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Ho domandato, allora: "Signore, 
Tu avevi detto che saresti stato con me in tutti i giorni della mia vita, 

ed io ho accettato di vivere con te,  
perché mi hai lasciato solo proprio nei momenti più difficili?" 

Ed il Signore rispose: "Figlio mio, Io ti amo e ti dissi che sarei stato con te 
e che non ti avrei lasciato solo neppure per un attimo:  

i giorni in cui tu hai visto solo un'orma sulla sabbia,  
sono stati i giorni in cui ti ho portato in braccio". 

(L’orma sulla sabbia) 
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ii) ABSTRACT   
 

The first target of my research project has been to study the organ-specific interaction 

between grapevine and downy mildew (DM), caused by the biotrofic pathogen Plasmopara 

viticola (Berk. & M.A. Curtis) Berl. & De Toni. The studied genotypes have been chosen 

based on their susceptibility, tolerance and resistance to DM according to previous field 

observations based on the OIV452 and OIV453 descriptors for leaves and inflorescences, 

respectively. These two organs have been collected from 9 Vitis hybrids and a Vitis vinifera 

L. variety grown in an untreated experimental field at Edmund Mach Foundation (FEM). In 

particular, inflorescences have been harvested at three phenological stages (17, 25 and 29) 

of the Eichhorn-Lorenz (E-L) scale. Firstly, I have improved the annotation procedure of 

foliar resistance/susceptibility under controlled conditions (optimized and updated OIV 

descriptor 452-1). The in vitro leaf disc bioassay resulted significantly associated to the in-

field DM response. Secondly, I have developed a new in vitro phenotyping method - from 

infection to symptom evaluation - for DM resistance assessment on grapevine inflorescence 

(developed and proposed OIV descriptor 453-1). The 17 E-L phenological stage of 

inflorescence upon in vitro assay resulted significantly correlated to the in-field DM 

response. Based on the latter DM response assessment, genotypes have been assigned to 

classes following the four thresholds set for leaf discs. Linear correlations between organs 

within the same genotype have confirmed that the E-L 17 stage is the most responsive to 

the DM attack. Genotypes classified as mid-resistant or resistant at leaf level have also 

resistant inflorescences; genotypes with mid-susceptible leaves present susceptible 

inflorescences except for Cabernet Cortis (CC) (Cabernet Sauvignon x Solaris), carrying 

mid-resistant leaves and mid-susceptible inflorescences.  

To verify that the CC had a significantly different response between organs under 

controlled conditions, I have carried out some experiments detaching organs from fruiting 

cuttings grown in phytotron. Thus, CC organs were evaluated upon mock- and P. viticola-

inoculation, using the susceptible Pinot Noir organs as a reference. Unlike the latter, CC 

presented a significant difference in DM response; this represented an interesting result and 

corroborates the diverse DM epidemiological behaviour at organ level.   

 

In the second part of my research project, I have used CC as a model to study divergent 

dual epidemics, compared to its parent Cabernet Sauvignon (CS) displaying out susceptible 

organs. Leaves and inflorescences – at the 17 E-L phenological stage – obtained from 
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fruiting cuttings have been used. To assess the response of different grapevine organs to 

P. viticola attack, the disease development has been evaluated with different methods, from 

the macroscopic/microscopic to the ultrastructural point of view.  

Upon P. viticola inoculation, the CC and CS organs showed different levels of 

resistance or susceptibility, according to previous phenotypic observations and organ 

classification. Indeed, CC leaves were characterized by some limited attack areas with 

sparse sporulation and necrotic dots, while the CC inflorescences by abundant and localized 

sporulation. Moreover, CS organs were both characterized by an abundant and widespread 

sporulation. Afterward, H2O2 production was histochemically evaluated by DAB staining. Its 

accumulation was clearly visible only on the surface of the CC leaves, suggesting that only 

the mid-resistant organ could be able to activate H2O2 production that interferes with 

pathogen growth and diffusion.  

There results have led me to investigate the different interaction between P. viticola 

and two grapevine organs at ultrastructural level. Interestingly, three zones showing different 

response to P. viticola-inoculation in CC leaf tissues were found: the leaf areas in 

correspondence to pathogen sporulation, the leaf areas corresponding to the border 

between green and brown spots, and the necrosis zones. CC inflorescence tissues 

presented two types of pathogen-response zones: areas in which pathogen structures were 

deformed and the necrosis areas. Conversely, P. viticola was typically structured in both CS 

tissues.  

 Encouraged by the preliminary results and since the divergent dual epidemics are 

poorly studied on a molecular point of view, I have decided to perform a trascriptomics study 

to identify the differential expressed genes (DEGs) in CC organs both at baseline and upon 

P. viticola-inoculation, using CS as a reference. DEGs were grouped in 14 clusters based 

on their expression profiles. Interestingly, in the mid-resistant leaves of CC, there was an 

up-regulation of genes related to secondary metabolism, in particular genes belonging to 

signal transduction, phytoalexin biosynthesis and oxidative stress response. Meanwhile the 

genes involved in the protein modification and secondary metabolic process were up-

regulated in the susceptible leaves of CS. Genes implicated in the secondary metabolism, 

response to stimuli, protein modification, carbohydrate metabolism and reproduction were 

up-regulated in the mid-susceptible inflorescences of CC, while only a weak response 

involving genes of secondary metabolism and response to stimuli was found in the 

susceptible inflorescences of CS. Among genes down-regulated upon P. viticola-

inoculation, only in CC inflorescence the biological processes functional were significantly 
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enriched. This cluster presented a down-regulation of genes involved in photosynthesis, 

generation of precursor metabolites and energy, and carbohydrate metabolic process 

suggesting a broad reduction of the photosynthetic process. 

Finally, to validate the organ-specific response to P. viticola-inoculation, the disease 

development and the expression level of some DEGs have been evaluated on an 

independent experiment, using the two studied genotypes, the reference V. vinifera variety 

Pinot noir and the CC-related Vitis hybrid Muscaris. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 
 

 

Summary 
 

Viticulture arises in the Neolithic and nowadays holds a relevant role in the worldwide 

economy. The cultivated Vitis vinifera L. species is highly susceptible to several pathogens 

that threaten the grape/wine economy. Downy mildew (DM) caused by the obligate 

biotrophic oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni is one of the 

main plagues affecting grapevine. Accidentally introduced in Europe in 1878, it obligates the 

winemakers to massively use fungicides to protect grapevine against infections and avoid 

crop yield losses. However, fungicides lead to environmental pollution, development of 

resistance and residual toxicity and they foster human health concerns. An alternative 

approach in DM management is represented by the use of biocontrol agents or the 

development of new varieties with innate disease resistance, obtained from crossing 

between V. vinifera cultivars and resistant/tolerant Vitis species. Recently, many fungus-

resistant grapevine varieties, possessing desirable agronomic attributes and enological 

characteristics, have been developed in North America and Europe for conventional and 

especially organic farming. 

The development of the modern “omics” approaches (next generation 

sequencing/genomics, QTLomics, transcriptomics, proteomics and metabolomics), 

associated with comparative studies are shedding light into the early host responses to DM 

attack and into the complex plant defence mechanisms. 

 

 

 

 

 
Partially derived from: 

Invited review submitted to Euphytica 

Buonassisi D., Colombo M., Migliaro D., Dolzani D., Peressotti E., Mizzotti C., Velasco R., Masiero 

S., Perazzolli M., Vezzulli S.  

"Breeding for grapevine downy mildew resistance: a review of "omics" approaches" 
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1.1. GRAPEVINE 
 
 

1.1.1. Grapevine taxonomy 

 
The family Vitaceae belongs to the Rhamnales order and includes two subfamilies: 

Lecoideae and Ampelideae. The subfamily Ampelideae includes five genera: Ampelopsis, 

Cissus, Parthenocissus, Ampelocissus and Vitis. The first four ones are used such as 

ornamental plants while the Vitis genus comprises species largely cultivated and of 

considerable economic value. This last genus is further divided in two subgenera: 

Muscadinia and Euvitis (Fig. 1.1a), including about 40 Asiatic and 30 American species. One 

of the most important differences between this two subgenera is the chromosome number, 

with 2n = 40 for the first and 2n = 38 for the second (Fregoni, 2005).  

The Euvitis subgenus is divided in four groups and the classification is based on their 

geographical distribution and optimal climate conditions. Two American groups, one Euro-

asiatic and one Eastern Asiatic have been identified. The American grapevines in turn have 

been divided into group of those adapted to temperate climates and those adapted to 

tropical one. (Fig. 1.1b) (Fregoni, 2005). Most of the American and Asiatic species of 

grapevine are resistant to several pathogens but their wines are not so appreciate by the 

consumers, due to their bad quality. In the Euro-asiatic group, the Vitis vinifera L. species is 

the most important worldwide for qualitative attitudes but unfortunately all varieties are highly 

susceptible to several pathogens; only very few exceptions are recorded. 
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Order: Rhamnales 

Family: Vitaceae  

Subfamily: Lecoideae Subfamily: Ampelideae 

Genus: 
Ampelopsis  

Genus: Cissus  Genus: 
Parthenocissus 

Genus: Vitis 

Subgenus: 
Muscadinia 

Subgenus: 
Euvitis 

Genus: 
Ampelocissus 

Species:  
V. rotundifolia; 
V. munsoniana; 
V. popenoei 

a 

V. labrusca, V. aestivalis, V. bicolor 
V. lincecumii  

American, adapted to 
temperate climates 

V. riparia, V. berlandieri, V. rupestris,  
V. cordifolia, V. monticola, V. solonis, 
V. champini, V. rubra, V. cinerea,  
V. candicans 

V. californica, V. arizonica, V. girdiana 

American, adapted to 
tropical climates 

V. simpsonii, V. smalliana 

Subgenus: 
Euvitis 

V. caribaea 
Subsp. 

silvestris 

V. 
vinifera Euro-asiatic, adapted to 

temperate climates 
Subsp. 
sativa 

V. amurensis 

Asiatic 

b 

V. armata, V. davidii 

V. lanata 

V. reticulata,V. flexuosa, V. piazeskii 

Figure 1.1. An overview on the systematics of the Vitaceae family (a) 

and subgenus Euvitis (b) (Adapted from Fregoni, 2005). 
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1.1.2. Viticulture and its economic importance 

Originally, the grapevine and the viticulture had separate lives. The Vitis genus has 

three origin centres: northern America, Asia and Euro-asiatic; its presence in North America 

indicates that evolution of this genus predates the continental drift occurred about sixty five 

million years ago. 

Viticulture – namely the cultivation of grapevine – arises in to Neolithic with varieties 

selection (denominated “cultivar”) carried by the Caucasian population. After the last 

glaciation, it spreads from Black Sea to Egypt, Mediterranean and northern Europe (Fregoni 

2005). The cultivated European varieties of V. vinifera have Asiatic origins, even though it 

is still argued whether the differences between the two are the result of geographical 

isolation or rather of domestication. Since the beginning of domestication, selection has 

been a powerful tool for enhancing desirable traits according to the final purpose 

requirements and as a consequence grapevine biology has undergone several drastic 

changes, for example in berries size, in sugar content, in seed morphology and in flower 

sexual traits (This et al. 2006). A comprehensive case could be the presence of seedless 

varieties in many modern table grapes; in fact, this trait impairs the plant to reproduce and 

thus brings the species to high risk of extinction. Such a character would have never evolved 

without the assistance of human interference.   

Wine is important in many ancient cultures of the human history. Wine making tradition 

was probably born in the Asia Minor and Greece, from where it expanded throughout the 

Mediterranean, possibly following the ancient Phoenician trading sea routes, as the 

distribution of the classic European wine producing areas along river valleys suggests 

(Robinson 2007). During the Middle Ages, the viticulture suffered the consequences of the 

social, economic and political crisis through the state of abandon of the farmlands. The 

grapevines were maintained and cultivated close to churches and monasteries for wine 

production due to the role that it holds in the catholic ceremonies. From the Renaissance 

onwards, there has been an incessant recovery of the viticulture and of wine consumption 

(Fregoni, 2005).     

Nowadays, grapevine represents a great agricultural and economical value 

worldwide with 7,534 million Ha invested in viticulture; Spain, China and France are the 

countries with the higher number Ha of vineyards. In 2015, a total wine production of 274,4 

million Hl has been documented, and Italy is the first producer worldwide, followed by 

France, Spain and USA. After years of reduction, the wine consumption stabilises at 240 

million HI, especially in the American market. The oenological exchanges are stabilised at 
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104,3 million HI and the total business value is equal to 28,3 billion € (OIV report 2015, 

http://www.oiv.int). In addition to the wine production and table grapes, there are many 

derivatives and commodities that are consumed, amongst all grape juices, raisins, currants, 

brandy, “fortified” wines (port or sherry), distillates and vinegar.  

  

1.1.3. Grapevine pathogenic diseases  

During their lifetime, plants are exposed to a wide variety of pathogens, such as 

bacteria, viruses, fungi and nematodes. According to their lifecycle and infection strategies, 

pathogenic microorganisms can be classified as necrotrophics, biotrophics and 

hemibiotrophics. Necrotrophic pathogens feed on dead tissue, secreting lytic enzymes and 

phytotoxins to promote cell death into the host plant. Conversely, biotrophic pathogens feed 

on living tissue, developing structures in order to invade the cell and obtain metabolism 

products. Finally, hemibiotrophic pathogens start with a biotrophic infection phase and then 

turn to a final necrotrophic phase, killing its host at the end of the infection cycle (Glazebrook 

2005). The most cultivated varieties of V. vinifera are widely affected by a large number of 

pathogenic microorganisms that cause several diseases. Among the potential threats, 

bacteria, fungi, oomycete or viruses can attack grapevine with different infection 

mechanisms and evasion strategies (Armijo et al. 2016). Some of the most important 

diseases in V. vinifera are the gray mould, powdery mildew, and downy mildew (DM), caused 

by Botrytis cinerea, Erysiphe necator and Plasmopara viticola, respectively. DM was 

accidentally introduced in Europe in 1860 through the importation of resistant American 

vines to Phylloxera vitifoliae, a root aphid that brings to wilt and death of grapevines. The 

plague spread from France to Italy and subsequently all across Europe, reaching the African 

coasts as well (Galet 1977), destroying the vineyards and producing considerable yield loss.   

 

1.1.3.1. Gray mould 

Grapevine gray mould is caused by the necrotrophic ascomycete, B. cinerea Pers.Fr., 

which causes a disease in post-harvest periods, affecting complete berry clusters during 

packing, transport and commercialization and thus becoming one of the most important 

pathogens concerning export wine and table grapes (Dean et al. 2012). The fungus has the 

ability to live as a parasite in green tissue and as a saprophyte in dead or decaying ones, 

reason for which it is widely distributed in nature (Armijo et al. 2016).   

http://www.oiv.int/
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B. cinerea infects grapevine by two main mechanisms: 1) direct mycelium penetration 

through skin pores or injuries; 2) early invasion, where conidia infect mainly the flower 

receptacle, and to a lesser extent the stigma and styles, remaining latent within the berry 

until maturity (Viret et al. 2004). The fungus attaches to a solid host-surface where takes 

place the conidial germination (Cotoras et al. 2009). The conidium perceives the nutrients 

from the host surface; it develops an infective structure called appressorium, which breaches 

the cuticle by means of a penetration peg (Rolke et al., 2004). The appressorium secretes 

cell wall degrading enzymes (CWDE) to cross cuticle and outer epithelial wall. To promote 

host cell death and sporulation, B. cinerea secretes toxins and oxalic acid during infection 

(van Kan, 2006). The fungus can overwinter in soil thanks to the production of resistant 

survival structures (known as sclerotia), which may germinate the next spring, producing 

conidiophores. Under specific climatic (i.e., moist nights, foggy mornings and dry days) and 

edaphic (i.e., low nutrient and well-drained soils) conditions, Botrytis infections may occur 

slowly causing “noble rot” (Fig. 1.2a-b) (Ribéreau-Gayon et al., 1980, Blanco-Ulate et al. 

2015). This type of infection promotes the accumulation of aroma and flavor compounds as 

well as the concentration of sugars (Vannini and Chilosi, 2013, Blanco-Ulate et al. 2015), 

which is generally exploited by winemakers for the production of sweet dessert wines 

(Rieger 2006).  

 

1.1.3.2. Powdery mildew 

Grapevine powdery mildew is caused by the obligate biotrophic ascomycete Uncinula 

necator (syn. E. necator), and it is considered to be one of the most important fungal 

diseases in viticulture worldwide. Symptoms appear as white-grayish powdery or dusty 

patches of fungus growth on the upper side of the leaves and on other green parts of the 

vines, leading to a decrease in photosynthetic activity (Fig. 1.2c-d). In infected clusters, 

berries turn hard, brown, are smaller than uninfected ones, and may split open (Fig. 1.2e) 

(Gomès and Thévenot, 2009). Besides direct loss of yield, infected berries fail to properly 

mature and significantly alter wine quality (Gadoury et al. 2001, Calonnec et al. 2004). E. 

necator depends on its host for growth and development. For this, the conidium attaches to 

the tissue cells of the plant, allowing the formation of a primary germ tube that differentiates 

into a specialized infectious structure (i.e., appressorium). It generates a mechanical 

pressure in order to penetrate and invade the host cells (Armijo et al. 2016). The successful 

invasion results in the haustorium formation, by which the fungus absorbs nutrients 

necessary to complete its lifecycle (Qiu et al. 2015). Once this structure is established, 
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secondary hyphae spread along the infected tissue and finally asexual reproductive bodies 

(i.e., conidiophores and conidia) emerge from them. When environmental or nutritional 

conditions become unfavourable, E. necator develops cleistothecia, structures of sexual 

reproduction, which contain from four to six asci at maturity, each of which usually contains 

four ascospores (Agrios 1997, Armijo et al. 2016). However, physiological maturity may not 

be reached for several months, particularly in colder climates. Like conidia, ascospores 

germinate with a single germ tube, which terminates in appressorium formation (Gadoury et 

al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3.3. Black rot 

Grapevine black rot is caused by the ascomycete Guignardia biwellii, which attacks 

grapevine during hot and humid weather. Primary infections affect generally young leaves 

and fruit pedicels, appearing as tiny red necrotic spots which may cover the whole leaf 

surface and that subsequently enlarge (Fig. 1.3a). As the disease progress, the spots turn 

into brown and their margins become black. On the upper side of the spot picnidia are rapidly 

formed and their dispersal through wind and rainfalls favours secondary infections, that may 

develop also on berries and stems. On berries, black rot forms brown areas surrounded by 

a b 

c d e 

Figure 1.2. Grapevine Gray mold (a,b) and Powdery mildew (c, d, 

e). a, b: “noble rot” on grapes; c, d and e: different symptoms of E. 

necator on leaf and bunches.  

Pictures a and b from Maack T., Rheingau, Germany, October 2005. 

Pictures c, d and e from the “Archive SafeCrop Centre”, Edmund 

Mach Foundation (FEM). 

https://en.wikipedia.org/wiki/Grape
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a black line margin with a flat or depressed central region. Picnidia are initially produced in 

the spot centre and, if not controlled, they number increase until the berry shrinks and 

becomes rotten (Fig. 1.3b) (Agrios 1997). 

 

1.1.3.4. Eutypa dieback 

Eutypa dieback is a wood decay disease caused by the ascomycete Eutypa lata. 

Symptoms do not usually appear until grapevines are at least six years old. Shoot symptoms 

are most evident during the beginning of the spring, with shoot arising from infected trunks 

being stunted with small chlorotic leaves (Fig. 1.3c-d) (Moller and Kasimatis 1978). Berries 

fail to develop or develop very poorly, inducing yield losses ranging from 30 to 60% on highly 

susceptible cultivars (Munkvold and Marois 1994). Eutypa dieback shoot symptoms are 

always accompanied by a canker, which often appears V-shaped in a cross-section of the 

perennial wood (Fig. 1.3c). Cankers progress toward the trunk, killing the distal portions of 

the grapevine, and eventually, the entire grapevine may die in an average period of 10 years 

after the initial infection (Pascoe, 1999, Gomès and Thévenot, 2009). Currently, there is no 

cure for Eutypa dieback.  

 

1.1.3.5. Esca 

Esca – also known such as “apoplexy” or “lack measles” – is a complex trunk disease 

involving at least five fungi: Fomitiporia punctata, Stereum hirsutum, Phaeoacremonium 

aleophilum, Phaeomoniella chlamydospora, and E. lata, which obstruct the vascular system 

(Larignon and Dubos 1997). It affects both young and older grapevines. Cross-section in 

infected trunks shows a central soft, white necrosis (touchwood), surrounded by a brownish 

hard zone. Typical symptoms on leaves consist of chlorotic, rounded or irregular spots 

between the veins or along the leaf margins (Fig. 1.3e) while dark, tiny spotting of the grapes 

is called “black measles” (Fig. 1.3f) (Mugnai et al. 1999). Esca develops slowly in the 

grapevine until the plant exhibits a sudden apoplectic decline, eventually killing the 

grapevine within a few days (Gomès and Thévenot, 2009). No chemical is currently available 

to control Esca disease.  



Chapter 1 

17 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.1.3.6. Crown gall disease 

Grapevine crown gall disease is caused by the bacterium Agrobacterium vitis; it can 

be defined as a biotrophic pathogen since it maintains a parasitic relationship with living 

tissues of the host to complete its lifecycle. Virulent strains of this bacterium induce the 

formation of tumorigenic structures at the site of infection for nutrient uptake (Fig. 1.4a), 

while necrosis and a HR-like response has been reported in grapevine roots and in non-

a b 

c d 

e f 

Figure 1.3. Grapevine Black rot (a, b) and wood decay disease (c-f). 

a and b: different symptoms of Guignardia biwellii on leaves and 

clusters. c and d: different symptoms of Eutypa lata on wood and 

shoots. e and f: typical foliar symptoms and berry spotting (measles) 

associated with Esca. 

Pictures a and b from Blancard D., INRA 2013; pictures c, d, e and f 

from Morales-Cruz et al. 2015. 
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host plants infected with this bacterium, respectively. The infection starts commonly through 

plant injuries, particularly by freezing and/or mechanical wounds, to favor the release of 

phenolic compounds that act as chemoattractants. These compounds activate the 

transcription of bacteria vir genes, whose products induce the transfer of the T-DNA into the 

host genome (Armijo et al. 2016). T-DNA sequences are involved in opine synthesis – 

afterwards catabolized by A. strains – and gall induction (Escobar and Dandekar, 2003).  

 

1.1.3.7. Pierce’s disease 

Pierce’s disease is caused by the gram-negative, xylem-limited bacterium Xylella 

fastidiosa. It is a disease that affects wine, table and raisin grape production. The symptoms 

of this disease can be severe, including leaf scorching (Fig. 1.4b), desiccated fruit, cordon 

die back, and finally grapevine death (Roper et al. 2007). This bacterium can be classified 

as a biotrophic pathogen, because it does not kill the host tissue until later stages of its life 

cycle. The optimum growth conditions are warmer environments close to 28˚C (Lieth et al. 

2011). X. fastidiosa is transmitted to new host plants by insect vectors, infects the grapevine 

creating a biofilm in xylem vessels that disrupts water and nutrients flow throughout it. This 

occlusion is composed by host gums, bacterial exopolysaccharide or degradation products 

from the host cell wall (Armijo et al. 2016).  

 

1.1.3.8. Fanleaf virus (GFLV) 

To date, 70 virus species able to infect the Vitis genus have been identified, causing 

at least 25 different diseases in grapevine (Martelli, 2014); one of the most representative 

species is the grapevine fanleaf virus (GFLV). This virus is transmitted by the dagger 

nematode Xiphinema index. It causes typical fan-leaf degeneration, leaf decline (Fig. 1.4c-

d) and reduced fruit quality. It causes abnormal bifurcations and deformations in the 

development of internodes on canes, which may result in the appearance of double or 

shortened internodes. In addition, GFLV is considered the major threat to grape industry 

due to its ability to reduce crop yield up to 80% depending on the isolate, the susceptibility 

of the grapevine variety and environmental factors (Martelli, 2014). 
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Figure 1.4. Grapevine crown gall disease (a), Pierce’s Disease (b) and 

fanleaf virus (c-d). a: tumorigenic structures on trunk caused by 

Agrobacterium vitis. b: leaf scorching caused by Xylella fastidiosa. c and d: 

leaf symptoms caused by fanleaf virus (GFLV).     

