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III. ABSTRACT 

English:

Movement is one of the most fundamental processes for living entities on earth at the

core of scientific disciplines such as ecology and geography. In animal ecology, ongoing

progress in tracking and remote sensing technologies has spurred an explosion of move-

ment and environmental data collected at high spatial and temporal resolution, at a large

scale, so that the interaction between animal movement and habitat features can now be

investigated in much more detail. As a result, in recent years the field of animal ecology

has produced a growing body of studies on movement-based patterns leading to habitat

use and selection. In this regard, GIScience has contributed with several visual analytical

approaches to study animals in relation to their environment and habitat. However, the pat-

terns behind the sequential use of different habitat classes have remained largely unex-

plored. Sequential habitat use is defined as the consecutive use of habitat features along

the trajectory of an animal, extracted from the context of its spatial movement. By account-

ing for the sequence of use, it is possible to distinguish fundamentally different behavioural

habitat use strategies that are important for the survival and fitness of an animal, such as

habitat alternation versus random sequential use. Such distinctions would remain unde-

tected by only considering the proportion of use. Sequential habitat use patterns occur in a

spatial context, meaning sequential patterns are affected by what is actually available to

the animal.

In this dissertation we merge knowledge from different fields to present an innovative

method to study the relation between animals and their environment by accounting for the

sequential use of habitats, and animal movement rules. We developed a visually effective

method to analyse and visualise sequential habitat use patterns of animals at multiple spa-

tio-temporal scales by combining real and simulated sequences of habitat use. To study

sequential habitat use patterns we use Sequence Analysis Methods (SAM), an approach

widely applied in molecular biology, as well as many applications in different fields, to mea-

sure dissimilarity  between sequences of characters.  In brief,  we use dissimilarity algo-

rithms to measure the distance between all pairs of sequences, and then apply a cluster -

ing algorithm to investigate how these sequences group together, which are visualised as

dissimilarity  trees.  We propose a procedure consisting of  three steps,  including explo-
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ration, simulation and classification. In the exploration phase, we build exploratory trees,

which visualise  real sequential habitat use patterns. Second, by applying animal move-

ment models we simulate expected sequential habitat use patterns, and assess how spa-

tial context, and especially habitat availability, affects the clustering of sequential patterns.

Third, we combine real and simulated sequences to identify which simulated pattern is

most parsimonious with the real sequences. The research progress has been presented in

three main chapters. In Chapter 3 we present seminal methodological development where

SAM was applied to animal movement data. In Chapter 4 we introduce further method-

ological advancements to extend the applicability of SAM to animal ecology. In Chapter 5

we present  a  large-scale multi-population ecological  application.  All  research was per-

formed using GPS movement data of roe deer and environmental data provided by the Eu-

roungulates database project.

Chapter 3 presents the first application of SAM to identify ecologically relevant se-

quential patterns in animal habitat use. We exemplify the method using ecological data

consisting of simulated and real trajectories from a roe deer population (Capreolus capreo-

lus) in the Italian Alps, expressed as ordered sequences of four habitat use classes, i.e.

high/open, high/closed, low/open, low/closed. In essence, the SAM framework identifies

relevant sequential patterns in real trajectories by measuring their similarity to spatially-ex-

plicit  simulated trajectories with known sequential  patterns. Simulation trajectories were

generated in arenas resembling the landscape structure of the roe deer population. Chap-

ter 4 extends SAM to an individual-based approach (i.e. IM-SAM, Individual Movement –

Sequence Analysis Methods), that is applicable over multiple populations. Specifically, in-

stead of  performing simulations in landscape-like arenas,  we use real  individual  home

ranges,  thus accounting  for  individual  spatial  context,  and landscape composition  and

structure. To assess usability of our advanced framework we investigate the sequential

use of open and forest habitats for nine roe deer populations ranging in landscapes with

different geographic contexts and anthropogenic disturbance. We also discuss implications

for conservation and management. Chapter 5 addresses the functional role of landscapes

throughout seasons by identifying both population level and individual level variability in

the sequential habitat use patterns of roe deer, identified in the former nine roe deer popu-

lations. We show how identified sequential habitat use patterns can be treated as vari-

ables, and analysed with standard and well-accepted statistical methods.

While the (IM-)SAM framework was developed for studying sequential habitat use in

specific, we highlight that its methodological steps and study design can easily be gener-

XV



alised.  Indeed,  its  dissimilarity  and clustering algorithms,  temporal  resolution,  sampling

units, and number of classes for which sequential patterns are investigated can all be cus-

tomised for the specific research questions in mind. (IM-)SAM is easily applicable to differ-

ent types of sequential data that describe aspects of an animal's internal (e.g. heart rate)

or external state (e.g. temperature). Through improvements in technology, including the

growing number of information that can be collected through sensors (GPS trackers, bi-

ologgers and satellites), improving database infrastructures and the instant availability of

advanced R packages dedicated to  animal  movement,  (IM-)SAM could be easily  inte-

grated in a wide range of both local and broad-scaled behavioural spatio-temporal studies.

Nederlands: 

Beweging is een van de meest fundamentele processen voor levende wezens op aarde

dat aan de basis ligt van heel wat wetenschappelijke disciplines zoals ecologie en geogra-

fie. In dierenecologie heeft technologische vooruitgang in de ontwikkeling van tracking- en

remote sensing technologieën recent geleid tot een explosie aan informatie over beweging

en de omgevingscontext. Zowel de resolutie als de schaal waarin deze informatie nu be-

schikbaar is blijft toenemen en laten beter dan ooit toe te bestuderen hoe de bewegingen

van dieren samenhangen met habitatkenmerken. De wetenschappelijke interesse in die-

renecologie is de laatste decennia sterk ontwikkeld omwille van zulke technologische voor-

uitgang, resulterend in een groeiend aantal studies die gedetailleerde veranderingen in ha-

bitatgebruik en -selectie toelaten. Ook in geografische informatiewetenschap en gerela-

teerde onderzoeksgebieden zijn  verschillende visueel-analytische benaderingen ontwik-

keld om dieren te bestuderen in relatie tot hun habitat. Wat echter zelden in rekening wordt

genomen, is  de volgorde of  sequentie  waarin  verschillende habitatklassen worden ge-

bruikt. Sequentieel habitatgebruik wordt gedefinieerd als het opeenvolgende gebruik van

habitatkenmerken langs het bewegingstraject van een dier. Door rekening te houden met

de sequentie in habitatgebruik, is het mogelijk om fundamenteel verschillende strategieën

te onderscheiden die een belangrijke invloed hebben op de overleving en fitness van orga-

nismen, zoals een afwisselend patroon in habitatgebruik naargelang dag/nacht versus een

willekeurig patroon in habitatgebruik. Dergelijke patronen kunnen niet ontdekt worden in

de meer klassieke habitatanalyses, waarbij enkel wordt gekeken naar proporties in habitat-

gebruik.  De volgorde waarin habitats langs een bewegingstraject worden gebruikt hangt

ook af van de ruimtelijke context. Bijgevolg zijn geobserveerde habitatgebruikspatronen af-
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hankelijk van wat beschikbaar is voor de diersoort.

In deze dissertatie brengen we kennis uit verschillende wetenschappelijke disciplines

samen om tot een nieuwe methode te komen voor het bestuderen van habitats die zowel

de volgorde van het gebruik, als de ruimtelijke bewegingscontext in rekening brengen. We

stellen een visueel aantrekkelijke methode voor die het analyseren en visualiseren van se-

quentiële habitatgebruikspatronen van dieren toelaat op basis van een combinatie van re-

ële en gesimuleerde sequenties in habitatgebruik. De methode laat toe om habitatgebruik

op meerdere tijdruimtelijke schalen te verkennen en te analyseren. Om sequenties in habi -

tatgebruik te bestuderen, gebruiken we Sequence Analysis Methods (SAM), een analyse-

techniek die standaard wordt toegepast in de moleculaire biologie, en verschillende ande-

re vakgebieden. De basistechniek bestaat erin om de ongelijkheid of dissimilariteit tussen

verschillende karaktersequenties (e.g. COOCOO) te berekenen, waarbij elk karakter (e.g.

O, C) een status (e.g. open/gesloten habitat) voorstelt op een bepaald tijdstip. Samenge-

vat maken we gebruik van dissimilariteitsalgoritmen om de afstand tussen alle sequenties

te berekenen, en gebruiken vervolgens een clusteringalgoritme wat toelaat om de dissimi-

lariteit tussen sequenties visueel voor te stellen in een dendrogram. De algemene proce-

dure die we voorstellen bestaat uit drie stappen: exploratie, simulatie en classificatie. In de

exploratiefase genereren we dendrogrammen die reële habitatgebruikspatronen visualise-

ren. In de simulatiefase genereren we de verwachte habitatgebruikspatronen en analyse-

ren we hoe ruimtelijke context de gegenereerde trajecten beinvloedt. In de classificatiefase

combineren we de reële en gesimuleerde sequenties om te identificeren welk gesimuleerd

patroon het best overeenkomt met de reële sequenties. De voortgang van het onderzoek

wordt beschreven in drie hoofdstukken. In hoofdstuk 3 presenteren we de rudimentaire

methodologische ontwikkeling, in hoofdstuk 4 beschrijven we methodologische innovaties

en in hoofdstuk 5 presenteren we een ecologische toepassing. Al het onderzoek werd uit -

gevoerd met behulp van GPS-localisatie van reeën en habitatinformatie geleverd door het

Euroungulates database project.

Hoofdstuk 3 presenteert de eerste toepassing van SAM om ecologisch relevante habi-

tatgebruikspatronen te identificeren. We illustreren de methode met behulp van ecologi-

sche gegevens die bestaan  uit gesimuleerde en reële trajecten van een reeënpopulatie

(Capreolus capreolus) in de Italiaanse Alpen, uitgedrukt als opeenvolgende karakterse-

quenties van vier habitatgebruiksklassen (status), namelijk hoog/open habitat, hoog/geslo-

ten habitat, laag/open habitat, laag/gesloten habitat. In essentie identificeert het SAM-fra-

mework relevante sequentiële patronen in reële trajecten door hun gelijkenis te meten met
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ruimtelijk expliciet gesimuleerde trajecten met bekende sequentiële patronen. Gesimuleer-

de trajecten werden gegenereerd in gegenereerde arena's die lijken op de landschaps-

structuur van de reeënpopulatie. Hoofdstuk 4 breidt SAM uit naar een individuele benade-

ring (IM-SAM, Individual Movement – Sequence Analysis Methods). In plaats van het uit-

voeren van simulaties in gegenereerde arena's gebruiken we hier de eigenlijke home ran-

ge van elk dier. Door deze uitbreiding nemen we de individuele ruimtelijke bewegingscon-

text in rekening en dus de landschapsstructuur waarin een dier beweegt. Om de bruik-

baarheid van ons geavanceerde framework te beoordelen, onderzoeken we het sequenti-

eel habitatgebruik van open- en gesloten habitats voor negen reeënpopulaties, die zich

bevinden in diverse landschappen in Europa. We bespreken ook de implicaties voor be-

houd en beheer. In hoofdstuk 5 focussen we meer op de functionele rol van landschappen

doorheen de seizoenen door het identificeren van populatie- en individuele variabiliteit in

de sequentiële habitatgebruikspatronen van reeën, geïdentificeerd in de voormalige negen

reeënpopulaties. We tonen aan hoe de geidentificeerde sequentiële habitatgebruikspatro-

nen  verder  kunnen  worden  gebruikt  als  variabelen  in  statistische  analyses.

Hoewel (IM-)SAM werd ontwikkeld voor het bestuderen van sequentieel habitatge-

bruik in het bijzonder, benadrukken we dat deze methodologie generalizeerbaar is om een

breed spectrum aan onderzoeksvragen te behandelen. Bijvoorbeeld, dissimilariteits-  en

clusteringalgoritmen, temporele resoluties, studie eenheden en het aantal klassen (aantal

karakters) waarvoor patronen worden onderzocht, kunnen worden aangepast aan de spe-

cifieke onderzoeksvragen. Bovendien is (IM-)SAM gemakkelijk toepasbaar op verschillen-

de informatiebronnen die de interne status (e.g. hartslag) of omgevingswereld (e.g. tempe-

ratuur) van een dier kunnen beschrijven. Door de continue verbeteringen in sensor-tech-

nologie (GPS trackers, biologgers en satellieten), de verbetering van database-infrastruc-

turen en de onmiddellijke beschikbaarheid van geavanceerde R software met specifieke

codes speciaal ontwikkeld voor de studie van bewegende dieren, kan (IM-)SAM gemakke-

lijk geïntegreerd worden zowel in lokale als continentale/globale tijdruimtelijke gedragsstu-

dies.
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CHAPTER 1

INTRODUCTION

1.1. BACKGROUND 

Movement, defined as the change in spatial location of an entity over time (i.e. the trajec-

tory), is one of the most fundamental processes for entities on earth.  Detailed insights in

movement patterns are crucial for many scientific disciplines such as ecology, sociology,

geography and meteorology. For instance, studying movement has enhanced scientists'

understanding of animal behaviour (Nathan 2008), traffic and crowd management (Batty et

al. 2003, Verhein & Chawla 2006, Versichele et al. 2012, Çolak et al. 2016), patient moni-

toring (Shoval et al. 2008) and environmental hazard predictions (Dodge 2011). 

Movement ecology is one of these exciting fields, focusing on why, how, when and

where animals move, and in what way movement is linked to external factors (Nathan

2008). Knowledge in animal movement allows us to answer research questions that are

essential to understanding important ecological and evolutionary processes that lay at the

basis of survival and fitness of a species, i.e. the ability to increase or maintain population

abundance in the next generation. With movement data we can better understand how an-

imals use resources, habitats, and land use types within specific environmental contexts,

or how animals interact with conspecifics or with other species (Cagnacci et al. 2010). Ani-

mal movement has always fascinated mankind: first scientific contributions to the field date

back to the philosophers and naturalists of the Greek Classical Antiquity. Bird migrations

were recorded by Hesiod, Homer, Herodotos and the founding father of zoology, Aristotle.

The latter wrote the first comprehensive work Περ  ζ ων κινήσεως ὶ ῴ (On the Motion of Ani-

mals) describing common features of various animal movements (Nathan 2008). While

trail tracking and bird ringing (Jespersen 1950) have been around for centuries, only with

the recent introduction of telemetry technologies field studies has animal ecology taken a

big leap (LeMunyan et al. 1959).
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Technological innovation in the last decades has led to a tremendous increase in the

availability of movement data (Rutz & Hays 2009). In particular, remote tracking (e.g. GPS)

and sensing (e.g. satellites) technologies have revolutionised movement ecology, among

other fields of study. Advances in sensor technology have now allowed their implementa-

tion at unforeseen rates. Longer battery life has resulted in higher temporal resolution and

longer monitoring periods, the accuracy of both tracking sensors and satellites have in-

creased, a wider variety of species can be studied due to the miniaturisation of devices

and development of new technologies (e.g. ICARUS, International Cooperation for Animal

Research Using Space, https://icarusinitiative.org/), and multiple sensors can be installed

in one device (e.g. gyroscopes, accelerometers, magnetometers, proximity loggers, physi-

ological sensors, neurologgers) (Demšar et al. 2015a, Kays  et al. 2015). Hence, current

technologies not only allow the study of explicit movement of animals, but also multiple as -

pects of animals' internal states (e.g. heart-rate, body temperature) and their external envi -

ronment  (e.g.  temperature,  pressure,  interactions,  resources).  The  growing  amount  of

multi-sensor tracking data is turning movement ecology into a field of big data (Kays et al.

2015), and hence collaborative initiatives for storage and management of such data have

been  developed.  Some  examples  are  Movebank  (Wikelski  &  Kays  2014),  ZoaTrack

(Dwyer et al. 2015), Euroungulates (www.euroungulates.org), the Seabird Tracking Data-

base  (http://ww  w.seabirdtracking.org/)  and  Ocean  Tracking  Network  (OTN)

(http://oceantrackingnetwork.org/, see Campbell et al. 2016 for a detailed list). Availability

of such big data repositories provides new opportunities and challenges for the analysis of

movement data. Such e-infrastructures allow easier access to more multi-species move-

ment datasets and simultaneous comparison of various movement patterns across taxa

(e.g. Tucker et al. 2017).

Among the many challenges, one of the hardest is the development of robust meth-

ods to explore, visualise and analyse bulks of movement data. In this context, interdiscipli-

nary work between movement ecologists and GIScientists offers huge potential for estab-

lishing permanent networks of research (Shamoun-Baranes  et al. 2011,  Demšar & van

Loon 2013, Demšar et al. 2015a, Kays et al. 2015). Compounds of movement data in dif-

ferent fields are very similar: spatial features (points, lines and polygons), movement pa-

rameters (e.g. speed, step length, turning angle), environmental context information and

pattern similarity measures can typically be computed for any kind of moving object (ani-

mals, humans, hurricanes, icebergs, vehicles; Laube  et al. 2007, Andrienko  et al. 2008,

Dodge et al. 2009).
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Through this dissertation I promote innovation in animal movement ecology by pre-

senting a novel methodology to study spatio-temporal sequential habitat use by animals

within  their  geographic  context,  using  interdisciplinary  techniques.  The  seeds  of  this

project  trace back to 2013,  through participation in the European Commission Funded

COST Action – Knowledge Discovery from Moving Objects (MOVE), a European collabo-

rative network focusing on knowledge extraction from large amounts of any kind of moving

objects data. This dissertation intends to merge knowledge from movement ecology and

GIScience to give us a better understanding of animal behaviour in space and time. 

1.2. MOVEMENT AND ENVIRONMENTAL CONTEXT

1.2.1. Habitat use and selection

Understanding how animals move within their environmental context is one of the key-

stones of movement ecology (Manly et al. 2002, Nathan 2008). For example, habitat loss

induced by climate change (e.g. desertification, acidification) may result in altitudinal or lat-

itudinal range shifts of animal species (Parmesan et al. 2006, Wilson et al. 2007, Linares

et al. 2015). Land use modifications, such as deforestation and urban development, may

limit the amount of suitable habitats, lead to habitat fragmentation, hamper animal move-

ments (see Tucker et al.  2018) and potentially result in population decline, or even local

extinction of a species (e.g. Zemanova et al. 2017). Hence, to identify the impact of envi-

ronmental  changes on a species, analytical  methods must identify and describe which

specific habitats and resources are used, as well as where and when.

The habitat of a species is comprised by those places required by an animal to fulfill

its resource needs, such as food, shelter, protection and mates for reproduction. Habitats

can be described by a combination of biotic (e.g. predator presence, forest cover) and abi -

otic (e.g. temperature, soil, snow cover) characteristics of an environment. To understand

habitat  requirements of a species, ecologists perform habitat use and habitat selection

studies (Lele  et al. 2011). Habitat use can be defined as the actual use, whatever the

availability, and habitat selection is the use disproportionate to the availability (Gaillard et

al. 2010). Both habitat use and selection are recognised to occur at multiple scales in

space and time (Morris et al. 1987, Orians et al. 1991). At the spatial scale, four orders of

habitat selection are usually recognised (see the seminal paper: Johnson 1980). The first-
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order, corresponding to the distribution range (i.e. the geographical region in which the

species can be found). The second-order, at which animals select their home range (i.e.

the area an animal crosses during normal feeding and reproductive behaviour, excluding

excursions (Burt, 1943)). The third-order, at which resources within the home range are

selected, and the fourth-order, or the selection of specific items of a resource type (John-

son 1980). For example, considering our study species the European roe deer (Capreolus

capreolus), the distribution of the species covers most of Europe and parts of Asia (level

1), they usually select home ranges that include a mosaic of forest and open habitats

(level 2), they are a generally ecotonal species with a preference for edge habitats (level

3) and they are concentrate selectors, preferring specific nutritious plant types often found

in edge habitat (level 4). 

Moreover, at each spatial scale, habitats can reflect daily, seasonal or annual chang-

ing patterns, related to variations in trade-offs that lead to different behavioural decisions

over time (Mysterud et al. 1999a, Godvik et al. 2009, Bremset Hansen et al. 2009, Bonnot

et al. 2013). A herbivore in temperate regions may select more forest habitat during winter,

while showing a daily alternation between forest and open habitats during summer,  be-

cause of  seasonal  variation in trade-offs  between food,  cover and weather conditions.

More precisely, in winter such open habitats are often avoided because of a thicker snow

layer, no availability of food and cover and colder temperatures than found in the forest

(Mysterud et al. 1997, Mysterud et al. 1999a, Mysterud & Østbye 2006, Ratikainen et al.

2007, Ewald et al. 2014, Ossi et al. 2015). Instead, in the summer, open habitats are at-

tractive due to the availability of highly nutritious plants, but are mainly accessed at night in

order to avoid encounters with humans during daytime and to avoid predation at night

(Mysterud  et al. 1999b,  Hewison  et al. 2001,  Bjørneraas  et al. 2011, Meisingset  et al.

2013,  Padié et al. 2015, Dupke et al. 2017, Coppes et al. 2017, Gehr et al. 2018). Note

however that in habitat use, the fact that an individual allocates time to find both food and

cover does not necessarily imply they trade cover for food acquisition. If food is limited, a

positive correlation between food quality or abundance and risk might exist over the land-

scape because resources at the best feeding sites (secure and food rich) should be de-

pleted first (Mysterud & Ims 1998, Bonnot et al. 2013, Gaudry et al. 2018). This situation

may lead to a trade-off between food availability and risk avoidance as food-rich sites may

be associated to higher mortality risk, as is often hypothesised for populations ranging in

the European fragmented landscape (Mysterud & Ims 1998, Mysterud 1999).
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1.2.2. Methods in ecology

In the field of ecology many exploratory and inferential methods have been developed to

investigate the relationship between animal movement and their environment. Exploratory

methods use multivariate analysis techniques (e.g. General Niche-Environment System

Factor Analysis, GNESFA) or decision tree learning methods (e.g. random forest), to iden-

tify relevant variables describing the habitat, or the realised niche1, used by a population

(see Chapter 3). Inferential methods mainly use logistic regression models testing the dis-

proportion between used and available habitat  features (i.e. habitat  selection), and are

generally referred to as Resource Selection Functions, RSFs (Boyce et al. 2002). Depend-

ing on what area is defined as used and as available, different spatial scales of selection

can be accounted for (Boyce et al. 2002, Forester et al. 2009). For instance, second-order

selection (i.e. selection of the home range) defines  habitat availability at the landscape

scale, assuming that all individuals in a population have access to the same area, while

habitat use is defined at the individual home range scale (e.g. individual Minimum Convex

Polygon, MCP, Forester et al. 2009). Step Selection Functions (SSFs) are an extension of

RSFs, comparing habitat variables used at an observed step, with those at another ran-

dom step, both generated from the same starting point (Fortin et al.  2005, Thurfjell  et al.

2014). By using this approach, habitat availability is measured dynamically along the tra-

jectory of an animal.

While  different  spatial  scales of  selection have been studied extensively for many

species (e.g. Forester et al. 2007, Herfindal et al. 2009), analytical methods linking this to

the  time scale  of  selection  have only  been developed more  recently  (Mysterud  et  al.

1999b, Godvik et al. 2009, Rivrud et al. 2010, Dupke et al. 2017). Many studies on habitat

use/selection  account  for  the  temporal  component  by  using  regression  modelling  ap-

proaches (e.g.  Generalised Linear  Models).  With  the increasing temporal  resolution of

1 A concept that is often confused with, but also related to habitat, is the niche (Whittaker et al. 1973; Ro-

driguez-Cabal  et  al.  2013).  The  niche concept  is  defined in  several  ways  (Grinnell,  1917;  Elton,  1927;

Hutchinson, 1957; Bruno et al.  2003; Rodriguez-Cabal et al.  2013), but its most common definition is as a

multi-dimensional space defined by a range of physical and biological variables' states in which a species

can persist (Hutchinson, 1957). The fundamental niche are the abiotic factors of an environment a species

would occupy in case of no competition, while the realised niche is the part of the fundamental niche that is

occupied in case of competition (Hutchinson, 1957). The inferential multivariate analysis techniques that de-

scribe the relation between animal movement and environment (see in-text citations) are mainly based on

this latter definition.
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tracking data, the temporal sampling units of such models have a higher frequency. For

example, while in the past, annual changes in ecological covariates were averaged or ag-

gregated at the seasonal scale, now many studies have incorporated measures at monthly

(Morellet  et al.  2013, Dupke  et al.  2017), weekly (Morellet  et al.  2013, Mancinelli  et al.

2015, Kämmerle et al.  2017, Ossi et al. 2017) and even daily scales (Rivrud et al.  2010;

Pagon  et al.  2013). Circadian or seasonal patterns can be investigated by including the

time of the day or day length, respectively, in the models (Pagon et al. 2013; Kämmerle et

al.  2017), for example by using splines (Generalised Additive Models, GAM or GAMM;

Zúñiga et al. 2016). For an RSF/SSF, accounting for the temporal component would mean

that instead of computing one selection function (SFs),  multiple SFs are computed for

each time unit, which are then used as input in a later model.

While traditional ecological habitat studies mainly relied on statistical methods, less at-

tention was given to geovisualisation, which refers to the visualisation of movement data in

relation to the environmental context, disregarding its strength for data exploration to build

ecological hypothesis and to investigate visually complex spatio-temporal dynamic depen-

dencies intrinsic to animal movement data (Demšar et al. 2015a). While statistical models

are very well suited to test hypothesis and quantify results, combining that with visual out-

puts, could result in better conceptual understanding of spatio-temporal dynamics underly-

ing habitat use/selection. We are gradually approaching a shift now, with more and more

available tools for dynamic exploration and sound statistical frameworks for studying ani-

mal movement in relation with their environment, which will be discussed in more detail in

the next paragraph. 

1.2.3. Methods in GIScience 

Recent growth in data availability has spurred geo-informaticians' interest in animal move-

ment data. Since habitats are used and selected at multiple spatio-temporal scales, robust

exploration of environmental features at multiple scales are of fundamental importance

(Demšar & van Loon 2013). Developing these exploratory tools requires high computa-

tional skills and a long data preparation process that are often outside the range of interest

of ecologists (Slingsby & van Loon 2016). Instead, ecologists are especially interested in

answering ecological questions through hypothesis testing, using the best available tools

(Xavier & Dodge 2014). Joint research between GIScientists and ecologists has lead to
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several fruitful geovisualisation tools and methodological frameworks to study movement

in relation to the environmental context (Demšar et al. 2015, see figure 1.1 for some exam-

ples which are discussed more in detail below). 

Several exciting interactive tools have been developed for exploratory visual analysis

of animal movement trajectories in relation with the environment and other miscellaneous

data (Andrienko  et al.  2011,  Spretke  et al.  2011, Xavier & Dodge 2014, Slingsby & Van

Loon 20162, Konzack et al. 2018). In general, these tools combine spatial aggregation (An-

drienko  et al.  2011,  Slingsby & Van Loon 2016) or trajectory segmentation techniques

(Spretke et al. 2011, Konzack et al. 2018), and use those as the units for plotting aggre-

gated statistics about the movement or environmental context on maps. For example, for

migratory birds, habitat features of stopovers are important, since they require the avail -

ability of enough resources to replenish energy deposits to continue migration (Wang &

Moore 2005). By trajectory segmentation, stopovers and migrations can be differentiated,

and statistics on habitat characteristics could be summarised on the map at each stopover

location.  A good example of  the latter  is the tool  developed by Konzach  et  al.  (2018,

Fig.1.1a).  While  the  current  tool  only  allows  implicit  visual  exploration  of  identified

stopovers in relation to environmental context, a future extension will integrate explicit vi-

sualisation methods to summarise environmental variables as described above. Another

interesting example is the roe deer case study of Andrienko et al. (2011, Fig.1.1b), which

plots histograms of the aggregated hourly use of open habitats over the monitoring period

for each spatial cluster corresponding to an individual roe deer. Such a geovisualisation

gives a prompt insight in the individual variability in the use of open habitats between day

and night. Dynamic Multivariate Visualization of Movement (DYNAMO, Fig.1.1c) instead is

a tool for animating trajectories, which can be annotated by a variety of environmental vari-

ables, useful for hypothesis building, but also for outreach (Xavier & Dodge 2014). DY-

NAMO is exemplified using two case studies, one where tiger movement is animated on a

elevation map, highlighting the relation between topography and movement speed, and

one where albatross movement is animated and annotated using movement speed and

wind speed (Fig.1.1c; see also https://somayehdodge.info/projects/). 

2 Link to program: http://gicentre.org/birdGPS/ 
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Several  methods have been developed that take into account the environment for

computation of home ranges and utility  distributions (UD). For example,  Demšar  et al.

(2015b) proposed a 3D-visualisation of a home range, where x,y-plane is space, and the

z-axis is time, and aggregated information of used habitats characterise the space-time

cube. Long (2016) presents a model that combined classical time geography  and least-

cost  path analysis  through landscapes with  specific  environmental  characteristics (e.g.

dense  forest,  topography)  to  generate  home  ranges  and  UDs  (see  also  R  package

wildlifeTG, http://jedalong.github.io/wildlifeTG).

Also for measuring trajectory similarity and trajectory segmentation several methods

have been developed that account for environmental context. Toor et al. (2016) developed

a trajectory segmentation algorithm based on time changes in habitat use using random

forest models.  Buchin  et al.  (2012, 2014) developed a trajectory similarity algorithm that

8

Figure 1.1.  Extracts of interactive mapping tools to explore animal movement. (a) Stopover visualisation

tool of Konzach et al. (2018) including stopover aggregation visualisation (1, upper-left) and density map of

gull GPS trajectories (2, upper-right), and a calender view (3, lower-left) showing the temporal distribution

of stopovers for the selected list of animals (4, lower-right). (b) Daily use of open habitat for three spatial

clusters  of  roe  deer  GPS  locations  using  the  event-based  interactive  tool  V-Analytics  developed  by

Andriendo et al.  (2011). (c) Extract of animated Albatros track annotated by wind support and movement

speed (upper) and wind speed (lower) using the tool DYNAMO (Xavier & Dodge 2014).

http://jedalong.github.io/wildlifeTG


takes into account both movement and environmental context, but has been developed

using hurricane movement data. Another original contribution is the procedure developed

by De Groeve et al. (2016), discussed in Chapter 3 of this thesis, which measures similar-

ity directly based on the sequence of used habitats along the trajectory of an animal.

GIScientists, together with ecologists, further contributed in the development of auto-

matic trajectory annotation software such as the R package RNCEP (Kemp et al.  2012)

and Environmental-Data Automated Track Annotation (Env-DATA) integrated in the data-

sharing database movebank (www.  movebank.org; Dodge et al. 2013, Bohrer et al. 2015).

Such developments have facilitated, and improved accessibility of large-scaled dynamic

environmental datasets. Although the many examples described above, the link between

movement and environmental context in GIScience is still considered as largely ignored

(Dodge 2016, Holloway & Miller 2017).

1.2.4. Sequential habitat use

The trajectory is the basic analytical unit in movement studies. However, mostly it is not

the trajectory an sich, but the underlying information which can be extracted from a trajec-

tory that is of relevance, such as movement parameters, or any measure of the internal or

external state of an animal (Dodge et al. 2009; Nathan 2008). For instance, by linking ac-

tivity states inferred from accelerometer data with GPS locations we can understand where

along a trajectory certain behaviours (i.e. internal state: feeding, resting, running, flying)

are observed (Shamoun-Baranes et al. 2012, Chimienti et al. 2016), or, by relating meteo-

rological data to bird trajectories it has been discovered that changing weather conditions

(i.e. external state) may trigger long-distance migration movements (Shamoun-Baranes et

al. 2010).

While fine-scaled spatio-temporal data availability has considerably improved our abil-

ity to study animal movement in relation to habitats, current methods rarely account for its

temporally-dynamic nature, and in particular the sequential use of habitats. Sequential use

is defined as the sequence of locations (the trajectory) measured against the underlying

ordered pattern of habitat use. Not accounting for sequential use, only gives insights in the

proportion of use, while the same proportion could correspond to various biologically im-

portant different behaviours. 
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We present the concept of sequential habitat use in figure 1.2 for two distinct classes,

open and closed habitats, and a non-exhaustive number of sequential patterns (i.e. tempo-

ral clustered use, day-night alternating use or random use). We exemplify with these two

classes because those were the main habitat classes that were studied throughout this

dissertation. 

Temporal clustered use (Fig.1.2, left) in this example indicates a switch in habitat use

over a longer time period. The change in the use could for example be the result of sub-

seasonal functional home ranges (Couriot  et al. 2018) or could reflect different summer

and winter ranges (Cagnacci et al. 2011). Although closed and open habitats are available

to the animal, it chooses in a certain period only to use open habitats, and in another, only

closed. Such a change could be related to changes in resource availability in open and

closed habitats or a change in the environment. For example, for temperate ungulates,

sudden snow could result in a change from only use of open to only use of closed habitat

(Mysterud et al. 1997, Mysterud et al. 1999a, Ossi et al. 2015). 

Daily  habitat  alternation (Fig.1.2,  middle),  with mainly  use of  open habitats  during

night and closed habitats during day, reflect a clear switch in behaviour that can be related

to trade-offs in availability of food and cover in open and closed habitats (see above).

Many animals, including humans, indeed show clear repeated patterns in behaviour. For

example, many herbivores increase their activity during dusk and dawn, while day vs night

activity  seems to  vary  throughout  the  seasons  (Cederlund  1989,  Krop-Benesch  et  al.
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Figure 1.2. Concept of sequential habitat use. Blue dot and red star indicate the start and end of a weekly

trajectory with a fix resolution of four hours (six locations a day) within a home range (circle; dark green,

closed  habitat;  light  green,  open  habitat).  Below  the  home  range,  we  represent  the  corresponding

sequential habitat use patterns of the trajectory.



2012, Pagon et al.  2013, Ensing et al.  2014, Kämmerle  et al.  2017). Further, herbivores

show rumination cycles, where the use of cover is higher during rumination than during

feeding bouts (Cederlund, 1981). Animals may also repeatedly visit  the same resource

patches (Fagan et al. 2013, Bracis et al. 2018). Such repeated patterns in the use of cer-

tain patches may moreover be related to memory components, and thus spatial and tem-

poral awareness of an animal in the availability of specific resources (e.g. Fagan  et al.

2013). Indeed, since recently many studies focus on quantification and modelling of recur-

sive use of dynamic resource patches (Berger-Tal & Bar-David 2015, Bracis  et al. 2018,

see discussion Chapter 5). 

Finally, random sequential patterns (Fig.1.2, right) instead, is a pattern that reflects the

spatial structure of an area, and show a similar importance for different habitat types at

specific periods of the day or the season. In such cases, it might be that the habitat types,

in our case open and closed habitats, contain similar resources.

In addition, the emerging sequential habitat use patterns also depend from the spatial

context in which animals are moving. For example, the strength of alternation might be

stronger in a home range with equal availability of open and forest habitats, but could as

well be observed in home ranges where habitats show disproportional availability. Here we

attempt to provide a framework for exploration, simulation and classification of sequential

habitat use patterns which also takes into account the individuals' geographic context. To

do this we use string matching algorithms (see 1.2.5. Sequence dissimilarity analysis) in

combination with a spatially-explicit movement modelling approach (see 1.2.6. Movement

model) to identify specific sequential patterns of use (Chapter 3 and 4). 

1.2.5. Sequence dissimilarity analysis 

One way to extract knowledge from movement trajectories is by measuring their (dis)simi-

larity. Measuring dissimilarity between trajectories has a long tradition and many different

algorithms are available. An overview on the complexity of available dissimilarity measures

can be found in several publications (e.g. Dodge 2011, Magdy et al. 2015). Here, we are

especially interested in string matching algorithms, which use as input sequences of char-

acters. The most important fields with a tradition in the use of string matching algorithms

are molecular biology (Sanger & Tuppy 1951, Needleman & Wunsch 1970), computer sci-

ence (Hamming 1950, Wagner & Fischer 1974), linguistics (Prokić et al. 2009) and sociol-
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ogy (Abbott 1995), and in each field several different algorithms have been developed.

Among them are the Hamming distance, Levenstein distance, bag distance (fast leven-

stein distance), dynamic time warping, N-grams (number of substrings of length n), longest

common prefix and Jaro variants (Jaro algorithm, Jaro-Winkler, sorted Winkler, permuted

Winkler) (see Recchia & Louwerse 2013, Studer & Ritschard 2016). There are many appli-

cations where string matching algorithms play a role including natural language process-

ing, spam filters, search engines, plagiarism detection, bioinformatics, feature detection in

digital images, forensics, cryptography, etc. (Soni et al. 2014). 

A general characteristic of such dissimilarity measures is that they try to minimise the

number of operations in order to equate those character sequences. Here we exemplify

this with the Levenstein distance (or edit distance), also used to measure dissimilarity be-

tween DNA and protein sequences, which calculates sequence dissimilarity based on the

number of deletions, insertions, or substitutions (i.e. operations) required to transform one

sequence into another. Equating the words in the string “Dear Dr Deer” with the former dis-

tance metric will  require a minimum of two operations (i.e. two insertions/deletions)  to

equate the word pairs “Dear-Dr” and “Dr-Deer”, and one operation (i.e. a substitution) to

equate word pairs “Deer-Dear”, so the latter word pair is considered more similar. Impor-

tantly, algorithms are not always interchangeable between different fields of study. For in-

stance, the Levenstein distance is under discussion in social sciences where time is often

an important component (Studer & Ritschard 2016), since the operations insertion and

deletion would warp time along the sequence. Also for sequences of animal habitat use,

the temporal component is essential, and such time shifts should be avoided.

Following several applications in GIS-related fields (Shoval & Isaacson 2007, Wilson

2008, Delafontaine et al.  2012, Chavoshi et al.  2015) we decided to test the applicability

for animal movement data. Since the procedure, referred to as Sequence Analysis Method

(SAM), is described in detail in Chapter 3 and 4 we will only discuss the general principles

in  brief.  In  essence,  SAM measures  dissimilarity  between  each  pair  of  character  se-

quences using one of the many dissimilarity algorithms. Calculated dissimilarities are then

stored in a dissimilarity matrix. While other time dependent algorithms are available, such

as dynamic time warping (Giorgino 2009),  we have developed our approach using the

Hamming distance (HD), which was the first developed and the simplest distance measure

available (Hamming 1950). Since this is the first application on ecological data we decided

that it is better to use a robust and easy-to-follow distance measure. Specifically, the HD

counts the number of mismatches between sequences of equal length (Gabadinho et al.
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2011, Fig.1.3). The more mismatches, the more dissimilar two sequences are from each

other. The Hamming distance can also include substitution weights for classes that are

more similar to each other, especially relevant when input classes are more similar to each

other than others (see Chapter 3). Next, using a cluster algorithm (e.g. Hierarchical cluster

algorithm of Ward) computed dissimilarities can be visually represented by a dissimilarity

tree. The leaves in such a tree are the sequences, and nodes represent clusters (groups

of sequences) for which the branch lengths measure the degree of dissimilarity. Conse-

quently, the longer a branch the larger the dissimilarity. In a next step the robustness of the

classification can be calculated, which allows to identify the most relevant number of clus-

ters in a tree. Finally, after identifying the optimal number of clusters, the cluster types

need to be identified, based on their specific characteristics.

