
Ecology and Evolution. 2018;8:5611–5618.	 		 	 | 	5611www.ecolevol.org

1  | INTRODUC TION

Forest structure influences both the carbon content of forests and 
its changes in time (Fischer et al., 2016). Forest structural diversity 
can be described both in terms of horizontal and vertical distribution 

of forest parameters such as species, leaf area, tree diameter, crown 
size (Hubbell, Ahumada, Condit, & Foster, 2001) and can be consid-
ered one of the surrogates of biodiversity (Pach & Podlaski, 2015). 
Traditional methods for assessing forest structure comprise field 
inventories and optical remote sensing (i.e., aerial photography, 
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Abstract
Forest structure is strongly related to forest ecology, and it is a key parameter to 
understand ecosystem processes and services. Airborne laser scanning (ALS) is be-
coming an important tool in environmental mapping. It is increasingly common to 
collect ALS data at high enough point density to recognize individual tree crowns 
(ITCs) allowing analyses to move beyond classical stand- level approaches. In this 
study, an effective and simple method to map ITCs, and their stem diameter and 
aboveground biomass (AGB) is presented. ALS data were used to delineate ITCs and 
to extract ITCs’ height and crown diameter; then, using newly developed allometries, 
the ITCs’ diameter at breast height (DBH) and AGB were predicted. Gini coefficient 
of DBHs was also predicted and mapped aggregating ITCs predictions. Two datasets 
from spruce dominated temperate forests were considered: one was used to develop 
the allometric models, while the second was used to validate the methodology. The 
proposed approach provides accurate predictions of individual DBH and AGB 
(R2 = .85 and .78, respectively) and of tree size distributions. The proposed method 
had a higher generalization ability compared to a standard area- based method, in 
particular for the prediction of the Gini coefficient of DBHs. The delineation method 
used detected more than 50% of the trees with DBH >10 cm. The detection rate was 
particularly low for trees with DBH below 10 cm, but they represent a small amount 
of the total biomass. The Gini coefficient of the DBH distribution was predicted at 
plot level with R2	=	.46.	The	approach	described	in	this	work,	easy	applicable	in	dif-
ferent forested areas, is an important development of the traditional area- based re-
mote sensing tools and can be applied for more detailed analysis of forest ecology 
and dynamics.
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stereoscopy). Airborne laser scanning (ALS) is a commonly used tool 
in forest ecology and environmental mapping (Vierling, Vierling, 
Gould,	Martinuzzi,	&	Clawges,	2008),	most	often	providing	 stand-	
level	 estimate	of	 forest	 variables	 (Næsset,	2002,	2004).	However,	
ALS datasets are increasingly collected at high enough point den-
sity to study forests at individual tree level (Coomes et al., 2017; 
Dalponte & Coomes, 2016) with the potential to impact on the plan-
ning of silvicultural activities and cutting regimes, but also to de-
scribe forest parameters in details.

In a worldwide study, Jucker et al. (2017) produced allometric 
equations by which tree diameter at breast height (DBH) and abo-
veground biomass (AGB) could be predicted from height and crown 
diameter measurements. These two tree attributes can be predicted 
with ALS data as they are the standard output of almost every indi-
vidual tree crown (ITC) delineation method (Zhen, Quackenbush, & 
Zhang, 2016). This opens at the possibility to map forests over large 
areas from ALS, with the sort of detail only previously possible by 
intensive field work. So recent developments in sensors, estimation 
equations, and big data processing are providing new opportunities 
to implement of individual tree- based models over entire states 
(Shugart et al., 2015). Single trees maps permit to analyze forest 
structure at different scales and many important forest functions, 
such as tree diversity—carbon storage relationships are scale depen-
dent (Sullivan et al., 2017).

In this work, we show a simple and effective method to map at 
ITC level, diameters, and biomass using height and crown diameters 
measured from ALS data. To understand whether our results can be 
generalized at least in forest ecosystems with similar characteristics, 
we developed estimation equations in one area and then we applied 
them in a second one. A comparison with a standard area based 
method is also provided.

