Untargeted metabolomics strategy based on LC-MS-Orbitrap for discovering new polyphenol metabolites in humans after acute ingestion of Vaccinium myrtillus berry supplement

Lapo Renai^a, Claudia Ancillotti^a, Marynka Ulaszewska^b, Fulvio Mattivi^{b,c}, Massimo Del Bubba^a

^(a) Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy. ^(b) Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy. ^(c) Center for Agriculture Food and Environment, University of Trento, San Michele all'Adige, Italy

ABSTRACT

In this work, liquid chromatography coupled with electrospray ionization hybrid linear ion trap quadrupole/Orbitrap mass spectrometry, has been used to accurately identify polyphenol metabolites in human serum and urine after acute ingestion of a Vaccinium myrtillus berry supplement. The supplement was obtained by cryo-milling of properly freeze-dried bilberries. Thirty-six derivatives of benzoic acids, hydroxyhippuric acids, cinnamic acids, phenylpropionic acids, phenylvaleric acids, phenylpentenoic acids and abscisic acid, together with two berry-native anthocyanins, one flavonol metabolite and two catechol derivatives, were putatively identified in the investigated biofluids. The annotated compounds included thirteen metabolites, among glucuronide (glc) and sulphate (sulf) derivatives of phenylvaleric and phenylpentenoic acids, which have been identified for the first time in human biofluids after ingestion of V. myrtillus berries. The identification of these compounds confirmed the key-role of untargeted metabolomics approach in the discovery of new metabolites which could result biologically active.

STUDY DESING EXPERIMENTS

25 g of V. myrtillus supplement mixed with 500 mL of water. Ethical approval n. SPE 14.178 AOUC, 30th May 2016.

Serum samples were extracted with 96-well plate Ostro (Waters) and diluted 1:2, while urine samples were filtered with 96 well plate with PVDF filter and diluted 1:4. For both urine and serum samples, internal standards (Tryptophan-d5 and Hippuric acid-d5) and external standard (Trans-Cinnamic acid-d5) were added. In addition, the extraction blanks and the quality control (QC) samples (consisting of a mixture of the same aliquot of all urine or serum samples treated with the same aforementioned extraction conditions) were injected along the injection queue every ten samples.

Samples were analysed by Fourier Transform LTQ FT Orbitrap mass spectrometer (Thermo Fisher) interfaced to a Dionex HPLC system. Mass spectrometer operated under HR-Full Scan mode (30,000 FWHM, centroid mode) and data-dependent-acquisition (DDA) in positive and negative ionization modes. In DDA mode the resolving power for MS² scans was 7500. Product ions were generated in the LTQ trap at collision energy 35 eV using an isolation width of 2 Da.

DATA PROCESSING AND STATISTICAL ANALYSIS

The LC-MS raw files were converted to mzXML with the MSConvert utility included in ProteoWizard. Then, the mzXML files were processed with the software XCMS plus (The Scripps Research Institute, La Jolla, CA) that allows for obtaining data processing (feature detection and retention time alignment) and data analysis through statistics tools. As regards urine, the normalization of feature intensities for the volume of each sample was performed in order to remove differences due to the diverse urine volumes.

Both for serum and urine samples, the statistic comparison between different sampling times groups were performed using one-way analysis of variance (ANOVA) and the non-parametric Wilcoxon signed-rank test. Accordingly, the P-value associated to the comparison among the baseline and the post-ingestion intensities were calculated. Principal Component Analysis was performed by the Compound Discoverer software, version 2.1 (Thermo Fisher Scientific).

RESULTS

Data processing with XCMS Plus (peak picking and t_R alignment) resulted in a very large number of m/z features in both serum and urinary samples

No	t _R	Parent ion	Formula	Δ	Tentative Identification	Biological fluid
1	2.4	343.0663 ^a	$C_{14}H_{16}O_{10}$	-2.3	Hydroxy-methoxy benzoic acid glc I (Vanillic acid glc I)	U
2	3.0	274.0019 ^a	C ₉ H ₉ NO ₇ S	-2.9	o-Hydroxyhippuric acid sulf	S;U
3	3.3	277.0017^{a}	$C_9H_{10}O_8S$	-2.6	Hydroxy-dimethoxy benzoic acid sulf (Syringic acid sulf)	U

(i.e. 6,708 and 13,567, respectively). Statistical analysis allowed to reduce ions of interest to a few hundreds, highlighting in serum and/or urine features with statistically different signals ($P \le 0.05$) between the baseline level and the maximum intensity observed after supplement ingestion.

CONCLUSIONS

208.0691 208.0 m/z 85.0300 109.030 123.0457 140 m/z 200 Figure 1. Isotopic profile and MS/MS spectrum of insource fragment (m/z 207.0663) of peak 20 attributed to hydroxy-(hydroxyphenyl)-pentenoic acid sulphate (A), 3,4-dihydroxyphenyl-valerolactone reference standard (B) and 3,4-dimethoxycinnamic acid reference standard (C).

Table 1. List of metabolites resulting statistically significant in serum (S) and/or urine (U) after acute ingestion of V. myrtillus. Retention time (t_R, min); experimental mass of the parent ion (Da); proposed formula; accuracy (Δ , ppm). Glucuronide (glc); sulfate (sulf); ^a [M-H]⁻; ^b [M]⁺.

