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Breeding next generation tree fruits: technical and legal
challenges
Lorenza Dalla Costa1, Mickael Malnoy1 and Ivana Gribaudo2

The new plant breeding technologies (NPBTs) have recently emerged as powerful tools in the context of ‘green’ biotechnologies.
They have wide potential compared to classical genetic engineering and they are attracting the interest of politicians, stakeholders
and citizens due to the revolutionary impact they may have on agriculture. Cisgenesis and genome editing potentially allow to
obtain pathogen-resistant plants or plants with enhanced qualitative traits by introducing or disrupting specific genes in shorter
times compared to traditional breeding programs and by means of minimal modifications in the plant genome. Grapevine, the
most important fruit crop in the world from an economical point of view, is a peculiar case for NPBTs because of the load of cultural
aspects, varietal traditions and consumer demands, which hinder the use of classical breeding techniques and, furthermore, the
application of genetic engineering to wine grape cultivars. Here we explore the technical challenges which may hamper the
application of cisgenesis and genome editing to this perennial plant, in particular focusing on the bottlenecks of the Agrobacterium-
mediated gene transfer. In addition, strategies to eliminate undesired sequences from the genome and to choose proper target
sites are discussed in light of peculiar features of this species. Furthermore is reported an update of the international legislative
frameworks regulating NPBT products which shows conflicting positions and, in the case of the European Union, a prolonged lack
of regulation.
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INTRODUCTION
In recent years a new generation of techniques, referred to as ‘new
plant breeding techniques’ (NPBTs), emerged as powerful tool in
the scenario of green biotechnologies all over the world, opening
up a new breedomics era. From many points of view, their
potential is by far wider if compared to that of traditional breeding
and of transgenesis (i.e., ‘classical’ genetic engineering). These
techniques are attracting the interest of politicians, stakeholders
and citizens due to the revolutionary impact they may have on the
agriculture of the future. The term NPBTs comprises several
techniques, the best known being ‘cisgenesis’ and ‘genome
editing through site-directed nucleases’.
The term ‘cisgenic plant’ was conceived in 20061 and refers to a

crop plant that has been genetically modified with one or more
genes containing introns and regulatory sequences (promoter and
terminator) in a sense orientation, isolated from the species itself
or from closely related species capable of sexual hybridization.
Furthermore, foreign sequences such as selection genes and
vector-backbone sequences should be absent. Intragenesis differs
from cisgenesis because it allows use of new gene combinations
created by in vitro rearrangements of functional genetic
elements.2 Although both transgenesis and cisgenesis use same
molecular processes and techniques to transfer gene(s) into a
plant, a cisgenic plant will retain only species-specific genes that
could also have been transferred by traditional breeding.3 On the
other hand, the introgression of desired genes from wild relatives
(donor plant) into commercial varieties (recipient plant) through
conventional breeding usually involves interspecific hybridization,
followed by several generations of backcrosses with the recipient

plant and simultaneous selection for the trait of interest. This can
be achieved in a short time in annual crops, while in case of
complex heterozygous, vegetatively propagated woody fruit crops
with a long juvenile phase such as apple and grapevine, it requires
a lapse of time that can last several decades and results in a
genotype which can be quite different from that of the recipient
plant. With the cisgenic approach only the genes of interest are
permanently transferred in the recipient plant within a relatively
short period of time.4

The genome editing approach was firstly used to knock-out
undesired genes through the induction of DNA breaks at target
sites by means of ‘guided’ endonucleases followed by the non-
homologous end joining (NHEJ) repair process. This mechanism is
responsible for the insertions or deletions of nucleotides at the
target sites which may cause genetic mutations resulting in the
silencing of the undesired gene. Among genome editing
technologies, Zinc Finger Nuclease (ZFN), Transcriptional
Activator-Like Effector Nuclease (TALEN) and Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR), in order of
appearance, are the most employed. All of them were optimized
and refined at a very fast pace and rapidly spread all over the
world as shown by the huge amount of published papers
describing their application in different species, from model
plants to herbaceous crops and fruit trees. Over the last years
CRISPR/Cas9 system emerged as the most important tool for
genome editing due to its simple structure and its applicability to
a wide range of species.5 Compared to artificial mutagenesis, a
common practice of conventional breeding which produces
random mutations in the plant genome through application of
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chemical or physical agents, gene editing is a targeted mutagen-
esis approach able to recognize and modify a specific DNA
sequence. The gene editing components may be delivered in
plant cells by DNA vectors following processes similar to those
used in the transgenic approach or, as an alternative, systems
based on ribonucleotide-protein complexes used to produce non-
GM edited crops.6

A synthetic analysis of the strengths and weakness of traditional
and new breeding techniques is reported in Table 1.