We	 also	 predict	 and	 map	 the	 Gini	 coefficient	 (Gini,	 1921),	 a	
concise indicator to assess the structural diversity of forest stands 
and considered one of the most suitable indicator for studying the 
complexity	 of	 forests	 (Valbuena,	 Packalén,	 Martı′n-	Fernández,	 &	
Maltamo,	2012),	to	demonstrate	the	power	of	ALS	data	in	the	mea-
surements of forest structure. Gini coefficient can be used both as 
an indicator to assess tree competition and succession and to evalu-
ate the effect of human management that strongly impact tree diam-
eter	distribution	(Valbuena,	Eerikäinen,	Packalen,	&	Maltamo,	2016).

2  | MATERIAL S AND METHODS

2.1 | Field and ALS data

Two datasets were used in this study. The first dataset (Paneveggio) 
was used only to develop the DBH and AGB models. The Paneveggio 
study	 area	 (about	 4	km2)	 is	 located	 in	 the	 Italian	 Alps	 (46°17′48″	
N	 11°45′26″	 E).	 The	main	 species	 of	 the	 forest	 is	Norway	 spruce	
(Picea abies (L.) H. Karst) with the presence of some minority species, 
such as European larch (Larix decidua	Mill.),	green	alder	(Alnus viridis 
(Chaix.) D.C.), and Swiss pine (Pinus cembra L.). The field data consists 
of	47	circular	sample	plots	of	different	radii	(two	plots	of	4	m,	one	

of 6 m, two of 7 m, 12 of 13 m, and 30 of 20 m). Within each sam-
ple	plot,	tree	species	(90%	Norway	spruce,	3%	European	larch,	3%	
green	alder,	1%	Swiss	pine,	3%	other	species),	DBH	(min.	4	cm;	max.	
109	cm;	mean	27	cm),	height	(min.	1.6	m;	max.	45.7	m;	mean	19.3	m),	
and	tree	coordinates	were	recorded	for	all	trees	with	DBH	>	4	cm.	
For 1,182 trees, also the crown diameters (min. 0.5 m; max. 17.7 m; 
mean	4	m)	were	measured.

The second dataset (Pellizzano) was used to validate the mod-
els. The Pellizzano study area (about 32 km2) is also located in the 
Italian	Alps	 (46°17′49″	N	10°46′17″	E).	The	dominant	tree	species	
are P. abies (L.) Karst., with the presence of other coniferous spe-
cies (e.g., Abies alba	Mill.,	L. decidua	Mill.,	P. cembra L., Pinus sylvestris 
L., and Pinus nigra J.F. Arnold) and broadleaves species (e.g., Populus 
tremula L., Betula spp.). Further details about the study area can be 
found in Dalponte and Coomes (2016). The field data were collected 
on	47	circular	 sample	plots	15	m	 radius.	Within	each	 sample	plot,	
tree	 species,	 DBH	 (min.	 4	cm;	max.	 89	cm;	mean	 28.8	cm),	 height	
(min.	1.9	m;	max.	42.6	m;	mean	19.8	m),	and	tree	coordinates	were	
recorded	for	all	trees	with	DBH	>	4	cm.	A	total	of	1,952	trees	were	
recorded.	ALS	data	were	acquired	using	a	Riegl	LMS-	Q680i	sensor	
system	operating	with	a	pulse	repetition	frequency	of	400	kHz.	Up	
to four echoes per pulse were recorded, and the resulting pulse den-
sity	was	about	48	m−2.

Aboveground biomass for the field trees of the two datasets 
(Paneveggio:	min.	1	kg,	max.	4,086	kg,	mean	406	kg;	Pellizzano:	min.	
1 kg, max. 3,250 kg, mean 512 kg) was predicted using the models 
of	Scrinzi,	Galvagni,	and	Marzullo	(2010)	and	field	measured	height,	
DBH, and species.

