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ABSTRACT

In this study, the particle swarming optimization procedure was applied to parametrize two Local
Maxima (LM) algorithms in order to extract treetops from LiDAR-data in a test area (10 km?) of
heterogeneous forest structures of conifers in the Alps. The obtained results were compared with
those of a widely used variable-size window LM algorithm calibrated using literature values.
Quantitative statistical parameters like matching, extraction, omission, and commission rates
were calculated. The experimental results showed the effectiveness of the proposed method,
which was capable to identify the 91% of the trees and estimate the 92% of the real above
ground biomass with a total extraction rate close to 1. Almost all the dominant and codominant
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trees were extracted, while the extraction rate of the dominated trees averaged over 50%

Introduction

Since the 1990s, the use of Light Detection and
Ranging (LiDAR) technology for forest inventories
and management has gained more and more impor-
tance because of its suitability to get detailed informa-
tion about the vegetation and the objects on the
ground surface (Dubayah & Drake, 2000; Lim,
Treitza, Wulderb, St-Ongec, & Floodd, 2003). The
raw data of an Airborne LiDAR System (ALS) survey
are an irregularly distributed point cloud, which pro-
vide 3-dimensional (3D) information of the landscape
(Heritage & Large, 2009). Different algorithms have
been proposed to analyse these data in order to derive
the Digital Elevation Model (DTM), representing the
bare earth surface, the Digital Surface Model (DSM),
which contains all the objects on the surface (build-
ings, vegetation, etc.), and the Canopy Height Model
(CHM), which is obtained by subtracting DTM from
DSM. Specifically, CHM is a product widely used in
forestry and forest sciences (Chirici, McRoberts,
Fattorini, Mura, & Marchetti, 2016). A proper charac-
terization of the 3D-structure of a forest involves the
extraction from the LiDAR data of the most important
structural and biometrics forest parameters, such as
tree height and diameter distribution, canopy cover,
and forest biomass. There are two possible approaches
to extract these structural attributes from a discrete-
return LiDAR point cloud: the single-tree-based and
the plot-based methods (Wulder, Bater, Coops, Hilker,
& White, 2008). The main difference between these
two approaches is that the former focuses on the

metrics of each single tree of a given forest, while the
second one aims at developing a number of site-spe-
cific empirical statistical relations to estimate forest
attributes, without attention to the biometrics of the
single trees forming the forest.

The single-tree approach generally requires at least
5 pts m > as point density, but it allows extracting
single-tree attributes, such as tree total height, crown
height, crown diameter with an appropriate accuracy
(Hyyppd, Kelle, et al., 2001; Popescu & Wynne, 2004;
Naesset and Nelson 2007; Wang et al., 2016). On the
other hand, the plot-based approach allows deriving
meaningful results at plot level such as mean basal
area and forest volume with a lower point density
(0.5-1 pts m~2). A limit of the plot-based approach is
that the elaborated data cannot be used as inputs for
most of the current forest dynamics models that are
based on position and size of single trees (e.g. SORTIE,
Pacala et al. 1993; — PPA, Purves, Lichstein, & Pacala,
2007; 2008). In addition, several models for the assess-
ment of the protection ability of forests against natural
hazards need the position of the single tress as input
(e.g. Rockyfor3D, Dorren LK.A., 2015). However, for
both approaches, the validation procedure consists of
comparing field- and LiDAR-derived measurements at
single-tree or plot scale.

Many algorithms were proposed for the single-tree
extraction method, based both on raster and point-
cloud data. The most applied algorithms are the
extraction of tops and crowns by local maxima meth-
ods (Popescu & Wynne, 2004), the region growing
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method (Tiede, Hochleitner, & Blaschke, 2005), the
watershed method (Chen, Baldocchi, Gong, & Kelly,
2006) and the individual tree segmentation on point
clouds (Li, Guo, et al., 2012). In general, the detection
rate of trees using the above-mentioned algorithms
ranges between 40 and 80% being this percentage
much lower in complex and heterogeneous forests
(Persson, Holmgren, & Soderman, 2002).

In order to apply these algorithms, a number of
parameters, e.g. the radius of the crowns, the minimum
distance between the trees, the minimum height of the
trees, must be preliminarily defined. Generally, these
parameters are subjectively chosen looking at the struc-
tural characteristics of the forest (e.g. the mean area of
the crown, the mean distance among the trees, etc.). For
instance, several authors (Daley, Burnett, Wulder,
Niemann, & Goodenough, 1998; Popescu, Wynne, &
Nelson, 2002; Wulder, Niemann, & Goodenough, 2000)
propose to use variable window sizes for the extraction
of treetops and the estimation of vegetation parameters.
This approach comes from the assumption that there
are different tree crown sizes in a forest and the Local
maxima (LM) filter should be redefined to appropri-
ately fit the single-tree structure. The variable-size win-
dow assigned to each pixel can be evaluated considering
local parameters such as the semivariance or the local
breaks of the slope (Wulder et al., 2000) or the height of
the tree itself (Popescu & Wynne, 2004). The second
parameter to define when using LM filtering is the
shape of the window. Doruska and Burkhart (1994)
and Popescu and Wynne (2004) stated that a uniform
circular moving window is appropriate to extracted the
crown of many tree species considering their branching
pattern. This empirical approach would achieve good
results over forest with relative low heterogeneity, while
it seems to be inappropriate when uneven-aged and
multi-layered forests have to be analysed. Therefore,
the optimization and validation of these parameters
respect to a specific goal, such as the assessment of the
forest volume, seems to be a crucial step to improve our
capability to exploit the potential of LiDAR data. This
optimization process should be based on an automatic
and reliable procedure to be feasible and implementable
in different types of forest.