While the further chapters will show SAMs potential for analysing temporal habitat use

sequences, it  should be noted that there are also other temporal explicit  analytical ap-

proaches. For instance, even though differing in many aspects, time-to-event and discrete

event models (Haccou & Meelis, 1992) that are widely applied in survival analysis, often

have similar underlying questions as those dealt with in this dissertation.

Figure 1.3.  Example of Hamming distance for three four-days open (O)-closed (C) habitat use sequences

(a), corresponding to three different periods (period 1, 2, 3). The red boxes show the mismatches between

period 2 and 3 (dotted line). Dissimilarities of each pair of sequences is represented in the dissimilarity matrix

(b). 
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1.2.6. Movement models

Mechanistic Movement models have a long tradition in the field of ecology to interpret

animal movement data (Gurarie 2008). The main purpose of such movement models is to

provide mathematical formulations of movement based ecological processes (e.g. home

ranging, migration, foraging). Movement of living beings is very complex, with trajectories

being at random, linear, circular, tortuous, directional, or occurring in a combination of the

previous (see Gurarie et al. 2017), and moreover, the general characteristics of movement

parameters  vary  over  spatial  and  temporal  scales  (Fryxell  et  al.  2008,  Gurarie  &

Ovaskainen 2011).  For instance, by subsampling a location dataset, Fryxell  et al. (2008)

showed  that  different  ecological  processes  emerged  at  different  spatial  and  temporal

scales, with movement characterising home ranging vs. dispersal and migration at the

largest scale, feeding and resting cycles at the intermediate scale, and  fine responses to

direct stimuli at the finest scale.

Hence, to capture such complexity a burgeoning number of deterministic models have

been proposed and developed to evaluate and predict movement, including fractal analy-

sis (Mandelbrot, 1967; Jander 1982, Turchin 1996, Webb et al. 2009) and a large number

of random walk based models (e.g. Patlak et al. 1953, Kareiva & Shigesada 1983, Dunn &

Brown 1987, Alt 1990, Marsh & Jones 1988, Klafter et al. 1996, Codling et al. 2008). Most

mechanistic movement models are based on the random walk (RW, McClintock  et  al.

2014), which in most general terms simulates trajectories by drawing random values from

empirical or theoretical distributions of movement parameters such as the step length and

the turning angle (Hollaway & Miller 2018). Correlated random walks (CRW) are correlated

because any given step will tend to be in the same direction as the previous. CRW are

characterised by  forward persistence in the movement achieved by drawing at random

turning  angles  from a  unimodal  distribution  peaking  around  zero  (Patlak  et  al.  1953,

Kareiva & Shigesada 1983). Biased random walks (BRW) are biased because any given

step will orient towards a preferred direction. BRW are characterised by directional bias in

the movement achieved by drawing at random step orientations from a distribution cen-

tered on a preferred direction (Marsh & Jones 1988, Benhamou 2006). Biased and corre-

lated  random  walks  (BCRW)  combine  both  directional  bias  and  forward  persistence

(Codling et al. 2008). Lévy walks (Klafter et al. 1996) are uncorrelated random walk where

the step length follows a fat-tailed distribution, resulting in random walk-like movements

with occasional long steps (Gurarie 2008). Further, mechanistic movement models based
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on random walk are generalisable into two main families, discrete and continuous models.

In discrete models, distributions (of steps and turning angles) are generated for certain

time units to model  a trajectory,  while in continuous-time or correlated velocity models

(CVM), diffusion models that account for autocorrelation between locations are used, and

this is referred to as the Ornstein-Uhlenbeck process (OU; Gurarie et al.  2017). The OU

process is a continuous-time random walk with a tendency to drift towards a central loca-

tion (McClintock  et al.  2014, Gurarie  et al.  2017). Since aforementioned CVM were not

used here, we will not further discuss them.

In this dissertation we performed simulations of realistic movement trajectories ac-

counting for  spatial  context  to  generate  expected sequential  habitat  use patterns.  The

movement model needed to be defined in such a way that roe deer's movement behaviour

was realistically simulated at two spatio-temporal scales. First, the model should capture

the typical home ranging behaviour of roe deer (i.e. a spatially-constrained movement).

Second, the model should include the species' tendency of using habitats in a specific

manner on a daily  basis  (i.e. see  supra:  homogeneous,  daily  alternation,  random).  To

achieve this goal we could rely on the literature of memory-based movement models (Van

Moorter  et al.  2009, Fagan et al.  2013). In specific, we used a stochastic BCRW model,

where  the  bias  is  towards  previously  visited  habitat  classes (Börger  et  al.  2008,  Van

Moorter et al.  2009). For homogeneous closed and open patterns, the directional bias is

kept constant for the respective habitat classes, both during day and night. For alternating

patterns, directional bias varies through time, with main attraction towards closed habitats

during day and open habitats during night. The random pattern is our null model, showing

no attraction for open or closed habitats. Hence, the random trajectories will result in a se-

quential habitat use pattern that reflects the availability and distribution of habitats within

the movement context of the animal, given the specific movement model. In the (IM-)SAM-

procedure, such random patterns will be identified as a separate cluster, when habitats are

more equally present, or group together with the most similar simulated sequential pat -

terns  (homogeneous  closed/open,  alternation).  As  such,  it  is  possible  to  understand

whether a simulated sequential pattern occurs at random or not within a given landscape,

for instance the day-night alternation between open and closed habitats.
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1.3. STUDY SPECIES

European roe deer (Capreolus capreolus) is one of the most common and best studied un-

gulate species in Europe. The number of mature animals is estimated to be 15,000,000,

and at present their distribution range extends almost the whole Europe, until central Asia

(Fig.1.4, Lovari  et al.  2016).  Due to its relatively small size (18-49 kg, 60-75 cm at the

shoulder) roe deer is an important prey species and is part of the diet of many carnivores,

including grey wolf (Canis lupus lupus), Eurasian lynx (Lynx lynx), red fox (Vulpes vulpes),

Eurasian brown bear (Ursus arctos arctos) and free-ranging dogs (Canis familiaris) (Aanes

et al. 1998, Lovari et al. 2016). Roe deer is also an important and highly managed game

species in most parts of Europe (Cederlund et al. 1998).

This  species,  described  as  a  generalist  at

species,  population,  and  at  individual  level,

can adapt to a wide range of natural and hu-

man habitats, including deciduous, mixed and

coniferous forests, shrubland, moorland, pas-

tures, arable land and suburban gardens (Lin-

nell  et  al.  1998).  They  thrive  in  landscapes

with  a  mix  of  forest  and  agricultural  land

(Aulak & Babińska-Werka 1990) including high

amounts of ecotonal habitats (i.e. edges, Tufto

et al.  1996). Roe deer are considered as na-

tive forest dwellers that adjusted to the Euro-

pean landscape by colonising human-dominated open habitats (Linnell et al. 1998). Such

behavioural plasticity, and thus the species' ability to cope with changing environmental

conditions, is manifested in different habitats throughout their distributional range (Hewison

et al. 1998, Hewison et al. 2001). In essence, roe deer's expansion to open habitats is thus

considered as a plastic response of the species to human induced landscape changes. Of-

ten a distinction is now made between two ecotypes, forest and field roe deer (Fruziński et

al. 1982, San José et al. 1997), because of fundamental behavioural differences including

diet composition (Abbas et al. 2011), group size (Jepsen & Topping 2004) and space use

strategy (Tufto et al. 1996). These two ecotypes, may even exist next to each other within

the same study area (e.g. Hewison et al. 2001).
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Specifically,  roe deer maintain  a concen-

trate  selectors  feeding  strategy,  typically

for small ungulates, but their diet includes

a  wide  range  of  species  including  fungi,

lichens, mosses, ferns, coniferous and de-

ciduous  tree  leaves,  shrubs,  forbs,  culti-

vated plants, grasses and sedges (Duncan

et al. 1998). Their diet mainly varies in re-

lation to the available habitat types (Abbas

et  al.  2011).  Specifically,  with  increasing

availability of fields in the landscape, roe

deer eat more seeds, roots and fruits, while leaves are the dominant food resource for for-

est roe deer (Duncan et al. 1998). Seasonal variations in diet composition also exist, but

are less marked (Cornelis et al.  1999, Abbas et al.  2011). Instead, feeding behaviour, or

budget time in animal activities, may vary extensively throughout the seasons, showing as

much as double feeding-resting bouts in summer compared to winter period (resp. 16 vs 8

bouts per day, Cederlund et al. 1981). Roe deer is mainly crepuscular showing highest ac-

tivities during dusk and dawn (Pagon et al.  2013, Krop-Benesch et al.  2013), and mainly

access nutritious food resources often found in more open habitats during night, probably

to avoid human disturbance and predation (Mysterud et al. 1999b). During winter roe deer

of both sexes more often group together when they are foraging in open habitats. In open

landscapes group sizes are usually larger than those in forest landscapes (Liberg  et al.

1998, Hewison et al.  2001, Jepsen & Topping 2004). Instead, during summer (mid July–

mid August) individuals of both sexes are more often solitary, when females, or does, are

taking care of their offspring, and males, or bucks, are rutting and defending their territo-

ries from conspecifics for mating (Liberg et al. 1998).

In general, roe deer are not territorial, except males in summer (Bramley 1970), during

which they defend their resources (Vanpé  et al.  2009) for one (or more) females, thus

showing a low degree of polygyny (Vanpé et al. 2007). During the rut territorial males ex-

hibit aggression, marking and patrolling of the territory (Sempéré et al. 1998). Since both

sexes are mainly sedentary over their lifetime, access to partners is in general  limited

(Hewison et al. 1998). Moreover, females are also monoestrous, having only one cycle a

year (Hoffmann et al. 1978), with an oestrous during the rut of only circa 36 hours (Sem-

péré et al.  1998, Debeffe et al.  2014). As shown by Debeffe et al. (2014) in six roe deer
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Illustration from Spagnesi et al. (1999).



populations,  females  also  perform  breeding  dispersal  to  non-contiguous  male  home

ranges, a tactic that improves their chances to find a mate and that may limit the risk of in-

breeding. Although the rutting season ends in August, the implantation of the fertilised egg

in the ovary only follows in January, and parturition dates, or fawn birth, is highly synchro-

nised between populations, ranging between early-May and early-June, with females giv-

ing birth consistently earlier when aging (Plard et al. 2012).

The behavioural plasticity of the species is also reflected in the diverse space use

strategies (i.e.  common space use strategies are residency, nomadism, migration) and

variation in home range size observed within and between populations. Specifically, an-

nual home ranges can range from less than twenty to more than two hundred hectares

(Mysterud 1999, Morellet et al. 2013), and partial migration is observed in several popula-

tions, where only a portion of the individuals migrate seasonally between distinct summer

and winter ranges (Cagnacci et al. 2011). In some populations instead almost all animals

are migratory or residents (Cagnacci  et al. 2016). Hence, much variability has been ob-

served in the occurrence, and characteristics of migratory behaviour across populations,

and also  across years within populations (Peters  et al. 2017). Moreover, it has been re-

cently shown that roe deer shift functional areas within their range (Couriot  et al.  2018).

High spatio-temporal variability in behaviour between and within populations makes roe

deer a very interesting model species to study sequential habitat use.

1.4. PROBLEM STATEMENT

While concepts of habitat use are very well defined, the temporal and sequential compo-

nent that is underlying the trajectory of animals is hardly accounted for. In general, the aim

of this PhD project can be divided into two main components, a methodological, and eco-

logical one, which are further discussed below in detail.

1.4.1. Methodological aim

The first  aim of this PhD is to develop a new methodological  framework, that  merges

knowledge from geography and ecology, to study sequential  patterns in animal habitat

use, and thus how animals use their habitats as an ordered temporal sequence along their

trajectories. We aimed to develop a quantitative method that is also visually effective to
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study animal habitat use changes over multiple temporal scales. This method should be

able to take into account issues typically encountered in movement data and habitat stud-

ies, such as missing data and spatial autocorrelation, availability and distribution of habitat

features. Moreover, the method should be able to identify both population and individual

level sequential patterns. The methodological part of this work consists out of two main

parts. First, in Chapter 3 we developed the tree-based SAM approach using GPS move-

ment data of a single roe deer population as a case study, based on sequential patterns of

four discretised habitat variables (Open-High, Open-Low, Closed-High, Closed-Low). Sec-

ond, in Chapter 4 we adjusted the methodological framework to an individual-based ap-

proach so that it can be applied over multiple populations in a variety of geographic con-

texts, and only focused on two habitat classes (open and closed habitats).

1.4.2. Ecological aim

The second aim of this PhD is to assess spatio-temporal patterns of habitat use of multiple

roe deer populations, and to evaluate the ecological relevance of sequential habitat use in

understanding the relation between roe deer movement, and the environment. In particu-

lar, using the developed methodology we aimed to further test the applicability and de-

scribed sequential use of open and closed habitats within and between different roe deer

populations ranging in different environmental contexts in Europe. In  general, given the

high adaptability of roe deer, we evaluated whether sequential patterns in the use of open

and closed habitats vary within and between populations and throughout the year, and

whether sequential patterns depend on the habitat structure and composition.

Specifically, because roe deer is a generalist species, that can occupy many different

habitats (Linnell et al. 1998), we expected that sequential habitat use would differ between

populations, reflecting the habitat composition and structure of an area. We expected the

sequential habitat use patterns to deviate from random, since roe deer show a high adap-

tation to spatio-temporal distribution of resources (Peters et al. 2017). Given that roe deer

show a preference for more open habitats during night time (Mysterud et al. 1999b), we

expected day-night alternation between closed and open habitats to emerge as a common

space use technique, and to be different from a random sequential  pattern. Moreover,

given seasonal variations in roe deer physiology (Liberg  et al.  1998), rumination cycles

(Cederlund et al. 1981) and in resource distribution in a given space (Mysterud et al. 1999,

19



Dupke et al. 2017) we also expected that sequential patterns of use may vary across sea-

sons. Results of the ecological study are presented in more detail in Chapter 5.

1.5. DISSERTATION STRUCTURE 

The following chapters represent the research activities performed during this PhD. Chap-

ter 2 is dedicated to my data resource, the Euroungulates database, to which I also con-

tributed to considerably by importing,  standardising, validating and managing datasets.

Chapter 3 and 4 focus on the methodological aim (Chapter 3: published; Chapter 4: sub-

mitted), while Chapter 5 focuses on the ecological aim (close to submission). Each chapter

is accompanied by several appendices (Chapter 3, five appendices; Chapter 4, seven ap-

pendices; Chapter 5, one appendix and Chapter 6, two appendices), which further clarify

important data preparation and methodological steps, or represent figures supporting the

results. These appendices were not integrated in the main body of the chapters to avoid

the reader to be distracted from the main story-line.

A strength of this PhD is its collaborative nature, starting from the joint supervisorship,

and the needed expertise drawing from diverse disciplines as GIScience and animal and

quantitative ecology. Therefore, while (IM-)SAM methodology has been mainly developed

by my own contribution, here I would like to stress that input of co-authors was fundamen-

tal to obtain the research outputs as here presented, as expected in a truly interdisciplinary

scientific work. Movement models used in Chapter 3 and 4, in particular, were not devel-

oped by myself, but by experts in the field of mechanistic movement modelling, and specif-

ically  the PhD student  Nathan Ranc,  under  guidance of  his supervisors Prof.  dr.  Paul

Moorcroft and Dr. Francesca Cagnacci. Indeed, during my PhD I obtained a scholarship to

spend some visiting time at Prof. Moorcroft's lab in order to integrate the aforementioned

models into my research work. Hence, I jointly wrote the movement model portions (Ap-

pendix 3B and Appendix 4C) with my collaborators.
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CHAPTER 2 

DATA 

2.1. THE EUROUNGULATES PROJECT

This PhD project relies on GPS movement and environmental data provided by the Eu-

roungulates project. Euroungulates is the umbrella project of three species-specific net-

works (EuroDEER, EurREDDEER and EuroBOAR) and provide database infrastructure re-

spectively for roe deer, red deer (Cervus elaphus) and wild boar (Sus scrofa). The seeds

of this data sharing project were planted in 2008, which quickly resulted in the initiation of

the EuroDEER collaborative project. Due to its success, the network was extended in 2014

to red deer and in 2016 to wild boar, which is how Euroungulates came to life. The main

aim of Euroungulates is to produce collaborative science, supported by a community of

specialists in the species, providing study area specific insights. Indeed, data sharing and

collaborative science,  can lead to  scientific  breakthroughs,  and facilitates large-scaled,

long-term and multi-species studies (Open Science Symposium, 7-8 Dec 2017; EuroDEER

meeting VI,VII, VIII, IX, X). For instance, with such broad studies the effect of climate and

habitat change on animal behaviour and distributions can be properly quantified (Carpen-

ter et al. 2009, Cagnacci et al. 2011, Morellet et al. 2013). Scientific outputs of the collabo-

rative network EuroDEER evidence the recent progress that has been made in clarifying

such broad-scaled continental patterns in roe deer movement ecology, including identifying

partial-migration behaviour, and the resident to migration movement plasticity (Cagnacci et

al.  2011,  2016,  Peters  et al.  2017),  home range variability  along a latitudinal  gradient

(Morellet et al. 2013), breeding responses (Debeffe et al. 2014), feeding sites use (Ossi et

al. 2017) and sub-seasonal functional home ranges (Couriot et al. 2018). 

Anno 2018, the three databases combined contain more than  8,340,000  GPS loca-

tions,  70,800 VHF locations and 53,550,000 activity records,  corresponding in  total  to

2490 animals, collected for more than 60 study areas from 18 countries, with the oldest

records dating back to 1982. In table 2.1 statistics are summarised for each database sep-

arately.
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Table 2.1. Statistics of the Euroungulates database

EuroDEER EuREDDEER EuroBOAR

Animals 1,714 516 260

Study areas 28 20 16

Countries 15 15 18

Partners 33 33 26

GPS locations 4,741,364 2,791,066 811,129

VHF locations 46,859 19,449 4,517

Activity record 53,546,056 0 0

2.1.1. Database software platform

Euroungulates datasets are stored in a Spatial Relational DataBase Management System

(SRDBMS) developed on PostgreSQL/PostGIS, hosted by a server-client architecture de-

veloped at the Research and Innovation Center the Edmund Mach Foundation (FEM-CRI,

Information  System  for  Analysis  and  Management  of  Ungulate  Data,  ISAMUD,  2005,

Cagnacci & Urbano 2008). An SRDBMS is a database designed to store, manage, query,

and manipulate large amounts of spatial data. Like a GIS (QGIS, GRASS, OpenJUMP) a

spatial database allows to perform spatial operations, with the advantage that these can

be efficiently performed over large datasets. In a relational database, data is stored in mul-

tiple indexed tables that are linked to each other by common fields. Moreover, with a set of

database connection parameters the database can be connected with GIS and statistical

software, and allows to perform computations with the interconnected software of choice.

Also, several procedural languages are implemented directly within the base distribution of

PostgreSQL, including PL/pgSQL, PL/Tcl, PL/Perl, PL/Python, and several external proce-

dural languages are maintained (e.g. PL/Java, PL/R) among which PL/R is also available

for use in the Euroungulates database. Using PL/R it is possible to call  R functionality

within  the  database.  The  database  is  also  available  online  via  phpPgAdmin  interface

(http://eurodeer.org/) and a practical guide is available allowing other movement ecologists

to replicate the standardised database structure for their own animal movement data (Ur-

bano & Cagnacci 2014).
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2.1.2. Database structure

The core  of  the  Euroungulates  database are  the  GPS,  VHF and accelerometer  data.

These tables in relation with sensor deployment information (i.e. start and end time of de-

ployment of the collar to an animal) allow to define the relation between movement data,

an animal and a sensor. While these datasets are extremely valuable, it is especially the

link with ancillary data about the individuals, populations and environmental context that

allow to thoroughly understand the movement of animals. See figure 2.1 for a simplified

graphical representation of the database structure using GPS data. Because of the major

importance of such ancillary data, Euroungulates maintains a database structure that can

also accommodate this information. Over the last couple of years the data processing pro-

tocol for ancillary data has been standardised, which includes meticulous validation proce-

dures and quality checks. Ancillary data includes standardised information on individual

animal characteristics (e.g. age, sex), sensor characteristics (e.g. brand), population level

information  (e.g.  management  regimes,  predator  presence,  competitors,  human distur-

bance, density estimation), capture data (e.g. capture time, manipulation time, injuries), in-

dividual contacts data (e.g. last contact time, type of contact, cause and date of mortality)

and many validated static and dynamic environmental data layers. See table 2.2 and fig-

ure 2.2 for an overview of environmental layers available in the Euroungulates database. 

Figure 2.1.  Simplified graphical  representation of  the database for GPS data. The core data tables are

shown  in  green  boxes.  Ancillary  data  are  stored  in  different  tables  such  as  in  animals_captures,

animals_contacts, subareas (i.e. population data) and environmental data in the GPS data animals table

(e.g. forest density).
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The database  further  includes  various  commonly  used  functions  to  facilitate  data

preparation and analytical procedures, including a function to assign a fix to daylight or

night hours based on the timestamp and location, a regularisation function to create a reg-

ular time series of locations using a defined time interval and time buffer, a simple linear in-

terpolation function to calculate the geometry to remove unwanted time gaps between two

subsequent locations, a function to calculate the age class corresponding to each GPS lo-

cation and one to calculate geometric parameters such as step length, turning angle and

speed between consecutive relocations (see section documentation at the github page3 for

examples of these functions). Hence, Euroungulates is a unique platform, offering big data

analysis opportunities, but with very detailed and verified information and several analyti-

cal tools, thus allowing to answer very specific ecological questions at a broad scale. Since

the database structure is very well  documented in the user guide available at the Eu-

roDEER github page, section documentation, we will further mainly focus on the protocols

for data collection and data quality.

Table 2.2. Environmental layers available in the Euroungulates database, see for details on the EuroDEER

website (http://eurodeer.org/environmental-covariates/). In light grey, the datasets that were used in Chapters

3, 4 and 5.

Dataset Spatial and temporal resolution

NDVI MODIS 250 m 16-days 

NDVI MODIS smoothed 250 m 10-days

NDVI MODIS smoothed – BOKU University 250 m 7-days

SNOW MODIS 500 m

Tree Cover Density (TCD, 2012) 20 m

Corine Land Cover (CLC, 1990,2000,2006,2012) 100 m ( & vector 2012)

ASTER Digital Elevation Model (ASTER DEM) 30 m

SRTM Digital Elevation Model (SRTM DEM) 90 m 

Digital Elevation Model over Europe (EU-DEM) 30 m

NDVI-based temporal variability: 

       1. Constancy, 2. Contingency, 3. Predictability

250 m

NDVI-based average vegetation phenology 250 m

SNOW MODIS-based yearly winter severity 500 m

3 https://github.com/eurodeer/eurodeer_db
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2.1.3. Data collection protocol

Extending a movement database to multiple populations calls for data harmonisation prac-

tices (i.e. to combine data from different sources in a standard way) (Urbano et al. 2010).

Currently there are no well developed standards available for biologging datasets, unlike in

other biological  and geographical  fields,  such as organisations Biodiversity  Information

Standards (TDWG; Darwin core, ABCD) and the Open Geospatial Consortium (OGC; Key-

hole Markup Language, KML; Geography Markup Language, GLM), respectively (Percivall

2009). Because of the lack of standards it may occur that even sensors of different gener-

ations of the same brand may structure and format data in very different ways. Available

formats are becoming increasingly complex, especially with the implementation of multiple

41

Figure 2.2. Four environmental layers available in the Euroungulates database. From upper-left to bottom-

right Corine Land Cover (2006), Smoothed NDVI (01-04-2015), Contigency (based on NDVI) and Winter 

Severity (2013-2014). Figures were extracted from the EuroDEER website 

(http://eurodeer.org/environmental-covariates/).



sensors on one device, which calls for a biologging standard for easy retrieval, storage

and processing of data collected through biologging devices. Several organisations such

as movebank and the biologging society are making efforts to develop a biologging stan-

dard.

To facilitate data harmonisation in the Euroungulates database several standardised

protocols for data collection of tracking (i.e. GPS, VHF, accelerometer) and ancillary data

(e.g. capture, contacts) have been implemented. Such protocols were developed through

expert-based knowledge by collaborators of the Euroungulates network together with the

main database developers (Cagnacci, F. & Urbano F.). Modifications and improvements to

protocols are reported on the website, as well as presented and discussed during the an-

nual meetings organised at one of the collaborators' institutes. Once the protocols are es -

tablished,  they  are  disseminated  over  different  research  groups,  which  can  be  freely

adopted for future projects as minimum data collection requirement.  A concise overview

will be given on some of the protocols on which I have worked most intensively for their

correct implementation, concerning GPS, VHF and accelerometer collection protocols and

captures and contacts protocols.

To harmonise different GPS datasets minimum requirements for providing data in-

clude the coordinates in WGS84, timestamps in UTC and the corresponding sensor and

animal identifier, together with animals, sensors and animals-sensors tables (see above).

Additional information concerns altitude, temperature and any information that allows to

assess the quality of the GPS locations, such as the number of satellites and the Dilution

Of Precision (DOP). In general the preference is given to the raw input files directly re-

trieved from the sensors, so that introduced bias in the data is minimised. Further, the pro-

tocol for GPS data collection suggested initially a three hour fix schedule, but there is no

clear consensus. Also rolling schedules have been suggested to cover all hours or higher

fix rates during captures. Since storage capacity is becoming better, schedules are now of-

ten set to a temporal resolution of one hour. Several functions have been implemented to

deal with irregularities in the sampling schedules, such as a regularisation and interpola-

tion tool (see above).

VHF datasets include similar  minimum requirements (i.e. coordinates,  timestamps,

animal and sensor identifier), but since they are often old and pre-processed they need to

be carefully dealt with. Often locations are only collected in local coordinate reference sys-

tems and timestamps are provided in local time formats usually accounting for time saving.

Therefore data providers need to ensure to provide the correct metadata on the spatial ref -
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erence system and time format in which original coordinates and timestamps are stored.

With this metadata coordinates and timestamps can be transformed into corresponding

formats in which spatial and temporal locations are stored in the database ( i.e. WGS84

and UTC, respectively).

The harmonisation of accelerometer data is more difficult since even for the same

sensor measurements can be stored in several modes (Krop-Benesch et al. 2010). For in-

stance, the company Vectronic Aerospace GmbH distinguishes seven modes. Three of

them measure acceleration on two axes (x, forward/backward motion; y, side-ward and ro-

tary motion) by averaging over a certain interval (300s, 152s, 63s) and four modes give

measurements using a different set of parameters (e.g. mode 5: head angle/acceleration,

mode 6: Acceleration Peak/Acceleration Threshold) and the sampling interval can be set

manually in steps of 8s (i.e. 8, 16, 24, etc.). The standard setting of these collars, and

hence for most sensors in the database, provide acceleration averaged over 300s mea-

sured on two axes (i.e. mode 1). Since accelerometer data is often not directly comparable

it is stored into five different tables, each corresponding to a specific sensor and mode. Ac-

celerometer data further provides challenges in data storage and processing, since many

more records are collected than is usual the case for GPS. To link accelerometer data to

GPS data, it is further important to always provide the associated GPS sensor of the ac-

celerometer.  The  protocol  on  acceleration  data  further  provides  suggestions  for  error

checks and potential correction but these are mainly to be performed by the analyst.

The protocols for captures consist out of two main parts, a behavioural and a physio-

logical assessment. The measurements are non-invasive and should minimise the costs

and handling time during the captures. The behavioural protocol is based on two subjec-

tive scales assessing how resistant the animal was during handling and how the animal re-

acts directly  after  release.  Physiological  protocols  include measures such as hind foot

length, body mass, heart rate (beats/min) and measurement time and rectal body temper-

ature (°C) and measurement time. Moreover also the time of capture, start and end of han-

dling and release time are expected to be recorded, as well as individual traits such as sex

and estimated age. In the eurodeer database age is simplified into three relevant classes,

fawn (less than one year), yearling (less than two years) and adults, where the change

data between classes is set to the first of April. Note that 'fawns' are usually caught only a

month or two before the 'age-change date', The capture protocols have been developed by

Kjellander, P., Nicoloso, S., Hewison, M. and Cagnacci, F. while the age classification was

developed by Morellet, N. in discussion with the Euroungulates community. 
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The contacts table reports only the last contact with the animal after the last deploy-

ment, including mortality. This is an important source of information for survival studies.

Until recent, contacts were provided together with the animals table, but since a couple of

months there is a new standard sheet to collect these data. 

2.1.4. Data cleaning protocol

One of the biggest added values of the Euroungulates database, is the time investment to

standardisation and validation of the data. Data sources can be very heterogeneous due

to  a  variety  of  data  collection  and  processing  protocols  followed  by  research  groups.

Although that standardised protocols have been developed, often new research groups

were not aware of those, data might be collected several years back or protocols might not

be implemented. The path from data source to a structured database can be treacherous,

where in each step errors can be introduced. For instance, mistakes can be introduced

during field work by recording wrong information,  during transcription of collected field

data,  due  to  conversion  issues  between  different  software  platforms,  or  by  incorrect

automated data  handling  scripts.  As  a  result,  data  provided are  rarely  consistent  and

without errors. For these reasons, before data can be shared among the community data

quality check is a fundamental step, since erroneous data can lead to misleading scientific

outputs,  also known in  computer  science as “Garbage In,  Garbage Out”  (GIGO).  The

general philosophy of  Euroungulates is not to remove data, instead GPS locations are

tagged using validation codes, which allows collaborators to assess the reliability of the

data.  A part  of  the validation procedure has been based on a published standardised

protocol  (Bjørneraas  et  al.  2010),  which  has been further  developed  in  Urbano  et  al.

(2014). A summary of the validity codes is given in table 2.3. In addition, numerous data

consistency checks are performed so that relational tables are harmonised. For instance, if

start and end of deployment are consistent with actual GPS data, if  there are multiple

individuals marked with the same sensor at the same time, if capture dates are consistent

with the start of deployment, if there are GPS locations, deployments, capture or contact

dates after the death of an animal, if the age classes are consistent, etc. Queries used to

hunt for errors are stored and openly available at the eurodeer github page, in the data

management section (see footnote 3 for the link).
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Table 2.3. GPS validity codes in the Euroungulates database

Code Description

0 Record with no coordinates

1 Valid record (valid position)

2 Record with a low degree of reliability

3 Suspicious location: to be checked

11 Record wrong: out of the study area

12 Record wrong: impossible spike

13 Record wrong: impossible place (e.g. lake or sea)

14 Record wrong: not associated to any animal (out of deployment time range)

15 Record wrong: impossible movement

21 Record wrong: duplicated timestamp

22 Record wrong: impossible timestamp

23 Record with no timestamp

31 Record wrong: belonging to a dataset with very suspicious spatial patterns

2.1.5. Data collection perspective

ASIMUD, the predecessor of Euroungulates, was specifically developed for a single popu-

lation and could easily  be enhanced by many features such as automated data entry

(Cagnacci & Urbano 2008). Currently the data import procedure, starting from data collec-

tion to quality checks to final import are mainly performed through intense data curator-

ship, an essential task when dealing with heterogeneous datasets.  Experience as data

base curator over the last four years, privileged me to gain a deep insight into the data -

base structure and which potential errors to encounter. Since most protocols are standard-

ised and available the next step is to further streamline the data collection protocol. While

currently data can be provided into any kind of format (e.g. CSV, DBF, Microsoft Excel or

Access formats) we aim to facilitate this through a web application, or R shiny app. Such a

web application should allow data providers to upload the necessary data to a web-inter-

face (e.g. drag and drop, navigate to file, copy/paste from file), identify automatically evi-

dent errors and inconsistencies (e.g. time of death before last capture) and finally provide

direct access to the data curator through a temporary folder in the database. Data entry
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could be made more interactive, involved and even pleasant, by showing some simple sta-

tistics, figures and maps of the providers' own dataset. For example, when uploading cap-

tures we could show a histogram with the hind-food length and by matching the size of the

capture location to the hind-food size we could show on a map if there is a spatial associa-

tion, or, when uploading contact information we could show the main reason of mortality

through a barchart and color-coded locations of the associated event on a map. Based on

my experience as data curator, well-documented data entry templates have been devel-

oped, which highlights potential errors and inconsistencies that have been identified ob-

served in the data throughout the years4. These tables could be used as further template

for developing such a web application, or Shiny app. To design such an application and as-

sure that the data entry is user-friendly a questionnaire could also be distributed to under-

stand better how data providers prepare the data files and to match the procedure to their

general interests.

2.2. DATASETS

From a total of twenty-eight populations available in the EuroDEER database we extracted

GPS movement data of nine populations which retained a large enough sample size. The

subsampling was constrained to GPS trajectories with a fixed 4-hour relocation interval at

fixed time stamps (0, 4, 8, 12, 16, 20 h). We chose an interval of 4 hours as a trade-off be -

tween number of sequences and temporal resolution. When the temporal resolution de-

creases the sample size increases, but instead sequential patterns become less detailed.

Populations concern Southcentral Norway, NK5; Southwest France, FR8; Switzerland or

Swiss Alps, CH25; Southern Germany, DE15, DE31; Southeast Germany or Bavarian For-

est, DE2; Northern Italy or Italian Alps, IT1, IT24; Eastern Austria or Austian Alps, AU17

(Fig.2.3). The population of the Italian Alps (IT1) has been used to develop SAM as de -

scribed in Chapter 3, while all nine populations were used for the development of IM-SAM

in Chapter 4 and 5. All characteristics of these two datasets are described in table 2.4,

highlighting the differences and similarities of the datasets. While a detailed description is

given in each chapter we will here describe the general characteristics of the movement

and environmental data of each dataset.

4 https://docs.google.com/spreadsheets/d/1uTIsVvQPQ7cu190wBvrwg1qHcZP5dwwaVBqEr4KUrog/edit?

usp=sharing
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Figure 2.3. Study areas of the nine roe deer populations, mapped on the High Resolution Layer – Tree

Cover Density 2012 (TCD, EEA 2012). Study areas are located in Southcentral Norway (NK5, 60°46'07"N

8°23'02"E), Southwest France (FR8, 43°20'01"N 0°43'57"E), Switzerland or Swiss Alps (CH25, 46°33'38"N

7°31'54"E), Southern Germany (DE15, 48°39'10"N 7°59'42"E; DE31, 47°50'24"N 8°43'47"E), Southeast Ger-

many or Bavarian Forest (DE2,  48°57'31.9"N 13°23'32.7"E), Northern Italy or Italian Alps (IT1,  46°01'57"N

11°01'16"E;  IT24,  46°04'53"N  10°43'12"E)  and  Eastern  Austria  or  Austrian  Alps  (AU17,  47°26'39"N

15°06'07"E).
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The population in the Italian Alps as used in Chapter 3 consists out of 111 bimonthly

trajectories post-processing, corresponding to 26 animals and 40,626 relocations. Each

trajectory consists out of 366 consecutive relocations collected at a fixed 4-hour interval

(i.e. 6 relocations a day) for 61 days (i.e. bimonth) over a fixed yearly schedule starting on

January 1st. We annotated bimonthly trajectories by combining two geographical parame-

ters, habitat openness and elevation. Habitat openness was derived from the Corine Land-

cover 2006 (CLC, EEA, 2010; 100 m spatial resolution) and elevation from the Global Digi-

tal  Elevation Model of ASTER (NASA-GDEM-ASTER, 2012; 30 m). We combined both

raster datasets and reclassified the environment into four habitat classes distinguishing

high-closed (HC), high-open (HO), low-closed (LC), low-open (LO). Each sequence thus

represents the habitat use of these four classes over a period of 61 days. To each bi-

monthly sequence we further linked several individual traits including the age class (fawn,

less than 1 year; yearling, between 1 and 2 years; adult, more than 2 years), sex (male/fe-

male) and migration status (migrant yes/no).

The nine populations as used in  Chapter  4 and 5 consist  out  5,402 biweekly se-

quences post-processing, corresponding to 404 animals and 518,592 relocations. Trajec-

tories represented 96 consecutive  relocations at  the same fixed 4-hour  interval  corre-

sponding to 16 days (i.e. biweek) over a fixed yearly schedule starting on January 1st . Bi-

weekly trajectories were annotated with the percentage of tree cover (0-100%) extracted

from the High Resolution Layer- Tree Cover Density 2012 (TCD, EEA 2012, 20 m). TCD

raster values were reclassified to two classes of habitat openness using a cut-off point of

pixel-level  tree  cover  density  at  50%,  distinguishing  closed  (C,  >50%)  and  open  (O,

<50%). Hence, each sequence here represents the habitat use of two classes over a pe-

riod of 16 days. Each biweekly sequence was further associated with the biweekly period

(1 to 23), at individual level by seven landscape metrics measured for each individual MCP

(Chapter 5), the sex (male/female) and the population.
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Table 2.4.  Number of populations, animals, relocations and sequences, sequence characteristics, environ-

mental variables and covariates used in Chapter 3 compared to Chapter 4 and 5. 

Chapter 3 Chapter 4 & 5

Populations in numbers

Populations 1 9

Animals 26 404

Relocations+NA's 40,626 518,592

Sequences 111 5,402

Sequence Characteristics

Temporal interval 4 hours

Timestamps 0, 4, 8, 12, 16, 20 h

Length 61 days (366 relocations) 16 days(96 relocations)

Number of classes 4 2

Environmental data

Datasets CLC (100 m) & ASTER-DEM (30 m) TCD (20 m)

Classes High-Open; High-Closed; Low-Open; Low-Closed Open, Closed

Codes HO, HC, LO, LC O, C

Covariates

sex, age, migration landscape metrics, 

biweek, population, sex

49



REFERENCES

Bjørneraas, K., Van Moorter, B., Rolandsen, C.M. and Herfindal, I., 2010. Screening global

positioning system location data for errors using animal  movement characteristics.

The Journal of Wildlife Management, 74 (6), 1361-1366.

Cagnacci, F. and Urbano, F., 2008. Managing wildlife: a spatial information system for GPS

collars data. Environmental Modelling & Software, 23 (7), 957-959.

Cagnacci, F., Focardi, S., Heurich, M., Stache, A., Hewison, A.J.M., Morellet, N., Kjellan-

der, P., Linnell, J.D., Mysterud, A., Neteler, M. and Delucchi, L., 2011. Partial migration

in roe deer: migratory and resident tactics are end points of a behavioural gradient de-

termined by ecological factors. Oikos, 120 (12), 1790-1802.

Cagnacci, F., Focardi, S., Ghisla, A., Moorter, B., Merrill, E.H., Gurarie, E., Heurich, M.,

Mysterud, A., Linnell, J., Panzacchi, M. and May, R., 2016. How many routes lead to

migration? Comparison of methods to assess and characterize migratory movements.

Journal of Animal Ecology, 85 (1), 54-68.

Carpenter, S.R., Armbrust, E.V., Arzberger, P.W., Stuart Chapin III, F., Elser, J.J., Hackett,

E.J., Ives, A.R., Kareiva, P.M., Leibold, M.A., Lundberg, P. and Mangel, M., 2009. Ac-

celerate synthesis in ecology and environmental sciences.  BioScience,  59 (8), 699-

701.