Pictures a and d from Canadian Food Inspection Agency, pictures b and c 

from www.fao.org.  

a 

c d 

b 

http://www.fao.org/
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1.2. GRAPEVINE DOWNY MILDEW 
 
 
1.2.1. Grapevine downy mildew life cycle 

DM is caused by the obligate biotrophic oomycete P. viticola (Berk. & M.A. Curtis) Berl. 

& De Toni, belonging to the order Peronosporales. P. viticola is a diploid, heterotallic 

pathogen (Wong et al. 2001) with asexual multiplication cycles over the period of grapevine 

vegetative growth and a sexual overwintering phase (Fig. 1.5). The former leads to 

production of spores for secondary infections, the latter to quiescent oospores for primary 

infections (Deacon J, 2006). It overwinters as oospores embedded in fallen leaves and other 

host tissues infected in the previous season. In spring, with temperature above 10°C and 

rain precipitation, oospores germinate and form an elongated germ tube terminating in a 

macrosporangium. The oospore nuclei migrate in this structure and – through mitotic 

divisions – the zoospores are formed. Afterwards, the zoospores are released and dispersed 

onto grapevine tissues by rain or wind (Spencer, 1981), but also relying on oospore human 

transfer for longer distances dispersal (Gobbin et al. 2003a). Zoospores swim in free water 

on the grapevine surface towards a stoma, where they lose flagella, encyst and secrete a 

glicoproteic extracellular matrice to attach to plant-surface (Grenville-Briggs and Van West 

2005). Zoospores then produce the appressorium and the germinative tube through the 

reallocation and synthesis of actin and tubulin (Riemann et al. 2002). The germinative tube 

penetrates through the stoma inside the host tissue and develops a substomatal vesicle. A 

primary hypha emerges from the vesicle, grows in the mesophyll, branches at intervals in 

specialized intracellular structures – named haustoria –, and gives rise to the intercellular 

mycelium (Unger et al. 2007). After a variable incubation time, sporulation take places during 

warm and humid nights. Sporangiophores, bearing sporangia, emerge through stomata. The 

sporangia, where zoospores are formed, detach and are dispersed by wind and rain splash 

to new host tissues, marking the start of a new infection cycle. These secondary cycles of 

infection, under favourable weather conditions, can occur repeatedly throughout the 

grapevine growing season (Gobbin et al. 2003a, Gessler et al. 2011) Towards the end of 

the growing season sexual reproduction occurs within the infected host tissue through the 

fertilisation of oogonia by antheridia (Wong et al. 2001, Deacon J, 2006). The resulting 

sexual spore is an oospore, which is the survival stage of the pathogen representing the 

primary inoculum for the next season, as well as a source of genetic variation (Deacon J, 
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2006). The organism is diploid in both sexual and asexual stages (Rumbou and Gessler, 

2003). 
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1.2.2. Grapevine downy mildew symptoms  

P. viticola infects all green parts of the host plant through the stomata. It generally 

causes yellow discoloration, necrosis and distortion. On young leaves, lesions appear as 

yellow, translucent “oil spots” with a chocolate-brown halo (Fig. 1.6a). Multiple oil-spots can 

coalesce to cover much of the leaf surface. Oil spots become dry and necrotic as they age, 

first in the centre and later throughout the entire lesion. Sporulation only occurs on the 

abaxial leaf surface, where the stomata reside (Fig. 1.6b); suited conditions for sporulation 

are saturating humidity (>93%) and temperatures of 18-20°C. The sporangiophores and 

sporangia appear as a white, downy, cottony growth. Under highly favourable conditions, 

sporulation may appear on the abaxial leaf surface before the yellow oil spot becomes visible 

Figure 1.5. Disease cycle of P. viticola, the causal agent of grapevine downy mildew (Berk. & M.A. 
Curtis) Berl. & De Toni. (from Buonassisi et al., submitted) 
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on the adaxial leaf surface. On older oil spots, sporulation occurs primarily on the margins 

of the lesion. On older leaves, the lesions are restricted by veins to form small, angular, 

yellow to reddish-brown spots, which combine to form a patchwork or mosaic-like pattern, 

especially towards autumn season (Fig. 1.6c) (Lafon and Clerjeau, 1988). 

Infected inflorescences and young berries appear yellow or grey and may be covered 

with cottony spores (Fig. 1.6d). Infected shoot tips and rachises of young inflorescences 

distort into a curl or corkscrew (Fig. 1.6e-f), and the sporulation can occur also on pedicels 

and berries (Fig. 1.6g-h). Clusters infected at an early stage can result in individual berries, 

sections of the cluster, or even entire clusters turning brown, drying and falling off the grapes. 

Berries infected later in the season (after 2-3 weeks post-bloom) become discoloured and 

shrivel but do not support sporulation; this stage is sometimes referred to as the “brown rot” 

phase (Fig. 1.6i) (Lafon and Clerjeau, 1988).  

Generally, resistant genotypes are characterized by necrotic points or flecks and little 

or absent sporulation on the leaf borders. The presence of necrotic tissue restricted to 

infection sites, indicates ongoing hypersensitive reaction (HR), which is a programmed 

cellular suicide triggered also by pathogen attack (Beers and McDowell 2001). HR is 

considered one of the most common and effective plant weapons to hamper biotrophic 

pathogen growth, though it facilitates infections by necrotrophics at the same time (Govrin 

and Levine, 2000) 
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Figure 1.6. Plasmopara viticola disease symptoms. a: “oil spot” on adaxial 
leaf surface; b: whitish gray mold on abaxial leaf surface; c: mosaic-like 
pattern on older leaves; d: gray mold on young inflorescence; e and f: curl 
or corkscrew structure on young inflorescence (e) and tendril (f); g and h: 
gray mildew form on unripe clusters; i: “brown rot” on ripe grapes. 
Pictures a,b, c and h from Peressotti, 2009. Pictures d, e, f, g and I from 
the “Archive SafeCrop Centre”, Edmund Mach Foundation (FEM). 
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1.2.3. Grapevine downy mildew disease control 

Depending on the environmental conditions, numerous clonal infection cycles may 

occur in one season seriously affecting the final grape yield and quality. Therefore, wine and 

table grape production is guaranteed by the massive use of fungicides. There are multiple 

pre- and post-infection chemicals available such as copper- and sulphur-based compounds. 

First applications are generally advised at 3-8 inches of shoot-growth, immediate pre-bloom, 

and post-bloom to protect the young inflorescences and fruit. For the remainder of the 

season, sprays may be based on a routine schedule (usually every 10-14 days) to maintain 

continuous protection of the vines. Alternatively, sprays may be based on disease risk as 

determined by weather conditions and forecasting models. Most computer-based 

forecasting models for DM management incorporate temperature, rainfall, relative humidity 

and leaf wetness. Simulators more complex incorporate information on host growth stage 

and varietal susceptibility (Lafon and Clerjeau, 1988, Viret et al., 2001). DM management 

must be rigorous in countries with temperate-humid climate conditions, such as eastern 

North America and parts of Europe, and during unusually wet seasons in dry locations such 

as California or Australia. It has been estimated that the European Union employs 68.000 

tons/year of fungicides to control grape diseases, equalling 65% of all fungicides used in 

agriculture, but only 3.3% of the EU arable soils are occupied by grapevine (Eurostat report 

2007).  

In lack of treatments and with favourable weather conditions DM can devastate up to 

75% of the crop in one season and weaken newly born shoots, causing a serious economic 

loss. Nevertheless, the repeated and massive use of fungicides leads to environmental 

pollution, development of resistance and residual toxicity and it fosters human health 

concerns (Pimentel, 2005). Some estimations indicate that less of 0.1% of fungicides applied 

to crops actually reach the intended pathogen. The remainder accumulates in soils, where 

it may filter into ground or surface water and prove toxic to microorganisms, aquatic animals 

and humans. Exposure of birds and bees to pesticides can cause reproductive failure, or 

even kill them directly in high enough doses. Domesticated livestock may also be affected 

by exposure to pesticides (Wilson et Tisdell, 2001). 

An alternative approach in DM management, with the potential to greatly reduce the 

pesticide application and thereby leading to a substantial contribution to viticulture 

sustainability, is represented by taking advantage of innate disease resistance/tolerance 

present in several wild American and Asian Vitis species. 
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1.2.4. Grapevine breeding for disease control 

 Targeted breeding activities started around the beginning of the nineteenth century, 

predominantly in North America. The colonists failed to grow the delicately flavoured V. 

vinifera vines, due to severe frost damage as well as the destruction of the grapes by pests 

or fungal diseases. On the other hand, the sturdy native American grapes produced strong-

flowered wines that they did not like. During the following decades, breeders selected a 

plethora of cultivars so-called “American hybrids”, among which Diamond. In Europe, 

resistant breeding was introduced in the second part of nineteenth century due to the 

introduction of Phylloxera vitifoliae and DM. Many private French breeders – so-called “direct 

producers” – started their own breeding programs creating thousands of new cultivars, but 

many of these failed. (reviewed in Eibach et Topfer, 2015). The so-called “French hybrids”, 

represent a highly valuable genetic resource carrying a combination of resistance and 

quality. Indeed, several breakthroughs have been achieved in grapevine resistance 

breeding during the 20th century when over 6,000 hybrids were registered in Europe. 

Unfortunately, most of these varieties did not succeed in the market due to poor wine quality 

or other agronomical factors (Pacifico et al. 2013). However in the last decades, newly bred 

wine grapevine cultivars, displaying field disease resistance and high wine quality, have 

been introduced in the market (Guedes de Pinho and Bertrand 1995), such as the Hungarian 

grapevine hybrid Bianca or the German Regent. Recently, many fungus-resistant grapevine 

varieties, presenting advantageous agronomic attributes and enological characteristics, 

have been developed in North America (named FRG) and Europe (named PIWI) for 

conventional and especially organic farming (Pedneault and Provost 2016). 
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1.3. PLANT-PATHOGEN INTERACTION  
 

Plants, unlike mammals, lack mobile defender cells and a somatic adaptive immune 

system. Instead, they rely on the innate immunity of each cell and on systemic signals 

emanating from infection sites. Indeed, to prevent diseases caused by pathogens, plants 

rely on a sophisticated defence mechanisms, able to detect the presence of potential 

pathogens and to activate a suitable response (reviewed in Chisholm et al. 2006, Jones and 

Dangl 2006, Dodds and Rathjen 2010, College and Williams, 2012; Fawke et al. 2015).  

 

1.3.1. The plant immune system 

To defend themselves against the different types of pathogens, plants have an array 

of structural barriers and preformed antimicrobial metabolites (Pieterse et al. 2009).  

Regardless from pathogen attack, so-called “constitutive defences” are generally referred to 

morpho-anatomical characteristics of grapevine organs such as leaf hairs, stomata and 

cuticular membrane (Muganu and Paolocci 2013). Among the “constitutive compounds”, the 

phytoanticipins are the most important and they are present before challenge by 

microorganisms or are produced after infection solely from preexisting constituents 

(VanEtten et al. 1994). Many pathogens succeed in breaking through this pre-invasive layer 

of defense. However, a broad spectrum of inducible plant defences can be recruited to limit 

further pathogen ingress.  

The first defence level, named Pathogen Associated Molecular Patterns (PAMP)-

Triggered Immunity (PTI), is a basal immune response activated by the recognition of 

conserved molecules (or patterns). Specific Pattern Recognition Receptors (PRRs), 

localized on the plasma membrane of plant cells, perceive the presence within the apoplast 

of pathogen and host-derived, released during infection (reviewed in Newman et al. 2013, 

Raaymakers and Ackerveken 2016). PAMPs are molecular patterns, usually exposed, 

present in molecules essential to the pathogen, and therefore highly conserved (Fig. 1.7a). 

Plant-derived patterns, also known as damage-associated molecular patterns (DAMPs), are 

released from the host as a result of the infection process. Damage perception and pathogen 

perception therefore act together in promoting PTI. Normally this first response is sufficient 

to defeat the invading microorganism, however some of them have become able to 

counteract PTI through the secretion of specific proteins called effectors, which can 

suppress the plant immune response and manipulate the physiology of the host cell to the 
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pathogen benefit, e.g. promoting nutrient leakage. (reviewed in Bozkurt et al., 2012). This 

phase is called effector-triggered susceptibility (ETS) (Fig. 1.7b). Successful pathogens are 

able to produce a broad range of effectors, extremely variable in structure and function, in a 

species- or race-specific way. Effectors can be apoplastic, functioning into the plant 

extracellular space, or cytoplasmic, translocated inside the plant cell (Kamoun 2006, Bozkurt 

et al. 2012) 

In turn plants evolved a second defence level, effector-triggered immunity (ETI), 

which relies on a second class of receptors, the resistance proteins (R), that recognize in a 

highly specific way the effectors presence and/or activity (Fig. 1.7c) (reviewed in Cui et al., 

2015). The majority of these R proteins are intracellular receptor proteins of the nucleotide-

binding leucine-rich repeat (NB-LRR) type (Cui et al. 2015). The recognition between 

effectors and R proteins results in a strong selective pressure for both the pathogen and the 

host plant. The pathogen endlessly tries to avoid ETI by diversifying its own effectors or by 

acquiring new ones. The plant in turn evolves new receptors so that ETI is triggered again. 

This coevolution, characterized by reiterating cycles of selection of new effectors and 

receptors, has been described as “zigzag” model by Jones and Dangl (2006). Whereas 

PPRs and PAMPs tend to be widely conserved, effectors and receptors are codified by non-

essential genes and thus can rapidly evolve (Dodds and Rathjen 2010). PTI and ETI defence 

mechanisms are similar, although ETI is generally considered faster, stronger and active for 

longer periods. Downstream of PTI and ETI signaling events, plants respond by activating 

a large number of integrated defence responses to arrest the pathogen. These defences 

include cell wall fortification through the synthesis of callose and lignin; the production of 

antimicrobial secondary metabolites, such as phytoalexins; and the accumulation of 

pathogenesis-related (PR) proteins, such as chitinases and glucanases, that degrade fungal 

and oomycete cell walls (Pieterse et al. 2009). The activation of ETI leads to disease 

resistance and is often associated to a cell death response localized at the infection site to 

prevent pathogen nutrition and growth. This reaction is called hypersensitive response (HR), 

characterised by the massive production and accumulation of reactive oxygen species 

(ROS), among which hydrogen peroxide (H2O2).  
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1.3.2. Hormone signalling 

Pathogen infection stimulates the plant to synthesize one or more hormonal signals 

depending on the type of attacker and regulating the defence network (De Vos et al. 2005). 

Biotrophic pathogens are generally sensitive to defence responses that are regulated by 

salicylic acid (SA), whereas defences that are controlled by jasmonic acids (JAs) and 

ethylene (ET) commonly deter pathogens with a necrotrophic lifestyle (Glazebrook 2005). 

The wound response and against insect herbivores is regulated by the JA signaling pathway 

as well (Howe, G.A. 2004, Pieterse et al. 2009). 

 

1.3.2.1. Systemic immunity 

Once plant defence responses are activated at the site of infection, a systemic 

defence response is often triggered in distal plant parts to protect these undamaged tissues 

against subsequent invasion by the pathogen. This long-lasting and broad-spectrum 

induced disease resistance is referred to as systemic acquired resistance (SAR)  (Durrant 

Figure 1.7. Simplified schematic representation of the plant 
immune system. (a) Pathogen-associated molecular patterns 
(PAMPs)-Triggered Immunity (PTI); b) Pathogen effectors 
(purple stars) that suppress PTI, resulting in effector-triggered 
susceptibility (ETS). (c) Resistance (R) proteins that recognize 
the effectors, resulting in a secondary immune response called 
effector triggered immunity (ETI). (from Pieterse et al. 2009) 
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and Dong, 2004) and is characterized by the coordinate activation of a specific set of PR 

genes, many of which encode for proteins with antimicrobial activity (Van Loon et al., 2006). 

The onset of SAR can be triggered by PTI- and ETI-mediated pathogen recognition and is 

associated with increased levels of SA, locally at the site of infection and or in distant tissues 

(De Wit, 1997, Mishina and Zeier, 2007, Pieterse et al. 2009)  

Beneficial soil-borne microorganisms, such as mycorrhizal fungi and plant growth–

promoting rhizobacteria, can induce a phenotypically similar form of systemic immunity 

called induced systemic resistance (ISR) (Van Loon, et al.,1998, Pozo et al. 2008). Like 

PAMPs of microbial pathogens, different beneficial microbe-associated molecular patterns 

are recognized by the plant, which results in a mild but effective activation of the immune 

response in systemic tissues (Van Wees et al.,2008, Bakker et al. 2007, Van der Ent et al. 

2008). In contrast to SA-dependent SAR, ISR triggered by beneficial microorganisms is 

often regulated by JA- and ET-dependent signaling pathways and is associated with priming 

for enhanced defence rather than direct activation of defence (Van Wees et al., 2008, 

Conrath et al. 2009, Pozo et al. 2008, Pieterse et al. 2009).  
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1.4. “OMICS” APPROACHES TO STUDY THE GRAPEVINE-

DOWNY MILDEW INTERACTION 

The development of controlled infection protocol and contemporary “omics” 

approaches (next generation sequencing/genomics, QTLomics, transcriptomics, proteomics 

and metabolomics) associated to comparative studies are shedding light into the early host 

responses to DM attack and into the complex plant defence mechanisms. In this section are 

presented the main “omics” approaches used to study grapevine-DM interaction.  

 

1.4.1. Phenomics  

In viticulture, DM represents a relevant case of dual epidemics. Dual epidemics are 

infections developing on two or several plant organs during the same cropping season. 

Agricultural pathosystems where they occur are often considerable, because the 

harvestable and valuable part is one of the organs affected (Savary et al. 2009). Grapevine 

dual epidemics are often difficult to manage, because prediction of the risk toward the 

harvestable grapes has been scarcely and only recently investigated (Savary et al. 2009, 

Calonnec et al. 2013, Vezzulli et al. submitted). In the symptom assessment procedure a 

crucial role is played by the ontogenic resistance, also termed age-related resistance, 

occurring in various organs. In particular, the fourth and fifth fully expanded leaves do not 

show ontogenic resistance yet, whereas the older leaves of the bottom of the grapevine 

shoots present a higher resistance to DM. Analogously, the grapevine phenological stage is 

of paramount importance for the DM response evaluation also on inflorescence/clusters. 

This is linked to the presence/absence of functional stomata (Nakagawa et al. 1980, Reuveni 

et al. 1998, Kennelly et al. 2005, Steimetz et al. 2012). 

P. viticola symptoms can be assessed by different methods: i) macroscopic and 

microscopic inspection, ii) image-based, staining and ultrastructural analyses, and iii) 

metabolomic profiling. 

 

1.4.1.1. Macroscopic and microscopic inspection  

Traditionally, evaluation of DM symptoms occur in untreated field upon natural 

infection. Vineyard evaluation is a relevant method for directly rating DM resistance because 

breeders want to ascertain resistance in field conditions (Kono et al. 2015). Most visual 
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observations are focused on the resistance and/or susceptibility to DM infections, at both 

foliage and cluster level, in different genetic backgrounds, from Vitis species and hybrids, 

through V. vinifera varieties, to clones (e.g. Demaree, 1937; Eibach et al. 1989, Basler and 

Pfenninger 2003, Cindric et al. 2003, Pavloušek 2012, Wan et al. 2007, Boso et al. 2011, 

Pacifico et al. 2013). Moreover, several studies have been performed comparing foliar 

assessments under field and laboratory conditions (e.g. Brown et al. 1999, Cadle-Davidson 

2008, Prajongjai et al. 2014). 

In the last two decades, it has been paid attention also to DM inoculation experiments 

in controlled conditions. These procedures are highly reproducible, supporting genetics and 

other disciplines that need to be independent from the environmental/field effect. As regards 

plants grown in greenhouse, in vivo artificial inoculations with DM spores have been 

performed mainly on woody cuttings to evaluate leaf response (e.g. Perazzolli et al. 2011, 

Boso et al. 2008, Gindro et al. 2006), meanwhile the other organs response is poorly studied. 

Another possibility to reproduce DM natural infections on entire plants consists of ex vivo 

artificial inoculations on regenerated individuals grown in growth chamber (Kortekamp and 

Zyprian 2003 and Deglène-Benbrahim et al. 2010). Most of the in vitro tests developed so 

far for DM symptom assessment are based on leaf disc bioassays: this procedure has the 

great advantage to standardize the phenotyping procedures and annotations (e.g. Staudt 

and Kassemeyer 1995, Boso and Kassemeyer 2008, Jürges et al. 2009, Peressotti et al. 

2010, Toffolatti et al. 2012). Indeed bioassays performed on tissues still attached to entire 

plants might be affected by non-homogeneous environmental conditions (e.g. light exposure 

in greenhouse) (Boso and Kassemeyer 2008, Kiefer et al. 2002, Cadle-Davidson 2008). 

Leaf disc bioassay results are robust predictors of field resistance/susceptibility at leaf level 

(e.g. Boso et al. 2014, Brown et al. 1999, Sotolář 2007), but little is known on other organs 

such as the inflorescences. 

All the experiments mentioned above have been performed based on 

visual/macroscopic and microscopic observations carried out using light microscopes and 

stereomicroscopes. To standardize the DM symptom assessment, annotations were 

executed mainly referring to three international codes supported by the European and 

Mediterranean Plant Protection Organization (OEPP/EPPO, 2001), the Organisation 

Internationale de la Vigne et du Vin (OIV, 2009), and the International Union for the 

Protection of New Varieties of Plants (UPOV, www.upov.int). EPPO code is based on two 

parameters: disease severity (DS; expressed as a percentage of the organ area showing 

symptoms of sporulation) and disease incidence (DI; calculated as the number of organs 
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with sporulation/total number of organs). By contrast, OIV and UPOV codes both refer to a 

discrete scale, but differently: the first rating system is based on five classes (1, 3, 5, 7 and 

9) ranging from the most susceptible (1, extended sporulation) to the totally resistant (9, no 

symptoms at all) genotype, while the second code is based on the same classes but with 

opposite meaning. An additional parameter that might be considered for DM resistance 

evaluation is the necrosis presence, although it is not considered a robust index since it can 

be associated to host and non-host resistance and could be affected by various 

physiological factors (Bashir et al. 2013, Heath 2000). Along with the DS parameter, the OIV 

descriptors are the most widely deployed. In particular, OIV 452 and OIV 453 are related to 

in field and in/ex vivo DM symptom evaluation on leaves and inflorescence/clusters, while 

OIV 452-1 refers to in vitro DM response assessment on leaf discs. To date, no OIV 

descriptors for in vitro DM symptom assessment on other organs is available.   

 

1.4.1.2. Image-based, staining and ultrastructural analyses 

To increase accuracy and improve precision of disease symptom assessment, image 

analyses were carried out using commercial software. At first, the leaf area occupied by DM 

spot on the not picked leaves was calculated using digital photographs and the analySIS 

3.0 software (Boso et al. 2004). Subsequently, to quantify the leaf disc area infected by the 

pathogen, an image analysis based on a semi-automatic and non-destructive method was 

developed, using the open source software ImageJ (Peressotti et al. 2011). Recently, 

Khiook et al. 2013 used ImageJ and Visilog 6.9 software to detect the sporulation on leaf 

disc surface infected by P. viticola, the leaf area colonized by the pathogen after aniline blue 

staining, and the percentage of the leaf area showing H2O2 accumulation. Moreover, staining 

analyses have been carried out to reveal the pathogen presence. The aniline blue 

fluorescence was the main method used for epifluorescence microscopy. P. viticola 

appeared as blue structures in the infected leaves (Hood and Shew, 1996, Unger et al. 2007, 

Díez-Navajas et al. 2006, Díez-Navajas et al. 2008, Boso et al. 2010), meanwhile the 

inflorescences, flower clusters and rachis are poorly investigated. Moreover, histochemical 

visualization was undertaken using the DAB staining technique based on polymerization of 

diaminobenzidine in presence of H2O2 and characterized by a reddish-brown coloration 

(Thordal-Christensen et al., 1997). Indeed, in the resistant genotypes H2O2 production is 

one of the defence mechanisms activated in the site of leaf infection (Trouvelot et al. 2008, 

Liu et al., 2014). Finally, transmission electron microscopy was used to observe cellular 
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interactions between P. viticola and grapevine leaf tissues (Musetti et al. 2005, Musetti et 

al. 2006). 

