples. Indeed, the wSVMUneighbor classifier, in order to obtain a weight for each
training sample, has to calculate the distance in the feature space between each training sample and
each sample in the pool of the unlabeled set. Then the mean distance between the sample and the
U nearest neighbors is determined. Thus, if the number of unlabeled samples is large, this process
requires a long time to complete. The processing time can be reduced by reducing the number of the
considered unlabeled samples. This process can be done by randomly sampling the unlabeled set to
get the desired number of samples. However, as a tradeoff, the quality of the subset of unlabeled set
might not be guaranteed. Considering the two datasets analyzed, from previous forest inventories,
we know that both areas have minority classes that account for less than 5% of the total stem volume.
If the subset of the unlabeled set contains only majority samples, the distance between each minority
training sample to the unlabeled samples becomes larger compared to the majority training samples,
and thus the weight of each minority training sample becomes small and such classes are penalized.

The main limitation of the proposed wSVM approach with respect to a standard approach based
on SVM is that the weighting algorithms will perform well associated to the samples located in the
high-density regions of the feature space, thus on trees with characteristics similar to the ones of the
other members of that species, while it will probably penalize samples that are quite different from
other samples of the same class. This could actually happen in tree species classification, as there could
be trees that, for reasons related to health, age, or soil properties, grow quite differently compared to
the other trees of the same species in the same area. This should be taken into consideration when
applying the proposed approach, particularly if it is known that, in the considered area, there are
anomalies among the trees of the same species.

A last finding of this study is that LiDAR data could be used to classify tree species in temperate
forests. In the literature, good results have been obtained in boreal forests [12], where the species
diversity is quite low (usually only three tree species are considered in this biome). In this study, we
obtained good results for distinguishing the main tree species groups that are present in the Alps (PAs
over 70%), opening up the possibility to have broad species classifications with high spatial accuracy
in this area, using already available data. Indeed, in Europe, nowadays, many counties and countries
have full coverage of LiDAR data for hydrogeological purposes, and these data could also be used for
a species coverage map. The classification errors that we found are mainly related to the limitations of
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the features extracted from LiDAR data: silver fir is mainly confused with Norway spruce, and the
same is happening for European larch. These three tree species have quite a similar shape, as well as
similar reflectance in the near-infrared, where the LiDAR intensity features are located. For the same
reason, it was not possible to distinguish among the different broadleaf species, except for the green
alder, which has a very different mean height compared to the other species. From an operational
viewpoint, this does not represent much of a problem, as the majority of the stem volume in the Alps
is in conifer species, and the commercial timber is also mainly derived from conifers. On the other
hand, if the focus is on biodiversity studies, this represents a limitation. In this case, we can expect
that the use of the new multispectral LiDAR sensors [32] could improve the results, opening up new
possibilities for studies on tree species classification from LiDAR data.

By comparing the results obtained in this study with similar studies in the literature, we can find
both differences and similarities. First of all, considering the features used in the classification process,
many studies used similar features to the ones used by us (e.g., [12,14–16,18,33]), while others used
3D features (e.g., [17,19]) or bi-temporal LiDAR features (e.g., [8,21]). By looking in detail at the ones
that used features similar to the ones in this study it is possible to see that some studies used exactly
the same features as us (e.g., [12,14,16]), while others added additional features extracted from the
3D information (e.g., [15,18,33]). In terms of classifiers, almost every study tested different classifiers:
support-vector-machine-based classifiers (e.g., [18,19,33]), linear discriminant analysis (e.g., [12,14–16]),
random forest (e.g., [12,17]), and k-nearest neighbor and k-most-similar neighbor (e.g., [12]). The tree
species also change in each study, as they are related to the type of analyzed forest. By considering the
species that are also present in our datasets, we can see that Norway spruce, pines, and broadleaves
are usually quite well separated in all the studies, with accuracies above 80%. Lower accuracies are
obtained for separating individual broadleaves species, like in the study of Brandtberg [21], where three
broadleaf species were classified with an accuracy of 64%.

6. Conclusions

In this study, a wSVM-based approach for tree species classification at ITC level, using LiDAR data,
was presented. The proposed weighting schemes for use in a wSVM method proved to be effective in
dealing with two main problems of the reference data in tree species classification: (i) imbalanced classes
distribution and (ii) the presence of wrongly labeled training samples. In both datasets considered,
the improvement of the proposed approach with respect to a standard SVM classifier was significant
for the underrepresented classes. Moreover, in this study, we showed that the proposed approach,
combined with features extracted from LiDAR data, could be used to classify the main tree species of
temperate forests, opening new possibilities for future applications of LiDAR data.

As future development of this work, it can be interesting to use the proposed approach for other
data types, like hyperspectral and multispectral data, to further evaluate their effectiveness. Further
development could be to test these methods in connection with transfer-learning algorithms, in order
to use training data in one area to classify data in other areas acquired in other moments in time.
Moreover, it could be interesting to apply similar approaches to the prediction of ITC level biomass,
and tree diameters.
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