
TGRASS: temporal
data processing with

GRASS GIS
FOSS4G Europe 2017 workshop
Veronica Andreo, Luca Delucchi and Markus Neteler

Course outline:

Introduction to GRASS GIS
Introduction to GRASS Temporal Framework
Hands-on to raster time series processing

Software requirements:

GRASS GIS 7.2: download | OSGeo-live
GRASS GIS Add-ons: r.modis.download, r.modis.import and v.strds.stats
pyModis library

Sample data:

Main dataset: North Carolina basic location (50 MB)
extra "mapset" modis_lst: monthly land surface temperature (LST) from
MODIS sensor (MOD11B3.006) for North Carolina (2015-2016)

GRASS GIS introduction
Working with GRASS GIS is not much different from any other GIS. Just a few
commonly used terms need to be introduced first.

GRASS DATABASE, LOCATION and MAPSET

The GRASS DATABASE (also called "GISDBASE") is an existing directory which
contains all GRASS GIS projects. These projects are organized in subdirectories called
LOCATIONs.
A LOCATION is defined by its coordinate system, map projection and geographical
boundaries.
MAPSETs are subdirectories within Locations. In a MAPSET you can organize GIS
maps thematically, geographically, by project or however you prefer.

Table of contents

https://europe.foss4g.org/2017/
https://grass.osgeo.org/
https://veroandreo.wordpress.com/
http://www.lucadelu.org/
https://www.mundialis.de/en/neteler/
https://grass.osgeo.org/download/software/
https://live.osgeo.org/
https://grass.osgeo.org/grass72/manuals/addons/r.modis.download.html
https://grass.osgeo.org/grass72/manuals/addons/r.modis.import.html
https://grass.osgeo.org/grass72/manuals/addons/v.strds.stats.html
http://www.pymodis.org/
https://grass.osgeo.org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz

GRASS DATABASE, LOCATIONs and MAPSETs

Raster and vector maps

GRASS GIS is able to read most GIS data formats directly (mainly done through the
GDAL library). GRASS GIS has its own internal formats to manage raster and vector
data, so your data have to be imported or linked into a GRASS LOCATION/MAPSET.

The GRASS GIS vector format is topological, this means that adjacent geographic
components in a single vector map are related to each other. For example, in a non-
topological GIS if two areas share a common border that border would be digitized
twice and also stored in a duplicate manner. In a topological GIS such as GRASS GIS,
this border exists only once and it is shared between these two areas. The topological
representation of vector data helps to produce and maintain vector maps with clean
geometry. Moreover, it enables certain analyses that can not be conducted with non-
topological or spaghetti data.

All vector data types in GRASS GIS

Modules

GRASS GIS is composed of more than 450 modules to perform any kind of GIS
analysis. It is possible to analize raster, raster 3D, imagery and vector maps along with
their alphanumerical attributes.
The wealth of modules is organized by their first name in order to easily find the desired
functionality. The graphical user interface offers a tree view as well as a search engine.

GRASS GIS module families

Prefix Function
class

Type of
command Example

g.* general general data
management g.rename: renames map

d.* display graphical output d.rast: display raster map,
d.vect: display vector map

r.* raster raster
processing

r.mapcalc: map algebra,
r.univar: univariate statistics

v.* vector vector
processing v.clean: topological cleaning

i.* imagery imagery i.pca: Principal Components

Table of contents

http://www.gdal.org/
https://grass.osgeo.org/grass72/manuals/full_index.html#g
https://grass.osgeo.org/grass72/manuals/g.rename.html
https://grass.osgeo.org/grass72/manuals/full_index.html#d
https://grass.osgeo.org/grass72/manuals/d.rast.html
https://grass.osgeo.org/grass72/manuals/full_index.html#r
https://grass.osgeo.org/grass72/manuals/r.mapcalc.html
https://grass.osgeo.org/grass72/manuals/full_index.html#r
https://grass.osgeo.org/grass72/manuals/v.clean.html
https://grass.osgeo.org/grass72/manuals/full_index.html#i
https://grass.osgeo.org/grass72/manuals/i.pca.html

processing Analysis on imagery group

r3.* voxel 3D raster
processing r3.stats: voxel statistics

db.* database database
management

db.select: select value(s)
from table

ps.* postscript
map creation in
PostScript
format

ps.map: PostScript map
creation

t.* temporal space-time
datasets

t.rast.aggregate: raster time
series aggregation

It is also possible to install further modules, called Add-ons, from a centralized GRASS
GIS Add-on repository at OSGeo or from github using the command g.extension.

