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Abstract 

 

The human gut microbiota plays a crucial role in the functioning of the gastrointestinal tract 

and its alteration can lead to gastrointestinal abnormalities and inflammation. Additionally, the gut 

microbiota modulates central nervous system (CNS) activities affecting several aspect of host 

physiology. Motivated by the increasing evidences of the role of the gut microbiota in the complex 

set of interactions connecting the gut and the CNS, known as gut-brain axis, in this Ph.D. thesis we 

asked whether the gastrointestinal abnormalities and inflammation commonly associated with 

neurological disorders such as Rett syndrome (RTT) and Autism could be related to alterations of the 

bacterial and fungal intestinal microbiota. 

First, since only few reports have explored the fungal component of the gut microbiota in 

health and disease, we characterized the gut mycobiota in a cohort of healthy individuals, in order to 

reduce the gap of knowledge concerning factors influencing the intestinal microbial communities. 

Next, we compared the gut microbiota of three cohorts of healthy, RTT and autistic subjects to 

investigate if these neurological disorders harbour alterations of the gut microbiota. 

Culture-based and metataxonomics analysis of the faecal fungal populations of healthy 

volunteers revealed that the gut mycobiota differs in function of individuals’ life stage in a gender-

related fashion. Different fungal species were isolated showing phenotypic adaptation to the intestinal 

environment. High frequency of azoles resistance was also found, with potential clinical significance. 

It was further observed that autistic subjects are characterized by a reduced incidence of 

Bacteroidetes and that Collinsella, Corynebacterium, Dorea and Lactobacillus were the taxa 

predominating in the gut microbiota of autistic subjects. Constipation has been associated with 

different bacterial patterns in autistic and neurotypical subjects, with constipated autistic individuals 

characterized by higher levels of Escherichia/Shigella and Clostridium cluster XVIII than constipated 

neurotypical subjects. 

RTT is a neurological disorder caused by loss-of-function mutations of MeCP2 and it is 

commonly associated with gastrointestinal dysfunctions and constipation. We showed that RTT 

subjects harbour bacterial and fungal microbiota altered from those of healthy controls, with a reduced 

microbial richness and dominated by Bifidobacterium, different Clostridia and Candida. The 

alterations of the gut microbiota observed did not depend on the constipation status of RTT subjects 

while this microbiota produced altered SCFAs profiles potentially contributing to the constipation 

itself. 



iv 

Phenotypical and immunological characterizations of faecal fungal isolates from RTT subjects 

showed Candida parapsilosis as the most abundant species isolated in RTT, genetically unrelated to 

healthy controls’ isolates and with elevated resistance to azoles. Furthermore these isolates induced 

high levels of IL-10 suggesting increased tolerance and persistence within the host. 

Finally, the importance of multiple sequence alignment (MSA) accuracy in microbiome 

research was investigated comparing three implementations of the widely used NAST algorithm. By 

now, different implementations of NAST have been developed but no one tested the performances 

and the accuracy of the MSAs generated with these implementations. We showed that micca, a new 

bioinformatics pipeline for metataxonomics data improves the quality of NAST alignments by using 

a fast and memory efficient reimplementation of the NAST algorithm. 
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Overview of the Ph.D. thesis 

 

The importance of the human gut microbiota in host physiology is now well known, ranging 

from the modulation of host metabolism to immune system homeostasis. Nevertheless the ability of 

the gut microbiota to affect complex physiological activities of the central nervous system still 

remains elusive. In particular its contribution to the pathophysiology of extra-intestinal, neurological 

disorders has been suggested but not completely unveiled. Several studies reported the importance 

that alterations of the fungal gut microbiota, together with its bacterial counterpart, can have in 

different pathologies. However, a comprehensive knowledge of what actually a “healthy gut 

mycobiota”, both in terms of structure, diversity and functions, is still missing. 