NEW ACHIEVEMENTS IN PLANT BREEDING BY NPBTs: WILL
THEY BE WELCOME? HOW SHOULD THEY BE REGULATED?
A long road has been travelled since the first attempts of breeding
made by ancient farmers who selected best phenotypes to
propagate without knowing the genotype. After a long period of
traditional breeding achieved mainly by controlled crosses and
through selection of spontaneous or induced mutants, the
advances of molecular genetics have strongly impacted on the
potentialities and achievements of modern breeding. The
transgenic technology allows to transfer a desired cloned gene,
and genetically engineered cultivars of many crops have been
obtained, commercialized and cultivated all over the world in the
last decades (http://www.isaaa.org/). Nevertheless, this technique
not only faces technical challenges as many economically
important species or élite cultivars proved recalcitrant to gene
transfer and/or regeneration, but also it has risen a great deal of
ethical criticisms. The public acceptance of transgenic crops
appears to be much higher in USA than in Europe, and the rules
regulating their cultivation and commercialization are still quite
different. USA has a product-oriented approach, which allows to
approve a transgenic cultivar if it has a substantial equivalence
with a conventional crop, while in the European Union the current
legislation is process- or technique-oriented with emphasis on the
precautionary principle. The topic has been widely discussed at
political level and on the media, involving fear of unpredictable
risks. Differences between the two approaches have been
described and analyzed by several authors.7,8 Countries as Canada,
Argentina, Japan and India have genetically modified organism
(GMO) regulations similar to that of USA, while Australia, New
Zealand and China regulate GM crops with various levels of
restriction. As of September 2017, the Cartagena Protocol on
Biosafety (an international agreement to ensure the safe handling,
transport and use of living modified organism generated by
modern biotechnology; https://bch.cbd.int/protocol/) has not yet
been ratified by countries such as Argentina, Australia, Canada
and USA. In Europe, public perception of a GMO largely depends
on its purpose: transgenic animals or plants to be used for feed or
food have failed in gaining public acceptance, while few
objections have been raised on the use of GMOs for medical or
pharmaceutical aims. In addition, traceability is a current topic in
Europe and this involves also products deriving from GMOs. The
current EU legal framework (https://ec.europa.eu/food/plant/gmo/
legislation_en) requires clear labelling of GMOs placed on the
market; the labelling requirements do not apply to GM food/feed
products in a proportion no higher than 0.9% of the food/feed
ingredients considered individually and if this presence is
adventitious or technically unavoidable. At this moment meat
from animals fed with transgenic fodder does not need a
specific label.
Also, in USA more attention is now paid to ethical issues and

to traceability, as showed by the Vermont case. The Vermont
state promulgated a law (Act 120, effective 1 July 2016) which
requires the labeling of food produced entirely or in part with
genetic engineering (http://www.natlawreview.com/article/remin
der-vermont-gmo-labeling-law-vermont-act-120-goes-effect-july-1).
Afterwards, on 29 July 2016, President Obama signed into law
legislation that creates a nationwide mandatory labeling regime

for GMOs in foods. The law directs the Agriculture Department
(USDA) to establish, within two years, a national process to identify
GMO food products or ingredients that should be disclosed. The
legislation will require food packages to display an electronic
code, text label, or some symbols signifying whether or not they
contain GMOs (http://www.natlawreview.com/article/president-
obama-signs-gmo-labeling-bill-law). Although controversial—this
law was accused to act in the interests of GMO producers—it
would set a national standard for labeling products with GMOs.
In Canada an initiative similar to the Vermont one was launched
although unsuccessfully. In China the government supports
biotech but public opinion is very sensitive to food safety issues
and somehow succeeded in slowing down transgenic food
approval and diffusion (http://www.newyorker.com/tech/elements/
can-the-chinese-government-get-its-people-to-like-g-m-o-s).
In this framework, the new plant breeding technologies have

raised much attention, as these approaches not only have highly
interesting potentialities in breeding but also could overcome
many ethical restraints, being techniques that mimic spontaneous
events. As for classical GMOs, also for the NPBT products the
regulatory paradigms of nations focus on the process used, like in
Europe at present, or on the nature of the novel phenotype
developed. In USA the Department of Agriculture Animal and
Plant Health Inspection Service (USDA-APHIS) stated that plants
derived from cisgenesis/intragenesis or modified with ZFNs and
TALENs are not considered regulated articles as they do not
contain foreign DNA from plant pest.9 Recently, in April 2016, the
common white button mushroom (Agaricus bisporus) resistant to
browning was the first CRISPR-edited organism to receive a green
light from the US government.10 In Australia cisgenic plants are
excluded from GMO legislation while in Argentina, where the
world’s first regulation for NPBT was issued in 2015, products
without transgenes are to be evaluated on a case by case basis.11