Region and Mask

The computational (or current) region is the actual setting of the region boundaries
and the actual raster resolution.
The raster input maps are automatically (on the fly) cropped/padded and rescaled to
match the current region, the output maps have their bounds and resolution equal to
those of the current computational region, while vector maps are always considered
completely.

The red box shows the computational region currently set

MASK: if a mask is set, raster modules will operate only on data falling inside the
masked area(s), i.e. any data falling outside of the mask are treated as if their pixel
value were NULL. To set the mask you can use r.mask or create a raster called MASK
(this raster map name is reserved for this purpose).

By setting the MASK (here based on a ZIP code) only the raster data inside the

masked area are used for further analysis

Interfaces

GRASS GIS offers different interfaces for the interaction between user and software.
Let's see them...

Table of contents

https://grass.osgeo.org/grass72/manuals/full_index.html#r3
https://grass.osgeo.org/grass72/manuals/r3.stats.html
https://grass.osgeo.org/grass72/manuals/full_index.html#db
https://grass.osgeo.org/grass72/manuals/db.select.html
https://grass.osgeo.org/grass72/manuals/full_index.html#ps
https://grass.osgeo.org/grass72/manuals/ps.map.html
https://grass.osgeo.org/grass72/manuals/full_index.html#t
https://grass.osgeo.org/grass72/manuals/t.rast.aggregate.html
https://grass.osgeo.org/grass7/manuals/addons/
http://grass.osgeo.org/grass71/manuals/g.extension.html
https://grass.osgeo.org/grass72/manuals/r.mask.html

Graphical User Interface

The GUI is the simpler way to approach GRASS GIS. The GRASS GIS GUI is
composed of two elements, the Layer Manager where you can find all the GRASS GIS
modules and manage your data and, the Map Display where you can navigate, print
and query your maps. The GUI also comes with a Python shell for rapid prototyping.

GRASS GIS Graphical User Interface (GUI)

Otherwise you can also use GRASS GIS inside QGIS by either using the GRASS GIS
plugin or through Processing.

Command line

The command line is the traditional and, probably, the most powerful way to use
GRASS GIS, used daily by many GRASS GIS power users worldwide.

Python

Python is a powerful and simple programming language, and you can use it to:

interface with the functionalities offered by GRASS GIS
create your own workflows chaining several GRASS GIS modules
create new add-ons by using GRASS GIS modules along with a wide number of
Python libraries.

Here's an example of Python code to run GRASS GIS modules:

!/usr/bin/env python

simple example for pyGRASS usage: raster processing via modules approach

from grass.pygrass.modules.shortcuts import general as g

from grass.pygrass.modules.shortcuts import raster as r

g.message("Filter elevation map by a threshold...")

set computational region

input = 'elevation'

g.region(rast=input)

hardcoded:

r.mapcalc('elev_100m = if(elevation > 100, elevation, null())', overwrite = T

with variables

output = 'elev_100m'

thresh = 100.0

r.mapcalc("%s = if(%s > %d, %s, null())" % (output, input, thresh, input), over

r.colors(map=output, color="elevation")

Python

Table of contents

https://grass.osgeo.org/grass72/manuals/wxGUI.html

WPS - OGC Web Processing Service

It is possible to run GRASS GIS modules through the web using the Web Processing
Service (WPS is an OGC standard). The Free and Open Source software ZOO-Project
and PyWPS allow the user to run GRASS GIS commands in a simple way.

Temporal GRASS GIS introduction
GRASS GIS is the first Open Source GIS that incorporated capabilities to manage,
analyze, process and visualize spatio-temporal data, as well as the temporal
relationships among time series.

