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Prediction of stem diameter and biomass at individual tree crown level 
with advanced machine learning techniques
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Knowledge about the aboveground biomass (AGB) and the diameters at breast
height (DBH) distribution can lead to a precise estimation of carbon density
and forest structure which can be very important for ecology studies espe-
cially for those concerning climate change. In this study, we propose to predict
DBH and AGB of individual  trees using tree height (H) and crown diameter
(CD), and other metrics extracted from airborne laser scanning (ALS) data as
input. In the proposed approach, regression methods, such us support vector
machine for regression (SVR) and random forests (RF), were used to find a
transformation or a transfer function that links the input parameters (H, CD,
and other ALS metrics) with the output (DBH and AGB). The developed ap-
proach was tested on two datasets collected in southern Norway comprising
3970 and 9467 recorded trees, respectively. The results demonstrate that the
developed approach  provides  better  results  compared  to  a  state-of-the-art
work (based on a linear model with the standard least-squares method) with
RMSE equal to 81.4 kg and 92.0 kg, respectively (compared to 94.2 kg and
110.0 kg) for the prediction of AGB, and 5.16 cm and 4.93 cm, respectively
(compared to 5.49 cm and 5.30 cm) for DBH.

Keywords: Aboveground Biomass, Diameter at Breast Height, Airborne Laser
Scanning (ALS), Remote Sensing (RS), Support Vector Machine for Regression
(SVR), Random Forests (RF)

Introduction
Forests  are  considered  a  major  compo-

nent of the global carbon cycle. A precise
characterization  of  forest  ecosystems  in
terms of  carbon stock density and forest
structure  is  an  important  key  in  interna-
tional  efforts  to  mitigate  climate  change.
Carbon  density  can  be  estimated  directly
from  the  aboveground  biomass  (AGB)  of
trees, while the knowledge about the dis-
tribution  of  diameter  at  breast  height
(DBH) can be useful in understanding the
forest  structure  (Slik  et  al.  2010).  Having
precise information about the distribution
of those two parameters can help to un-
derstand the structure and the dynamics of
forests. In the past, assessing those charac-
teristics  was  primarily  done  with  field-

based inventory data and sometimes com-
bined  with  conventional  remote  sensing
(RS) data such as aerial  photography and
optical  satellite  images  (Dalponte  &  Coo-
mes 2016,  Dalponte et  al.  2018).  ALS sen-
sors,  also  referred  to  as  airborne  LiDAR
(Light Detection And Ranging), are nowa-
days  the  most  accurate  remote  sensing
technology  for  monitoring  forest  carbon
(Lefsky  et  al.  2002,  Asner  et  al.  2012),  as
they can produce highly detailed 3D point
clouds  pinpointing  locations  on  branches
and the forest floor (Dalponte & Coomes
2016) and they measure surface elevation
within  a  precision  of  a  few  centimeters,
which offers the potential for studying for-
ests at tree level.

In forest inventories in general, DBH and

height (H) are measured and registered in
the field in order to predict the AGB using
allometric  models.  AGB is  then converted
to carbon density for each field-reference
tree (Chave et al. 2014, Mensah et al. 2016,
Zhang et al.  2016,  Peng et al.  2017).  With
ALS,  it  became  possible  to  measure  the
heights of trees in large forests in a short
time,  which makes it  more practical  com-
pared  to  filed-measured  methods.  How-
ever,  DBH  cannot  be  measured  directly
with ALS sensors. Therefore, many studies
have been carried out to try to predict DBH
from airborne remote sensing data (ARS).
The work of Gobakken & Naesset (2004) is
considered the  first  where  the  DBH  (and
also basal area) distribution was predicted
by using ALS data at  the plot level.  Their
approach was based on a Weibull  density
function (Weibull 1951) and regression anal-
ysis was used to estimate the correspond-
ing  parameters.  Recent  studies  have  ex-
tracted ARS variables from each individual
tree  crown  (ITC)  detected  in  ARS  data
(Hauglin et al. 2013, 2014, Jucker et al. 2017,
2018,  Mareya  et  al.  2018,  Dalponte  et  al.
2018).  Among  this  last  group  of  studies,
Jucker et al. (2017) proposed new allomet-
ric models to predict DBH and AGB based
on H and crown diameter  (CD) extracted
from ARS data.  Dalponte et al. (2018) in a
recent study successfully linked field-refer-
ence  DBH  and  AGB  with  H  and  CD  ex-
tracted from ALS data using linear models.