Couriot, O., Hewison, A.J.M., Saïd, S., Cagnacci, F., Chamaillé-Jammes, S., Linnell, J.D.,

Mysterud, A.,  Peters,  W.,  Urbano, F.,  Heurich, M. and Kjellander,  P.,  Nicoloso,  S.,

Berger,  A.,  Sustr,  P.,  Kroeschel,  M.,  Soennichsen,  L.,  Sandfort,  R.,  Gehr,  B.  and

Morellet, N., 2018. Truly sedentary? The multi-range tactic as a response to resource

heterogeneity and unpredictability in a large herbivore. Oecologia, 1-14.

Debeffe, L., Focardi, S., Bonenfant, C., Hewison, A.J.M., Morellet, N., Vanpé, C., Heurich,

M., Kjellander, P., Linnell, J.D., Mysterud, A. and Pellerin, M., Sustr, P., Urbano, F. and

Cagnacci, F., 2014. A one night stand? Reproductive excursions of female roe deer as

a breeding dispersal tactic. Oecologia, 176 (2), 431-443.

Krop-Benesch, A., Berger, A., Streich, J., Scheibe, K. 2010. User's manual activity pattern,

VECTRONICS Aerospace.

50



Morellet, N., Bonenfant, C., Börger, L., Ossi, F., Cagnacci, F., Heurich, M., Kjellander, P.,

Linnell, J.D., Nicoloso, S., Sustr, P. and Urbano, F., 2013. Seasonality, weather and

climate affect home range size in roe deer across a wide latitudinal gradient within Eu-

rope. Journal of Animal Ecology, 82 (6), 1326-1339.

Ossi, F., Gaillard, J.M., Hebblewhite, M., Morellet, N., Ranc, N., Sandfort, R., Kroeschel,

M., Kjellander, P., Mysterud, A., Linnell, J.D.C., Heurich, M., Soennichsen, L., Sustr,

P., Berger, A., Rocca, M., Urbano, F. and Cagnacci, F. 2017. Plastic response by a

small cervid to supplemental feeding in winter across a wide environmental gradient.

Ecosphere, 8 (1).

Percivall, G., 2010. The application of open standards to enhance the interoperability of

geoscience information. International Journal of Digital Earth, 3 (S1), 14-30.

Peters, W., Hebblewhite, M., Mysterud, A., Spitz, D., Focardi, S., Urbano, F., Morellet, N.,

Heurich, M., Kjellander, P., Linnell, J.D.C. and Cagnacci, F., 2017. Migration in geo-

graphic and ecological space by a large herbivore.  Ecological Monographs,  87 (2),

297-320.

Urbano,  F.,  Cagnacci,  F.,  Calenge,  C.,  Dettki,  H.,  Cameron,  A.  and Neteler,  M.,  2010.

Wildlife tracking data management: a new vision.  Philosophical Transactions of the

Royal Society of London B: Biological Sciences, 365 (1550), 2177-2185.

Urbano, F. and Cagnacci, F., 2015. Spatial database for GPS wildlife tracking data. Italija:

Springer.

51



52



CHAPTER 3

Extracting spatio‐temporal patterns in animal trajectories: an 

ecological application of sequence analysis methods

De Groeve, J., Van de Weghe, N., Ranc, N., Neutens, T., Ometto, L., Rota-Stabelli, O.,

Cagnacci, F. 

In: Methods in Ecology and Evolution, 7 (3), 369-379.

ABSTRACT.  Digital tracking technologies have considerably increased the amount and

quality of animal trajectories, enabling the study of habitat use and habitat selection at a

fine spatial and temporal scale. However, current approaches do not yet explicitly account

for a key aspect of habitat use, namely the sequential variation in the use of different habi-

tat features.To overcome this limitation, we propose a tree-based approach that makes

use of Sequence Analysis Methods, derived from molecular biology, to explore and identify

ecologically relevant sequential patterns in habitat use by animals. We applied this ap-

proach to ecological data consisting of simulated and real trajectories from a roe deer pop-

ulation (Capreolus capreolus), expressed as ordered sequences of habitat use. We show

that our approach effectively captured spatio-temporal patterns of sequential habitat use

by roe deer. In our case study, individual sequences were clustered according to the se-

quential use of the elevation gradient (first-order), and of open/closed habitats (second-or-

der). We provided evidence for several behavioural processes, such as migration and daily

alternating habitat use. Some unexpected patterns, such as homogeneous sequences of

use of open habitat, could also be identified. Our findings advocate the importance of deal -

ing with the sequential nature of movement data. Approaches based on Sequence Analy-

sis Methods are particularly useful and effective since they allow exploring temporal pat -

terns of habitat use in a synthetic and visually captive manner. The proposed approach

represents a useful and effective way to classify individual movement behaviour across

populations and species. Ultimately, this method can be applied to explore the temporal

scale of ecological processes based on movement.
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3.1. INTRODUCTION

Recent advances in digital tracking technology and increased availability of high-resolution

environmental data by remote sensing have facilitated the collection of spatio-temporal se-

ries of animal-borne data (Cagnacci et al. 2010). Application of satellite navigation technol-

ogy (e.g. Global Positioning System, GPS) to individual animals allows recording temporal

sequences of animal locations at an unprecedented spatio-temporal resolution. Moreover,

by projecting these locations onto spatial layers, including satellite images, it is possible to

obtain robust and standardised information about the habitat of these animals (Urbano et

al. 2010).

At present, an array of both exploratory and inferential methods is available to the an-

alyst to investigate the relation between animal movement and the use of habitat.  Ex-

ploratory methods apply multivariate analysis techniques (e.g. General Niche-Environment

System Factor Analysis, GNESFA, The K-select analysis, (Canonical) Outlying Mean In-

dex analysis; see R package AdehabitatHS of Calenge (2011) for an overview) to identify

relevant variables describing the habitat (or the realised niche) of a population. Similarly,

decision tree learning methods, such as random forest and CART modelling, are data min-

ing techniques that present decision rules for classifying a set of data based on associated

explanatory variables (see R package rpart of Therneau et al. (2014)). Conversely, inferen-

tial methods mainly consist of a variety of regression models testing the disproportion be-

tween used and available habitat units (i.e. habitat selection; Johnson 1980), such as Re-

source Selection Functions, RSF (Boyce et al. 2002) and Step Selection Functions, SSF

(Fortin et al. 2005). In essence, exploratory methods offer a description of animals’ habitat,

whereas inferential methods allow to test specific hypotheses (Calenge & Basille 2008). In

this sense, the first can be used to select explanatory variables which are relevant for the

application of the latter (e.g. Calenge 2006, Wittemyer et al. 2008, Dray et al. 2010).

Despite the proliferation of exploratory methods, current approaches rarely evaluate

the sequential use of habitats by animals, i.e. the sequence of locations (trajectory) vs. the

underlying ordered pattern of habitat use. In movement ecology, temporal patterns have

been addressed, for example, by exploration of temporal autocorrelation of movement pa-

rameters (Wittemyer et al. 2008, Dray et al. 2010). We wish to draw attention on the mean-

ingfulness of temporal patterns when describing habitat choices. For example, the same

proportion of habitat use in a certain time interval, may correspond to very different se-

quential patterns. An animal may continuously use a single habitat type, then switch to an-
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other, or, in contrast, alternate the use of both. Such spatio-temporal patterns may corre-

spond to alternative space use tactics, and find a deep ecological significance. Currently,

insights in the spatial patterns of use of multiple habitat-related variables are easy to ob-

tain, for example using suitability maps (e.g. Calenge 2006); however, very few methods

provide insights into spatio-temporal patterns combined. An interesting publication in that

direction comes from Benhamou & Riotte-Lambert (2012) presenting a framework using

movement-based kernel density estimation (utilisation distribution) and computation of res-

idence time combined to explore areas of intensive use. Here, we are interested into meth-

ods to visually explore the sequential and thus temporal structure of habitat use.

In other research areas, such as geovisual-analytics, important progress has been

made in terms of visually exploring sequential data at variable spatio-temporal scales (An-

drienko et al. 2011). Buchin et al. (2012), for example, developed a geometric algorithm for

trajectory clustering that takes into account  environmental  context parameters such as

temperature and habitat type. In sociology, on the other hand, the link between sequential

order of human behaviour and space use has been investigated using Sequence Analysis

Methods (SAM) (Abbott 1995). This technique is principally used in the field of bioinformat-

ics  to evaluate the degree of similarity among DNA or protein sequences, but has also

been  applied  successfully  in  transportation  science  (Wilson  2008),  tourism  research

(Shoval & Isaacson 2007) and indoor navigation (Delafontaine et al. 2012).

Sequence Analysis Methods to our knowledge has never been applied to explore spa-

tio-temporal patterns in sequential habitat use by animals. The essence of this approach is

the possibility to ‘extract’ ordered sequences of habitat classes occupied along trajectories

by means of clusters, which can be conveniently visualised in trees and validated by mea-

sures of statistical reliability. Moreover, SAM allows to deal with two common issues of

GPS-based location datasets: missing data points (i.e. acquisition failures by GPS sen-

sors, Frair et al. 2010), and spatial correlation (Dray et al. 2010).

In this study, we aimed to evaluate the applicability of SAM to movement ecology data

for exploratory purposes by analysing both simulated trajectories and time-stamped loca-

tions  of  individually  tracked  roe  deer  (Capreolus  capreolus)  from a  partially  migratory

alpine population. The analysis consisted of several steps (Fig.3.1). We first produced a

classification tree based on bimonthly sequences of habitat use by individual roe deer. We

used this  first  exploratory  classification  to  hypothesise  potential  patterns  of  sequential

habitat use. Then, we produced simulated trajectories with those patterns, at different pro-

portion of habitat availability, and classified them in trees. We then re-added the real tra-
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jectories to simulation trees, while accounting for their relative proportion of habitat avail-

ability. Finally, we evaluated the biological relevance of such classification on the basis of

ecological predictions. This way, we explored spatio-temporal patterns of real trajectories

and evaluated them in a simulated experimental setting.
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Figure  3.1.  Flowchart  of  the  complete  process  to  explore  spatio-temporal  habitat  use  patterns  of  real

trajectories  by  sequence  similarity  analysis.  In  essence,  based  on  simple  classification  trees  of  real

trajectories (a), we simulated trajectories with a-priori defined patterns of sequential habitat use (b), that in

turn were used to produce classification trees accounting for spatial correlation, at different proportion of

habitat availability (b/c). We then introduced the real trajectories (c), accounting for the relative proportion of

habitat availability, and assessed their classification into tree clusters resulting from the simulation exercise

(c/d). 



3.2. MATERIAL AND METHODS

3.2.1. Study area and real trajectories

The studied animal population consisted of 26 European roe deer equipped with a GPS

collar (GPS-Plus D, Vectronic Aerospace GmbH), of which 16 were females and 10 males.

Six of them were collared as fawns (i.e. less than 1 year old; 2 females and 4 males), one

as yearling (i.e. one female between 1 and 2 year old), while all others were collared as

adults. Figure 3.2 pictures the cumulative sum of the 90% fixed-kernel home ranges (KDE)

with reference smoothing parameter (href; Worton 1995) of individual roe deer using Home

Range Extension (Rodgers & Carr 2002). This area extends across the Monte Bondone-

Monte Stivo range, west of Trento and Adige valley and east of Valle dei Laghi, in North-

east Italy (46°4'N, 11°7'E). Elevation ranges between 200 and 2300 m above sea level (m

a.s.l.).  Along  this  altitudinal  gradient,  climate  is  extremely  varied,  ranging  from  semi-

Mediterranean and temperate (<1000m a.s.l. defined as 'low elevation') to semi-Alpine and

Alpine (>1000m a.s.l. defined as 'high elevation') conditions. The study area is mainly cov-

ered by broad-leaved, coniferous and mixed forest (defined as 'closed habitat', represent-

ing 50% and 75% of high and low elevation, respectively), alternated by pastures (defined

as 'open habitat', representing 50% and 25% of high and low elevation, respectively). Rel-

evantly, the high-elevation range is mainly constituted by protected land, whereas the low

elevation is not and is characterised by more anthropic land use.

The sampling period spanned from 2005 to 2008, during which GPS collars yielded a

total of 54 845 time-stamped locations. The interval and duration of sampling were differ-

ent among individuals, depending on date of capture and battery exhaustion. Locations

were acquired at a pre-determined temporal interval Δt of 4 hours at fixed time stamps (0,

4, 8, 12, 16 and 20h) except for cold winter months (January and February), when Δt was

6h (0, 6, 12 and 18h) in order to save battery. We linked GPS locations to two geographi-

cal  parameters  retrieved  from remote  sensing  sources:  habitat  openness  [EEA-Corine

Landcover (CLC) 2006 IV, European Environment Agency, EEA (2010), resolution = 100m]

and elevation [NASA-ASTER GDEM, Ministry of Economy, Trade and Industry of Japan,

METI, National Aeronautics and Space Administration of the United States, NASA (2012) =

= 30m]. We combined and reclassified environmental parameters into four classes: high-

closed (HC), high-open (HO), low-closed (LC), low-open (LO) (Table 3.1 and Fig.3.2). In

this application, we used four classes to reduce the complexity of data analysis for demon-
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stration. On the one side, the classes correspond to well-defined vegetation successional

types in the alpine habitat of this population (Cagnacci et al. 2011); on the other side, they

are meaningful for roe deer habitat use traits, since they are known to prefer ecotonal

habitats and forest edges (Tufto et al. 1996).

58

Figure 3.2. The study area, indicated by the darker irregular shaped polygons, was computed as the 

cumulative sum of home ranges of 26 individually marked roe deer (kernel density estimator, 90% polygons).

For codes of habitat classes, see Table 1. N: Urban areas.



Then,  we  recoded  sequences  of  locations  into  sequences  of  the  environmental

classes above, adding asterisks to account for missing locations due to acquisition failure.

More precisely, the input sequences for SAM describe the habitat use by individual ani-

mals at regular time stamps (0, 4, 8, 12, 16 and 20h) over a period of two months. While

SAM is able to deal with missing data, if they are too frequent they can over-fragment the

sequence and thus bias the similarity measurement. To avoid a bias in the downstream

analyses, we therefore excluded bimonthly sequences with more than 40% of missing

data. After removal, the input file consisted of a total of 111 sequences (min 21, max 24

per bimonthly period), which were reclassified as belonging to summer (May-October) or

winter (November-April) season, based on snowfalls and typical alpine climate (Ramanzin

et al. 2007; Cagnacci et al. 2011). Only seven sequences could be retained for January-

February, therefore we excluded the whole period from further analysis. Finally, sequences

were associated with sex, age (fawn, yearling or adult) and migration occurrence (migrant,

non-migrant, no data), of each individual. We obtained a first visualisation of the habitat

use patterns represented in our sample by creating a simple classification tree of the 111

sequences (Fig.3.1a). This classification tree was based on Hamming distance (Gabad-

inho et al. 2011; see below for more details), without accounting for spatial correlation, nor

habitat availability. Thus, this first classification tree does not allow to objectively classify

the sequential use of habitat types, but can be used to build hypotheses for expected mod-

els of habitat use.

Table 3.1. Reclassification of the environmental parameters elevation and habitat openness resulting in 

combined classes (coded as HC, HO, LC and LO).

Elevation Habitat openness Habitat use

classes
Low (<1000m)  Closed1 LC

Low               Open2 LO
High (>1000m) Closed HC

High Open HO
1 Forest: Corine Landcover-classes 311, 312, 313, 323, 324 
2 No Forest: All other Corine Landcover-classes, except inland water

59



3.2.2. Simulation arenas and simulated trajectories

We simulated nine squared gridded arenas, each composed of 10 000 squared cells of

100 x 100 m mirroring the availability of environmental classes present in the real settings

(Fig.1b, Appendix 3A). Since elevation classes are highly clustered in our study area (see

Fig.3.2), we split each arena in two equal parts, corresponding to high and low elevations.

We obtained the final four categories by randomly assigning all  cells to either open or

closed habitats, with varying proportions from 10 to 90% in each arena. Thus, simulated

landscapes covered all  possible  habitat  prevalence,  which may occur  within  individual

home ranges in this specific study area.

Within each arena, we generated simulated sequential  habitat  use using a simple

spatially-explicit stochastic movement model (Fig.3.1b, grey box ‘MM’; Appendix 3B). For

the simulated trajectories, we chose 4 different patterns of habitat selection, based on pre-

liminary observations on the classification tree of real trajectories (Fig.3.1a), and previous

knowledge on roe deer ecology. We thus distinguished homogeneous use of closed or

open habitats, random and alternating use (i.e. day-night patterns) of open and closed

habitats. The random pattern represented the ‘control’ in our simulated experimental set-

tings. The homogeneous closed and alternation between closed and open were the ex-

pected patterns according to roe deer ecology, and specifically the known preference for

forest and ecotonal habitats (Tufto et al. 1996). Homogeneous open represented the alter-

native hypothesis. We simulated 100 trajectory replicates for each of the nine arenas and

four behaviours of habitat selection (total of 3600 sequences, Fig.3.1b, grey box ‘simulated

sequences’). Because sequential use of elevation was strongly dependent on the release

location of the simulated agents, each of the 100 th set of simulations had the same seed

random locations across arenas and behaviours (i.e. trajectories had the same seed in

groups of 36). We then trimmed the simulated trajectories to match the length of the real

bimonthly roe deer trajectories i.e. 366 steps. Finally, simulated sequences of habitat use

were extracted from these calibrated trajectories.
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3.2.3. General procedure of sequence similarity analysis for calculation of dissimil-

arity trees

Sequence Analysis Methods are based on sequence similarity measures that are used to

identify groups of sequences showing similar behaviour. The input of such analysis always

relies on a dissimilarity matrix, which provides the dissimilarity, or ‘distance’ among all pos-

sible pairs of sequences. Among the available distance measures, we chose Hamming

distance (HD) to ascertain the dissimilarity matrix, as it is considered the most suitable for

sequences with a temporal dimension. HD relies solely on two operations: identity and

substitution, and in fact, it  computes the minimum number of substitutions to equate a

number of sequences of equal length (Gabadinho et al. 2011). In a more optimised HD,

also weights can be assigned to substitutions: that is, HD computation can be based on a

substitution weight matrix. Figure 3.3 gives a conceptual example of two alternative HD of

the character strings 'Kapreolo' and 'Capriolo', respectively the word for roe deer in Es-

peranto and Italian. Both distinguish six identities and two substitutions, but differ from

each other in weights assigned to substitutions. The substitution between the letters K and

C gets a lower weight (i.e. probability) in 'a' (substitution score = 0.4, Fig.3.3a) than in 'b'

(substitution score = 1, Fig.3.3b), since the former HD takes into account the phonetic sim-

ilarity. Consequently, the total dissimilarity in 'a' will be lower than in 'b'.

In our case, the dissimilarity matrix computed by the HD algorithm was based on sub-

stitution weights for all combinations of habitat classes, and constrained to their availability

and distribution, which together determine patterns of spatial correlation. Therefore,  we

derived the substitution weights from spatial correlation of habitat classes in the simulated

arenas (Fig.3.1b, grey box ‘substitution weight matrix’, see Appendix 3C for computation

and simulations of the substitution weights).  
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Figure 3.3. Two alternative computations of the Hamming distance, based on substitution weights given to

each operation performed to equate the sequences (reported under each character). Identities are in italic

and substitutions bolt. 



The successive step in data analysis is using the HD dissimilarity matrix to calculate

a dissimilarity tree. Here, we used Ward's method (Fig.3.1b/c, HCW), the most common hi-

erarchical agglomerative cluster procedure (Gabadinho  et al. 2011). The resulting trees

are a representation of the dissimilarity among the habitat use sequences of animals. The

distance, or ‘branch length’, between leaves (which stay for individuals) and nodes (which

stay for groups of individuals) can be used as a proxy for the dissimilarity between the por-

tions of the tree: the longer the distance, the higher the dissimilarity.

The following step is the identification of ‘clusters’, or portions of the tree indicating

association  between sequences.  This  is  the  most  important  step  to  use  trees for  ex-

ploratory purposes and the subsequent interpretation of results. We determined the num-

ber of clusters present in a tree by a cut-off distance, based on a repeatable bootstrapping

procedure  (Fig.3.1b/c, BJ). For this application we performed 1000 iterations and calcu-

lated the Jaccard bootstrapping index (i.e. bootmean, Hennig 2007) for a cut-off distance

that separated from two to twenty clusters. This index compares the similarities of the orig-

inal clusters to the most similar clusters in bootstrapped datasets. The cut-off distance was

determined as the maximum number of clusters where the median bootmean is higher

than 0.9, a value corresponding to highly stable clusters. This threshold is conservative in

a sense that normally values above 0.75 correspond to robust classification. 

3.2.4. Determining classification trees of simulated trajectories

Using this procedure, we computed a dissimilarity tree and identified clusters for each sim-

ulated landscape by using the 400 simulated sequences (100 replicates x 4 patterns of se-

quential habitat use, Fig.3.1c). To account for spatial correlation of the four habitat classes,

we recomputed the substitution matrix for each landscape. In fact, although all grid cells

were assigned to habitat classes (open/closed) at random, this still corresponded to differ-

ent  spatial  correlation  structure  across  arenas,  an  effect  of  the  different  proportion  of

classes. Then,  we investigated the  sequence composition  of  individual  clusters  distin-

guished by the classification trees to assess the liability of the method to correctly group

sequences of different sequential behaviour. This also allowed us to identify the name of

each cluster.
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3.2.5. Determining spatio-temporal patterns of real trajectories

In  the next  step we introduced the real  trajectories into  one of  the classification trees

(Fig.3.1c), according to the relative proportion of habitat availability as follows.  For each

real bimonthly sequence, we measured the availability of open/closed habitat within the

corresponding bimonthly home range. We then associated them to the simulated trajecto-

ries referring to the arena with the same habitat proportion. For example, if an individual

bimonthly home range showed an open habitat availability between 45 and 55%, the cor-

responding sequences were associated to the simulated sequences originated from the

50% arena. Then, each tree was recalculated for the combined set of sequences (simu-

lated  and  corresponding  real  sequences).  Using  this  approach,  simulation  sequences

could be used as a guide for classification of real sequences to their most similar sequen-

tial behavioural group (Fig.3.1c/d). 

3.2.6. Expected spatio-temporal patterns of real trajectories

Based on previous knowledge on roe deer ecology, and the individual descriptive vari-

ables, we formulated predictions of tree clustering. This was the core of our study, to as-

sess the meaningfulness of SAM for exploration of spatio-temporal sequences of ecologi-

cal data. In roe deer populations of northern and alpine environments, some individuals

reach higher elevations in summer, when habitat suitability increases, and return at lower

elevation in rigid winter conditions. Other individuals, instead, occupy the same low-eleva-

tion range all year round (Ramanzin et al. 2007; Cagnacci et al. 2011). This phenomenon

is known as partial migration. On these premises, we expected individuals to classify into

two main clusters according to the use of elevation: animals with a constant use of the

same elevation range (winter and summer sequences), and animals with a seasonal shift

in elevation range associated to migration (winter sequences separated from summer se-

quences) (P1a).  Roe deer reproductive season is concentrated in summer,  when both

males and females exploit the best environmental conditions to meet the high energetic

demand of mating and giving birth (Hewison et al. 1998). If migration is linked to habitat

quality, we expect both sexes to show similar patterns of migration and thus of elevation

range use (P1b, but see Ramanzin et al. 2007). Likewise, since fawns are not yet engaged

in reproduction, we may expect a lower rate of migrating individuals (P1c). Alternatively,
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they may follow the mother in the migrating movements. Predictions on sequential use of

open and closed habitats are less straightforward. Roe deer are known to prefer habitats

providing cover and protection, especially intermediate stages of forest succession and

ecotonal habitats (e.g. Tufto et al. 1996). Therefore, we predict that animals would show a

sequential use of habitats different from random (P2a). In particular, we predict a separa-

tion between animals using only closed habitat and those showing a combined use of

closed and open habitats (P2b). When animals use both habitats, we expect open habitats

to be used mainly during night, due to the anti-disturbance and anti-predatory behaviour of

roe deer, translating in an alternating sequential use of open and closed (P2c) (Saïd &

Servanty 2005). For similar reasons a constant use of open habitat is instead less likely

(P2d). 

3.3. RESULTS

3.3.1. Classification trees of simulated trajectories

The application of  HD algorithm to simulated bimonthly  sequences generated 9 trees,

each corresponding to landscapes with  different  habitat  availability  (i.e.  T10 to  T90;  see

Fig.3.1c and Appendix 3D for all trees). In all trees the topological relationships between

tree branches indicated two main orders of classification: first-order clusters, splitting the

sequences in two groups according to the preferential use of different elevations (C1  and

C2; e.g. Fig.3.1c), and several second-order clusters separating animals with different se-

quential use of open and closed habitats (C, R, A, O, U; see text below, Fig.3.1c and Ap-

pendix 3D: second-order clusters are distinguished by coloured branches). 

At first-order, all trees showed a significant separation (Jaccard bootstrapping index

BJ>0.95) between high and low elevation trajectories, thus defining a 'high-elevation' clus-

ter (C1) and a 'low-elevation' cluster (C2). At second-order, our defined bootstrap threshold

(i.e. BJ,median > 0.9) identified 6-8 main clusters, (T10-T30 & T70-T90= 6 clusters, with 40-80 se-

quences in each cluster; T40-T60= 8 clusters, with about 40 sequences in each), and 3-7

small clusters (with less than 10 sequences each). Separation of the main second-order

clusters was significant (most clusters BJ  > 0.95), whereas for smaller clusters, it was not

(most clusters BJ < 0.75). For both high and low elevation, the main second-order clusters

corresponded to different patterns of sequential open/closed habitat use. The classification

of sequences in such clusters was highly dependent on habitat availability in arenas. For
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trees deriving from arenas with similar open/closed habitat proportion (40-60%: T40, T50, T60,

Fig.3.1c, Figs 3D.4-3D.6 in Appendix 3D), we distinguished all four simulated sequential

behaviours: homogeneous closed (C; brown and dark blue branches), random (R; red and

cyan branches), alternating (A; orange and blue branches) and homogeneous open (O;

yellow and light blue branches). In this case, 99% of sequences in each cluster was of the

same sequential behaviour. For example, all sequences in the blue cluster of figure 3.1c

are homogeneous closed. Conversely, for landscapes where habitats were disproportion-

ally available (Open < 30% or Open > 70%: T10,  T20, T30  and T70,  T80, T90, Figs. 3D.1-3D.3,

3D.7-3D.9 in Appendix 3D), random sequences clustered with homogeneous sequences

of the dominant habitat (C with R: brown and dark blue branches; O with R: light blue and

yellow branches). The random sequential use of habitat according to availability (i.e. the

control case) was therefore effectively represented by a separated random cluster only

when  sequences  were  not  trivial  (e.g.  T10  and T90 obviously  led  to  homogeneous  se-

quences ‘at random’).

Finally, small clusters, corresponded to trajectories indicating a mixed use of high and

low elevation, for a specific pattern of sequential use of open and closed habitats (e.g.

mixed-alternating). Alternatively, small clusters were undefined (U) due to a too small num-

ber of sequences (<5 sequences), and can be considered as outliers. Both mixed and un-

defined clusters were coloured grey in trees (Fig.3.1c, Appendix 3D).

3.3.2. Spatio-temporal patterns of real trajectories and discussion of the study case 

a. Sequential habitat use patterns 

We used the trees based on mixed simulated and real trajectories to assess the classifica-

tion of real trajectories according to sequential habitat use. To visualise how real trajecto-

ries were classified, we extracted (i.e. pruning) the real sequences from nine different trees

(Fig.3.1d and 3.4, see also Appendix 3E for a different visualisation). The first-order clus-

ters C1 and C2 distinguish very well high- from low-elevation sequences (Fig.3.4, Appendix

3E right vs left panels). 
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Figure 3.4.  Roe deer bimonthly sequences of habitat use classes (right portion of the nine panels; daily

scale reported bottom-right), and resulting dissimilarity trees, based on the Hamming distance (left portion of

the panels). The real sequences were extracted (pruned) from their corresponding simulated tree from which

sequences were derived from a trajectory running over nine different arenas with varying habitat proportions

(10-90 %). Tree ‘leaves’ represent a real sequence, while ‘nodes’ indicate their clustering. Branch lengths

(distance  between  leaves,  and  first  common  node:  bottom-left  for  the  scale)  indicate  the  dissimilarity

between individual sequences. The split into two main clusters define first-order clusters separation, based

on use of elevation classes (high, C1; low, C2). Second-order clusters are based on use of open/closed

habitats and distinguish homogeneous closed (C, brown and dark blue branches), random (R, red and cyan

branches), alternating (A, orange and blue branches) and homogeneous open (O, yellow and light  blue

branches). Grey branches (U) are sequences with undefined classification or clusters with mixed sequences

of high and low. The id gives the animal code and season (Summer, S; Winter, W). Variables season, age,

sex and migration are represented as colour-coded bars between trees and sequences (see legend for

meaning of the colours).

More interesting is the classification of sequences in different sequential patterns of

open/closed habitat  use (second-order).  Within our roe deer population,  we found evi -

dence of the four  different  patterns of  open/closed sequential  use that  have been ad-

dressed in our simulations. Specifically, 98 sequences out of 111 were classified according

to those patterns (88.3%). Moreover, some interesting differences emerged in sequential

use of open/closed habitats for different elevations (Fig.3.4, Appendix 3E). At high eleva-

tion, half of the sequences have an alternating (C1A: 32%, 18 sequences) or homoge-

neous closed pattern (C1C: 25%, 14 sequences), whereas only 11% of the sequences are

random (C1R: 6 sequences). At low elevation, 63% of the sequences are homogeneous
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closed (C2C: 41%, 22 sequences) or random (C1R: 22%, 12 sequences), and conversely

alternating sequences are uncommon (C1A: 13%, 7 sequences). Surprisingly, both at high

and  low  elevation,  there  are  also  homogeneous  open  sequences  (C1O:  18%,  10  se-

quences; C2O: 14%, 8 sequences). At the study area scale, different sequential patterns of

open/closed habitat use according to elevation are possibly linked to those habitats avail -

ability in the study area (Figure 3.2: open more available at high elevation). Indeed, indi -

vidual habitat use sequences are obviously related to the availability of habitat classes

within the home range (Fig.3.4). In particular, sequences classified as homogeneous se-

quences (C and O) derived from home ranges with a large proportion of one specific habi-

tat type (Fig.3.4.1-3.4.3, <30% open; Fig.3.4.7-3.4.9, >70% open). Instead, heterogeneous

sequences showed an alternating or random pattern (A and R), and derived from home

ranges where both habitat types were available (Fig.3.4.4-3.4.6, >40% open and <60%

open). Interestingly, though, both homogeneous and heterogeneous trajectories lay next to

each other in the study area (Fig.3.5). Also, several sequences with the same home range

availability were assigned to different sequential patterns. For example, 776_W was classi-

fied in C2A and 787_S in C2C, when they both have 30% open in home ranges (Fig.3.4.3).

Or, 771_S was classified in C1C and 789_S in C1R, when they both have 40% open in

home ranges (Fig.3.4.4).

Finally, sequences switching between high and low were classified in the mixed_alter-

nating cluster (only one sequence) or in the undefined clusters (i.e. as an outlier) (Fig.3.4,

C1U: 14%, 8 sequences; C2U: 9%, 5 sequences).  Notably,  C1U mainly consists of  se-

quences changing from high to low elevation (e.g.  Fig.3.4.4, 797_W; Fig.3.4.6, 784_S,

795_W), whereas C2U shows the opposite pattern (e.g. Fig.3.4.5, 773_S), as a result of

the migration between winter and summer ranges (Fig.3.5). Alternatively, undefined se-

quences may correspond to sequential behaviours we did not simulate, such as the shift

from homogeneous closed to homogeneous open sequential  habitat  use within the bi-

monthly period (e.g. Fig.3.4.5, 767_W).  
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b. Sequential habitat use vs descriptive variables 

Descriptive variables of individual sequences, in particular migration occurrence, sex and

age enabled to further interpret the classification of trajectories in first- and second-order

clusters. In winter, individual trajectories were classified both at high and at low elevation,

regardless the space use strategy (i.e. both migrants and non-migrants; see Fig.3.6a and

3.4). Conversely, in summer migrants’ trajectories were always classified at high elevation

and non-migrants’ mainly at low elevation. Sequences that were classified as alternating

mainly  belonged  to  migrants,  whereas  homogenous  open  sequences  equally  corre-

sponded to migrant and non-migrant individuals (Fig.3.6c and 3.4). Finally, more than 60%

of the non-migrant sequences were either classified as homogeneous closed or random.
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Figure 3.5. Clusters of real bimonthly trajectories with similar patterns of sequential habitat use in their 

spatial context. Legend in bottom-right panel. 



Interestingly, trajectories of fawns were classified at low elevation, both in summer

and winter, except one sequence (Fig.3.6b and 3.4). In terms of second-order clusters, tra-

jectories of fawns were classified in the great majority as homogeneous closed or random

(Fig.3.6d and 3.4). Adults’ sequences were more equally distributed between different pat-

terns of habitat use. 

c. Assessment of predictions and case study discussion

The first clear spatio-temporal pattern that emerged in the study of roe deer population

through exploratory analysis with SAM is a differential use of altitude. This can be linked to

migration for two pieces of evidence: first, some individuals with sequences classified at

high elevation in some trees, also showed sequences classified at low elevation in other

69

Figure 3.6. Individual descriptive characteristics are summarised by the clusters to which real individual

sequences were assigned. Migration (%; panel a; migrant-mM, non-migrant-mN, no data-mX) and age

(%; panel b; adult-aA, yearling-aY, fawn-aF) in relation to first-order clusters (high, C1; low, C2), both in

Summer and Winter.  Second-order clusters (%; C, R, A,  O; see legend, figure 3.4 for meaning of

codes) in relation to migration (panel c) and age (panel d). 



trees (Fig.3.4, e.g. individual 799). Second, some sequences from the same individuals in-

cluded both high and low altitude in the migration periods, when animals move between

seasonal ranges (Fig.3.4, e.g. individual 797, Fig.3.5-undefined). Moreover, the classifica-

tion of sequences in high and low elevation clusters can be attributed to partial migration

for a further evidence; that is, sequences of some other individuals were always included

in the low-elevation cluster (Fig.3.4, e.g. individual 783), or always across both (Fig.3.4,

e.g. individual 784), that is, they were resident. As such, prediction P1a is supported. 

The property of SAM as a valid exploratory tool to identify spatio-temporal patterns

of individual movements were also highlighted when looking at descriptive variables. Se-

quential use of high and low elevation was same among sexes (Fig.3.4: sequences of both

sexes were included in both clusters; P1b), but not across age classes (Fig.3.6 and 3.4;

P1c). This is a novel result for roe deer, that opens up new directions of research. For ex-

ample, age class could be included as an explanatory variable to assess partial migratory

behaviour of roe deer. 

The most innovative outcome of our analysis was the spatio-temporal analysis of

open/closed habitat use by individual roe deer. The most obvious, and yet relevant, result

was that roe deer did not always use open/closed habitat at random (P2a). As predicted,

sequences of individuals were clearly distinguished between homogeneous and heteroge-

neous use or shifted between the two categories. We intend to underline that by SAM ex -

ploratory analysis, we always looked at sequential use of habitat; that is, habitat selection

was not considered here. The term ‘random’ use, therefore, does not refer to habitat use

according to total habitat availability, as in classic habitat selection analysis (Manly et al.

2002), but to sequential use of available habitats as it would happen by chance. Indeed,

we found that sequential use of habitats was heavily influenced by availability in the home

range. For example, home ranges including a high percentage of closed habitat likely re-

sulted in a ‘random’ homogenous use of  closed (Fig.3.4.1-3.4.3, Fig.3.5-homogeneous

closed).  Conversely,  home ranges including both open and closed habitat may lead to

‘random’ use of both (Fig.3.4.4-3.4.6; Fig.5-random). Here, we have two observations. On

the one side, the fact that trajectories with a different spatio-temporal pattern laid next one

to each other in the study area (Fig.3.5) indicates that sequential habitat use reflects the

selection operated by animals to define their home ranges within the study area (i.e. sec-

ond-order habitat selection, sensu Johnson 1980). On the other side, though, we had clear

evidence of alternative tactics of temporal use of habitats available within the home range

(several examples of sequences with same total habitat availability, but different sequential
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patterns, see above and Fig.3.4). When both open and closed were available in home

ranges, one pattern stuck out as particularly well represented, i.e. the alternating use of

both habitats on a daily basis (P2c; Fig.3.4 and 3.5). To our knowledge, this is among the

first systematic exploratory analyses of a behavioural pattern previously empirically de-

scribed, and linked to individual personalities (Bonnot et al. 2015). According to our results,

the propensity of roe deer to expose to open habitats can result in a systematic spatio-

temporal pattern of habitat use, which is evident only in some individuals (Fig.3.4). Even

more, our explorations indicated that migrant individuals used this pattern much more than

resident, at equal habitat availability in the home range (Fig.3.4.4-3.4.6 and 5-alternating).

Migration attitude in partial migratory populations has been previously attributed to a ‘bold-

ness’ syndrome (Chapman  et al. 2011). Investigating the effect of personalities at both

seasonal  and daily habitat  use scale is a very exciting research direction that  our ex-

ploratory results suggest. 

A further result that supports the individual differences in sequential habitat use is the

presence of homogenous open sequences, an unexpected and yet observed pattern both

at high and low elevation (P2d; Fig.3.4).

3.4. DISCUSSION: APPLICATION OF SAM TO ANIMAL HABITAT USE

In this paper, we showed that SAM is a useful and powerful tool to explore and compare

sequences of habitat use by animals, and extract common spatio-temporal patterns. Im-

portantly, we took into consideration an aspect of animal ecology largely overlooked in lit -

erature. Indeed, one of the most interesting and captivating outcomes of SAM is that differ-

ent topological levels of trees are associated to hierarchical similarities between the indi-

viduals' sequential use of environmental features. Repetitive patterns of sequential habitat

use are informative with respect to the interaction between animals and their environment.

In fact, well-known phenomena such as migration, or feeding-resting cycles emerge as

repetitive patterns of habitat use at different temporal scales, as shown by our study case.

To understand the potential usefulness of SAM for movement ecology, we shall first

clarify what SAM is not. SAM is not a spatial explicit method and does not provide predic-

tive models of habitat use, nor of animal distribution. Instead, SAM embeds the temporal

component of habitat use, in the form of real ordered sequences of used habitat classes.