Importantly, the TGRASS concept is based on metadata and does not duplicate any
datasets. It follows a snapshot approach, i.e.: add time stamps to existent maps, to
integrate time dimension to the classical spatial GIS. In GRASS GIS words, all pixels in
a raster map and all elements in a vector map, share the same time stamp. A collection
of time stamped maps (snapshots) of the same variable are called space-time
datasets (STDS) in TGRASS. Each map in a STDS might have a different spatial and
temporal extent.

TGRASS uses an SQL database to store the temporal and spatial extension of STDS,
as well as the topological relationships among maps and among STDS.

Terminology overview

Temporal database

A temporal database is a mapset-specific database in which all time stamped maps are
registered, i.e.: their spatial and temporal extents, unique ID and map type metadata
are stored. This allows users to perform complex SQL queries using the spatio-
temporal extent and metadata information for map selection (See Temporal data
analysis section).

Space-time datasets

Space-time datasets are called differently according to the map type they are formed
of:

Space time raster datasets (STRDS) collections of time stamped raster maps.
Space time 3D raster datasets (STR3DS) collections of time stamped 3D raster
maps.
Space time vector datasets (STVDS) collections of time stamped vector maps.

Spatio-temporal modules

t.*: General modules to handle STDS of all types
t.rast.*: Modules that specifically process STRDS
t.rast3d.*: Modules that specifically process STR3DS
t.vect.*: Modules that specifically process STVDS

Absolute time vs relative time

Two time definitions are used in TGRASS:

Absolute time Relative time

Gregorian calendar
(ISO 8601 time
format notation)

An integer and a time unit
(year, month, day, hour,
minute, seconds)

Table of contents

https://en.wikipedia.org/wiki/Web_Processing_Service
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://zoo-project.org/
http://pywps.org/

Example: 2013-10-
15 13:00:00

Example: 4 years, 90 days,
1 second

Time intervals vs time instances

GRASS GIS supports both time intervals and time instances as map time stamps:

Time intervals Time
instances

Defined by start time and end time:
[start, end)

Defined
by start
time

Support for gaps, allow overlapping,
might contain time instances, might be
irregularly spaced in time

Punctual
event

Granularity

The granularity is the largest common divider granule of time intervals and gaps
between intervals or instances from all time stamped maps that are collected in a
STDS. It is represented as a number of seconds, minutes, hours, days, weeks, months
or years.

Workflow overview

Now, how do we work with time series in GRASS GIS? Where do we start? Well,
assuming we already have our maps in the GRASSDBASE, the first step is to set the
connection to the temporal database. This is something we will need to do only once
per mapset. After that, we create the STDSs, i.e.: the containers for the time series,
and finally we assign time stamps to maps and register them in the STDS. After these
basic steps, the following will depend on our specific objectives.

1. Set and connect the temporal database (mapset specific): t.connect
2. Create the STDS (raster, vector or raster 3D): t.create
3. Assign time stamps to maps and register them in the STDS: t.register
4. Check basic info, integrity and validity of STDS: t.list, t.info, t.topology
5. Edit, update, unregister, remove maps and/or STDS: t.rename, t.remove,

t.support, t.unregister
6. List maps, make selections, get univariate statistics: t.rast.list, t.vect.list, t.select,

t.rast.extract, t.vect.extract, t.rast.univar, t.vect.univar
7. Spatio-temporal processing (a bit raster biased):

data aggregation: t.rast.series, t.rast.aggregate, t.rast.aggregate.ds
data accumulation: t.rast.accumulate, t.rast.accumulate,
gap-filling and smoothing: t.rast.gapfill, t.rast.neighbors
spatio-temporal algebra: t.rast.mapcalc, t.rast.algebra, t.vect.algebra

8. Visualization: g.gui.timeline, g.gui.tplot, g.gui.animation, g.gui.mapswipe

Hands-on to raster time series processing

Getting the MODIS satellite sensor data

MODIS is a payload scientific instrument on board the NASA Terra and the Aqua
satellites with 36 spectral bands. Data are available for download upon user
registration.