The objective  of  the  current  study is  to
analyze the use of machine learning meth-
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ods, such as Support Vector Machines for
Regression (SVR) and Random Forest (RF)
to predict DBH and AGB at the ITC level us-
ing metrics extracted from ALS data. In the
first part of the experiment, only H and CD
are used as input in order to compare with
the  work of  Dalponte  et  al.  (2018).  After
that, additional ALS metrics are used as in-
put  in  order  to  see  their  impact  on  the
quality of the prediction.

Materials and methods

Datasets description
In this study, two datasets located in bo-

real forests of southeastern Norway were
used: Hadeland and Våler (Fig. 1). The main
tree species in the two areas are Norway

spruce (Picea abies [L.] H. Karst), Scots pine
(Pinus  sylvestris L.),  and  deciduous  tree
species, such as birch (Betula  spp. L.) and
aspen (Populus tremula L.). A summary of
the field data of  the two datasets is pre-
sented in  Tab. 1 where only the trees cho-
sen for  the experiments  are showed and
grouped according their species.

Hadeland dataset
The field  data acquired in  the Hadeland

district (Fig. 1) were collected on 13 circular
sample plots of size 500 m2 and 21 circular
sample plots of size 1000 m2 over a total
area of about 1300 km2. Within each sam-
ple plot, tree species, DBH, and tree coordi-
nates were recorded for all trees with DBH
>  3  cm.  A  total  of  3970  trees  were  re-

corded.  AGB  of  each  tree  was  calculated
using  the  allometric  models  of  Marklund
(1988).

ALS data were acquired on 21st and 22nd of
August 2015 using a Leica ALS70 laser scan-
ner  operated  at  a  pulse  repetition  fre-
quency of 270 kHz. The flying altitude was
of 1100 m above ground level. Up to four
echoes  per  pulse  were  recorded  and the
resulting density of single and first echoes
was 5 m-2.

Våler dataset
The data were acquired in the Våler mu-

nicipality  in  the  southern  part  of  Norway
(Fig. 1). The field data were collected on 152
circular sample plots of size 400 m2. Within
each sample plot,  tree  species,  DBH,  and
tree  coordinates  were  recorded  for  all
trees  with  DBH  >  5  cm.  A  total  of  9467
trees were recorded. AGB of each tree was
calculated using the allometric  models  of
Marklund (1988).

The ALS data were acquired on 9th Sep-
tember 2011 using a Leica ALS70 system op-
erating  with  a  pulse repetition frequency
of 180 kHz. The flying altitude was of 1500
m above ground level.  Up to four echoes
per pulse were recorded and the resulting
density of single and first echoes was 2.4
m-2.

Methods
In Fig. 2 the architecture of the prediction

system used is provided, and in the follow-
ing paragraphs each step is detailed.

ITC delineation
ITCs were delineated using an approach

based on the ALS data and the delineation
algorithm of the R package “itcSegment”.
The algorithm starts first by finding the lo-
cal  maxima  within  a  rasterized  Canopy
Height Model (CHM) and designates them
as tree tops, and then uses a decision tree
method to grow individual crowns around
the local  maxima.  The different  steps  for
this adopted approach are as follows (Dal-
ponte & Coomes 2016):
1. apply a 3 × 3 low-pass filter to the raster-

ized CHM in order to smooth the surface
and reduce the number of local maxima;

2. localization of  local  maxima by using a
circular moving window of variable size.
The user provides a minimum and maxi-
mum  size  of  the  moving  window;  the
window size is adapted according to the
central pixel of the window: the size of
the  window  is  linearly  related  to  the
CHM height. A pixel of the CHM is con-
sidered as local maximum if its value is
greater than all other values in the win-
dow, and if it is greater than some mini-
mum height above ground. The window
size is adapted according to the height
of the central pixel of the window;

3. labeling each local maximum as an “ini-
tial  region” around which a tree crown
can grow;

4. extraction  of  the  heights  of  the  four
neighboring  pixels  from  the  CHM  and
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Fig. 1 - Location of
the two study

areas. (A) Hade-
land; (B) Våler.

Tab. 1 - Summary statistics of the field data for all datasets. For the tree height, DBH
and AGB the data range and the mean (in brackets) are provided. For the species the
number of trees and the percentage (in brackets) are provided.