In this paper, we present the preliminary results of a
new approach based on the Particle Swarming
Optimization (PSO) procedure in order to optimize
the parameters of two LM single-tree extraction algo-
rithms applied to both raster and point-cloud LiDAR
data. PSO was widely used in various kind of optimiza-
tion problems (Eberhart & Shi, 2001; Voss & Feng,
2002; Liang, Qin, Suganthan, & Baskar, 2006; Yisu,
Knowles, Hongmei, Yizeng, & Kell, 2008; You, 2008;
Li, Yang, et al. 2012, Ma, Yu, & Hu, 2013; Yang et al.
2015; Du, Ying, Yan, Zhu, & Cao, 2017). In forest
science, PSO has been applied for the calibration of
models for forest planning and management (Hu,

Sarosh, & Dong, 2011; Shan, Bettinger, Cieszewski, &
Wang, 2012), forest fire susceptibility, image manipula-
tion for land cover classification and forest landscape
patterns mapping (Sameen & Pradhan, 2017; Sami, El-
Bendary, & Berwick, 2012). However, to the best of our
knowledge, it has never been used to parametrize algo-
rithms for the detection of single trees using LiDAR
data as input. In comparison with other optimization
approach, PSO has a number of advantages. The main
strength of PSO is its fast convergence, which compares
favourably with many metaheuristics like Genetic
Algorithms (GA) and Simulated Annealing (SA)
(Abraham, Guo, & Lio, 2006). Moreover, it can be easily
implemented, and requires few parameter settings and
computational memory (Eberhart & Shi, 2001; You,
2008). Compared with Real Coded Genetic
Algorithms (RGA) PSO has memory and creates con-
structive cooperation between the particles of the
swarm, which share information among themselves.
The knowledge of good solutions is retained by all
particles, whereas in RGA, previous knowledge of the
problem is discarded once the population changes.
Compared to multi-resolution grid search, PSO can be
applied for all kind of problems and in particular when
the problem is solvable with simple mathematical equa-
tions, while multigrid methods are usually applied for
solving partial differential equations and nonlinear pro-
blems. Moreover, the nature itself of the process of tree-
top detection from LiDAR data cannot be approached
with multigrid methods starting from coarser to finer
resolution because this approach would work only with
big isolated maxima based on CHM (Canopy Height
Model), and all the other treetops in the area would be
lost. This paper describes an application of such method
in forestry. The main objective of this paper is to discuss
the usefulness of the PSO procedure for calibrating
single-tree detection algorithms from LiDAR data. In
addition, the obtained results were compared with those
obtained with a widely applied LM algorithm based on
the identification of local maxima of CHM using a
variable-size window as proposed by Popescu et al.
(2002).

Materials and methods
Study area

The study area is part of the Aurina Valley located in
north eastern Italy in the Autonomous Province of
Bolzano. The total area covered by the LiDAR survey
is approximately 10 km?® with the altitude ranging
from 1059 to 2406 m a.s.l. and an average elevation
of 1729 m a.s.l.

Coniferous mixed forests are the dominant forest
typology of this area with Norway spruce (Picea
abies) (60%), larch (Larix decidua) and stone pine
(Pinus cembra) as dominant species. Most of the



area is of public property and managed by the local
community of Aurina Valley, with a limited number
of private properties. The main function of the forest
is the protection against rock fall and avalanches and
selection and shelterwood cuttings by small groups
are the elective silvicultural systems in this forest
area. The site was selected in 2012 for its high varia-
bility in forest structure, which represents a very
frequent situation in Alpine environment.
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Field sample survey

Three circular plots of 15 m radius were randomly
selected from a 50 x 50 m regular grid within a buffer
zone of 150 m from the forest road (Figures 1-2).
Based on the pre-existing map of the forest structures
of the Forestry Division of the Autonomous Province
of Bolzano-Bozen, the plots belong to the following
vertical forest structures: biplane, adult and multiplane.
In summer 2013, all trees within each plot were
mapped and diameter at breast height (DBH), species
and height of each tree with height greater than 1.3 m

Figure 2. The study area: the detailed position of the measured trees in one of the three plots.
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Table 1. Number of trees and species composition of the 3
selected plots: P: stone pine, L: larch, S: Norway spruce.

SPECIES [n] SPECIES [%]
CATEGORY P L S Other P L S Other
Biplane 13 19 28 0 22 32 47 0
Adult 6 8 28 0 14 19 67 0
Multilayer 30 M 6 0 64 23 13 0

recorded (Table 1). The DBH was measured using a
diameter tape and the height of the trees using a
Vertex hypsometer (Haglof, Sweden). The tree height
and diameter (DBH) distribution of trees are reported
in Figure 3. The main dendrometric characteristics of
the 3 plots are reported in Table 2.

The position of the centre of each plot and the
position of each tree within each plot were
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Figure 3. Distribution of the heights (a) and DBH (b) of the
trees with DBH greater than 17.5 cm in the three studied plots.

Table 2. Dendrometric characteristics of the three plots.

PLOT
CHARACTERISTIC Biplane Adult Multiplane
Average ground slope (deg) 333 325 237
Slope standard deviation 5.7 5.4 7
Elevation of the centre (m A.S.L) 17346 17565 19135
Average aspect (deg from N clockwise) 264 309 258
Average tree height (m) 27.2 25.8 15
Tree density (n/ha) 155.6 5093 452.7
Average DBH (cm) 44.7 355 28.1
Basal area (m?/ha) 2622 5321 29.63
Average Basal area (m?) 0.168  0.104 0.065
Above Ground Biomass (m>/ha) 285  669.8 98
Quadratic mean diameter (cm) 46 36 29

Quadratic mean height (m) 28.8 26.9 14.6

estimated using the application for digital field
mapping Geopaparazzi (http://geopaparazzi.github.
io/geopaparazzi, Brovelli, Minghini, & Zamboni,
2016). In Geopaparazzi, we considered both the
GPS signal and the Canopy Height Model (CHM)
loaded as background layer. Since the CHM image
was used as reference, the tree position was
referred to the top of the trees. We preferred to
use this method instead of a more traditional
approach (e.g. polar coordinates of the base of the
stems from the centre of the plot), as most of the
trees were heavily tilted and the position of the top
did not match that of the base of the trees.

In order to calculate the stem volume from DBH
and height of the single tree, we applied a site-specific
allometric relationship using the data collected in 12
plots including the three that we extracted for this
test.