Create the SETTING file with the following content, e.g. in the directory $HOME/gisdata/:
your_NASA_user

your_NASA_password

Table of contents

https://grass.osgeo.org/grass72/manuals/t.connect.html
https://grass.osgeo.org/grass72/manuals/t.create.html
https://grass.osgeo.org/grass72/manuals/t.register.html
https://grass.osgeo.org/grass72/manuals/t.list.html
https://grass.osgeo.org/grass72/manuals/t.info.html
https://grass.osgeo.org/grass72/manuals/t.topology.html
https://grass.osgeo.org/grass72/manuals/t.rename.html
https://grass.osgeo.org/grass72/manuals/t.remove.html
https://grass.osgeo.org/grass72/manuals/t.support.html
https://grass.osgeo.org/grass72/manuals/t.unregister.html
https://grass.osgeo.org/grass72/manuals/t.rast.list.html
https://grass.osgeo.org/grass72/manuals/t.vect.list.html
https://grass.osgeo.org/grass72/manuals/t.select.html
https://grass.osgeo.org/grass72/manuals/t.rast.extract.html
https://grass.osgeo.org/grass72/manuals/t.vect.extract.html
https://grass.osgeo.org/grass72/manuals/t.rast.univar.html
https://grass.osgeo.org/grass72/manuals/t.vect.univar.html
https://grass.osgeo.org/grass72/manuals/t.rast.series.html
https://grass.osgeo.org/grass72/manuals/t.rast.aggregate.html
https://grass.osgeo.org/grass72/manuals/t.rast.aggregate.ds.html
https://grass.osgeo.org/grass72/manuals/t.rast.accumulate.html
https://grass.osgeo.org/grass72/manuals/t.rast.accumulate.html
https://grass.osgeo.org/grass72/manuals/t.rast.gapfill.html
https://grass.osgeo.org/grass72/manuals/t.rast.neighbors.html
https://grass.osgeo.org/grass72/manuals/t.rast.mapcalc.html
https://grass.osgeo.org/grass72/manuals/t.rast.algebra.html
https://grass.osgeo.org/grass72/manuals/t.vect.algebra.html
https://grass.osgeo.org/grass72/manuals/g.gui.timeline.html
https://grass.osgeo.org/grass72/manuals/g.gui.tplot.html
https://grass.osgeo.org/grass72/manuals/g.gui.animation.html
https://grass.osgeo.org/grass72/manuals/g.gui.mapswipe.html
https://urs.earthdata.nasa.gov/users/new

Bash Python

Bash Python

GUI

The r.modis.download directly downloads from the MODIS data server into a local
folder previously created (for example: lst_modis):

We will now visualize one of the MODIS LST images and add different map
decorations. We first change the color palette from grey to viridis and set the
computational region to the state of North Carolina (using boundary_state vector map).

r.colors MOD11B3.A2015060.h11v05.single_LST_Day_6km color=viridis

g.region -p vector=boundary_state

We can open a monitor and run the commands from the command line or do everything
in the main GUI and copy the commands for future reference or replication.

Open a monitor

d.mon wx0

Display raster map

d.rast map=MOD11B3.A2015060.h11v05.single_LST_Day_6km

Display vector map

d.vect map=boundary_state type=boundary

Add raster legend

d.legend -t -s -b raster=MOD11B3.A2015060.h11v05.single_LST_Day_6km \

 title=LST title_fontsize=20 font=sans fontsize=18

Add scale bar

d.barscale length=200 units=kilometers segment=4 fontsize=14

Add North arrow

d.northarrow style=1b text_color=black

Add text

d.text -b text="LST Day from MOD11B3.006 - North Carolina - March, 2015" \

 color=black bgcolor=229:229:229 align=cc font=sans size=8

MODIS LST map with decorations (scaled Kelvin pixel values)

Create temporal raster dataset (STRDS)

To create a space-time raster data set (STRDS) implies to create an SQLite table in the
temporal database, i.e.: a container table, that will hold our raster time series and will
allow us to easily handle huge amounts of maps by only using the STRDS as input in
temporal commands.

r.modis.download -g settings=$HOME/gisdata/SETTING product=lst_terra_monthly_56

r.modis.import -w files=$HOME/lst_monthly/listfileMOD11B3.006.txt spectral="(1

g.list type=raster pattern="MOD11B3*"

Standard

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/r.modis.download.html

Bash Python

Bash Python

Bash Python

GUI

If this is the first time you use the temporal framework, you need to create and set the
connection to the temporal database by means of t.connect. As the temporal database
is mapset specific, you'll need to repeat this step in each mapset in which you'll have
STDSs.