Variable Species Hadeland Våler

Tree height 
(m)

Spruce 5.8 - 25.4 (15.8) 3.5 - 33.3 (18.6)

Pine 4.7 - 23.1 (16.0) 4.4 - 26.0 (15.1)

Broadleaves 5.1 - 22.9 (13.8) 5.8 - 26.3 (15.3)

DBH 
(cm)

Spruce 5.1 - 44.1 (19.3) 4.3 - 50.3 (21.1)

Pine 4.7 - 51.1 (25.6) 4.0 - 47.9 (20.2)

Broadleaves 4.0 - 49.5 (14.8) 4.7 - 38.9 (16.2)

Tree AGB 
(kg)

Spruce 6.1 - 681.4 (155.1) 4.2 - 1232.9 (216.3)

Pine 3.1 - 691.0 (214.3) 2.4 - 728.4 (146.3)

Broadleaves 2.4 - 738.2 (103.2) 4.1 - 680.4 (125.5)

Species Spruce 737 (59.7%) 1326 (50.2%)

Pine 315 (25.5%) 956 (36.2%)

Broadleaves 182 (14.8%) 361 (13.6%)
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Single-tree stem diameter and biomass prediction using ALS data

adding them (the pixels) to the region if
their  vertical  distance  from  the  local
maximum is less than a predefined per-
centage  of  the  local  maximum  height,
and less than a predefined maximum dif-
ference;

5. reiteration  of  the  previous  step  for  all
the neighboring cells included in the re-
gion until no further pixels are added to
the region;

6. extraction  of  single  and  first  echoes
from the ALS data from each identified
region (having first removed low eleva-
tion echoes, i.e., below 2 m);

7. application of a 2D convex hull to these
echoes. The resulting polygons become
the final ITCs. For each ITC CD and H are
provided.  The  CD  is  computed  as  2  ·
√(ITCarea/π), while the height is computed
as the 99th percentile of the elevation of
the single and first return ALS echoes in-
side each ITC.

The  delineated  ITCs  were  automatically
matched to the trees in the field data sets.
If  only  one  field-measured  tree  was  in-
cluded inside an ITC, then that tree was as-
sociated  with  that  ITC.  In  the  case  that
more than one field-measured tree was in-
cluded in a segmented ITC, the field-mea-
sured tree with the height most similar to
the ITC height was chosen.

ALS metrics extraction
From each delineated ITC,  metrics  were

extracted in order to build the regression
models.  In particular,  two sets of  metrics
were considered. The first set, called H+CD,
contained two geometric metrics of the ex-
tracted ITCs, the height and crown diame-
ter.  The  second  set  contains  metrics  ex-
tracted from the ALS points falling inside
each ITC. This set of metrics comprised 50
statistics and they are summarized in  Tab.
2.  They  were  extracted  from  both  eleva-
tion (Z) and intensity (I) of ALS points. We
used  the  function  “lasmetrics”  of  the  li-
brary “lidR” of  the software R to extract
those ALS metrics.

Support vector machine for regression
Let us consider a matrix of training obser-

vations  X = [x1,  x2, …,  xN]′, where  N is the
number of observations and each vector xi

is  represented  in  the  d-dimensional  mea-
surement  space.  In  our  case,  N corre-
sponds to the number of ITCs used for the
training  and  the  measurement  space  is
their  corresponding  H,  CD,  and  the  ALS
metrics.  Let  us  also  consider  the  output

vector y = [y1, y2, …, yN]′ associated with X
and corresponds to the measured DBH and
the AGB. The aim of our proposed method
is to estimate the relationship between the
input vectors xi and their target values yi.

Support  Vector  machine  for  Regression
(SVR  – Vapnik  1998,  Smola  &  Schölkopf
2004) performs linear regression in a fea-
ture space using an epsilon-insensitive loss
(ε-SVM).  This  technique  is  based  on  the
idea of deducing an estimate  g′(xi) of the
true but unknown relationship yi = g(xi) (i =
1,  …,  N)  between  the  vector  of  observa-
tions xi and the target value yi such that: (i)
g′(xi) has, at most, ε deviation from the de-
sired targets  yi; and (ii) it is as smooth as
possible. This is performed by mapping the
data from the original feature space of di-
mension d to a higher d′-dimensional trans-
formed feature space (kernel  space),  i.e.,
Φ(xi) є Rd’ (d′ > d), to increase the flatness
of  the  function  and,  by  consequence,  to
approximate it  in  a  linear  way as  follows
(eqn. 1):

(1)

Therefore, SVR is formulated as minimiza-
tion of the following cost function (eqn. 2):

(2)

subject to (eqn. 3):

(3)

where ξi and ξi
* are the slack variables that

measure the deviation of the training sam-
ple  xi outside the ε-insensitive zone.  c is a
parameter  of  regularization  that  allows
tuning  the tradeoff  between  the  flatness
of the function  g′(x) and the tolerance of
deviations larger than ε.