 

1.4.1.3. Metabolic profiling 

Metabolic profiling of host-pathogen (DM) interaction have been performed by 

measuring grapevine metabolites with various analytical instruments. The most studied 

compound class is represented by phenilpropanoids. δ-viniferin, a resveratrol dehydrodimer, 

produced in vitro by the oxidative dimerization of resveratrol by plant peroxidases or fungal 

laccases, was identified in wines and in grape cell cultures (Langcake and Pryce 1977). This 

compound was also detected by nuclear magnetic resonance (NMR), high-performance 

liquid chromatography-diode array detection (HPLC-DAD), and HPLC-mass spectrometry 

(MS) in grapevine leaves infected by DM. To rapidly evaluate the level of DM resistance at 

different time-points, the metabolic changes occurring during the interaction of P. viticola 

with two different cultivars – Regent (resistant) and Trincadeira (susceptible) – were 

investigated by NMR spectroscopy. Metabolites responsible for their discrimination were 

identified as a fertaric acid, caftaric acid, quercetin-3-O-glucoside, linolenic acid, and alanine 

having higher levels in the resistant hybrid, while the susceptible cultivar showed higher 

levels of glutamate, succinate, ascorbate and glucose (Ali et al. 2012). Furthermore, several 

biomarkers for the prediction of DM resistance and susceptibility at leaf level were identified. 

In particular, 16 individual metabolites – g-tocopherol, squalene, a-amyrine, stigmasta-3,5-

diene-7-one, hexahydrofarnesyl acetone, glycolic acid, 3-hydroxybutanoic acid, 3-

hydroxycaproic acid, malic acid, tartaric acid, erythronic acid, arabinoic acid, monoethyl 

phosphate, undecyl laurate and isopropyl myristate – were proposed as biomarkers for DM, 

as well as powdery mildew and botrytis foliar resistance (Batovska et al. 2008). To better 

understand the host–pathogen relationships, Becker et al. (2013) have recently evaluated 

also the direct flow injection by electrospray – Fourier transform ion cyclotron resonance MS 

of leaf extracts as a rapid method for the study of grapevine response to DM attack. The 

comparison of MS profiles obtained from control and infected leaves of different levels of 

resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl 

lipids, hydroxycinnamic acids derivatives and flavonoids). Statistical analyses of 19 

biomarkers showed a clear segregation between inoculated and healthy samples. In 

particular, relative high levels of disaccharides, acyl lipids and glycerophosphoinositol were 



Chapter 1 

34 
 

detected in inoculated samples; sulfoquinovosyl diacylglycerols also emerge as possible 

metabolites involved in plant defence. 

 

1.4.1.4. Genetics coupled with Genomics 

 
1.4.1.4.1. Grapevine 

 
To access the genetic variation required for grapevine breeding, the first step is the 

characterization of genetic resources, typically stored as ex situ collections. In the last two 

decades, a big attempt has been performed by the international grapevine research 

community that defined reference microsatellite (SSR) markers and analysis protocols to 

identify the true-to-type genotype (This et al. 2004, Maul et al. 2012) (Table 1.1). Molecular 

markers - microsatellites and single nucleotide polymorphisms (SNPs) - have also clarified 

the structure of genetic diversity making more accessible the vast germplasm collections for 

grapevine breeding programs (Bacilieri et al. 2013, Emanuelli et al. 2013). In addition, core-

collections which maximize the genetic diversity can be employed in ad hoc studies (e.g. Le 

Cunff et al. 2008; Nicolas et al. 2016). 

From the first grapevine genetic map (Lodhi et al. 1995) a long way has been 

undertaken: out of the numerous genetic (linkage) maps published, a consensus (Adam-

Blondon et al. 2004) and an integrated (Vezzulli et al. 2008) ones were chosen as a 

reference for chromosome/linkage group (LG) number and marker distribution. Concerning 

physical maps, whole genome ones were constructed for V. vinifera cv. Cabernet Sauvignon 

(Moroldo et al. 2008) and cv. Pinot Noir (Scalabrin et al. 2010), and represent a useful and 

reliable intermediary tool between a genetic map and the genome sequence. These 

research works culminated into the publication of two grapevine genome sequences: the 

near-homozygous line PN40024 (Jaillon et al. 2007) sequenced with the Sanger technology 

– thus chosen as the species reference genome, and the highly heterozygous Pinot Noir 

ENTAV115 clone (Velasco et al. 2007) resolved through Sanger shotgun sequencing and 

highly efficient sequencing by synthesis (SBS). Recently, a next-generation sequencing 

technology named Single Molecule Real-Time, along with associated bioinformatics tools, 

made possible the assembly of the phased Cabernet Sauvignon genome (Chin et al. 2016). 

Re-sequencing plays a pivotal role in deciphering the grapevine genome information, 

allowing the identification of an unlimited number of markers as well as the analysis of 



Chapter 1 

35 
 

germplasm allelic diversity based on allele mining approaches (Barabaschi et al. 2016). 

Several re-sequencing projects are now ongoing not only on V. vinifera cultivars, but also 

on Vitis hybrids. The complete determination of the V. vinifera genome sequence has led to 

the identification of putative resistance genes and defence signalling elements (Casagrande 

et al. 2011) as well as of nucleotide-binding site - resistant (NBS-R) gene clusters 

(Malacarne et al. 2012). With the introduction of deep sequencing, a complex gene family 

encoding nucleotide-binding leucine-rich repeat (NBS-LRR) proteins was identified, whose 

members have been isolated and characterized (Seehalak et al. 2011). However, full 

functional characterization of Vitis resistance gene analogs (RGAs) has not been widely 

reported (Fan et al. 2015). Under this perspective, the genomic sequence information of 

non-vinifera genotypes is of paramount importance because they carry several agronomic 

traits foreign to most vinifera varieties; these characteristics, which derived from the 

ancestral Vitis species, encompass resistance to biotic stresses, DM included.  

To dissect the genetic bases of DM resistance, various genotype-phenotype 

association approaches have been employed, from the traditional Quantitative Trait Loci 

(QTL) analysis (Table 1.2) till the studies based on pedigree information and inference (Di 

Gaspero et al. 2012, Peressotti et al. 2015). Genome Wide Association Studies (GWAS) 

and the last frontier of Genomic Selection (GS) are alternative strategies, borrowed from 

livestock breeding, which allow to study characteristics of interest with a polygenic base, 

such as grape and wine quality-related traits (reviewed in Di Gaspero and Foria 2015). Given 

the recent progress in genomics and DM phenomics, a more accurate and comprehensive 

characterization of the QTLs associated to DM resistance is possible. As proposed for other 

crops, it is appropriate to extend the “QTLome” concept also to grapevine. The QTLome of 

a specific trait is defined as the set of information describing all the experimentally supported 

QTLs for the desired characteristic in one species (Salvi and Tuberosa 2016). Nowadays, 

the amount of DM resistance QTLome information is vast, but how to convey this know-how 

to breeders and end-users needs to be improved.  

Genetics is now irreversibly coupled with genomics and together they have bolstered 

Marker-Assisted Selection (MAS) and Marker-Assisted Breeding (MAB) also in grapevine, 

a perennial crop hindered by long reproducing cycle and plant size. MAS allows to 

accelerate the breeding process through the selection of cultivars with high-quality features 

and considerable mildew resistance characteristics (Bundessortenamt 2008). Recent 

research has led to the genetic identification of different grapevine DM resistance loci, so-

called Rpv (resistance to P. viticola) (Table 1.2). An interesting case concerns Rpv3 locus 
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that is responsible for the onset of a hypersensitive response (HR) at the infection sites 

within 2 days post inoculation (dpi) into the hybrid Bianca. Localised necrosis was the 

earliest phenotypic difference compared to susceptible individuals, it did not halt pathogen 

growth, but it was associated with a significant reduction of pathogen performance and 

disease symptoms from 3 to 6 dpi (Bellin et al. 2009). HR against P. viticola in grapevines 

carrying the Rpv3 locus was associated to changes in expression of 33 genes, particularly 

the host reaction relied on transcriptional induction of the HR-associated gene HSR1 and 

salicylic acid-induced pathogenesis-related (PR) genes PR-1 and PR-2 during the initial 24–

48 h post-inoculation (Casagrande et al. 2011). However, Peressotti et al. (2010) 

demonstrated that a P. viticola isolate (isolate SL) specifically overcomes Rpv3 resistance, 

providing a putative example of emergence of a resistance-breaking isolate in the interaction 

between grapevine and P. viticola, and showing that a single resistance locus may not be 

sufficient for a durable resistance. Since the “pyramiding” of different resistance loci was 

described (Eibach et al. 2007), new cultivars were obtained with the breeding programs. The 

hybrid Solaris is an example of crossing between V. vinifera species and the Asian species 

V. amurensis, it presents the Rpv10 locus (Schwander et al. 2012). This locus confers DM 

resistance accompanied by necrosis (Boso and Kassemeyer 2008), callose deposition 

(Gindro et al. 2003) and stilbene accumulation (Gindro et al. 2006, Pezet et al. 2004) as 

activated defence mechanisms. Schwander et al. (2012) analysed a population derived from 

a cross between grapevine breeding line Gf.Ga-52-42 and Solaris consisting of 265 F1-

individuals, genetically mapped using SSR markers and screened for DM resistance. The 

F1 sub-population which contains the Rpv10 as well as the Rpv3 locus, showed a 

significantly higher degree of resistance, indicating additive effects by pyramiding of 

resistance loci.  

Among genotypes derived from Solaris, the half-sibs Cabernet Cortis (Cabernet 

Sauvignon x Solaris) and Muscaris (Moscato bianco x Solaris) inherited the Rpv10 - Rpv3 

loci and the Rpv10 locus, respectively (Vezzulli, pers. comm.)  
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Table 1.1. Known and available grapevine genetic profiles. 

Taxon 
Number of 
genotypes 

Molecular markers 
(Mm)1 

Mm reference literature Website Link 

  

Vitis vinifera N.D. 9 SSRs 
OIV 801, 802, 803, 804, 805, 
806, 807, 808, 809 

VIVC http://www.vivc.de/ 

 68 8 SSRs  
Bowers et al. 1999, This et al. 
2004 

GRIN http://www.ars-grin.gov/ 

 2500 13 SSRs  
Bowers et al. 1999, This et al. 
2004, Crespan 2003, Welter 
et al. 2007 

CREA-VIT 
unpub.  

http://catalogoviti.politicheagricole.it/catalogo.php 

  

Vitis hybrid N.D. 9 SSRs 
OIV 801, 802, 803, 804, 805, 
806, 807, 808, 809 

VIVC http://www.vivc.de/ 

 788 8 SSRs  
Bowers et al. 1999, This et al. 
2004 

GRIN http://www.ars-grin.gov/ 

 200 13 SSRs 
Bowers et al. 1999, This et al. 
2004, Crespan 2003, Welter 
et al. 2007 

CREA-VIT 
unpub. 

 

  

Vitis spp. 3355 9 SSRs  
OIV 801, 802, 803, 804, 805, 
806, 807, 808, 809 

VIVC http://www.vivc.de/ 

 N.D. 8 SSRs 
Bowers et al. 1999, This et al. 
2004 

GRIN http://www.ars-grin.gov/ 

 3500 13 SSRs  
Bowers et al. 1999, This et al. 
2004, Crespan 2003, Welter 
2007 

CREA-VIT 
unpub. 

 

  
1 Mm detailed list: 

9 SSRs: VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, VrZAG79, VVMD25, VVMD28, VVMD32 

8 SSRs: VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, VrZAG79, VVMD31, VVMD34 
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Table 1.2. The QTLome of the grapevine downy mildew resistance trait (information derived from and integrated based on 
VIVC). 
 
 

Symbol 
Associated 

marker 
Chromosom

e 
Parental genotypes 

Genotype of 
origin 

Resistance source 
species 

Reference 

Rpv1 

VVIb32 

12 

Syrah x 28-8-78 28-8-78 M. rotundifolia Merdinoglu et al. ( 2003) 

VMC1g3.2 
Kismish Vatkana x VRH30-82-1-42 VRH30-82-1-42 M. rotundifolia 

Katula-Debreceni et al. 
(2010) VMC8g09 

Rpv2   18 Cabernet Sauvignon x 8624 8624 M. rotundifolia 
Wiedermann- Merdinoglu 

et al. (2006) 

  UDV-112 

18 

Regent x Lemberger Regent   Welter et al. (2007) 

  UDV-305 
Chardonnay x Bianca Bianca   Bellin et al. (2009) 

  VMC7f2 

Rpv3-1 VMC7f2 Regent x RedGlobe Regent   van Heerden et al. (2014) 

(=Rpv3 299-279) UDV305 
  Seibel 4614 V. rupestris Di Gaspero et al. (2012) 

  UDV737 

  GF18-06 
GF.GA-47-42 x Villard blanc Villard blanc V. rupestris Zyprian et al. (2016) 

  GF18-08 

  UDV305 
  

Munson (Jaeger 
70) 

V. rupestris or V. 
lincecumii 

Di Gaspero et al. (2012) 
Rpv3-2 UDV737 

 (=Rpv3 null-297) GF18-06 
GF.GA-47-42 x Villard blanc GF.GA-47-42 

V. rupestris or V. 
lincecumii 

Zyprian et al. (2016) 
  GF18-08 

Rpv3-3 UDV305   Noah 
V. labrusca or V. 

riparia 
Di Gaspero et al. (2012) 

 (=Rpv3 null-271) UDV737 Merzling x Teroldego SV5-276   
Vezzulli et al. (in 

preparation) 

Rpv3 321-312 
UDV305 

  Noah 
V. labrusca or V. 

riparia 
Di Gaspero et al. (2012) 

UDV737 

Rpv3 361-299 
UDV305 

  Ganzin V. rupestris 

Di Gaspero et al. (2012) 

UDV737 

Rpv3 299-314 
UDV305 

  Ganzin V. rupestris 
UDV737 

Rpv3 null-287 
UDV305 

  
Bayard (Couderc 

28-112) 
V. rupestris or V. 

labrusca UDV737 
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Rpv4 
VMC7h3 

4 Regent x Lemberger Regent   Welter et al. (2007) 
VMCNg2e1 

Rpv5 VVIo52b 9 
Cabernet Sauvignon x V. riparia 

'Gloire de Montpellier' 
Gloire de 

Montpellier 
V. riparia Marguerit et al. (2009) 

Rpv6 VMC8G9 12 
Cabernet Sauvignon x V. riparia 

'Gloire de Montpellier' 
Gloire de 

Montpellier 
V. riparia Marguerit et al. (2009) 

Rpv7 UDV-097 7 Chardonnay x Bianca Bianca   Bellin et al. (2009) 

Rpv8 Chr14V015 14 
V. amurensis 'Ruprecht' x V. 

amurensis 'Ruprecht' 
Ruprecht V. amurensis Blasi et al. (2011) 

Rpv9 

CCoAOMT 

7 Moscato Bianco x V. riparia 'WR63' Wr63 V. riparia Moreira et al. (2011) IN0006 

SSCP 

Rpv10 GF09-46 9 Gf.GA-52-42 x Solaris Solaris V. amurensis Schwander et al. (2012)  

Rpv11 

VVMD27 

5 

Regent x Lemberger Regent   Fischer et al. (2004) 

CS1E104J11
F 

Chardonnay x Bianca Chardonnay   Bellin et al. (2009) 

VCHR05C Gf.GA-52-42 x Solaris Solaris   Schwander et al. (2012) 

Rpv12 

UDV-014 

14 

99-1-48 x Pinot noir 99-1-48            

V. amurensis Venuti et al. (2013)          
UDV-304 

rgvvin180 
Cabernet Sauvignon x 20/3 20/3 

UDV-370 

Rpv13 VMC1G3.2 12 Moscato Bianco x V. riparia 'WR63' Wr63 V.riparia Moreira et al. (2011) 

Rpv14 

GF05-13 

5 Gf.V3125 x Börner Börner V. cinerea 'Arnold' Ochssner et al. (2016) VMC9b5 

UDV111 

Rpv15   18 V. piasezkii (DVIT2027) x F2-35 
V. piasezkii 
(DVIT2027) 

V. piasezkii Pap et al. (in preparation) 

Rpv16           Pap et al. (in preparation) 
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1.4.1.4.2. Downy mildew 

In the grapevine-pathogen interaction, a pivotal role is also played by the DM 

pathovar. Effective control is mainly based on anticriptogamic treatments, although resistant 

strains to a number of fungicides have been reported. The resistance to chemical and 

organically-based fungicides has been used to characterize P. viticola isolates (Baudoin et 

al. 2008; Matasci et al. 2008). The study of this resistance transmission represents the 

earliest report about the inheritance of a phenotypic trait in P. viticola (Gisi et al. 2007). 

Subsequently, Blum et al. (2010) described for the first time the molecular mechanism of 

resistance to a carboxylic acid amide (CAA) fungicide. Sequencing of the CesA genes in a 

CAA-resistant and -sensitive field isolated strains identified five SNPs affecting the amino 

acid primary sequences of the cellulases; moreover one recessive mutation in PvCesA3 

causes inheritable resistance to the CAA fungicide mandipropamid. 

As regarding the genetic characterization of P. viticola isolates, several genotyping 

studies rely on SSRs. Gobbin et al. (2003a) developed four co-dominant, neutral, highly 

reproducible and polymorphic microsatellite markers, which revealed different degrees of 

polymorphism within several oil spots (disease symptoms) collected from an infected 

vineyard. SSRs allow the high throughput analysis of DM epidemics and the investigation of 

within- and among-population genetic structure of P. viticola worldwide (Gobbin et al. 2003b, 

Gobbin et al. 2006, Koopman et al. 2007, Mochizuki et al. 2012, Yin et al. 2014). In contrast 

to theories which propose a massive vineyard colonization by one genotype and long-

distance migration of sporangia, Rumbou and Gessler (2004) and Gobbin et al. (2005) found 

that epidemics of DM are caused by the interaction of several genotypes, each causing 

limited (or a few) lesions whilst a predominant genotype spreads stepwise at plot-scale. 

Additional seven SSR polymorphic loci were obtained from an enriched partial genomic 

library; cross-amplification tests on three closely related taxa indicated that two of these loci 

could be used in other oomycetes, proving to be useful for population genetic analysis 

across species (Delmotte et al. 2006). Later, 31 microsatellite markers, developed from 

microsatellite-enriched and direct shotgun pyrosequencing libraries of P. viticola, were 

optimized for population genetics applications (Rouxel et al. 2012). 

Lately, Delmotte et al. (2011) developed a battery of 34 new SNP markers from an 

expressed sequence tag (EST) library of P. viticola, providing useful additional genetic tools 

for population genetic studies of this important agronomic species. Based on four internal 

transcribed spacer (ITS) regions, Rouxel et al. (2013 and 2014) combined a phylogenetic 

and morphological approach with cross-pathogenicity tests and large-scale sampling to 
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investigate host plant specialization and host range expansion in grapevine DM. By cross-

inoculation experiments, the recent host range expansion of P. viticola from wild to cultivated 

grapevines was reconstructed, showing that it was accompanied by an increase in 

aggressiveness of the pathogen. 

These overall results will have important implications for viticulture, including 

breeding for resistance and disease management. Most recently, the P. viticola draft 

genome sequence have been released (Dussert et al. 2016), allowing the development of 

new molecular markers and also the increase in knowledge about DM genes. DM gene 

prediction and annotation can take advantage of the sequenced genomes within the 

Phytophtora genus, an oomycete phylogenetically very close to Plasmopara (Tyler et al. 

2006, Haas et al. 2009, Feau et al. 2016). This milestone opens the way towards the full 

understanding of the pathogen itself and in the grapevine-P. viticola interaction. 

 

1.4.2. Transcriptomics and Proteomics  

1.4.2.1. Grapevine  

Gene expression analyses on grapevine and DM interaction have been largely carried 

out with a targeted approach by quantitative reverse transcription Polymerase Chain 

Reaction (RT-qPCR) on candidate genes. The gene selection is based on physiological, 

histochemical or biochemical observations and on sequence homology with defence-related 

genes of other plant species, such as genes encoding pathogenesis related (PR) proteins 

or enzymes implicated in the phenylpropanoid biosynthesis (Kortekamp 2006, He et al. 

2013, Casagrande et al. 2011, Banani et al. 2014, Yu et al. 2016). This targeted approach 

highlighted stronger and faster up-regulation of defence-related genes (e.g. PR, callose 

synthase and enhanced disease susceptibility genes) in resistant as compared with 

susceptible genotypes in response to DM (Kortekamp 2006, He et al. 2013, Casagrande et 

al. 2011, Yu et al. 2016). Moreover, modulation of some key genes (e.g. flavonol synthase, 

leucoanthocyanidin dioxygenase and HR-associated gene) was observed exclusively in 

resistant genotypes after DM infection, suggesting the activation of specific resistance 

processes (Kortekamp 2006 and Casagrande et al. 2011). High throughput transcriptomic 

technologies allowed a better understanding of the transcriptional regulations of the 

grapevine response to DM, thus pinpointing key defence regulators to be used as candidate 

markers of grapevine resistance (Table 1.3A). A limited transcriptional modulation was 

detected in susceptible genotypes, reflecting the activation of an abortive defence response 
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(Polesani et al. 2010). Specifically, susceptible grapevines react to DM infection with a global 

down-regulation of photosynthesis-related processes and inadequate upregulation of genes 

encoding PR proteins, enzymes of phenylpropanoid pathways and regulators of response 

to stimuli (Polesani et al. 2008, Legay et al. 2011, Perazzolli et al. 2012, Vannozzi et al. 

2012). On the other hand, resistant grapevines are characterized by the strong expression 

of stress- and defence-related genes before inoculation (Figueiredo et al. 2008) and by the 

rapid activation of defence and secondary metabolic processes after inoculation (Polesani 

et al. 2010, Wu et al. 2010, Malacarne et al. 2011, Figueiredo et al. 2012). Interestingly, the 

response of resistant genotypes involved the specific modulation of genes encoding 

components of signal transduction cascades, markers related to HR, and genes implicated 

in stilbene and defence hormone biosynthesis. All these genes are not modulated in 

susceptible genotypes and can be therefore associated to the early perception of the 

invading pathogen and to the activation resistance mechanisms (Polesani et al. 2010, 

Malacarne et al. 2011, Figueiredo et al. 2012). The transcriptional response to virulent and 

avirulent P. viticola strains confirmed the specific activation of defence-related transcription 

factors, PR genes, and secondary metabolic processes (Li et al. 2015). Interestingly, 

defence processes, specifically implicated to contrast DM in resistant cultivars, can be 

primed in susceptible genotypes by inoculation/treatments with resistance inducers, such as 

a beneficial microorganism (namely Trichoderma atroviride T39) and laminarins (Perazzolli 

et al. 2012, Gauthier et al. 2014). Transcriptional response of grapevine to DM was mainly 

studied on leaves but to date, no transcriptomic study was carried out on the inflorescences. 

In addition to gene expression analyses, proteomic studies shed light into the plant-

pathogen interaction (Table 1.3B). Proteomic studies demonstrated increases in abundance 

of grapevine defence-related proteins at 24 and 96 hpi, suggesting a transient breakdown 

in defence responses at 48 hpi associated to the onset of disease development (Milli et al., 

2012). Furthermore, susceptible grapevine leaves accumulated allergenic defence-related 

proteins (PR-2 and β-1,3-glucanases; Rossin et al., 2015) and two glycoprotein implicated 

in the DM-induced deregulation of stomata during compatible interaction (Guillier et al., 

2015). Interestingly, changes in the leaf proteome differ in resistant and susceptible V. 

amurensis varieties, demonstrating a specific increase in abundance of PR-10 and a 

decrease of photosynthesis proteins and ATP synthase, in a tentative to restrict DM infection 

(Xu et al., 2015). Grapevine genetic backgrounds containing the Rpv1 and Rpv3 pyramided 

resistance loci, are recognizable for the high accumulation of proteins associated to the 

redox, protein and energy metabolism, as well as stress and defence response 
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(Nascimento-Gavioli et al., 2016). A coordinated modulation of primary metabolisms 

specified processes of pyramided resistance and glycolytic pathways increased at late 

infection stages possibly to cope with the energetic demand of the plant defence 

(Nascimento-Gavioli et al., 2016). Likewise, induction of grapevine resistance by leaf 

inoculations with T. atroviride T39 primed changes in abundance of proteins related to 

response to stress and redox homeostasis, indicating stimulation of resistance processes 

(Palmieri et al., 2012). Protein modifications are key processes of the plant immune system 

to rapidly perceive pathogen infection and properly activate the defence reaction (Tena et 

al. 2011). Specifically, compatible interaction is associated to phosphorylation changes of 

proteins related to photosynthetic processes and protein metabolism, while DM resistance 

induced by T. harzianum T39 revealed phosphorylation changes in signal transduction 

cascades, hormone signalling, and gene expression regulations (Perazzolli et al., 2016). 