In the European Union there is a great deal of uncertainty and the
debate on the legal interpretation of genome editing techniques
is extremely lively. European regulatory experts and scientists
carefully explored all the features and elements of novelty carried
by the new plant breeding technologies.12,13 In 2012, the
European Food Safety Authority (EFSA) issued two scientific
opinions on the new breeding techniques: on the safety
assessment of plants developed by cisgenesis and intragenesis14

and another on the safety assessment of nuclease-based genome
editing.15 EFSA concluded that the existing guidelines for risk
assessment applicable to GM plants were also appropriate for
cisgenic and intragenic plants, and for the ZFN-3 technique. EFSA
also considered the hazards associated with cisgenic plants to be
similar to those linked to conventionally bred plants, but that
novel hazards could be associated with intragenic and transgenic
plants.
On an institutional front, opposing positions have been taken

by different European national bodies (Figure 1). The English
Biotechnology and Biological Science Research Council (BBSRC),
the German Academies, the European Plant Science Organization
(EPSO) and the French High Council for Biotechnology (HCB)
consider that the safety of new crop varieties should be assessed
according to their characteristics rather than the method by which
they are produced.16 The Dutch Commission on Genetic
Modification (COGEM) pointed out that cisgenic products should
be exempt from GMO legislation; Germany’s Central Committee
on Biological Safety (ZKBS) and the German Federal Office for
Consumer Protection and Food Safety (BLV) considered organisms
modified by genome editing technologies as not being GM and
the Swedish Board of Agriculture concluded that CRISPR/Cas9
should not be subjected to European GMO legislation.16 On the
other side, national environmental agencies (the UK Advisory
Committee on Releases to Environment—ACRE, the German
Federal Agency for Nature Conservation and the Environmental
Agency of Austria) as well as the European IFOAM representing
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the organic food and farming sector, were more prone to consider
these products as GMOs on the basis of a precautionary
principle.16

In 2013, the European Academies Science Advisory Council
(EASAC) came to the conclusions that ‘the trait and product, not
the technology, should be regulated, and the regulatory frame-
work should be evidence-based’.8 This report was endorsed by
several academic organizations, most prominently by Anne
Glover, former Chief Scientific Adviser to the President of the
European Commission (EC) who stated: ‘We shouldn’t forget that
there are also other promising novel plant breeding technologies,
post-GM, and we shouldn’t make the mistake of regulating them
to death as we have done with GM’.8 Two years later the same
EASAC argues that the products of NPBTs should not fall under
GMO legislation when they do not contain foreign DNA and
demands EU regulators to resolve current legislative uncertainties
by modernizing the present regulatory framework.8

To date (September 2017), a clarifying legal opinion of the EC is
still pending and probably will follow the sentence of the
European Court of Justice (ECJ) which was asked on October
2016 by French national authorities to rule on whether the new
biotechniques for targeted mutagenesis can be exempted from
GMO legislation such as the procedures based on chemical and
physical mutagenesis. The judgement is expected within the first
semester of 2018 and it will be mandatory for all the member
states.17

On 28 April 2017 the High Level Group of the European
Commission's Scientific Advice Mechanism (SAM) published an
independent explanatory note on ‘New Techniques in Agricultural
Biotechnology’ 13 following the request of Vytenis Andriukaitis,
European Commissioner for Health and Food Safety. According to
the available scientific reviews, expert opinions and reports, the
document describes and compares the new techniques with

conventional breeding techniques and with established techni-
ques of genetic modification. The Commissioner said that this
document will be an important scientific basis to stimulate an
informed public debate among all stakeholders addressing the
challenges and opportunities related to innovation in the agro-
food sector (https://ec.europa.eu/research/index.cfm?pg =newsa
lert&year = 2017&na =na-280417).
In Italy, in February 2016 the Agriculture Minister Maurizio

Martina made a distinction between innovative biotechnologies
and GMOs and advocated innovation involving cisgenesis and
genome editing.18 The Minister Martina stated his support for
these two technologies by allocating 21 million of euros in Italy’s
budget for a three-year sustainable agriculture research plan to be
implemented by the Italian Council for Agricultural Research and
Economics (CREA). The research will focus on genome editing and
cisgenesis for grapevine, olive, apple, citrus fruit, apricot, peach,
cherry, pineapple, tomato, wheat and poplar.18

NPBT’S CHALLENGES IN GRAPEVINE AND OTHER FRUIT TREES
The application of cisgenesis and genome editing to perennial
fruit trees faces many challenges compared to species propagated
by seed as proven by limited scientific literature available for
woody fruit crops (Table 2). A crucial issue to consider concerns
the elimination of undesired exogenous sequences from the plant
genome. The absence of the marker gene is mandatory in the case
of cisgenesis, likewise the T-DNA used to deliver gene-editing
components should be removed in view of leaving minimal
genetic modifications. While for annual plants these sequences
can be eliminated by self-fertilization and segregation in the first
generation of offspring, in case of vegetatively propagated woody
fruit crops this strategy would encounter the same problems that
hamper the cross-based traditional breeding (long generation

Figure 1. Main national and European institutions claiming that the products of NPBT (cisgenesis and/or genome editing techniques) should
fall (red boxes) or not (green boxes) under GMO legislation.
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time, offsprings which can be genetically and phenotypically quite
different from the parental plants). This limit has led to the
development of alternative approaches to remove undesired
sequences.19