The  aforementioned  optimization  prob-
lem can be transformed through a Lagran-
ge function into a dual optimization prob-
lem expressed in the original dimensional
feature space in  order  to lead to the fol-
lowing dual prediction model (eqn. 4):

(4)

where  K is a kernel function,  U is a subset
of indices (i = 1, …, N) corresponding to the
nonzero Lagrange multipliers  αi’s  or  αi

*’s.
The training observations  that  are associ-
ated to nonzero weights are called SVs. The
kernel  K(·,·) should be chosen such that it
satisfies the condition imposed by the Mer-
cer’s theorem, such as the Gaussian kernel
functions (Vapnik 1998, Smola & Schölkopf
2004). In this study, the SVM implemented
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Tab. 2 - Metrics extracted from the ALS points.

Metric Description

Zmax Maximum Z

Zmean Mean Z
Zsd Standard deviation of Z distribution

Zskew Skewness of Z distribution
Zkurt Kurtosis of Z distribution

Zentropy Entropy of Z distribution

ZqP Ph percentile of height distribution, with P from 5 to 95 at steps of 5

ZpcumP Cumulative percentage of points in the Pth layer, with P from 5 to 95 at 
steps of 5

Itot Sum of intensities for each return

Imax Maximum intensity
Imean Mean intensity

Isd Standard deviation of intensity
Iskew Skewness of intensity distribution

Ikurt Kurtosis of intensity distribution

IpcumzqP Percentage of intensity returned below the Pth percentile of Z, with P from 
5 to 95

pRth Percentage of Rth return, with R from 1 to 4

Fig. 2 - Architecture of the
prediction system used.
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g ' (x i)=ω *Φ (x i )+b
*

ψ (ω ,ξ )=
1
2
‖ω‖

2
+c∑

i=1

N

(ξ i+ξ i
*)

{
yi−[ω⋅Φ (x i)+b ]≤ε +ξ i

[ω⋅Φ (x i)+b ]−y i≤ε +ξ i
*

ξ i ,ξ i
*
≥0

g ' (x)=∑
i∈U

(α i−α i
*)K (xi , x)+b*
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in the “kernlab” library of the software R
was used.

Random Forest (RF)
The Random Forest (RF) method, which

was proposed by Breiman (2001), is consid-
ered as one of the most effective machine
learning method for predictive analytics. It
consists of many decision trees trained on
different parts (selected randomly) of the
same  training  set  at  each  node with  the
goal of reducing the variance. Each node is
split using the best among a subset of its
corresponding predictors.  The strategy of
randomness used in RF has been demon-
strated  to  be  robust  against  over-fitting
problems  (Breiman  2001,  Liaw  &  Wiener
2002).

Given training set X = [x1, x2, …, xN]′, with
response y = [y1,  y2, …,  yN]  where ′ N is the
number  of  observations  which  is  used  in
building a forest. Inside the forest a set of
K trees Ti = 1, …, K is constructed. The out-
put of  each tree predicts the outputs  for
the actual value {y′1 = T1(x), …, y′m = Tm(x)},
where m = 1, …, K. The final result of the RF
is the average of all tree predictions and is
calculated as follows (Hannan et al.  2017,
Liu et al. 2015 – eqn 5):

(5)

The evaluation of the Random Forest re-
gression is done through the minimization
of the mean square error (MSE) in order to
select the optimum trees in the forest. In
this study, the Random Forest classifier im-
plemented  in  the  “randomForest”  library
of the software R was used.

Parameter setting
In  order  to evaluate  our  methods,  each

dataset (i.e., Hadeland, and Våler) was di-
vided in two subsets (same as in Dalponte
et al. 2018). The first set was used for cali-
bration and the second for the validation
phase. The split in the two sets was carried
out in order to have similar characteristics
in both sets in terms of spatial distribution,
and DBH and AGB variation. For the Hade-
land dataset, 607 observations were used
for calibration and 627 observations were
used  for  validation,  while  for  the  Våler
dataset, 1398 and 1245, respectively.

Regarding the SVR, the Radial Basis Func-
tion (RBF) was used as kernel functions. To
compute  the  best  parameter  values,  we

use  a  cross-validation  technique  with  a
number  of  folds  equal  to  3.  During  the
cross validation, the parameter of regular-
ization of  the SVR  c and the width of  its
kernel function γ were varied in the range
[1,  104]  and  [10-3,  5],  respectively.  The  ε
value of the insensitive tube was fixed to
10-3.

For the RF method, we fix the number of
trees to grow to 100, while the number of
variables which will  be randomly sampled
as  candidates  at  each  split  is  fixed  to  1
when using only CD and H as features and
to  25  when  using  all  the  features  (CD+
H+ALS data).