SAM can provide information at the population and individual level, by clustering individu-
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als in trees through robust algorithms that search for dissimilarities in spatio-temporal pat-

terns of habitat use. Based on all these considerations, we see SAM as an approach to

explore temporal patterns in habitat use across an animal population. As such, it differenti-

ates from and it complements current exploratory methods in habitat analysis. The R pack-

age AdehabitatHS provides a suite of niche-based methods that are primarily used to ex-

press the realised niche (Calenge & Basille 2008). However, niche-based methods are

also meaningful to identify the most relevant explanatory variables, and their relationships,

for predictive habitat selection models, such as RSF (Boyce et al. 2002). RSF model the

probability of disproportional habitat use in a hypothetical-deductive framework, by means

of selection of competing models. A preliminary investigation of most relevant variables

thus allow to better express hypotheses, and focuses the analysis. SAM may complement

the aforementioned approaches by also exploring the temporal component of habitat use

patterns. A big advantage of niche-based methods or recursive partitioning trees is their

ability to provide a graphical representation of the importance and relation between vari -

ables. Similarly, SAM summarises common patterns of sequential habitat use across the

population, by clustering. Importantly, we suggest that the way to handle the length of the

sequences (i.e. time resolution and total duration) should depend on the research ques-

tions. In the study case, we decided to split the individuals’ sequences in bimonthly peri-

ods, since we were interested in intra-annual patterns. This design implies that each indi -

vidual is present more than once in the trees, and caution must be taken when interpreting

the results (i.e. pseudo-replication Tukey, 1977).

In our exercise, we considered a simple combination of habitat classes, although

the R package TraMineR allows to define more complex combinations of environmental

parameters. All the same, sequences based on many habitat classes, would lead to a very

articulated dissimilarity tree, thus likely difficult to interpret. We therefore suggest a ratio-

nale in the combined and complementary use of the aforementioned methods, when ex-

ploring spatio-temporal patterns in animal movement data. First, niche-based or recursive

partitioning methods or other simpler multivariate approaches (e.g. PCA) can be applied to

identify the most important and least related environmental parameters. Then, ordered se-

quences of locations can be matched to those variables by spatial join with relevant geo-

graphic layers, and sequences of habitat use thus obtained. Sequence Analysis can then

be performed, and provide a representation of existing spatio-temporal  patterns, or be

used to formulate new hypotheses evaluated through a classic model selection approach.
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Technically, we suggest to simulate expected sequential behaviours (e.g. based on

preliminary classifications or previous knowledge, Fig.3.1a), and use them as a guide to

extract the sequential habitat use pattern of real sequences, while accounting for spatial

correlation  (through the  substitution  matrix)  and habitat  availability.  As  our  study case

shows,  real-world  sequences  can  exhibit  more  complex  behaviours  than  those  repre-

sented by simulations. We suggest that if the great majority of real trajectories are classi -

fied in cluster types derived from simulations, then the real sequential habitat use is well

represented. Otherwise, one may want to change the simulation rules, which can be easily

modified in the movement model.

Sequence Analysis Methods is a well-suited method for data acquired by animal-

borne tracking technologies, since the method can account for two main limitations related

to animal movement data: missing locations (Frair et al. 2010) and spatial correlation (Dray

et al. 2010). We explicitly remarked for the first time that the weight matrix used by SAM

can be used to deal with spatial correlation. Specifically, we offer a quantifiable and repeat-

able assessment of the spatial correlation between different habitat classes (i.e. substitu-

tions matrix). Notwithstanding the novelty, future studies may assess the sensitivity of SAM

output to changes in the substitution matrix.

While the framework presented in this paper is relevant and innovative in ecological

studies, in practice there are also some limitations to SAM. First, temporal correlation is

not directly accounted, whereas there is a clear temporal association between consecutive

observations.  To  account  for  temporal  correlation,  a  variant  of  the  Hamming  distance

known as the Fuzzy Hamming distance (Bookstein et al. 2001) could be used, but is only

developed for binary data. Secondly, several researchers in evolutionary biology (e.g. Mor-

rison 2010) and social sciences (e.g. Wu 2000) have argued that many steps in SAM are

based on subjective decisions (e.g. definition of classes, parameter settings, interpretation

of results). 

These limitations notwithstanding, we believe that SAM offers great advantages and

new insights in movement ecology studies. For instance, the method can be promptly ex-

tended to multiple or other species than roe deer as well as to other spatial (e.g. home

range) and temporal  resolutions (e.g.  hours) and reveal  yet underappreciated or over-

looked patterns.
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APPENDIX 3A – SIMULATED ARENAS

Figure 3A.1. Nine square gridded arenas, each composed of 10,000 squared cells of 100 x 100m, 

with varying proportions of open (light colours) and closed (dark colours) habitats (10 to 90%) at high 

(blue) and low elevation (red/orange). Simulated landscapes mirror the availability of environmental 

classes present in individual home ranges in the study area.
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APPENDIX 3B – THE MOVEMENT MODEL  

We simulated  movement  as  a  stochastic  and  spatially  as  well  as  temporally  discrete

process. The movement takes place on a grid consisting of N square cells (N=10,000).

The probability of an animal to move from its position on cell i  at time t−1 ( it−1 but

for convenience abbreviated to i∈ {1,2,. . ,N } ) to any given cell j∈{1,2,.. , N } at time t is

given by: 

Pi , j ,t=
A i , j ,t

∑
j=1

N

A i , j , t

with A i , j ,t the attractiveness of cell j for an animal which is currently at cell i.

A i , j ,t is given by 

A i , j ,t=(
βS ,h j ,t

* m j ,t

d i , j
,     d i , j≤dmax

0 ,     o t he r w i se ;
)

where βS , hj , t is the selection coefficient for habitat type h on cell j, h j , at time t based

on selection behaviour S,  m j , t is the number of steps since the last visit from cell i to j at

time  t, and  d i , j ,t the squared Euclidean distance between cells  i and  j. We imposed a

maximum distance, dmax, that an animal could travel in a single time step.

The selection coefficient βS , hj , t was calculated for two habitat types h (open, o; or closed,

c)  and four selection behaviours  S  (random,  R;  homogeneous open,  O;  homogeneous

closed, C; or alternating, A). We generated a random selection behaviour through a spatio-

temporally  constant  selection  coefficient  (i.e. βR, c ,t=βR, o ,t=1.0 ).  Homogeneous closed

and homogeneous open selection behaviours were defined as temporally constant but

conditional  on  habitat  types.  Specifically,  homogeneous  closed  selection  was  charac-

terised by a high selection for closed habitat and a low selection for open habitat ( i.e.

βC ,c ,t=1.0 and  βC ,o , t=0.1 ),  and  vice  versa  for  homogeneous  open  selection  (i.e.

βO,c ,t=0.1 and βO,o , t=1.0 ). Unlike the other three selection behaviours, the alternating
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behaviour was modelled by a selection coefficient dependent on both habitat and time.

Specifically, the coefficient values for closed and open habitat types were permuted every

three simulation steps to capture circadian habitat selection patterns (6 iterations = one

day):

with l the daily cycle iterations. 

The coefficient m j , t to  j at time  t represents a memory component to the cell attraction

value and captures the spatially-localised nature of movement behaviour that is common

in roe deer (Hewison et al. 1998). Specifically, following the approach of van Moorter et al.

(2009), we assumed the the attraction to a given cell increases with the time since last visit

m j , t . The memory value on any cell that has not yet been visited by the simulated ani-

mal was initialised to 1. When the animal visits a cell, the memory coefficient drops to 0

and then increments with every time step:

Furthermore, we assumed that a cell's  attraction declined inversely proportional  to the

squared distance between cells  i and  j, d i , j .  Beyond this threshold, the cell attraction

value was set to 0. The squared distance is calculated by

d i , j=(x i−x j )
2+( y i− y j )

2

With (x i , y i) and (x j , y j) the Cartesian coordinates of the centers for cells i and j re-

spectively.

The simulations ran independently for 732 steps, and chose N = 10,000 and dmax = 500

meters. The first half was treated as a burning period, necessary for the simulated animals

to build a memory of the landscape and establish a home range (van Moorter et al. 2009). 
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APPENDIX 3C – SUBSTITUTION MATRIX TO ACCOUNT FOR SPATIAL CORRELA-

TION

The essence of Sequence Analysis Methods is to compare sequences and cluster them

according to similarity. This is done according to a dissimilarity matrix, where substitutions

between characters are weighted (see Fig.3.3 for a generic example of dissimilarity com-

putation). So, a substitution matrix provides the weights for all possible substitutions. In our

specific case, weights assigned to substitutions between habitat classes affect the dissimil-

arity measure between temporal sequences of habitat use. For example, two locations

with different habitat openness and equal elevation, are 'less dissimilar' than two locations

with different habitat openness and different elevation. However, there is a further issue to

take into account when expressing the substitution matrix, i.e. spatial correlation of envir -

onmental variables. Here we explain how to measure spatial correlation and we assess

the influence of spatial distribution on substitution weights. Then, we show how spatial cor-

relation is accounted for in our study.

3C.1. From spatial correlation matrix to substitution matrix

Spatial  correlation  of  environmental  variables  is  defined  as  the  spatial  dependence

between habitat values that can be more similar (positive correlation) or less similar (neg-

ative correlation) than would be expected by random (Dray  et al. 2010). Accounting for

spatial  correlation is  fundamental  when examining temporal  sequences of  habitat  use,

since patterns of use are obviously  constrained to the  distribution and availability of

the  different  habitat  patches.  Thus,  when  defining  the  dissimilarity  weight  of  habitat

classes, we took into account their actual spatial correlation. To measure spatial correla-

tion, we used a spatial resolution of 100 m. The resolution of the spatial units corresponds

to the median step length between two consecutive GPS data points (Δt=4 h) among the

trajectories of all individuals.  

Substitution weights were derived with a common method to compute spatial correla-

tion from categorical data, namely Join-Count Statistics Rook Case (JCS), using spatial

analysis software PaSSaGE 2 (Rosenberg & Anderson 2011). Join-Counts express how

often polygons sharing an edge (i.e. neighbours) have the same or a different value. Usu-

ally JCS is based on dichotomic maps (i.e. presence/absence of one habitat type in spatial

units), but Join-Counts can also be calculated for more than two classes (Rosenberg & An-
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derson 2011). In our study we computed the JCS for each of the four habitat classes (HC,

HO, LC, LO, see legend in main text) and presented the Join-Counts as the proportion of

the total number of compared pairs (i.e. neighbours) in a matrix of this type: 

HC HO LC LO

HC JCHC,HC JCHC,HO JCHC,LC JCHC,LO

Ma  = HO JCHO,HO JCHO,LC JCHO,LO

LC JCLC,LC JCLC,LO

 LO JCLO,LO

where 

Ma: Similarity matrix based on Join-Counts (spatial correlation matrix)

JCi,j: Proportion of Join-Counts of habitat classes (i,j) over all possible habitat pairs.

Whereas  Ma gives similarities among habitat classes (partially showed in table 3C.1), a

substitution matrix (Ms) relies on dissimilarities. Therefore we converted Ma as follows:

Ms=1 – Ma /100

Thus, Join-Counts, expressed as the proportion of the total number of compared pairs

where a specific  habitat  neighbour relationship is  not observed, are used to assess  the

dissimilarity values of the substitution matrix (Table 3C.2).  Therefore, values of  Ms range

from 0 to 1, where 0 stands for similar and 1 for dissimilar. Whereas Ma will give the pro-

portion of pairs with a specific habitat neighbour relationship (e.g. LC-LO), Ms will give the

proportion of pairs where this relationship is not observed. For example for LC-LO the

value in Ma will be 0.09, whereas in Ms the value will be 0.91 (Table 3C.2c). 

3C.2. Effects of spatial correlation on substitution matrices 

To assess how different levels of patchiness influence the substitution matrix, we cre-

ated three artificial layers with different levels of stereotyped spatial autocorrelation of hab-

itat classes (completely dispersed, completely random and completely clustered),  while

keeping the availability constant across classes. We used a polygon having the shape

of the study area, and transformed it into a grid with the specified resolution (100m). Each

cell was then assigned one of the four habitat classes, according to the simulated distribu-

tion of habitat patches (Fig.3C.1). In all cases, levels of spatial correlation were measured
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by Join-Count Statistics Rook Case and quantified by Z-scores, expressed as:

Z=((OJC - EJC)/stdev)

where:

OJC: observed Join-Counts, i.e. number of adjacent polygons having the same value.

EJC: expected Join-Counts under random distribution.

OJC and EJC were computed for each habitat class separately. The Z-score thus expressed

the level of spatial correlation with respect to the variation in the area. Specifically, it indic-

ates how many standard deviations the OJC is above or below EJC. Positive values corres-

pond to a clustered pattern, values around zero to a random pattern and negative values

to a dispersed pattern.

JCS and Z-scores of simulated scenarios (Table 3C.1) resulted in very different substi-

tution matrices  (Table 3C.2).  In  particular,  the  negative spatial  correlation  (ZHC=-29.31;

ZHO=-29.35; ZLC=-29.95; ZLO=-29.21, Table 3C.1a) of the dispersed pattern translated in a

substitution matrix without identities (dissimilarity of identities=1.00, Table 3C.2a), since

there are no adjacent units with same values. For a random distribution  (ZHC=-0.02;  ZHO

=0.55; ZLC=-1.11; ZLO=1.53, Table 3C.1b), dissimilarities between habitat use classes were

more equally distributed and the resulting substitution matrix showed similar values across

all  combinations  of  habitat  classes,  both  for  identical  and  non-identical  combinations

(Table  3C.2b).  Finally,  the  positive  spatial  autocorrelation  (ZHC=86.78;  ZHO=87.87;

ZLC=84.83; ZLO=85.92, Table 3C.1c) of the clustered pattern corresponded to lower dissim-

ilarities for identical than for non-identical combinations of habitat classes (Table 3C.2c). 

Our simulation exercise therefore showed the need to measure spatial correlation and

to account for that in a substitution matrix. Next, we show how we performed this in our

study.
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. 

Figure 3C.1.  Simulated dispersed (a), random (b) and clustered (c) spatial distribution of habitat patches

based on the shape of the study area. 

Table 3C.1. Join-Count Statistics for simulated scenarios (a, b, c). EJC=the expected number of adjacent 

spatial units with the same habitat, considering the null hypothesis of random distribution; OJC=the observed

number of adjacent spatial units with the same habitat; SdE=the Standard deviation, Z=the Z-score (how 

many standard deviations the OJC is above or below EJC) and P=P-value of Z scores.

Simulation
Spatial dis-

tribution T-T # Pairs EJC OJC SdE Z P
A Dispersed HC-HC 8220 509.61 0.00 17.39 -29.31 < 0.001
  HO-HO 8220 510.56 0.00 17.40 -29.35 < 0.001
  LC-LC 8220 526.75 0.00 17.59 -29.95 < 0.001
  LO-LO 8220 506.78 0.00 17.35 -29.21 < 0.001
B Random HC-HC 8220 513.39 513.00 17.43 -0.02 0.98
  HO-HO 8220 513.39 523.00 17.43 0.55 0.58
  LC-LC 8220 513.39 494.00 17.43 -1.11 0.27
  LO-LO 8220 513.39 540.00 17.43 1.53 0.13
C Clustered HC-HC 8220 513.39 2026.00 17.43 86.78 < 0.001
  HO-HO 8220 513.39 2045.00 17.43 87.87 < 0.001
  LC-LC 8220 513.39 1992.00 17.43 84.83 < 0.001
  LO-LO 8220 513.39 2011.00 17.43 85.92 < 0.001

86



Table 3C.2.  Substitution matrices for simulated scenarios (a,  b, c),  expressed as dissimilarity measured

using Join-Counts, i.e. the proportion of the total number of adjacent polygons where the specified habitat

neighbour relationship is not observed. Dissimilarity values for identities and non-identical combinations are

summarised for each substitution matrix where 'Id' is the dissimilarity for identities and 'Non-id μ (σ)" is the

mean and standard deviation of the dissimilarity for non-identical combinations of habitats. Low values along

the diagonal give an indication that habitat classes are highly correlated whereas high values, close to 1, are

obtained for habitat pairs which are rarely observed. 

a. Dispersed

HC HO LC LO Id Non-id. μ (σ)

HC 1.00 0.91 0.91 0.94 1.00 0.92(0.01)

HO 0.91 1.00 0.94 0.91 1.00 0.92(0.01)

LC 0.91 0.94 1.00 0.91 1.00 0.92(0.01)

LO 0.94 0.91 0.91 1.00 1.00 0.92(0.01)

b. Random

HC HO LC LO Id Non-id μ (σ)

HC 0.94 0.94 0.94 0.94 0.94 0.94(0.00)

HO 0.94 0.94 0.94 0.94 0.94 0.94(0.00)

LC 0.94 0.94 0.94 0.94 0.94 0.94(0.00)

LO 0.94 0.94 0.94 0.93 0.94 0.94(0.00)

c. Clustered

HC HO LC LO Id Non-id. μ (σ)

HC 0.75 1.00 1.00 1.00 0.75 1.00(0.00)

HO 1.00 0.75 1.00 1.00 0.75 1.00(0.00)

LC 1.00 1.00 0.76 1.00 0.76 1.00(0.00)

LO 1.00 1.00 1.00 0.76 0.76 1.00(0.00)

3C.3. Substitution matrices for simulated arenas

In this study, spatial correlation was assessed for our 9 simulated arenas each corres-

ponding to different availabilities of open/closed habitats, with a random distribution (see

Material and Methods, Simulation arenas and simulated trajectories paragraph). As an ef-

fect of the varying proportions of habitats, the spatial correlation structure was different

across arenas and could be matched with those from real bimonthly home ranges. Con-

trary to our simulation exercise described above, the spatial correlation structure was a

consequence of different habitat availability in the arenas, as typical in the real case. In-

deed, the arenas showed positive relation between spatial correlation (i.e. increasing Z-

scores) and availability of open or closed habitats (Fig.3C.2). Our simulated landscapes in

arenas therefore gave a good assessment of the real habitat prevalence and distribution

(i.e. in home ranges).
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Here we provide the JCS and Z-scores for the 9 simulated arenas (table 3C.3), to-

gether with the corresponding substitution matrices (table 3C.4).

Table  3C.3.  Join-Count  Statistics  for  9  arenas  with  variable  proportions  of  open  and  closed  habitats

(expressed as the percentage of open habitat). See table 3C.1 for explanation of codes.

% open T-T # Pairs EJC OJC SdE Z P

10 HC x HC 19800 4009.01 7982 35.1 113.191 < 0.001

 HO x HO 19800 49.41 107 6.68 8.62126 < 0.001

 LC x LC 19800 4009.01 7985 35.1 113.276 < 0.001

 LO x LO 19800 49.41 101 6.68 7.72305 < 0.001

20 HC x HC 19800 3167.52 6312 33.99 92.5119 < 0.001

 HO x HO 19800 197.82 405 12.67 16.352 < 0.001

 LC x LC 19800 3167.52 6312 33.99 92.5119 < 0.001

 LO x LO 19800 197.82 402 12.67 16.1152 < 0.001

30 HC x HC 19800 2425.05 4805 32.18 73.9574 < 0.001

 HO x HO 19800 445.25 872 17.97 23.7479 < 0.001

 LC x LC 19800 2425.05 4858 32.18 75.6044 < 0.001

 LO x LO 19800 445.25 916 17.97 26.1964 < 0.001

40 HC x HC 19800 1781.58 3514 29.67 58.3896 < 0.001

 HO x HO 19800 791.68 1552 22.56 33.7021 < 0.001

 LC x LC 19800 1781.58 3565 29.67 60.1085 < 0.001

 LO x LO 19800 791.68 1588 22.56 35.2979 < 0.001

50 HC x HC 19800 1237.13 2438 26.47 45.3672 < 0.001

 HO x HO 19800 1237.13 2438 26.47 45.3672 < 0.001

 LC x LC 19800 1237.13 2473 26.47 46.6895 < 0.001

 LO x LO 19800 1237.13 2467 26.47 46.4628 < 0.001

60 HC x HC 19800 791.68 1554 22.56 33.7908 < 0.001

 HO x HO 19800 1781.58 3530 29.67 58.9289 < 0.001

 LC x LC 19800 791.68 1575 22.56 34.7216 < 0.001

 LO x LO 19800 1781.58 3539 29.67 59.2322 < 0.001

70 HC x HC 19800 445.25 862 17.97 23.19143 < 0.001

 HO x HO 19800 2425.05 4811 32.18 74.1439 < 0.001

 LC x LC 19800 445.25 886 17.97 24.52699 < 0.001

 LO x LO 19800 2425.05 4825 32.18 74.5789 < 0.001

80 HC x HC 19800 197.82 373 12.67 13.8264 < 0.001

 HO x HO 19800 3167.52 6285 33.99 91.7176 < 0.001

 LC x LC 19800 197.82 383 12.67 14.6156 < 0.001

 LO x LO 19800 3167.52 6281 33.99 91.5999 < 0.001

90 HC x HC 19800.00 49.41 95.00 6.68 6.82485 < 0.001

 HO x HO 19800.00 4009.01 7970.00 35.10 112.849 < 0.001

 LC x LC 19800.00 49.41 97.00 6.68 7.12425 < 0.001

 LO x LO 19800.00 4009.01 7971.00 35.10 112.877 < 0.001
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Table  3C.4.  Substitution  matrices  for  the  nine  arenas.  Dissimilarities  of  substitutions  vary  according  to

availability, thus presenting different correlation structures. For example, substitutions between open/closed

habitats for same elevation classes (e.g. HCxHO, LCxLO) are less dissimilar when open/closed habitats are

more proportional (40% to 60%) (see values in bolt for an example of HcxHO).

10% HC HO LC LO  20% HC HO LC LO  30% HC HO LC LO

HC 0.597 0.911 0.996 0.999  HC 0.681 0.842 0.997 0.999  HC 0.757 0.789 0.998 0.999

HO 0.911 0.995 0.999 1  HO 0.842 0.98 0.999 1  HO 0.789 0.956 0.999 0.999

LC 0.996 0.999 0.597 0.911  LC 0.997 0.999 0.681 0.842  LC 0.998 0.999 0.755 0.794

LO 0.999 1 0.911 0.995  LO 0.999 1 0.842 0.98  LO 0.999 0.999 0.794 0.954

                 

40% HC HO LC LO  50% HC HO LC LO  60% HC HO LC LO

HC 0.823 0.758 0.998 0.999  HC 0.877 0.749 0.999 0.999  HC 0.922 0.759 0.999 0.999

HO 0.758 0.922 0.999 0.999  HO 0.749 0.877 0.999 0.998  HO 0.759 0.822 0.999 0.998

LC 0.998 0.999 0.82 0.763  LC 0.999 0.999 0.875 0.752  LC 0.999 0.999 0.92 0.761

LO 0.999 0.999 0.763 0.92  LO 0.999 0.998 0.752 0.875  LO 0.999 0.998 0.761 0.821

             

70% HC HO LC LO  80% HC HO LC LO  90% HC HO LC LO

HC 0.956 0.789 1 0.999  HC 0.981 0.839 1 0.999  HC 0.995 0.910 1.000 1.000

HO 0.789 0.757 0.999 0.997  HO 0.839 0.683 0.999 0.997  HO 0.910 0.597 0.999 0.996

LC 1 0.999 0.955 0.791  LC 1 0.999 0.981 0.839  LC 1.000 0.999 0.995 0.910

LO 0.999 0.997 0.791 0.756  LO 0.999 0.997 0.839 0.683  LO 1.000 0.996 0.910 0.597

           

Figure 3C.2. Spatial correlation (Z-scores) in relation to habitat availability (x-axis, % open habitat) for HCx-

HC (red), HOxHO (yellow), LCxLC (blue), LOxLO (light blue).
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APPENDIX 3D – TREES

Figure 3D.1. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

10% open habitat (T10). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use  of  open/closed  habitats  and  distinguish  homogeneous  closed  and  random  (brown  and  dark  blue

branches), alternating (orange and blue branches) and homogeneous open (yellow and light blue branches).

Grey branches are sequences with undefined classification or clusters with mixed sequences of high and

low.
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Figure 3D.2. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

20% open habitat (T20). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use  of  open/closed  habitats  and  distinguish  homogeneous  closed  and  random  (brown  and  dark  blue

branches), alternating (orange and blue branches) and homogeneous open (yellow and light blue branches).

Grey branches are sequences with undefined classification or clusters with mixed sequences of high and

low.

92



Figure 3D.3. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

30% open habitat (T30). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use  of  open/closed  habitats  and  distinguish  homogeneous  closed  and  random  (brown  and  dark  blue

branches), alternating (orange and blue branches) and homogeneous open (yellow and light blue branches).

Grey branches are sequences with undefined classification or clusters with mixed sequences of high and

low.
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Figure 3D.4. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

40% open habitat (T40). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), random

(red and cyan branches), alternating (orange and blue branches) and homogeneous open (yellow and light

blue  branches).  Grey  branches  are  sequences  with  undefined  classification  or  clusters  with  mixed  se-

quences of high and low.
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Figure 3D.5. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

50% open habitat (T50). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), random

(red and cyan branches), alternating (orange and blue branches) and homogeneous open (yellow and light

blue  branches).  Grey  branches  are  sequences  with  undefined  classification  or  clusters  with  mixed  se-

quences of high and low.
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Figure 3D.6. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

60% open habitat (T60). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), random

(red and cyan branches), alternating (orange and blue branches) and homogeneous open (yellow and light

blue  branches).  Grey  branches  are  sequences  with  undefined  classification  or  clusters  with  mixed  se-

quences of high and low.
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Figure 3D.7. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

70% open habitat (T70). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), alternat-

ing (orange and blue branches) and homogeneous open and random (yellow and light blue branches). Grey

branches are sequences with undefined classification or clusters with mixed sequences of high and low.
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Figure 3D.8. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

80% open habitat (T80). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), alternat-

ing (orange and blue branches) and homogeneous open and random (yellow and light blue branches). Grey

branches are sequences with undefined classification or clusters with mixed sequences of high and low.
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Figure 3D.9. Simulated and roe deer bimonthly sequences of habitat use classes (right portion of the panel;

daily scale reported bottom-right), and resulting dissimilarity tree, based on the Hamming distance algorithm

(left portion of the panel). The simulated sequences are derived from a trajectory running over an arena with

90% open habitat (T90). Real sequences were included with simulated ones if referred to home ranges with

the same open habitat proportion. Tree ‘leaves’ represent a real or simulated sequence, while ‘nodes’ indi -

cate their clustering. Branch lengths (distance between leaves, and first common node: bottom-left for the

scale) indicate the dissimilarity between individual sequences. The split into two main clusters define first-or-

der clusters separation, based on use of elevation classes (high, low). Second-order clusters are based on

use of open/closed habitats and distinguish homogeneous closed (brown and dark blue branches), alternat-

ing (orange and blue branches) and homogeneous open and random (yellow and light blue branches). Grey

branches are sequences with undefined classification or clusters with mixed sequences of high and low.
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APPENDIX 3E – CLUSTERS OF REAL BIMONTHLY SEQUENCES

Figure 3E.1. Clusters of real bimonthly sequences with similar patterns of sequential habitat use, extracted

from the corresponding dissimilarity trees. Left and right ‘columns’ refer to high and low elevation clusters. Al-

ternating (A), homogeneous closed (C), homogeneous open (O), random when available (R) and undefined

(U) clusters at both elevations are represented by row. Midnight of consecutive days is indicated by vertical

black lines. The id (left y-axis, e.g. W_sF_aA_mM) gives the individual code. Variables season, age, sex and

migration are respectively represented as colour-coded bars at the right side of the sequences (see Fig.3.4

for the legend). The y-axis on the right side gives the proportion (%) of open habitats within the roe deer's bi-

monthly home range. 
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CHAPTER 4

Individual Movement - Sequence Analysis Methods (IM-SAM):

characterising  spatio-temporal  patterns  of  animal

trajectories across scales and landscapes

De Groeve, J., Cagnacci, F., Ranc., N., Bonnot., N., Benedikt, G., Heurich, M., Hewison,

A.J.M.,  Kroeschel,  M.,  Linnell,  J.D.C.,  Morellet,  N.,  Mysterud, A.,  Sandfort,  R.,  Van de

Weghe, N.

Submitted in: International Journal of Geographical Information Science

ABSTRACT - We present methodological advances to a recently developed framework to

study sequential habitat use by animals using a visually-explicit and tree-based Sequence

Analysis Method (SAM), derived from molecular biology and more recently used in time

geography. Habitat use sequences are expressed as annotations obtained by intersecting

GPS movement trajectories with environmental layers. Here, we develop IM-SAM, where

we use individual home ranges as the reference spatial context. To assess the applicability

of our new framework, we investigated the sequential use of open and closed habitats

across multiple European roe deer populations ranging in landscapes with markedly con-

trasting structure. Starting from simulated sequences based on a mechanistic movement

model, we found that different sequential patterns of habitat use were better distinguished

as separate, robust clusters, with less variable cluster size, when habitats were propor-

tional within the home range. Application on real roe deer sequences showed that our ap-

proach effectively captured variation in spatio-temporal patterns of sequential habitat use,

and provided evidence for several behavioural processes, such as day-night habitat alter-

nation. By characterising sequential habitat use patterns of animals, we may better evalu-

ate the temporal trade-offs in animal habitat use and how they are affected by changes in

landscapes. This improved framework could also be used by geographers to study human

movement  patterns,  or  the  relationships  between  animal  and  human  spatio-temporal

movements.

101



4.1. INTRODUCTION

Understanding which habitats are used by animals through space and time is important to

establish cost-effective and time-varying policies essential for species conservation and

wildlife management purposes. In Europe, for example, landscapes are strongly affected

both by human intensification of land use (e.g. urbanisation, deforestation and road con-

struction), leading to habitat loss and fragmentation on the one side, and by the abandon-

ment of traditional agro-systems due to decreased economic viability on the other (Jaeger

et al.  2011). The latter, in combination with conservation policies (e.g. Bern Convention

(Council  of  Europe, 1979);  Habitat  and  Bird  directive  (European  Commission,  1992,

2009)), has favoured the re-colonisation of native wildlife species across a variety of land-

scapes. For example, Europe currently has twice as many wolves than the USA, with more

than twice the human population density and half of the land surface area (Chapron et al.

2014). Although many species with specific ecological requirements are decreasing in dis-

tribution and abundance due to fragmentation and habitat impoverishment (e.g. Hanski et

al. 2005, Krauss et al. 2010), several others are gradually adjusting to the European an-

thropogenic landscape by also using human-dominated land use types (i.e. agricultural

land, pastures, urban areas). In this context, spatio-temporal dynamics of animal move-

ment behaviour and habitat use may reveal patterns of important applied value. For exam-

ple, several ungulate species show higher activity and intensified movement at dusk and

dawn, resulting in more road-crossings (Kämmerle  et al. 2017) and hence vehicle colli-

sions during twilight. Similarly, the fragmented patchwork of forest habitat within a matrix of

agricultural areas has favoured the use of crops or crop remains as a forage resource by

ungulates.  For  example,  roe deer  (Aulak & Babinska-Werka 1990;  Cibien  et  al.  1989;

Hewison et al. 2001), and especially wild boar (Podgórski et al. 2013) have adapted very

well to agro-ecosystems or even urbanised areas (i.e. phenomenon of ‘urban wildlife’; Ma-

gle et al. 2012), and can reach local high abundances that may result in conflicts. Conse-

quently, we need robust methodological approaches to understand the temporal patterns

in the use of complementary anthropogenic resources (such as food and cover) in order to

take appropriate management actions. 

Habitats provide the resources (e.g. food, cover, thermal protection) that species

need for survival and reproduction (Manly et al. 2002). European-level mapping products

(e.g. Corine Landcover, Copernicus; see eea.europa.eu) which provide a human represen-

tation of the land use are often used by movement ecologists to quantify such resources
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(e.g. forest cover) by linking these maps with GPS locations obtained from animal tracking

projects. Improved spatio-temporal resolution and range of both remote sensing products

and animal tracking datasets are allowing ecologists to derive ever more detailed animal

trajectories annotated with habitat information, and hence facilitate the study of the animal-

habitat relationship over time (Cagnacci et al. 2010, Demšar et al. 2015, Kays et al. 2015).

Using concepts from the discipline of time geography (e.g. space-time cubes, space-time

prisms), ecologists and geo-informaticians have together developed several temporally-ex-

plicit methods to visualise and analyse movement in relation to habitat type and structure

(see Demšar et al. 2015 for overview). One way of considering time dependency is to in-

vestigate sequentiality, which takes into account the temporal order in which behavioural,

ecological or movement components occur. Several promising methods have been pro-

posed often relying on approaches developed in different research fields or by combining

several concepts. Fourier and wavelet transforms have been used to simultaneously de-

tect repetitive, periodical patterns in ecological variables, such as habitat features, at multi-

ple temporal scales (Wittemyer et al. 2008, Bar-David et al. 2009, Polansky et al. 2010, Ri-

otte-Lambert et al. 2013, 2016). Minimal conditional entropy was used to identify a scale of

repetitiveness in resource patch visitation (i.e, traplining, Riotte-Lambert et al. 2016). Utili-

sation distribution in combination with residence time was also proposed to identify recur-

sive patterns in space use from movement data (Benhamou and Riotte-Lambert 2012). Fi-

nally, the Sequence Analysis Methods (SAM) approach was recently suggested to mea-

sure similarity between temporally ordered sequences of habitat use for individuals or pop-

ulations (De Groeve et al. 2016). SAM is a tree-based approach developed in computer

science to measure dissimilarity between multiple strings of characters, and has subse-

quently been used in different fields of study. It was first adopted to measure dissimilarity

between DNA and protein sequences. The popularity of the technique in molecular biology

resulted in several applications in other fields such as in sociology to study life courses

(e.g. Abbott 1995, Wilson 2006, Gabadinho et al. 2011), in time geography for transporta-

tion science (Wilson 2008), in tourism research (Shoval and Isaacson 2007), in indoor nav-

igation (Delafontaine  et al. 2012) and in choreography research (Chavoshi  et al. 2015);

and, recently, in the field of animal movement ecology (De Groeve et al. 2016). 

De Groeve et al. (2016) showed that for a given proportion of habitat used, animals

can show very different sequential patterns. For example, while animals may equally use

open and closed habitats over a given time-window, their sequential use patterns were

markedly different (from random to day-night alternating patterns). Based on De Groeve et
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al. (2016), we described here an improved methodological framework accounting for indi-

vidual variability in landscape heterogeneity (i.e. the distribution of resources in a land-

scape),  IM-SAM (Individual  Movement  -  Sequence  Analysis  Method).  In  essence,  the

SAM-framework of De Groeve et al. (2016) used simulated sequential habitat use patterns

to determine the classification of real habitat use sequences by using movement simula-

tions in artificially generated landscapes that mimic habitat composition and structure of an

animal’s movement context. Instead, in IM-SAM we use the real landscape context for an

individual animal (i.e. its home range) and hence account for the true variation in habitat

composition  and structure  among individuals.  Since simulations  of  sequential  patterns

generate more complex outputs in real landscapes, the clustering of sequences into trees

requires a robust procedure to define cluster cut-offs (i.e. the number of clusters in a tree).

With these improvements (i.e. individual based simulations, improved cut-off definition), we

could expand the applicability of IM-SAM from animal trajectories derived from a single lo-

cal context (i.e. single population) to a continental scale (i.e. multiple populations at the

European level). 

We evaluated this adjusted framework in a case study using GPS movement data of

nine  European roe deer  (Capreolus  capreolus)  populations with  contrasting landscape

structure from the EuroDEER collaborative initiative (euroungulates.org). As roe deer are

generally described as a forest species, but often feed on rich resources available in more

open habitats (e.g.  meadow, crop),  we described sequential  use of two simple habitat

classes, open and closed, across 404 individual animals and expressed regularised ani-

mal trajectories as character sequences, representing the used habitats.

4.2. MATERIAL AND METHODS – HABITAT USE SEQUENTIAL ANALYSIS

To describe sequential use of open and closed habitats for individual animals, we followed

a workflow modified from De Groeve et al.  (2016) that  can be summarised in four steps

(Fig.4.1). First, for each individual roe deer, we produced an exploratory tree based on bi-

weekly trajectories annotated with habitat categories and used to formulate hypotheses of

expected  patterns  of  sequential  habitat  use  (Fig.4.1a).  Next,  we  generated  stochastic

movement rules for such expected patterns of sequential habitat use, and ran the move-

ment models within each individual’s home range in order to produce individual specific

simulated trajectories (Fig.4.1b), and individual level simulation trees (Fig.4.1c). Simulation
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trees were therefore based on the true landscape context where each individual ranged.

Finally, we combined real and simulated trajectories to produce trees where real and simu-

lated habitat use sequences with a high degree of similarity were grouped together, so to

assign a specific sequential habitat use type to real trajectories (Fig.4.1c/d). Finally, we

pruned the output tree and visualised only the classified real trajectories, to facilitate inter-

pretation (Fig.4.1d). We now describe each step in detail.

Figure 4.1. Workflow chart of the procedure to classify spatio-temporal habitat use patterns of individual ani-

mal trajectories using Individual Movement-Sequence Analysis Method (IM-SAM). Trees represent sequence

dissimilarities between habitat use sequences, indicated by the branch lengths. Each tree leave corresponds

to one biweekly sequence, which were visualised beside the tree, together with a colour-coded bar repre -

senting a variable related to each sequence. See main text for details. 

4.2.1. Real trajectories - exploratory trees (Fig.4.1a)

We extracted roe deer trajectories  from the EuroDEER database (Cagnacci  et al. 2011,

euroungulates.org) and subsampled them into 16-day GPS trajectories with a fixed 4-hour
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relocation interval (0, 4, 8, 12, 16 and 20h) over a fixed yearly schedule starting on Janu-

ary 1st (e.g. 01/01-16/01, 17/01-01/02, etc.). To increase the sample size we also included

relocations within 1 hour from the above 4-hour intervals, after verifying that this did not af -

fect exploratory tree clustering. If multiple GPS locations were within this time window we

selected the closest one in time to the reference time stamps. Instead, if no fix was ob-

tained for a reference time stamp we filled the gap with a missing value (NA). We anno-

tated each 16-day trajectory with the percentage tree cover (0-100%) extracted from the

High Resolution Layer-Tree Cover Density 2012 (TCD, EEA 2012, 20m spatial resolution),

thus obtaining the biweekly sequences of habitat use. We reclassified TCD into two dis-

tinct classes, using a cut-off point for pixel-level tree cover density of 50%, distinguishing

closed (C,  ≥50%) and open (O, <50%) habitat  classes. The final  dataset  consisted of

5,402 biweekly habitat use sequences of 404 animals (236 females and 168 males) of

nine European roe deer populations characterised by varying forest composition (see map

in Chapter 2, Fig. 2.3: Southcentral Norway, NK5; Southwest France, FR8; Switzerland or

Swiss Alps, CH25; Southern Germany, DE15, DE31; Southeast Germany or Bavarian For-

est, DE2; Northern Italy or Italian Alps, IT1, IT24; Eastern Austria or Austian Alps, AU17).

After processing, the dataset consisted of 14,607 missing values (2.82%) and 503,985

true GPS locations (97.18%), of which 273,230 (52.69%) were classified as open and

230,755 (44.50%) as closed habitat. See Appendix 4A for the complete data preparation

procedure and Appendix 4B for the TCD-raster validation and details about the threshold

definition. 