2.2 | Methods

2.2.1 | Proposed method

In Figure 1, the architecture of the proposed methodology is 
showed. First of all, using a set of field measured trees (in our case 
the Paneveggio dataset), following the methodology of Dalponte 
and Coomes (2016) and Jucker et al. (2017), allometric models 

F I G U R E  1 Architecture of the proposed methodology
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relating DBH and AGB to height and crown diameter are developed. 
The models were in the form:

where DBH is the diameter at breast height in cm, AGB is the above-
ground biomass in kg, H the height in meters, and CD the crown 
diameter in meters. The models are parametrized using the nlrq func-
tion of quantile regression package quantreg in R (τ = 0.5) which is 
less sensitive to heteroscedasticity than conventional least- square 
regression	(Koenker	&	Park,	1996).

Secondly, ITCs are delineated on the ALS dataset (in our case 
the	Pellizzano	dataset).	Many	ITC	delineation	for	ALS	data	methods	
exist, and in this work, we used the delineation algorithm of the R 
package itcSegment. This ITC delineation approach finds local max-
ima	within	a	rasterized	CHM,	designates	these	as	tree	tops	and	then	
uses a decision tree method to grow individual crowns around the 
local maxima. The output of the delineation method is the detected 
trees	with	the	information	related	the	height	(95th	percentile	of	the	
ALS points inside the delineated crown) and the crown diameter. For 
additional details on the delineation method, see the supplementary 
material of Dalponte and Coomes (2016).

Diameter at breast height and AGB are predicted for each ITC 
using the models in Equations 1 and 2 and height and crown diame-
ter extracted from ALS data. Gini coefficient of the DBHs (GiniDBHs) 
was	computed	in	plots	with	at	least	10	trees	for	a	total	of	43	plots	
using field data and ITC predicted DBHs.

2.2.2 | Area- based method

In order to have a comparison with a standard approach, models for 
AGB and the Gini coefficient of DBHs prediction at plot level were 
also developed based on Paneveggio dataset using the following 
formulation:

where	TCH	is	the	top-	of-	the-	canopy	height	metric	(Asner	&	Mascaro,	
2014)	computed	for	each	plot,	AGB	is	the	aboveground	biomass	of	
each plot, and GiniDBHs is the Gini coefficient of DBHs for each plot. 
We chose simple models in order to have a higher generalization abil-
ity, and in order to have an approach comparable to the one pro-
posed in section 2.2.1. It is worth noting that in this case, differently 
than for the proposed method, ALS data are necessary also to build 
the model.

2.2.3 | Validation procedure

To	evaluate	 the	models	of	 Equations	1–4,	 the	 root	mean	 square	
error	 (RMSE),	 average	 mean	 difference	 (̄ ̄D), and coefficient of 

determination (R2) were calculated on both the Paneveggio and 
Pellizzano datasets. Regarding the Paneveggio dataset, a 10% 
cross-	validation	procedure	was	performed	using	90%	of	the	sam-
ples (i.e., field measured trees for the proposed method, and field 
plots for the area- based method) to build the model and 10% to 
evaluate	it.	The	procedure	was	repeated	100	times.	The	RMSE,	 ̄D
, and R2 values are the mean values over all the repetitions. This 
procedure was used only to have an evaluation of the models 
based	on	field	data.	Regarding	the	Pellizzano	dataset	RMSE,	 ̄D, and 
R2 were computed between field and predicted values of DBH and 
AGB of the ITCs that were matching a field tree, and of the AGB 
and GiniDBHs of the plots. The delineated ITCs were automati-
cally matched to the trees measured in the field. If only one field 
measured tree was included inside an ITC, then that tree was asso-
ciated to that ITC. In the case of more than one field measured tree 
was included in a segmented ITC, the field measured tree with the 
closer height to the ITC height was chosen (Dalponte & Coomes, 
2016).