Performance evaluation
In order to evaluate the developed meth-

od of prediction and perform a direct com-
parison with results of the state-of-the-art
methods,  we  adopted  the  Root  Mean
Square Error (RMSE) which measures the
differences  between  values  predicted  by
our  model  and  the  ground-reference  val-
ues (eqn. 6):

(6)

where Nt is the total number of test obser-
vations,  yti  is  the ground-reference target
value and y′ti is the predicted value of the
developed  regression  method  (ARS-pre-
dicted). Both yti and y′ti correspond to the
ith test observation xti.

We  also  adopted  the  percentage  im-
provement ratio measure (PIR) in order to
evaluate the level of  improvement of our
method compared to those of the state-of-
the-art  (SOA).  It  is  formulated as  follows
(eqn. 7):

(7)

Results and discussion
In the first part of the analysis, only H and

CD were used as input in order to compare
the obtained results with those reported in
Dalponte et al. (2018). Tab. 3 reports the re-
sults obtained with the set of metrics H+CD
in terms of RMSE and PIR.

From  Tab. 3, it can be seen that the pro-
posed method using SVR and RF provide
better results in terms of  RMSE compared
to  the  state-of-the-art  method  (Dalponte

et al. 2018) for both DBH and AGB predic-
tions.  SVR  shows  substantial  improve-
ments while the RF results are located be-
tween those of  SVR and the state-of-the-
art method (Dalponte et al. 2018).

In  greater  detail,  considering  the  AGB
prediction,  RMSE for the Hadeland dataset
was 81.43 kg with SVR and 84.35 kg with
RF,  while  it  was  92.04  kg  with  SVR  and
95.46 kg with RF in the Våler dataset. The
improvement  is  significant  compared  to
the results obtained by the state-of-the-art
method (94.19 kg and 109.99 kg for Hade-
land and Våler,  respectively  – Dalponte et
al.  2018)  with  a  maximum  PIR equal  to
13.55%  for  Våler  dataset  and  16.32%  for
Hadeland dataset. Regarding the DBH pre-
diction, the RMSE by using SVR was 5.16 cm
for Hadeland dataset and 4.93 cm for Våler
dataset. Those results show also significant
improvements  compared  to  the  state-of-
the-art  method  (Dalponte  et  al.  2018)
where RMSE was 5.49 cm for Hadeland and
5.30  cm  for  Våler.  However,  RF  did  not
show considerable improvement and pro-
vided results  close to  those  of  the  refer-
ence  method  (5.42  cm  for  Hadeland  and
5.19 cm for Våler). In term of PIR, the maxi-
mum improvement was equal to 6.98% and
16.32% for Hadeland and Våler datasets, re-
spectively.

To see visually the quality of the results,
we show in  Fig. 3 the field-reference DBH
vs. ARS  predicted DBH,  and in  Fig.  4 the
field predicted AGB vs. ARS predicted AGB.
The ARS predicted values are close to the
regression  line  only  until  a  certain  value,
while afterwards the bias is increasing. For
example, if we consider the worst case cor-
responding  to  the  prediction  of  DBH  for
the  Hadeland  dataset,  the  prediction  val-
ues were close to the regression line when
the DBH was inferior to 35 cm, while above
this value, the predictions were giving val-
ues around 30 cm. This can be explained by
the fact that among the 607 observations
presented in the training, there were only
23  observations  which  have  value  higher
than 35 cm which represents only 3.8% of
the total training data. Moreover, the rela-
tionship between the tree DBH (and AGB)
and its height is not linear as, after a cer-
tain  age,  trees  stop  to  growth  in  height
and they grow mainly in DBH. Thus, models
that are based on ALS data have problems
in modelling the DBH and AGB of old trees.
Additionally,  the  traditional  ground-based
inventories require a big effort in terms of
time and they may not be the best choice
to  provide  a  balanced  dataset  regarding
the tree height,  stem diameter and other
features. It can be more efficient to select
remotely  the  best  samples  (trees)  to  be
later annotated in the field by experts. In
terms of  RMSE, our method showed good
results since most of the predicted values
fall  close  to  the  regression  line  except  a
few observations, but those few ones oc-
cupy a large range (between 35 and 50 cm
which represents 30% of the total occupied
range).
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Tab. 3 - Accuracy statistics for DBH and AGB predictions using H+CD as input.