In this review, we discuss different aspects of the application of
cisgenesis and genome editing to fruit trees referring in particular
to grapevine, not only for the enormous economic value this crop
has worldwide, but also for its peculiar features which make it an
interesting case-study for NPBTs. Among grapevine genotypes a
distinction should be made: while breeding of grapevine for table
grape production is rather similar to that of fruit crops such as
apple, pear and others, the use of classical techniques as well as
the application of genetic engineering to wine grapes has been

hindered by a load of cultural aspects, varietal traditions,
consumer demands and regulatory framework (particularly in
the Old World). In fact, on one side the wine industry relies
predominantly on a few selected and sought-after cultivars whose
features would be altered by crossing in breeding programs; on
the other side, the concept of genetic manipulation performed in
laboratory in order to introduce desired traits in centuries-old elite
cultivars has so far been hardly accepted by oenophiles and
consumers fond of the view of wine as a natural product. The
genetic improvement of this valuable fruit crop may gain a great
benefit from these new technologies which resemble traditional
breeding techniques but require shorter times and do not alter
the genetic heritage of the cultivar of interest. It has to be taken in

Table 2. Applications of cisgenesis and genome editing to woody fruit trees

CISGENESIS

Species Gene of interest Method for marker gene elimination References

Grapevine (Vitis vinifera L.) A reporter gene was used to set-up the
method

Site-specific recombination (Flp/FRT) induced by
heat treatment

76

Different grapevine promoter were proposed
for an intragenic approach

— 95

* Site-specific recombination (Cre/LoxP) induced
by 17-β-estradiol

77

Apple (Malus x domestica
Borkh.)

MdMyb10 which confers a red pigmentation No use of marker gene 96

Vf (Rvi6) from Malus floribunda 821 which
confers apple scab resistance

Site-specific recombination (R/Rs) induced
by dexamethasone followed by selection on
5-fluorocytosine

97

96
Vf (Rvi6) from Malus floribunda 821 which
confers apple scab resistance

Site-specific recombination (Flp/FRT) induced by
heat treatment

98

FB_MR5 from Malus × robusta 5 which
confers fire blight resistance

Site-specific recombination (Flp/FRT) induced by
heat treatment

99

A reporter gene was used to set-up the
method

Site-specific recombination (R/Rs) induced by
dexamethasone followed by selection on 5-
fluorocytosine

100

Pear (Pyrus communis L.) A reporter gene was used to set-up the
method

Site-specific recombination (R/Rs) induced by
dexamethasone followed by selection on 5-
fluorocytosine

100

Plum ( (Prunus domestica L.) * No use of marker gene 101
Apricot (Prunus armeniaca L.) A reporter gene was used to set-up the

method
Site-specific recombination (Cre/LoxP) induced by
17-β-estradiol

102

A reporter gene was used to set-up the
method

Site-specific recombination (R/Rs) 103

GENOME EDITING

Species Targeted gene Method References

Grapevine (Vitis vinifera L.) VvPDS gene which confers albino phenotype Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

104

VvIdnDH gene which controls the
biosynthesis of tartaric acid

Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

26

VvMLO7 which confers Powdery mildew
resistance

Direct delivery of purified CRISPR/Cas9
ribo-nucleoproteins to protoplast

27

Apple (Malus x domestica
Borkh.)

MdDIPM-1, MdDIPM- 2, and MdDIPM-4 which
increase resistance to fire blight disease

Direct delivery of purified CRISPR/Cas9
ribo-nucleoproteins to protoplast

27

MdPDS gene which confer albino phenotype Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

105

Orange (Citrus sinensis Osbeck) CsPDS gene which confer albino phenotype Vector containing CRISPR/Cas9+sgRNA
agroinfiltration

106

Region in the promoter CsLOB1 which
decreases susceptibility to citrus canker

Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

107

Duncan grapefruit (Citrus
paradisi Macf.)

Region in the promoter of the gene CsLOB1
which decreases susceptibility to citrus canker

Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

108

CsLOB1 which decreases susceptibility to
citrus canker

Vector containing CRISPR/Cas9+sgRNA delivered
by A.t.

109

*The paper is reported for the relevance of the method employed for marker-gene elimination (the gene of interest used is not species-specific and
transformants cannot be classified as cisgenic or intragenic).
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account that many efforts have already been made to explore the
grapevine genome, looking for interesting genes to transfer with
both traditional and biotechnological tools. An interesting case of
immediate application of cisgenesis in Vitis vinifera may be the
transfer of pathogen resistance genes. Single locus genes which
confer resistance to the major fungal and oomycete pathogens in
cultivated grapevine (powdery and downy mildew) were well
characterized and may be transferred by a donor to a recipient
grapevine. Among them, there are MrRUN1 and MrRPV1 which
were isolated from Muscadinia rotundifolia, a wild north American
grapevine species.20 An interesting future application of genome
editing in grapevine may be the silencing of susceptibility MLO
genes whose knock-down has been demonstrated to confer
resistance to powdery mildew.21