3  | RESULTS

3.1 | Proposed method

The individual accuracies of the models on the field data are high 
(Equation 1: R2	=	.85,	 RMSE	=	6.43,	 ̄D = 0.01; Equation 2: R2 = .78, 
RMSE	=	226.63,	 ̄D	=	4.02),	 and	 this	 is	 confirmed	 also	 by	 the	 scat-
terplots in Figure 2a–d. ITC level results for DBH and AGB predic-
tion are showed in Figure 2b–e. Accuracies are lower compared 
to the ones of the models but the systematic error is really small 
(Equation 1: R2	=	.78,	 RMSE	=	8.10,	 ̄D = 0.06; Equation 2: R2 = .78, 
RMSE	=	345.64,	 ̄D	=	0.47).	 The	 detection	 rate	 of	 the	 delineation	
method on the Pellizzano dataset considering all the field measured 
trees	in	the	47	plots	was	30.6%	with	a	the	commission	error	of	8.3%,	
and an accuracy index of 22.3%. The delineation method used de-
tected more than 50% of the trees with DBH >10 cm (see Figure 2c). 
Only about 8% of the trees with DBH <10 cm were detected. The 
detection rate was particularly low for trees with DBH below 10 cm, 
but they represent a small amount of the total biomass (Figure 2f). 
For the trees with DBH above 30 cm, we registered the highest de-
tection rates (>80% in total) with also the highest percentage of de-
tected AGB.

Figure 3 shows an example of tree detection on three plots. 
Big trees are generally detected and the DBH is correctly pre-
dicted, even if some error happens for trees diameter close to 
the border among two classes. Small trees are detected only if 
they are not dominated by other trees and where canopy density 
is low (Figure 3 left panel). The presence of young small trees in 
the understory of dense forest is difficult to detect with ALS data 
(Figure 3 right panel).

The Gini coefficient of the DBH distribution was predicted at 
plot level (700 m2 plots) using the predicted ITC’s DBH. The results 
were R2	=	.46,	RMSE	=	0.21,	 ̄D	=	−0.36,	The	slope	of	the	linear	rela-
tionship among field and predicted Gini coefficient was 0.5.

(1)DBH=a × (Hb) × (1+c × CD)

(2)AGB=a × (H × CD)b

(3)AGB=a × TCH
b

(4)GiniDBHs=a × TCH
b



5614  |     DALPONTE ET AL.

3.2 | Area based method

The individual accuracies of the models on the Paneveggio data 
set are high (Equation 3: R2	=	.91,	RMSE	=	32.3,	 ̄D = 26.8; Equation 
4:	 R2	=	.65,	 RMSE	=	0.08,	 ̄D = 0.07), and this is confirmed also by 
the	 scatterplots	 in	 Figure	4a–c.	 AGB	 and	 GiniDBHs	 prediction	
on	 Pellizzano	 dataset	 are	 showed	 in	 Figure	4b–d.	 Accuracies	 are	
lower compared to the ones of the models (Equation 3: R2	=	.91,	
RMSE	=	113,	 ̄D	=	104;	Equation	4:	R2	=	.01,	RMSE	=	0.25,	 ̄D = 0.17). 
The	RMSE,	and	 ̄D for the AGB prediction are quite high, while the 
prediction of GiniDBHs on the Pellizzano dataset is very inaccurate.

4  | DISCUSSION

The results showed that using only the ALS information over an 
area and equations developed for a certain type of forest (i.e., 
spruce dominated temperate forests), it is possible to map accu-
rately the DBH and AGB at ITC level, in other forests with similar 
characteristics. This is an important result because it demonstrates 
that using allometries developed using only local field data at a cer-
tain time, without the use of ALS data, we can predict ITC level at-
tributes and forest structure over an extensive region covered with 
ALS data at any other time. The ITC approach was demonstrated 
to be very useful for many applications in which data on minority 
species are important, as the ITC approach allows detection of the 

AGB distributed by species and class diameters (Kandare, Dalponte, 
Ørka, Frizzera, & Næsset, 2017). The possibility to detect single 
ITCs and the attributes associated with them is useful in the con-
text of individual- based models, a new generation of models that 
integrate individual- level mechanisms with ecosystems ecology and 
functionality (Grimm, Ayllón, & Railsback, 2017). The main strength 
of the proposed approach is that, once the allometries have been 
developed, just using ALS data it is possible to obtain height, DBH 
and AGB for each detected ITC without needing any field data, 
helping for a more precise forest management without extra costs 
in large areas. One issue that may rise is the heteroscedasticity of 
the prediction error for AGB and DBH at ITC level. This is due to 
the fact that the relationship among DBH (or AGB) and CD and H 
changes with tree age: after a certain age trees grow less (or noth-
ing) in height, but they can still grow in DBH. This problem can be 
solved developing models that can change according to the tree 
height, but at the price of having more complex (and probably less 
general) models.