We obtained an initial visualisation of the habitat use patterns by creating exploratory

trees separately for each individual (Fig.4.1a). These trees were used to describe sequen-

tial patterns and helped to build hypotheses for expected models of sequential habitat use

(see below). Sequence Analysis Methods use a dissimilarity algorithm to compute the dis-

tance (dissimilarity) between all possible pairs of sequences. All these pairwise distances

are written into a dissimilarity matrix, for example through the Hamming distance algorithm

(HD), which calculates the minimum number of character substitutions (i.e. O and C) re-

quired to match a number of sequences of equal length (Gabadinho et al. 2011). From the

HD dissimilarity matrix, we subsequently calculated dissimilarity trees using a hierarchical

clustering algorithm (Ward's method, Gabadinho et al. 2011, De Groeve et al. 2016). 
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4.2.2. From SAM to IM-SAM

a. Individual-specific simulated trajectories (Fig.4.1b)

We computed individual  home ranges as 100% Minimum Convex Polygons (MCP) for

each roe deer separately as a simple representation of the available space in which move-

ment of that individual may occur. We then intersected each home range with the TCD

raster re-classified as open/closed habitat as described above, and characterised all home

ranges by their relative habitat proportion. We obtained both home ranges with a marked

prevalence of a given habitat, for example 10% of open and 90% of closed, and home

ranges where the proportion of the two habitat categories was similar (for example 40%

open and 60% closed). Hence, in the following analyses, we classified home ranges into 5

classes (0.1 to 0.5) of ‘relative proportion of open/closed habitat’ for illustrative purposes

(e.g. Fig.4.2). So, for example, the 0.1 class indicates both 10% open - 90% closed, and

10% closed- 90% open habitat, unless otherwise specified. 

Within each home range we simulated sequential habitat use patterns using a sim-

ple spatially-explicit stochastic movement model to express expected sequential habitat

use patterns (see Appendix 4C for the full description). In particular, according to the ex-

ploratory trees obtained from real sequences with six locations per day (Fig.4.1a), we iden-

tified six characteristic patterns of sequential habitat use (Fig.4.1b): homogeneous use of

closed habitat, or pattern 'c', the resulting day-night sequence (DS) being: DS=CCCCCC;

homogeneous use of open habitats, or pattern 'o' (DS=OOOOOO); and three patterns of

day-night alternating use of both open and closed habitats, or patterns 'a'. The alternating

patterns were generated on the assumption that roe deer use open and closed habitats in

relation to the daylight cycle, with use of open habitat more prevalent at night (Mysterud et

al. 1999; Bonnot et al. 2013). In addition, we accounted for variation in day length over the

different locations included in the study according to the ephemeris. We distinguished the

following  patterns:  dominant  use  of  open  habitat  from  16:00  to  08:00  (pattern  'a24',

DS=OOCCOO), equal use of both habitats - open from 20:00 to 08:00, closed from 08:00

to 20:00 (pattern 'a33', DS=OOCCCO), and dominant use of closed habitat from 04:00 to

20:00 (pattern 'a42', DS=OCCCCO). Finally, we defined a pattern of random use of the

landscape (hence reflecting its structure), or pattern 'u', as a control. The seeds of sto-

chastic  simulations were random release locations within  each individual  home range,

whereas successive steps were based on six sets of habitat selection rules matching the

107



aforementioned sequential behaviours. For completeness, we ran the movement simula-

tions with three selection coefficients for each selection pattern to account for behavioural

variability (selection coefficient ratios: low, 1:0.2; intermediate, 1:0.1; high, 1:0.01). Each

movement simulation was repeated 50 times for each parameter set (i.e. 6 habitat selec-

tion rules x 3 selection coefficients), varying release location between repetitions but hold-

ing release location constant across parameter sets for any given repetition. We thus ob-

tained 900 simulated sequences per individual home range (6 habitat selection rules x 3

selection coefficients x 50 repetitions).

b. Individual-specific simulation trees (Fig.4.1c)

By running the HD dissimilarity algorithm (see above) on the individual-specific simulated

sequences, we obtained 404 individual simulated trees, which illustrate the dissimilarity

among expected habitat use sequences for each individual separately. Note that HD can

be  customised  by  assigning  weights  to  character  substitutions  when  comparing  se-

quences. For example, in De Groeve et al. (2016) substitution weights were derived from

spatial  autocorrelation of habitat  classes within  simulated landscapes.  However,  in IM-

SAM we considered substitution weights to be redundant because simulated sequences

were modelled within each individual home range and habitat was classified as a binary

category. Hence, spatial structure and thus spatial autocorrelation, were directly accounted

for by using this individual-specific modelling approach.

c. Robust classification of individual-specific simulation trees: defining the cut-off 

distance

In the obtained trees, the leaves are the sequences, and while remaining nodes represent

clusters (groups of sequences) for which the branch lengths measure the extent of dissimi-

larity. In other words, the longer the branch length, the higher the dissimilarity between

clusters. Hence, the number of clusters that are identified in a tree depends on a cut-off

value that should be selected to obtain the most robust dissimilarity tree (Hennig et al.

2007). To assess robustness, an iterative procedure of sequence re-clustering such as

bootstrapping is generally used. Bootstrapping metrics express the consistency in reclassi-

fication of sequences in the same clusters. The same procedure can be repeated for differ-

ent cut-off values (and therefore number of clusters), using the optimisation of bootstrap-
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ping metrics as a criterion to decide upon the best cut-off point. In IM-SAM, we propose a

standardised procedure to identify the most robust and informative tree. 

For the trees based on real trajectories only (Fig.4.1a) we did not include any cut-

off, since we used them for exploratory purposes only. For the clustering of simulated tra-

jectories only, and both simulated and real trajectories in the final classification (Fig.4.1c),

instead, we allowed all cut-off values (that correspond to distances from the last common

node) that generated from a minimum of 2 to a maximum of 20 clusters per tree. For each

cut-off value, we computed the Jaccard bootstrapping index for each cluster (BJ, or boot-

mean; Hennig 2007) using 1000 iterations (De Groeve et al. 2016), and then we computed

the median BJ of all clusters (BJMD∈[0,1]) , and the BJ interquartile range (BJ IQ∈[0,1]) .

We finally defined a combined bootstrapping index BJ IQMD (BJ IQMD∈[0,1]) that we computed

for each cut-off value:

BJ IQMD=
BJMD+(1−BJIQ )

2

To evaluate the optimised cut-off value, we used a semi-automated selection proce-

dure based on the optimisation of the BJ IQMD index. Specifically, we plotted BJIQMD in relation

to  the  number  of  clusters  for  each  individual  (Fig.4.2,  top  panel  and  Appendix  4D,

Fig.4D.1). In most cases, the plot showed two peaks: a primary peak, corresponding to a

cut-off  value that  generated trees with  two to  three clusters,  that  separate sequences

based on general dissimilarity (for example: homogeneous sequences from all  others);

and a secondary peak, corresponding to a cut-off value that generated trees with five to

eight clusters, catching the complexity of the sequences, i.e. the diversity of sequential

habitat  use  patterns  generated  by  the  simulations  (see  also  De  Groeve  et  al. 2016).

Hence, we excluded the primary peak and defined the cut-off value based on maximum

values of BJIQMD within the secondary peak (Fig.4.2, upper panel, light blue region). Then,

we did a visual check of all trees derived from the cut-off values selected as above to iden -

tify potential inconsistencies. 

d. Identification of cluster types (‘cluster tagging’)

Once we obtained the 'optimal' tree, we classified each cluster on the basis of the sequen-

tial patterns that composed the cluster (‘cluster tagging’). First, we calculated the propor-
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tion of each sequential habitat use pattern in each cluster. Then, to identify cluster types,

we appended each pattern representing at least 10% of the cluster to a tag, ordered by

abundance (first criterion) and giving priority to homogeneous patterns (second criterion).

For example, if a cluster consisted of 40% a24 sequences, 30% a33 sequences, and 20%,

a42 sequences, the resulting tag was a24_a33_a42 (first criterion); or, a composition of

30%  of  O  sequences,  30%  of  a24,  20%  of  a33,  and  15%  of  a42,  was  tagged  as

O_a24_a33_a42 (second criterion). We also used a simplified classification by retaining

the most abundant sequential habitat use pattern only as the cluster tag (e.g. a24 and O in

the two examples above, respectively).

4.2.3 Simulated and observed trajectories - classification trees (Fig.4.1c/1d)

In a final step, we obtained the classification tree for each individual by re-running the HD

algorithm on both real and simulated sequences, and by using the cut-off distance as de-

fined above. This way, simulated sequences were used as a guide for classification of real

sequences to their most similar cluster type (real habitat use sequence tagging, Fig.4.1c).

For  visualisation purposes, we pruned the classification tree by only  retaining real  se-

quences (Fig.4.1d).

4.3. RESULTS

4.3.1. Classification of individual-specific simulation trees

The application of the HD algorithm to simulated biweekly sequences generated 404 trees,

one  per  individual  home  range.  According  to  the  simulation  procedure  (par.4.2.2a,

Fig.4.1b)), we expected trees to be composed of 6 clusters with 150 sequences each. In-

stead, we found a substantial deviation from this expectation (Appendix 4E) that we attrib-

uted to individual differences in the environmental context, and notably to the relative pro-

portion of open vs. closed habitat within the individual’s home range.

Using the IM-SAM cut-off criterion (i.e. the second peak in the plot of BJ IQMD  for all

cut-off values; Fig.4.2, top panel), we automatically identified 394 simulation trees, mainly

composed of five (164 trees, 40.59%), six (192 trees, 47.52%) or seven (38 trees, 9.41%)

clusters, whereas trees with three and eight clusters were rare (7 and 3 respectively, or

1.73% and 0.74%). The overall average BJIQMD of these trees was 0.749±0.111 which cor-
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responded to a high BJMD (0.850±0.066), indicating high inter-cluster dissimilarity, and a

low BJIQ (0.123±0.078), indicating low variability in inter-cluster dissimilarity, thus confirm-

ing the robustness of the cluster classification. For 32 trees, the number of clusters was

manually adjusted to distinguish clear and obvious clusters (from five or six to six, seven,

or eight clusters), but this resulted in a negligible change in average BJIQMD (decrease of

0.007, 0.742±0.115). Furthermore, we noted that the relative proportion of open vs. closed

habitat in the home range affected cluster quality (i.e. clustering robustness). Specifically,

BJIQMD increases when the proportion of closed and open habitats is more or less balanced

(Fig.4.2, top panel: higher to lower values from dark to light trend lines). The correspond-

ing  BJMD values  also  increase  when  the  proportions  of  open  and  closed  are  similar

(Fig.4.2, top panel: green shade on the trend lines), whereas the corresponding BJIQ val-

ues decrease (Fig.4.2, top panel: orange to green points along the trend lines). Despite

these differences between classes of habitat proportion, the trend in BJIQMD was consistent,

with a second peak for values of between five and seven clusters, and a rapid drop after

that.

The proportion of open vs. closed habitat in the home range also affected the cluster

size within simulation trees. When the proportion of open and closed habitat in the home

range was similar, the trees for simulated sequences were more evenly classified between

different  clusters,  whereas  when  a  given  habitat  type  was  preponderant  in  the  home

range,  some  clusters  were  composed  of  a  larger  number  of  sequences  than  others

(Fig.4.2, lower panel, e.g. median lower than 150, and more outliers for class 0.1). 

The above indicates that it is easier to distinguish different sequential habitat use

patterns when the relative proportion of habitats available to the individual is similar. 
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Figure 4.2. Top plot: Trend lines representing the combined bootstrap index BJIQMD (combining the bootstrap

median BJMD and the bootstrap interquartile range BJIQ), for different cut-offs (2-20 clusters) in all 404 individ-

ual-based simulation trees. The output BJIQMD values are classified by the relative habitat proportion in the in-

dividual home ranges (gradient from light to dark grey, from 0.1 to 0.5). The plot also represents the contribu-

tion of BJMD and BJIQ to the combined index BJIQMD. Specifically, the thickness of the lines corresponds to

BJMD; when BJMD is larger than 0.8, a green transparency is added to the grey BJ IQMD trend lines. The colour

of the dots along the trend lines represents BJIQ, with values decreasing from orange to green (bright green:

BJIQ < 0.2). The transparent light blue region is the window corresponding to the second peak in BJ IQMD that

was chosen as the cut-off criterion for final simulation trees. Bottom plot: Boxplots visualise how the total

900 sequences simulated for each 404 home ranges are distributed between clusters,  when the cut-off

based on BJIQMD is used to define the corresponding simulated trees. The trees are classified by the relative

habitat proportion in the home ranges (from 0.1, to 0.5 - gradient of grey as in the top panel). When there is

no habitat preponderance (i.e. relative habitat proportion of 0.4 or 0.5), the sequences are almost equally

distributed between clusters (i.e. median cluster size close to 150, with very few outliers). 
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4.3.2. Identification of cluster types (‘cluster tagging’)

We identified 16 main cluster types among the 404 simulated trees, each representing

more than 0.5% of all clusters (Fig.4.3, circles and bars in the lower panel). The 2300 clus-

ters consisted of  one or more sequential  habitat  use patterns,  in differing proportions.

Specifically, 1613 clusters consisted of one sequential habitat use pattern (70% of total

number of clusters, Fig.4.3, top-left panel; a24: 378 clusters; a33: 272; a42: 386; c: 290; o:

170; u: 125). 513 (22%) and 139 (6%) clusters consisted of two or three sequential habitat

use  patterns,  respectively  (o_u:  170  clusters;  a33_a42:  125;  c_u:  89;  a33_a24:  52;

a24_a33: 29; a42_a33: 21; u_a33: 13; o_u_a24: 84; c_u_a42, 27). The remaining 33 clus-

ter types represented less than 3% of all clusters in total and were also used to classify

real trajectories (these rare cluster types were omitted from Fig.4.3; see Appendix 4F for

the full set of classified cluster types).

The number of sequential habitat use patterns occurring in clusters was affected by

the relative proportion of open vs. closed habitat in the home range, with clear-cut cluster

identification (i.e. one pattern per cluster) for trees derived from home ranges with similar

relative proportions of open and closed habitat, and more ‘unclear’ cluster identification

(i.e. with 3 to 4 sequential habitat use patterns) for trees derived from home ranges with a

preponderance of one habitat type only (Fig.4.3, top-left panel). 

Similarly, the occurrence and relative importance of cluster types within trees also de-

pended on the relative proportion of open vs. closed habitat in the home range (Fig.4.3,

top-right panel). For example, cluster types with one alternating sequential habitat use pat-

tern (tags: a24, a33, a42) occurred in trees corresponding to home ranges irrespective of

habitat composition, whereas the combination of homogeneous closed, random and alter-

nation a42 (tag: c_u_a42) was only recorded in trees where the home range contained

less than 40% open habitat. Indeed, sequences with random and alternating habitat use

patterns grouped together with homogeneous sequences when one habitat was prevalent

in the home range (Fig.4.3, top-right panel; the patterns are mirrored for high proportion of

open or closed habitat). Importantly, only a small proportion of alternating patterns clus-

tered together with a random pattern of use, indicating that alternating patterns rarely oc-

curred at random.

To sum up, we have shown that sequences of a-priori defined habitat use patterns

generated within individual  home ranges mostly clustered amongst  themselves, as ex-

pected, but there was some variation in the pattern. Clusters were characterised by one or
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more sequential habitat use pattern, and this ‘cross-pattern’ clustering was dependent on

the relative composition of open and closed habitats in the home range.

Figure 4.3. Bottom panel - Cluster types: coloured circles represent all sixteen main cluster types identi-

fied in simulation trees, scaled by the number of clusters of that type (actual number of clusters in brackets).

The colour is the legend for the top-right figure (see below). The horizontal bars indicate the relative propor-

tion of each sequential habitat use pattern in each cluster type (vertical axis) and the occurrence of each

cluster type in dependence on open habitat proportion in home ranges (MCP, from 0 to 1). Top panel left –

Cluster composition (a): frequency of occurrence of cluster types composed by up to five sequential habitat

use patterns. The coloured gradient indicates the proportion of open habitat in home ranges on which simu-

lation trees were based. Top panel right – Cluster composition (b): relative proportion of cluster types in

simulated trees (main y-axis), plotted against the proportion of open habitat in home ranges (main x-axis). 

4.3.3. Classification of real animal trajectories into cluster types 

After classification of simulated sequences, we re-ran SAM also including real trajectories

so that these were grouped with the most similar cluster types. After pruning (i.e. filtering

out of the simulated sequences), we obtained the classification tree of the real sequences

for each individual (See Fig.4.1d for an example, and Appendix 4G for a sample of 35

classification trees). In total, 69.40% of the real habitat use sequences were classified into
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only 6 cluster types (i.e. o_u, o_u_a24, c_u, a33, a42, a24, Table 4.1, in bolt), and 97.55%

of all real sequences into 17 cluster types (Table 4.1). The remaining 2.45% of all  real

habitat use sequences matched another 21 cluster types. All six a-priori sequential habitat

use simulated patterns were represented amongst real sequences. Specifically, 40.11% of

the sequences were classified as one of the 6 cluster types including a single sequential

habitat use pattern (for example, 4.83% of the real sequences were classified as homoge-

neous closed, and 11.85% were classified as alternation a33, Table 4.1). Another 38.20%

were classified into cluster types that included a combination of two patterns, especially a

combination of homogeneous open/closed with random patterns (i.e. 29.40%, o_u, c_u,

Table 4.1), or a combination of two alternating patterns (i.e. 8.26%, a33_a42, a33_a24,

a42_a33, a24_a33). Finally, a remaining 21.69% of the real sequences were classified into

cluster types that included a combination of three or more sequential habitat use patterns.

When these results were considered with the most simplified classification (i.e. retaining

the most abundant pattern only), the majority of the sequences were classified as homo-

geneous open (o, 31.51%), and homogeneous closed (c, 24.38%). More than 40% of the

sequences were classified as the three types of habitat alternation (a33, 18.68%; a42,

10.90%; a24, 10.07), while the smallest proportion of habitat patterns corresponded to ran-

dom sequential use of habitat (u, 4.46%). 
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4.4. DISCUSSION

In this paper,  we propose a generalisable ecological  application of Sequence Analysis

Methods, IM-SAM to describe sequential habitat use of GPS-tracked animals. Below, we

first discuss the methodological advances of IM-SAM. Second, we consider in further de-

tail the ecological relevance of variation in the observed spatio-temporal patterns of roe

deer sequential habitat use across Europe. Finally, we discuss how IM-SAM can be used

for other ecological and geographical applications.

4.4.1. IM-SAM-procedure

IM-SAM provides a suitable method to detect similarity in sequential patterns in movement

data of animal species. The IM-SAM framework involves three methodological steps. First,

exploration trees are built using real sequences only (Fig.4.1a). Then simulation trees are

generated taking into account the individual spatial  context using simulated sequences

only (Fig.4.1b/c). Finally, classification trees are produced based on real and simulated se-

quences combined (Fig.4.1c/d). One of the most important advances of IM-SAM, com-

pared to other previous ecological applications of the SAM framework (De Groeve et al.

2016), is to account for the spatial context in which an animal moves, by generating indi -

vidual-specific,  spatially-explicit  simulated sequences.  In  this  way,  individual  sequential

patterns of habitat use can be extracted in a standardised and comparable manner across

a diversity of landscapes, as done here, facilitating multi-population comparisons. In this

study, we generated simulations based on day-night habitat use patterns. This might not

be optimal  for  other studies. The simulation rules must  be based on the question ad-

dressed, on the behavioural traits of the species, and the spatio-temporal resolution of the

study.  For  example,  when studying migration-timing and the use of  summer vs winter

ranges, simulations might be better based on a weekly timeframe. The IM-SAM procedure

only detects sequential patterns that are coded within the simulation rules. While this in-

sures the robustness of the approach, it requires an attentive evaluation of the exploration

trees to define the expected sequential  habitat  use patterns. In this sense, exploratory

trees represent the empirical observations on which to build the set of hypotheses. More-

over, exploratory trees allow the identification of other repetitive patterns in a dataset, such

as the occurrence of missing data that are often associated with particular habitats (e.g.

forest,  topographic complexity)  and/or behaviours (e.g. resting; Frair  et al.  2010).  They
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also allow to determine associations between given sequential patterns and other environ-

mental variables, such as the season (like in our example Fig.4.1a).

In comparison with the simplified model used in De Groeve et al.  (2016), we here

simulated sequences within the true landscape context giving more complex and variable

patterns, and hence resulting in more complex dissimilarity trees requiring methodological

refinements to obtain robust classifications. Specifically, we needed a better definition for

the cut-off value for cluster definition. Indeed, the optimal number of clusters can be de-

rived using many different approaches. Several SAM-applications (e.g. Shoval and Isaac-

son 2007) define the cut-off value by visual exploration of clusters in dissimilarity trees

without considering the robustness of the clusters. More objective methods use within- and

between-cluster quality assessments, such as silhouette plots (Rousseeuw et al. 1987), or,

as often used in DNA-analysis, cluster stability procedures based on bootstrapping (e.g.

Jaccard bootstrapping, BJ). Due to a large sample size, we not only needed an improved

method, but also a semi-automated standardised approach. Here, we extended the ap-

proach of De Groeve et al. (2016), based on median values in BJ, by also accounting for

the interquartile range in BJ, and defining a combined bootstrapping index. In our case,

the sequences corresponded to simulated behaviours (i.e. discrete trajectories) that were

obtained through a set of stochastic rules, applied to real and highly heterogeneous envi-

ronments. Hence, some variability in the output sequences, and so in the clustering, can

be expected, especially when the proportion of alternative habitats is highly unequal within

individual home ranges (see Fig.4.3). For this reason, when evaluating the threshold for

the ‘optimal’ classification into trees, we combined a central tendency (BJMD), and a disper-

sion measure (BJIQ) into a unique index. We think that this procedure could be appropriate

for other SAM applications.

Another potential application of IM-SAM is to identify the spatio-temporal patterns of

habitat use present in clusters with tags that are assigned by a standard set of rules. Such

‘tags’ can be used as levels of a categorical variable in established statistical modelling

frameworks, such as multivariate statistics (e.g. Jongman et al. 1995) or Generalised Lin-

ear Modelling (e.g. Pinheiro and Bates 2000; Zuur et al. 2009). SAM was originally applied

to the ecological context as a spatio-temporal exploratory tool (De Groeve et al. 2016). IM-

SAM takes this a step forward, opening the potential to use spatio-temporal patterns as a

variable in spatial ecological modelling. For example, these patterns can be studied in re-

lation to environmental drivers, such as temperature, season, presence of predators, an-

thropogenic factors, such as hunting regime or agricultural practices, population level char-
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acteristics, such as density, and individual life-history traits, e.g. sex, age, or reproductive

success. Life-history traits is any trait characterising upcoming events throughout the life-

time of an animal. For instance, being male or female will result in different choices and

behaviours throughout the whole life cycle. 

One of the most important advantages of IM-SAM is the possibility to express se-

quences as multi-level habitat categories, although here we used a simple case of two al-

ternative habitat types (open vs. closed). Note that for continuous or discretised habitat

variables, which are expected to be spatially correlated, substitution weights are essential

to correct for classes that are more similar to each other. For example, in case of four habi-

tat  classes with different forest cover density (<25%, 25-50%, 50-75%, >75%) a forest

cover density of <25% is more similar to the 25-50% category than to the >75% one. In the

R package TraMineR such substitution weights can be user-defined or assessed automati-

cally based on sequence characteristics (Gabadinho et al. 2011). While automatic compu-

tation of substitution weights is sufficient for exploration trees, we recommend assessing

them directly  by  measuring  spatial  correlation  at  the  relevant  scale  (i.e.  median  step

length; see De Groeve et al. 2016) for simulation and classification trees. However, while

the exploration phase can handle a large number of classes, we recommend minimising

the number of levels of habitat categories to the most essential for simulation and classifi -

cation. Indeed, a higher number of levels generate more complex simulated sequential

habitat use patterns. For example, in our simplified case study with two habitat types, we

identified six expected sequential habitat use patterns.

4.4.2. Ecological insights and geographical applications

Insights derived from IM-SAM can be used to better understand the impact of human land

use on animal habitat use, since both animals and humans move in the same landscape

(Demšar et al. 2015). For example, in our study, a large proportion of real habitat use se-

quences of roe deer that were classified as homogeneous open, meaning that a non-negli-

gible  number  of  deer  intensively  used  human-exploited  agricultural  lands  (i.e.  crops:

Southwest France, Southern Germany; husbandry: Switzerland; Aulak & Babinska-Werka

1990). Indeed, agricultural areas may simultaneously provide both high-quality food and

cover resources for roe deer, at least during certain parts of the year (Hewison et al. 2001,

Cimino & Lovari 2006, Bjørneraas et al.  2011). Homogeneous closed sequences, on the
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other hand, were more common in forest landscapes but also occurred in agricultural land-

scapes, suggesting that some individuals are strictly associated to a given habitat type. In-

terestingly, 40% of the real sequences from all roe deer populations were classified as al -

ternating patterns between open and closed habitats. This suggests that not only the pro-

portion, but also the sequential order in which open and closed habitats are used, is an im-

portant metric for characterising the space use strategy of individual roe deer.

Activity and physiological circadian cycles, such as feeding-rumination, may explain

the observed alternation between open and closed habitats. Indeed, roe deer are known

mainly to select for forest and cover habitats during rumination and resting (Cederlund

1981), and to favour edges and open areas at peak of foraging activity at twilight and dur-

ing night (Pagon et al. 2013). This pattern may be less pronounced in areas with less hu-

man disturbance, such as for a Canadian Elk population (Ensing et al. 2014). Indeed, in

human-dominated  European  landscapes,  habitat  alternation  is  likely  a  behavioural  re-

sponse of ungulates to landscape heterogeneity and human activities. Because rich open

landscapes are often associated with higher risk of predation or disturbance, in such hu-

man-dominated environments, prey species must generally trade their acquisition of high-

quality  resources against  risk  avoidance.  By alternating between rich open areas and

more closed forest habitats, with less forage but a higher degree of shelter,  prey may

hence resolve the risk-resource trade-off (Fraser and Huntingford 1986). In particular, wild

ungulate species, including roe deer, generally use closed refuge habitats during daytime,

when human disturbance is greater, and rich open habitats during nighttime (e.g. Bonnot

et al. 2013; Padié et al. 2015). Finally, our results indicate that most of the time, the se-

quential use of open and closed habitats by roe deer were not random, since only a small

proportion of real sequences indicated a random pattern of habitat use. 

Human-driven landscape modifications have become an integral part of ecosystems,

especially in Europe. Results of this paper strongly suggest that urban planning and land-

scape management plans should account for the spatio-temporal habitat requirements of

key animal species, and not only the ‘time-compounded’ habitat suitability (e.g. through oc-

currence-based Species Distribution Models).  This  shall  be especially  important  in  the

evaluation of habitat connectivity, at different spatial scales. For example, infrastructure

developments should take into account sequential patterns of habitat use to ensure that

barriers have limited effects on animal movements (Kämmerle et al. 2017).

While IM-SAM was applied here on animal habitat use sequences, human geography

may also benefit from this novel framework. From a technical point of view, while several
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Sequence Analysis studies exist in time geography, to the best of our knowledge, robust

classifications such as those obtained by bootstrapping and the use of BJ IQMD have rarely

been explored. Moreover, the routine applicability of IM-SAM could be supported by the

use of a popular data analysis software (R version 3.4.1., R Core Team 2017; package

TraMineR, Gabadinho et al. 2011). Conceptually, with the ongoing advances in human and

animal tracking techniques, IM-SAM could ultimately be used as a tool to simultaneously

compare patterns of space use in animals and humans. For example, mapping sequential

animal and human space use in the same area could help understand if and how they dif-

fer or conflict. Alternatively, potential effects of traffic, recreation, hiking, cycling and other

human activities could be assessed by modelling them as environmental drivers of se-

quential habitat use. Furthermore, after characterising animal and human sequential space

use, one could explore the sequential pattern of non-movement related metrics obtained

through biologging, such as activity, heart rate, body temperature, or food intake (see Rop-

ert-Coudert et al. 2005).
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APPENDIX 4A – DATA PREPARATION

For the SAM analysis we extracted from the EuroDEER database (Cagnacci et al.  2011,

euroungulates.org) 16-day regularised sequences (i.e. biweekly sequences) at a fixed four

hour relocation interval (0, 4, 8, 12, 16 and 20h) on a fixed yearly schedule starting on Jan-

uary 1st (e.g.  01/01-16/01,  17/01-01/02, etc.).  The regularisation consisted in trajectory

sub-sampling or gap-filling with NA values. To increase the sample size we also included

relocations within 1 hour from the reference time stamps, after verifying that this would not

affect exploratory tree clustering (i.e, sensitivity analysis). Below, we discuss in detail the

sensitivity analysis (4A.1) and missing data treatment (4A.2).

4A.1. Sensitivity analysis

To increase the number of habitat use sequences we allowed relocations to deviate up to

1h from the reference time stamps (i.e. 0, 4, 8, 12, 16, 20h). More precisely, we increased

our sample by extracting three hour temporal resolution sequences (8 fixes per day - i.e. 0,

3, 6, 9, 12, 15, 18, 21h or 2, 5, 8, 11, 14, 17, 20, 23h) which were then subsampled to two

alternative sequences at four hour temporal resolution (6 fixes per day – i.e, 0, 3, 9, 12,

15, 21h or 23, 5, 8, 11, 17, 20h). For example, we subsampled the sequences including lo-

cations for time stamps 0, 3, 6, 9, 12, 15, 18, 21h by including the locations at timestamps

0, 3, 9, 12, 15, 21h only. The locations corresponding to the timestamps 9, 15 and 21h

were then shifted by one hour, forward or backward, to match the reference time stamps 8,

16 and 20h. This rule increased the sample of 736 sequences for 41 animals from three

populations (i.e. IT24, AU17, NK5). To investigate whether this subsampling-regularisation

rule would affect the results of SAM we performed a sensitivity analysis using hourly reso-

lution GPS movement data of population CH256.

First,  we investigated the temporal  autocorrelation between habitat  use classes of

hourly consecutive fixes (Fig.4A.1).  As expected, we observed high autocorrelation be-

tween hourly consecutive fixes (i.e. a high proportion of consecutive fixes with the same

habitat class), but differences occurred between night, day, dusk and dawn. Temporal au-

tocorrelation was highest for night locations, with approximately 85% of the fixes having

6 We performed the sensitivity analysis solely for study area CH25, because of the availability of one hour 

temporal resolution GPS movement data, and its heterogeneous landscape, where potential bias from sub-

sampling-regularisation are expected to be particularly relevant.
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the same habitat class than the previous fix. For day locations, autocorrelation slightly de-

creased to approximately 82% and dropped to a minimum of approximately 80% during

dusk (7-8h) and dawn (18-20h). Thus, a relatively high percentage (between 15 and 20%)

of the “shifted” fixes may acquire a different habitat use class due to subsampling than the

one with the reference time stamp, with the highest effects on dusk and dawn locations. 

We further  investigated  the  effects  of  subsampling  on the  sequence clustering  in

SAM. Specifically, using the same hourly dataset (CH25) we extracted 16 days regularised

sequences of habitat use using the sampling designs described above (the reference time-

stamps and the two subsampled sequences at 4 hrs resolution). A basic SAM procedure,

was then run for the three sequence datasets combined. Next, we cut the tree by distin-

guishing from two up to hundred clusters, and calculated the proportion of identical se-

quences obtained with different sampling designs, which grouped in a different cluster. Re-

sults of the sensitivity analysis showed that subsampling had a negligible effect on se-

quence clustering. For a cut-off from 0 to 20 clusters less than 1% of the triplets of sub -

sampled sequences were not classified in the same cluster. We thus expect a misclassifi -

cation for 7 out of 736 subsampled sequences, corresponding to 0.12% of the total 5727

sequences that were processed in the overall analyses.

Figure 4A.1. Lineplot giving the temporal autocorrelation (%) for habitat use classes for consecutive hourly

timestamps. Temporal autocorrelation is expressed as the percentage of fixes with the same habitat use

class at timestamp t and t-1.
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Figure 4A.2. Percentage of sequences that is classified in a different cluster after subsampling from three to 

four hour resolution, for a cut-off from 2 to 100 clusters.

4A.2. Missing data treatment

For the extraction of biweekly sequences we maintained the NAs distinguishing two types:

NA-1, due to the regularisation of trajectories (gap-filling), and thus not corresponding to

any GPS acquisition attempt; and NA-2, that are GPS acquisition failures (e.g. due to lack

of satellite coverage). While NA-1 are an artifact of the regularisation process, NA-2 are in-

stead potentially ecologically meaningful. Indeed, NA-2 may be correlated with the habitat

type where the GPS acquisition was attempted (Frair et al.  2010). Therefore, we a priori

removed any biweekly sequence containing more than 20% of NA-1. Using this procedure

we obtained  549792  GPS  locations for  432 individual  roe deer  (250 females and 182

males). These corresponded to 5,727 biweekly sequences of 9 populations characterised

by varying forest prevalence and forest structure. To obtain a better insight in the NA-struc-

ture (frequency and distribution), we first used the exploratory SAM trees (e.g. Fig.4A.3).

NA-1s showed to have a random distribution, while NA-2s were more common during day-

time and correlated to forest or closed habitat use. For example, habitat use sequences

associated to the exploratory trees in figure 4A.3 show a clear daily alternation in NA-2s

with main occurrence during daytime (light-grey bars). Exploration of trees also showed
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that NA-2s were especially common in three populations (i.e. IT1, 30.86%; DE2, 27.20%;

FR8, 25.19%), where data is derived from old sensors with lower performance, and hence

a high proportion of NA-2 (Fig.4A.4). Indeed, forest habitat use and NA-2s followed the

same daily trend, again only for these three populations (Fig.4A.4). Based on this NA ex-

ploration and supporting information from literature (e.g. Cargnelutti et al. 2007) we devel-

oped a two-step  procedure where both NA-1s and NA-2s were subsequently imputed a

new value, described below in more detail.

First, all NA-1s were imputed as C, O or NA-2 by random-sampling each timestamp of

each sequence separately. After this stage, all NA-1s were therefore reassigned to new

values. Then, when NA-2 were present, we reclassified them to forest, for a maximum of

10% of the entire sequence, i.e. 9 fixes, and randomly across timestamps. We only per-

formed this reclassification for the three populations mentioned earlier. The reclassification

criterion is based on Cargnelutti et al. (2007) who ran a GPS performance analysis in FR8.

They found that missing fixes (i.e. NA-2 type) were 10% of the total number of expected

fixes, and that in all cases NA-2 occurred in the forest and not in open habitat. Similar fig-

ures were found from an unpublished study (Cagnacci F. pers.comm), that run tests in an

Alpine area with a forest density comparable to that of IT1, IT24, DE2, and using the same

collar brand and model of such studies. Hence, the expected number of missing fixes was

10% of the total  according to the aforementioned assessments,  and they were all  ex-

pected to correspond to true locations in the forest. In this study, we found higher propor-

tion of NA-2s in the same populations (IT1, DE2, FR8) possibly due to other environmental

components that may affect GPS acquisition, such as topography, or behaviour, and im-

portantly collar performance (Frair et al. 2010, for a review). Because it was not possible to

account for all  these variables, across the different populations (i.e. complex models of

GPS performance were not available), we decided to account for the proportion of missed

locations due to forest cover, only, according to the cited assessments. Hence, we applied

this conservative proportion for the reclassification of NA-2s, and left as were any NA-2 ex-

ceeding such proportion. Finally, if NA-2s still represented more than 30% of all fixes in a

sequence, the sequence was removed from the analysis (n=169, or 3% of all original se-

quences and n=7, or 1.5% of all individuals). 
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Figure 4A.3. Two examples of exploratory dissimilarity trees (left) with corresponding habitat use sequences

(middle, open, lightgreen; closed, darkgreen; NA-2, lightgrey) and spatial movement context (right) highlight-

ing the regular pattern of NA-2s, mainly present during daytime. Vertical lines on top of the habitat use se-

quences mark a new day. The upper tree is animal 1678 of population FR8, with mainly open habitat within

the home range, and the lower tree is animal 767 of population IT1, with mainly forest habitat within the

home range.
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Figure 4A.4.  Daily proportional use of open (light green) and closed habitats (dark green) and NA-2s for

each population. Three populations (IT1, FR8 and DE2) showed a high proportion of NA-2s, with main preva-

lence during daytime. Note the similar trend between closed habitat use and NA-2s for the latter populations.

4A.3. Final dataset

As a result of the abovementioned resampling and missing data treatment, we obtained

5,558 sequences and 425 animals. Moreover, all sequences from another twenty animals

were removed due to the extremely homogeneous composition of the home range (habitat

ratio of 1:99 or more) – five individuals with open habitat only and fifteen with forest only.

Finally, one animal with an extremely large home range was removed, because it slowed

down computations. As a result of this procedure, the final dataset used for the analyses

consisted of 5,402 sequences from 404 animals (236 females and 168 males). The reloca-

tions were partitioned as follows: 14,607 NAs (2.82%) and 503,985 actual GPS locations

(97.18%), from which 273,230 (52.69%) were classified as open and 230,755 (44.50%) as

forest. See table 4A.1 for a summary of the number of animals, sequences and relocations

pre-and post-processing.  
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Table 4A.1.  Number of  animals,  sequences,  relocations pre- and post-standardisation of sequences per

population. Note that some populations have a lower number of relocations in forest post-processing due to

removal of sequences with more than 30% of NAs after the missing data treatment and removal of animals

with extreme habitat disproportion (1:99).

Population Animals Sequences Relocations & NAs Forest relocations

pre post pre post pre post pre post

IT1 26 26 561 521 41,157 12,699 46,440 3,576 30,031 35,636

DE2 45 40 409 375 30,868 8,396 33,142 2,858 21,180 23,608

NK5 16 12 264 203 25,063 281 19,488 0 3,573 2,513

FR8 198 182 1,254 1,107 96,161 24,223 102,416 3,856 29,901 37,473

DE15 33 33 866 865 81,749 1,387 82,261 779 29,661 29,818

AU17 8 7 142 141 12,848 784 12,788 748 10,392 10,328

IT24 23 21 399 358 36,759 1,545 33,681 687 33,143 30,018

CH25 71 71 1,559 1,559 144,439 5,225 147,811 1,853 48,104 49,560

DE31 12 12 273 273 25,691 517 25958 250 11,616 11,801

Total (n) 432 404 5,727 5,402 494,735 55,057 503,985 14,607 217,601 230,755

% 89.99 10.01 97.18 2.82 39.58 44.50
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APPENDIX 4B – RASTER VALIDATION AND THRESHOLD DEFINITION

4B.1. Introduction

To define open and closed habitats at European level we could use two readily available

datasets: Corine Land Cover7 (CLC, EEA 2006, 2012, 100 m spatial resolution) and the

High-Resolution Layer-Tree Cover Density 20128 (TCD, EEA 2012, 20 m spatial resolu-

tion). While CLC is the most commonly used dataset among ecologists for land use and

habitat identification, there are several limitations, especially when studying roe deer habi-

tat use patterns. As pointed out by Pekkarinen et al. (2009) CLC fails in mapping forest or

open patches smaller than the Minimum Mapping Unit (MMU) of 25 Ha, due to a too low

spatial resolution (100m) and due to generalisations for defining land cover classes. For

example, the CLC-class 'heterogeneous agricultural  areas' (CLC-class 21) may include

small patches of forest, agricultural fields and urban context, such as farms or dispersed

houses. Roe deer’s small average home range size (30 Ha) and its preference for eco-

tonal habitat (Tufto et al. 1996), make that CLC potentially misses a significant portion of

important open or closed habitat. Therefore, we used instead the High Resolution Layer-

Tree Cover Density 2012 (TCD, EEA 2012), which provides the proportion of tree cover (0-

100%) per pixel available at a spatial resolution of 20 m or 100 m. This dataset is currently

the most detailed validated forest cover dataset that is directly available for use and is pro-

vided by the same source as CLC (i.e. eea.europa.eu). Validation of the product was done

by an independent consortium, using two validation units: at lot level and country level.