The Agrobacterium-mediated gene transfer (Figure 2) has
emerged as the most widely used method in plant genetic
engineering, although manifold systems for these new technol-
ogies have been developed based on different constructs, delivery
and expression mechanisms.6 However, the setting-up of efficient
transformation procedures in woody fruit trees requires to
optimize several technical aspects concerning tissue culture.
One of the main limiting factors, common to most of the
perennial fruit crops, is the limited regeneration capability of the
explant used (i.e., somatic embryos for grapevine, leaves for apple
and pear) in co-culture with Agrobacterium.22,23 Looking specifi-
cally to grapevine, the main critical points regard the ability to
produce embryogenic callus, the response of the callus to
Agrobacterium tumefaciens infection, the regeneration potential
of somatic embryos, the chimerical integration of exogenous DNA
and somaclonal variation as an outcome of tissue culture. Other
issues such as strategies to eliminate undesired sequences from
the genome and to choose proper target sites are essential, as
well as proper analytic tools to characterize the results.

Technical aspects of Agrobacterium-mediated gene transfer.
Grapevine as a case study
Recalcitrance of different genotypes at producing embryogenic
callus. Embryogenic callus is the most used explant for gene
transfer experiments in grapevine.24,25 This is confirmed by the
use of embryogenic culture of ‘Chardonnay’ in the first study
describing genome editing and targeted mutation in grapevine.26

In a recent paper27 the CRISPR/Cas9 system was successfully
applied to produce point mutations in grapevine protoplasts DNA.

However, the regeneration of a plant from a grapevine protoplast
is very difficult to obtain and nearly unfeasible for many cultivars.
The isolation of protoplasts from embryogenic grapevine tissue
and the regeneration of these protoplasts into plants were
successful only with two Vitis vinifera cultivars, ‘Seyval blanc’28 and
‘Koshusanjaku’.29 Some authors ascribed the regeneration recalci-
trance of grapevine protoplasts to the lack of morphogenic
response in vitro.30

Some varieties displayed embryogenic competence while
others proved to be recalcitrant, and wide variations among
responsive varieties were observed.31,32 Factors influencing
somatic embryogenesis include explant type and developmental
stage, macro- and micro-element composition of the culture
medium and growth regulator concentration.32,33 According to
several studies, a greater number of Vitis vinifera varieties
produced embryogenic cultures from stamens and pistils com-
pared with leaves.34 Dhekney et al.,32 among the 19 cultivars and 3
rootstocks evaluated, observed the highest embryogenic response
from ‘Merlot’ stamens and pistils (11.6 ± 0.2% and 13.8 ± 0.3%)
followed by ‘Thompson Seedless’ (10.5 ± 0.2% and 8.3 ± 0.3%) and
‘White Riesling’ (3.7 ± 0.2% and 5.9 ± 0.3%). Gribaudo et al.35

evaluated the embryogenic competence of 38 grapevine cultivars
and rootstocks over many years and identified genotypes with
high regenerative competence like ‘Chardonnay’, ‘Müller Thurgau’,
‘Sangiovese’ (which showed an efficiency of 10% with anther
cultures and/or 20% with ovary cultures) as well as recalcitrant
ones such ‘Cabernet Sauvignon’ (efficiency below 1 and 2% in
anther and ovary culture respectively). However, as the authors
stated, the results for a same cultivar can vary in different years,
suggesting that the complete control of all the factors influencing
the embryogenic induction is hard to reach.
Various genes playing a role in regulating the somatic embryo-

genesis process in grapevine as well as in other species have been
identified such as SERK, L1L36,37 and WOX.38,39 It can be hypothe-
sized that they could allow improvement of the transformation
methodology if transferred together with the gene of interest and
expressed in calli or somatic tissues of recalcitrant grapevine
cultivars, thus inducing the differentiation of somatic embryos.

Response of the callus to Agrobacterium tumefaciens (A.t.) infection.
Since Agrobacterium vitis is a specific pathogen of Vitis vinifera,
grapevine embryogenic cultures inoculated and co-cultivated with
Agrobacterium ssp. can show an ipersensitive reaction and tissue
browning40 albeit the severity of the reaction is strictly cultivar

Figure 2. Workflow of a gene transfer process in grapevine via Agrobacterium tumefaciens. The selection phase is carried out in the presence of
selection agents (i.e., antibiotics or herbicides).
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specific. The ‘Pinot’ family for example proved intractable to A.t.
mediated transformation while genotypes like ‘Chardonnay’,41

‘Brachetto’,42 ‘Portan’43 and ‘Thompson seedless’44 showed high
efficiency. Moreover, the necrosis phenomenon is not only cultivar
specific, but also developmentally regulated since has been
demonstrated that embryogenic cells in a more advanced stage of
embryo development exhibited more severe tissue necrosis than
cells of pro-embryogenic masses.45 The necrosis typically occurs
48 h onwards after co-cultivation and can in some cases be so
severe that the target material never becomes proliferative
again.46 Zhao et al.47 demonstrated that this response is due to
the downregulation of enzymes involved in reactive oxygen
species (ROS) removal, up-regulation of ROS producers and
significantly changed levels of plant-pathogenic response pro-
teins. Specific protocols have been established for different
species and varieties, tissue-culture media have been carefully
optimized, and additional antioxidants, active charcoal and
washing steps have been employed to decrease the observed
tissue necrosis.47,48