The use of the untargeted metabolomics approach allowed the annotation

-2.1 Hydroxy-dimethoxy benzoic acid glc I (Syringic acid glc I) **4** 3.3 373.0768 ^a C₁₅H₁₈O₁₁ **5** 3.4 188.9860 ^a C₆H₆O₅S -1.6 Catechol sulf S; U 6 3.5 329.0873^a C₁₄H₁₈O₉ 0.9 Hydroxy-methoxy benzoic acid hexoside (Vanillic acid glucoside) **7** 3.6 343.0663 ^a C₁₄H₁₆O₁₀ -2.3 Hydroxy-methoxy benzoic acid glc II (Vanillic acid glc II) 3.7 399.0924 ^a C₁₇H₂₀O₁₁ -2.2 Hydroxy-(dihydroxyphenyl) pentenoic acid glc -2.0 Hydroxy-(dihydroxyphenyl) valeric acid glc I **9** 3.8 401.1081 ^a C₁₇H₂₂O₁₁ **10** 3.9 373.0767 ^a C₁₅H₁₈O₁₁ -2.4 Hydroxy-dimethoxy benzoic acid glc II (Syringic acid glc I) **11** 3.9 224.0561 ^a C₁₀H₁₁NO₅ -1.3 Hydroxy-methoxy hippuric acid -2.3 Hydroxy-(dihydroxyphenyl) pentenoic acid sulf **12** 4.0 303.0173 ^a C₁₁H₁₂O₈S **13** 4.0 401.1081 ^a C₁₇H₂₂O₁₁ -2.0 Hydroxy-(dihydroxyphenyl) valeric acid glc II **14** 4.0 465.1029^b C₂₁H₂₁O₁₂ 0.2 Delphinidin-hexoside Trimethoxy-hydrocinnamic acid glc or Hydroxy-(hydroxy-**15** 4.2 415.1234 ^a C₁₈H₂₄O₁₁ -2.9 S;U methoxyphenyl) valeric acid glc S; U **16** 4.2 305.0328 ^a C₁₁H₁₄O₈S -2.9 Hydroxy-(dihydroxyphenyl) valeric acid sulf **17** 4.2 285.0609 ^a C₁₂H₁₄O₈ S;U -2.4 Catechol glc **18** 4.2 369.0817 ^a C₁₆H₁₈O₁₀ -2.7 Hydroxy-methoxycinnamic acid glc I (Ferulic acid glc I) 0.5 Cyanidin-hexoside **19** 4.3 449.1080 ^b C₂₁H₂₁O₁₁ -2.4 Hydroxy-(hydroxyphenyl) pentenoic acid sulf I **20** 4.3 287.0224 ^a C₁₁H₁₂O₇S -2.3 Chlorogenic acid **21** 4.4 353.0870^a C₁₆H₁₈O₉ -2.5 Hydroxy-(hydroxy-methoxyphenyl)-pentenoic acid sulf **22** 4.5 317.0329^a C₁₂H₁₄O₈S -2.0 Hydroxy-dimethoxy cinnamic acid glc (Sinapic acid glc) **23** 4.6 399.0925 ^a C₁₇H₂₀O₁₁ -2.4 Hydroxy-(hydroxy-methoxyphenyl)-pentenoic acid glc l **24** 4.7 413.1079^a C₁₈H₂₂O₁₁ S; U -1.8 Hydroxy-(hydroxyphenyl) pentenoic acid glc **25** 4.8 383.0977 ^a C₁₇H₂₀O₁₀ -2.2 Hydroxy-methoxycinnamic acid glc II (Ferulic acid glc II) **26** 4.8 369.0819^a C₁₆H₁₈O₁₀ **27** 4.9 413.1080 ^a C₁₈H₂₂O₁₁ -2.2 Hydroxy-(hydroxy-methoxyphenyl)-pentenoic acid glc II U S; U **28** 5.0 287.0224 ^a C₁₁H₁₂O₇S -2.4 Hydroxy-(hydroxyphenyl) pentenoic acid sulf II **29** 5.1 357.0819^a C₁₅H₁₈O₁₀ -2.2 Dihydroxyphenyl propionic acid glc **30** 5.3 455.1549 ^a C₂₁H₂₈O₁₁ -2.2 Hydroxy-abscisic acid glc S;U **31** 5.4 367.1027 ^a C₁₇H₂₀O₉ -2.2 Feruloylquinic acid **32** 5.9 439.1599^a C₂₁H₂₈O₁₀ -2.5 Abscisic acid glc S ; U **33** 6.1 333.0607 ^a C₁₆H₁₄O₈ -2.7 Methyl-dihydromyricetin -2.5 Hydroxy-abscisic acid **34** 6.4 279.1231 ^a C₁₅H₂₀O₅ -2.0 Hydroxyphenyl propionic acid sulf **35** 6.5 245.0120 ^a C₉H₁₀O₆S **36** 7.2 263.1283 ^a C₁₅H₂₀O₄ -2.3 Abscisic acid

of a wide range of metabolites belonging to benzoic acids, hydroxyhippuric acids, cinnamic acids, phenylpropionic acids, phenylvaleric acids, phenylpentenoic acids and abscisic acid, together with two fruit native anthocyanins, one flavonol metabolite and two catechol derivatives. The presence of other metabolites than those deriving from anthocyanins should be emphasized here. In fact, non-anthocyanin metabolites are often ignored, even though flavanols represent one of the most occurring polyphenol class in bilberry, with both A-type and B-type trimers, tetramers and

pentamers. It is important to underline that these new identified metabolites could be biologically active and might partially explain the healthy properties of V. myrtillus, elsewhere evidenced in clinical trials. The 10th International Workshop on Anthocyanins and Betalains (IWA&B 2019)

Reference - J. Am. Soc. Mass Spectrom. (2019) 30:381-402