Not only the host reaction plays a crucial role in the development of a compatible or 

incompatible interaction, but also the pathogen processes should be carefully taken into 

account. Pathogens rapidly evolve and can easily overcome plant resistance mechanisms 

(Jones and Dangl 2006); it has already been isolated a P. viticola strain able to overcome 

the Rpv3 barrier in the hybrid Bianca (Peressotti et al. 2010). This highlights the necessity 

to clarify the genetic determinants of P. viticola virulence. 
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Table 1.3. Overview of transcriptomic and proteomic studies to identify candidate marker genes for DM resistance. 

 

 Grapevine 
taxon 

Grapevine genotype 
(clone)  

Response1 Time point (hpi)2 Analysis3 Reference 

A V. vinifera Riesling S 2-3 weeks cDNA-AFLP Polesani et al, 2008 
 V. vinifera Chasselas S 24 SSH Legay et al., 2011 
 V. vinifera Pinot Noir S 0, 24 and 48 RNA-Seq Vannozzi et al., 2012 
 V. amurensis  Zuoshan-1 R 24 h for 9 days RNA-Seq Wu et al., 2010 
 V. vinifera Trincadeira 

S/R 0 Microarray Figueiredo et al., 2008 
 Vitis hibrid  Regent 
 V. vinifera Pinot Noir 

S/R 12 and 24 Microarray Polesani et al, 2010 
 V. riparia  Gloire de Montpellier 
 V. vinifera Pinot Noir 

S/R 0, 12, 24, 48 and 96 
cDNA-AFLP and 
microarray 

Malacarne et al., 2011 
 Vitis hibrid F1 21/66 
 V. vinifera Trincadeira 

S/R 0, 6 and 12 Microarray Figueiredo et al., 2012 
 Vitis hibrid  Regent 
 V. amurensis Shuanghong S/R 12, 24, 48 and 72 RNA-Seq Li et al., 2015 
 V. vinifera Pinot Noir S/IR 0 and 24 RNA-Seq Perazzolli et al., 2012 
 V. vinifera Marselan S/IR 12 Microarray Gauthier et al., 2014 

B V. vinifera Pinot Noir S 24, 48 and 96 Proteomics Milli et al., 2012 
 V. vinifera Marselan S 144 Proteomics Guillier et al., 2015 
 V. vinifera Pinot Noir S 96 Proteomics Rossin et al., 2015 
 

Vitis hibrid - R 24, 48 and 96 Proteomics 
Nascimento-Gavioli et al., 
2016 

 V. amurensis Shuangyou 
S/R 

0, 24, 72, 120 and 
168 

Proteomics Xu et al., 2015 
 V. amurensis Shuanghong 
 V. vinifera Pinot Noir S/IR 0 and 24 Proteomics Palmieri et al., 2012 
 

V. vinifera Pinot Noir S/IR 0 and 24 
Phospho 
proteomics 

Perazzolli et al., 2016 

 
1 Grapevine response to DM analysed by transcriptomics (A) and proteomics (B): response of susceptible genotypes (S), comparison of susceptible and resistant 
genotypes (S/R), and response of susceptible genotypes treated and not with resistance inducers (S/IR). 
2 Time point/s analysed after P. viticola inoculation expressed as hours post inoculation (hpi), except for Polesani et al. (2008), Wu et al. (2010). 
3 Details of the transcriptomic [amplified fragment length polymorphism (AFLP)-based transcript profiling (cDNA-AFLP), suppression subtractive hybridization 
(SSH), microarray or RNA-Seq] and proteomic analysis.   
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1.4.2.2. Downy mildew  

The majority of the studies done until recently to unravel the molecular basis of the 

interaction between grapevine and P. viticola depicted this interaction mainly from the host 

point of view. Very few investigations describe the pathogen side as a consequence of its 

obligate lifestyle. And yet the identification of the pathogen effectors, and the elucidation of 

the way in which they can break down plant defences, represents an essential step in 

understanding the biology of the interaction and in planning the breeding programs for 

disease resistance. The first attempts done led to the identification of single or few P. viticola 

genes potentially involved in pathogenesis. The pionerist study by (Werner et al. 2002) 

describes two chitin synthases genes (PvCHS1 and PvCHS2) differentially expressed 

during pathogen development. PvCHS1 is constitutively expressed, also in the leaves 

showing symptoms of the disease, suggesting a link with the phase of intercellular growth 

of the hypha. On the contrary, PvCHS2 is specifically expressed in sporangiophores and 

sporangia, and therefore probably mainly involved in the phase of dissemination of the 

infection. Blum et al. (2010) identified a family of four cellulose synthase genes potentially 

playing a role in host infection, since it was demonstrated that cellulose biosynthesis has an 

essential role in P. infestants pathogenesis (Grenville-Briggs et al., 2008). Luis et al. (2013), 

established the putative key steps of a successful colonization and cloned three genes 

theoretically involved in them, and potentially playing a role in pathogenesis: a NADH-

ubiquinone oxidoreductase (PvNuo), which could be important for the capacity of the 

encysted zoospore to produce energy before the establishing of the infection; a laccase 

(PvLac), possibly contributing to the infection through its detoxifying activity; an invertase 

(PvInv), which could be involved in the uptake of the nutrients from the host.  

The first large-scale investigation aimed to identify grapevine and P. viticola genes 

expressed during infection was performed by Polesani et al. (2008), which carried out a 

large-scale cDNA-AFLP analysis on infected grapevine leaves at the oil spot stage. Besides 

grapevine genes up- and down-regulated during infection, this work identified several 

pathogen transcripts, of which nine expressed in infected tissues and not in sporangia, 

suggesting a putative involvement in the infection process. In the last few years, with the 

introduction of next-generation sequencing technologies, the knowledge on oomycete 

effectors is greatly and rapidly improving. One of the first attempts to improve the public 

genomic resources available for P. viticola was carried out by Mestre et al. (2012), through 

the construction of cDNA libraries from in vitro germinated zoospores and infected grapevine 

leaves. Their analysis allowed the identification of genes potentially involved in the 
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pathogenic process, such as protein inhibitors, secreted hydrolytic enzymes, elicitor-like 

proteins and effectors. The expression profile of few of them (a INL11B-like elicitin, a protein 

with Kazal-like protease inhibitor fold and an RxLR protein) was characterized in different 

pathogen developmental stages. 

The first complete and detailed analysis of the secretome of P. viticola during the 

infection process was performed by Yin et al. (2015). RNA-Seq analysis of cDNAs from 

infected leaves, at different time points, for three different pathogen isolates, led to the 

identification of over 500 potential secreted proteins, representing the full repertoire of 

apoplastic and cytoplasmic effectors. A first preliminary analysis performed on very few of 

them showed that the majority possesses the capacity to suppress programmed cell death. 

This result was confirmed in a following study (Xiang et al. 2016). A group of 23 putative 

RxLR effector candidates was chosen in the secretome for better characterization. Their 

expression pattern was studied, together with their subcellular localization and their capacity 

to repress cell death induced by various elicitors. It was demonstrated that quite all of them 

target the plant nucleus and act as suppressor of programmed cell death. Recently, a more 

general analysis of the effectors present in the genus Plasmopara has been performed 

(Mestre et al. 2016). The transcriptome of P. halstedii and P. viticola, from in vitro germinated 

zoospores and inoculated plant material, was used to create a Plasmopara species cDNA 

database. The full set of effectors used by both species, identified through the screening of 

the database, was compared within them and with seven sequenced oomycete species, 

representative of Peronosporales and Albuginales. This analysis allowed the identification 

of two classes of effectors: the species-specific ones, probably involved in host specificity, 

and the conserved ones, probably necessary for pathogen biology.  

We are rapidly moving towards a comprehensive knowledge of the oomycete 

effectors. All the data produced until now highlight a really high complexity of the effector 

secretome, composed by several hundred proteins (Yin et al. 2015, Sharma et al. 2015). 

Future studies will require the identification of their host targets in order to understand the 

mechanisms of pathogenesis and disease and develop novel strategies to enhance 

grapevine resistance.  
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CHAPTER 2 

 

Development of a novel phenotyping method to assess 

downy mildew symptoms on grapevine inflorescences  
 

 

Abstract 

Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & 

Curt.) Berl. & de Toni, is one of the most important plagues affecting viticulture, especially 

in temperate rainy climates. P. viticola reduces fruit quality and yield, either by direct infection 

of berries or as a result of the reduction in photosynthesis and plant vigor caused by leaf 

infections. DM control is based on the repeated and massive use of fungicides, leading to 

problems such as environmental pollution, development of resistance and residual toxicity. 

The use of varieties showing durable resistance to DM is an alternative and promising 

strategy to control the disease. Nevertheless, most of the in vitro tests developed so far for 

DM resistance assessment are focused on leaf disc bioassays. This led us to consider that 

these tests might not always represent a proper evaluation and prediction of the disease 

symptoms extent on inflorescences/bunches and therefore on final yield and grape/wine 

quality. Therefore, based on the screening of nine Vitis hybrids, we developed a new in vitro 

phenotyping method to assess the disease extent on inflorescences at different phenological 

stages, along with a novel annotation descriptor (proposed OIV 453-1). Secondly, we 

combined this approach with the optimized leaf disc bioassay and found a general positive 

correlation between organ DM resistance phenotypes. Finally, we found that Cabernet 

Cortis could be a model to study divergent dual (on leaf and inflorescence) epidemics in 

downy mildew. 

 

 

Journal article re-submitted to Plant Disease  

Buonassisi D., Cappellin L., Dolzani C., Velasco R., Peressotti E.*, Vezzulli S.*  

"Development of a novel phenotyping method to assess downy mildew symptoms on grapevine 

inflorescences"      



Chapter 2 

59 
 

2.1 INTRODUCTION 

The evaluation of germplasm collections is a prerequisite for their employment in crop 

improvement. Vast genetic resources are available for crop plants, although to date few of 

them have been phenotypically well characterized. Precise and standardized phenotyping 

procedures of morphological and physiological - as well as abiotic/biotic stress tolerance 

and quality - traits have been always playing a crucial role in traditional breeding activities. 

Up to know, robust phenotypic data represent the major limiting resource to complement the 

current wealth of genomic information. The promise of using inexpensive sequencing 

technology to speed up plant breeding is being achieved with a vision of genomics-assisted 

breeding that will lead to hasty genetic gain for money-consuming and complex traits 

(Poland, 2015). Bust in plant phenomics, namely the study of plant growth, performance and 

composition, can sort out the phenotyping bottleneck. As regards herbaceous species, a 

wide range of tools is now accessible for high-throughput, fully automated and low-resolution 

phenotyping, facilitating the process of trait characterization, gene tagging and genotype 

development essential to release a new crop variety. By contrast, within woody species 

lower-throughput measurements with higher-resolution are feasible, affordable and thus 

desirable (Furbank and Tester, 2011).  

Among fruit trees, grapevine is cultivated worldwide for the production of mostly wine, 

fresh fruit and raisins, and thus plays a pivotal role in the economy of many countries. 

Unfortunately, viticulture is endangered by numerous pathogens. Among those of primary 

importance, Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is an obliged 

biotrophic pathogen which causes downy mildew (DM) to members of the Vitaceae family, 

in particular to the most cultivated species Vitis vinifera L. It was introduced in Europe in the 

1870s, probably with the acquisition of American rootstocks resistant to Phylloxera used for 

grafting the susceptible European varieties (Viennot-Bourgin, 1949). Since then, grapevine 

DM has expanded across European regions and it is currently present in grape growing 

areas around the world, especially in temperate-humid climates. 

All green plant tissues can be attacked. First symptoms generally come out as green-

yellow lesions (also called oil spots) on the leaf surface. Suited conditions for sporulation 

are saturating humidity (>93%) and temperatures of 18-20°C. Sporulation can be observed 

on the abaxial side of the leaf and on the surface of tendrils, inflorescence and young berries. 

The oomycete overwinters as sexually produced oospore in fallen leaves and berries. In 

spring, with temperature above 10°C and rain precipitation, the oospores germinate and 

produce macrosporangia which release zoospores. Generally, 5–10 days after the infection, 
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depending on the temperature, DM produces sporangia containing asexually produced 

zoospores. Secondary disease cycles can take place under appropriate infection conditions 

which are similar to those suitable for primary infections (Gobbin et al., 2003). Depending 

on the environmental conditions, numerous clonal cycles may occur in one season leading 

to abrupt increase in disease severity with a disastrous impact on the yield. The organism 

is diploid in both sexual and asexual stages (Rumbou and Gessler, 2004). 

Worldwide, the predominant strategy to control the disease is based on the use of 

pesticides. The repeated and massive application of chemical products not only entails huge 

expenses to grapevine production, but also leads to problems such as environmental 

pollution, development of resistance and residual toxicity. All these aspects foster human 

health concerns.  Thus, the search for alternative approaches in the DM management is of 

paramount relevance for viticulture (Peressotti et al., 2010). The deployment of resistant 

Vitis hybrids showing durable resistance to DM is a promising strategy to control the 

pathogen (Topfer et al., 2011). Nevertheless, most of the in vitro tests developed so far for 

DM resistance assessment are focused on leaf disc bioassays (e.g. Staudt and 

Kassemeyer, 1995; Cadle-Davidson et al., 2008; Prajongjai et al., 2014) but not always 

represent a proper evaluation and prediction of the disease extent on grapevine 

inflorescence/bunch and therefore on final production and quality. Indeed the organ-specific 

nature of susceptibility to DM in some cultivars makes it complicated to deduce resistance 

in foliage to fruit and vice versa (Kennelly et al., 2005).  

In this work we firstly developed a new in vitro phenotyping method (from infection to 

symptom evaluation) for DM resistance assessment on grapevine inflorescence, 

considering three different phenological stages. To obtain a practical and reliable assay to 

be employed mainly for breeding purposes, we compared this method with field performance 

(in vivo) of several genotypes. Thus, we identified the E-L 17 stage as the most reliable and 

suitable for in vitro evaluations. At this stage we screened all genotypes, in parallel with the 

established leaf disc bioassay (in vitro) (e.g. Peressotti et al., 2011), to compare the different 

pathogen responses between leaf and inflorescence collected from plants in an untreated 

field at Edmund Mach Foundation (FEM). We identified a case of DM divergent dual 

epidemics in Cabernet Cortis. Finally, we validated our results performing the same DM 

resistance assessment also on organs detached from fruiting cuttings grown in phytotron; 

our optimized fruiting cutting agronomic technique turned out to be crucial for the early 

evaluation of late-developing traits in grapevine, such as flowering. 
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2.2. MATERIALS AND METHODS 

2.2.1. Plant material  

The studied genotypes were chosen on the basis of their susceptibility, tolerance and 

resistance to DM as determined in previous field observations using the OIV 452 and OIV 

453 descriptors for leaves and inflorescences, respectively (OIV, 2009). These two organs 

were collected from three plants of 9 Vitis hybrids and a V. vinifera variety grown in an 

untreated experimental field at FEM. In particular, inflorescences were harvested at three 

phenological stages (17, 25 and 29) of the Eichhorn-Lorenz (E-L) scale (Eichhorn and 

Lorenz, 1977); the phenological stage term is peculiar of grapevine and refers to the 

developmental stage (Mullins et al., 1992). In addition, for one relevant Vitis hybrid and one 

reference V. vinifera variety, the two organs were detached from fruiting cuttings grown 

under controlled conditions in phytotron (Table 2.1).  
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Table 2.1. The 11 studied grapevine genotypes, followed by their taxon, releasing country, FEM origin and in vivo preliminary information 

on downy mildew organ response level (mean of each studied phenological stage during 2012-2013). 

 

Genotype (clone) Taxon 
Releasing 
country 

FEM origin  

E-L 17 stage E-L 25 stage E-L 29 stage 
Preliminary DM response level in untreated 

field (in vivo) 

L I L I L I Leaf (L) Inflorescence (I) 

OIV 
452 

OIV 
453 

OIV 
452 

OIV 
453 

OIV 
452 

OIV 
453 

Average 
OIV 452 

Definition 
Average 
OIV 453 

Definition 

Pinot Gris 
(SMA514) 

Vitis 
vinifera 

Italy Field 3 4 3 1 2 1 2.67 Susceptible 2 Susceptible 

MW14 
Vitis 

hybrid 
Austria Field 5 3 3 3 3 1 3.67 Susceptible 2.33 Susceptible 

16-02-102 
Vitis 

hybrid 
Italy/Austria Field 3 5 3 1 1 1 2.33 Susceptible 2.33 Susceptible 

Aromera 
Vitis 

hybrid 
Italy/Austria Field 7 8 5 6 5 6 5.67 Tolerant 6.67 Tolerant 

Bianca 
Vitis 

hybrid 
Hungary Field 7 6 7 7 7 5 7 Tolerant 6 Tolerant 

Bronner 
Vitis 

hybrid 
Germany Field 9 9 9 9 9 8 9 Resistant 8.67 Tolerant 

Jasmin8/1 
Vitis 

hybrid 
Hungary Field 8 9 9 9 9 9 8.67 Resistant 9 Resistant 

Muscaris 
Vitis 

hybrid 
Germany Field 8 7 7 6 7 7 7.33 Tolerant 6.67 Tolerant 

Regent 
Vitis 

hybrid 
Germany Field 7 7 7 8 7 7 7 Tolerant 7.33 Tolerant 

Cabernet Cortis 
Vitis 

hybrid 
Germany Field/Phytotron 7 3 7 5 7 5 7 Tolerant 4.33 Susceptible 

Pinot Noir 
(ENTAV115) 

Vitis 
vinifera 

France Phytotron - - - - - - - - - - 
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2.2.2. Fruiting cutting production 

In order to obtain fruiting cuttings, namely cuttings producing inflorescences and 

bunches within 4-6 months, a step-by-step protocol was optimized. Uniform hardwood 

cuttings were collected at pruning time from well-ripened dormant canes. The cuttings were 

sealed in plastic bags and stored under refrigeration (4°C) until required (Mullins, 1966). In 

the first step, called “pre-rooting”, the vine stock were cut at four or six nodes (N), based on 

the length of the internodes, and rehydrated in water for 24h at 30°C (Ollat et al., 1998); the 

bud from N0 was eliminated, treated with IBA (indol-3-butirric acid) 1000ppm for 30 seconds 

and potted in rock wool (Mullins and Rajasekaran, 1981). Cuttings were grown in a 

thermostatically controlled heated container (27°C at the bases of the cuttings) in a cold 

room (4°C). The moisture was kept by spraying water twice a week. Roots were produced 

by the cuttings, while buds remained dormant. After eight weeks the rooted cuttings were 

potted in the soil and transferred to the phytotron under controlled conditions: temperature 

at 27°C during day and 22°C during night, photoperiod 16/8h (light/dark) and RH 60%. At 

bud burst, leaves basal and adjacent to inflorescences were removed as soon as accessible 

and the shoot tip was excised (Antolin et al., 2010). These practices promoted inflorescence 

growth in a terminal position on the defoliated shoot. Thus, a lateral shoot was permitted to 

grow from one of the axillary buds proximal to the inflorescence. This shoot provided the 4-

6 leaves to support the subsequent growth of the inflorescences. Per each genotype six 

fruiting cuttings were finally grown (Fig. S2.1).  

 

2.2.3. Leaf disc in vitro bioassay upon downy mildew infection   

Per each genotype, the fourth and fifth leaves under the shoot apex were detached 

from three individuals and rinsed with distilled water. Eight leaf discs of 2cm in diameter 

were excised from the six bulked leaves, paying attention to avoid veins, with a cork borer 

and plated onto wet paper in Petri dishes with the abaxial side up. Four leaf discs (replicates) 

were sprayed with P. viticola inoculum suspension at 1 × 105 sporangia ml-1 concentration 

(6,250 sporangia on each disc), while the remaining four were mock-inoculated (distilled 

water). P. viticola inoculum, named PVL-2012, derived from a collection on V. vinifera 

susceptible varieties in an untreated field. Petri dishes were incubated at 21°C in dark 

conditions for 48h in a growth chamber and then placed under light with a photoperiod of 

16/8h (light/dark) for 7 days (Bellin et al., 2009). Susceptible Pinot leaf discs were employed 

as a positive control. Disease progress was monitored from 4 to 7 day post-infection (dpi) 
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and the degree of infection was quantified according to the level and the density of 

sporulation.  

Inspiring to the OIV 452-1 descriptor (OIV, 2009), discs were scored with an overall 

parameter considering the disease symptom extent (Dis), and a specific parameter 

evaluating the density of sporangia (Sd) within leaf disc sectors yielding sporulation, 

irrespectively of the total area covered by sporulation (Bellin et al. 2009). Classes were 

named 1, 3, 5, 7 and 9 from the most susceptible to the totally resistant genotype. Necrosis 

presence (Nec) was also evaluated, based on an opposite scale (Fig. 2.1). Furthermore, 

annotation was optimized creating an integrated index (Int = √Dis*Sd) to resume more 

precisely the phenotype in a single value, thus facilitating comparisons and statistical 

analysis. Pictures of leaf discs were taken from 4 to 7 dpi using a digital camera (Canon 

EOS40D) in optimized artificial light conditions at constant focal length. Pictures were taken 

removing the lid from the Petri dish and each picture included the 4 leaf discs from the same 

genotype. Images were stored in a jpeg format and processed using the open source 

software ImageJ version 1.43q (http://rsb.info.nih.gov/ij/) with a semi-automatic 

quantification of sporulation (Peressotti et al., 2011). The results were plotted versus the 

number of dpi and finally, based on the latter, the AUDPC (Area Under Disease Progress 

Curve) was calculated, in order to assess also the progress of the disease during the time. 
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2.2.4. Inflorescence in vitro bioassay upon downy mildew infection 

To define the most effective infection method on inflorescence, two pilot studies were 

carried out during the spring 2014. Inflorescences, along with some leaves, of a susceptible 

genotype (Pinot Gris) were detached from plants at the E-L 17, 25 and 29 phenological 

stages grown in untreated field. They were divided in four groups with three replicates each: 

the first set was infected by spraying a P. viticola sporangia suspension, while the second 

one was mock-sprayed; the third group of inflorescences was infected by soaking in a P. 

viticola suspension, while the fourth one was mock-soaked. In particular, several 

combinations of soaking time and spore concentration were tested (data not shown). To 

confirm the presence of the pathogen in the tissues, a series of staining tests were carried 

out using a sporulated leaf disc as a reference. 

In accordance to the most effective and successful infection trial, during the spring 

2015 P. viticola inoculation assays were extended to an average of five (minimum three, 

maximum eight) inflorescences at each of the three studied phenological stages; they were 

Fig. 2.1. Classes of Dis (disease extent), Sd (sporulation density) and Nec (necrosis presence) 

parameters. Dis and Sd classes ranged 1, 3, 5, 7 and 9 from the most abundant to the totally 

absent sporulation. Conversely, Nec classes ranged 1, 3, 5, 7 and 9 from the total absence to 

the most abundant presence. 
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detached from each field- or phytotron-derived genotype of interest represented by three 

plants. The Pinot cultivar was considered as a positive control. An average of three (from 

two to four) inflorescences (replicates) were soaked with PVL-2012 suspension (1 × 104 

sporangia ml-1) for 2h to allow spore adhesion and germination, while the remaining were 

mock-inoculated. After infection, the inflorescences were placed in sterile boxes with the 

peduncle inserted in 1% agar covered with sterile wet filter paper. This step was essential 

to keep inflorescences alive. Then they were incubated at 21°C in dark conditions for 48h in 

a growth chamber and placed under light with a photoperiod of 16/8h (light/dark) for 7 days. 

Infected inflorescence tissues (flower clusters and rachis) were stained using the KOH-

aniline blue fluorescence method (Díez-Navajas et al., 2007; Hood and Shew, 1996) with 

some modifications. To assess the KOH efficiency in discolouring plant pigments, flower 

clusters and rachis were individually and simultaneously incubated at 90°C in 1M KOH in 

distilled water, in 1.5 ml microtubes, for 5 min in a thermo-block (Eppendorf Thermomixer 

Comfort). The incubation was followed by three 15 min washes in distilled water and stained 

with 0.05 % aniline blue in 0.067M K2HPO4 (pH 9–9.5). The samples were examined under 

blue/violet light with a fluorescence microscope (Leica LMD 7000, excitation wavelength 

400–440 nm, emission wavelength 475 nm). 

Visual observations and pictures of DM symptoms were carried out at 2 and 6dpi 

using a stereomicroscope (Leica MZ16F). Two parameters derived from the OIV 453 

descriptor, for grape cluster DM resistance in field (OIV, 2009), were assigned: Dis, 

distribution of P. viticola on the total length of the inflorescence, and Sd, sporulation density 

of P. viticola considering each single spot. Classes were named 1, 3, 5, 7 and 9 according 

to the degree of resistance, where the higher is the class the stronger is the resistance. As 

for leaf disc assessment, the Int (√Dis*Sd) index was introduced. 

