Plant Biology Europe 2018 Conference Abstract Book

How to cite this e-Book:

All Rights Reserved

©2018 University of Copenhagen, Denmark

This material must not be reproduced, displayed, modified or distributed without the written permission of the copyright holder.

ISBN: 978-87-996274-1-7

Published by Department of Plant and Environmental Sciences, University of Copenhagen,

Bülowsvej 17, DK-1870 Frederiksberg (http://plen.ku.dk/english/).

LOCAL ORGANIZING COMMITTEE (LOC)

Svend Christensen - LOC Chair, EPSO

University of Copenhagen

Dept. of Plant and Environmental Sciences

Stefan Jansson - FESPB, SPPS

Umeå University

Umeå Plant Science Centre

Stephan Wenkel - SPPS

University of Copenhagen

Dept. of Plant and Environmental Sciences

Solveig Krogh Christiansen

University of Copenhagen

Dept. of Plant and Environmental Sciences

Mira Arpe Bendevis

University of Copenhagen

Dept. of Plant and Environmental Sciences

Birte Svensson

Technical University of Denmark

Dept. of Biotechnology and Biomedicine

Kåre Lehmann Nielsen

Aalborg University

Dept. of Chemistry and Biosciences

Henrik Brinch Pedersen

Aarhus University

Dept. of Molecular Biology and Genetics

Søren Kjærsgaard Rasmussen

University of Copenhagen

Dept. of Plant and Environmental Sciences

SCIENTIFIC ORGANIZING COMMITTEE (SOC)

Cathie Martin - SOC Chair

John Innes Centre

Jeremy Harbinson

University of Wageningen

Fabio Fornara

University of Milan

Alan Schulman

Natural Resources Institute Finland (LUKE)

Torgny Näsholm

Umeå University

Michael Palmgren

The University of Copenhagen

Urte Schlüter - SOC Co-chair University of Düsseldorf

Ilse Kranner

University of Innsbruck

Robbie Waugh

The James Hutton Institute

Karin Metzlaff

EPSO

Jens Stougaard

Aarhus University

Christian W.B. Bachem

Wageningen University

http://www.europlantbiology2018.org/

SPONSORS

UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Agrisera

Theme 7: Environmental resilience

Inducibility, tissue-specificity and product variation of three phytochelatin synthase homeologs from the cadmium-tolerant reed A. donax L.

Claudio Varotto¹, Luca Stragliati¹, Mingai Li¹, Ada Ricci², Luigi Sanità di Toppi³
¹Edmund Mach Foundation, SAN MICHELE ALL'ADIGE (TN), Italy
²Università degli studi di Parma, PARMA, Italy
³Università di Pisa, PISA, Italy

Phytochelatins (PC) are a family of Cys-rich oligopeptides constituting the main defence of plants against toxicity of heavy metals and metalloids like cadmium and arsenic. PCs are non-ribosomally synthesized from glutathione by the enzyme phytochelatin synthase (PCS). Dicotyledonous PCS have been characterized in detail, while much less information is available on monocotyledonous ones. In this study, we characterized three different *PCS* genes from giant reed (*Arundo donax* L.), a biomass/bionergy crop with remarkable tolerance to cadmium, to study the evolution of this trait in monocots. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicated that the three *A. donax* PCS, *AdPCS1-3*, are most likely homeologs - resulting from lineage-specific whole-genome polyploidization. *AdPCS1-3* genes are tissue-specifically expressed, and *AdPCS1* is expressed about 5 times more than *AdPCS2* and *AdPCS3*. All three genes displayed cadmium-responsive expression in roots, and coded for functional PCSs, as once overexpressed in yeast they confer enhanced tolerance to cadmium stress. Overexpression of *AdPCS1-3* in *Arabidopsis thaliana* further confirmed the typical phenoytype associated to overexpression of functional PCS genes. Mass-spectral analyses detected statistically significant differences in the amount and spectral feature of the PCs synthesized, with AdPCS2 and AdPCS1 producing, respectively, the highest and lowest amount of total PCs in yeast cells. AdPCS1 synthesized the same amount of PC2, PC3 and PC4, while both AdPCS2 and AdPCS3 enzymes produced significantly higher amounts of PC2 and PC3 compared to PC4.

Taken together, these results indicate that the genetic bases of *A. donax* high capability to tolerate the presence of heavy metals is, at least in part, related to the high functional specialization of its *PCS* genes from a transcriptional as well as enzymatic point of view. Thus, transcriptional neofunctionalization and specialization seems to have played a major role in the evolution of Cd tolerance in *A. donax*.