

XXII International Mass Spectrometry Conference

Florence (Italy) - August 26-31, 2018

BOOK of ABSTRACTS

draft

1200 - C AND H STABLE ISOTOPE RATIO ANALYSIS USING GC-IRMS FOR VANILLIN AUTHENTICATION

MATTEO PERINI (1) - SILVIA PIANEZZE (1) - FEDERICA CAMIN (2)

Fondazione Mach, Experiment and Technological Services Department, Technology Transfer Centre, S. Michele all'Adige (TN), Italy (1) - Fondazione Mach, Department of Food Quality and Nutrition, Research and Innovation Centre, S. Michele all'Adige (TN), Italy (2)

C and H stable isotope ratio analysis using GC-IRMS for vanillin authentication

Matteo Perini, Silvia Pianezze, Federica Camin Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy Keywords: stable isotope ratios, vanillin, authentication, gas chromatography

Introduction:

Vanilla extracts are widely used as flavouring ingredients in foods and beverages and as aromatic compounds in perfumes and pharmaceuticals. Due to the high production cost of high-quality natural extracts from Vanilla planifolia, synthetic or natural identical biosynthetic vanillin (which derives from natural precursors such as guaiacol, ferulic acid, eugenol and lignin) are often used as a substitute for authentic natural vanillin [1].

Methods:

We combined analysis of 13C/12C (expressed as δ 13C) values and2H/1H (expressed as δ 2H) ones using gas chromatography coupled to isotope ratio mass spectrometry(GC-IRMS) [2]. 16 authentic samples of Vanilla planifolia, 16 natural identical, 5 synthetic vanillin and 20 commercial extracts were considered.

Results:

The carbon isotope ratio values allow discriminating between natural and natural identical or synthetic vanillin (averagely -19‰ vs -30‰). Authentic natural vanillin from Vanilla planifolia and natural identical vanillin are characterised by δ 2H values much lower than synthetic vanillinones (averagely-50‰ vs +73‰). The isotopic values of all the commercial extracts declared to be from Vanilla planifolia (N=20), had δ 13C values within the typical range of natural vanillin, but δ 2H values outside the range and more similar to that of synthetic vanillin. Our results show howthe stable isotope ratio analysis (SIRA) of 13C/12C is no longer sufficient to discover vanillin adulteration, due to the practice of adding 13C to the methyl site of synthetic vanillin [3], and the new analysis of δ 2H is mandatory.

Conclusions:

The combination of $\delta 13C$ with $\delta 2H$ GC-IRMS analysis of vanillin can therefore be proposed as a suitable tool to improve the detection of vanilla extract adulteration.

Novel Aspect:

Stable isotope analysis of 2H/1H can be a rapid and effective method to identify the natural or synthetic origin of vanillin.

References

- [1] Bensaid FF, Wietzerbin K, Martin GJ. Authentication of natural vanilla flavorings: isotopic characterization using degradation of vanillin into guaiacol. J Agric Food Chem. 2002;50: 6271–6275.
- [2] Greule M, Tumino LD, Kronewald T, Hener U, Schleucher J, Mosandl A, et al. Improved rapid authentication of vanillin using δ 13C and δ 2H values. Eur Food Res Technol. 2010;231: 933–941.
- [3] Krueger DA, Krueger HW. Detection of fraudulent vanillin labeled with carbon-13 in the carbonyl carbon. J Agric Food Chem. 1985;33: 323–325.