LiDAR survey

The LiDAR data were collected in one single flight in
September 2012 at an average flying height of 500 m
a.gl. An Optech GEMINI Airborne Laser Terrain
Mapper (ALTM) was used by Helica s.r.l. company
(Udine - Italy) to collect the data. Maximum 4
returns were recorded from each pulse. The final
LiDAR point cloud had an average density of 10
points/m* The most important LiDAR survey para-
meters are shown in Table 3.

LiDAR data were collected, processed and deliv-
ered by Helica s.r.l in Universal Transverse Mercator
(UTM) coordinate system, in WGS84 - ETRF2000
datum. The Z coordinates of the 3-dimensional
LiDAR data have been transformed in orthometric
elevation using the software Cartlab (www.sxst.it/siti/
sxst/sxst.nsf/prodotti/CartLab-32opendocument) and
the geoid ITALGEO2005. The data were classified
by manual filtering using the Terrascan software
within the platform Terrasolid (Terrasolid Ltd.,
Helsinki) using the algorithms proposed by
Axelsson (1999) and Sithole (2005). The classification
differentiated ground and low vegetation according
to the ASPRS Standard LiDAR Point Classification

Table 3. Main LiDAR survey parameters.

PARAMETERS VALUES

Scan Frequency 30-70 Hz

Scan Angle + 30 deg

Beam Divergence 0.8 or 0.25 mrad (1/e nominal)
System PRF 167 kHz

Swath Width + 1.15 deg

Flying Altitude 500 m AGL
Elevation Accuracy 5cm < 500 m

10 cm < 1000 m

15 cm < 2000 m

20 cm < 3000 m
Horizontal Accuracy 1/5500 X elevation (m AGL)
Resolution in range 1cm
Points per square meter 10
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(LAS specifications version 1.2), while the remaining
points were labelled as Unclassified.

Estimating single tree position and height from
laser data

A single-tree top extraction method based on the
identification of LM (Hyypp4, Schardt, et al., 2001;
Persson et al., 2002) applied to both raster and point
cloud data was the approach in the present study. LM
are points with higher elevation respect to the others
in a window of a given size and shape. This technique
is based on the assumption that the trees have a tip
and this is much reliable with conifers than broad-
leaves. In order to optimize the parametrization of
algorithms (e.g. the size of the window and the
threshold on the height of the trees) a PSO method
was used and the obtained results compared with
those of a manual calibration of the LM algorithm
as proposed by Popescu et al. (2002), and implemen-
ted in the Fusion software (McGaughey, 2007).
Specifically, data analysis and optimization method
(Figure 4) consisted of the following five steps:

(1) run the local maxima algorithm using a set of
randomly defined parameters for both raster
and point-cloud data — the preliminary result
is a set of tree positions and heights from the
input dataset — in this step there is no need to
specify the minimum number of reference trees
because PSO can run also with a single tree;

(2) compare the obtained positions and heights of
the LiDAR-extracted tree tops with those of
trees mapped in the field using a matching
procedure, which considers the distance and
difference in height between the LiDAR-
derived and the field-measured trees;

(3) assess the obtained results based on a target
function that takes into account the number of
true positives (TP: LiDAR-extracted trees that
match for position and height the field-mea-
sures ones), false positives (FP: LiDAR-
extracted trees that do not exist in the field),
and false negatives (FN: trees measured in the
field that cannot be paired to LiDAR-extracted
tree tops);

(4) after the first simulation, the parameters of
local maxima algorithms are iteratively chan-
ged to move toward the best possible solution
of the target function;

(5) the optimizer iterates until either the target
solution or the number of maximum imposed
iterations (2000) has been reached.

Local maxima extractor for raster data

The LM algorithm, when applied to raster data, scans
the raster canopy height model (CHM) by using a
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LiDAR derived datasets
(DTM, DSM, point-cloud)

(particle swarm optimizer )

local maxima module
(raster or point-cloud)

run multiple times
(the swarm of particles)

set of extracted
trees positions
and heights

trees matching module
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iterate with new parameters
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function

(best solution of swarm)
A r J

(best global solution )

no convergence reached

convergence or max
k iteration reached J

\

best solution
extracted trees

Figure 4. Scheme of the particle swarm optimization method
applied to the extraction of local maxima from LiDAR data.

moving window and identifies as local maxima the
cells in the centre of the moving window with the
highest height value in comparison with all the cells
covered by the window.

The LM technique used in this study adopted a
circular window with a constant radius that was auto-
matically defined through PSO procedure. In addi-
tion, since we focused our study on trees with DBH
greater than 17.5 cm, we introduced a tree height
threshold, so that only local maxima higher than the
threshold were considered. The minimum tree height
threshold was a further parameter that has been cali-
brated through PSO.

A preliminary analysis revealed that a lot of FPs was
located at the boundaries of the trees crowns. These
FPs were related to the presence of cells of the lower
and ground layers creating the morphological
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Figure 5. Example of two local maxima (LM) located at the boundaries of a tree crown with the detail of the values of elevation

(coordinate Z) of the CHM

conditions for the identification of local maxima
(Figure 5). Therefore, we introduced in the LM algo-
rithm a filter for local maxima on the crow boundaries
based on the difference in height between the height of
the candidate local maximum and that of all the
neighbouring cells contained in the moving window.
When this difference in height was greater than the
threshold for at least two combinations of cells inside
the moving window, the local maximum was consid-
ered on the boundary of a crown and excluded. Also,
this vertical threshold was a further parameter that has
been optimized through PSO. Therefore, by the PSO
procedure the following three parameters were opti-
mized: the size of the moving window, the minimum
tree height threshold and the difference in height
among the cells of the moving window to identify
crowns boundaries.

The result of the raster-based tree top extractor
was a set of tree positions and heights.