The validation procedure was performed using three forest cover density thresholds (10,

20, 30%) by measuring commission (wrong inclusion, or overestimation) and omission

(wrong exclusion, or underestimation) errors for the aggregated TCD layer with a resolu-

tion of 100 m. In this report, commission error is described by the Producer's Accuracy

(PA, i.e. correctly classified points divided by the total number of points) and omission error

by the Users Accuracy (UA, i.e. correctly classified points of a class, devided by the total

number of points of the class). General results of the validation show that the TCD layer

exceeds the target accuracy at pan-European level for commission error and meets the

minimum accuracy for omission error. Furthermore, there is country level variability, with

7 http://www.eea.europa.eu/publications/COR0-landcover

8 https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-

maps/2012?tab=metadata 
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high accuracies for most countries of interest, and with the highest accuracies in general

for the 30% forest threshold (see table 4B.1). 

Because of country level variability, we performed a local validation analysis which in-

cluded all except one population (i.e. Southcentral Norway) and helped to define the most

appropriate forest cover threshold to identify forest and open habitat. Note that also some

other areas are included (i.e. Belgium and Denmark) due to relevance of the study for the

EuroDEER collaborative project. To decide which threshold to use we investigated whether

TCD showed a gain in accuracy compared to CLC. In total we used two different validation

datasets. Norway was excluded due to difficulties in identifying validation points as forest

or open habitats. 

Table 4B.1. Producers (PA) and Users (UA) accuracy and confidence interval for countries of interest using 

the 30% forest cover threshold (see full validation report here). 

Country PA (%) 95% CI UA (%) 95% CI

Switzerland 90.1 2.5 95.5 2.8I

Italy 93.6 1.4 79.1 3.7

Germany 84.7 9.6 92.4 2.4

France 80.2 8.1 90.7 2.0

Norway 72.8 3.1 94.4 3.8

 

4B.2. Validation data

The validation data consists out of two independently collected datasets, covering a repre-

sentative but small subset of regions in West-Europe (mainly parts of Belgium, Denmark,

France, Germany, Italy and Switzerland). The two datasets have a decreasing spatial cov-

erage. Figure 4B.1 marks the spatial extents of the different regions for each validation

dataset, coloured in green and red. 

Respectively,  datasets  concern  field  observations collected  through  the  Land

Use/Cover Area frame Statistical Survey 2012 (LUCAS, Fig.4B.1, green, 5 regions, 4859

points and 0.046 points=km2) and visual interpretation of high resolution satellite imagery

(VISAL, Fig.4B.1, red, 9 regions, 1402 points and 0.034 points=km2). LUCAS is a free and

open-access field survey monitoring and validation dataset, with project coordination by

the Statistical Office of the European Communities (Eurostat, Tóth et al. 2013). Since 2006

LUCAS collected every three years land cover/land use, agro-environmental and soil data
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for georeferenced point locations. LUCAS 2012, which is used in this study, comprises in

total around 271.000 surveyed points for 27 countries of the European Union (Eurostat,

2015). The dataset uses eight main land cover classes (A00 to H00) distinguishing up to

84 subclasses, specifying up to species level for the woodland (C00, 21 subclasses) and

cropland (B11, 40 subclasses) class. Since we are only interested in forest, the woodland

class (C00) was identified as forest and all other classes (A00-B00 & D00 to H00) as non-

forest. To ensure reliability only survey points with a distance below four meters between

observation location and the LUCAS point were used. In total the validation dataset con-

sisted out of 4859 points (0.046 points=km2) over five regions (Fig.4B.1, green polygons).

Figure 4B.1. LUCAS and VISAL validation areas and the location of the study sites. Note that Norway is not

included in the map.

Over the five LUCAS regions nine different sub-regions were identified, marking the

boundaries of the VISAL dataset (Fig.4B.1, red polygons). In each sub-region a random

set of 150 points was generated which were classified as forest or non-forest using high

resolution GoogleEarth and BingMaps imagery. Although those two sources have their lim-

itations, such as unknown geometric precision, the absence of metadata and variable spa-

tial resolution, they were used since they provide easy access and free high-resolution im-

138



agery covering the whole extent of this study (see also Pekkarinen  et al.  2009). Points

were defined as forest if the location was within a forest patch larger than 0.5 Ha. If points

were at the exact boarder between forest and non-forest they were excluded for further

analysis. In total VISAL consists out of 1402 points (0.034 points=km2). 

4B.3. Methods

To assess thematic accuracy of TCD and CLC we performed a cross-validation analysis

using the two validation datasets LUCAS and VISAL. First, the forest cover percentage of

each validation point was extracted from the corresponding raster cell of TCD and the land

use class for CLC. For CLC we considered the three forest classes CLC 311, 312 and 313

as closed habitat and all others as open habitat. Then we used classic methods to mea-

sure raster classification accuracy. Specifically, confusion matrices were built and accom-

panied statistics  computed for  classification  thresholds  ranging from 1  to  60  % forest

cover.  The  related  statistics  were  used  to  assess  the  accuracy  of  each  classification

threshold and consist out of two per class accuracy measures, aka producer's accuracy

(Sensitivity, Sf and Specificity, Sn), and the Overall Accuracy (OA) including Confidence In-

tervals (CI), which are computed based on the assumption of a binomial distribution (but

see Kuhn et al. 2008; Pekkarinen et al. 2009). For each validation dataset statistics were

computed over all regions and for each region separately. Respectively, Sf and Sn express

the proportion of expected forest and non-forest validation points that were correctly clas-

sified by the raster map:

S f=TP /(TP+FN )

Sn=TN /(TN+FP)

Where

TP = True Positive or correctly classified as forest.

FP = False Positive or wrongly classified as forest.

TN = True Negative or correctly classified as non-forest.

FN = False Negative or wrongly classified as non-forest.
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OA expresses the proportion of all validation points (forest and non-forest) that were

classified correctly by the raster map.

OA=(TP+TN )/n

After examining the change in accuracy over classification thresholds the described

statistical procedure was repeated for CLC. Then we computed the gain/loss in accuracy

compared to CLC. Instead of computing statistics for each classification threshold, an in-

crement of 10% was used up to a cut-off of 60% (t1, t2, t3, t4, t5, t6). 

4B.4. Results

Measuring accuracy over all validation points of different sites we found a very high Over -

all Accuracy (OA), Sensitivity (Sf) and Specificity (Sn), with a low standard deviation below

a forest cover threshold of 60% (Table 4B.2). In that sense, the classification of the TCD

raster dataset was considered more accurate by this local validation study than by the offi-

cial validation. The histogram of the distribution of forest cover classes shows a low pro-

portion of validation points with a forest cover threshold between 10 and 60%, explaining

the low standard deviation over all thresholds (Fig.4B.2). Similar to the official validation

we found that higher thresholds result in higher overall accuracy. Specifically, a maximum

accuracy was found at a forest cover threshold of 49% for VISAL and at 40% for LUCAS.

Moreover,  TCD showed on average an  improved  Overall  Accuracy  compared  to  CLC

(Fig.4B.3). Average Sensitivity (Sf) and Specificity (Sn), are almost constant up to the 40%

threshold, and respectively decrease and increase at the 50% threshold. This means that

a larger proportion of open is correctly classified (Sn), but also that a larger proportion of

closed is wrongly classified as open (Sf). Note though, that Sn and Sf show larger regional

differences than the Overall Accuracy. Due to limited variation in Overall Accuracy below

the  60%  threshold,  a  maximum  Overall  Accuracy  between  40%  (LUCAS)  and  49%

(VISAL) and a more balanced Producer’s  accuracy (Specificity  and Sensitivity)  we se-

lected 50% as a threshold to distinguish closed from open habitats. Note that this thresh-

old is specifically defined for our analysis. Due to local differences in accuracy we certainly

suggest always to perform a validation analysis before usage. Validation could be per-

formed by visual exploration of satellite images, or better, by building a field (and/or satel -

lite) point validation dataset.
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Table 4B.2. Summary statistics for accuracy measures (Overall Accuracy, OA; Sensitivity, Sf; Specificity, Sn).

Statistics include the accuracy averaged over all forest cover thresholds below a cut-off of 60% (μ(σ)) and

the forest cover threshold (FT%) at which the maximum accuracy (max) is reached.

μ(σ) max (FT%)
OA 0.919 (0.003) 0.923 (49%)

VISAL Sf 0.872 (0.016) 0.881

Sn 0.914 (0.013) 0.94
OA 0.892 (0.003) 0.895 (40%)

LUCAS Sf 0.773 (0.02) 0.786

Sn 0.926 (0.006) 0.94

Figure 4B.2. Distribution of forest cover density for validation points.

Figure 4B.3. Gain (y > 0)/Loss (y < 0) in overall (OA target > 0:85) and producer's accuracy (Sensitivity, S f;

Specificity, Sn; target > 0:70) for TCD (green points, t1-t6 (10-60%)) compared to CLC over different regions

using the visal and lucas validation datasets. The second y-axis (right) is the reference accuracy of CLC.

When target accuracy is reached points are indicated by asterisks, else by points. Black lines correspond to

the means and grey lines to study specific values (per region). Histograms on top of the plots give the total

number of datasets that have a better accuracy than CLC.
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APPENDIX 4C – THE MOVEMENT MODEL

The movement simulations took place within  rasterised home ranges of  individual  roe

deer, as opposed to the artificial arenas used in De Groeve et al. (2016). The raster grid

resolution was defined to match the minimum mapping width of the habitat layer – reclassi-

fied High Resolution Layer-Tree Cover Density 2012 dataset (TCD, EEA 2012) – i.e. 20

meters.  We simulated movement as a stochastic and spatially as well as temporally dis-

crete process. The movement takes place on a grid consisting of N square cells, with N

the total number of 20 x 20 m grid cells encompassing the individual roe deer home range.

Following De Groeve et al. (2016), the probability of an animal to move from its position on

cell i at time t-1 ( it−1 but for convenience abbreviated to i∈ {1,2,. . ,N } ) to any given

cell j ∈ {1,2,.. , N } at time t is given by

Pi , j ,t=
A i , j ,t

∑
j=1

N

A i , j , t

with A i , j ,t the attractiveness of cell  j for an animal which is currently at cell  i.  A i , j ,t  is

given by 

A i , j ,t=
βs , H j , r ,t

∗m j , t

d i , j

where βs , H j, t is the selection coefficient for habitat type H on cell j, H j , at time t based

on selection behaviour s, m j , t is the number of time steps since the last visit from cell i to

j at time t, and d i , j the squared Euclidean distance between cells i and j. As opposed to

De Groeve et al. (2016), we did not introduce a maximum travelled distance, dmax, to the

calculation of the cell attractiveness A i , j ,t since the movement of the simulated animal

was constrained within a realistic spatial region (i.e. the observed individual roe deer home

range).

The selection coefficient βs , H j, r , t was calculated for two habitat types H (open, O; or

closed,  C), six selection behaviours s (random, u; homogeneous open,  o; homogeneous

closed, c; and three types of daily alternation, a24, a33 and a42) and three selection inten-
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sities by changing selection coefficient ratios r: 1:0.2 (low, r1), 1:0.1 (intermediate, r2) and

1:0.01 (high, r3). The alternating selection behaviour ‘a33’ is comparable to the behaviour

‘A’ in De Groeve et al. (2016). We detail below the values of the selection coefficient for

the low ratio i.e. β s , H j, r1 ,t . We generated a random selection behaviour through a spa-

tiotemporally  constant  selection  coefficient  (i.e. βu ,C ,r 1 ,t
=βu ,O, r1 ,t=1.0 ).  Homogeneous

closed and homogeneous open selection behaviours were defined as temporally constant

but conditional on habitat types. Specifically, homogeneous closed selection was charac-

terized by a high selection for closed habitat and a low selection for open habitat (i.e.

βc ,C ,r 1, t
=1.0 and βc ,O, r1 ,t=0.2 ),  and  vice versa for  homogeneous open selection (i.e.

βo ,C , r1 ,t=0.2 and βo ,O, r1 ,t=1.0 ). Unlike the previous behaviours, the three alternating se-

lection behaviours were modelled by a selection coefficient dependent on both habitat and

time. Specifically, the coefficient values for closed and open habitat types were permuted

every three simulation steps to capture circadian habitat selection patterns (6 iterations =

one day).

with l∈ {0,1,2,.. , n } the daily cycle iterations (see table 4C.1). Compared to the movement

simulations used in De Groeve et al. (2016), two patterns of habitat selections (i.e. ‘a24’

and  ‘a42’)  and  two  selection  intensities  (i.e. r1 = 1:0.2  and r3 =  1:0.01)  have  been

added.
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Table 4C.1. Daily variations in selection coefficients ( β ) for open and forest habitats used to simulate the

six  habitat  use  patterns.  Numerical  values  described  below  correspond  to  the  low  selection  intensity

treatment ( r1 ).

Habitat use patterns β  for open habitat β  for closed habitat

Random ‘u’ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

Homogeneous closed ‘c’ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

Homogeneous Open ‘o’ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 0.2, 0.2, 0.2, 0.2, 0.2, 0.2

Alternating ‘a24’ 1.0, 1.0, 0.2, 0.2, 1.0, 1.0 0.2, 0.2, 1.0, 1.0, 0.2, 0.2

Alternating ‘a33’ 1.0, 1.0, 0.2, 0.2, 0.2, 1.0 0.2, 0.2, 1.0, 1.0, 1.0, 0.2

Alternating ‘a42’ 1.0, 0.2, 0.2, 0.2, 0.2, 1.0 0.2, 1.0, 1.0, 1.0, 1.0, 0.2

Second, we introduced a memory component, m j , t , to the cell attraction value in or-

der to simulate the emergence of a home range from the simulated movement trajectory

(van Moorter et al. 2009; Fagan et al. 2013), which is the usual pattern of space use ob-

served in roe deer. More specifically, we assumed that the attraction to a given cell in-

creases with the time since last visit from cell i to j at time t  , m j , t , used here as a proxy

for memory (Schlägel & Lewis 2014). The memory value on any cell that has not yet been

visited by the simulated animal was initialized to 1. When the animal visits a cell, the mem-

ory coefficient drops to 0 and then increments with every time step:

Furthermore, we assumed that a cell’s  attraction declined inversely proportional  to  the

squared distance between cells i and j, given by

d i , j=(x i−x j )
2
+( y i− y j )

2

With (x i , y i)   and (x j , y j)  the Cartesian coordinates of the centers for cells i and j re-

spectively.
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The simulations ran independently for 293 iterations. The first 197 iterations were treated

as a burning period, necessary for the simulated animals to initialise a memory of the land-

scape (van Moorter et al. 2009). We used a shorter burning period than De Groeve et al.

(2016) since the movement was, regardless of memory development, constrained within

the observed individual home range. The last 96 iterations (i.e., biweekly trajectory) were

used in the IM-SAM analyses.
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APPENDIX 4D – BOOTSTRAPPING

To identify the optimal number of clusters in each of the 404 trees, we used a repeatable

bootstrapping procedure, based on Jaccard bootstrapping (BJ). We defined our bootstrap-

ping index BJIQMD as a combination of BJ median (BJMD, i.e. overall cluster quality of a tree)

and BJ interquartile range (BJIQ, i.e. variance of cluster quality of a tree). This procedure is

described in more detail in the main body.

Here, we include three figures giving more detailed information on figure 4.2 in the

main body. Specifically, the figures give the trend lines at different cut-offs and for different

habitat  proportions  for  BJMD  (Fig.4D.1),  BJIQ  (Fig.4D.2)  and  the  combined  index  BJIQMD

(Fig.4D.3) separately. The figures give support to our decision to identify the cut-off based

on a combined index (BJIQMD). When habitats are more proportional within a home range

(MCP) the number of clusters at which BJMD maximises increases (Fig.4D.1, from red to

green dots). On the other hand, BJIQ  has two dips, a primary dip at two or three clusters

and a secondary dip at five or six clusters which becomes more pronounced when habitats

are more proportional (Fig.4D.2, from red to green dots). Combining both measures (BJMD,

BJIQ), described by the formula in the main body, increases how well the secondary peak is

pronounced (Fig.4D.3).
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Figure 4D.1. Trend lines and points representing the bootstrap median BJMD for different cut-offs (2-20 clus-

ters) in all 404 individual-based simulated trees. The higher BJMD the higher the cluster's quality of a tree. The

output BJMD  values are classified into five different relative habitat proportions derived from the individual

home ranges, each visualised in a different plot (red, 0.1; orange, 0.2; yellow, 0.3; blue, 0.4; green, 0.5). The

lower-right figure only includes the trend lines of each relative habitat proportion class. When habitats in the

home ranges are more proportional the BJMD maximises at a higher number of clusters.
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Figure 4D.2. Trend lines and points representing the bootstrap interquartile range BJ IQ (0-1) for different cut-

offs (2-20 clusters) in all 404 individual based simulated trees. The lower BJ IQ the lower variability of cluster

quality in a tree. The output BJIQ values are classified into five different relative habitat proportions derived

from the individual home ranges, each visualised in a different plot (red, 0.1; orange, 0.2; yellow, 0.3; blue,

0.4; green, 0.5). The lower-right figure only includes the trend lines of each habitat proportion class. Trend

lines show two dips, a primary dip, corresponding to a cut- off of two or three clusters; and a secondary dip,

corresponding to a cut-off of five to six clusters. When habitats in the home ranges are more proportional the

second peak (5-6 clusters) BJIQ becomes more pronounced. 
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Figure 4D.3.  Trend lines and points representing the combined bootstrapping index BJ IQMD (combining

bootstrap interquartile range BJIQ and bootstrap median BJMD), for different cut-offs (2-20 clusters) in all 404

individual-based simulated trees. The output BJIQMD values are classified into five different relative habitat pro-

portions derived from the individual home ranges, each visualised in a different plot (red, 0.1; orange, 0.2;

yellow, 0.3; blue, 0.4; green, 0.5). The lower-right figure only includes the splines of each habitat proportion

class. When habitats are more proportional the secondary peak is more pronounced at a cut-off of six clus -

ters, while the primary peak is more pronounced when habitats are disproportional.
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APPENDIX 4F – CLUSTER TYPES 

Figure 4F.1. Summary of relative proportions of each sequential habitat use pattern in each cluster type (ver-

tical axis) and the occurrence of each cluster type in dependence on open habitat proportion in home ranges

(from 0 to 1). Between square brackets we provide the absolute and proportion of clusters of each identified

cluster type. Cluster types titles are in light grey when corresponding to less than 0.5 percent of all clusters.

APPENDIX 4E/4G 

Appendices 4E and 4G are available via the following download link: 

https://drive.google.com/file/d/1_gYwWIzdfWddZk7J_TrvfcKYDONvSWb3/view?usp=sharing

https://drive.google.com/file/d/11mW34EdMkHt6lOlv7RSyhxxifYA5Ag1v/view?usp=sharing

Through this link we provide respectively a subset of 35 simulation-real sequences trees

(Appendix 4E) and pruned classification trees (Appendix 4G), five for each population.

In the submitted manuscript these appendices are included as supplementary material. 
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     CHAPTER 5

Functional role of seasonal habitat determines spatio-temporal

patterns of habitat use in a large herbivore

De Groeve, J., Van de Weghe, N., Ranc., N., Bonnot, N., Hewison, A.J.M., Heurich, M.,

Kroeschel, M., Linnell, J.D.C., Morellet, N., Mysterud, A., Gehr, B., Sandfort, R., Cagnacci,

F. 

To be submitted in: Ecography

ABSTRACT - Animal habitat use is a particularly important concept in movement ecology,

for example, for understanding species’ range shifts in response to global change.  Fine-

scaled spatio-temporal data retrieved from satellite and digital tracking technologies have

considerably improved our ability to study animal movement across a range of geographic

contexts. However, current approaches rarely account for its temporally-dynamic nature,

and in particular the sequential use of habitats with different functional roles. Specifically,

sequential use is defined as the sequence of locations (the trajectory) measured against

the underlying ordered pattern of habitat use, within an individual specific geographic con-

text (i.e. an individual’s home range). Not accounting for sequential use, as in most habitat

analysis, only gives insights in the proportion of use, while same proportion could corre-

spond to various biologically important behaviours, such as random, day-night or temporal

clustered use. To overcome this limitation, we applied a visually-informative and robust

tree-based approach using Sequence Analysis Methods (SAM), derived from molecular bi-

ology and more recently used in time geography, to identify ecologically relevant sequen-

tial patterns in animal habitat use. This approach was applied to ecological data, for the

first time, consisting of simulated and real trajectories of roe deer (Capreolus capreolus)

across Europe. Our aim was to quantify variation in sequential use of open and closed

habitats in nine populations of deer ranging in areas with markedly different landscape
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structure. The SAM results provide consistent evidence for several behavioural processes,

notably day-night habitat alternation, where forest is mainly used during daytime, while

there is more of open habitat at night. Interestingly, animals with similar proportions of

habitat types in their home range could adopt very different sequential habitat use strate-

gies (e.g. alternating vs random), in particular, local landscape structure in the home range

often affected sequential habitat use patterns. A disproportion of habitat availability within

the home range resulted in less pronounced daily habitat alternation than when habitat

types were proportional. Further, other landscape attributes such as habitat heterogenei ty

influenced the sequential use of habitats. Lastly, roe deer showed a seasonal shift in the

sequential use of different habitats, with more diurnal alternation in habitat use during early

spring and early autumn in most populations. Our SAM approach highlights how habitat

types with different functions lead to context dependent use and shed new light on how

trade-offs shape animal space use.

5.1. INTRODUCTION

Understanding how animals move in relation to their environmental context is one of the

keystones of movement ecology, and allows identification of which, where and when re-

sources are used (Manly et al. 2002, Nathan 2008). Combined advances in remote moni-

toring (e.g. GPS) and sensing (e.g. Satellite imagery) technologies has facilitated the juxta-

position between habitat layers and temporal sequences of animal locations, collected at

higher temporal resolution over longer monitoring periods and with higher spatial accuracy

(Cagnacci et al. 2010, Urbano et al. 2010, Kays et al. 2015). Accordingly, more and more

analytical methods have been developed to deal with such large, high-resolution and mul-

tidimensional datasets (Demšar et al. 2015a).

Habitat use and selection are recognised to occur at multiple scales in space and time

(Morris et al. 1987, Orians et al. 1991). Habitat selection is defined as a hierarchical and

multi-scale process by which animals choose resources in a habitat, while habitat use is

related to how much animals use these resources to fulfil  their requirements (Johnson

1980), within certain tolerance limits (i.e. fundamental niche, Hutchinson 1965). In large

herbivores, fitness and survival are affected by the distribution of multiple resources (Law

et al. 1998), including availability of forage plants, resting sites, as well as refuge habitat

for protection from threats, such as predators and extreme weather (e.g. Fryxell and Sin-
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clair 1988; Post and Stenseth 1999; Hebblewhite and Merrill 2009). Depending on the spa-

tio-temporal heterogeneity of such resources, these requirements may result in the use of

a multifunctional space (Peters et al. 2017). For example, an area of high forest coverage

may provide food, but also cover and thermal protection. Hence, human-defined landcover

typologies are often associated with multiple environmental and ecological variables im-

portant for a species. In this sense, the geographical and ecological definitions of habitat

practically correspond (see Bissonette and Storch 2003, p.13). In general, the functional

roles of a space (characterised as a habitat in the geographical sense, from now on) and

its use by animals are also dependent on many exogenous factors such as landscape

structure and heterogeneity, population density, human density, hunting, inter- and intra-

specific interactions (e.g. competition, mutualism) and predator-prey interactions. For ex-

ample, the level of predation risk of a habitat depends on the nature of risk, i.e. the type of

predator (chasing, ambush), and its spatio-temporal distribution in the prey’s landscape

(e.g. intense, but pulsing; continuous, but homogeneous and predictable), but also by the

heterogeneity level and ready availability of refuges. In addition, habitat roles may change

over time at various temporal scales (seasonal, daily). For example, at the seasonal scale,

pastures may have a limited role in winter for some herbivore species due to exposure to

cold temperatures and winds, limited food resources and deeper snow, but may be attrac-

tive in summer due to the availability of highly nutritious resources (Mysterud et al. 1997,

Bjørneraas  et al.  2011, Dupke  et al.  2017). Agricultural land may be used more during

summer when there are crops providing both cover and food, but not during winter when

they are more exposed to predation and human disturbance. At the daily scale, animals

may trade-off food for cover when using pastures and forest habitat, respectively, which

leads to an alternating circadian pattern in the use of habitats (Owen-Smith  et al.  2010,

Dupke et al. 2017).

In this paper, we argue that the description of spatio-temporal patterns in sequential

habitat use by individuals in contrasting, heterogeneous landscapes may help to provide

insights into the complex relationship between habitats, and the resources they provide to

meet animals’ needs. Sequences of habitat use indicate not only how much animals use

habitats, but also the way they use them. For example, ruminants alternate feeding bouts

with resting period. At the daily scale, these activities may be distinguished by the alterna-

tion between habitats (i.e. the way), more than by the proportion of used habitats (i.e. how

much). Our general hypothesis is that because open and closed habitats represent multi -

ple and different resources throughout the year in temperate ecosystems, large herbivores
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will show distinct daily patterns of use (i.e. habitat sequences), and that these patterns will

change seasonally. Moreover, we expect that patterns will depend on the structure of the

landscape (i.e. proportion and heterogeneity), as well as on individual characteristics. 

To explore this, we use an enhanced methodological framework developed as de-

scribed in Chapter 4 which makes use of Individual Movement-Sequence Analysis Meth-

ods (IM-SAM), a visually-informative and robust tree-based method to explore and classify

ecologically relevant sequential patterns in animal habitat use.  De Groeve  et al.  (2016)

suggests taking the sequential temporal component of habitat use into account when ex-

ploring the relation between habitat, and its function for animals. Indeed, the sequential or-

der with which habitats are used, and not only the proportion of their use, contributes to

define the spatial behaviour of an individual. Here, we applied IM-SAM on sequences of

use of open and closed habitats by individual European roe deer (Capreolus capreolus) for

nine populations across Europe for which the availability and distribution of forest habitat

varied markedly. . 

The European roe deer  is  one of  the most adaptable and widespread ungulate

species in Europe. This generalist has adapted to the heterogeneous landscape of Europe

by colonising open habitats, such as agricultural fields and grasslands, which are often

more exposed to human-related disturbance (Andersen  et al.  1998).  Roe deer show a

preference for ecotonal habitats (i.e. edges) where highly digestible forage resources are

available (Tufto  et al.  1996) and adjust feeding strategy and diet with changes in land-

scape heterogeneity (Abbas et al. 2011). Behavioural plasticity is observed with very dis-

tinct space use and feeding strategies between and within populations (Abbas et al. 2011).

In addition, seasonal variability in space use is also frequently observed, corresponding to

a gradient of migration strategies within and between populations (Cagnacci et al. 2011).

At a daily temporal scale roe deer are typically characterised by a bimodal crepuscular ac-

tivity pattern, and a general increased activity during the night (Pagon et al.  2013, Krop-

Benesch  et al.  2013). High spatio-temporal  variability in behaviour between and within

populations makes roe deer a very interesting model species to study sequential habitat

use. While there are many detailed local studies on roe deer habitat use and selection

(e.g. De Groeve  et al.  2016, Mancinelli  et al.  2015, Dupke  et al.  2017), multi-population

studies are rare, and there has been no attempt to explore the actual sequence of habitat

use in such context.

We investigated individual trajectories of roe deer from nine European populations as

sequences in the use of open and closed habitat, with a biweekly resolution. Then, we cat-
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egorised these sequences as spatio-temporal patterns of use: homogeneous use of either

closed or open; alternation between closed and open (with different alternation schedules);

and random use. We compared the spatio-temporal patterns of use across populations,

and individuals, throughout the year to assess the hypothesis that roe deer respond to

landscape composition and fragmentation, and to resource seasonality, by adjusting habi-

tat use both as relative proportion and sequential use.

Because roe deer can adapt to different environments (generalist behaviour), we ex-

pected that the sequential patterns of habitat use would differ between populations, reflect-

ing gradients of habitat composition and structure. We expected the sequential habitat use

to deviate from random, thereby reflecting roe deer’s ecological plasticity, i.e. adaptation to

spatio-temporal distribution of resources (i.e. Peters et al. 2017), and environmental con-

straints such as weather,  human disturbance and predation risk. Since movement and

habitat selection in roe deer can be the result of individual responses (i.e. personality, life

history traits) and other environmental constraints (e.g. social fences; red deer in Mysterud

et al. 2011) we expect that similar habitat composition and structure of home ranges may

result into different patterns of sequential habitat use at the individual level. Finally, be-

cause open and closed habitats are composites of resources that vary in time, we expect

the sequential patterns of their use to vary across seasons. 

5.2. MATERIAL AND METHODS

5.2.1. Trajectory data 

GPS-based  trajectories  for  roe  deer  were  extracted  from  the  EuroDEER  database

(Cagnacci et al. 2011, euroungulates.org) following the procedure as described in Chapter

4 (par.  4.2.1,  Appendix 4A & 4B).  To summarise, we extracted 16-day regularised se-

quences (i.e. biweekly sequences) with a fixed four hour relocation interval (0, 4, 8, 12, 16

and 20h)  over a fixed yearly schedule starting on January 1st (e.g. 01/01-16/01, 17/01-

01/02, etc.) and linked the GPS locations to the reclassified  High Resolution Layer-Tree

Cover  Density  2012 (TCD,  EEA 2012),  distinguishing  closed (C,  >50%) and open (O,

<50%) habitats. In table 5.1 we summarise the number of individuals and sequences per

population. For transparency population codes refer to the official country codes (i.e. NK,

FR, DE, IT, AU and CH) and the EuroDEER study site identifier (i.e. 1, 2, 5, 8, 15, 17, 24,

25, 31).
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Table 5.1. Populations, number of animals and sequences.

Country Country code EuroDEER ID Animals Sequences

Norway NK 5 12 203

France FR 8 182 1107

Switzerland CH 25 71 1559

Germany DE 15 33 865

31 12 273

2 40 375

Italy IT 1 26 521

24 21 358

Austria AU 17 7 141

Total 404 5402

5.2.2. Sequential habitat use analysis 

To describe the variability in sequential use of open and closed habitats for individual ani-

mals, we applied (IM-)SAM as proposed in Chapter 4 (par. 4.2.2., Appendix 4D), i.e. we

classified  the  biweekly  sequences  of  used  open/closed  habitats  using  a  tree-based

method based on sequence dissimilarity. In essence, within each individual’s home range

described by a Minimum Convex Polygon (MCP), simulated trajectories, were generated

following six hypothesis-based sequential  habitat  use types. Specifically,  homogeneous

closed, 'c'; homogeneous open, 'o', random, 'u', alternation mainly open, 'a24', alternation

equal open-closed, 'a33' and alternation mainly closed, 'a42'. Subsequently, we identified

the most similar simulated sequential habitat use type for observed trajectories by quanti -

fying sequence dissimilarity between observed and simulated trajectories. Observed tra-

jectories were hence classified into six characteristic types of sequential habitat use as

generated by simulated trajectories. Because clusters were often described by multiple se-

quential  patterns, dependent from habitat  availability,  we only considered the main se-

quential pattern in a cluster (Chapter 4 par. 4.3.3 & Table 4.1). The sequential habitat use

type, associated to real sequences are further referred to by the six codes (c, o, u, a24,

a33, a42).
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5.2.3. Statistical Analysis

a. Environmental and individual-based covariates

After identification of sequential habitat use patterns, we investigated their spatial and tem-

poral variability in relation to landscape metrics (i.e. structure and composition of the land-

scape), and individual-based ecological variables. For this purpose, we calculated land-

scape metrics with the R package SDMTools, which includes 37 measures of the refer-

ence program for spatial pattern analysis FRAGSTATS (VanDerWal et al. 2014). Because

we observed that many landscape metrics were highly correlated, we performed a covari-

ate selection procedure. In particular, we first computed the area of reference for each

population by merging all biweekly MCPs (i.e. MCP computed per sequence, not per indi-

vidual) and generated a random sample of 1000 equal-sized circles of 310m diameter

within this area, which corresponds approximately to the median home range size of 30

Ha. Next, we intersected each circle with the reclassified TCD raster layer and derived all

37 landscape metrics, using both habitat classes as references (O and C). We thus ob-

tained a total of 9000 values (1000 buffers x 9 populations) for each metric. We plotted

these values against the proportion of open habitat in each buffer, and we fitted a spline to

the point distribution. We grouped the metrics into similar distributional types, and chose

one from each group,  thus limiting correlation between covariates.  Specifically,  we se-

lected Proportion (P), Splitting Index (SPLIT), Patch Cohesion Index (COHESION), Land-

scape Shape Index (LSI), Patch Density (PD) and Edge Density (ED), which we calculated

for both habitat types (Fig.5.1 right panel;  Table 5.2 for definitions with an illustration for

one study site). Abbreviations are the official terms as defined in the FRAGSTATS docu-

mentation9. Next, these metrics were obtained for each individual as the average of values

computed for  200 random equal-sized circles (310 m diameter)  within  each individual

MCP, which we used as our main covariates (Fig.5.1, left panel for each population). With

this approach, measures covered the complete surface of larger MCPs. We also included

sex (male, female) and biweek of each sequence (1 to 23, see trajectory analysis) as addi-

tional individual and population level covariates.

9 https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf
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Table 5.2. Description of the six fragstat landscape metrics used as covariates for the sequential habitat use 

pattern variability. To the right, an example of the mean and maximum values of each covariate calculated for

open habitats in the study site CH25.



Figure 5.1. Point distribution plots (right): distribution of landscape metric values in relation to the propor-

tion of open habitats (x-axis, 0-1) plotted for all populations, for open (left) and forest habitats (right). Buffer

plots (left):  mean, minimum and maximum values of landscape metrics, for each population. Population

codes as in the main text.
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b. Multivariate statistics of habitat use sequential patterns in relation to environmen-

tal variables

To answer our main research questions, we used a stepwise-analysis procedure. First, we

performed a Detrended Correspondence Analysis (DCA; Hill and Gauch 1980) to explore

the relationship between sequential habitat use patterns and population identity. The input

for this analysis consisted of an abundance table of sequential habitat use patterns (the

‘species’ in multivariate statistics terminology) per population (the ‘sites’). DCA is a multi-

variate statistics technique where new ‘variables’ (the ordination axes) are generated that

maximise the separation among groups of ‘species’ sampled at different ‘sites’. In other

words, the axes should separate the sequential habitat use patterns according to their rel-

ative abundance across populations. DCA rescales and detrends the variables along the

axis (ter Braak and Verdonschot 1995). 

Then, to identify which landscape variables affected sequential habitat use, we per-

formed a Principal  Component  Analysis  followed by  a  Stepwise  Redundancy Analysis

(PCA/RDA; ter Braak and Verdonschot 1995) at the individual-level. Here, the input is an

abundance  table  of  sequential  habitat  use  patterns  (the  ‘species’)  per  individual  (the

‘sites’), excluding any individual for which we had less than 10 biweekly sequences, to-

gether with a table of the described landscape metrics calculated for each individual MCP

(the  ‘environment’).  The  goal  of  RDA is  to  determine  the  pattern  of  variation  among

‘species’ assemblages (i.e. abundance of multiple ‘species’ at different ‘sites’) dependent

on a set of environmental variables. In RDA, the ordination axes (or Principal Components

of a PCA) for displaying the abundance of species in different sites are constrained to be

linear combinations of the environmental variables measured at the same sites (Rao 1964,

ter Braak and Verdonschot 1995). 

In both DCA and RDA, the results are represented in ‘biplots’. The prefix ‘bi’ refers

to joint representation of two datasets (Jongman et al. 1995), i.e. the ordination of sequen-

tial habitat use patterns (and environmental axes in the case of RDA) along two generated

gradients, the ordination axes. In RDA, the association between sequential  habitat use

patterns and environmental variables and the two ordination axes is therefore represented

as vectors over the joint space between the two axes. Vectors are a standardised repre-

sentation of RDA canonical coefficients (regression coefficients) of environmental variables

on both axes (ter Braak 1986, McGarigal et al. 2000, Legendre and Gallagher 2001). For

all multivariate statistics, we used the R package vegan. 
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Finally, to quantify temporal variability in sequential habitat use patterns across sea-

sons, we summarised and visualised the abundance of sequential habitat use patterns per

biweekly period, for each population separately.

5.3. RESULTS

5.3.1. Sequential habitat use patterns vary among populations.

The sequential habitat use patterns (i.e. 'species' in multivariate analysis terminology) sep-

arated  mainly  along  the  first  DCA axis  (Eigenvalue=0.34,  Axis  length  rescaled=2.12,

Fig.5.2),  which was mainly associated with homogeneous sequential  patterns. Further-

more, some populations (i.e.  ‘sites’)  were clearly associated with these sequential  pat-

terns. Specifically, the minimum and maximum site scores for the first axis were respec-

tively -0.95 for  Southcentral Norway (NK5, homogeneous open) and 1.17 for the Italian

Alps (IT24, homogeneous closed). Italian and Austrian Alps (IT1, AU17) and Bavarian For-

est (DE2) were also associated with the latter. The second DCA axis was much less dis-

criminatory for separating sequential habitat use patterns (Eigenvalue=0.04, Axis length

rescaled=0.59), and mainly distinguished the alternating habitat use sequences alterna-

tion24/alternation33 (a24 score=1.55;  a33 score=1.01)  from alternation42 (a42 score=-

1.45). Interestingly, the sequential habitat use types alternation24 and alternation33 were

more closely related to homogeneous open than to homogeneous closed on the first axis

(a24 score=-0.33 and a33 score=-0.09), whereas the opposite was true of alternation42

(a42 score=0.40). The minimum and maximum sample score for the second axis were

-0.35 for  Southcentral Norway (NK5, negatively associated with alternation) and 0.24 for

Southwest France (FR8, positively associated with alternation a33 and a24), respectively.

A gradient length of 0.59 SD units is very low and shows that the opposite ends of the sec-

ond axis are rather similar. Notably, although, some sites had similar proportion of closed

habitat (Fig.5.2, top-right infra panel), they did not overlap in the DCA diagram, for exam-

ple Southern Germany (DE15) and Southwest France (FR8) occurred at opposite ends of

the second axis, with Southwest France (FR8) associating with the habitat use sequences

alternation24/alternation33  (site  score=0.24),  but  not  Southern  Germany  (DE15,  site

score=-0.25).
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Figure 5.2. Detrended Correspondence Analysis (DCA) using abundances of sequential habitat use patterns

(‘species’ in multivariate statistics terminology; coloured tags: c, o, u, a24, a33, a42) across populations

(‘sites’, here represented as circular extracts of population ranges) as input data. The graph in the upper-

right corner indicates the availability of closed habitat per population including the number of animals (a) and

sequences (s).