A new quantification method for a low number of sporangia ml-1 (≤ 1.5×104) was 

developed, testing first leaf discs and then analysing inflorescences. Upon addition of 1 mL 

of dH2O, each sample was mixed and inflorescence tissues were eliminated through 

filtration. Thus a first number of sporangia was estimated with Malassez’s counting chamber. 

After centrifugation at 3,000 rpm for 10 min, 700 µL of dH2O were discarded and a second 

count of sporangia was performed. 

 

2.2.5. Statistical analysis 

Statistical analyses were carried out using in-house developed routines written in R 

language (R Development Core Team. R: A Language and Environment for Statistical 
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Computing. Vienna, Austria, 2009. http://www.R-project.org.). Comparisons of variable 

mean values between two groups of samples (or between a group and a reference value) 

were performed via the parametric t-test (p<0.05), after testing normality and homogeneity 

of variances (i.e. homoscedasticity) by Shapiro-Wilk test and Levene’s test, respectively. In 

case of heteroscedasticity of the data, a modified t-test (Welch’s t-test) which obviates to 

this problem was used, while in case of non-normality the non-parametric Wilcoxon Rank 

Sums test was employed. Uncertainties of mean values were computed as standard errors. 

Correlations were assessed via Pearson's correlation coefficients, also computing the 

relative p-values to determine significance (p < 0.05). 

 

2.2. RESULTS 

2.3.1. Field-derived leaf disc downy mildew resistance assessment 

According to the preliminary definition of DM resistance level in untreated field (Table 

2.1), upon leaf disc infection the susceptible genotypes had few points of infection (medium-

high Dis) with low density of sporulation (medium-high Sd), while the tolerant/resistant ones 

were characterized by absence or almost of the disease (high Dis and Sd) at 4dpi. The 

situation resulted opposite for the necrosis presence: tolerant/resistant genotypes showed 

high levels (high Nec), while susceptible ones presented low levels (low Nec). Compared to 

4dpi, at 7dpi the trend for susceptible genotypes was similar presenting strong disease 

sporulation and sporulation density (medium-low Dis and Sd). Indeed, the resistant 

genotypes had different values characterized by a weak disease sporulation and sporulation 

density, while the necrosis were subjected to a general increase. Mock samples had the 

same behaviour at 4dpi and 7dpi presenting score 9 for both Dis and Sd and 8 or more as 

Nec average value (Fig. 2.2). Moreover, linear correlations between the Dis parameter at 

7dpi on leaf disc and the corresponding OIV 452 descriptor on foliage revealed that leaf disc 

bioassay results are significantly associated to the in vivo DM response at foliar level (Table 

2.2A). 

Based on the developed leaf disc Int index at 7dpi, all genotypes of interest were 

divided in 4 classes, following a parametric test (p ≤ 0.05). An Int value higher than 7 defined 

the resistant genotypes (R), higher than 5 the mid-resistant ones (MR), lower or equal to 5 

the mid-susceptible ones (MS), and lower than 2.5 the susceptible (S) ones (Table 2.3). No 

genotype fell into the S class; the positive control Pinot Gris resulted in MS class. At 4dpi 

(early stage of the pathogen development) all genotypes did not show any DM response 
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symptom. The leaf disc Dis and Sd parameter confirmed the Int-based classification (Table 

S2.1).  

Development of the necrosis (Nec) at both 4dpi and 7dpi was not statistically 

significant on resistant genotypes compared to mock samples. Indeed, based on the 

calculated AUDPC, which resumes the progress of DM from 4dpi to 7dpi, a low but 

significant (p ≤ 0.05) variation was detected among genotypes. In the MS genotypes the 

increase of sporulated surface was relevant; for example in the V. vinifera cv Pinot Gris it 

significantly increased from the 0.06% to the 11.08% (p ≤ 0.001). In the MR genotypes there 

was a low but significant increase; for example in the Vitis hybrid Cabernet Cortis the 

sporulation trend was almost flat, from 0.01% to 1.05% (p ≤ 0.05) (Fig. 2.3 and Fig. S2.2). 
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Fig. 2.2. Leaf disc in vitro bioassay results based on the average of the three evaluated parameters. dpi: days post-infection, Dis: disease 
extent, Sd: sporulation density, and Nec: necrosis. 
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Table 2.2. Correlations between the evaluated parameters on leaf (disc) and inflorescence at three phenological stages in all studied 

genotypes. Panel A: between the OIV 452/453 descriptors observed in vivo and the corresponding Dis parameters recorded in vitro at 

leaf and inflorescence level. Panel B: between the OIV 452 and the OIV 453 descriptors observed in vivo respectively in leaf and 

inflorescence (─ = not significant, * p  0.05, ** p  0.01, *** p  0.001, / = not calculated). 

 

A 

Infection 
condition 

  In vitro (field-derived organs) 

 
Phenological 

stage 
 E-L 17 E-L 25 E-L 29 

  Organ Leaf (disc)              Inflorescence Leaf (disc)              Inflorescence Leaf (disc)              Inflorescence 

In vivo 

E-L 17 
Leaf                            r = 0.85 (**) / / / / / 

Inflorescence  r = -0.06 (─) r = 0.92 (***) / / / / 

E-L 25 
Leaf                            / / r = 0.85 (**) / / / 

Inflorescence  / / / r = 0.29 (─) / / 

E-L 29 
Leaf                            / / / / r = 0.68 (*) / 

Inflorescence  / / / / / r = 0.29 (─) 

B 

Infection 
condition   

In vivo 

 
Phenological 

stage 
 E-L 17 E-L 25 E-L 29 

  Organ Inflorescence  Inflorescence  Inflorescence  

In vivo 

E-L 17 Leaf                            r = 0.68 (*) / / 

E-L 25 Leaf                            / r = 0.93 (***) / 

E-L 29 Leaf                            / / r = 0.94 (***) 
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Table 2.3. Classification of the 11 studied genotypes into four DM response classes at leaf (disc) level, based on the integrated index 

scores. S: susceptible, MS: mid-susceptible, MR: mid-resistant, and R: resistant (─ = not significant, * p  0.05, ** p  0.01, *** p  0.001). 

 

Genotype 
Threshold > 

7 

Threshold > 

5 

Threshold < or = 

5 
Threshold < 2.5 

DM 

response 

level 

16-02-102 ─ ─ *** ─ MS 

Aromera ** *** ─ ─ R 

Bianca ─ *** ─ ─ MR 

Bronner *** *** ─ ─ R 

Cabernet 

Cortis 
─ *** ─ ─ MR 

Jasmin8/1 ─ *** ─ ─ MR 

Muscaris * *** ─ ─ R 

MW14 ─ ─ * ─ MS 

Pinot Gris ─ ─ *** ─ MS 

Regent *** *** ─ ─ R 
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2.3.2. Field-derived inflorescence downy mildew resistance assessment  

Upon the two pilot studies, the samples infected spraying the pathogen sporangia 

rotted very quickly, while the soaking method did not affect plant tissues. Therefore, the 

latter infection method was preferred for the following P. viticola inoculation assays. The 

phenotypic observations of the sporulation on inflorescences showed four satisfying 

combinations of soaking time and spore concentration. The one representing the right 

compromise between technical time employed and good level of sporulation on positive 

control was chosen as the best infection method (Table S2.2). The presence of the pathogen 

in the tissues of the positive control was confirmed by staining tests. At 6dpi in Pinot Gris 

the mycelium growth was widespread as well as the sporangia and spores were visible, 

while in the mock samples there was absence of sporulation (Fig. 2.4). Subsequently, this 

successful infection method was extended to field-derived inflorescences of all genotypes 

of interest at the three studied E-L phenological stages. Different degrees of disease 

symptoms were observed both on the total length of the inflorescence and on single spots. 

This led to the creation of a scale that is an adaptation of the in vivo OIV 453 descriptor in 

order to describe the different rates of downy mildew response upon an in vitro infection 

(Fig. 2.5).  

 

Fig. 2.3. Percentage of leaf disc sporulated surface on one mid-susceptible V. vinifera variety (Pinot 

Gris) and one mid-resistant Vitis hybrid (Cabernet Cortis) upon downy mildew (PVL-2012) infection 

versus mock-inoculation, at different days post-infection (dpi). 
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Based on the developed inflorescence Int index at 6dpi, it was not possible to perform 

a classification using a parametric test due to a lack of variance in most studied genotypes 

at each studied phenological stage. At the same time, it was relevant to define at which 

developmental stage the inflorescences were more reactive to the pathogen attack under in 

vitro conditions. Linear correlations between the inflorescence Dis parameter at 6dpi and 

the corresponding OIV 453 descriptor (preliminary data) demonstrated that inflorescence in 

vitro assay results significantly reflect the in vivo DM response at inflorescence level only at 

the E-L 17 phenological stage (Table 2.2A). Therefore, this developmental stage resulted to 

be the most robust and suitable for in vitro evaluations out of the three considered ones. 

Based on the latter DM response assessment, genotypes were assigned to classes 

following the four thresholds set for leaf discs. In particular, Aromera, Bronner, Jasmin8/1 

and Muscaris revealed to be R, Bianca, Regent, 16-02-102, MW14 and Pinot Gris were MR, 

Fig. 2.4. Pilot study staining results on leaf disc, flower and rachis of Pinot Gris upon downy mildew 
(PVL-2012) infection and mock-inoculation at 6 dpi (top picture 5X zoom; bottom picture 20X zoom). 
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while Cabernet Cortis resulted MS. As in the case of leaf disc bioassay, no genotype was 

classified as S. The inflorescence Dis parameter confirmed the Int-based classification, 

while Sd provided MW14 and Cabernet Cortis with inconsistency, ascribing them to the MR 

class instead of MS (Table S2.1).  

Upon staining tests, in the inflorescence of MS genotypes, such as Cabernet Cortis, 

the hyphae and mycelium were recognizable and the sporangia and spores were clearly 

visible, while in MR genotypes, such as Regent, the mycelium and the sporangia were 

present but only in some spots. In the rachis of MS genotypes the germ tube under stoma 

and the sporangia were present, while in MR genotypes no structure attributable to the 

pathogen was present (Fig. S2.3). The number of sporangia counted at 6 dpi varies with the 

growth of the inflorescence based on the genotype. Between the first and the second count 

there was a significant linear correlation, respectively with r = 0.71, r = 0.81 and r = 0.97 (p 

≤ 0.05) (Fig. S2.4).  
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Fig. 2.5. Classes of Dis (disease extent) and Sd (sporulation density) parameters. Class 9: 

absent sporulation on the overall inflorescence (no infected flower, n=0%) and no attack. 

Class 7: rare sporulation on the overall inflorescence (limited number of infected flowers, 

n<30%) and single spot attacks. Class 5: widespread sporulation on the overall 

inflorescence (fair number of infected flowers, 30%<n<50%) and low dense attacks. Class 

3: abundant sporulation on the overall inflorescence (high number of infected flowers, 

50%<n<80%) and locally dense attacks. Class 1: highly abundant sporulation (very high 

number of infected flowers, n>80%) and very dense attacks. 
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2.3.3. Comparison between field-derived leaf disc and inflorescence 
disease response 

 Linear correlations between leaf (disc) and inflorescence Int indexes (in vitro) 

confirmed that the E-L 17 stage (flower button formation) is the most robust and suitable for 

DM response assessment under in vitro conditions, being the only one out of three to present 

a significant positive correlation (r = 0.62, p ≤ 0.05) between the two organs. This is in 

contrast to the natural (in vivo) infection condition where the two organ results showed a 

significant positive correlations at all three studied developmental stages (Table 2.2B). 

Focussing on this crucial phenological stage, we compared the leaf Int results with both 

inflorescence Dis and Sd in order to understand if they had a similar trend. A significant 

positive correlation was found in both cases (r = 0.62, p ≤ 0.05). Indeed, the AUDPC leaf 

values did not significantly correlated with the inflorescence spore counts. According to the 

calculated Int standard errors, genotypes classified as MR or R at leaf level had also R 

inflorescences; genotypes with MS leaves presented S inflorescences except for Cabernet 

Cortis, carrying MR leaves and MS inflorescences, and unexpectedly Pinot Gris, displaying 

MS leaves and MR inflorescences (Table S2.3). Finally, linear correlation between leaf (disc) 

Dis parameter (in vitro) and inflorescence OIV 453 descriptor (in vivo) at the E-L 17 stage 

was not significant (Table 2.2A). 

 

2.3.4. Phytotron-derived leaf disc and inflorescence downy mildew 
assessment 

To verify the unexpected Pinot Gris DM response at inflorescence level and confirm 

that the hybrid Cabernet Cortis had a significantly different response between leaf (MR to 

DM) and inflorescence (MS to DM) also under controlled conditions, we detached organs 

from produced fruiting cuttings (E-L 17 stage) grown in phytotron. Thus, we screened them 

upon P. viticola infection and mock inoculation, according to the in vitro phenotyping 

methods employed for field-derived organs. As a positive control we used Pinot Noir which 

is well known to have both leaf and inflorescence susceptible to the pathogen attack.  

Based on Int results at 7 dpi, Cabernet Cortis as well as Pinot Noir presented a 

significant (p ≤ 0.05) induction upon DM infection at leaf level (infected vs mock), although 

they actually showed an Int value of 5.16 (MR) and 3.94 (MS), respectively. Nec and AUDPC 

values showed the same significant results. Analogously, at inflorescence level (infected vs 

mock) these genotypes presented a similar significant (p ≤ 0.05) response to P. viticola, 
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although resulting to have MS (Int = 4.12) and S (Int = 2.24) inflorescences, respectively. 

Moreover, considering the comparison between infected organs within the same genotype, 

Cabernet Cortis presented a significant difference in DM response, while Pinot Noir did not 

show a significant response variation between foliage and inflorescences (Table 2.4A and 

Table S2.1). 

At foliar level Cabernet Cortis and Pinot Noir showed a significantly different response 

upon DM infection, resulting to be MR and MS respectively according to their mean Int, in 

agreement also with AUDPC and Nec values. Concerning inflorescences, these two studied 

genotypes did not show significant differences, given their similar Int values ascribing them 

to the MS and S class, respectively (Table 2.4B and Table S2.1).  

Finally, according to Int scores, field-derived leaf (disc) and inflorescence of  Cabernet 

Cortis did not show significant differences in DM response from phytotron-derived organs. 

Indeed, Pinot did not show significant discrepancy at leaf level, while revealed a significance 

difference at inflorescence level between field-derived and phytotron-derived samples (Int = 

6.20 and 2.23, respectively) (Table S2.1 and Table S2.4A and S2.4B).  
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Table 2.4. Comparisons between the evaluated parameters on leaf (disc) and inflorescence 

of genotype of interest. Panel A: different organs within the same genotype, Cabernet Cortis 

and Pinot Noir. Panel B: the same organ between Cabernet Cortis and Pinot Noir. Int: 

integrated index, Nec: necrosis, AUDPC: area under disease progress curve (─ = not 

significant, * p  0.05, ** p  0.01, *** p  0.001, / = not calculated). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

  

Organ 

Leaf (disc)                                                                 

(Infected vs Mock) 

Inflorescence                         

(Infected vs Mock) 

Leaf (disc)-Inflorescence                

(Infected vs Infected) 

Parameter Parameter Parameter 

Genotype Int Nec AUDPC Int Int 

Cabernet 

Cortis 
*** *** *** ** * 

Pinot Noir *** *** *** *** ─ 

B 

Genotype   Pinot Noir 

Organ   Leaf (disc) (Infected) Inflorescence (Infected) 

Parameter Int Nec AUDPC Int 

Cabernet 

Cortis 

Leaf (disc) 

(Infected) 

Int *** / / / 

Nec / ** / / 

AUDPC / / *** / 

Inflorescence 

(Infected) 
Int / / / ─ 
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2.4. DISCUSSION   

2.4.1. The in vitro foliage disease response variability   

In agreement with the preliminary field observations, the present inoculation 

experiments carried out on leaf discs confirmed a different degree of susceptibility and 

resistance to P. viticola among genotypes. This observation is in agreement with a number 

of previous studies focused on the in vitro screening of inter-specific hybrids, highlighting 

that non-vinifera materials are not all tolerant or resistant to mildews (e.g. Staudt and 

Kassemeyer, 1995; Prajongjai et al., 2014). The leaf disc in vitro test was based on the 

fourth and five fully expanded leaf, which do not show ontogenic resistance, also termed 

age-related resistance (AAR), yet (Steimetz et al., 2012). In fact, the older leaves of the 

bottom of the grapevine shoots present a higher resistance to DM (Reuveni, 1998) and PM 

(Doster and Schnathorst, 1985) than the younger ones.  

As concerning the employed phenotypic parameters, Int has been chosen as a leaf 

resuming factor of both disease symptom extent and density, providing a reliable genotype 

classification. Given the uniformity of the leaf disc surface, the Int, Dis (comparable to OIV 

452-1) and Sd release a consistent class at 7dpi (data not shown). The Nec parameter was 

not considered a robust index of resistance because of its instability; in fact necrosis 

observation was more difficult at 7dpi, probably due to the growth of the sporangiophores 

and sporangia that partially cover the leaf disc surface; besides hypersensitive reaction, it 

can generally be associated to both to host and non host resistance and could be affected 

by various physiological factors (Bashir et al., 2013; Heath, 2000). This study was also 

characterized by the calculation of the AUDPC parameter, which resumes the disease 

progress from 4dpi to 7dpi, based on an image analysis optimized procedure. This semi-

automatic screening method enabled to obtain a uniformly detected %spor (although 

underestimated for intrinsic reasons), representing an attempt to allow for standardized 

comparisons among different studies. The %spor, a measure of disease severity according 

to EPPO (OEPP/EPPO, 2001), represents a linker to compare current results with previous 

findings on leaf disc bioassay. At present, this method is established in terms of infection 

protocol, but is not uniform in term of annotation procedure. Imaging methodologies are 

currently under increasing use within the grapevine community committed in disease 

resistance assessment (e.g. Kicherer et al., 2015; Petrovic et al., 2014; Poutaraud et al., 

2007), depending on the expansion of image-based phenotyping of plant disease symptoms 

(Mutka and Bart, 2015). For instance, image analysis-based techniques, such as imaging of 

chlorophyll fluorescence, have been applied to monitor the advancement of disease 
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symptoms at leaf level for some years (Scholes and Rolfe, 2009). Besides the phenomic 

screening for biotic stress tolerance, a range of imaging techniques are also being employed 

as rapid, non-destructive and reliable tool to record data for quantitative studies of complex 

traits related to the yield (Millan et al., 2016), growth and adaptation to abiotic stress (Li et 

al., 2014). Our study finally demonstrated that the in vitro leaf disc results (Dis) have a 

significantly positive correlation with the in vivo foliage disease response (OIV 452). This 

aspect confirms that the leaf disc bioassay is a robust predictor of field 

resistance/susceptibility at leaf level, as previously reported in literature (Boso et al., 2014; 

Brown et al., 1999; Sotolář, 2007). By contrast, our observed in vitro-in vivo correspondence 

is not consistent with the lack of correlation between leaf disc infection and natural infection 

in the vineyard reported by Cadle-Davidson (2008). This fact can be explained by their in 

vitro use of single-isolate inoculations compared to the actual inoculum derived from a mix 

of isolates collected in untreated vineyards. Actually, DM variability has been investigated 

from both the genetic (e.g. Schröder et al., 2011), the phenotypic (e.g. Gómez-Zeledón et 

al., 2013), and the combined (Delmotte et al., 2014) points of view. 

 

2.4.2. The new in vitro inflorescence phenotyping method 

Analogously to leaves, inflorescences showed a phenotypic variability range among 

genotypes upon DM in vitro infection. This observation is consistent with studies mainly 

reporting on field trials (e.g. Pacifico et al., 2013, Boso et al., 2004, Boso et al., 2011); in 

fact, the DM response on grapevine inflorescences has not been deployed in vitro or barely 

mentioned, without highlighting the protocol employed under controlled conditions. For 

instance, Gindro et al. (2012) observed successful infections on detached clusters of several 

cultivars at BBCH 53 (namely E-L 12) stage when functional stomata were present, while 

no infections were observed after this stage when stomata were closed-like. This is in 

agreement with our findings which revealed how the grapevine phenological stage is of 

paramount importance for the DM resistance in vitro assessment at inflorescence/bunch 

level. The significantly positive correlation between in vivo-in vitro results revealed that the 

most reliable and suitable stage is the E-L 17, corresponding to flower button formation. This 

stage is supposed to largely anticipate the onset of the ontogenic resistance against P. 

viticola, although this aspect is still uncertain. In fact, it has been suggested that this type of 

resistance is associated with loss of the infection court as stomata are converted to lenticels, 

but beginning time and seasonal variation in ontogenic resistance has remained unclear at 

flower/berry level. Particularly in vivo, the time of onset and following expression of this age-
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related resistance to P. viticola may be affected by weather conditions and should be 

pondered in transferring results from a climatic area to another one (Kennely et al., 2005). 

Moreover, cultivar variation dramatically impacts on the ontogenic resistance degree. P. 

viticola infects only through colonization of stomata, which are known by several studies to 

vary in number on the berry surface at anthesis among cultivars. This micro-morphological 

difference could be responsible for the different pathogen penetration capability (e.g. Bessis, 

1972, Bernard, 1977, Nakagawa et al., 1980).  

Therefore, these considerations led us not to exclude the possibility that different 

genotype reactions at inflorescence level can be due to this issue, underlining the necessity 

and the relevance of in vitro test that partially gets rid of environmental effects and enhances 

the cultivar contribution, from both the genetic and the morphological point of view. Unlike 

evaluation in vineyard, at in vitro level no standardized protocol is available for 

inflorescence/bunch downy mildew resistance assessment. In the same vein of the 

corresponding OIV 452-1 on leaf discs (herein comparable to Dis), we first developed the 

putative OIV 453-1 descriptor (herein referred as Dis) on grapevine inflorescence that is 

currently under evaluation by the OIV agency (Vezzulli S., pers. comm.). Although the OIV 

code has not been worldwide adopted yet – it has a European preference – it has been 

recently translated in Chinese (http://www.oiv.int).  

This novel protocol and proposed OIV descriptor represent a relevant breakthrough 

within the grapevine and also for the plant disease resistance phenotyping community. We 

also updated protocols for pathogen spore counting in case of small quantities. ImageJ or 

particle counters are reported to be efficient to differentiate susceptible from resistant 

genotypes or to investigate in detail high and medium susceptible ones (Peressotti et al., 

2011; Delmotte et al., 2014). Unfortunately, in case of high resistant genotypes or small 

sporulated samples, as inflorescences, these tools are not the most reliable. In fact, the 

background noise is too high to allow a fine and precise resolution on few sporangia to count. 

To overcome this issue, we inspired from the protocol used by Weßling and Panstruga 

(2012) and developed a reliable and cost effective method to enable spore counts in case 

of low sporulation or small sampling material. 

Unlike in leaf, Dis provided a different class information from Sd parameter, the latter 

being more impacting for the evaluation of DM response on inflorescence. This outcome 

could be ascribed to the lack of uniformity of the inflorescence surface compared to leaf disc. 

Int is in agreement with Dis which turned out to be the most reliable parameter for the DM 

resistance assessment at inflorescence level. Based on the latter, the inflorescence in vitro 
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assay results significantly reflect the in vivo DM response (OIV 453) at inflorescence level 

(E-L 17 stage) supporting the reliability of our novel phenotyping method. In particular, unlike 

in leaf, it is relevant to notice that in vitro tested field-derived inflorescences of Pinot Gris 

resulted less susceptible than the in vivo ones. This can be ascribed to the fact that 

grapevine organs, in particular inflorescence under growth, are challenged by abiotic and 

also biotic stress in untreated field and can be pre-alerted and thus respond with minor 

efficacy to the following in vitro assay (Bellin et al., 2009). In fact, this assumption is 

demonstrated by comparing field- and phytotron-derived in vitro results where Pinot Noir 

resulted fully susceptible. Consequently, these observations revealed the relevance of 

sampling inflorescences from plants grown and producing under controlled conditions. From 

this point of view, our optimized agronomic technique leading to the production of flowering 

cuttings in 3 months turned out to be crucial in grapevine, since it is a fruit crop species with 

long reproducing cycle. An alternative to flowering/fruiting cutting production is represented 

by the use of microvine, a dwarf stature, short generation cycle and continuous flowering 

genotype derived from the pure L1 of Pinot meunier (Boss and Thomas, 2002). Anyway, the 

microvine needs to be crossed with the desired genotype to transmit it the early and 

continuous flowering phenotype; this step can encounter inter-fertility problems and is time-

consuming with the aim to assess disease resistance at inflorescence level.  