Local maxima extractor for point-cloud data

First, the vegetation points were normalized by
subtracting the ground elevation taken from the
DTM (Lee, Slatton, Roth, & Cropper, 2010 and Li,
Guo, et al,, 2012), obtaining the so-called “point-
cloud CHM”. The LM algorithm, applied to the
point-cloud CHM, compared the height of each
point against the heights of all the points included
in a circular window centred on the point itself.
When the central point resulted to be the highest,
then it was automatically considered as a tree top
candidate and added to a temporary list of extracted
trees. Because of the breaching pattern of the trees,
branches in the upper canopy layer could generate

false local maxima (Figures 6 and 7). In these cases,
the branch creates a peak far and misaligned respect
to the centre of the tree with a significant difference
in height between the centre and the neighbouring
cells on the outer side of the tree respect to the
inner side where the branch comes out. Such false
positive points were automatically removed when
the cell of the DSM (used as reference layer for
checking the elevation) containing this treetop can-
didate had a height lower than a given threshold
respect to the heights of the surrounding cells. This
filtering procedure was applied to all the points
contained in the list of treetop candidates in order
to remove branches erroneously interpreted as
treetops.

On the remaining treetop candidates a further
filter was applied in order to avoid that within a
given radius two local maxima were considered.
This radius threshold was considered as a parameter
of the algorithm and it mainly depends on the forest
density, structure, species composition and crown
dimensions. When more than one treetop candidate
was extracted within this threshold radius only the
highest treetop candidate was kept.

The final result of the point-cloud-based treetop
extractor was a set of tree positions and heights.

Particle swarming optimization

The PSO (Eberhart & Kennedy, 1995) is an iterative
computational method used to find an optimal solu-
tion given a measured set of data. The PSO technique
has proven to be very efficient for solving uncon-
strained real valued optimization problems
(Parsopoulos & Vrahatis, 2002). It is inspired to the



EUROPEAN JOURNAL OF REMOTE SENSING . 951

TREE TOP

BRANCHES

/

Figure 6. Example of the breaching pattern of a tree and the erroneous (FP) identification of branches as LM.
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Figure 7. Identification of a FP local maxima corresponding to a branch in the upper part of a tree: profile views of the point cloud in
the main four directions. The two profiles where it is clearly identifiable the branch are the WE (green) and the NW-SE (yellow) profiles.

movement of swarms, which are composed of parti-
cles that represent candidate solutions. At each itera-
tion, the core algorithm produces a new candidate
solution (particle). Each particle moves to a better
position in the parameters space towards its own
previous best position (local best), and towards the
best solutions of all the other members of the swarm
(global best). The fitness of this optimization process
is based on the results of a fitness function, whose
mathematical structure should be chosen according
to the aim of the analysis (e.g. forest volume assess-
ment). For all particles, a fitness value is calculated
each time the extraction algorithm is run, and the
result will influence the direction of the particles fly

through the problem space in the following iteration.
This iterative process will go on until the following
iteration will not get the desired result of the fitness
function or the program reaches the maximum num-
ber of possible iterations.

The PSO main concept consists in changing the
position of each particle toward its personal best
(pbest) and global best (gbest) solution. The position
and the velocity of the particles can be represented by
a position-vector x; and a velocity-vector v;, where i is
the index of that particle. The best position of each
particle so far found is saved in the vector x";, while
the best position among the swarm is stored in the
best position-vector x*. During the iteration time t,
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the modified velocity of each particle can be calcu-
lated by Equation (1).

vilt +1) = wvy(t) + air (x;;(t) - x,-j(t))
+ o1y (x;‘(t) - x,-j(t)) (1)

where w is the inertia weight and ¢; and ¢, are
constant values usually set to 2 (Eberhart &
Kennedy, 1995) representing the coefficients of
self-recognition and social components, while r;
and r, are the random numbers, which are used to
maintain the diversity of the population and are
uniformly distributed in the interval [0,1]
(Abraham et al., 2006). The inertia weight has been
originally employed in the range 0.9-1.2 (Shi &
Eberhart, 1998a) and it defines how much of the
velocity of the previous time step should be retained:
larger values facilitate global exploration, while
smaller ones tend toward local exploration (Shi &
Eberhart, 1998b). Eberhart and Shi (2000) indicated
that initially setting the inertia weight to a large
value and then linearly decreasing it leads to a better
performance than wusing a fixed value, while
Abraham et al. (2006) suggested a starting value
around 1 with gradually reducing towards 0. In the
implemented algorithm, the inertia weight was cal-
culated using the power law of Equation (2)

w = initDecelFactor - itemtionStep_d““yF actor (2

where initDecelFactor is the starting value of w,
iterationStep is the number of the current iteration
and decayFactor is the factor used to decrease the
initial value towards lower values. In agreement
with Abraham et al. (2006), the new position of the
particle is updated as the sum of the previous posi-
tion and the new velocity as follows:

Xij(t+ 1) :Xl'j(t) +Vij(t+ 1) (3)

In the particle swarm model, each particle searches
the solutions in the problem space with a range
[-s, s] and any other range has to be translated to
a symmetrical range. In order to guide the particles
effectively in the search space, the maximum mov-
ing distance during any iteration must be clamped
in between the maximum velocity range [-vmax,
vmax] with 0 < vmax < s (Abraham et al., 2006).

Table 4. Values of parameters used in the simulations with
particle swarming optimization approach.

VARIABLE SYMBOL VALUE
Population size - 10
Maximum number of iterations - 100-2000
Inertia weight InitDecelFactor 1
decayFactor 0.3
Acceleration coefficients cl
2 1

In this article, we used parameters derived from
literature review and from the experience before the
application to our model and data. The values of the
parameters used for the different simulations are
summarized in Table 4.

Tree matching procedure

In our model, the fitness function was based on the
comparison between the LiDAR-extracted and the
field-mapped trees. In order to perform this compar-
ison, we implemented an automatic tree-matching algo-
rithm that identifies the number of true positives (TP),
false positives (FP), and false negatives (FN). This tree
matching procedure was based on the assumptions that
the horizontal distance between the field-mapped tree
and the LiDAR-extracted treetop cannot be more than
3 m and the difference in height between field-mapped
and LiDAR-extracted tree should be less than 15% of
the field-measured height of the tree (Monnet,
Merminy, Chanussotz, & Bergery, 2010).