5.3.2. Sequential habitat use patterns vary among individuals

The occurrence of sequential habitat use patterns was not constrained along canonical

axes using  individual  abundances only  (i.e.  number  of  sequences for  each sequential

habitat use pattern per individual – individuals were scattered across the four quadrants of

the biplot, Fig.5.3), so that the Principal Component (PC) axes were unconstrained, with

eigenvalues  of  the  same  order  of  magnitude  (PC1=1.69,  PC2=1.54,  PC3=0.88,
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PC4=0.85). Instead, sequential habitat use patterns were highly correlated with the individ-

ual level habitat structure metrics within the home range (Fig.5.3, Appendix 5A).

Figure 5.3.  Principal Component Analysis/Redundancy Analysis biplots, highlighting individual variability in

sequential habitat use patterns, in relation to the landscape metrics. In multivariate terminology, sequential

habitat use patterns represent the ‘species’ (the rectangular labels in the biplot), individuals represent the

‘sites’ (the  dots  in  the  biplots),  and  landscape metrics  the  ‘environmental  variables’ (the  vectors  in  the

biplots). Points are distinguished by population with different colours, and wrapped in minimum convex poly-

gon of the same colour, to show the variability of sequential habitat use between individuals (the larger the

polygon, the more variable the sequential habitat use among individuals). For readability,  we plotted the

same  PCA twice, visualising all individuals in both plots, but polygons from different populations, i.e. with

prevalence of open habitat on the left and of closed habitat on the right. Landscape metrics are: proportion,

P; Splitting Index, SPLIT; Patch Cohesion Index, COHESION; Landscape Shape Index, LSI; Patch Density,

PD; Edge Density, ED, computed both for the open habitat class (dark blue vectors) and the closed habitat

class (black vectors).

Specifically, homogenous open ‘o’ was obviously positively associated with the pro-

portion of open habitat (P0, PC1=0.95), and also with the landscape shape index of closed

(LSI1, PC1=0.98), open patch cohesion (COHESION0, PC1=0.99), closed patch density

(PD1, PC1=0.97) and edge density of open patches (ED0, PC1=0.98), on the first axis,

and the splitting index of closed (SPLIT1, PC2=0.56), on the second axis. Homogeneous

closed ‘c’ was obviously associated with the proportion of closed (P1, PC1=-0.96), and

also with the landscape shape index of open (LSI0, PC1=-0.71), closed patch cohesion

(COHESION1, PC1=-0.82), open patch density (PD0, PC1=-0.85), edge density of closed
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patches (ED1, PC1=-0.74), and the splitting index of open (SPLIT0, PC1=-1), on the first

axis. Alternation24 'a24' was associated to landscape shape of closed (LSI1, PC1=0.98)

and edge density of open patches (ED0, PC1=0.98) on the first axis, whereas alterna-

tion42 'a42' was associated to the landscape shape index of open (LSI0, PC1=-0.71) and

edge density on closed patches (ED1, PC1=0.98)  on the first  axis and the landscape

shape index of open (LSI0, PC2=-0.71), closed patch cohesion (COHESION1, PC2=-0.57)

and edge density of closed patches (ED1, PC2=-0.67) on the second axis.

The spread of individual animal data (coloured points) within a population (corre-

sponding coloured polygons) on the biplot (Fig.5.3) highlighted substantial individual vari-

ability in sequential habitat use patterns. In general, with few exceptions, many individuals

aggregated close to the center, indicating that they did not adopt a single type of sequen-

tial habitat use. Instead, several, but not all, aligned along the environmental covariate

vectors, indicating a stronger correlation between the metrics describing habitat structure

within the individual’s home range and the type of sequential habitat use. Specifically, pop-

ulations with a high habitat preponderance of one habitat type, such as Southcentral Nor-

way (NK5) and Italian Alps (IT24) (average proportion of open habitat in MCPs greater

than 0.9 and smaller than 0.1, respectively, see top-right panel in Fig.5.2) had small, asym-

metrical polygons, indicating little variability among individuals, with a prevalence of a ho-

mogeneous sequential habitat use pattern. Interestingly, with habitat proportion of open or

closed  greater  than  0.1,  individual  variability  increased.  For  example,  the  polygon  for

Southwest France (FR8, average proportion of open habitat in MCPs between 0.8 and

0.9) was much larger, spanning the four quadrants of the biplot, and indicating that individ-

uals with all types of sequential habitat use patterns occurred on this study site. For popu-

lations where the proportion of open and closed habitat were more or less equal (average

proportion of open/closed habitat in MCPs between 0.3 and 0.5), such as Southern Ger-

many (DE15, DE31) and Italian Alps (IT1), the size of the polygons in the biplot was espe-

cially large.
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5.3.3. Sequential habitat use patterns vary through time.

The relative proportions of the types of sequential habitat use patterns across time (bi-

weeks)  showed  clear  seasonal  variability  within  populations (Fig.5.4).  Some  temporal

trends in the abundance of sequential habitat use patterns were common across multiple

populations. First, a bimodal seasonal pattern in habitat alternation (a24, a33,  a42) was

observed (i.e. Southwest France (FR8) and Austrian (AU17), Italian (IT1) and Swiss Alps

(CH25); Fig.5.4), with a peak of habitat alternation in early spring (around 5 th  and 6th bi-

week) and a second peak in the fall (between 16th and 20th biweek, depending on the pop-

ulation). This trend was therefore observed both for populations in landscapes where open

habitat was prevalent (Swiss Alps (CH25) and Southwest France (FR8)), in which case the

variability  concerned  homogeneous  open  (o)  and  habitat  alternation  (a24,  a33,  a42),

whereas the use of homogeneous closed was consistent throughout the year; and for pop-

ulations in landscapes where closed habitat was prevalent (Italian (IT1) and Austrian Alps

(AU17)), in which case the variability concerned the use of homogeneous closed (c) and

mainly habitat alternation (a24, a33, a42). Interestingly, in certain cases more than half of

the  sequences  of  a  biweek  were  alternating  ones.  Second,  homogeneous  closed  se-

quences were prevalent  during winter in several  populations (Italian and Austrian Alps

(IT24, IT1, AU17), Southern Germany (DE15, DE31) and Bavarian Forest (DE2)). Third,

even in very closed landscapes, some alternation occurred in spring-summer (Italian and

Austrian Alps (IT24, AU17), Bavarian Forest (DE2; see Fig.5.2, top-right panel for the pro-

portion of closed). Finally, further peculiarities in sequential habitat use trends were noticed

for the populations in Southern Germany (DE15 and DE31). In the former (DE15) we ob-

served alternating and homogeneous closed sequences during winter and mainly homo-

geneous open sequences from late spring to early autumn; in the latter (DE31) we ob-

served a more irregular pattern.
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Figure 5.4. Temporal variability in sequential habitat use patterns for each population, reported as biweekly

proportions (1-23). The coloured segments of the x axis indicate the seasons (blue-winter, green-spring, red-

summer, brown-autumn), and the vertical dotted lines the season transitions.

5.4. DISCUSSION

The sequential habitat use pattern identified for each sequence was found to be depen-

dent upon the environmental context (Fig.5.2 and Fig.5.3) and seasons (Fig.5.4). At the

population level (Fig.5.2), the sequential habitat use patterns were influenced by habitat

proportion (mainly first DCA axis) but less clearly by structure (first & second DCA axis).

However, the low maximum values for both first and especially second DCA axis poten-

tially indicated a high individual variability within populations in the use of different sequen-

tial patterns. Results were further confirmed by the individual level analysis (Fig.5.3), which

showed that even for populations with a high preponderance of one habitat type, variability

in sequential habitat use patterns were observed among individuals. At the individual level

we could better explain this variability by habitat composition and structure of the animal’s

range. Specifically, homogeneous sequential habitat use, i.e. homogeneous open and ho-

mogeneous closed, were associated both with high proportion and connectivity of the re-
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spective habitat classes and also with heterogeneous landscapes, where patches of both

habitat classes were structured so as to include a lot of ecotonal habitat (i.e. edges). On

the other hand, alternation, and especially alternation with mainly use of open habitat (i.e.

a24), was mainly present in heterogeneous landscapes, as expected. Due to seasonal

variability in sequential patterns (Fig.5.4), most individuals cannot be related to one spe-

cific sequential habitat use pattern.

5.4.1. Functional habitat types in different contexts

Habitat classifications in animal ecology studies are human simplifications of the animals'

perception of the landscape. For animals, habitats represent an ensemble of resources

that respond to their needs (e.g. feeding, hiding, sheltering), or that represent constraints

to their distribution and fitness (e.g. exposure to bad weather conditions, predation).  Our

analysis took advantage of the high-resolution pan-European TCD raster dataset, which

we used, for the first time, to perform a standardised multi-population analysis on sequen-

tial use of two simplified, functionally different habitat classes, open and closed, at high

spatial resolution. While one habitat type, such as forest, may provide multiple resources,

the same need can be satisfied by resources present in different habitats. While TCD gen-

erally identifies open/closed habitats with precision, it may overlook small features that can

be used by roe deer which provide similar functions as forest or open habitats. Specifi-

cally,  roe deer may alternate between dense and sparse areas in the forest, use small

open patches (e.g. clearcuts) or edges (e.g. forest roads). In mainly open or heteroge-

neous landscapes, roe deer may find cover in hedgerows or field margins, as observed in

Southwest France (FR8; see Morellet et al. 2011). A more detailed classification of differ-

ent habitats that represent open and closed (e.g. old/young forest, clearcuts, shrubland,

type of forest,etc.), such as those derived from LiDAR (Lone et al. 2014, Lone et al. 2017,

Ciuti  et al.  2018), might be needed to capture more fine-scaled patterns. Nevertheless,

such detail is currently available at the local or regional scale only. Images from most re-

cent satellites, such as Sentinel 2 (ESA,  https://sentinel.esa.int) could reach a resolution

down to 1m, so that fine scale responses to habitat composition and function will possibly

be detectable in future studies.
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5.4.2. Individual variability

As expected, the occurrence of sequential habitat use patterns within populations helped

to characterise the spatio-temporal use of landscapes, i.e. each population can be de-

scribed mainly by one homogeneous and one/two alternation patterns. Instead, sequential

habitat use patterns do not characterise individuals, as in individuals generally cannot be

tagged with one sequential habitat use pattern only. This finding means that individuals of-

ten use their habitat with an ensemble of sequential patterns which vary across seasons.

Although individual sequential  habitat use was better classified considering abundance

and structure of open and closed habitats, we observed differences among individuals with

similar values of habitat structure metrics. For example, Figure 5.5 shows two different in-

dividuals with MCPs similar for habitat composition, structure, and size, that nevertheless

use their local environment in very different ways. Roe deer A (59% open habitat) showed

a homogeneous use of open habitat during summer/autumn and alternating or random

use of both open and closed during winter/early-spring. Roe deer B (52% open habitat)

showed instead an alternating use of open and closed during late spring/summer, and ho-

mogeneous use of closed habitat during autumn/winter. 

Indeed,  we  observed  inter-individual  variability  even  in  populations  with  a  strong

prevalence of one habitat type over the other (e.g. Southwest France - FR8). Inter-individ-

ual variability in the sequential habitat use may be related to external factors (e.g. social

fences, competition, risk of predation/hunting), or to changes in the internal state of ani -

mals (e.g. physiological phases, life-history traits), and/or to their personality. An increasing

body of work relates individual behavioural variability to animal personalities (Dall  et al.

2004, Bonnot et al. 2015). Indeed, for many species it has been shown that some individu-

als are bolder, more active and take more risks than others (Chapman et al. 2011, Bonnot

et al.  2015).  For example, some individuals will minimise risk by using safer habitats but

obtain less access to high quality food resources, while others will expose themselves to a

more risky context in order to obtain high quality food (Bonnot  et al.  2015; Padié  et al.

2015). Hence, while the same habitats are available at the population level, different indi -

viduals can exhibit very different space and habitat patterns of use. We propose that the

sequence with which habitats are used may be part of the ‘behavioural syndrome’, defined

as an ensemble of correlated behavioural traits occurring within or across behavioural con-

texts (Sih, et al. 2004), hence an important movement tactic to study.
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Figure 5.5. Classification trees (left) for 16-day habitat use sequences (middle) and the corresponding bi-

monthly period (bar at the right of the sequences) for two roe deer with similar MCP composition and struc-

ture. Branches are coloured based on the identified cluster type by IM-SAM (see Chapter 4 for more details

on the SAM-procedure).

5.4.3. Temporal variability in sequential use of habitat types

Habitats can be considered dynamic resource composites. On one side, resources change

seasonally, on the other, physiological and behavioural phases of animals affect their re-

source needs. In the European landscape, herbivores' essential resources (i.e. food and

cover) may change due to human interference (i.e. agriculture and forest management

practices) or naturally (i.e. phenological cycle of vegetation, Pettorelli et al. 2005). Hence,
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habitat use by animals should adapt to such changes. We showed that habitats can be

used by animals in a plastic manner by adjusting their sequential use. Although relatively

overlooked so far, the order in which habitats are used can be considered a tactic to ad-

dress different resource needs and constraints, such as avoidance of predators, or hunt-

ing, at different temporal scales. We found that seasonal resource dynamics corresponded

to temporal variability in sequential habitat use patterns by roe deer. In some populations,

seasonal variability are associated with partially migratory behaviour, where some individu-

als stay at lower elevations in mainly closed habitats while others migrate between low and

high elevations and alternate between open and closed habitats (Cagnacci et al. 2011, De

Groeve et al. 2016). For example, migrant individuals in the Italian Alps (IT1) showed alter-

nation between open and closed habitats during summer and a relatively homogeneous

use of closed habitats during winter. Elsewhere, seasonal changes in sequential patterns

do not correspond to a range shift (i.e. in space), but possibly to a different functional use

of habitats. For example, in Southern Germany (DE15), a minimally productive area in win-

ter has abundant crops in summer, which can also offer cover. As a consequence, alterna-

tion or homogeneous use of closed habitats during winter abruptly changes into homoge-

neous use of open in summer. Interestingly, many populations show a bimodal pattern with

more alternation between closed and open habitats in spring, that might be explained by

green up in open habitats such as pastures, and in fall,  perhaps due to availability of

plants with delayed maturation or crop left-overs. For instance, the Swiss Alpine population

(CH25), which ranges in a landscape characterised by its partly-managed Alpine habitats

(e.g. cattle pastures), showed a very pronounced bimodal seasonal change in habitat al-

ternation. Similarly, closed environments may provide a protective service from extreme

weather (Mysterud et al. 1997, Mysterud and Østbye 2006, Ratikainen et al. 2007). This is

especially true for Alpine/mountainous environments such as the Italian Alps (IT1, IT24),

the Austrian Alps (AU17), and the Bavarian Forest (DE2): roe deer used closed habitats

homogeneously in winter, most likely due to the reduced snow depth with respect to open

habitats,  thermal protection, and increased food availability  compared to open habitats

(Ewald et al. 2014). 

Temporal patterns in sequential habitat use can be expected to follow behavioural

and physiological phases, further to environmental seasonality. In some populations we

see a drop in the alternating use of habitats and a slight increase in the use of open habi-

tats during the 12th-15th biweek, corresponding to the rutting period (e.g. Italian Alps - IT1,

IT24; Bavarian Forest - DE2). Other patterns may emerge at a finer temporal resolution
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than the one considered in this paper. For example, roe deer doe hide their fawns during

early life-stages (first weeks of life), only returning to feed them (Van Moorter et al. 2009).

This behaviour should correspond to an alternation between different habitats that how-

ever we did not observe, but might become evident at a higher resolution (temporal and

habitat classes) as we suggest below.

5.4.4. Methodological considerations

Periodicity  and sequentiality have recently received more attention in the animal move-

ment literature (Berger-Tal and Bar-David 2015). Fourier and wavelet transformations al -

low the identification of multi-scaled temporal resolutions of repetitive behaviours in eco-

logical or movement variables (Wittemyer et al. 2008, Bar-David et al. 2009, Polansky et

al. 2010, Riotte-Lambert et al. 2013, 2016). Recently, Riotte-Lambert et al. (2016) investi-

gated the degree of  repetitiveness in  resource patch visitation (i.e.  the sequence with

which patches are revisited). Benhamou and Riotte-Lambert (2012) combined Utilisation

Distribution and residence time to gain insights into recursive use. Demšar et al. (2015b)

suggested a 3D-geovisualisation to characterise whether re-visitations are random in time

or follow a sequential pattern. Analysing the repetitiveness and sequentiality of resource

and habitat use is essential to evaluate the influence of resource predictability and dynam-

ics on animal movement. In addition, movement recursions provide insights into memory

based processes governing animal movement and space use patterns (Fagan et al. 2013,

Berger-Tal and Bar-David 2015, Riotte-Lambert et al. 2016). Here we propose IM-SAM as

a  complementary  methodological  framework  to  investigate  spatio-temporal  patterns  of

habitat use. IM-SAM offers a complete and robust approach to explore, visualise, identify

and classify complex and multi-scaled sequential patterns over multiple populations. Im-

portantly, the computation of habitat sequence similarity accounts for individual variability

in habitat availability and distribution (see Chapter 4). 

While this study applied IM-SAM to habitat use sequences, other important compo-

nents of a species internal or external state (Nathan 2008) can be studied with this ap-

proach. For example, instead of habitats one might look into sequentiality in movement pa-

rameters (e.g. step length, speed, turning angle) and derived metrics such as temporal au-

tocorrelation (Wittemyer  et al.  2008, Boyce  et al.  2010), or movement and behavioural

states (e.g. foraging/resting, exploratory/encamped (Morales  et al.  2004); Gurarie 2009,
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2016), or areas of intensive use (Benhamou and Riotte-Lambert 2012, Berger-Tal and Bar-

David 2015). Finally, other non-movement parameters obtained through biologging, such

as behaviours, activity, heart rate, body temperature, or food intake (see Ropert-Coudert

et al. 2005) could also be analysed as sequence of events. 

IM-SAM is not only applicable to binary datasets (open-closed) but could be ex-

tended to more complex classifications, and higher temporal resolutions (e.g. hours). In-

creasing granularity of sensing and tracking data offers several avenues of application of

the IM-SAM approach to explore and identify sequential patterns, within and between pop-

ulations at multiple spatio-temporal scales.
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APPENDIX 5A – MULTIVARIATE STATISTICS 

a. Sequential habitat use patterns varies across geographic space.

182

Table 5A.1. Eigenvalues, decorona values and axis lengths for all DCA axes. 
DCA1 DCA2 DCA3 DCA4

Eigenvalues 0.339 0.04155 0.041949 0.043878
Decorona values 0.3472 0.02674 0.001259 0.0004566

Axis lengths 2.1217 0.59292 0.559777 0.652769

Table 5A.2. Species scores of sequential habitat use patterns for all DCA axes. 
Species DCA1 DCA2 DCA3 DCA4 Totals

a24 -0.3343 1.5452 1.5579 -1.1969 544
a33 -0.0913 1.0125 0.9826 -1.1107 1009
a42 0.3958 -1.4542 -1.4992 0.7093 589

c 1.4677 -0.0273 -0.0644 0.2853 1317
o -1.1173 -0.5206 -0.4831 0.2198 1702
u 0.0398 -0.3469 -0.2026 2.5071 241

Table 5A.3. Site scores of different populations for all DCA axes.
Sites DCA1 DCA2 DCA3 DCA4 Totals
AU17 1.03402 -0.00729 -0.04012 0.10931 141
CH25 -0.40222 0.06439 0.0789 -0.06239 1559
DE15 -0.2861 -0.24716 -0.2406 0.10988 865
DE2 0.73635 -0.01462 -0.03209 0.19276 375

DE31 0.02045 -0.12257 -0.12266 0.08971 273
FR8 -0.18494 0.24236 0.24257 -0.27759 1107
IT1 0.81677 0.05285 0.02669 0.06284 521

IT24 1.17098 -0.1991 -0.22833 0.37517 358
NK5 -0.95068 -0.35056 -0.31721 0.14912 203



b. Sequential habitat use patterns varies among individuals

Table S4.5 Eigenvalues for unconstrained axes 

 

Table S4.7 Site scores of each individual animal for all PCA-axes
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PC1 PC2 PC3 PC4 PC5 PC6
1.6932 1.5372 0.879 0.8464 0.6685 0.3757

Table 5A.4. Inertia and Rank
Inertia Rank

Total 6
Unconstrained 6 6

Inertia is correlations

Table 5A.5. Species scores for sequential habitat use patterns for all PCA-axes  
Species PC1 PC2 PC3 PC4 PC5 PC6

a24 0.4420608 -0.2915859 0.30207016 -0.52696625 -0.55881103 0.1958325
a33 0.38860249 -0.4709225 0.18494347 0.0390161 0.71532156 0.2825046
a42 -0.12275717 -0.4867856 0.36961936 0.69389601 -0.33975326 -0.1201167

c -0.66936854 -0.1222922 0.11051972 -0.14883178 -0.01723742 0.7087508
o 0.42797457 0.487813 -0.03129066 0.45786415 -0.15947641 0.5855124
u 0.08534961 -0.4509241 -0.85131507 0.08661502 -0.18677035 0.1491985

Table 5A.6. Site scores for individual animals for all PCA-axes
Sites PC1 PC2 PC3 PC4 PC5 PC6

1 -0.028863109 -0.0312128914 0.0631903952 0.1288660973 -0.04344534 -0.158337326
3 -0.114992505 0.027301069 0.0057794067 -0.0488219378 0.007721166 0.0431837336
4 -0.031501331 -0.0995115645 -0.0576489537 0.1051555724 -0.1135378 -0.1026477751
5 0.005310877 -0.0370235782 0.0552886505 -0.0691199119 0.03767123 0.0036602976

11 -0.098566593 0.0373398162 -0.0048383141 -0.0580751064 0.01596633 0.0137648782
12 -0.124786256 0.0254231704 0.0080236292 -0.0519017889 0.007319801 0.0651995201
14 -0.019907758 -0.1264072468 0.1204590376 -0.0413222877 0.1399913 0.2033123456
19 0.048796821 -0.1379906053 -0.0941462639 0.0640127338 0.09830387 -0.0401199814
20 -0.085143481 0.0283482892 0.0060745812 -0.0223759864 -2.42881E-005 -0.0200696234

768 -0.024498849 -0.0351310431 -0.0122037643 -0.0149229693 -0.02812846 -0.0463148704
769 -0.11325722 0.0345229683 -0.0014719803 -0.062694883 0.01536428 0.0467885579
770 -0.098566593 0.0373398162 -0.0048383141 -0.0580751064 0.01596633 0.0137648782
771 -0.118463075 0.0128572705 0.0202821806 -0.0210760473 -0.007565065 0.035974085
772 0.051697564 -0.0480094111 0.0436998341 -0.1595161969 -0.05926671 0.0201314644
773 -0.017847539 -0.0109656528 -0.1106708139 -0.0236116301 -0.01675303 -0.0910804242
774 0.023466873 -0.2436908144 -0.094306077 0.1664965294 -0.03135186 0.0099032547
776 -0.113789435 0.028032856 0.0025330089 -0.0636150265 0.02794943 0.0645328421
782 -0.054455485 -0.0092939767 0.0151925812 -0.0448196177 -0.05798859 0.0391067414
783 -0.079511305 0.0346055011 -0.00532177 -0.0528355476 0.02935421 -0.0125224108
784 -0.009059926 -0.0497111932 0.0486627679 0.0187133896 0.14063 -0.0188887682
785 -0.088496711 -0.0222307437 0.0515672146 0.05968794 -0.03159003 -0.0523688985
787 -0.080213861 -0.0048597973 0.0240788497 -0.0272303055 0.06460926 0.0402371838
789 -0.004367297 -0.0473008335 0.0455947059 -0.0227062414 0.1549205 0.0233284753
791 -0.024394274 -0.0417026518 0.0699928963 -0.1035662977 -0.0160656 0.0797536037
792 -0.138039013 -0.1405884931 0.0881614156 0.1475006206 -0.07112607 0.1095312632
796 -0.108360344 0.0354619176 -0.0025940916 -0.0611549575 0.01556496 0.0357806647
797 -0.045797091 -0.0105355899 0.0209876515 -0.0330842023 0.1114126 0.0200196077
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798 -0.030489654 -0.0032168283 0.0254798081 0.0331679984 0.01871711 -0.1271526832
799 -0.055197267 0.0063250614 0.0144633041 -0.0186105342 0.05302752 -0.0325465666
800 -0.105198754 0.0291789676 0.0035351841 -0.0457420867 0.00812253 0.0211679471
801 -0.025638213 -0.0512703584 0.0182195022 0.0171853213 0.1078843 -0.0031281818
837 0.034818344 0.1074265853 -0.0250507465 0.0438528987 0.001915151 -0.0084520063

1333 0.025248363 0.0679793922 0.0041287498 0.0575907991 -0.02786223 -0.0450051959
1335 0.052652174 0.0892893921 -0.0022560892 -0.0082884746 -0.0617786 -0.002964381
1336 0.006220078 0.0839880884 -0.0254746319 0.006565136 0.003500065 -0.0855754922
1338 0.047672399 0.0667064223 0.0055259571 -0.0219226472 -0.0311819 -0.0040790133
1339 0.039970367 0.0049497342 -0.1458924487 0.0269542342 0.03225936 -0.0094068036
1341 0.026047574 0.1077069011 -0.0274865349 0.036566211 -0.008257818 -0.0279860508
1343 0.017235353 0.0971652066 -0.0265923558 0.0232323999 -0.003032092 -0.0535813581
1347 0.017235353 0.0971652066 -0.0265923558 0.0232323999 -0.003032092 -0.0535813581
1425 -0.074082214 0.0420345627 -0.0104488705 -0.0503754786 0.01696974 -0.0412745881
1453 0.001096655 -0.0632064078 -0.2600374907 0.0381374577 -0.06741992 0.0697752994
1454 0.015032298 0.0945297829 -0.026368811 0.0198989471 -0.001725661 -0.0599801849
1455 -0.07612648 0.0140859149 0.0174345662 0.006656228 -0.01340204 -0.0667017786
1456 0.007648862 0.0230338051 -0.0954845262 -0.0189888818 -0.008267342 -0.095722727
1457 -0.004813473 0.0773549695 -0.0485785535 0.0131971391 -0.007994646 -0.0151298572
1495 -0.071090964 0.0027764266 0.0210760356 -0.0084372221 0.03219721 -0.0208719952
1497 -0.118154095 0.033584019 -0.000349869 -0.0642348086 0.0151636 0.0577964512
1499 -0.008167976 0.0058604069 0.0329522393 -0.0760914091 -0.02253411 -0.0072203519
1500 -0.092842383 -0.0294448065 0.0633654463 0.0601875062 -0.06559986 -0.045446803
1501 -0.040349011 -0.0158717541 0.0305416606 -0.029504785 0.07780413 0.0049259167
1503 -0.139476883 0.0226063225 0.011389963 -0.0565215656 0.006717755 0.0982231999
1506 -0.067963279 0.0309400731 -0.0001362699 -0.0625092935 0.01617469 -0.0172748865
1606 -0.109424774 0.022481693 0.0054158869 -0.0629952444 0.04073526 0.0712692329
1607 -0.18844564 0.0132168296 0.0226110758 -0.0719208212 0.004710933 0.2083021325
1610 -0.132844722 0.0307671711 0.0030164648 -0.0688545853 0.01456155 0.090820131
1611 -0.169476097 -0.0244808702 0.05938673 0.0205564037 -0.03994367 0.1206258271
1614 -0.161108651 -0.0090981224 0.0437618448 -0.0056495613 -0.02445675 0.1168275824
1618 -0.074680473 -0.0184053867 0.0359558027 0.0614800077 -0.08896244 0.0448374214
1619 -0.125605111 -0.0394598093 -0.1503639761 -0.0364400307 -0.0352248 0.1479275158
1621 -0.159682346 -0.0226029716 0.0571425075 0.0236362548 -0.0395423 0.0986100405
1623 -0.09614991 -0.0566665824 -0.0290780464 0.0486491156 -0.03228188 0.0236566342
1670 0.063751954 0.0541125556 0.0208908916 -0.0613104235 -0.08129477 -0.0158546986
1672 0.052862634 0.0034034931 0.0429433528 -0.1416197767 -0.1031453 -0.0866720216
1674 -0.102037163 0.0228960176 0.0096644598 -0.0303292158 0.0006800968 0.0065552295
1675 0.017984397 -0.0066188994 0.0617223025 0.0333534411 -0.09909185 -0.0873831982
1676 0.103493592 -0.0401344073 0.0823646435 -0.1800420992 -0.09404338 -0.0215695707
1678 0.094889155 -0.0198987089 0.0769171983 -0.1904014461 -0.1598733 -0.0358608898
1679 0.017005645 0.0194679192 0.0080685591 -0.0119309928 0.06813608 -0.0762904483
1714 -0.103463468 0.0364008669 -0.0037162029 -0.0596150319 0.01576565 0.0247727714
1796 0.032728467 0.0133740264 0.0165432446 0.031682234 0.1056985 -0.0339473835
1798 0.094731969 -0.046819388 0.0720452737 -0.1003349809 0.02653078 -0.0099718744
1807 0.03723186 0.02417611 0.0199251508 -0.0861449506 -0.040758 -0.0857608202
1808 0.030247507 0.0122023803 0.0093326397 -0.0415248074 0.07799838 -0.0834993626
1817 -0.026286629 0.0032258687 0.0313019693 0.0727545342 -0.02565871 -0.1506544196
1823 -0.052356102 0.0373491955 -0.0041280289 -0.024596069 0.02010164 -0.0583690477
1877 -0.103463468 0.0364008669 -0.0037162029 -0.0596150319 0.01576565 0.0247727714
1894 -0.093669717 0.0382787655 -0.0059604254 -0.0565351808 0.01616701 0.0027569849
1895 0.037398729 0.0207988342 0.0272217072 -0.1164787631 -0.09047719 -0.0995204206
1911 -0.108360344 0.0354619176 -0.0025940916 -0.0611549575 0.01556496 0.0357806647
1920 0.056393485 -0.0085939496 0.0196516618 -0.0165920852 0.1641743 -0.0301399545
1921 -0.089305056 0.0327276025 -0.0030775474 -0.0559153987 0.02895284 0.0094933758
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1922 0.071649607 -0.0567666836 0.0417149317 -0.0447075629 0.2225618 -0.0285955436
1923 0.023430023 -0.0031486251 0.0060366852 -0.0272384767 0.1470356 -0.0949975054
1924 0.11496749 -0.0245784682 0.0961583433 -0.2331622431 -0.2402722 -0.0179131748
1925 0.034859794 0.1182485956 -0.028380714 0.0499000222 -0.01348354 -0.0023907436
1926 0.049866683 0.0284764584 0.0033541478 0.0127629567 0.1313584 -0.0182115836
1928 0.026983113 0.0985339498 -0.0134308505 0.0709790071 -0.02615691 -0.0223980458
1929 0.038768509 -0.0063446802 0.0111318067 -0.0159985542 0.1686879 -0.0623282433
1937 0.012746344 0.0702503388 -0.0194853312 0.0044712474 0.03037816 -0.0785015373
1967 0.003051705 0.0463358822 -0.0709941948 -0.0139395781 -0.01840046 -0.0794723257
1974 -0.015276473 0.0112374212 -0.0161682826 -0.0559529395 -0.02339605 -0.0892144405
1976 -0.035237362 -0.0568052999 -0.2498031844 -0.0318472502 -0.0567626 -0.0030846169
2041 0.028157851 -0.0436917398 0.0873346293 -0.0108810172 -0.05397695 0.0110550548
2042 0.008776857 -0.015496188 -0.2094790671 0.0033901777 -0.0219779 -0.0731078185
2043 0.065413488 0.0327251378 0.0124158583 -0.0002838098 0.08789286 0.0067593409
2044 -0.098475687 -0.0978042673 0.0920322516 0.2036688085 -0.1271783 -0.1099517376
2045 0.052528361 0.033490703 0.0180420266 -0.0536909984 -0.009644727 -0.040150495
2046 0.032408041 0.0506811104 -0.0081773641 0.0102838284 0.08021506 -0.045157147
2047 -0.08294792 -0.0883450393 0.1469341526 0.2824509709 -0.135349 0.0016974181
2048 0.060162176 -0.0127823737 0.0598839604 0.0587406287 0.04737513 0.030141641
2049 -0.049027123 -0.0656001753 0.1056129721 0.2150710412 -0.1051041 -0.1518892226
2053 0.031302396 -0.0613262397 -0.014915975 -0.0241661753 -0.04281504 0.0098564836
2054 0.095084158 -0.0252424351 0.0828746105 0.0995929798 0.03684314 0.0590373659
2055 0.054450037 0.0190015141 0.0349398465 0.1081755231 0.06990552 0.0082185185
2056 0.116832106 -0.0293736639 0.0732773866 0.0271598245 0.1075909 0.1048678837
2058 0.002138466 0.050326302 0.0017137045 -0.0459496095 -0.0194317 -0.0416365831
2059 -0.061968068 0.0104126505 0.0180732216 0.0103558612 -0.0002148446 -0.0819811743
2060 0.007156689 0.0281498204 0.0091974791 -0.0135443744 -0.002523443 -0.1179921387
2061 -0.118633416 -0.0201179156 0.0456778111 0.0054493383 0.01510484 0.0709893954
2063 -0.002043873 0.0074861602 0.0290960678 -0.0357987636 -0.04619485 -0.1130032129
2065 -0.006873762 -0.016165222 -0.0479372701 0.0799567875 0.006184378 0.0351891647
2066 0.017530007 0.0286881921 -0.055943144 0.038419614 0.01433239 -0.064539632
2067 0.02539101 0.068750758 -0.0134916431 0.0175046971 0.05052342 -0.028425555
2068 -0.04090246 -0.0503523217 0.0851775403 -0.0032670361 -0.05530395 0.0265277326
2069 0.109597866 0.1645649578 -0.0226613665 0.1390489228 0.003692566 0.1909243171
2070 -0.09357343 -0.0222278223 -0.0609664724 -0.0074624475 -0.01449525 0.0313395406
2071 0.001813968 0.0787172412 -0.0250275423 -0.0001017696 0.006112928 -0.0983731458
2072 0.067998218 -0.0766164329 0.0886137958 0.2011405443 -0.1358716 0.0994885222
2073 -0.005653062 -0.0198598664 0.0069831253 -0.0263477028 -0.0003247818 -0.0762149166
2074 0.131091714 -0.0430975727 0.0596256167 -0.0152737678 0.2145625 0.1001068661
2075 0.041552929 0.1011335702 -0.0150948569 0.017472321 -0.03632464 -0.0090763891
2076 -0.017400923 -0.1740634685 0.114853259 0.0991203905 0.1802416 0.1290490176
2078 0.100651726 0.1730702779 -0.0584552775 0.1433143763 -0.04274405 0.1843315528
2079 0.039224454 0.1126974326 -0.0254978361 0.0505198042 -0.0006977121 0.0043456473
2081 0.052484234 0.1393319846 -0.0301690723 0.0765676444 -0.023935 0.048799871
2082 -0.108093596 -0.0837256179 -0.0649576375 0.0715715935 -0.1032803 0.0694861177
2239 0.085843476 0.0729549898 0.0321781267 0.1841445071 0.01186855 0.112718622
2240 0.134273144 -0.0187182837 0.1228876613 -0.0850018382 -0.2485658 0.0848125995
2241 0.12466715 -0.0819024667 -0.0028459679 -0.1360095203 -0.1319599 0.1488506915
2242 0.171375029 -0.0710595967 0.1413542439 -0.1050906303 -0.1204237 0.112441741
2244 0.073247804 0.1305451876 -0.0078170776 0.1137203623 -0.04765418 0.0929749916
2246 0.065828519 0.117612582 -0.0105756037 0.0329262718 -0.06015629 0.0483696429
2247 0.11897258 0.0685356088 0.0204698466 0.1323714185 0.119156 0.1675562644
2248 -0.070366989 -0.0255276121 -0.0165127313 0.0051853274 -0.006892822 0.0484339211
2249 0.150317766 -0.2103139392 -0.0586673309 -0.0808194673 0.06865228 0.1050277038
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2250 0.146671639 -0.2736824298 -0.2669408583 -0.0294325512 0.06289117 0.1193778019
2251 0.034520768 -0.0101450746 -0.0071861134 -0.0717809436 0.03559876 -0.0897038175
2252 0.066692984 -0.0368329782 0.0537975008 0.0059328605 0.1131781 -0.0220447657
2253 0.092360974 0.0005877808 0.0443558355 -0.0188123147 0.06568082 0.0353935507
2254 0.024532432 -0.0156988521 0.027388926 -0.0231594931 0.07941727 -0.1031691008
2255 -0.012841682 -0.00521152 0.0262967993 0.0102410894 0.02596655 -0.1215639438
2256 0.023199364 -0.1258367295 0.0381193049 0.1022996404 0.1408151 -0.0395637363
2258 -0.010966596 -0.010537619 0.0320241945 0.0556139552 0.02315545 -0.1506459696
2259 0.065495316 0.1010344751 -0.0148605033 0.0663327436 0.04521989 0.056886518
2260 0.009652023 -0.0268295823 -0.1823699131 -0.0131570173 -0.08726945 -0.0014547278
2261 -0.00426451 0.016831845 -0.0893684806 -0.0405690919 -0.03222187 -0.0869855676
2263 0.016005125 0.040896941 -0.0052625072 -0.002796381 0.08373299 -0.042337841
2264 0.061296454 0.1498736791 -0.0310632514 0.0899014555 -0.02916072 0.0743951782
2265 0.05792363 -0.1502080041 0.0096462212 0.013034561 -0.00989187 -0.0046813902
2266 0.101808369 -0.0201669344 0.0680942683 -0.0458670713 0.00772415 0.0310209343
2267 0.101329845 0.0613828129 0.0380253676 -0.0682838155 -0.1318868 0.0541021683
2268 0.009513836 -0.0264772227 0.0367061999 0.0142601432 0.07731056 -0.1056262737
2272 0.011944198 -0.0291622903 0.0551303537 -0.0055737448 -0.01033776 -0.0932672981
2273 0.023845589 0.0584061607 -0.0066465636 -0.0212895483 0.004924199 -0.0723895292
2274 0.066594642 -0.1263341939 0.0997802434 -0.0325599116 0.003894065 0.0075258087
2279 0.074695319 -0.1195227337 0.0313956044 -0.0780896537 -0.07206812 0.0037279986
2281 0.04266471 0.1062841556 -0.0819962466 0.0672766017 -0.03245533 0.04864762
2282 -0.009449539 -0.1580380971 -0.0482237996 0.1260381234 -0.08524839 -0.0516945772
2283 0.015511095 -0.107708667 -0.2841666952 -0.0134265262 -0.03918455 -0.0140927636
2284 0.041263317 0.0020468401 0.0185231291 -0.0521186967 0.07740401 -0.0705075543
2285 0.031153042 -0.0658264138 0.0720709501 0.0513980321 0.07825276 -0.094585223
2287 0.082879294 0.1213838484 -0.0050290052 0.0526266271 -0.0426239 0.1112432788
2288 0.004229697 -0.1315746408 -0.3697538727 0.0187945674 -0.07933719 -0.0157730426
2289 0.062373311 0.0117889983 0.0392970802 -0.0286248904 0.02802771 0.0418092311
2290 0.061256611 0.0690536937 0.003191356 0.0020708723 0.004051351 0.0113269382
2291 -0.016430721 -0.045622333 0.0270801679 0.0966906852 -0.005240156 -0.1606416879
2292 0.059772811 0.0313156545 -0.0022493567 0.01139408 -0.02746847 -0.0016061919
2294 0.030091653 -0.0557087641 -0.2083030878 0.0076541818 0.02704864 0.067817126
2295 0.106709441 -0.115460304 -0.029747121 -0.0854771515 0.06788285 0.0203921171
2296 0.056435643 -0.2045849487 0.1632162789 0.0782136899 -0.2057093 -0.0271711349
2297 0.056310742 0.0120241274 0.0383149835 0.0579216419 0.04322814 -0.0079975204
2298 0.105525494 0.1525395591 -0.007621164 0.0717143921 -0.09313296 0.1506074626
2300 0.079090441 0.0509165005 0.0259860132 -0.050070501 -0.0596424 0.0168145636
2301 0.043672014 0.1287902901 -0.0292748932 0.0632338333 -0.01870927 0.0232045637
2302 0.053834044 -0.0894834961 -0.0412102877 -0.1002289245 -0.008529119 0.0286144115
2303 0.051752483 0.0398989711 -0.0826689628 -0.0007950092 -0.03791908 0.0003104205
2305 0.010094509 0.059436165 -0.0116085189 -0.0149492552 0.01941014 -0.0740358802
2447 -0.079918636 0.0372487611 -0.0009984701 -0.0628754739 0.001681064 0.0044033359
2448 -0.114992505 0.027301069 0.0057794067 -0.0488219378 0.007721166 0.0431837336
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Table 5A.7. Environmental fit of the landscape metrics. The values in column PC1 and PC2 give 

the direction cosines corresponding to the coordinates of the heads of the vectors. Vectors in 

figure 6 are scaled by their respective correlations (square root of r2) so that landscape metrics 

with better  support are longer than those with a weaker support.   