Dataset Method
DBH AGB

RMSE (cm) PIR (%) RMSE (kg) PIR (%)

Hadeland Dalponte et al. (2018) 5.49 - 94.19 -

RF 5.42 1.28 84.35 10.45

SVR 5.16 6.01 81.43 13.55

Våler Dalponte et al. (2018) 5.30 - 109.99 -

RF 5.19 2.08 95.46 13.21

SVR 4.93 6.98 92.04 16.32
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In order to improve the results,  a set of
ALS metrics were used together with the
previous metrics (H and CD). The obtained

results (Tab. 4) show that the ALS metrics
help  to  improve  the  results,  especially
when using the RF method. For example,

regarding the prediction of AGB, the RMSE
reached a value less than 80 for the Hade-
land dataset (78.5 with SVR and 76.0 by RF)
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Fig. 3 - Field-reference DBH vs. ARS-predicted DBH for the two datasets using H+CD as input. In red the 1:1 line.

Fig. 4 - Field-reference AGB vs. ARS-predicted AGB for the two datasets using H+CD as input. In red the 1:1 line.

Fig. 5 - Field-reference DBH vs. ARS-predicted DBH using H+CD+ALS data. In red the 1:1 line.

Fig. 6 - Field-reference AGB vs. ARS-predicted AGB using H+CD+ALS data. In red the 1:1 line.
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which  represents  an  improvement  of
16.62% by using SVR and 19.34% by using RF.
For the Våler dataset RMSE was lower than
90 (88.9 with RF) with a PIR equals to 19.15.
The  same  remarks  can  be  given  for  the
DBH  prediction  part  where  the  improve-
ment  was  significant  and  the  PIR was
12.75%  and  8.11%  for  Hadeland  and  Våler
datasets, respectively.

In  Fig. 5 and  Fig. 6, we present the field-
reference DBH  vs. ARS-predicted DBH and
the  field-predicted  AGB  vs. ARS-predicted
AGB,  respectively,  by  using  ALS  metrics
along with  H and CD.  From the different
graphs,  a  slight  improvement  can  be  no-
ticed compared to the previous ones (us-
ing only H and CD metrics in Fig. 3 and Fig.
4).  However,  the  problem  of  inaccurate
prediction of high values of AGB and DBH
appeared  also  in  this  part  of  the  experi-
ments. We think that such problem can be
investigated in a separate work in order to
explore better the possible challenges that
it may present.

Conclusion
In this work, we proposed an approach to

predict DBH and AGB of trees from remote
sensing data by using SVR and RF regres-
sion  methods.  The  developed  approach
was tested on two datasets.  On the first
part of the experiments, the metrics H and
CD were used in order to predict DBH and
AGB. The obtained results were promising
and the improvements were noticeable, es-
pecially  in terms of  RMSE.  In order to im-
prove  the  results,  we  proposed  to  intro-
duce ALS metrics and use them together
with H and CD. The obtained results were
encouraging, especially with RF where the
improvement  was  large.  However,  our
method  was  not  able  to  predict  the  iso-
lated samples with highest values of AGB
and DBH. This was probably due to the fact
that the relationship among the height of a
tree (and thus of the majority of the ALS
metrics) and the DBH and AGB was saturat-
ing, and also to the fact that there was a
limited number of training observations for
the larger trees.

Finally, in order to improve the quality of
the  results  and  to  get  better  predictions
for old trees with large values of DBH and
AGB,  we  think  it  can  be  more  advanta-
geous  to  use  techniques  that  preprocess
the data in order to yield a balance for their
distribution over all the scale of the differ-
ent metrics.

Acknowledgements
This work was supported by the HyperBio

project  (project  244599)  financed  by  the
BIONR program of the Research Council of
Norway and TerraTec AS, Norway.

References 
Asner GP, Mascaro J, Muller-Landau HC, Vieille-

dent G, Vaudry R, Rasamoelina M, Hall JS, Van
Breugel  M (2012).  A  universal  airborne  LiDAR
approach for  tropical  forest  carbon mapping.
Oecologia 168 (4): 1147-1160. - doi: 10.1007/s004
42-011-2165-z

Breiman  L  (2001).  Random  forests.  Machine
Learning 45 (1):  5-32. -  doi:  10.1023/A:10109334
04324

Chave  J,  Réjou-Méchain  M,  Búrquez  A,  Chidu-
mayo E, Colgan MS, Delitti WBC, Duque A, Eid
T, Fearnside PM, Goodman RC, Henry M, Mar-
tínez-Yrízar A, Mugasha WA, Muller-Landau HC,
Mencuccini  M,  Nelson BW, Ngomanda A,  No-
gueira EM, Ortiz-Malavassi E, Pélissier R, Ploton
P, Ryan CM, Saldarriaga JG, Vieilledent G (2014).
Improved  allometric  models  to  estimate  the
aboveground biomass of tropical trees. Global
Change Biology 20: 3177-3190. - doi: 10.1111/gcb.
12629