The automatic matching procedure consists of

four steps:

(6) each field-mapped tree is compared with all
LiDAR-extracted trees that are located within
the threshold distance;

(7) among the LiDAR-extracted trees located
within this threshold distance, only those
with similar height are considered. This simi-
larity in height between field-mapped and the
LiDAR-extracted trees is defined through a
percentage of the field-measured height;

(8) the obtained candidate matching trees are
associated to each mapped tree and sorted
by distance from it;

(9) when field-mapped trees are near to each other,
one or more LiDAR- extracted trees will be
present within the threshold distance of differ-
ent field-mapped ones, which leads to an ambi-
guity in the process of associating the right
extracted tree to the mapped ones, since the
association normally works in a way that the
first analysed mapped tree is associated to the
nearest extracted, which in turn could be instead
the nearest to an other mapped tree that would
be analysed later in the list (Figure 8). Therefore,
the mapped trees that have the same extracted
tree in their list of possible matches are analysed
and only the nearest mapped tree to the com-
mon extracted maintains it in its list of possible
matches, while the extracted tree is removed
from the list of the other mapped trees.

Fitness function

PSO searches for the best value of an index of goodness
using a specific fitness function (Makhoul, Kubala,
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Solution: for each measured a list of possible extracted is kept
and ordered by distance from the measured tree. Then, during
the association process it is made sure that no tree can "steal"

the nearest tree from another tree.

Figure 8. Schematic representation of the association process used in the automatic matching procedure to avoid erroneous
association of trees due to a partial shift between LiDAR-derived and field-measured data.

Schwartz, & Weischedel, 1999). In this study, for both
raster and point cloud LM-algorithm, we implemented
the following three different fitness functions: (i) the
harmonic mean of precision and recall, (i) the mini-
mizing of FP trees, (iii) the minimizing of FN trees.

Where the harmonic mean takes the arithmetic
mean of the FPs and FNs and basically means that
FPs and FNs are equally important when the TPs
stays the same. It is calculated as:

2 PR

F= 5% @

where P and R are precision and recall, respectively
calculated as follow:

TP

P= —/—
TP + FP ®)
TP
R= —— 6
TP + FN (©)
and the general formula:
1+p’)PR
B°P+R

where B is a parameter which weights the relative
importance given to recall respect to precision and can
assume only for positive real values. After some tests we
decided to use two different values of f: = 2 for
minimizing the FN and p = 0.01 for minimizing the FP.

Our algorithm implements the optimization of the
fitness function by maximizing its value in the range
between 0 and 1. Therefore, the model converges when
the fitness function is maximized (approximately to 1),
which means that all LIDAR-extracted trees have a hit in
the dataset of field-mapped trees, while no false positives
or false negative have been generated. Even if the ideal
situation of reaching 1 does not occur, and the optimiza-
tion stops due to reaching the maximum number of
iterations, it is assumed that the best available solution
for the current set of parameters has been reached.

Parallelization of the code

The proposed method iteratively works on swarms of
particles, which means that an algorithm can be run
also thousands of times before a convergent solution or
the number of user-defined maximum iterations has
been reached. On the bright side, the methodology is
perfectly suitable for computational parallelization of
processes both at plot and swarm level calculation. In
our implementation, we decided to perform paralleliza-
tion at plot level. Working in Linux 64bits operating
system with an 8-CPU (Intel® Xeon® X5550, 2.66 GHz)
computer allows us to reduce the processing time by 8
times when 8 plots are processed simultaneously. This is
particularly useful with point-cloud data, as they are
complex to process and resource demanding.
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Data analysis

For each combination of LM algorithm and fitness
function, the following statistical parameters were
calculated for each plot:

e Total number of LIDAR-extracted trees (Ne);

e Number of field-mapped trees (Npap);

e Number of TP trees (Ny);

e Number of FN trees (Ng,);

e Number of FP trees (Ng,);

e Extraction rate (Rext = Next/Nmap)s

e Matching rate (Rt = Nip/Nimap);

e Commission rate (Reom = Ngy/Niap)s

* Omission rate (Rym = Ney/Niap)s

® V e = volume of field measured trees;

* Vy, = volume of true positive trees;

e Vg, = volume of false negative trees;

* Vg, = volume of false positive trees;

® Ve = Vip + Vg, = extracted volume;

® Ry = Vip/Vimeas = matching volume rate;

® Rym = Vi/Vineas = omission volume rate;

® Ryf, = Vip/Vineas = commission volume rate;

® Ryt = Vext/ Vineas = €xtraction volume rate.

In addition, for each combination LM algorithm and
fitness function the following root mean square
errors (RMSE) were calculated:
e RMSE,,; = root mean square error of extraction
rates;
e RMSE,, = root mean square error of tree heights;
¢ RMSE, gext = root mean square error of
extracted forest volume rate.

The abovementioned parameter was assessed for the
whole tree population of each plot and with the excep-
tion of the RMSE x: by splitting the population of
each plot in 3 groups of height classes at the 33rd and
66th percentile. The Table 5 shows the threshold height
values for the 33rd and 66th percentile of each plot.

The RMSE,,; and the RMSE,; were calculated as
follows:

RMSEeyy = —————— ®)

RMSE pjext = —————— (9)

where V., is the field-measured aboveground bio-
mass (AGB) and V. is the LIDAR-extracted AGB at

Table 5. Thresholds of the 33rd and 66th tree height percen-
tile of each plot.