Once the connection is set, you can create the empty STRDS, i.e.: the empty table, in
which you'll put (aka: register) all your time series maps afterwards. For the creation of
any STDS, we need to specify which type of maps (raster, raster3d or vector) the
STDS will contain and which type of time (absolute or relative) the maps represent.

Once the STRDS is created, we assign time stamps to maps and add them to the
STRDS, i.e.: we register maps in the STRDS. To register maps in a STDS, we need to
pass the empty STDS as input and the list of maps to be registered. There are different
ways to register maps in STDS. For more options, you can check the t.register manual
and the related wiki page.

Alternatively, we could have registered our raster maps using the maps, start and
increment options along with the i flag for interval creation. The command in that case
would look as follows:

t.register -i input=LST_Day_monthly \

 maps=`g.list type=raster pattern=MOD11B3*LST_Day* separator=comma` \

 start="2015-01-01" increment="1 months"

Let's check now the basic info again to see how it looks like and list the raster maps in
our LST_Day_monthly STRDS:

t.info LST_Day_monthly

t.rast.list LST_Day_monthly

Let's see our STRDS graphically. We will use the g.gui.timeline tool.

g.gui.timeline inputs=LST_Day_monthly

Timeline plot for LST_Day_monthly time series

Temporal data analysis

t.connect -d

t.create type=strds temporaltype=absolute output=LST_Day_monthly title="Monthly

t.list type=strds

t.info input=LST_Day_monthly

t.register input=LST_Day_monthly file=$HOME/lst_monthly/monthly_lst_to_register

Standard

Standard

Standard

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/t.connect.html
http://grass.osgeo.org/grass71/manuals/t.register.html
https://grasswiki.osgeo.org/wiki/Temporal_data_processing/maps_registration
http://grass.osgeo.org/grass71/manuals/g.gui.timeline.html

Bash Python

One basic but very important function when handling hundreds or thousands of maps is
the listing function, i.e.: we usually need to list maps that meet a certain condition. For
example, we need maps which start month is June, maps with minimum values lower
than 100, and so on. The GRASS GIS Temporal framework has different commands for
that task: t.list for listing STDS and maps registered in the temporal database, t.rast.list
for maps in raster time series and, t.vect.list for maps in vector time series. All these
commands allow us to list STDSs and/or maps according to different criteria. Let's see
some examples with our LST_Day_monthly STRDS:

To explore a bit more our time series, we will obtain univariate statistics for the maps in
the STRDS. There's a dedicated module for that: t.rast.univar. There's also the
possibility to obtain extended statistics such as first quartile, median value, third quartile
and percentile 90 by setting the e flag. Let's see:

Maps with minimum value lower than or equal to 14000

t.rast.list input=LST_Day_monthly order=min columns=name,start_time,min where="

name|start_time|min

MOD11B3.A2015032.h11v05.single_LST_Day_6km|2015-02-01 00:00:00|12950.0

MOD11B3.A2016032.h11v05.single_LST_Day_6km|2016-02-01 00:00:00|12964.0

MOD11B3.A2015001.h11v05.single_LST_Day_6km|2015-01-01 00:00:00|13022.0

Maps with maximum value higher than 14000

t.rast.list input=LST_Day_monthly order=max columns=name,start_time,max where="