One of the main unresolved problems is that ITC delinea-
tion methods fail at detecting suppressed and understory trees 
(Figure 2c). The tendency of missing trees will increase in multi-
layer and dense forests. This is the case of some of the plots of 
the Pellizzano dataset. In a previous comparative study of delin-
eation methods and forest types in the Alps, Eysn et al. (2015) 
showed that the plots of Pellizzano were the most complex among 
the ones analyzed. In one- layer forests, usually it is possible to 

F I G U R E  2  (a) DBH measured in the field versus model predicted DBH (Equation 1) for the field trees of Paneveggio; (b) DBH measured 
in the field versus model predicted DBH on the ITCs matched with field trees of Pellizzano dataset; (c) DBH class distribution of the field 
measured and ALS detected trees of Pellizzano dataset, along with the percentage of detected trees for each DBH class; (d) field predicted 
AGB versus model predicted AGB (Equation 2) on the field data of the Paneveggio dataset; (e) field predicted AGB versus model predicted 
AGB on the ITCs matched with field trees of Pellizzano dataset; (f) DBH class distribution of the AGB of the field measured and ALS 
detected trees of Pellizzano dataset, along with the percentage of detected AGB for each DBH class

0 20 40 60 80 100

0
20

40
60

80
10

0

Field measured DBH, cm

M
od

el
 p

re
di

ct
ed

 D
B

H
, c

m
(a)

0 20 40 60 80 100

0
20

40
60

80
10

0

Field measured DBH, cm
A

LS
 p

re
di

ct
ed

 D
B

H
, c

m

(b)

<10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 >80

DBH classes, cm

N
um

be
r o

f o
bs

er
va

tio
ns

0
20

0
40

0
60

0
80

0

7.9 11.5 20.7

55.5

85.6 94.5

112.8

63
47.1

Field data
Predicted

(c)

0 1,000 2,000 3,000 4,000

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0

Field predicted AGB, kg

M
od

el
 p

re
di

ct
ed

 A
G

B,
 k

g

(d)

0 1,000 2,000 3,000 4,000

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0

Field predicted AGB, kg

A
LS

 p
re

di
ct

ed
 A

G
B,

 k
g

(e)

<10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 >80

DBH classes, cm
AG

B,
 M

g
0

50
10

0
15

0
20

0
25

0

37.4 23.7
23.5

61.9

92.9

102.1

122.6

75.1

59.7

Field data
Predicted

(f)



     |  5615DALPONTE ET AL.

obtain higher detection rates, even over 70% (Eysn et al., 2015; 
Vauhkonen et al., 2011). The detection error creates a bias in the 
AGB estimations at plot and stand level. In Dalponte and Coomes 
(2016), a correction factor is proposed to eliminate this bias. This 
approach can be effective, and solve the problem, but with the 
limitation that the correction factor is not universal and it needs to 
be determined for each dataset, and for each delineation method 
used. In the literature, some methods have been proposed to im-
prove the detection of suppressed and understory trees, but they 
are still experimental (e.g., Ferraz et al., 2015). In the future, we 
may have operational methods that can detect dominated trees, 
including	the	use	of	UAV	ALS	data	that	can	provide	datasets	with	
an extremely high point density and they can be used for a wide 
variety of ecological applications (Anderson & Gaston, 2013; 
Christie, Gilbert, Brown, Hatfield, & Hanson, 2016). The use of 
terrestrial laser scanning can help also in having a very detailed 
characterization of the forest, including suppressed trees, but it 
can be used only on small areas, as it is not feasible its use over 
large areas.