PLOT H 33 PERCENTILE [m] H 66 PERCENTILE [m]
BIPLANE 2343 32.70
ADULT 23.97 28.56
MULTIPLANE 13.90 15.50

plot level and N is the result of:

(10) the number of plots (3) multiplied by the
number of LM-algorithms (2) when RMSE,,
is referred to the fitness function

(11) the number of plots (3) multiplied by the
number of fitness functions (3), when
RMSE.; is referred to the LM-algorithm

The height of each single LIDAR-extracted tree was
calculated as the elevation of the LiDAR data in the
point where a LM was detected and the volume of the
aboveground biomass (AGB) was estimated for both
field-mapped- and the LiDAR-extracted trees through
a field-derived species-independent allometric func-
tion relating the tree volume to the tree height and
DBH (diameter at breast height) as follows:

2

- n H 0.0000368048 (10)
where DBH is the tree diameter at 1.3 m of height, and
H is the total tree height. Since the volume of both
field-measured and LiDAR-extracted trees was esti-
mated using the same equation we did not introduce
an additional source of discrepancy between the two
estimates. However, since only position and height of
trees were extracted from the LiDAR data, the DBHs
were estimated using the following hypsometric rela-
tionship derived from the field measurements:

DBH = 0.0096 H> + 1.298 H (11)

The obtained results were then compared with those
achieved by applying to the same set of LIDAR-data
the LM algorithm proposed by Popescu et al. (2002),
and here used as reference. This algorithm was imple-
mented in the Fusion software by the Silviculture and
Forest Models Team of the United States Department
of Agriculture (USDA) Forest Service, in conjunction
with the University of Washington Precision Forestry
Cooperative. It identifies LMs of a CHM using a
variable-size circular window (WSWA), whose size
is based on the canopy height similarly concept
(Popescu & Wynne, 2004; Popescu et al., 2002) and
specifically in this case the width of the window was
calculated using the equation proposed by Kini and
Popescu (2004) for mixed pines and deciduous trees
as follows:

width = 2.5150 + 0.00901 h? (12)

where h; is the height of the canopy in meters and
width is the radius of the circular window.

After checking for normality and homogeneity of
variance, data of the abovementioned parameters
were analysed by the analysis of variance
(ANOVA) with LM-algorithm and fitness function
as independent variables considering the different
plots as replicates. Paired comparisons were carried
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Figure 9. Mean matching (Rmat = dark grey), commission (Rcom = light grey) and extraction (Rext = rdark + light grey) rates of
treetops for the three tested methods (a) and target functions (b) with the correspondent RMSEext (c, d). Different letters
denote significant differences (p < 0.05) among methods of target functions within the same detection rate or RMSE.

compensation between R, and R, (Figure 9(c)).
No significant statistical interaction between the LM
algorithm and the fitness function was found for both
Rinat and Reorm (Figure 9(b)). On the whole, irrespec-
tive of the target function, the point-cloud-based LM-
algorithm led to very similar results, showing to be
less sensitive than the raster-based LM-algorithm to
the type of function that was used for the optimiza-
tion of parameters (Table 7). On average, the R, of
the three target functions was not statistically differ-
ent (Figure 9(b)), but R.,, was significantly higher
when Min FN was applied in comparison to Min FP
function (Figure 9(b)). However, the RMSE,,, was
not affected by the fitness function (Figure 9(c)).
Considering the three height classes in which we
divided the trees of each plots, the PSO-based LM
algorithms detected almost all the dominant trees
(CLASS III), whereas the R, of the WSWA was

on average 0.75 (Table 8). The raster-based algorithm
detected a higher number of FP dominant trees in
comparison to the point-cloud-based algorithm, so
that the R, averaged 0.04, 0.14 and 0.06 for point-
cloud-based, raster-based and WSWA LM algorithm,
respectively (Figure 10(e)). However, no statistical
difference in terms of RMSE,,; was observed among
the three methods (Figure 11).

While the target function did not affect the Ry, of
dominant trees, the R, was, on average, lower when
the Min FP was adopted (Figure 10(b)). On the
whole, the RMSE.; of dominant trees was not
affected by the target function (Figure 11(f)).

For intermediate trees (Figure 10(c-d)) (CLASS II)
Rpae averaged 0.83 when the PSO-based LM algo-
rithms were applied, while it dropped to 0.51 when
the WSWA was adopted (Table 8). The R, of inter-
mediate trees was similar for the two PSO-based

Table 8. Average detection rates of treetops for raster-based (PS_rast) and point cloud-based (PS_pc) algorithms for the three
target functions in comparison with the variable-size window LM algorithm (WSWA). The results are shown for three different
height classes (CLASS Ill - first 33rd percentile, CLASS Il — second 33rd percentile, CLASS | third 33rd percentile).

CLASS | CLASS I CLASS Il TOTAL
PLOT VAR PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA
BIPLANE TP 0.25 0.25 0.25 0.78 0.67 0.67 1.00 1.00 0.75 0.67 0.64 0.55
FN 0.75 0.75 0.75 0.22 0.33 0.33 0.00 0.00 0.25 0.33 0.36 0.45
FP 0.00 0.00 0.00 0.22 0.00 0.00 0.17 0.00 0.00 0.12 0.00 0.00
ADULT P 0.33 0.22 0.08 0.78 0.86 0.17 0.97 0.86 0.75 0.69 0.65 033
FN 0.67 0.78 0.92 0.22 0.14 0.83 0.03 0.14 0.25 0.31 0.35 0.67
FP 0.17 0.17 0.00 0.33 0.22 0.25 0.06 0.1 0.00 0.19 0.17 0.08
MULTIPLANE TP 0.85 0.82 0.27 0.90 1.00 0.70 0.91 0.91 0.73 0.89 0.91 0.56
FN 0.15 0.18 0.73 0.10 0.00 0.30 0.09 0.09 0.27 0.1 0.09 0.44
FP 0.12 0.00 0.09 0.10 0.00 0.10 0.18 0.00 0.18 0.14 0.00 0.13
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Figure 10. Mean matching (Rmat = dark grey), commission (Rcom = light grey) and extraction (Rext = dark + light grey) rates of
treetops for the three classes of height: DOMINANT (A-B), INTERMEDIATE (C-D) and DOMINATED (E-F) trees for the three tested
methods (A,C,E) and for the three target functions (B,D,F). Different letters denote significant differences (p < 0.05) among

methods or functions within the same detection rate.

methods, but the R, of raster-based algorithm was
three times higher than that of point-cloud-based one
(Figure 10(c)). The target function did not affect both
Rpae and Ry, of intermediate trees and the RMSEext
was not affected by both the LM-algorithm and the
target function (Figure 11(c-d)).