Dalponte  M,  Coomes  DA  (2016).  Tree-centric
mapping  of  forest  carbon  density  from  air-
borne  laser  scanning  and  hyperspectral  data.
Methods in Ecology and Evolution 7 (10): 1236-
1245. - doi: 10.1111/2041-210X.12575

Dalponte M,  Frizzera L,  Orka HO, Gobakken T,
Naesset E, Gianelle D (2018). Predicting stem di-
ameters and aboveground biomass of individ-
ual trees using remote sensing data. Ecological
Indicators 85: 367-376. - doi: 10.1016/j.ecolind.20
17.10.066

Gobakken T, Naesset E (2004). Estimation of di-
ameter and basal area distributions in conifer-
ous forest by means of airborne laser scanner
data. Scandinavian Journal of Forest Research
19: 529-542. - doi: 10.1080/02827580410019454

Hannan  MA,  Ali  JA,  Mohamed  A,  Uddin  MN
(2017). A random forest regression based space
vector PWM inverter controller for the induc-
tion motor  drive.  IEEE Transactions  on Indus-
trial  Electronics  64  (4):  2689-2699.  -  doi:
10.1109/TIE.2016.2631121

Hauglin M, Dibdiakova J, Gobakken T, Naesset E
(2013).  Estimating  single-tree  branch  biomass
of Norway spruce by airborne laser  scanning.
ISPRS Journal of Photogrammetry and Remote
Sensing 79: 147-156. -  doi:  10.1016/j.isprsjprs.20
13.02.013

Hauglin M, Gobakken T, Astrup R, Ene L, Naesset
E (2014). Estimating single-tree crown biomass
of Norway spruce by airborne laser scanning: a
comparison of methods with and without the

use of terrestrial  laser scanning to obtain the
ground  reference  data.  Forests  5:  384-403.  -
doi: 10.3390/f5030384

Jucker T, Caspersen J, Chave J, Antin C, Barbier
N, Bongers F,  Dalponte M, Van Ewijk KY, For-
rester  DI,  Haeni  M,  Higgins  SI,  Holdaway  RJ,
Iida Y,  Lorimer C, Marshall  PL,  Momo S, Mon-
crieff  GR,  Ploton  P,  Poorter  L,  Rahman  KA,
Schlund  M,  Sonké  B,  Sterck  FJ,  Trugman  AT,
Usoltsev  VA,  Vanderwel  MC,  Waldner  P,  We-
deux BMM, Wirth C, Wöll  H, Woods M, Xiang
W, Zimmermann NE,  Coomes DA (2017).  Allo-
metric equations for integrating remote sens-
ing  imagery  into  forest  monitoring  pro-
grammes. Global Change Biology 23: 177-190. -
doi: 10.1111/gcb.13388

Jucker  T,  Asner  GP,  Dalponte  M,  Brodrick  PG,
Philipson CD, Vaughn NR, Teh YA, Brelsford C,
Burslem DFRP, Deere NJ, Ewers RM, Kvasnica J,
Lewis SL, Malhi Y, Milne S, Nilus R, Pfeifer M,
Phillips OL, Qie L, Renneboog N, Reynolds G, Ri-
utta  T,  Struebig  MJ,  Svátek  M,  Turner  EC,
Coomes  DA  (2018).  Estimating  aboveground
carbon density and its uncertainty in Borneo’s
structurally complex tropical forests using air-
borne laser scanning. Biogeosciences 15:  3811-
3830. - doi: 10.5194/bg-15-3811-2018

Lefsky MA, Cohen WB, Harding DJ,  Parker  GG,
Acker SA, Gower ST (2002). Lidar remote sens-
ing of above-ground biomass in three biomes.
Global Ecology and Biogeography 11: 393-399. -
doi: 10.1046/j.1466-822x.2002.00303.x

Liaw A, Wiener M (2002).  Classification and re-
gression by random forest. R News 2 (3): 18-22.
[online]  URL:  http://www.researchgate.net/pu
blication/228451484

Liu M, Liu X, Liu D, Ding C, Jiang J (2015). Multi -
variable integration method for estimating sea
surface  salinity  in  coastal  waters  from  in  situ
data and remotely sensed data using random
forest  algorithm. Computers  and Geosciences
75: 44-56. - doi: 10.1016/j.cageo.2014.10.016

Mareya HT, Tagwireyi P,  Ndaimani H, Gara TW,
Gwenzi  D  (2018).  Estimating  tree  crown  area
and  aboveground  biomass  in  Miombo  wood-
lands  from  high-resolution  RGB-only  imagery.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 11 (3): 868-
875. - doi: 10.1109/JSTARS.2018.2799386

Marklund LG (1988). Biomass functions for pine,
spruce and birch in Sweden. Report 45, Depart-
ment of Forest Survey, Swedish University for
Agricultural Sciences, Uppsala, Sweden, pp. 73.