Regeneration potential of somatic embryos. The regeneration
potential of a somatic embryo, i.e., the capability of the somatic
embryo to convert into a plantlet, is a peculiar feature associated
to a specific variety. However, an important aspect affecting the
regeneration potential of somatic embryos is the age of the callus.
A fresh embryogenic callus (1 or 2 years of age) shows a high
morphogenic competence and assures embryo development and
conversion into plantlet at a high rate. However, a possible
drawback of using a young callus is the high likelihood of finding
‘escapes’ due to the regeneration of plantlets which have not
integrated the exogenous DNA but have survived to the selection
regime, probably thanks to a lower sensitivity towards the
selection agent associated with the strong morphogenic potential.
There are other important factors influencing the regeneration
potential of somatic embryos like callus sensitivity to the
antibiotics used as selection agents or to Agrobacterium killing
agent. Also Agrobacterium strains and density used to infect the
embryogenic callus may impinge on the regeneration potential.49

Chimerism. One of common technical constrains of gene transfer
into vegetatively propagated plants is the chimerical integration
of the exogenous DNA in the plant tissues. The regeneration of
chimeric shoots with heterogeneous tissues made up of mixtures
of transgenic and non-transgenic cells has frequently been
reported in herbaceous and perennial crops.50,51 However, while
chimerism can be eliminated in the progenies of a sexually
propagated plant, the complete loss of chimerism is difficult to
obtain for vegetatively propagated plants like grapevine and only
possible by using in vitro culture procedures like further
embryogenesis or organogenesis. The presence of chimerism
may be an additional obstacle for obtaining genome edited plants
since the partial efficiency of the CRISPR/Cas9 system may be
further reduced by a potential chimerical distribution in the plant
tissues.52 Therefore, it is not surprising that in the first study on
genome edited grapevine the 100% of cell mass are mosaics and
the harvested plants might be heterozygous or chimeras.26 This
study described the use of the CRISPR/Cas9 system for silencing
the L-idrate deidrogenase (IdnDH) gene in grapevine. The authors
infected ‘Chardonnay’ embryogenic calli with Agrobacterium
tumefaciens carrying a vector with the Cas9 gene sequence, the
guide RNA and the selectable resistance marker gene hpt which
confer resistance to hygromicin. Plants with insertion or deletion
in IdnDH were regenerated with an efficiency of 5% or 0% in two
different experiments (where efficiency is calculated as n. of lines
with targeted mutations / n. of cellular masses resistant to
hygromicin). The ‘edited’ plants however, were all heterozygous or
chimeric.

Somaclonal variation. Tissue culture is an efficient method of
clonal propagation, however the resulting regenerants can exhibit
somaclonal variations.53 This variation involves changes in both
nuclear and cytoplasmic genomes, and their character can be of
genetic or epigenetic nature.54 The triggers of mutations in tissue
culture had been attributed to numerous stress factors, including
wounding, exposure to sterilizing agents, imbalances of media
components such as high concentration of plant growth
regulators (auxin and cytokinins), sugar from the nutrient medium
as a replacement of photosynthesis in the leaves, lighting
conditions, the disturbed relationship between high humidity and
transpiration.55,56 The rate of somaclonal variation can be
particularly high when somatic embryos are induced in callus
tissue, in a long-term cultures,54 or via secondary
embryogenesis.57 On the contrary, direct development of somatic
embryos from cultured explants and/or the use of young explant
tissue in combination with short term culture usually limit in vitro
induced variation.58 While somaclones regenerated from callus
cultures possibly may be a source of variation useful for plant
breeding, for applications like micropropagation and genetic
transformation it is essential to eliminate or decrease somaclonal
variation.
In grapevine, somaclonal variation is frequently observed

among plants regenerated through somatic embryogenesis.59 A
wide range of traits showing somaclonal variation has been
described such as chlorophyll deficiencies, morphogenetic devel-
opment, leaf shape, flower type 60,61 but no grapevine cultivar
derived from somaclonal variation has been so far released. By
using SSRs, AFLPs (amplified fragment length polymorphism) and
RAPD (random amplified polymorphism DNA) hundreds of
somaclones obtained from different grapevine cultivars were
analysed to determine the level of genetic variation.62,63 SSRs
were useful to verify the conservation of the microsatellite profile
of the somaclones as to their corresponding mother clone
genotype. Among studies performed using SSRs, only one reports
the variation of one SSR in 6 plants out of 233 regenerated from
somatic embryo.64 On the contrary, more variation was observed
with AFLP markers in the somaclones.63

Differences between clones can also result from epigenetic
modifications like DNA-methylation 65 which can generate novel
and heritable phenotypic variations.66 Epigenetic variations are
suggested to be more frequent than genetic changes under
in vitro conditions.67 Apart from auxins, other in vitro employed
substances can also influence the level of DNA methylation, as was
indicated for antibiotic in callus culture of Arabidopsis.68 The
methylation sensitive amplified polymorphism (MSAP) method is
used by many authors to identify genomic regions with altered 5-
methylcytosine distribution at a genome-wide scale.69 The MSAP
analysis carried out in somaclones of two Vitis vinifera cultivars
(‘Chardonnay’ 96 and ‘Syrah’ 174) regenerated from somatic
embryos revealed methylation status variation compared to the
mother clone.63 Ocana and colleagues 70 evaluated the epigenetic
variation in a set of 40 ‘Pinot noir’ clones using the MSAP
technique and identified stable epigenetic markers suitable for
clone selection.