The mean R, of dominated trees (CLASS I)
declined to 0.48, 0.43, and 0.20 for raster-based,
point-cloud-based, and WSWA algorithms, respec-
tively (Figure 10(e)). However, no statistical differ-
ences among the LM-algorithms were observed
(Figure 10(e)) both in terms of Ry, and Reom.
RMSE,,: of dominated trees was not influenced by
the LM-algorithms and the target function
(Figure 11(f)). If the Ry, was not affected by the
target function, the use of the Min FP as target
function reduced to zero the number of FP domi-
nated trees (R.om = 0) without any statistically sig-
nificant reduction of Ry, (Figure 10(f)).

Tree heights and forest volume

The optimization process was based on an automatic
matching procedure, which used the distance and the
difference in height between the LiDAR-extracted and
the field-measured trees as parameters. Therefore, the
heights of the LiDAR-extracted trees necessarily fitted
very well those of the field-measured ones. On the
whole, the RMSE of LiDAR-extracted against field-
measured height of trees (RMSEy,) was very low and
averaged 0.96 m. The RMSE;, was significantly affected
by LM-algorithm and the plot structure. The point-
cloud-based algorithm was found to be a more accu-
rate method to estimate the tree height than the raster-
based algorithm (Figure 12(a)) and on average the
RMSE,, was lower for the multilayered and higher for
the biplane plot, respectively (Figure 12(b)). The fit-
ness function did not prove to be able to affect the
accuracy of the estimation of tree height
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Figure 11. Root mean square error (RMSE) of extraction rates (Rext) of the treetops belonging to the three classes of height:
DOMINANT (a-b), INTERMEDIATE (c-d) and DOMINATED (e-f) trees for the three tested methods.
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Figure 12. Root mean square error of LiDAR-extracted against field-measured tree heights (RMSEh) for the three tested
methods (a) and three vegetation structures (b). Different letters denote significant differences (p < 0.05) among methods or

plot structures.

Table 9 shows, for each combination of LM algo-
rithm as well as for the WSWA method, averaged on
the fitness function, the per cent of the above ground
biomass (AGB) of true positive (TP), false positive
(FP), and false negative trees (FN), by using the field-
measured volume as reference. The two algorithms

based on PSO performed much better than WSWA
irrespective of the target function (Figure 13(a)). The
rate volume of LiDAR-extracted TP trees (Ryyp)
respect to the total field-measured volume ranged
between 0.78 and 0.92 and averaged 0.88 for the
PSO-based LM algorithms (Figure 13(a)), while it



Table 9. Matching volume rate (Ryp), commission volume rate (Ryg,), omission volume rate (Rys,) and extracted volume rate (Ryex:) Of LiDAR-extracted trees for raster-based LM-algorithm, point-

cloud-based LM algorithm and the variable-size window LM algorithm (WSWA) using the three different target functions (harmonic mean, minimization of FP and minimization of FN) within the

particle swarming optimization procedure.
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averaged 0.61 for the WSWA. However, the LM-
algorithm did not influenced the Ryg, and the fitness
function did not affected both Ry, and Ryg, and the
RMSE, glext (Figure 13). With the raster-based LM
algorithm, the LiDAR-extracted volume of the TPs
resulted, in some cases, greater than the volume of
the field-measured trees even if the R,,,, was lower
than 1. This is because the raster-based method
tended to overestimate the average height of treetops
(Figure 12(a)). However, no statistical difference
between the two PSO-based methods was found in
terms of Ryeyxe and Ry, and RMSEjexe when all the
data were pooled together (Figure 13(a)). Although,
on average the results in terms of LiDAR-extracted
volume were similar between the two PSO methods,
the point-cloud-based LM algorithm showed to be
less sensitive than the raster-based LM algorithm to
the selected target function (Figure 13(b)). However,
no significant interaction between the target function
and the LM-algorithms were found for RVext, Ryp,
Ry, and RMSE, ey (Figure 13).

The results related to the volume of dominant and
intermediate trees are in line with those obtained for
the entire population (Table 10). In fact, the PSO-
based methods performed much better than the
WSWA in terms of Ry, and only for the dominant
trees also in terms of RMSE, ey (Figures 14-15). No
statistically significant differences between the two
PSO-based methods were observed for all the consid-
ered parameters connected to the volume of domi-
nant and intermediate trees (Figures 14-15(c-d)). The
fitness function has not shown any significant effect
on Ry, Ryf and RMSE e of dominant trees
(Figures 14-15(a-b)). Concerning the estimation of
the volume of dominated trees, the three algorithms
did not lead to statistically significant differences,
even if the WSWA produced lower Ryy, and higher
RMSE, x: absolute values in comparison to the other
algorithms, confirming what we have observed in the
higher height classes. The Min FP allowed reducing
to zero the volume of FP trees, without compromis-
ing the value of Ryy,.

Discussion

Most of the methods and algorithms so far proposed
to extract treetops from LiDAR data were based on
the subjective choice of a number of parameters,
which are defined considering the characteristics
and the spatial distribution of trees of the studied
forests. However, this approach has often produced
variable and inconsistent results according to the
structure, species composition and development
stage of the forest. In the present study, for the first
time, we applied the particle swarming optimization
procedure to parametrize two LM algorithms in order
to extract treetops of coniferous from LiDAR-data.
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Table 10. Matching volume rate (Ry,), commission volume rate (Rs,) and omission volume rate (Rys,) for raster-based (PS_rast)
and point cloud-based (PS_pc) algorithms for the three target functions in comparison with the variable-size window LM
algorithm (WSWA). The results are shown for three different height classes (CLASS Il - first 33rd percentile, CLASS Il — second

33rd percentile, CLASS | third 33rd percentile).