name|start_time|max

MOD11B3.A2016001.h11v05.single_LST_Day_6km|2016-01-01 00:00:00|14360.0

MOD11B3.A2015001.h11v05.single_LST_Day_6km|2015-01-01 00:00:00|14396.0

MOD11B3.A2015032.h11v05.single_LST_Day_6km|2015-02-01 00:00:00|14522.0

Maps between two given dates

t.rast.list input=LST_Day_monthly columns=name,start_time where="start_time >=

name|start_time

MOD11B3.A2015121.h11v05.single_LST_Day_6km|2015-05-01 00:00:00

MOD11B3.A2015152.h11v05.single_LST_Day_6km|2015-06-01 00:00:00

MOD11B3.A2015182.h11v05.single_LST_Day_6km|2015-07-01 00:00:00

MOD11B3.A2015213.h11v05.single_LST_Day_6km|2015-08-01 00:00:00

Maps from January

t.rast.list input=LST_Day_monthly columns=name,start_time where="strftime('%m',

name|start_time

MOD11B3.A2015001.h11v05.single_LST_Day_6km|2015-01-01 00:00:00

MOD11B3.A2016001.h11v05.single_LST_Day_6km|2016-01-01 00:00:00

Maps from June, 1st

t.rast.list input=LST_Day_monthly columns=name,start_time where="strftime('%m-%

name|start_time

MOD11B3.A2015152.h11v05.single_LST_Day_6km|2015-06-01 00:00:00

MOD11B3.A2016153.h11v05.single_LST_Day_6km|2016-06-01 00:00:00

t.rast.univar input=LST_Day_monthly

id|start|end|mean|min|max|mean_of_abs|stddev|variance|coeff_var|sum|null_cells

MOD11B3.A2015001.h11v05.single_LST_Day_6km@modis_lst|2015-01-01 00:00:00|2015-0

MOD11B3.A2015032.h11v05.single_LST_Day_6km@modis_lst|2015-02-01 00:00:00|2015-0

MOD11B3.A2015060.h11v05.single_LST_Day_6km@modis_lst|2015-03-01 00:00:00|2015-0

MOD11B3.A2015091.h11v05.single_LST_Day_6km@modis_lst|2015-04-01 00:00:00|2015-0

t.rast.univar -e input=LST_Day_monthly

id|start|end|mean|min|max|mean_of_abs|stddev|variance|coeff_var|sum|null_cells

MOD11B3.A2015001.h11v05.single_LST_Day_6km@modis_lst|2015-01-01 00:00:00|2015-0

MOD11B3.A2015032.h11v05.single_LST_Day_6km@modis_lst|2015-02-01 00:00:00|2015-0

MOD11B3.A2015060.h11v05.single_LST_Day_6km@modis_lst|2015-03-01 00:00:00|2015-0

MOD11B3.A2015091.h11v05.single_LST_Day_6km@modis_lst|2015-04-01 00:00:00|2015-0

t.rast.univar input=LST_Day_monthly separator=comma output=stats_LST_Day_monthl

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/t.list.html
http://grass.osgeo.org/grass71/manuals/t.rast.list.html
http://grass.osgeo.org/grass71/manuals/t.vect.list.html
http://grass.osgeo.org/grass71/manuals/t.rast.univar.html

Bash Python

Bash Python

However, those statistics are a bit difficult to directly interpret since values are in °K*50.
Let's re-scale the data to °C and run the previous command again. Then, we will set a
proper color palette for the STRDS and display one map. The latter, you already know
how to do.

To transform all the maps in our LST_Day_monthly time series into °C we will use the
t.rast.algebra module. This module allows to perform a very wide variety of operations
in the temporal and spatial domains, as well as much of the more "classical" operations
already available in r.mapcalc.

MODIS LST re-scaled to degrees Celsius

Alternatively, we could have used t.rast.mapcalc to perform the previous
transformation. The command would look like this:

Temporal aggregations

There are basically two dedicated modules to perform temporal aggregations in
GRASS GIS. The first one that we will use is t.rast.series. This module is a wrapper for
r.series and allows us to aggregate our STRDS or parts of it with different methods. We
will use it now to obtain the absolute maximum LST in the past two years.

t.rast.algebra basename=LST_Day_monthly_celsius expression="LST_Day_monthly_cel

t.rast.univar input=LST_Day_monthly_celsius

t.rast.colors input=LST_Day_monthly_celsius color=celsius

t.rast.mapcalc input=LST_Day_monthly output=LST_Day_monthly_celsius basename=LS

t.rast.series input=LST_Day_monthly_celsius output=LST_Day_max method=maximum

r.colors map=LST_Day_max color=celsius

d.mon wx0

d.rast LST_Day_max

d.vect map=boundary_state type=boundary

d.legend -t -s -b raster=LST_Day_max title=LST title_fontsize=20 font=sans font

d.barscale length=200 units=kilometers segment=4 fontsize=14

d.northarrow style=1b text_color=black

d.text -b text="Maximum LST in the period 2015-2016 - North Carolina" color=bla

Standard

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/t.rast.algebra.html
http://grass.osgeo.org/grass71/manuals/r.mapcalc.html
http://grass.osgeo.org/grass71/manuals/t.rast.mapcalc.html
http://grass.osgeo.org/grass71/manuals/t.rast.series.html
http://grass.osgeo.org/grass71/manuals/r.series.html