Mensah  S,  Veldtman  R,  du  Toit  B,  Kakaï  RG,
Seifert T (2016). Aboveground biomass and car-
bon in a South African mistbelt forest and the
relationships  with  tree  species  diversity  and
forest structures. Forests 7: 1-17. - doi:  10.3390/
f7040079

Peng  S,  He  N,  Yu  G,  Wang  Q  (2017).  Above-
ground biomass estimation at different scales
for subtropical forests in China. Botanical Stud-
ies 58: 45. - doi: 10.1186/s40529-017-0199-1

Slik JWF, Aiba SI, Brearley FQ, Cannon CH, For-
shed  O,  Kitayama  K,  Nagamasu  H,  Nilus  R,
Payne J, Paoli G, Poulsen AD, Raes N, Sheil D,
Sidiyasa  K,  Suzuki  E,  Van  Valkenburg  JLCH
(2010).  Environmental  correlates  of  tree  bio-
mass,  basal  area,  wood  specific  gravity  and
stem  density  gradients  in  Borneo’s  tropical
forests.  Global  Ecology  and  Biogeography  19:

328 iForest 12: 323-329

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry Tab. 4 - Accuracy statistics for DBH and AGB predictions using H+CD+ALS metrics.

Dataset Method
DBH AGB

RMSE (cm) PIR (%) RMSE (kg) PIR (%)

Hadeland RF 4.79 12.75 75.97 19.34

SVR 4.93 10.20 78.54 16.62

Våler RF 4.88 7.92 88.93 19.15

SVR 4.87 8.11 91.15 17.13

https://doi.org/10.1007/s00442-011-2165-z
https://doi.org/10.1007/s00442-011-2165-z
https://doi.org/10.1186/s40529-017-0199-1
https://doi.org/10.3390/f7040079
https://doi.org/10.3390/f7040079
https://doi.org/10.1109/JSTARS.2018.2799386
https://doi.org/10.1016/j.cageo.2014.10.016
http://www.researchgate.net/publication/228451484
http://www.researchgate.net/publication/228451484
https://doi.org/10.1046/j.1466-822x.2002.00303.x
https://doi.org/10.5194/bg-15-3811-2018
https://doi.org/10.1111/gcb.13388
https://doi.org/10.3390/f5030384
https://doi.org/10.1016/j.isprsjprs.2013.02.013
https://doi.org/10.1016/j.isprsjprs.2013.02.013
https://doi.org/10.1109/TIE.2016.2631121
https://doi.org/10.1080/02827580410019454
https://doi.org/10.1016/j.ecolind.2017.10.066
https://doi.org/10.1016/j.ecolind.2017.10.066
https://doi.org/10.1111/2041-210X.12575
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


Single-tree stem diameter and biomass prediction using ALS data

50-60. - doi: 10.1111/j.1466-8238.2009.00489.x
Smola AJ, Schölkopf B (2004). A tutorial on sup-

port vector regression. Statistics and Comput-
ing 14 (3): 199-222. - doi: 10.1023/B:STCO.000003
5301.49549.88

Vapnik VN (1998). Statistical learning theory, vol.

1. Wiley, New York, USA, pp. 1-768.
Weibull  W (1951). A statistical distribution func-

tion  of  wide  applicability.  Journal  of  Applied
Mechanics  18:  293-297.  [online]  URL:  http://
web.cecs.pdx.edu/~cgshirl/Documents/Weibull-
ASME-Paper-1951.pdf

Zhang  Y,  Chen  HYH,  Taylor  AR  (2016).  Above-
ground biomass of understorey vegetation has
a negligible or negative association with over-
storey tree species diversity in natural forests.
Global Ecology and Biogeography 25: 141-150. -
doi: 10.1111/geb.12392

iForest 12: 323-329 329

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.1111/geb.12392
http://web.cecs.pdx.edu/~cgshirl/Documents/Weibull-ASME-Paper-1951.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Weibull-ASME-Paper-1951.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Weibull-ASME-Paper-1951.pdf
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1111/j.1466-8238.2009.00489.x

	Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques
	Introduction
	Materials and methods
	Datasets description
	Hadeland dataset
	Våler dataset

	Methods
	ITC delineation
	ALS metrics extraction
	Support vector machine for regression
	Random Forest (RF)
	Parameter setting
	Performance evaluation


	Results and discussion
	Conclusion
	Acknowledgements
	References