 

2.4.3. Phenotype predictability based on a single organ evaluation  

Organ A in vivo vs organ B in vivo. At all three studied phenological stages, we found 

general significant positive correlations between leaf and inflorescence organ in vivo. 

Anyway, interestingly, an organ distinctiveness in DM response emerged in the clear case 

of Cabernet Cortis, along with few cases presenting subtle phenotype differences. This can 

be considered a case of divergent dual epidemics, which are described as infections 

differently developing on two or more plant organs during a growing season. Agricultural 

pathosystems where they occur are often relevant, because the harvestable and valuable 

part corresponds to one of the affected organs (Savary et al., 2009). In terms of harvestable 

organs, grapevine is emblematic given the relevance of grape itself and as a number of 

derived commodities and transformed products, among which wine is the noblest one. 

Unlike the single leaf organ of various Vitis genetic backgrounds (e.g. Gobbin et al., 2003; 

Koopman et al., 2007; Rouxel et al., 2012), characterization studies on pathogenic races 

derived from different organs within the same genotype have not been performed yet. 

Therefore, we cannot exclude this possibility to explain the found divergent dual epidemics 
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in Cabernet Cortis. In regards to this, the resistance genetic nature is of paramount 

importance: vertical resistance (qualitative, specific resistance, or hypersensitivity) is usually 

monogenic and effective only for a subset of pathogen races, while horizontal resistance 

(quantitative, non-specific, or general resistance) is partial or polygenic and thought to be 

effective against all races of the pathogen (da S Pereira et al., 2012). Cases of divergence 

in intra-genotype DM response have been phenotypically evaluated in field. For instance, 

Basler and Pfenninger (2003) found high resistance to Johanniter clusters and low 

resistance on leaves. Further, Kennely et al. (2005) observed that the inter-specific hybrid 

cv. Chancellor had highly susceptible fruits, but foliage was nearly immune; by contrast, the 

inter-specific hybrid cv. Delaware had highly susceptible foliage, but fruits were rarely 

infected. Lately, Savary et al. (2009) also reported on a non-linear modelling and logistic 

regression indicating non-linearity in the in vivo foliage–cluster relationships in the case of 

grapevine DM. This aspect is crucial in grapevine breeding to combine foliage and cluster 

resistance.  

Organ A in vitro vs organ B in vivo. Our findings highlighted that in vitro leaf disc 

bioassay was not predictive (no significant correlation) of the in vivo inflorescence/bunch 

phenotype. Although barely comparable, given the different statistical approach, this result 

is in agreement with Calonnec et al. (2013), who reported on the reliability of grapevine leaf 

bioassays for predicting DM resistance on fruit in the field only above the threshold of OIV 

452-1 = 5. In fact, our sample set encompasses genotypes with the corresponding Dis 

parameter ranging in average from 3.50 to 8.75 at leaf disc level. Moreover, it should be 

considered that different DM resistance-related (R) loci (Rpv1 and Rpv3) were present in 

the genetic background of their studied Muscadinia rotundifolia and Regent-derived 

genotypes, compared to the various R loci (Rpv3, Rpv10, Rpv12) inherited in our studied 

genotype pool (VIVC, 2015; Vezzulli S. pers. comm.). 

Organ A in vitro vs organ B in vitro. The new in vitro phenotyping method developed 

to evaluate DM response on inflorescences allowed us to compare in vitro assessments of 

both leaf and inflorescence DM response. Focussing on the E-L 17 phenological stage, we 

found a general significantly positive correlation comparing the field-derived leaf Int results 

with both inflorescence Dis and Sd. By contrast, the AUDPC leaf values did not significantly 

correlate with the inflorescence spore counts; this is expected since, as quantitative 

parameters, they evaluate different aspects. AUDPC reflects the progress of the pathogen 

sporulation in time, while the spore count is the number of sporangia in a precise moment 

post-infection. Looking at the resulted phenotypes in depth, Cabernet Cortis showed MR 
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leaves and MS inflorescences. The latter represents an interesting result, confirmed by 

organs derived from controlled conditions as well, and corroborates the diverse DM 

epidemiological behaviour at organ level previously observed in vivo, making Cabernet 

Cortis a valuable model to study divergent dual epidemics.  

To date, several transcriptomics studies on DM response have been reported at foliar 

level (e.g. Polesani et al., 2010; Perazzolli et al., 2012; Li et al., 2015), but no research works 

have been reported to dissect the disease response at inflorescence/bunch level. In 

conclusion, our optimized and developed phenotyping strategies are of practical interest not 

only for breeding applications, but also preparatory to genetics-genomics, transcriptomics 

and metabolomics studies. 
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2.6. APPENDIX 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

Fig. S2.1. Fruiting cutting production. Panel A: the studied E-L 17 stage, 

Panels B: the studied E-L 25 stage, Panel C: the studied E-L 29 stage. 
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Fig. S2.2. Percentage of leaf disc sporulated surface on eight Vitis hybrids upon downy 
mildew (PVL-2012) infection versus mock treatment, at different days post-infection (dpi). 
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Fig. S2.3. Extended study staining results on flower and rachis of the mid-susceptible Cabernet Cortis 

and the mid-resistant Regent upon downy mildew (PVL-2012) infection at 6 dpi (top picture 5X zoom; 

bottom picture 20X zoom). 

Fig. S2.4. Spore quantification on inflorescences upon downy mildew infection at the most 
reactive E-L 17 phenological stage. 
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Table S2.1. Scores of the three evaluated parameters on field- and/or phytotron-derived leaf and inflorescence of the 11 studied 

genotypes. dpi: days post-infection, Dis: disease impact, Sd: sporulation density, and Int: integrated index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Field-derived Phytotron-derived 

Genotype Organ (detail) dpi Mean Dis Mean Sd Int Mean Dis Mean Sd Int 

16-02-102 leaf (disc) 4 6.83 7.33 7.08 - - - 

MW14 leaf (disc) 4 8.08 8.42 8.25 - - - 
Pinot Gris or Noir leaf (disc) 4 7.58 7.58 7.58 5.29 6.21 5.73 
Aromera leaf (disc) 4 9 9 9 - - - 
Bianca leaf (disc) 4 8.42 8.42 8.42 - - - 

Bronner leaf (disc) 4 9 9 9 - - - 
Cabernet Cortis leaf (disc) 4 8.75 8.75 8.75 6.57 7.21 6.89 
Jasmin8/1 leaf (disc) 4 8.67 8.58 8.62 - - - 
Muscaris leaf (disc) 4 8.75 8.75 8.75 - - - 
Regent leaf (disc) 4 9 9 9 - - - 

16-02-102 leaf (disc) 7 3.50 4.67 4.04 - - - 
MW14 leaf (disc) 7 4.25 5.37 4.75 - - - 
Pinot Gris or Noir leaf (disc) 7 4 3.50 3.74 3.57 4.36 3.94 
Aromera leaf (disc) 7 7.58 7.67 7.62 - - - 
Bianca leaf (disc) 7 6.83 6.83 6.83 - - - 
Bronner leaf (disc) 7 8.75 8.75 8.75 - - - 
Cabernet Cortis leaf (disc) 7 6.92 6.25 6.57 4.71 5.64 5.16 
Jasmin8/1 leaf (disc) 7 6.50 6.25 6.37 - - - 
Muscaris leaf (disc) 7 7.58 7.75 7.67 - - - 

Regent leaf (disc) 7 8.67 8.67 8.67 - - - 

16-02-102 inflorescence (E-L 17) 6 5 5 5 - - - 

MW14 inflorescence (E-L 17) 6 5 7 5.92 - - - 
Pinot Gris or Noir inflorescence (E-L 17) 6 6.20 6.20 6.20 1 5 2.24 
Aromera inflorescence (E-L 17) 6 9 9 9 - - - 
Bianca inflorescence (E-L 17) 6 7 7 7 - - - 
Bronner inflorescence (E-L 17) 6 9 9 9 - - - 
Cabernet Cortis inflorescence (E-L 17) 6 4.33 5.89 4.85 5.67 3 4.12 
Jasmin8/1 inflorescence (E-L 17) 6 9 9 9 - - - 
Muscaris inflorescence (E-L 17) 6 9 9 9 - - - 

Regent inflorescence (E-L 17) 6 7 7 7 - - - 
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Table S2.2. Different combinations between soaking time and P. viticola spore 

concentration performed in the pilot study. x: satisfying assays, and X: best combination. 

 

  Soaking time 

PVL-2012 sporangia 
ml-1 

1h 2h 3h 

0 (mock) – – – 

5,000 – – – 

10,000 – X x 

20,000 x x – 

 

 

 

 

Table S2.3. Means of integrated index (Int) scores on leaf and inflorescence with their 

standard errors (SE). 

 

Genotype 
Mean           
Leaf                    
Int 

SE               
Leaf                     
Int 

Mean 
Inflorescence 
Int 

SE 
Inflorescence 
Int 

16-02-102 4.0 0.05 5 0 

MW14 4.7 0.08 5.9 0 

Pinot Gris 3.6 0.06 6.2 0.2 

Aromera 7.6 0.04 9 0 

Bianca 6.8 0.06 7 0 

Bronner 8.8 0.03 9 0 

Cabernet 
Cortis 

6.5 0.06 4.8 0.2 

Jasmin8/1 6.3 0.06 9 0 

Muscaris 7.6 0.05 9 0 

Regent 8.7 0.03 7 0 
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Table S2.4. Comparisons between the evaluated integrated index on field- and phytotron-

derived organs of genotypes of interest. Panel A: Cabernet Cortis. Panel B: Pinot Noir (─ = 

not significant, * p  0.05, ** p  0.01, *** p  0.001, / = not calculated). 

 

A 

Genotype   Cabernet Cortis 

  
Origin   Phytotron 

 Organ 
Leaf (disc) 
(Infected) 

Inflorescence 
(Infected) 

Cabernet Cortis Field 

Leaf (disc) 
(Infected) 

─ / 

Inflorescence 
(Infected) 

/ ─ 

B 

Genotype   Pinot (Noir) 

  

Origin   Phytotron 

  Organ 
Leaf (disc) 
(Infected) 

Inflorescence 
(Infected) 

Pinot (Gris) Field 

Leaf (disc) 
(Infected) 

─ / 

Inflorescence 
(Infected) 

/ ** 
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CHAPTER 3 

 

Grapevine downy mildew dual epidemics: a leaf and 

inflorescence transcriptomics study 

 

Abstract 

Downy mildew (DM), caused by biotrophic oomycete Plasmopara viticola (Berk. & M.A. 

Curtis) Berl. & De Toni, is one of the most important plagues affecting viticulture, especially 

in temperate-humid climates. We have previously identified in the Vitis hybrid Cabernet 

Cortis a model to study divergent dual epidemics in DM since displays mid-resistant leaves 

and mid-susceptible inflorescences. The changes induced by P. viticola were investigated 

by combining phenotypical, histological, ultrastructural and transcriptomical approaches, in 

order to provide comprehensive information about the different organ-response. To identify 

potential organ- and genotype-dependent transcriptional responses and functions 

associated with the different levels of resistance/susceptibility, we sequenced and analyzed 

the transcriptomes of the hybrid Cabernet Cortis and one of its parents V. vinifera Cabernet 

Sauvignon at 48 hours post inoculation. Transcriptomes were compared to identify 

constitutive differences and DM-inducible responses that may underlie their different 

phenotypes. Responses to P. viticola in mid-resistant Cabernet Cortis leaf were 

characterized by an up-regulation of genes related to secondary metabolisms, particularly 

the stilbene synthases. Genes implicated in the secondary metabolism, response to stimuli, 

protein modifications, carbohydrate metabolism and reproduction are up-regulated in mid-

susceptible inflorescences of Cabernet Cortis, conversely these genes are poorly 

transcribed or down-regulated in susceptible inflorescences of Cabernet Sauvignon. This 

study provides a first exploration of the functions associated with varying levels of 

resistance/susceptibility to DM in the Vitis hybrid Cabernet Cortis that can shad light into the 

molecular basis underpinning divergent DM dual epidemics. 

Journal article in preparation for Frontiers in Plant Science 

Buonassisi D., Cantù D., Tadiello A., Busatto N., Bianco L., Peressotti E., Velasco R., Musetti R., 

Perazzolli M.*, Vezzulli S.* 

"Grapevine downy mildew dual epidemics: a leaf and inflorescence transcriptomics study" 
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3.1. INTRODUCTION 

In agricultural settings, dual epidemics are pathogen infections that develop on two or 

more plant organs in the course of a cropping season. Dual epidemics are particularly 

important when one of the organs affected by the disease constitutes the harvestable part 

of the plant (Savary et al., 2009). In grape production for example, lesions on leaves result 

in physiological injuries such as a reduction of photosynthetic activity, while infections of the 

berries lead to decreased yield and fruit quality with important economic losses. Dual 

epidemics are known in several pathosystems with important economic implications, 

including apple scab (Holb et al., 2005), strawberry powdery mildew (Carisse et al., 2013), 

and rice blast (Ghatak et al., 2013).  

Grapevines are host of a variety of economically important pathogens, some of which 

differentially infect the vegetative and reproductive organs. In viticulture, dual epidemics 

were described for grey mould (Vatsa-Portugal et al., 2015), downy mildew (DM) (Boso et 

al., 2011, Kennelly et al., 2005, Calonnec et al., 2013), powdery mildew (Calonnec et al., 

2013), and Phylloxera (Winkler et al., 1974). Grapevine dual epidemics are often complex 

to manage, because the association between epidemiological components occurring on 

different organs has been scarcely investigated, and because to foresee the risk toward the 

harvestable grapes has been barely attempted. 

Grapevine DM, caused by Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, 

is recognized as one of the most economically important pathogens of grapes in many wine 

grape growing regions (Gindro et al., 2012). All but one cultivated varieties of Vitis vinifera 

L. are highly susceptible to P. viticola under environmental favourable conditions. DM is 

particularly aggressive in temperate-humid climates with warm and wet weather during the 

growing season (Musetti et al., 2006). To control the disease, frequent applications of 

chemical fungicides are required resulting in environmental damage and human health 

hazard. P. viticola is an obligate biotrophic pathogen capable of infecting all green tissues 

of the grapevine (leaves, inflorescences and tendrils). With mean temperature above 10°C 

and rain precipitations, macrosporangia release bi-flagellated cells called “zoospores”. 

Swimming on wet organ surfaces, zoospores reach the functional stoma where they encyst, 

develop a germ tube and penetrate the substomatal cavity with the primary hypha  (Unger 

et al., 2007, Lenzi et al., 2015). The parasite creates intimate contact with the host cells, 

degrades the cell wall and shapes a specialized intracellular structure called haustorium, 

causing the invagination of the plasma membrane (Unger et al., 2007). Typical symptoms 

on the adaxial surface are called “oil spots”, because they appear as yellow spots with an 
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oily appearance (Musetti et al., 2006). On the abaxial surface, white mould appears due to 

fungal sporulation; it also appears on the young inflorescences and tendrils.   

At the foliar level, mechanisms of resistance to DM have been characterized both from 

a histological and a transcriptional point of view. In the incompatible interactions, the 

response of resistant genotypes is a post-infection phenomenon (Polesani et al., 2010), 

following the haustorium formation (Díez-Navajas et al., 2008, Liu et al., 2014), marked by 

strong and rapid transcriptional reprogramming (Polesani et al., 2010, Figueiredo et al., 

2012). Grapevines can activate a broad spectrum of defence mechanisms in response to P. 

viticola infection as formation of callose in the stomata (Gindro et al., 2003, Yu et al., 2012), 

lignification process and production of reactive oxygen species (ROS) (Kortekamp, 2006), 

induced peroxidases and the hypersensitive reaction (HR) (Díez-Navajas et al., 2008). On 

one hand callose deposition around the stomata limits nutrient exchange and prevent 

secondary infections (Toffolatti et al., 2012); on the other, localized generation of ROS, 

especially of hydrogen peroxide (H2O2), has been related to signal transduction, cell-wall 

reinforcement, hypersensitive response (HR) and phytoalexin production (Malacarne et al., 

2011, Yu et al., 2012, Liu et al., 2014). Expression studies reveal the induction of genes 

involved in the defense response, such as the synthesis of pathogenesis-related (PR) 

proteins (Kortekamp, 2006, Polesani et al., 2010, Malacarne et al., 2011, Lenzi et al., 2015) 

– particularly β-glucanase and chitinase (Perazzolli et al., 2011) – and in the transcription 

regulation, with a rapid induction of the transcription factor WRKY33 (Merz et al., 2015). 

Furthermore, the presence of secondary metabolites such as phytoalexins or antimicrobial 

compounds have been largely characterized  (Pezet et al., 2004, Alonso-Villaverde et al., 

2011, Ali et al., 2012). Among phytoalexins, resveratrol – a low molecular weight stilbene – 

and its oxidation products are synthesized in response to both biotic (e.g. fungal infection) 

as well as abiotic stresses (e.g. UV radiation) (Langcake & Pryce, 1977, Chong et al., 2009, 

Jeandet et al., 2010).  

In the susceptible genotypes there is a compatible interaction (Polesani et al., 2008, 

Perazzolli et al., 2012) and an abortive defence response during the early steps of infection 

(Polesani et al., 2010). Most of the differentially expressed genes (DEGs) were down-

regulated, particularly genes related to photosynthesis and carbon metabolism (Polesani et 

al., 2008, Gamm et al., 2011). Moreover, the up-regulation of genes involved in defence, 

response to stimuli and phenylpropanoid pathway is insufficient (Polesani et al., 2008, 

Perazzolli et al., 2012).  
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To date, the transcriptional studies in grapevine upon P. viticola inoculation were 

focused on RNA extracted from leaves (Kortekamp, 2006, Polesani et al., 2008, Polesani et 

al., 2010, Malacarne et al., 2011, Perazzolli et al., 2012, Lenzi et al., 2015, Merz et al., 2015). 

Transcriptional changes occur in all the infected organs, but little is known about gene 

regulation during DM-grapevine interaction in different tissues.  

The aim of the present work is to understand the molecular basis underpinning 

divergent DM dual epidemics in two different grapevine organs, leaf and inflorescence. The 

different response between organs of two Vitis hybrids and two V. vinifera varieties were 

studied at phenotypical, histological and ultrastructural level. Furthermore, the organ 

transcriptomes of one hybrid and one variety were analyzed in order to identify DEGs at 

baseline and upon P. viticola infection. 

 

3.2 MATERIALS AND METHODS 

3.2.1. Biological materials 

Based on a previous phenotypic screening under field and controlled conditions 

(Buonassisi et al., submitted), we selected the Vitis hybrid Cabernet Cortis (CC) and one of 

its parents V. vinifera cv. Cabernet Sauvignon (CS), which display different susceptibility to 

DM. The former has mid-resistant (MR) leaves and mid-susceptible (MS) inflorescences, 

while the latter has both susceptible (S) leaves and inflorescences (Fig. S3.1). In addition, 

a reference V. vinifera variety – Pinot Noir (PN) – and a CC-related Vitis hybrid – Muscaris 

(Mus) – were selected for validation of RNA-Seq analysis (Table 3.1). 

Fruiting cuttings, namely cuttings which produce 4 leaves and an inflorescence – 

Eichhorn-Lorenz (E-L) scale 17 (Eichhorn and Lorenz, 1977) – within 3 months from 

planting, were obtained using a protocol we optimized (Buonassisi et al., submitted). 
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Table 3.1. The 4 studied grapevine genotypes, followed by their pedigree, taxon, releasing 

country, FEM origin and information on downy mildew organ response level. 

 

Genotype 
(clone) 

Pedigree Taxon 
Releasing 
country 

FEM 
origin  

DM response level  

Leaf Inflorescence 

Cabernet 
Cortis  

Cabernet 
Sauvignon x 
Solaris 

Vitis hybrid Germany Phytotron 
mid-resistant 

(MR) 
mid-susceptible 

(MS) 

Cabernet 
Sauvignon 

Cabernet 
Franc x 
Sauvignon 
Blanc 

Vitis 
vinifera 

France Phytotron susceptible (S) susceptible (S) 

Muscaris 
Moscato 
Bianco x 
Solaris 

Vitis hybrid Germany Phytotron 
mid-resistant 

(MR) 
mid-resistant 

(MR) 

Pinot Noir 
(ENTAV115) 

- 
Vitis 
vinifera 

France Phytotron susceptible (S) susceptible (S) 

 

 

3.2.2. Downy mildew in vivo inoculation and symptom assessment 

P. viticola inoculum, named PVL-2014, was collected from V. vinifera plants of cv. 

Chardonnay in an untreated field in the Trentino province (north-eastern Italy). 

Sporangiophores were vacuumed, collected in filtered tips, stored in 15mL falcon tubes and 

frozen. Two weeks before the inoculation, sporangiophores were propagated and 

maintained by subsequent inoculations on PN leaves. P. viticola sporangia were collected 

on the abaxial surfaces which bore freshly sporulating lesions. The inoculum concentration 

was adjusted to 105 sporangia mL-1 with Malassez’s counting chamber (Perazzolli et al., 

2012).   

Six fruiting cuttings of each genotype were divided into two equal groups for mock- and 

P. viticola-inoculation. The leaves and the inflorescence of three biological replicates were 

sprayed with P. viticola inoculum suspension, while the remaining three were mock-

inoculated (distilled water). Two hours before the inoculation, the leaves and inflorescences 

were moistened with cold, distilled water to simulate natural rainfall. After inoculation all 

cuttings were incubated overnight in the dark at 25°C with 99–100% RH and then kept under 

controlled conditions: temperature at 27°/22°C (day/night), photoperiod 16/8h (light/dark) 

and 90% RH to allow the development of P. viticola. To promote the sporulation, six days 

after inoculation with the pathogen, all cuttings were incubated overnight in the dark at 25°C 

with 99–100% RH. The spread of the disease was visually assessed at 7 days post-

inoculation (dpi) on leaves and inflorescences based respectively on the OIV 452 and OIV 
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453 descriptors (OIV, 2009). Significant differences in disease symptoms between 

conditions were detected via a parametric t-test (p < 0.05). 

 

3.2.3. Detection of H2O2 in inoculated organs using DAB Staining 

The inoculated leaves and inflorescences were sampled at 7 dpi and observed using 

a stereomicroscope (Leica MZ16F). Afterwards they were rinsed in distilled water and 

immersed in a solution containing 1 mg/ml 3,3-diaminobenzidine (DAB, Sigma) dissolved in 

HCl-acidified (pH 3.8) distilled water (Thordal-Christensen et al., 1997). Samples were 

incubated for 5 h to allow the uptake and polymerization of DAB and the reaction with H2O2 

and peroxidase. The leaves were observed with the abaxial surface uppermost while the 

flower clusters were analysed focussing on a single inflorescence. H2O2 accumulation in the 

leaf or inflorescence tissues was visualized as reddish-brown spots. 

 

3.2.4. Transmission electron microscopy 

Leaf and inflorescence samples were collected at 7 dpi by fruiting cuttings and used, 

half part for microscopy and half for RNAseq analyses.  

Ultrastructural interactions between plant and pathogen on the different tissues were 

studied by a transmission electron microscope (TEM). Small samples were dissected from 

the infected leaves (1 × 3 mm) and inflorescences (1 × 3 × 2 mm) as well as from the mock-

inoculated samples. Thereafter samples were fixed in 3% glutaraldehyde, rinsed in buffer, 

postfixed in 1% osmium tetroxide in 0.1 M potassium phosphate for 2 h at 4°C, dehydrated 

in ethanol, and embedded in Epon-Araldite resin according to the method described by 

Musetti et al. (2006). Several serial ultrathin sections (60-70 nm in thickness) were cut using 

an ultramicrotome (Reicher Leica Ultracut E ultramicrotome, Leica Microsystems, Wetzlar, 

Germany) and collected on 200 mesh uncoated copper grids. Sections were then stained 

with uranyl acetate and lead citrate and observed under a PHILIPS CM 10 (FEI, Eindhoven, 

The Netherlands) TEM, operated at 80 kV. 