Bash Python

Maximum LST in the period 2015-2016 in North Carolina

Now, by means of the spatio-temporal algebra, we will get the month in which the
absolute maximum LST occurred. For that, we will first compare our
LST_Day_monthly_celsius STRDS with the map of absolute maximum LST LST_Day_max
that we just obtained before. If they coincide, we keep the month for that pixel,
otherwise it will be NULL. Then, we aggregate the resulting month_max_lst STRDS with
t.rast.series method=maximum and we get the map with the pixelwise month in which
the absolute maximum LST has occurred in the past two years. Finally, we remove the
intermediate STRDS, since we are only interested in the aggregated map.

Note that the flags "-rf" force (immediate) removal of both the STRDS (i.e.: the
container table) and the maps registered in it.

Finally, we display the resulting map:

Month of maximum LST for the period 2015-2016

The other module that allows us to perform temporal aggregations is t.rast.aggregate.
With this module we are able to aggregate raster maps in our STRDS with different

t.rast.mapcalc -n inputs=LST_Day_monthly_celsius output=month_max_lst expressio

t.rast.series input=month_max_lst method=maximum output=max_lst_date

t.remove -rf inputs=month_max_lst

d.mon wx0

d.rast max_lst_date

d.vect map=boundary_state type=boundary

d.legend -t -s -b raster=max_lst_date title=LST title_fontsize=20 font=sans fon

d.barscale length=200 units=kilometers segment=4 fontsize=14

d.northarrow style=1b text_color=black

d.text -b text="Month of maximum LST 2015-2016" color=black bgcolor=229:229:229

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/t.rast.series.html
http://grass.osgeo.org/grass71/manuals/t.rast.aggregate.html

Bash Python

Bash Python

Bash Python

GUI

GUI

granularities. Note that this module also has the option where that allow us to set
specific dates for the aggregation. We will use this module to get 3-month and 6-month
average LST.

Now, we will extract the 3-month average LST for points in a vector map. We will use
the vector map points_of_interest that is already available in the PERMANENT
mapset of NC Location. There are different commands that allow us to perform this
task, but we'll use t.rast.what. This module samples a STRDS at specific vector point
coordinates and writes the output to stdout using different layouts. You might explore
the options available in the parameter layout to see the different ways to write the
output.

Even though the most common is to extract raster data to points, we may also be
interested in getting spatially aggregated time series data for polygons. GRASS GIS
has an add-on for this: v.strds.stats. It calculates zonal statistics of each raster in a
STRDS and writes the output to the attribute table of a new polygon vector map. We
first need to install the add-on through g.extension. Then, we will extract the average,
minimum and maximum monthly LST for the different geologic types in NC.

Temporal data visualization

Aside from g.gui.timeline that we saw before, GRASS GIS offers different options to
visualize time series data. The first one is g.gui.mapswipe that allows us to compare
two maps from different dates for example by swiping a visibility bar. The module can
be called from command line by specifying the two maps to compare or executed from
the GUI as shown below in the respective tabs.

Another tool to visualize time series in more dynamic way and that allows us to see
changes in space an time simultaneously is g.gui.animation. It also allows to animate
vector time series, as well as lists of raster or vector maps not specifically registered as
time series. When executed from command line, options are more limited than when
the module is run from the GUI, where it is possible to add different decorations and
customize several options.

g.gui.animation strds=LST_Day_monthly_celsius@modis_lst

Finally, if you want to plot the time series of our variable of interest, be it in a STRDS or
a STVDS, for a specific point of your study region, GRASS GIS has g.gui.tplot.