Many	 studies	 can	 be	 found	 in	 the	 literature	 on	 area-	based	
methods	 for	 the	 prediction	 of	AGB	 (e.g.,	 Asner	&	Mascaro,	 2014;	
Gizachew	 et	al.,	 2016;	 Vaglio	 Laurin	 et	al.,	 2014),	 and	 some	 stud-
ies compare area- based methods with ITC methods (e.g., Coomes 
et al., 2017; Kandare et al., 2017). If the interest of the end user is 
in total AGB at plot level usually area- based methods provide better 
results than ITC methods, and both Coomes et al. and Kandare et al. 
showed it. This is due to the fact that the developed models are site 
specific and they are not biased by the omission error of ITC delin-
eation methods. Despite this we think that some drawbacks exist: 
(1) in area- based methods the prediction of AGB per species or per 
DBH classes is less accurate, or in some cases impossible (Kandare 
et al., 2017); and (2) area- based methods need field data collected 
all in the same way. Going into details from our results emerged that 
plots should be located exactly in the area that needs to be ana-
lyzed, as area- based models used out of the dataset where they are 
developed	are	quite	inaccurate	(e.g.,	AGB	model,	Figure	4b),	or	even	
useless	(e.g.,	GiniDBHs	model,	Figure	4d).	Additionally	in	area-	based	
methods, all the plots need to be of the same size, and the pixel size 

F I G U R E  3 Example of ALS data over three plots and the detection rate for each DBH class in the three plots considered. The colors of 
the ALS points are related to the DBH class predicted. Gray points represent points not associated to any ITC
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of the final map is constrained by the plot size (e.g., using field plots 
of 1 ha size we can generate an AGB map of 100 m spatial resolution). 
Additionally according to the sampling strategy adopted, the final 
results may be different (Gregoire & Valentine, 2008). Differently 
the proposed approach uses field data not specifically collected in 
the analyzed area, as they do not need to be matched with the ALS 
data. Additionally they can be acquired in different time periods, and 
without being grouped in plots, simplifying a lot the field data collec-
tion. It is worth noting that the proposed approach does not involve 
the use of tree positions.

Individual tree crown level data permit to describe forest 
structure and can support many forest ecology applications 
that need detailed spatial description of the studied area. This is 
showed by the results on the distribution of AGB per DBH class 
and on the prediction of the Gini coefficient. Gini coefficient was 
demonstrated to be useful to describe the peculiarities of the 
boreal forests managed with different practices (Valbuena et al., 
2016). The possibility to extract structural indices in large areas 
is useful also for the improvement of forest management, consid-
ering that these indices are correlated with forest productivity 

F I G U R E  4 Field-estimated versus ALS-predicted AGB (a–b) and GiniDBHs (c–d) at plot level on the two datasets considered
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(Bourdier et al., 2016; Zhang & Chen, 2015). The effect of struc-
tural diversity on growth and forest dynamics needs more atten-
tion (Forrester & Bauhus, 2016), and we need to link efficiently 
tree-  and stand- level patterns. ITCs and structural indices, predict 
in large areas, could help to close this gap.

Airborne laser scanning data characteristics necessary to apply 
the proposed approach needs to have a point density above a certain 
number. A previous study showed that with a point density above 
5 pts/m2, it is already possible to have results similar to the ones 
obtained with much higher point densities (Kandare, Ørka, Chan, & 
Dalponte, 2016). In the past, many operational flights had a quite low 
point density (one or less points per square meter), but it is expected 
the future acquisitions will be with 5 or more points per square 
meter allowing the use of ITC methods.

The approach described in this work, based on ITC detection, 
easy applicable in different forested areas, is an important develop-
ment of the traditional area- based remote sensing tools and can be 
applied for more detailed analysis of forest ecology and dynamics. A 
further step will be the use of ALS and hyperspectral data together 
to identify the species at tree level and to prepare a complete map of 
forest structure, biodiversity, and biochemical properties that could 
be measured with spectral reflectance. It is necessary to underline 
that hyperspectral data are much more complex to process than ALS 
data.	Moreover,	there	are	much	less	availability	of	these	data	over	
wide areas, while ALS data are widely available, for example, many 
European countries have full coverage with ALS data.
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