Removal of exogenous sequences
Cisgenic plants should be free from additional sequences, such as
selectable marker genes. To date, it has been demonstrated that
although it is achievable to obtain modified plants without using
selection, the majority of the screened plants would be un-
transformed making the screening process excessively demanding
and laborious.19 At the same way, in order to increase the
acceptability of gene-edited plants, no exogenous sequences (e.g.,
T-DNA containing the cassette with Cas9 endonuclease, the
sgRNA and the selection marker) should remain in the plant
genome after the desired mutation has been carried out. In this
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respect, the removal of the T-DNA is important not only for
producing transgene-free edited crops but also because the
persistent Cas9 nuclease activity may increase the likelihood of
off-target effects (cleavage and mutation at unintended genomic
sites similar but not identical in sequence to the desired site).71

The feasible solution seems to be the use of site-specific
recombination systems relying on the activity of a recombinase
enzyme which recognizes two directly repeated sites and
produces the excision of the DNA cassette in the middle.19 The
most frequently used recombinase/recognition sites are the
bacteriophage P1 Cre/loxP, the yeast Flp/FRT,72,73 and the R/Rs
from Zygosaccharomyces rouxii.74 Since the excision timing needs
to be controlled, recombinase gene expression should be
regulated by inducible promoters, the majority of which are
chemically activated, tissue specific or heat-shock activated.75 An
interesting approach to minimize the risks of off-targets effects
may also be the use of an inducible T-DNA excision associated
with an inducible promoter to drive Cas9 expression. These
excision systems are very precise and effective 76 but need to be
ad-hoc developed and optimized for each species. However, while
site-specific recombination systems were tested and used to
remove marker resistance genes in fruit trees (Table 2), their
effectiveness to excise longer regions like T-DNA has not yet been
demonstrated. Regarding grapevine, during a proof-of-concept
study, Dalla Costa et al.76 integrated a reporter gene in grapevine
‘Brachetto’ plants adopting a traditional selection with kanamycin
and subsequently removing the nptII marker gene with a site-
specific and inducible recombination mechanism. These authors
showed that after a proper heat-shock induction no traces of nptII
remained in the grapevine tissues and that the excision
mechanism at the nucleotide level was highly accurate and
precise. Conversely, the excision induced by the hormone 17-β-
estradiol proved to have different efficiencies in the various tissues
of ‘Brachetto’ transgenic plants, being very effective in the roots
while only partially effective in the apical parts like leaves, nodes
and internodes although different hormone supply strategies
were performed.77 In view of producing a marker-free grapevine,
also the co-transformation system, associated with a combination
of positive or negative selection, has been successfully employed
in 'Thompson Seedless' 78 but being this method highly
dependent on an efficient regeneration, it might not be extended
to many Vitis genotypes.

Choice of the target site for genome editing
An important aspect to take in consideration for the choice of the
target sequence is the genome heterozygosity of the species of
interest and the degree of intra-specific genetic variation. In this
regard, grapevine is an interesting case showing a highly
heterozygous genome and a high genetic variation among
cultivars and accessions. From the comparison of the coding
region of single copy genes (for a total length of43000 bp) in 157
cultivars of Vitis vinifera, a total of 96 polymorphic sites were
recorded with an average frequency of 1 SNP/34.55 nucleotides.79

Several tools are publicly accessible on the web for designing
sgRNAs that target unique locations in the plant genome80,81 and
a recently developed database82 for facilitating the use of the
CRISPR/Cas9 system is available for public use at the Grape-CRISPR
website (http://biodb.sdau.edu.cn/gc/index.html). For selecting
the best target sequences according to the criteria required by
the different systems (ZFN, TALEN, CRISPR) the grapevine
reference genomes83,84 can be used. However, after this step, a
subsequent sequencing of those regions in the genotypes of
interest is needed to avoid bumping into SNPs which can prevent
an optimal recognition by the endonuclease and consequently
the DNA cleavage.