t.rast.aggregate input=LST_Day_monthly_celsius output=LST_Day_mean_3month basen

t.info LST_Day_mean_3month

t.rast.list LST_Day_mean_3month

t.rast.aggregate input=LST_Day_monthly_celsius output=LST_Day_mean_6month basen

t.info LST_Day_mean_6month

t.rast.list LST_Day_mean_6month

t.rast.what points=points_of_interest strds=LST_Day_mean_6month output=trastwha

g.extension v.strds.stats

v.strds.stats input=geology strds=LST_Day_monthly_celsius output=geology_aggr_l

v.db.select map=geology_aggr_lst file=ts_polygons.csv

g.gui.mapswipe first=LST_Day_monthly_celsius_6 second=LST_Day_monthly_celsius_1

Standard

Standard

Standard

Standard

Standard

Table of contents

http://grass.osgeo.org/grass71/manuals/t.rast.what.html
http://grass.osgeo.org/grass71/manuals/v.strds.stats.html
http://grass.osgeo.org/grass71/manuals/g.extension.html
http://grass.osgeo.org/grass71/manuals/g.gui.timeline.html
http://grass.osgeo.org/grass71/manuals/g.gui.mapswipe.html
http://grass.osgeo.org/grass71/manuals/g.gui.animation.html
http://grass.osgeo.org/grass71/manuals/g.gui.tplot.html

GUI

Basically, you need to set the strds or stvds and a pair of X,Y coordinates. The latter
can be typed directly, copied from the map display and pasted or directly chosen from
the display. See instructions below.

Other (very) useful links
GRASS intro workshop: https://ncsu-osgeorel.github.io/grass-intro-workshop/
Unleash the power of GRASS GIS:
https://grasswiki.osgeo.org/wiki/Unleash_the_power_of_GRASS_GIS_at_US-
IALE_2017
Temporal data processing wiki:
https://grasswiki.osgeo.org/wiki/Temporal_data_processing
GRASS GIS temporal workshop: http://ncsu-geoforall-lab.github.io/grass-
temporal-workshop/
GRASS GIS and R for time series processing:
https://grasswiki.osgeo.org/wiki/Temporal_data_processing/GRASS_R_raster_time_series_processing

References

Gebbert, S., Pebesma, E. (2014). A temporal GIS for field based environmental
modeling. Environmental Modelling & Software, 53, 1–12. DOI
Gebbert, S., Pebesma, E. (2017). The GRASS GIS temporal framework.
International Journal of Geographical Information Science 31, 1273-1292. DOI
Neteler, M., Bowman, M.H., Landa, M. and Metz, M. (2012): GRASS GIS: a multi-
purpose Open Source GIS. Environmental Modelling & Software, 31: 124-130
DOI
Neteler, M., Mitasova, H. (2008): Open Source GIS: A GRASS GIS Approach.
Third edition. ed. Springer, New York. Book site

Last changed: 2017-07-09 20:12

GRASS GIS manual main index | Temporal modules index | Topics index | Keywords
Index | Full index

TGRASS: temporal data processing with GRASS GIS Workshop at FOSS4G Europe
2017 by Veronica Andreo, Luca Delucchi and Markus Neteler is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License - Thanks to
Vaclav Petras for the style.

g.gui.tplot strds=LST_Day_monthly_celsius@modis_lst coordinates=419604.018913,2

Standard

Table of contents

https://ncsu-osgeorel.github.io/grass-intro-workshop/
https://grasswiki.osgeo.org/wiki/Unleash_the_power_of_GRASS_GIS_at_US-IALE_2017
https://grasswiki.osgeo.org/wiki/Temporal_data_processing
http://ncsu-geoforall-lab.github.io/grass-temporal-workshop/
https://grasswiki.osgeo.org/wiki/Temporal_data_processing/GRASS_R_raster_time_series_processing
https://doi.org/10.1016/j.envsoft.2013.11.001
http://dx.doi.org/10.1080/13658816.2017.1306862
http://dx.doi.org/10.1016/j.envsoft.2011.11.014
https://grassbook.org/
http://grass.osgeo.org/grass72/manuals/
http://grass.osgeo.org/grass72/manuals/temporal.html
http://grass.osgeo.org/grass72/manuals/topics.html
http://grass.osgeo.org/grass72/manuals/keywords.html
http://grass.osgeo.org/grass72/manuals/full_index.html
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www4.ncsu.edu/~vpetras/index.html