 

3.2.5. Sample collection and RNA isolation 

Leaf and inflorescence samples were collected from mock- and P. viticola- inoculated 

plants at 48 hours post-inoculation (hpi). This time point was chosen because in susceptible 

genotypes it was associated with leaf colonization by primary hyphae; whereas their growth 

is retarded and rarely completed in the resistant genotypes (Unger et al., 2007, Liu et al., 
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2014). Furthermore, Polesani et al. (2010) measured a sharp increase in the levels of both 

jasmonic acid (JA) and methyl jasmonate (MeJA) in resistant V. riparia leaves at 48 hpi. 

Eight conditions were analysed by RNA-Seq: CC leaf control (CCLC), CC leaf P. viticola-

inoculated (CCLI), CC inflorescence control (CCIC), CC inflorescence P. viticola-inoculated 

(CCII), CS leaf control (CSLC), CS leaf P. viticola-inoculated (CSLI), CS inflorescence 

control (CSIC) and CS inflorescence P. viticola-inoculated (CSII). For each condition, leaf 

and inflorescence samples from three replicates (fruiting cuttings) were collected and each 

sample comprised two leaves and half inflorescence taken from the same plant. Samples 

were immediately frozen in liquid N2 and stored at −80°C. Total RNA was extracted using 

the Spectrum Plant total RNA kit (Sigma-Aldrich, St. Louis, MO, USA) and quantified using 

a NanoDrop ND-8000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). 

RNA integrity was confirmed by 1% agarose gel electrophoresis and using the Agilent 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). 

 

3.2.6. Library construction and mRNA sequencing 

To analyse the genome-wide transcriptional responses to DM, twenty-four RNA-seq 

libraries were constructed. The poly(A) mRNA was isolated by 800 ng of total RNA using a 

NEBNext Poly(A) mRNA Magnetic Isolation Module (New England BioLabs, Massachusetts, 

USA) and library was constructed with the NEBNext Ultra RNA Library Prep Kit for Illumina 

(New England BioLabs, Massachusetts, USA) according  manufacturer’s instructions. The 

library quality was assessed by the Agilent 2100 Bioanalyzer and sequencing was 

performed on a NextSeq 500 at the Functional Genomic Center, University of Verona 

(ddlab.sci.univr.it/fgl). All libraries were individually barcoded in order to allow the 

multiplexing of libraries in a single chip. Fragments were sequenced as 75 nucleotide (nt) 

single-end reads. 

 

3.2.7. Read processing 

Adapter trimming was carried out with Scythe v.0.991 (https://github.com/ucdavis-

bioinformatics/scythe) with a prior of 0.4. Quality trimming and filtering of the raw reads was 

carried out with Sickle v.1.21 (https://github.com/ucdavis-bioinformatics/sickle); reads with a 

Phred quality score lower than 20 and shorter than 50 nt were then discarded. The V. vinifera 

https://github.com/ucdavis-bioinformatics/scythe
https://github.com/ucdavis-bioinformatics/scythe
https://github.com/ucdavis-bioinformatics/sickle
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line ‘PN40024’ transcriptome (version V1 from http://genomes.cribi.unipd.it/grape/; Jaillon et 

al., 2007) and a non-redundant dataset of 99 P. viticola cDNA sequences (Table S3.1) were 

combined and used as a reference for reads mapping. The P. viticola cDNA sequences 

codifying for membrane, citoplasmatic and nuclear proteins, and trascription factors were 

selected. Single-end reads were mapped using Bowtie2 v.2.2.3 (Langmead & Salzberg, 

2012), with the following parameters: -q –end-to-end –sensitive –no-unal -p 12 -U. Read 

counts for each grapevine and P. viticola gene were obtained with the program 

sam2counts.py v.0.91 (https://github.com/vsbuffalo/sam2counts). Uniquely mapped reads 

were used to assess expression levels of grapevine and P. viticola genes. 

 

3.2.8. Identification and functional annotation of differentially expressed 

genes 

Read counts were normalized using the Bioconductor package DESeq2 v.2.1.2.10. 

(Love et al., 2014). A false discovery rate (FDR) of Benjamini-Hochberg multiple tests lower 

than 5 % (Padj < 0.05) with a minimum Log2 fold change of 1.0 were imposed to identify 

DEGs through pairwise comparison. Eight pairwise comparisons between the organs of the 

studied genotypes were analysed: CCLC vs. CSLC, CCIC vs. CSIC, CCLC vs. CCIC, CSLC 

vs. CSIC, CCLI vs. CCLC, CCII vs. CCIC, CSLI vs. CSLC and CSII vs. CSIC. In total, 16,322 

grapevine DEGs were classified into functional categories of Gene Ontology (GO) biological 

process terms using the annotations provided in VitisNet (Grimplet et al., 2009). Enrichment 

analyses of grapevine biological functions were computed using the hypergeometric test 

(Pearson's exact test) implemented in the Biological Networks Gene Ontology (BiNGO) 

software (Maere et al., 2005). A cut-off of P ≤ 0.05 was set to determine statistical 

significance. Gene ontology enrichment networks were visualized with Cytoscape version 

3.2.1 (Shannon et al., 2003). Redundancies were removed and significantly 

overrepresented (P < 0.05) GO biological process terms were identified for the up- and 

down-regulated genes of each cluster. 

 

 

 

http://genomes.cribi.unipd.it/grape/
https://github.com/vsbuffalo/sam2counts
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3.2.9. Primers design analysis 

Among grapevine DEGs, some candidate genes were selected (Table S3.2), their 

sequences and their respective isoforms were aligned using the online T-Coffee Multiple 

Sequence Alignment (http://www.ebi.ac.uk/Tools/msa/tcoffee/) program to select specific 

nucleotide regions allowing the unambiguously gene target amplification. “OLIGO Primer 

Analysis” (http://www.oligo.net/) software was used to evaluate Tm (melting temperature), 

CG content, self-annealing and loop parameters of the specific and manually designed 

primers. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Phenotypical and histological data reveal different organ-response 

upon P. viticola inoculation  

3.3.1.1. In vivo disease assessment 

To assess the P. viticola symptoms at 7 dpi, the OIV 452 and OIV 453 descriptors were 

used for leaves and inflorescences, respectively. In detail, Organisation Internationale de la 

Vigne et du Vin (OIV) code refer to a discrete scale based on five classes (1, 3, 5, 7 and 9) 

ranging from the most susceptible (1, extended sporulation) to the totally resistant (9, no 

symptoms at all) genotype (OIV, 2009). To standardize the DM symptom assessment in 

addition to the mentioned OIV code, two international codes can be used: the European and 

Mediterranean Plant Protection Organization (OEPP/EPPO, 2001) and the International 

Union for the Protection of New Varieties of Plants (UPOV, www.upov.int). However the OIV 

descriptors are the most widely deployed, in particular OIV 452 and OIV 453 are related to 

in field and in/ex vivo DM symptom evaluation on leaves and inflorescence/clusters. 

Upon P. viticola inoculation, at 7 dpi CC, carrying Rpv 3 and Rpv 10, presented MR 

leaves showing a mean OIV 452 score of 5.7, while the inflorescence was classified as MS 

displaying an OIV 453 score of 3.6 (Fig. 3.1). CS organs resulted S to P. viticola, presenting 

a mean value of 2.5 and 2.3, respectively (Fig. 3.1). Mock-inoculated organs had the same 

behaviour presenting a score 9 for both genotypes. Significant differences in disease 

symptoms between pairwise conditions were detected via the parametric t-test (P < 0.05), 

using the mean OIV scores. Comparing the two inoculated organs within the same 

genotype, CC presented significant phenotypical differences (P < 0.05) due to the different 

organ resistance/susceptibility, while CS did not show a significant response variation upon 

pathogen attack (P = 0.84) owing to the same organ behaviour (Table 3.2A). Comparing the 

same organ between CC and CS, at foliar level both genotypes showed a significantly 

different response to P. viticola inoculation (P < 0.01), resulting to be respectively MR and 

S. Regarding inflorescences, they did not show significant differences (P = 0.40), as result 

of the similar OIV 453 values ascribing them to the MS and S classes, respectively (Table 

3.2B). Significant differences in the in vivo disease assessment sustain the reliability in the 

use of fruiting cuttings under controlled conditions to study grapevine dual epidemics, to 

date phenotypically evaluated only in field (Basler and Pfenninger, 2003, Kennelly et al., 

2005, Savary et al., 2009).  

http://www.upov.int/
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Table 3.2. Comparisons between the mean OIV452/453 scores on leaf and inflorescence 

of Cabernet Cortis and Cabernet Sauvignon. Panel A: comparison between the different 

organs within the same genotype. Panel B: comparison of the same organ between the 

genotypes of interest. (─ = not significant, * p  0.05, ** p  0.01, *** p  0.001, / = not 

calculated). 

     

A 

  

Organ 

Leaf                                                                                                
(Inoculated vs 

Mock) 

Inflorescence                                                           
(Inoculated vs Mock) 

Leaf-Inflorescence                                             
(Inoculated vs Inoculated) 

Parameter Parameter Parameter 

Genotype mean OIV452 mean OIV453 
mean OIV452/                                          
mean OIV453 

Cabernet Cortis *** * * 

Cabernet 
Sauvignon 

*** ** ─ 

B 

Genotype   Cabernet Sauvignon 

Organ 
  

Leaf 
(Inoculated) 

Inflorescence 
(Inoculated) 

Parameter 
mean 

OIV452  
mean 

OIV453 

Cabernet Cortis 

Leaf                                    
(Inoculated) 

mean OIV452 ** / 

Inflorescence 
(Inoculated) 

mean OIV453 / ─ 
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Fig. 3.1. Means of OIV452/453 descriptors scores of 
Cabernet Cortis (CC) and Cabernet Sauvignon (CS) 
respectively on leaf (L) and inflorescence (I) at 7 days post 
infection (dpi). The histogram reports the mean scores of 
mock- (C) and P. viticola-inoculated (I) samples. 
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3.3.1.2. Analysis of P. viticola development and of the associated H2O2 

accumulation  

To assess the response of different grapevine organs to P. viticola attack, disease 

development was assessed looking at the pathogen development under a 

stereomicroscope. The leaves of CC showed some limited and irregular attack areas with 

sparse sporulation and necrotic spots (red arrows in Fig. 3.2B); on the other hand, on the 

inflorescence abundant and localized sporulation was visible (Fig. 3.2B). The organs of CS 

were characterized by abundant and widespread sporulation both on the leaf surface and 

on the inflorescence (Fig. 3.2B). Since H2O2 interferes with pathogen growth and diffusion 

(Yu et al., 2012, Liu et al., 2014), we histochemically analysed its accumulation at 7 dpi. No 

DAB staining was detected in foliar and inflorescence tissues from all mock-inoculated 

samples (Fig. 3.2C). H2O2 accumulation was clearly visible on the surface of CC leaves (red 

arrows in Fig. 3.2D). H2O2 accumulation was not detectable on the DM infected CC 

inflorescence and on the CS leaf and flowers (Fig. 3.2D). Altogether, macroscopical and 

histological response to DM showed that in the mid-resistant leaf the sporulation was related 

to the H2O2 production, while in the mid-susceptible or susceptible organs they were not 

related each other. These results were in agreement with the histological survey undertaken 

by Liu et al. (2014), which analised the sporulation, callose deposition and H2O2 production 

on the leaves of three resistant Chinese wild grapevines and a susceptible European 

cultivated variety.  
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Fig. 3.2. Stereomicroscopy imaging of control (panels A and C) and P. viticola-inoculated (panels B and D) 
grapevine leaves and inflorescences.   
Panel A: in Cabernet Cortis and Cabernet Sauvignon control samples no sporulation or tissue modifications are 
visible. Panel B: inoculated tissues of Cabernet Cortis show limited sporulation and necrotic dots (red arrows) 
on the leaves; on the inflorescences, sporulation is visible; on the contrary, necrotic areas are absent. A 
widespread sporulation is detectable on Cabernet Sauvignon leaf and inflorescence.  
Panel C: no DAB staining is observed in leaf and inflorescence tissues of the mock-inoculated samples of both 
genotypes. Panel D: DAB staining in inoculated Cabernet Cortis, reveals H2O2 accumulation on leaves in 
correspondence of the necrotic dots. Staining was not detectable on the inflorescence or on the Cabernet 
Sauvignon leaf and flower bottom.  
Magnification bars correspond respectively to: 5mm, 3mm, 0,25mm and 5mm for Panel A; 1mm, 1mm, 0,5mm 
and 5mm for Panel B; 5mm, 3mm, 0,25mm and 3mm for Panel C; 0,5mm, 0,25mm, 0,5mm and 0,5mm for Panel 
D. 
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3.3.1.3. Ultrastructural analysis of the P. viticola–grapevine interaction 

We used transmission electron microscopy (TEM) to further characterize the 

interaction between P. viticola and the two grapevine organs at ultrastructural level.  In CC 

leaves we identified three areas with distinct responses to P. viticola: (i) close to pathogen 

sporulation, well-structured P. viticola hyphae and haustoria were present and plant cell 

organelles appeared slightly swelled and located close to the haustoria (Fig. 3.3C); (ii) at 

the border between green and brown spots, hyphae and haustoria were surrounded by 

massive deposit of paramural callose (arrow in Fig. 3.3D) that thickened the cell wall; (iii) 

the necrosis zones on the leaves, in which HR was activated and the tissue was degenerate, 

cells were showed a compact and electron-dense content and twisted cell walls, with cell 

structure and organelles (not shown). The areas characterized by the paramural callose 

raised interest, since callose synthesis is considered a grapevine induced defence response 

to DM (Kortekamp et al., 1997), and its deposition is related to resistant genotypes (Liu et al 

2014, Yu et al 2012). Moreover, the role of callose in grapevine defence mechanisms was 

validated by the increase of the number of sporangia produced in leaf tissues infected with 

P. viticola treated with 2-deoxy-D-glucose (DDG), an inhibitor of callose synthesis. The 

increase of sporangia was observed also in P. viticola resistant variety Solaris, even thought 

Solaris treated tissues showed higher resistance compared to the basal resistance of 

susceptible Chasselas variety, indicating the involvement of further resistance factors, 

besides callose synthesis (Hamiduzzaman et al., 2005). Furthermore, callose deposition 

was observed on stomata as response to P. viticola infection and their percentage is used 

at 48 hpi as a histological marker to evaluate the degree of resistance to DM of grapevine 

varieties (Gindro et al., 2006). CC inflorescence tissues presented two types of pathogen-

response zones: areas in which P. viticola haustoria were deformed or collapsed (Fig. 3.3E), 

and electron-dense necrosis areas characterized by mashed cells and twisted cell walls.  

P. viticola was typically structured in both CS tissues, as showed in Fig. 3.3F-G for the leaf 

and 3.3H for the inflorescence. In the intercellular space of spongy parenchyma the 

pathogen presented hyphae vacuolated (Fig 3.3F and 3.3H) and several and well-structured 

haustoria (Fig. 3.3G and 3.3H). Grapevine tissues did not show evidence of necrosis or 

other alterations due to P. viticola. The spread of several and well-structured P. viticola 

hyphae and haustoria confirmed the compatible host-interaction in both susceptible CS 

organs and the establishment of biotrophy and the host-specificity, respectively (Unger et 

al. 2007, Díez-Navajas et al., 2008). 
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Fig. 3.3. Transmission electron micrographs of Cabernet Cortis and Cabernet Sauvignon leaf and inflorescence.  
A, B: control leaf and inflorescence tissues do not present ultrastructural alterations. C: leaf tissue of Cabernet Cortis 
in correspondence of P. viticola sporulation. Well-structured haustoria are recognizable inside a spongy parenchyma 
cell. D: in Cabernet Cortis leaf tissue at the border between green and brown spots haustoria are surrounded by 
massif deposit of paramural callose (arrow) that thickened the cell wall, hindering pathogen penetration. E: deformed 
and electron-dense P. viticola haustoria are found in Cabernet Cortis inflorescence tissues. F: P. viticola hyphae in 
the substomatal zone in Cabernet Sauvignon tissues. G: in Cabernet Sauvignon infected leaves haustoria show the 
typical pyriform shape. No callose deposition is visible at the haustorium neck (arrow). H, P. viticola hyphae in 
Cabernet Sauvignon inflorescence: as expected they are localized in the intercellular space of parenchyma and 
appear vacuolated. Magnification bars correspond to A, 400nm, B, 200nm, C, 100nm, D, 200nm, E, 50nm, F, 750nm, 
G, 100nm and H, 250nm. 
(N = nucleus; Ch = chloroplast; v = vacuole; m = mitochondria; ha = haustoria; hy = hyphae) 
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3.3.2. Sequencing, mapping and analysis of the reads of Cabernet Cortis 

and Cabernet Sauvignon organs 

Three biological replications of the CC and CS leaves and inflorescences were 

analysed at 48 hpi. The samples were collected from fruiting cuttings upon mock- and P. 

viticola-inoculation. On average, 20,372,879 reads with a length of 75 nt were obtained for 

each sample, of which 97.8 % was retained after quality filtering and adaptor removal 

(parsed reads; Table S3.3), and more than 81.34% of parsed reads mapped to the reference 

transcriptome. An average of 75% of reads mapped to unique locations, 10% aligned to 

more than one location and 15% did not aligned (Table S3.3). Reads mapped to unique 

locations were used to assess expression levels of grapevine and P. viticola genes (Table 

S3.4). 

 

3.3.3. Identification and clustering of differentially expressed genes 

based on expression profiles 

A total of 16,322 DEGs were found using DESeq (Padj ≤ 0.05; log2 fold-change ≥ 1.0) 

and were organized in 14 clusters based on their expression profile (Table S3.5, Fig. 3.4). 

Cluster 1 comprised 665 and 434 genes constitutively differentially expressed in CCLC 

and CCIC compared to CSLC and CSIC, respectively. Cluster 2 included 5,960 genes 

constitutively differentially expressed in CCLC compared to CCIC and 6,202 genes of the 

CSLC compared to CSIC.  

The clusters 3-8 consisted of genes up-regulated upon P. viticola inoculation, whereas 

the clusters 9-14 of genes which were down-regulated (Fig. 3.4). Groups 3-4 comprised 

genes differentially expressed in CC organs and not in the CS; particularly, 25 and 1157 

DEGs were up-regulated in CCLI and CCII. In CS leaf and inflorescence – cluster 5 and 6 – 

respectively 201 and 18 genes were up-regulated. The cluster 7 included 213 up-regulated 

and common genes to all susceptible organs. The cluster 8 consisted of 188 up-regulated 

genes classified as generic response to pathogen attack. The clusters 9-10 comprised 

genes differentially expressed in CC organs and not in the CS; in detail, 5 and 1213 DEGs 

were down-regulated in CCLI and CCII. In CS leaf and inflorescence – cluster 11 and 12 – 

respectively 11 and 15 genes were down-regulated. The cluster 13 comprised 15 down-

regulated and common genes to all susceptible organs. No gene was down-regulated in the 

generic response to pathogen attack (cluster 14) (Table S3.5, Fig. 3.4). 
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3.3.3.1. Constitutive transcriptional differences potentially related to 

basal resistance in Cabernet Cortis 

Functions constitutively differentially regulated in CC leaf could potentially contribute 

to the partial resistance displayed by this organ. To date, differences in constitutive 

expression of DM resistance-related genes were analysed in the resistant V. riparia cv. 

‘Gloire de Montpellier’ compared to the susceptible V. vinifera cv. ‘Riesling’ (Kortekamp, 

2006). Therefore, to identify constitutive differences between the organs of CC and CS, 

expression levels of mock-inoculated samples were analysed using the CS organs as a 

reference since both are susceptible to P. viticola and genetically related to CC (Table S3.6). 

262 genes with a constitutive higher expression in CCLC as compared with CSLC 

were identified. The following GO terms significantly over-represented (P ≤ 0.05) were 

identified: signalling, response to stimuli (response to stress) and cellular process (Fig. 

3.5A). Among genes related to signalling was identified a higher expression of a 12-
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Fig. 3.4. Venn diagrams summarising the distribution of the 3061 differentially expressed genes 
(DEGs), upon P. viticola inoculation.  
The 1802 up-regulated (Panel A) genes, were clustered in: Cluster 3, expressed only in CCLI; 
Cluster 4, expressed only in CCII; Cluster 5 expressed only in CSLI; Cluster 6, expressed only in 
CSII; Cluster 7, common to CCII, CSLI and CSII; Cluster 8, common to CCLI, CCII, CSLI and CSII. 
The 1259 down-regulated (Panel B) genes, were clustered in: Cluster 9, expressed only in CCLI; 
Cluster 10, expressed only in CCII; Cluster 11 expressed only in CSLI; Cluster 12, expressed only 
in CSII; Cluster 13, common to CCII, CSLI and CSII; Cluster 14, common to CCLI, CCII, CSLI and 
CSII. 
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oxophytodienoate reductase 2 (VIT_18s0041g02020), a gene involved in JA biosynthesis. 

Probably, an higher content of this hormone was related to the mid-resistance of the CC 

leaf. Indeed, a new role for JA against fungal biotrophs (generally associated to the defence 

against necrotrophic pathogens and insects) was recently proposed and observed in the 

leaves of the resistant cv. ‘Regent’ by Guerreiro et al. (2016). The induction of JA was 

involved in the accumulation of secondary metabolites and PR proteins, in fact a constitutive 

higher expression of a pathogenesis-related protein 4-2 (PR-4-2) (VIT_14s0081g00050) 

and a chitinase (PR-3) (VIT_04s0008g00120), were found. The PR-3 and PR-4 proteins 

were related to the antifungal activity strengthening since they were able to hydrolyse the 

chitin, one of the components of cell wall of different fungi. On the other side, among genes 

belonging to secondary metabolism, particularly to phenylpropanoid biosynthesis, a ferulate 

5-hydroxylase (VIT_07s0031g01380) was found suggesting an increased production of 

monolignols used for lignin production. This gene plays a critical role for the structure and 

physical properties of the lignin, as highlighted by Stewart et al. (2009) on a hybrid poplar. 

Moreover, 403 genes were identified with a constitutively lower expression in CCLC as 

compared with CSLC. Only the genes related to the biological regulation and response to 

stimuli (response to biotic stimuli and response to stress) were significantly over-represented 

(P ≤ 0.05) in GO terms (Fig. 3.5B). Among genes involved in response to biotic stimuli were 

identified two osmotins (VIT_02s0025g04250 and VIT_02s0025g04260) and three 

pathogen-related proteins (VIT_18s0001g15660, VIT_03s0088g00710 and 

VIT_05s0077g01580). Interestingly, their expression increased much more in CCLI than in 

CSLI, upon P. viticola inoculation.  

197 genes were identified with a constitutively higher expression in CCIC as 

compared with CSIC. No biological process functional and none of these genes appeared 

directly involved in genotype susceptibility. Furthermore, 237 genes were identified with a 

constitutively lower expression in CCIC as compared with CSIC. The only GO term 

significantly over-represented (P ≤ 0.05) was the response to stimuli (stress) (Fig. 3.5C). 

Among these genes, four disease resistance proteins (VIT_13s0067g00790, 

VIT_15s0046g02750, VIT_00s0226g00050 and VIT_00s0238g00040) were found, and their 

expression did not significantly vary upon pathogen inoculation. 

To identify constitutive differences between the organs within the same genotype – for 

both CC and CS –, expression levels of the mock-inoculated samples were analysed using 

the respective inflorescence as reference (Table S3.6). Comparing the CCLC with CCIC, 

3299 and 2018 genes were higher and lower expressed, respectively. Genes involved in 
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photosynthesis, generation of precursor metabolites and energy, metabolic process (protein 

metabolic process), gene expression (transcription) and cellular biosynthetic process were 

constitutively higher expressed in CCLC as compared to CCIC (Fig. S3.2A); while genes 

involved in localization (establishment of localization and transport), response to 

endogenous stimuli, carbohydrate metabolic process and secondary metabolic process 

were constitutively lower expressed in CCLC as compared to CCIC (Fig. S3.2B). Comparing 

the CSLC with CSIC, 2610 and 2081 genes were higher and lower expressed, respectively. 