Analytical tools
The availability of suitable tools for the molecular characterization
of GM products is essential, especially in the European Union
which has highly restrictive rules concerning GMOs authorization.
At the moment, a genetically modified organism can be put on
the European market after it has been authorized by the European
Commission on the basis of a detailed application procedure that
is described in European Regulation EC 1829/2003. The technical
dossier of an application must be compiled according to
Commission Implementing Regulation EU No 503/2013 and to
EFSA’s guidelines. It dedicates an important section to the
molecular characterization of the GM products. The list of the
required information includes: description of the methods used
for the genetic modification, nature and source of vector used,
source of donor nucleic acid(s) used for transformation, size and
intended function of each constituent fragment of the region
intended for insertion, general description of the trait(s) and
characteristics, which have been introduced or modified, informa-
tion on the sequences actually inserted/deleted, information on
the expression of the insert(s), genetic stability of the insert and
phenotypic stability of the genetically modified plant.
In the case of a cisgenic plant an important information on the

sequences actually inserted is their copy number. According to the
scientific literature on this topic85 and in view of minimally alter
the plant genome, a single integration event is highly recom-
mended. The determination of the copy number relies on the
traditional Southern blot technique and the quantitative PCR on
genomic DNA. Moreover, the complementation of these two
assays can reveal the presence of chimeric tissues as described in
Dalla Costa et al.51 Besides, very important is the determination of
the removal rate of the undesired sequences such as the
selectable marker gene and the components of the excision-
cassette. A proper induction method has to be set up to find the
optimal conditions for a complete excision of the exogenous
sequences since a cisgenic plant must not contain them by
definition. The available technique to assess the percentage of
removal is the qPCR on genomic DNA.76 Another aspect which
should be investigated is the integration point of the inserted
sequence in the grapevine genome which can heavily influence its
expression pattern (position effect). Higher plant genomes contain
a substantial amount of intercalary heterochromatin and repetitive
DNA, in addition to centromeres and telomeres, which can exert a
repressive influence on a transgene inserted in their proximity.86,87

Analytical assays exist, such as chromosome walking or genome
walking, based on digestion of genomic DNA, ligation of the DNA
fragment ends with adaptor, PCR and sequencing. To this
purpose, commercial kit are available on the market. Moreover,
for a highly detailed and comprehensive knowledge of the
cisgenic plant genome a whole genome sequencing (WGS) may
be carried out. WGS could precisely identify the location of the
inserted gene and check the presence of possible undesired
truncated integration fragments which may be generated when
using the biolistic technology (and less with the gene transfer via
Agrobacterium).
Regarding the molecular characterization of genome edited

plants, first of all, an estimation of the mutation rate is needed.
Since the CRISPR-Cas9 system has been the most widely adopted
technology in recent years in medical and plant research,
hereafter we will refer to it when talking of the genome editing
approach. As discussed above, T-DNA chimerical integration is a
common outcome of the gene transfer process in grapevine. In
addition the efficiency and timing of the genome editing system
may be highly variable. For example, when a sequence is mutated
after the division of the first embryogenic cell, the resulting cells of
the somatic embryos have different genotypes and the regener-
ated plants exhibit different chimeric phenotypes.52,88 In order to
determine the mutation rate and the kinds of mutation (big or
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small insertion/deletions—INDEL), a PCR can be performed for the
amplification of a region containing the target sites. The
amplification fragments can be separated on a high density
agarose gel for a raw discrimination of large-sized mutations.
However, for the detection of small INDEL mutations, the cloning
of the PCR product in a vector, its insertion in Escherichia coli cells
and the sequencing of an appropriate number of colonies is
necessary. A fast and cheap alternative method to distinguish
small INDEL mutations relies on the disruption of a restriction site
positioned near to the Protospacer Adjacent Motif (PAM) site since
the Cas9 cuts 3–4 bp upstream of the PAM sequence.89

Finally, the sequencing of specific regions characterized by a
high level of similarity with the target site would allow to find
possible off-target mutations. However, for an exhaustive and
definitive off-targets check a WGS may be required.
When characterizing a transgenic plant, besides the analyses

needed to ascertain the various molecular features resulting from
the gene transfer, high-throughput phenotyping can be used for
the evaluation of transgenic plants. Imaging methodologies are
used to collect data for quantitative studies of complex traits
related to the growth, yield and adaptation/resistance to biotic or
abiotic stress. These techniques include visible imaging, imaging
spectroscopy, thermal infrared imaging, fluorescence imaging, 3D
imaging and tomographic imaging.90–92 In grapevine, automated
phenotyping approaches have been up to now proposed to
increase objectivity, automation and precision of data collected in
vineyard.93,94 The adoption of such high-throughput techniques
could help to characterize the phenotype of transgenic grapevines
in controlled environment, when stringent biosecurity measures
restrict the feasibility of open field trials.

CONCLUSIONS
The scientific and technological progresses are undoubtedly key
factors to obtain genetically improved grapevine derived from the
new plant breeding technologies, which have remarkable
potentialities. The availability of the sequenced genomes for
several grapevine cultivars is giving further stimulus to the
researches in this field. However, an updating of the legislative
framework and an enhanced public acceptance based on a better
understanding of the topic are pivotal for future turning of the
scientific improvements into practical applications in breeding
programs. Further and stronger efforts in all these fields are
needed.
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