ASSESSMENT OF THE SPECTRUM OF ACTIVITY OF A NEW INSECTICIDE BASED ON CLITORIA TERNATEA EXTRACT

Livia Zanotelli¹, Oscar Giovannini¹, Sandro Frati², Andrea Nesler² and Ilaria Pertot^{1,3}

¹Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy; ²BIPA, Londerzeel, Belgium; ³C3A, University of Trento, Trento, Italy

Clitoria ternatea L. (butterfly pea) Fabaceae family

Cyclotides: molecules composed of 28-37 amino acids in a head-to-tail cyclic backbone with three interlocking disulfide cystine bonds), mainly produced by plants as defence proteins

Materials and methods

• Small scale trials under controlled conditions (lab, greenhouse) Concentration of the active ingredient in the formulated product: 400 g/l

- Pharmacological properties \bullet
- Excellent forage legume (very good \bullet regrowth and yields)
- Cover crop \bullet
- Edible plant (young and tender parts \bullet of the plant, shoots, leaves, flowers and pods)

Recent studies indicate that C. ternatea has insecticidal effects (cyclotides and flavonoids)

The aim was to explore the possible use of *C. ternatea* extracts against a wide range of phytophagous insects

- Dosage of the formulated product: 20 ml/l
- Untreated control (UTC): water
- Chemical standard reference (names and dosages, Table 1)
- Experiment carried out at least twice with 5 replicates/treatment
- Data of the experiments were pooled
- Statistics: ANOVA, Tukey's test ($\alpha = 0.05$)

Target	Reference Product 1		Reference Product 2		Reference Product 3	
	Active Ingredient	Dosage (ml or g/l)	Active Ingredient	Dosage (ml or g/l)	Active Ingredient	Dosage (ml or g/l)
Aphis gossypii	Flonicamid	0,14				
Antispila oinophylla	Acetamiprid	2,00				
Drosophila suzukii	Spinosad	0,20	Deltamethrin	0,70		
Frankliniella occidentalis	Abamectine	0,75				
Halyomorpha halys	Acetamiprid	2,00	Clorantraniliprole	0,18	Chlorpyrifos-Methyl	4,00
Lobesia botrana	Emamectine Benzoate	1,50				
Scaphoideus titanus	Flonicamid	0,14				
Trialeurodes vaporariorum	Abamectine	0,13				

Table 1. Target pests and chemical standard references and related dosages

Frankliniella occidentalis

Drosophila suzukii

b

Emamectine

benzoate

Lobesia botrana

100

% 80

Rate 09

Wortality20

 $\mathbf{0}$

UTC

an incubated in Falcon tubes

dishes

Scaphoideus titanus

Mortality of S. titanus nymphs, 7 days after the treatment. Treatments were carried out on grapevine leaf disks, insects were then placed on the leaf disks and incubated in Petri dishes

Mortality of *D. suzukii* adults 48 hours

after the treatment. Treatments were

sprayed directly on insects, which

were then incubated in Petri dishes;

some variability in the efficacy

between trials (exp1 and 2) was

Drosophila suzukii

2222 2223

Clitoria

ternatea

Mortality of L. botrana larvae, 7 days after the

treatment. Larvae were placed on treated berries

tobacco leaf disks infested by nymphs

Halyomorpha halys

Mortality of *H. halys* adults up to 14 days after the treatment. Treatments were carried out on crabapples, insects were then placed on the apples and incubated in boxes

Discussion

Good efficacy against thrips and whiteflies (also confirmed by field trials)

100 exp. 1

 Mortality Rate (%)

 00

 70

 70

🖸 exp. 2 b b c b c b Spinosad Deltamethrin UTC Clitoria ternatea

UTC = untreated control (water)

Different letters indicate that values are significantly different (ANOVA p < 0.05, Tukey HSD test, $\alpha = 0.05$)

- Promising results against some other species (poor results with some others)
- Based on the nature of the extract (no toxicity for humans and environment) the C. ternatea extract can be considered a new low-risk tool to be used in the integrated pest management of crops against some specific targets

This research was supported by the EU project INNOVA (subprogram: FP7-PEOPLE-2012-IAPP, grant agreement: 324416)

noticed