Landscape Metrics PC1 PC2 r2 Pr(>r)
P0 0.95017 0.31172 0.5454 0.001 ***
P1 -0.95682 -0.29069 0.5503 0.001 ***

COHESION0 0.98813 0.15361 0.4894 0.001 ***
COHESION1 -0.81995 -0.57244 0.3745 0.001 ***

LSI0 -0.70856 -0.70565 0.1655 0.001 ***
LSI1 0.97612 -0.21724 0.144 0.001 ***
PD0 -0.85144 -0.52445 0.1836 0.001 ***
PD1 0.97337 0.22925 0.2302 0.001 ***
ED0 0.9762 -0.21685 0.3272 0.001 ***
ED1 -0.73967 -0.67297 0.2238 0.001 ***

SPLIT0 -0.99862 -0.05253 0.1972 0.001 ***
SPLIT1 0.5857 0.81053 0.1895 0.001 ***

Signif.codes: 0 '***'   0.001 '**'   0.01 '*'   0.05 '.'   0.1 ' '   1
Permutation: free

Number of permutations: 999
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CHAPTER 6 

DISCUSSION

This dissertation represents the progression made throughout this PhD-project, from the

development of SAM (Chapter 3) to IM-SAM (Chapter 4) followed by an ecological applica-

tion of the latter (Chapter 5). My co-authors and I provided a framework that allows to first

explore,  simulate and then classify  sequential habitat use patterns in animal trajectories,

that accounts for individual geographical distribution and availability of habitats. In Chapter

5 we further showed how identified sequential patterns can be used as dependent vari -

able(s) for further statistical analysis. In this discussion I will first summarise the strengths

and weaknesses of (IM-)SAM. Second, I comment on the ecological results, discussing

the main challenges and perspectives. In a third part, I highlight the prospects, including

enhancements in environmental data sources, general applicability of SAM opening up fu-

ture directions of research (see also Appendix 6A) and technical developments.

6.1. SAM AND IM-SAM

To highlight the strengths of (IM-)SAM, here I summarise the most important features of

the proposed framework. First off, we offer a powerful tool for discovering spatio-temporal

multi-scaled patterns, which combines theory from movement ecology and GIScience into

one robust framework. (IM-)SAM is not only visually informative and effective, but also reli-

able,  robust and quantifiable. Indeed, (IM-)SAM offers a strong visual exploratory frame-

work  for  presenting  hierarchical  relations  between  habitat  variables,  and  linked  be-

havioural mechanisms. For instance, in Chapter 3 we saw how visual exploration could re-

veal that migration was related to animals ranging at high elevations, and that both at high

and low elevation various sequential patterns could be observed in the use of open and

closed habitats (Chapter 3, Fig.3.1a). Furthermore, the approach allows one to match real

observed sequences to the best fitting simulated patterns based on expectations of se-

quential behaviour (Chapter 3, 4 & 5). This 'tagging' procedure (see Chapter 3 & 4) trans-
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lates  de facto habitat  use sequences into  levels  of  a  categorical  variable that  can be

treated into classic statistical modelling framework (see Chapter 4 and application in Chap-

ter  5).  Hence,  (IM-)SAM reconciles  the  exploration  of  the  spatio-temporal  structure  of

movement  data  with  the possibility  to  test  hypotheses'  ecological  significance,  i.e.  the

knowledge gap identified early on in Chapter 3. As mentioned in Chapter 4, the IM-SAM

procedure is hypothesis driven and only detects sequential patterns that are coded within

the simulation rules. Here I would like to stress that the proposed framework is not meant

to be used as a data mining technique, that detects any kind of pattern disregarding its bi-

ologically meaningfulness. Instead, exploratory tree building should be used to ensure that

biologically important sequential patterns are identified. As showed in Chapter 3, sequen-

tial patterns that do not fit within the simulated set may separate as unidentifiable, and

usually small clusters. However, in Chapter 4, although uncommon opposite day-night pat-

terns, with main use of open during day and closed during night, were not detected as

such unidentified separate clusters.

In addition, both in SAM and IM-SAM we account for the spatial structure and distribu-

tion of habitat features that affect sequences of habitat use. While Chapter 3 performs

such simulations in artificial landscapes generated on the basis of study area characteris-

tics, in Chapter 4/5 we use the actual individual spatial movement context, or home range.

In Chapter 3 we show how spatial autocorrelation could be incorporated into tree cluster-

ing by assigning substitution weights to habitat classes that are more similar to each other,

as determined through Join-Count Statistics. In Chapter 4/5, because we took into account

real individual-based landscapes, we could study in more detail how habitat availability in-

fluences cluster separation, hence the robustness of the classification trees, and we did

not need to explicitly address spatial autocorrelation. Indeed, the relevance of spatial auto-

correlation also depends on the number of  classes and similarity  between classes.  In

Chapter 4/5, we took into account only two classes, hence a simplified context with respect

to Chapter 3, but in turn we fine-tuned our evaluation between different environmental con-

texts. Note that in Chapter 4/5 we accounted for individual-based landscapes by constrain-

ing movement simulations within the Minimum Convex Polygon delimited by the locations

of each individual. MCPs have been traditionally used in ecology as parameter-free and

purely geometrical representations of an animals' home range (Nilsen et al. 2008), that we

considered optimal for the purpose. All the same, a sensitivity analysis on the changes ob-

tained using other estimators could be performed in the future. 
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Finally, we also accounted for an otherwise often neglected issue in movement ecol-

ogy: the effect of missing data on spatial analysis. While missing data are accepted by the

R package TraMineR, they cannot be too abundant. In fact, we found that if missing data

are  excessive  they affect  the  sequence separation  in  clusters.  Based on results  from

Chapter 4, we suggest only including sequences with less than 30% of missing observa-

tions.  

IM-SAM procedure is generalisable and adjustable to specific methodological choices.

For instance, while we used the Hamming distance as a dissimilarity measure, other met-

rics could be used for exploring sequential patterns. The most promising approach is Dy-

namic Time Warping (see R package dtw, Giorgino 2009), which has been used in sociol-

ogy, linguistics and musicology to account for time (Müller 2007), and potentially also as a

multi-class extension of the Fuzzy Hamming Distance (Bookstein et al. 2001, see Chapter

3). Alternatively, a new dissimilarity measure based on pairs or triplets of states, similar to

codon models10, could be evaluated to account for temporal autocorrelation of consecutive

states. Another component we did not explore, but has been discussed with experts in

phylogeny, is a simulation study generating dissimilarity trees based on maximum likeli-

hood or Bayesian methods (Douady et al. 2003). In phylogeny such methods are consid-

ered as superior over the current approach. However, in transferring these approaches,

caution and close collaboration with phylogenists will be needed, to assure that parame-

ters are correctly assigned and no wrong assumptions are made. Lastly, a potential exten-

sion of the classification of sequences into sequential habitat use patterns would be to

measure the degree of alternation with respect to reference sequences (e.g. a completely

homogeneous or random sequence; see Studer et al. (2016) for a similar application in so-

ciology). Indeed, animal behaviour can be hardly classified into stereotypical behaviours;

resource patch revisitation (Riotte-Lambert  et  al.  2016) and migration (Cagnacci  et  al.

2011) are known to occur in a gradient, where stereotypical behaviours are only the end

points of such gradient.

10 Codons are used in molecular biology and are described by three DNA or RNA nucleotides, e.g. CAG

represents the amino acid glumine, described by the respective nucleotides Citocine (C), Adenine (A) and

Guanine (G). A habitat use sequence could be coded as a triplet of consecutive habitat classes to account

for temporal autocorrelation, e.g. for a sequence representing open (O) and closed (C) habitats OOC  O  OC,

triplets would be OOC, OCO, COO, OOC.
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6.2. DISCUSSION OF ECOLOGICAL RESULTS

One of the main goals of this PhD was to explore the usefulness of our framework for the

movement ecology community. We accomplished this through several case studies (Chap-

ter 3 and Chapter 5). The main ecological results that reflect the general ecological aim of

this dissertation are discussed in detail in Chapter 5. To summarise, we discovered that

sequential habitat use patterns in roe deer were dependent on the population, on the indi-

vidual, and on the environmental context in which animals move. At the population level

habitat availability affected sequential use patterns, while at the individual level also habitat

heterogeneity was shown to be relevant when explaining variability in sequential habitat

use. However, the environmental context alone could not explain the identified sequential

patterns. Within populations, where habitat accessibility is presumed to be similar for all in-

dividuals, we found variation in sequential habitat use. We also found clear temporal vari -

ability in the way animals sequentially used the habitats available in their home range

throughout seasons. Finally, our mixed approach for data exploration and pattern recogni-

tion allowed us to investigate the dependence of sequential habitat use on life-history traits

even futher. Preliminary results showed significantly more alternation for males compared

to females during summer months, while males are territorial  and females raise fawns

(Liberg et al. 1998). Although preliminary, this direction of research is extremely promising,

especially when considering the potential to associate life-history traits with individual per-

sonalities.

 We applied and developed (IM-)SAM using GPS movement data of the European roe

deer. This relatively small ungulate species is a challenging modelling species for several

reasons. Specifically, roe deer show a high degree of behavioural plasticity, which mani-

fests in a high heterogeneity in behavioural patterns (e.g. migrants/residents/facultative mi-

grants: Peters et al. 2017) and in habitat occupancy (e.g. field/forest roe deer, Cederlund

et al. 1991). Moreover, roe deer is an ecotonal species, and thus selects for edge habitats,

small  forest patches and transitional woodland habitat  (Aulak &  Babińska-Werka 1990,

Tufto et al. 1996). By consequence, the link between roe deer movement data and habitat

layers is sensitive to misclassification (Frair et al. 2010), which is especially a problem in

large-scaled multi-population studies, or when high-resolution local habitat maps are not

available.  For instance, in the first case study (Chapter 3) we used Corine Land Cover

2006 (CLC) to identify open and closed habitats. Several small patches used in the high-

elevation pastures were not detected by CLC (see also Pekkarinen et al. 2009). Hence we

192



identified a relatively high proportion of homogeneous open sequences less frequently for

the same population (IT1) in Chapter 4 & 5, where instead we used High-Resolution-Layer

Tree Cover Density 2012 (TCD, EEA 2012) as the spatial layer for forest cover. Additional

uncertainties may arise if there is a mismatch between the spatial resolution of raster lay-

ers and  GPS errors,  which may result in commission and omission errors (Frair  et al.

2004, Frair et al. 2010). 

Throughout this work, thanks to the recent availability of the High-Resolution-Layer

Tree Cover Density 2012, we could perform a detailed and standardised habitat use analy-

sis for roe deer at the European-scale and thus minimise such misclassification issues.

Since this analysis, to our knowledge, was the first application of its kind, we performed a

local raster validation analyses that is summarised in Chapter 4 – Appendix 4B. While local

accuracy was high, we suggest to always perform additional visual and field-based checks

before use. For this dissertation we only looked into sequential patterns of two simplified

habitat classes: open and closed habitats. Habitat classifications are the result of a human

simplification of the landscape, and key resources that drive animal habitat use/selection

often remain hidden from the observer (Getz & Saltz, 2008). We suggest that the variability

of sequential patterns over the year and across populations is the result of different types

of resources emerging in open and closed habitats along the European gradient of land-

scapes and climate. 

While here we only looked into two habitat classes, in future studies I would also like

to take into account more detailed classes, different thresholds for forest cover, or the con-

tinuous forest cover value (see for example the study case 2 in Appendix 6A). For in-

stance, through our work we observed that daily habitat alternation does not only occur

between open and forest habitats, but also between forests with different densities or dif -

ferent  open habitat  types such as pastures and agricultural  fields.  While  we observed

mainly homogeneous use of open habitats in a population in  Southcentral  Norway, we

found that animals actually do show alternating patterns, but at lower forest cover densi -

ties than defined by our threshold. This suggests that roe deer compensate their need for

cover within a given habitat with different types of 'functional cover' (Mysterud & Østbye

1999).  For  example,  in  the  population  in  Southwest  France,  animals  in  open habitats

searched for  cover  in  micro-selection of  hedgerows (i.e.  habitat  complementation,  see

Morellet et al. 2011). At this moment, for large-scaled studies, environmental layers do not

disentangle such high-resolution patterns, but ongoing progress in remote sensing prom-

ise a bright future for movement ecologists (see below). In addition, habitat types with ex-
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actly the same resources, may not necessarily have the same value. For instance, in prox-

imity of sources of disturbance, such as roads or houses, a habitat could be less attractive.

By combining multiple habitat  variables, extracted from high resolution raster layers or

maps, future work could explore how to get to a more refined habitat classification as input

for (IM-)SAM.

In general, though, while higher resolution and better classified input environmental

data would be important, I also see (IM-)SAM as a class of tools that help produce a syn -

thesis of the complex relation between animals and their environment. In this sense, the

'Big Data'  era in animal ecology (see Technical Prospects) offers on the one side huge op-

portunities, but on the other side challenges or even an increase in the apparent complex-

ity of reality. Statistical and mathematical models (van Moorter et al. 2016), and synthesis-

ing methodological approaches as (IM-)SAM represent a response to such challenges.

A last important issue that I will cover here concerns missing data. GPS sensor perfor-

mance is known to be affected by the animals internal state (e.g. resting), habitat charac-

teristics  (e.g.  topography,  cover  density)  and sensor  type (Frair  et  al.  2010).  Through

(IM-)SAM exploration we discovered a high synchronicity between the use of closed habi-

tats and missing observations, especially for older sensor types (see Chapter 4 - Appendix

4A). Hence, excluding such missing observations would impose habitat bias by underesti-

mating the use of closed habitats. We highlighted the importance of accounting for missing

data in habitat analysis (see Frair et al. 2010, Dokter et al. 2017), also for what concerns

sequential habitat use. Several data imputation procedures have been evaluated, such as

the models of the R package Amelia (Honaker et al. 2015), which allow to incorporate tem-

poral correlation patterns. However, because our data did not fulfil the assumptions, an-

other procedure was used based on a literature study on sensor performance (See Chap-

ter 4 - Appendix 4A).
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6.3. TECHNICAL PROSPECTS 

6.3.1. (IM-)SAM and environmental data sources

I expect that future data collection will allow to tease better apart different habitat types.

Current progress in Airborne Laser Scanning (ALS) technology (Light Detection And Rang-

ing, LiDAR) has showed improvements for habitat identification at the local scale, with an

increased detail in differentiating between low stands, old forest, young forest and shrub

vegetation (Lone et al. 2014, Lone et al. 2017, Dupke et al. 2017, Ciuti et al. 2018). LiDAR

products are becoming cheaper, better, are often publicly available and data processing

over multiple study sites could be harmonised. In long-term, LiDAR plots in combination

with satellite data and field validation plots from different eco-geographical areas may re-

sult in very detailed large-scale forest cover models. Global efforts have been made, in

database development including 400 000 forest validation plots (Liang  et al.  2016) and

networks such as Globals (Global ALS Data Providers Database) aiming to establish a

worldwide database  of  potential  Airborne Laser  Scanner  data  providers.  Also  Satellite

data, such as the Landsat satellite archives (www.landsat.usgs.gov) and derived products

from  Copernicus  Sentinel  satellites  (e.g.  Sentinel  1,  2,  3;  NASA-ESA,  Copernicus,

www.esa.int/Our_Activities/  Observing_the_Earth)  have  a  lot  of  potential.  For  instance,

Landsat habitat variables could be generated at lower spatial resolution then lidar plots,

but can be generated for large geographic regions and dynamically over a long time period

(Duro et al. 2007). Although often pricy, cloud-based geospatial databases such as Google

Earth  Engine  (www.earthengine.google.com),  Mapbox  (www.mapbox.com),  MangoMap

(www.mangomap.com) and CartoDB (www.carto.com), can facilitate analysis of such huge

spatio-temporal  datasets.  An  example  of  a  widely  used  end-product  developed  with

Google Earth Engine is the global forest cover dataset (Hansen et al. 2013), providing sev-

eral freely available global raster products at 30 m spatial resolution: a forest cover density

map and several forest gain and loss maps. A practical example is the global biodiversity

mapping initiative, map of life (mol, www.mol.org/), that are currently developing high-reso-

lution habitat suitability maps for multiple species, combining high-resolution habitat infor-

mation available through Google Earth Engine (www.species.mol.org). Also crowd-funding

initiatives such as openstreetmaps (www.openstreetm  ap.org, © OpenStreetMap contribu-

tors) are a precious resource for mapping different habitat variables, such as road density,

forest cover, urban context. Openstreetmaps layers can be directly downloaded in a post-
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gresql data base, or into R using R packages osmar (Eugster & Schlesinger 2013) and

OpenStreetMap (Fellows & Stotz 2013). 

6.3.2. (IM-)SAM extended applications

SAM and IM-SAM were developed for the discovery of similar patterns in habitat use se-

quences but have a large potential for studying other aspects related to the internal and

external state of animals (e.g. movement parameters, behavioural states, animal interac-

tions, physiological parameters, see Chapter 5 – Discussion) and could also be related to

human movement data (see Chapter 4 – Discussion; see also Brum-Bastos et al. 2018).

Moreover it can be extended to more complex classifications, to different temporal resolu-

tions, and it can be used to explore both within and between population variations at multi -

ple spatio-temporal scales. To exemplify (IM-)SAM's flexibility I developed four case stud-

ies (Appendix 6A) using different input variables and different temporal resolutions. Specif -

ically,  in  case study 1 I  look how daily sequential  movement rates (m/s)  measured at

hourly resolution of one female roe deer cluster throughout the year. In case study 2 I

show the clustering result when using continuous forest cover values as input instead of

discretised classes. In case study 3 I explore yearly sequences of the use of summer and

winter ranges at a daily resolution, based on a literature based simulated study. Finally, in

case study 4 I highlight the potential of using the output of analytical animal movement R

packages as input of (IM-)SAM.

6.3.3. (IM-)SAM technical developments

6.3.3.1. R Package 

To improve applicability and transferability of (IM-)SAM methodology and procedure I aim

for the future to develop a dedicated R package. This will  increase accessibility of our

framework and provide guidelines and case studies for customisation to specific research

questions. Once this package is available, it could be used in combination with a suite of R

packages that are currently available for computing several components of an animals' in-

ternal or external state for which the sequential  pattern could be of relevance. For in-

stance, adehabitatLT (Calenge 2006) and move (Kranstauber et al.  2017) could be used

for calculating movement parameters, BCPA (behavioural Change Point Analysis, Gurarie
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et al. 2009, 2016) to identify different behavioural states, move (Kranstauber et al. 2017),

adehabitatHR (Calenge 2006), BBMM (Nielson  et al.  2013), tlocoh (Lyons  et al.  2013),

wildlifeTG (Long & Nelson 2015, Nelson et al. 2015, Long 2016) and stampr (Robertson et

al. 2007; Long et al. 2018) for computing spatial objects related to home ranges and utili-

sation distributions, WildlifeDI (Long 2014) for computing dynamic interactions between

animals, adehabitatHS (Calenge 2006) and Hab (Basille 2014) for exploring habitat vari-

ables, recurse (Bracis et al. 2018) for computing revisitation metric, RNCEP (Kemp et al.

2012) for extraction of global environmental data, rpostgis (Basille & Bucklin 2017) for ex-

traction and import of both raster and vector data from and to a spatial data base, RPost-

greSQL (Conway  et al.  2013) for import and export of PostgreSQL database tables and

rgrass7 (Bivand 2015) for advanced spatial computations using functionality of GRASS7.

Currently,  several  R functions have been developed,  and are  available  via  github

(https://github.com/jedgroev/PhD-project),  but  further  standardisations  and  tests  of  the

scripts are needed before users can apply the analytical framework appropriately. For in-

stance,  I  would  like  to  implement  a  function  for  automatic  assessment  of  dissimilarity

weights for spatially correlation of habitat variables.

6.3.3.2. R Shiny

Currently, I am developing a R Shiny application. R shiny is a R package that allows to

translate static into dynamic products delivered via simple web-based graphic-user inter-

face. R shiny is gaining in popularity, especially in the United States of America where

apps are even developed by newspapers to present interactive maps, tables and graphs. I

developed a prototype of an interactive tree-based application, to explore, identify and vi -

sualise ecologically relevant and similar sequential patterns in habitat use, or other ecolog-

ical, behavioural or movement variables. In the prototype app, several parameters can be

set interactively: temporal resolution and range of the sequences, number and classifica-

tion of habitat use classes and the environmental variable to visualise. In the first version

of the app I aim to publish the data exploration step of (IM-)SAM. However, in the future, I

also aim to include all steps of the proposed (IM-)SAM procedure (i.e. exploration, simula-

tion, classification) in a R shiny app, that should make (IM-)SAM procedure more known

and accessible to the community.

197

https://github.com/jedgroev/PhD-project


6.3.3.3. (IM-)SAM effectiveness

As described above, the (IM-)SAM has a large potential for visualising and analysing any

type of sequential pattern (i.e. case studies) for which functions and tools will be made

available through the baseline statistical software for ecologists R (i.e. R package and R

Shiny app). While here we have showed the effectiveness of (IM-)SAM in visualising se-

quential patterns through various case studies (Chapter 3 & 4, Appendix 6A), in future

work I wish to evaluate the prospective toolbox in a more coherent way. Through experi -

ments, expert users (Andrienko  et al. 2011; Konzach  et al.  2018), in-depth user-experi-

ence questionnaires (Konzach et al. 2018) and eye-tracking analysis (Fu 2016; Keskin et

al. 2017) one could evaluate users' cognitive processes in learning, acquiring and remem-

bering information presented in the trees. The visual effectiveness and informativeness of

(IM-)SAM could be evaluated in two consecutive steps.

In a first phase static trees could be provided for which sequence length and temporal

resolution are a priori set. After basic instructions about the tool we could evaluate with eye

tracking, or mouse hoover technology, in which sequence and how much time is spend to

explore different parts of the visualisation. Users might first and more intensively explore

the actual tree and dissimilarity between the branches, or the sequences and associated

covariates, or the optional map that includes the animal trajectory. Note that when design-

ing such an experiment, instructions should minimise bias in the sequence with which dif-

ferent parts are observed by users. After a first exploration of the visualisation specific ana-

lytical questions could be asked on the exploratory trees (see table 6.1 for some example

questions). Given the interdisciplinary nature of the tool, such a user experiment could be

performed with both biology and geography students. In a second phase a similar step-

wise experiment could be performed for the interactive R Shiny application. The experi-

ment could be performed for users that participated to the previous experiment and inex-

perienced users.

Table 6.1. Potential questions for evaluation of tool effectiveness

Q1 How many clusters can you identify in the dissimilarity tree?

Q2 Is there a hierarchy in the clusters?

Q3 How do sequential patterns in different clusters differentiate from each other?

Q4 Is there a spatial association between observed patterns? 

Q5 Is there a relation between the clusters and associated sequences?
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Another important aspect on the effectiveness and usability of a tool is its computation

time. In Appendix 6B I provide a detailed report on the computation time of two essential

methodological steps (i.e. IM-SAM tree building, bootstrapping), using generated random

sequences by varying sequence length, number of sequences and number of classes. Re-

sults showed that there is a linear trend with increasing sequence complexity. The median

computation time using 20 replicates ranged between 1.6 seconds (sequence length, 25;

number of classes, 2) and 67.7 seconds (sequence length, 1000; number of classes, 25).

Bootstrapping running time also showed a linear increase and were mainly influenced by

the calculation of sequence dissimilarity component. The time to perform the bootstrapping

itself  does not change with an increasing sequence complexity.  Another part  for which

evaluation of computation time is important are the movement models, but this was not

tested systematically. As a rule of thumb, computation time for 900 simulated sequences

was approximately half an hour.
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APPENDIX 6A – CASE STUDIES

In all case studies I applied a simplified version of the SAM algorithm. Specifically, I only

built exploratory trees based on hamming distance, with automatic assessment of the sub-

stitution weight matrix (i.e. TRATE-method), or with a user-defined weight matrix that im-

poses a linear relationship between class dissimilarity (case study 2 and case study 4). 

6A.1. Case study 1 – sequential movement rate (m/h)

For this case study I extracted GPS-locations with a fixed one hour relocation interval for a

monitoring period of  one year (365 days) of  one female roe deer  (Animal  2054) from

Southern Germany (DE15), and computed the hourly movement rate in meters per hour

(m/h). Thus, each sequence represents the daily sequential hourly movement rates. In a

first step movement rates were reclassified into seven classes, using the k-means discreti-

sation technique, applied to the distribution of all movement rates (Fig.6A.1). These class

boundaries were used to reclassify the movement rate sequences. Next exploratory dis-

similarity  trees  were  built  including  corresponding  sequences,  and  the  seasons  were

added as coloured bars (Fig.6A.2). Although a very rough version of the algorithm was

used, two main clusters could still be distinguished, and showed a seasonal clustering, re-

lated to variations in sunrise and sunset throughout the year: an upper cluster, correspond-

ing to spring, summer and autumn, showing highest movement rates at 5-6h UTC and 19-

20h UTC, a lower cluster, corresponding to autumn and winter, showing highest movement

rates from 7-8h UTC and 17-18h UTC. In both clusters movement rates were generally

higher during dusk and dawn (41-306 m/s), and lowest during daytime (<41 m/s). During

night (41-187 m/s) movement rates seem to be higher than during daytime. Interestingly,

visually also a small cluster could be detected, including sequences from 11 to 17 th of May,

which show very little variation throughout the day, likely corresponding to the period of

parturition (Plard et al. 2012). 

While patterns are clearly distinguished, and seasonal patterns are observed, applica-

tion of the bootstrap algorithm did not show a significant difference between the clusters.

Specifically, BJMD  for a cut-off at 2 clusters was 0.54, while values below 0.60 indicate a

not-well identified clusters. Increasing the number of clusters results in a decrease in BJMD

and increase in BJIQMD. This low cluster robustness is likely because daily sequences only

consist out of 24 consecutive states. Hence, limited changes in variability could potentially
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affect  the clustering of sequences. I  expect the clustering to improve when movement

rates are computed instead at half hour resolution, which would result in sequences con-

sisting out of 48 consecutive states.

Figure 6A.1.  Distribution of movement rates for animal 2054 and identified class-thresholds. colour-codes

are used in the dissimilarity tree below. 

Figure 6A.2. Dissimilarity tree of daily movement rate (m/s) sequences, corresponding sequences (gradient

of blue, give the five most common movement rate classes; yellow and orange, are very high movement

rates). coloured bar on the right highlights the season of each sequence (winter, blue; spring, green; sum-

mer, yellow; autumn, brown). 
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6A.2. Case study 2 – Sequential use of forest cover density (0-100%)

For animal 2054 (see case study 1), the same daily GPS trajectories were intersected with

the High Resolution Layer-Tree Cover Density 2012 (EEA 2012). Instead of reclassifying

forest cover density into two distinct classes (as in Chapter 4 and 5) the original forest

cover percentages were used. While these values were continuous, the simplified algo-

rithm seemed to separate well  different behaviours. The dissimilarity tree distinguished

three clear clusters, that also show seasonal clustering in the sequential use of open and

forest habitats (Fig.6A.3, coloured bars). The upper cluster, including sequences from late

autumn to early spring, shows several daily habitat alternation patterns. Interestingly, the

switch from forest to open habitat during the evening is sharper than the one during the

morning. Specifically, in the morning this roe deer switched from open to forest habitat be-

tween 4h and 10h UTC, while the switch in the evening is more consistently around 16h or

17h UTC. The second cluster, also mainly during winter, shows a more continuous use of

forest habitats from 0h to 16h or 17h UTC. The third cluster, includes most sequences

from spring, summer and autumn and represents mainly sequences with a continuous

open habitat use. Here the BJ algorithm showed a significant separation for two (BJMD =

0.98) and for three (BJMD = 0.84) clusters. However, if the cut-off is set to three clusters,

the smallest one has a relatively low bootmean value (0.66).

Figure 6A.3. Dissimilarity tree for forest cover density (0-100%) sequences, corresponding sequences (gra-

dient of green, where darker greens indicate higher forest cover densities). coloured bar on the right high-

lights the season of each sequence (winter, blue; spring, green; summer, yellow; autumn, brown). 
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6A.3. Case study 3 – Simulated sequential daily use of summer and winter ranges 

Partial Migration is typically observed for roe deer, meaning that migration occurs accord-

ing to a gradient of behaviours (Cagnacci et al. 2011). Some individuals migrate in one in-

stance, others switch several times between summer and winter range, and others remain

resident in the same region over the whole year (i.e. residents). The onset of spring migra -

tion (winter to summer range) is more synchronous over different study sites in Europe (15

April - 15 May), most likely triggered by plant phenology and thus availability of highly nu-

tritious plants during early spring. The onset of autumn migration (1 November – 15 Febru-

ary) is more variable, but one of the important explanatory variables is snow cover (Mys-

terud et al. 1999). 

With SAM the variation on migration behaviour could be explored, within and between

populations, by coding daily winter and summer range use over a year (i.e. sequences

consisting of 365 characters). The winter range could be used as the reference range. Us-

ing the results from Cagnacci  et al.  (2011), a simplified simulation was developed to ex-

plore sequential use of summer and winter ranges. Specifically, summer and winter range

use were simulated using the mean and standard deviation of the start of both summer

and winter migration for the four populations included in Cagnacci  et al.  (2011): Norway,

the Bavarian Forest, the Italian Alps and Southwest France (Table 6A.1). Per population

we simulated 100 yearly sequences with  a daily temporal resolution (365 states). Start

dates of  summer  and winter  migration were simulated assuming a normal  distribution

within  each  population.  A dissimilarity  tree  shows  the  clustering  of  the  simulated  se-

quences,  using  the  hamming  distance  and  hierarchical  clustering  method  of  Ward

(Fig.6A.4).  Jaccard  Bootstrapping  procedure  showed  a  significant  cluster  separation,

mainly for a cut-off at two clusters. At this cut-off, the population of southwest France (yel-

low), having a late mean winter migration (see table 6A.1), was clearly distinguished as a

separate cluster. Other populations, which show more similar start dates of winter/summer

migration group together in one cluster. However, the sequences from Bavarian Forest

and Norway are more mixed, then those of the Italian Alps.
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Table 6A.1. Input for simulation data based on Cagnacci et al. (2011), giving the mean and standard 

deviation of the start day for summer and winter migration. 

Population mean Standard deviation

(days)

Summer M Winter M Summer M Winter M

Bavarian Forest 15 May 1 Dec 30 30

Italian Alps 1 May 1 Dec 10 15

Southwest France 15 May 15 Feb 45 45

Norway 10 May 1 Nov 30 30

Figure 6A.4. Dissimilarity tree of the different simulated use of yearly summer and winter ranges (light blue

and orange are respectively the winter and summer range). The corresponding population of each simulated

sequence is highlighted by the coloured bar on the right (Bavarian Forest,  green; the Italian Alps, grey;

southwest France, yellow; Norway, black).    
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6A.4. Case study 4 – Sequential recursive use 

This example shows that input data calculated with other R packages could be used to ex-

plore spatio-temporal patterns. Here recursive use of locations was computed using the R

package recurse (Bracis  et al. 2018) for the sample dataset 'Martin' (species not men-

tioned). The visualisation of a sequence dissimilarity tree can help to understand whether

places of intensive use are repetitively used at similar timestamps or for consecutive days

(Fig.6A.5). The sequential plot does not immediately show a clear daily pattern in the re-

cursive use. The most significant cut-off is detected at two clusters, corresponding to a

BJMD of 0.69. 

Figure 6A.5. Dissimilarity tree for recursive use sequences, corresponding sequences (from blue to red, 1 to

17 visits) and spatial points. coloured bar on the right highlights the day of each sequence (grey to black).  
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APPENDIX 6B – RUNNING TIME

The (IM-)SAM procedure consists out of several different methodological steps for which

computation time could be assessed. Using a set of generated random sequences (i.e.

non-spatial explicit) I computed both the computation time for building (IM-)SAM trees and

for the bootstrapping. 

Considering (IM-)SAM trees (Fig.6B.1),  the running time was computed for  an in-

creasing complexity of the dataset by varying the sequence length, the number of se-

quences and the  number  of  classes.  Specifically,  the  running time was calculated  for

seven different sequence lengths (i.e. 25, 50, 100, 250, 500, 750, 1000 states per se-

quence) using a constant sequence count (1000 sequences), and vice versa for seven dif-

ferent sequence counts (i.e. 25, 50, 100, 250, 500, 750, 1000 sequences) using a constant

sequence length (1000 states per sequence), which was repeated for a different number of

classes (i.e. 2 , 4 , 5, 10, 15, 20, 25 classes). For each parameter combination 20 repli -

cates were run. Hence, in total computation time was calculated 980 times (7 sequence

length x 7 number of classes x 20 replicates; 7 sequence counts x 7 number of classes x

20  replicates).  Thus,  the  lowest  and  highest  complexity  of  sequence  length/sequence

counts corresponds to 25 and 1000 states per sequence/sequence counts of 2 and 25

classes, respectively. To investigate how the computation time changes with complexity

the median computation time was calculated for each parameter combination, which was

used as input for linear regression models. A regression model was built using computa-

tion time as the response variable and sequence length/sequence count as a dependent

variable, generated for each number of classes separately (Table 6B.1). 

Computation time showed a strong linear trend with increasing complexity, where the

median  computation  time  ranges  between  1.600  seconds  (sequence  length  =  25;  n

classes = 2) and 67.656 seconds (sequence length = 1000; n classes = 25; Fig.6B.1, left),

and between 1.209 seconds (n sequences = 25; n classes = 2) and 67.625 seconds (n se-

quences = 1000; n classes = 25; Fig.6B.1, middle). There is a linear increase in the com-

putation time both when increasing the sequence length and sequence count (Fig.6B.1 &

Table 6B.1 for summary of the regression models). The slope of the models is steeper

when the number of  classes included in  generated sequences is  higher.  A regression

model of the slopes indicates that the computation time also increases linearly with the

number of classes (Fig.6B.1. right). All models had an R-square higher than 0.990.
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Figure 6B.1. Fitted lines of linear regression models of the median computation time of (IM-)SAM by varying

the sequence length (left) and the number of sequences (middle) for a different number of habitat classes. To

measure the effect of the number of classes on the running time, I extracted the slopes of each regression

line shown in the former two plots.

Table 6B.1. Linear regression model outputs for (IM)-SAM trees 

 classes Intercept intercept.se slope slope.se r.squared p.value

sequence length 2 0.968 0.286 0.012 0.001 0.990 0.000

 4 0.871 0.271 0.017 0.001 0.996 0.000

 5 0.851 0.298 0.020 0.001 0.996 0.000

 10 0.874 0.203 0.031 0.000 0.999 0.000

 15 0.878 0.232 0.043 0.000 0.999 0.000

 20 0.743 0.320 0.055 0.001 0.999 0.000

 25 0.729 0.300 0.067 0.001 1.000 0.000

sequence number 2 0.480 0.391 0.013 0.001 0.982 0.000

 4 0.493 0.405 0.017 0.001 0.990 0.000

 5 0.539 0.376 0.020 0.001 0.993 0.000

 10 0.692 0.349 0.031 0.001 0.998 0.000

 15 0.788 0.416 0.042 0.001 0.998 0.000

 20 0.833 0.521 0.054 0.001 0.998 0.000

 25 0.889 0.600 0.065 0.001 0.998 0.000

        

 Slope intercept intercept.se slope slope.se r.squared p.value

number of classes seq. length 0.008 0.000 0.002 0.000 1.000 0.000

 seq. number 0.008 0.000 0.002 0.000 1.000 0.000

A similar analysis was performed for the bootstrapping procedure. Since similar trends

were found for the sequence length and sequence counts, computations were limited by

varying  the  sequence lengths  only  (i.e.  25,  100,  250,  500,  1000),  computed for  three

classes (i.e. 2, 10, 15, 25). Also here 20 replicates were run for each parameter combina-

tion. In total computation time was thus calculated 400 times (5 sequence lengths x 4 num-
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ber of classes x 20 replicates). For each parameter combination the median computation

time was calculated and then used as input for linear regression models. As in Chapter 4

the number of bootstraps was set to 1000 and the cut-off from 2 to 15 clusters, meaning

that the bootstrapping was repeated 14 times. Using these parameter settings, the median

running time ranged between 6.84 minutes (sequence length = 25; n classes = 2) and 7.46

minutes (sequence length = 1000; n classes = 25), which corresponds to an absolute dif-

ference of maximum 37 seconds. Indeed, regression models show a negligible slope with

increasing sequence length, and a slight increase in the intercept (Table 6B.2). To con-

clude, the complexity of the dataset has a minimal impact on the computation time of the

bootstrapping. Instead, computation time is affected by the number of bootstraps and the

maximum cut-off distance over which bootstraps are calculated. 

Table 6B.2. Linear regression model outputs for bootstrapping

 

number
of

classes intercept intercept.se Slope slope.se r.squared p.value

sequence 25 7.056 0.035 0.000 0.000 0.931 0.008

length 15 7.037 0.039 0.000 0.000 0.906 0.013

10 7.035 0.037 0.000 0.000 0.908 0.012

2 6.938 0.052 0.000 0.000 0.850 0.026
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