Genes involved in cell communication, homeostatic process (cellular homeostatic process), 

regulation of biological quality, metabolic process (cellular protein metabolic process), 

photosynthesis and generation of precursor metabolites and energy were constitutively 

higher expressed in CSLC as compared to CSIC (Fig. S3.2C); while genes involved in 

localization (establishment of localization and transport), response to endogenous stimuli, 

biosynthetic process, transcription, carbohydrate metabolic process, reproductive 

developmental process and ripening were constitutively lower expressed in CSLC as 

compared to CSIC (Fig. S3.2D). 
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Fig. 3.5. Biological networks of significantly enriched Gene Ontology (GO) terms. GO biological process 
terms of the constitutively expressed genes in CC organs.  
Panel A, constitutively higher expressed genes in CCLC compared to CSLC; Panel B, constitutively 
lower expressed genes in CCLC compared to CSLC; Panel C, constitutively lower expressed genes in 
CCIC compared to CSIC. No biological process functional was significantly enriched using genes higher 
expressed in CCIC compared to CSIC.  
Enriched GO terms (p < 0.05) were identified using the BiNGO tool (Maere et al., 2005) and visualised 
with Cytoscape software (Shannon et al., 2003). The colour scale legend indicates the level of 
significance for enriched GO terms. White nodes indicate not significantly overrepresented categories. 
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3.3.3.2. Differentially expressed genes in P. viticola-inoculated leaves and 

inflorescences of Cabernet Cortis and Cabernet Sauvignon 

Upon P. viticola inoculation, in CCLI (cluster 3 in Fig. 3.4) were up-regulated genes 

related to secondary metabolism (Fig. 3.6A). Interestingly, genes belonging to phytoalexin 

biosynthesis such as four stilbene synthase (VIT_16s0100g01030, VIT_16s0100g01140, 

VIT_16s0100g00920, VIT_16s0100g00990), and a pathogenesis related protein 1 

precursor (VIT_03s0088g00890) were identified (Table S3.6). The up-regulation of stilbene 

synthases suggests the production increase of resveratrol and its oxidation products during 

P. viticola inoculation, as seen in several studies, particularly pterostilbene and viniferins 

(Bavaresco et al., 1997, Pezet et al. 2004, Gindro et al., 2006, Alonso-Villaverde et al., 2011, 

Mattivi et al., 2011) Indeed, δ-viniferin produced in vitro by the oxidative dimerization of 

resveratrol by plant peroxidases or fungal laccases, was identified in wines and in grapevine 

cell cultures (Langcake and Pryce 1977). δ-viniferin constitutes one of the most important 

phytoalexins derived from resveratrol, with a concentration higher than its isomer ε-viniferin 

(Pezet et al. 2003). Biochemical criteria, as δ- and ε-viniferin levels at the site of infection, 

were recorded at 48 hpi in seedlings to rapidly evaluate the level of DM resistance, thereby 

leading to a reduction in the breeding program duration by several years (Gindro et al. 2006). 

Likewise, a wall-associated receptor kinase-like 10 (VIT_03s0132g00340) and a glutathione 

S-transferase G 25 GSTU7 (VIT_08s0040g00920) were up-regulated. An increased 

expression of the former is associated with an amplified cGMP production, a second 

messenger carrying out a key role in signal transduction linking environmental stimuli to 

physiological responses, including biotic stress responses. Indeed in Arabidopsis, 

AtWAKL10 is consistently co-expressed with well characterized pathogen defence related 

genes and is induced early and sharply in response to a range of pathogens and their 

elicitors (Meier et al. 2010). On the other hand, the increased expression of glutathione S-

transferase (GST) genes is related in the oxidative stress response and follows infection by 

several pathogens, as seen by Ahn et al (2016) on leaves of V. flexuosa inoculated with 

Botrytis cinerea, E. ampelina, and Rhizobium vitis. As a whole, the rapid activation of genes 

implicated in stilbene biosynthesis, genes encoding components of signal transduction 

cascades and defence-related genes is associated to the response of resistant genotypes 

after inoculation (Polesani et al, 2010; Wu et al., 2010; Malacarne et al., 2011; Figueiredo 

et al., 2012). All these genes are not modulated in susceptible genotypes and can be 

therefore associated to the early perception of the invading pathogen and to the activation 
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resistance mechanisms (Polesani et al., 2010; Malacarne et al., 2011; Figueiredo et al., 

2012). 

Genes implicated in the response to biotic stimuli, carbohydrate metabolic process, 

macromolecule modification (protein modification process), multi-organism process, cell 

communication and reproductive process (reproductive cellular process, pollination, pollen-

pistil interaction), were up-regulated in CCII compared to CCIC (cluster 4 in Fig. 3.4; Fig. 

3.6B and Table S3.6). Genes involved in the main hormone signalling pathways were up-

regulated. In detail, two genes related to salicylic acid (SA) pathway – a phytoalexin-deficient 

4 protein (PAD4) (VIT_07s0031g02390), and a senescence-associated gene 101 (SAG101) 

(VIT_05s0077g01750) were up-regulated, suggesting a SA pathway activation. However, a 

lack of the expression of the enhanced disease susceptibility 1 (EDS1) was found 

suggesting an uncompleted SA-mediated defence response. Indeed in Arabidopsis, EDS1 

interacts with PAD4 and SAG101 in the cytoplasm and in the nucleus in distinct complexes 

and a nuclear pool of EDS1 is needed for resistance to biotrophic and hemibiotrophic 

pathogens (Feys et al. 2005, García et al. 2010, Rietz et al. 2011). Regarding jasmonate 

metabolism, two genes were identified: an allene oxide synthase (AOS) 

(VIT_18s0001g11630), that catalyzes the first step in the biosynthesis of JA and a MeJA 

esterase (VIT_00s0253g00150) involved in the biosynthesis of JA from MeJA. Additionally, 

a gene related to the cross-talk between ethylene and jasmonate signalling pathways – an 

ethylene response factor ERF1 (VIT_05s0049g00510) – was up-regulated. The activation 

of jasmonate signalling pathway in the first hours after P. viticola inoculation suggest a 

defence attempt in the inflorescence tissue against fungal biotrophs, highlighting its new role 

proposed for this hormone by Guerreiro et al (2016). Furthermore, signalling compounds, 

such as jasmonate, salicylate or ethylene can induce the expression of specific genes, 

known as pathogenesis-related (PR) genes (van Loon et al., 2006), involved in biotic stress 

response. In fact, the expression of some PR genes was up-regulated upon P. viticola 

inoculation, in particular a chitinase class IV (VIT_05s0094g00340), a beta-1,3-glucanase 

(VIT_08s0007g06040) and an endo-1,4-beta-glucanase (VIT_18s0089g00210), 

highlighting the attempt of this organ to respond to pathogen attack.     

In CSLI compared to CSLC (cluster 5 in Fig. 3.4), the macromolecule modification 

(protein modification) and secondary metabolic process were over-represented (Fig. 3.6C). 

Upon P. viticola inoculation, was up-regulated a calmodulin binding protein 

(VIT_17s0000g03380), gene involved in cellular signalling cascades and in the defence 

response through the regulation of numerous target proteins (Ranty et al. 2006). However, 
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the up-regulation of this gene is in contrast with the specific induction of calmodulins and 

calmodulin-binding proteins in the resistant genotypes (Polesani et al. 2010, Figueiredo et 

al., 2012).  No biological process functional was significantly enriched for cluster 6 (Fig. 3.4). 

Genes involved in response to biotic stimuli, metabolic process (secondary metabolic 

process, cellular protein metabolic process), macromolecule modification (protein 

modification), multi-organism process, cell communication and reproductive process 

(reproductive cellular process, pollination, pollen-pistil interaction) and abscission were 

significantly enriched for cluster 7 (Fig. 3.4, Fig. 3.6D). In the cluster 8, response to stimuli 

(biotic and stress), secondary metabolic process, macromolecule modification and cellular 

protein metabolic process (protein modification process) were significantly enriched (Fig. 

3.4, Fig. 3.6E).  

Among genes down-regulated, clusters 9, 11, 12, 13 and 14 (Fig. 3.4) did not present 

any significantly enriched categories. Conversely, cluster 10 presented enriched functional 

categories on photosynthesis, generation of precursor metabolites and energy, cell cycle, 

cellular component organization, secondary metabolic process, carbohydrate metabolic 

process and transcription (Fig. 3.6F). Altogether, the reduction of these biological processes 

could indicate a dramatic alteration of metabolism during the first 48 hours of P. viticola 

infection, with a source-to-sink transition. In particular, the alterations in starch and 

carbohydrate metabolism were observed in infected grapevine leaves at 7 dpi upon P. 

viticola inoculation (Gamm et al., 2011), while a strong accumulation of starch was observed 

at 24 and 48 hpi in leaves and inflorescences inoculated with B. cinerea and B. pseudo 

cinerea on fruiting cuttings of V. vinifera, suggesting that the metabolism of grapevine 

inflorescence and leaf is modified with distinct mechanisms in these two organs (Vatsa-

Portugal et al. 2015). Interestingly, a down-regulation of the carbonic anhydrase, 

(VIT_00s0252g00110) and of the plastocyanin domain-containing protein 

(VIT_12s0028g03450) was found. Particularly import is the down-regulation of the carbonic 

anhydrase, an enzyme involved in the uncatalyzed interconversion between CO2 and HCO3 

providing the carbon dioxide for fixation by RuBisCO (Badger & Price 1994). Its down-

regulation could be required for the maintenance of a compatible interaction between P. 

viticola and grapevine, as seen on the susceptible leaves of V. vinifera cv. ‘Riesling’ by 

Polesani et al 2008. The enzyme has antioxidant activity, binds salicylic acid (Slaymaker et 

al., 2002), and the down-regulation of this gene was observed also in tomato plants following 

application of the fungal toxin fusicoccin (Frick and Schaller 2002), in Arabidopsis following 

treatment with MeJA (Schenk et al., 2000) and in potato infected with P. infestans (Restrepo 
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et al., 2005). The plastocyanin domain-containing protein (VIT_12s0028g03450) is a gene 

involved in electron transport from cit b6/f complex to the Photosystem I and its down-

regulation could be associated with a reduction of the photosynthetic process. Likewise, a 

down-regulation of a precursor of the plastocyanin was observed in the leaf of susceptible 

genotype (Polesani et al. 2008). 
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3.3.4. Validation of the organ-specific response and RNA-Seq analysis 

 

To validate the organ-specific response to P. viticola inoculation, the pathogen 

infection was confirmed with different evaluations methods, from macroscopic to 

ultrastructural, on an independent experiment.  

In vivo P. viticola symptom assessment on CC organs confirmed the MR and MS 

respectively of the leaf and inflorescence (Fig. S3.3). PN showed a MS leaf with an OIV 452 

score of 3.7 and an S inflorescence with an OIV 453 score of 2.3 (Fig. S3.3). Mus displayed 

both organs R to pathogen attack with an OIV 452 and OIV 453 score respectively of 7.7 e 

7.3 (Fig. S3.3). Mock-inoculated organs had mean values of 9 for each organs and genotype 

analyzed.  

The three genotypes presented a significant (P ≤ 0.05) spread disease upon P. viticola 

inoculation on both organs (inoculated vs. mock) (Table S3.7A). Comparing the two organs 

in the same genotype only the CC showed significant phenotypic differences between leaf 

and inflorescence (Table S3.7A) owing to the divergent dual epidemics. Furthermore, the 

same organ between genotypes was compared using the susceptible PN as reference. 

Significant phenotypic differences between the CC and PN leaf as well as between Mus and 

PN organs were found (Table S3.7B), while the CC inflorescence did not show significant 

differences with PN (Table S3.7B). Differences or similarity were due to the diverse organ-

specific response against the P. viticola inoculation.  

Secondly, H2O2 production was analyzed through DAB staining and the reddish-brown 

areas were clearly detectable on CC leaf and on both Mus organs (red arrows in Fig. S3.4B). 

(See figure on previous page.) 
Fig. 3.6. Biological networks of significantly enriched Gene Ontology (GO) terms. GO biological 
process terms of the differentially expressed genes (DEGs), upon P. viticola inoculation.  
Panel A, up-regulated genes in CCLI compared to CCLC (Cluster 3); Panel B, up-regulated genes in 
CCII compared to CCIC (Cluster 4); Panel C, up-regulated genes in CSLI compared to CSLC (Cluster 
5). Panel D, up-regulated genes in CCII, CSLI and CSII respectively compared to CCIC, CSLC and 
CSIC (Cluster 7); Panel E, up-regulated genes in CCLI, CCII, CSLI and CSII respectively compared 
to CCLC, CCIC, CSLC and CSIC (Cluster 8); Panel F, down-regulated genes in CCII compared to 
CCIC (Cluster 10). No biological process functional was significantly enriched for: CSII compared to 
CSIC (Cluster 6); CCLI compared to CCLC (Cluster 9); CSLI compared to CSLC (Cluster 11); CSII 
compared to CSIC (Cluster 12); CCII, CSLI and CSII respectively compared to CCIC, CSLC and CSIC 
(Cluster 13); CCLI, CCII, CSLI and CSII respectively compared to CCLC, CCIC, CSLC and CSIC  
(Cluster 14). 
Enriched GO terms (p < 0.05) were identified using the BiNGO tool (Maere et al., 2005) and visualised 
with Cytoscape software (Shannon et al., 2003). The colour scale legend indicates the level of 
significance for enriched GO terms. White nodes indicate not significantly overrepresented 
categories. 
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No staining reaction was detected on CC inflorescence, PN organs as well as on mock-

inoculated samples (Fig. S3.4A-B). 

Finally, the TEM was used to investigate plant-pathogen interaction at ultrastructural 

level. In PN organs, the pathogen structures are well widespread in the intercellular space 

(hyphae) and in host cells (haustoria), and no plant reaction was detected (Fig. S3.5A-B). 

Ultrastructural observations of CC organs confirmed the presence of the different areas of 

response to P. viticola attack, as described above (Fig. 3.3C-E). Particularly, the leaf areas 

which showed well structured P. viticola hyphae and haustoria (Fig. 3.3C, Fig. S3.5D), and 

the leaf areas where the haustoria were totally surrounded by big collars of callose (Fig. 

3.3D, Fig. S3.5C). In the inflorescence, P. viticola haustoria were deformed or collapsed 

(Fig. 3.3E). Mus had the same behaviour of the CC for both organs. In the second identified 

leaf areas, for instance, the haustoria appeared surrounded by callose collars and deformed 

(Fig. S3.5E). Interestingly, in the areas close to the necrosis zone the Mus showed phenolic 

compounds accumulation in the vacuoles. Such cellular alterations were present in both leaf 

and inflorescence tissues as black electron-dense structures (Fig. S3.5F). Moreover, the 

area appeared disorganized with collapsed cells, empty or with a warped vacuole (Fig. 

S3.5F). These cytological changes, including phenol deposition, cytoplasmic 

disorganization, and localized plant and pathogen cell death occurred specifically in cells 

invaded by the pathogen structures in the resistant grapevine hybrid Solaris as well as in 

the susceptible grapevine V. vinifera cv. ‘Marselan’ treated with Sulfated laminarin (PS3) 

(Trouvelot et al. 2008).   

On the other hand, flavonols – constitutive phenolic compounds – are naturally 

synthesized and accumulated in grapevine leaves grown in vineyards with a primary role of 

protection against UV (Kolb et al. 2001; Kolb and Pfündel, 2005). In order to analyze the 

effect of flavonols and hydroxy-cinnamic acids on P. viticola infection, variable amounts of 

flavonols by different light conditions in phenologically identical leaves were induced; 

differences in content of leaf hydroxy-cinnamic acids were induced at the same time. 

Whatever the light condition, there were no significant changes in flavonol or in 

hydroxycinnamic acid contents for control and inoculated leaves during the development of 

P. viticola until 6 dpi. The implication of these leaf constitutive compounds in the defence of 

V. vinifera against DM was investigated in vivo thanks to the violet-blue autofluorescence of 

stilbenes used as an indicator of infection by P. viticola. It was revealed that the increase in 

stilbene violet-blue autofluorescence started earlier for leaves with low flavonol content than 

for leaves with higher content, suggesting that constitutive flavonols are able to lessen the 
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pathogen development; on the contrary, constitutive hydroxycinnamic acid does not seem 

to affect P. viticola infection (Latouche et al. 2013).  

Besides leaves, experiments have been carried out also at inflorescence/bunch level. 

Clusters of two grapevine genotypes, Chasselas and Merlot, and two inter-specific hybrids, 

Solaris and 2091, were inoculated with P. viticola at different developmental stages. 

Microscopic examinations of pedicels, rachis and calyptras showed important differences in 

stomatal structures within seasonal development. At the stage of visible inflorescences, 

successful infections were observed on all tested cultivars and functional stomata were 

present, while no infections were observed after this stage. Significant stilbene accumulation 

was quantified in resistant hybrids which produced pterostilbene and δ-viniferin in large 

amounts, whereas in the susceptible varieties, only piceid and resveratrol were induced 

(Gindro et al. 2012). Lately, the phenolic composition of grape berries of other hybrids (CC, 

Johanniter, Solaris, Phoenix, and Regent) was analyzed using two complementary Liquid 

Chromatography - Tandem Quadrupole Mass Spectrometry (LC-MS/MS) methods. 

Resistant or tolerant hybrids contain higher level of phenolics in respect to V. vinifera 

cultivars, especially in the class of stilbenes (Ehrhardt et al. 2014). 
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3.4. CONCLUSIONS  

 

In this study, we characterized genes belonging to enriched biological functions that 

may be associated with either mid-resistance or mid-susceptibility/susceptibility to DM (e.g. 

biotic and oxidative stress responses, hormone signalling, defence-related genes, signal 

transduction, carbohydrate metabolism and photosynthetic process), and whose expression 

is organ-specific in CC and CS tissues.  

The next step will be the validation of the RNA-Seq results testing the selected genes 

by RT-qPCR using the 2 grapevine housekeeping genes to normalise the gene expression 

and the P. viticola actin to carry out a relative P. viticola biomass accumulation. The final 

step will be to compare their expression profiles at inter-genotype level using the 

independent experiment on Mus and PN. 

Since, the P. viticola draft genome sequence have been recently released (Dussert et 

al. 2016), one of the future objective of this research work will be to analyse P. viticola DEGs 

in the CC and CS organs as well. DM gene prediction and annotation can take advantage 

of the sequenced genomes within the Phytophtora genus, an oomycete phylogenetically 

very close to Plasmopara (Tyler et al. 2006, Haas et al. 2009, Feau et al. 2016). This 

milestone opens the way towards the full understanding of the pathogen itself and in the 

grapevine-P. viticola interaction. 
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3.6 APPENDIX 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3.1. Fruiting cutting production: genotypes of interest 

and downy mildew response level on leaf and 

inflorescence. 
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Fig. S3.2. Biological networks of significantly enriched Gene Ontology (GO) terms. GO biological process 
terms of the constitutively expressed genes in CC and CS organs.   
Panel A, constitutively higher expressed genes in CCLC compared to CCIC; Panel B, constitutively lower 
expressed genes in CCLC compared to CCIC; Panel C, constitutively higher expressed genes in CSLC 
compared to CSIC; Panel D, constitutively lower expressed genes in CSLC compared to CSIC.  
Enriched GO terms (p < 0.05) were identified using the BiNGO tool (Maere et al., 2005) and visualised with 
Cytoscape software (Shannon et al., 2003). The colour scale legend indicates the level of significance for 
enriched GO terms. White nodes indicate not significantly overrepresented categories. 
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Fig. S3.3. Means of OIV452/453 descriptors scores of Cabernet Cortis 
(CC), Pinot Noir (PN) and Muscaris (Mus) respectively on leaf (L) and 
inflorescence (I) at 7 days post infection (dpi). The histogram reports the 
mean scores of mock- (C) and P. viticola-inoculated (I) samples. 
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Fig. S3.4. DAB staining of control (panel A) and P. viticola-inoculated (panel B) grapevine leaves and inflorescences.   
Panel A: in Cabernet Cortis, Pinot Noir and Muscaris mock-inoculated samples no DAB staining is observed. Panel B: DAB staining in inoculated Cabernet 
Cortis leaf and Muscaris organs, reveals H2O2 accumulation in correspondence of the necrotic dots (red arrows). Staining was not detectable on the Cabernet 
Cortis inflorescence and on the Cabernet Sauvignon tissues.  Magnification bars correspond to 5mm, 1mm, 5mm, 0,3mm, 5mm and 0,3mm for Panel A; 
0,5mm, 0,25mm, 5mm, 0,5mm, 0,5mm and 0,25mm for Panel B. 
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Fig. S3.5. Transmission electron micrographs of Pinot Noir, Cabernet 
Cortis and Muscaris leaf and inflorescence. 
A and B, Pinot Noir tissues: P. viticola hyphae and haustoria are well 
structured and widespread in the intercellular spaces (hyphae) and inside 
host cells (haustoria). C and D, Cabernet Cortis leaves: C: the haustoria 
(ha) are surrounded by big paramural callose depositions (arrows); D: P. 
viticola hyphae and haustoria are normally developed and structural 
reactions by plant host are not visible. E and F, Muscaris tissues. E: 
Callose is visible close to a deformed haustorium (arrow). In leaf tissues, 
close to the necrosis zone, vacuolar phenolic accumulation are detected 
(F). Magnification bars correspond to A, B and C, 150nm, D, 250nm, E, 
70nm and F, 400nm. 
(Ch = chloroplast; ha = haustoria; hy = hyphae; Phe = phenolic 
compounds). 
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3.7. Supplementary material available upon request 

 

Table S3.1.  Non-redundant dataset of 99 P. viticola cDNA sequences, followed by their 

accession number, coding DNA sequence (cds) and authors. Sequences obtained from 

Reference sequence (RefSeq) database at NCBI 

(https://www.ncbi.nlm.nih.gov/nuccore/?term=Plasmopara%20viticola). 

 

Table S3.2. Target genes and primer sequences for quantitative real-time RT-PCR (RT-

qPCR) expression analysis of P. viticola and grapevine genes. 

 

Table S3.3. Summary of RNA-seq sequencing data and mapping metrics. 

 

Table S3.4. Expression levels of grapevine and P. viticola genes. 

 

Table S3.5. Summary of the clustering of differentially expressed genes (DEGs). 

 

Table S3.6. Clustering and functional annotation results of differential expressed genes 

(DEGs). 

 

Table S3.7. Comparisons between the evaluated parameters on leaf and inflorescence of 

Cabernet Cortis, Muscaris and Pinot Noir. Panel A: different organs within the same 

genotype. Panel B: the same organ between different genotypes (─ = not significant, * p  

0.05, ** p  0.01, *** p  0.001, / = not calculated). 
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In agricultural settings, dual epidemics are pathogen infections that develop on two or more 

plant organs in the course of a cropping season. Dual epidemics are particularly important when one 

of the organs affected by the disease constitutes the harvestable part of the plant, and are known in 

several pathosystems with important economic implications (e.g. apple scab, strawberry powdery 

mildew and rice blast). Grapevines are host of a variety of economically important pathogens, some 

of which differentially infect the vegetative and reproductive organs, decreasing yield and fruit 

quality (e.g. grey mould, powdery and downy mildew, and Phylloxera). Grapevine dual epidemics 

are often complex to manage, because the association between epidemiological components 

occurring on different organs has been scarcely investigated, and because to foresee the risk toward 

the harvestable grapes has been barely attempted. 

Based on a phenotypic screening under field and controlled conditions, the Vitis hybrid CC was 

identified as a model to study divergent dual epidemics in DM, since displays mid-resistant leaves 

and mid-susceptible inflorescences. Indeed, the diverse DM epidemiological behaviour at organ level 

observed in vivo was confirmed both by organs detached from fruiting cuttings and by the phenotypic 

evaluations on overall plants grown in the greenhouse. Therefore, the changes induced by P. viticola 

were investigated by combining phenotypic, histological, ultrastructural and transcriptomic 

approaches, in order to provide comprehensive information about the different organ-response. The 

macroscopic, microscopic and ultrastructural response to DM showed that in the mid-resistant CC 

leaf the sporulation was related to the H2O2 production and to the callose deposition in specific areas, 

while in the mid-susceptible CC inflorescence they were not related each other.  

Through the transcriptomic analysis, genes belonging to enriched biological functions that may 

be associated with either mid-resistance or mid-susceptibility/susceptibility to DM, and whose 

expression is organ-specific in CC tissues were identified. In particular, the mid-resistant CC leaf was 

characterised by an up-regulation of genes implicated in biotic and oxidative stress responses, signal 

transduction and defence-related genes. Genes implicated in the hormone signalling were up-

regulated in mid-susceptible CC inflorescence, while genes related to carbohydrate metabolism and 

photosynthetic process were down-regulated. This study provides a first exploration of the functions 

associated with varying levels of partial resistance to DM in grapevine organs that can be exploited 

as sources of genetic resistance in grapevine breeding programs. 
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The next step will be the validation of the RNA-Seq results testing the selected genes by RT-

qPCR and the analysis of their expression profiles at inter-genotype level using the independent 

experiment on the hydrid Mus and the variety PN. One of the future objective of this research work 

will be to analyse P. viticola differential expressed genes in the grapevine organs, to have a better 

understanding of the pathogen itself and in the grapevine-P. viticola interaction. 
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