CLASS | CLASS I CLASS Il TOTAL
PLOT VAR PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA PS_rast PS_pc  WSWA
BIPLANE TP 0.20 0.22 0.27 1.07 0.97 0.78 1.01 1.07 0.76 0.95 0.97 0.72
FN 0.73 0.73 0.73 0.21 0.22 0.22 0.00 0.00 0.24 0.12 0.12 0.28
FP 0.00 0.00 0.00 0.25 0.00 0.00 0.14 0.00 0.00 0.15 0.00 0.00
ADULT TP 0.52 0.38 0.13 0.83 0.93 0.22 0.91 0.86 0.73 0.83 0.81 0.47
FN 0.59 0.71 0.90 0.18 0.1 0.79 0.03 0.13 0.24 0.16 0.22 0.52
FP 0.20 0.20 0.00 0.37 0.22 0.00 0.05 0.10 0.00 0.18 0.15 0.00
MULTIPLANE TP 0.81 0.86 0.24 0.87 1.05 0.66 0.79 0.86 0.68 0.82 0.91 0.59
FN 0.13 0.15 0.76 0.1 0.00 0.32 0.07 0.08 0.21 0.09 0.07 0.35
FP 0.10 0.00 0.07 0.10 0.00 0.10 0.15 0.00 0.16 0.12 0.00 0.12

The obtained results were compared with those of a
commonly used variable-size window LM algorithm,
which was subjectively parametrized according to
Popescu et al. (2002), and used as reference. Our
approach, based on PSO iterative parametrization
process, seems to be very promising as the detection
rates of the treetops were much higher than that
achievable with the reference LM algorithm. This
suggests that a rough parametrization of the selected
algorithm can produce a strong reduction of the
estimation accuracy even when the forest structure
is well known. Our preliminary results are encoura-
ging also in comparison with recent studies in Alpine
region, where complex forest structures were consid-
ered. For instance, Eysn et al. (2015) tested 8 single-
tree detection methods in 8 Alpine study areas,

covering different forest types and structures. Five
of the 8 proposed methods were based on LM algo-
rithms with predefined parameters (e.g. size of the
sliding window). The mean R, in the abovemen-
tioned study ranged between 0.4 and 0.5, which is
roughly half of the matching rate we found in the
present study. These sharply different performances
are partially due the different DBH thresholds,
17.5 cm in our study and between 4 and 12 cm in
Eysn’s study. Nevertheless, also by narrowing down
the comparison to the higher height classes, it is clear
that the PSO procedure allowed us to improve the
estimation accuracy. However, we cannot exclude
that the greater heterogeneity in the quality of the
LiDAR data and forest structures has negatively influ-
enced the Eysn’s results.
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Figure 14. Mean matching (RVtp = dark grey), commission (RVfp = light grey) and extraction (RVext = dark + light grey) rates of
volume of three classes of height: DOMINANT (a-b), INTERMEDIATE (c-d) and DOMINATED (e—f) trees for the three tested
methods and for the three target functions. Different letters denote significant differences (p < 0.05) among methods or target

functions within the same detection rate.

The matching rates in different height classes show
that especially in dominant and intermediate layers
the PSO-based method can detected a higher number
of treetops than WSWA method. In this regard, our
methods have to be considered more advanced not
only because they are based on an automatic para-
metrization process, but also for the number of para-
meters that were optimized in order to reduce biases
and improve the detection ability. This finding is in
agreement with the results of Kaartinen el al. (2012),
who observed that advanced methods, like those
based on point-cloud 3D analysis, generally perform
better than simple methods based on LM detection
using a rasterized CHM as base.

A high accuracy can be reached when a high
matching rate is combined with a low commission
rate. In this context, the point-cloud-based
method combined with the Min FP target

function was found to be the best compromise,
as it allowed us to get high matching rates asso-
ciated with the lowest commission rates. This was
generally observed for all the height layers. On
the contrary, the raster-based LM algorithm
tended to over-perform due to high commission
rate. As the best size of the mowing window in
the raster-based LM algorithm was automatically
selected by the PSO procedure, we cannot exclude
that in some cases the choice of a small-size
mowing window might have led to a higher com-
mission rate. In spite of our filtering procedure,
small local maxima kernel, can identified local
irregularities as potential treetops, and this results
in a high commission rate. The point-cloud based
LM algorithm performed better than raster-based
method also in terms of detection accuracy of tree
heights with consequential benefit in terms of



962 (&) S.FRANCESCHI ET AL.

0.7
0.6
0.5

® RMSEvolext

®
[}

©° 04
@

® 03 a
=

@ ab
0.2 b

ol

0.0

Point-cloud Raster
Method

WSWA

0.7

0.6
05 NS

= RMSEvolext NS

504
»n 0.3
®o2
0.0

Point-cloud

NS

Raster WSWA

Method

0.9
08
0.7

§os

905

504

203
0.2
0.1
0.0

= RMSEvolext

Raster WSWA

Method

Point-cloud

e)

0.5 = RMSEvolext

0.1
0.1
0.0

harmonic mean min FP min FN
b) Function
0.5 ® RMSEvolext
0.5
0.4
% 0.4
203
S
o 0.3
202
o2
0.1
0.1
0.0
hammonic mean min FP min FN
d) Function
07 = RMSEvolext
0.6
0.5
%
5 04
>
®03
E :
0.2
0.1
0.0
hamonic mean min FP min FN
f) Function
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accuracy of forest volume estimation. The lower
vertical estimation accuracy of the raster-based
method is probably due to the rasterization pro-
cess itself that implies a smoothing of the vertical
irregularities and as a consequence an increase in
the RMSE;,. On the other hand, when the point
cloud-based method is used, a high accuracy of
tree height estimation seems to be reachable only
with a high LiDAR-data point density. In this
context, an analysis of the sensitivity of vertical
estimation accuracy to the LiDAR-data point den-
sity seems to be crucial for both raster- and point
cloud-method. A further indication deals with the
importance of forest structure on vertical accu-
racy. In agreement with the results of Eysn et al.

(2015), we got the best vertical accuracy for
multi-layered forest while the biplane structure
seems more challenging in this regard.

Conclusion

The particle swarming optimization iterative procedure
has been proved to be a powerful method to parame-
trize local maxima algorithms based on raster or point
cloud LiDAR data in order to properly detect treetops of
coniferous stands with complex forest structures. This
optimization procedure allowed us to obtain high
detection rates and estimation accuracy of forest
volume. However, further studies are needed to test
and validate our methods on a larger dataset covering



different type of forests and forest structures. Finally,
the effect of different point density and flight para-
meters on the detection accuracy of the proposed meth-
ods should be performed to understand the robustness
and the sensitivity of our approach to the most common
variables of LIDAR dataset.
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