To lay the basis for a more complete understanding of the role of the fungal intestinal microbiota in 

health and disease, in the first chapter of this Ph.D. thesis we characterized the gut mycobiota in a 

cohort of healthy individuals by using a mixture of culture-dependent and culture-independent 

methods. Additionally, given the increasing appreciation of the role of the microbiome-gut-brain axis 

and its impact on neuronal and intestinal pathophysiology, in the second, third and fourth chapter of 

the Ph.D. thesis we studied the intestinal microbial communities in autism spectrum disorder and Rett 

syndrome, two neurological disorders with different aetiology but sharing some neurological and 

gastrointestinal symptoms (constipation, inflammation, restricted repetitive behaviour, etc.), in order 

to elucidate the role of the gut microbiota in the gastrointestinal abnormalities and inflammatory 

disorders commonly associated with these pathologies. To give a more complete picture of the role 

of the gut microbiota in these states, both fungal and bacterial components have been characterized 

through amplicon-based sequencing of the bacterial V3-V5 variable regions of the 16S rRNA gene 

and of the ITS1 region of the fungal rRNA genes. Finally, due to the significant impact on the 

calculation of phylogenetic and pairwise genetic distances for microbial ecology estimates, we 

investigated the importance of multiple sequence alignments (MSA) in microbiome research. MSA 

algorithms can rely on two approaches: de novo methods which are hardly applicable for 

metagenomics data analysis, both in terms of accuracy and computational performances (due to the 

type and size of datasets used), and reference-based methods which rely on the use of curated 

templates of 16S rRNA sequences. The reference-based methods are the preferred alignment methods 

for metagenomics studies since they allow the generation of accurate MSAs that incorporate the 

predicted secondary structure of the 16S rRNA gene. Therefore, in the fifth chapter of this thesis, we 

compared the performances and accuracy of different implementations of the widely used reference-

based aligner NAST on synthetic and biological 16S rRNA sequence datasets. The thesis gathers 

together results recently published and manuscripts submitted or about to be published and it is 
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structured into five chapters: i) Age and gender affect the composition of fungal population of the 

human gastrointestinal tract; ii) New evidences on the altered gut microbiota in autism spectrum 

disorders; iii) Altered gut microbiota in Rett syndrome; iv) Intestinal Candida isolates from Rett 

syndrome subjects bear potential virulent traits and capacity to persist within the host; v) The 

importance of multiple sequence alignments in microbiome research: comparison of NAST algorithm 

implementations. Each chapter is preceded by a brief resume of the main findings and a personal 

statement regarding my involvement and contribution in each project.  
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Introduction 

 

The human gut microbiota: ruler of host physiology 

The human gastrointestinal (GI) tract is a complex ecological niche in which all the three domains of 

life (Archaea, Bacteria and Eukarya) and Virus co-exist in close association with the host [1-3]. This 

complex microbial community, known as the gut microbiota, has co-evolved with the host in a 

mutualistic relationship that influences many physiological functions such as host energy metabolism, 

development and function of the immune system, modulation of neurological and behavioural states 

of the host [4-6]. The development of the gut microbiota starts at birth with colonization by a low 

number of species from the vaginal and faecal microbiota of the mother and is characterized by many 

shifts in composition during infancy [7]. Furthermore the initial composition of the infant gut 

microbiota depends on the delivery mode with infants delivered by C-section harbouring a gut 

microbiota characteristics of the skin rather than of the vaginal tract [8]. Since the microbial 

community structure during the first year of life has a long-lasting influence on metabolic and immune 

homeostasis of the host it has been hypothesized that C-section delivery may increase the risk of 

certain diseases such as celiac disease, type 1 diabetes (T1D), and asthma due to aberrant T-helper 

responses [9]. Breast-feeding further influences the composition of the gut microbiota through 

transmission of milk-derived microbiota and selection of bacterial species adapted to the utilization 

of human milk oligosaccharides such as the bifidobacteria, prominent taxa of the infant gut microbiota 

[10, 11]. In this way, the infant gut microbiota is shaped from continuous exposures to the microbiota 

of parents, environmental factors and diet, becoming comparable to the adult microbiota by 2 years 

of age [12]. From an initial gut microbiota characterized by low ecological richness and diversity 

during infancy, the adult intestinal microbiota become a complex ecosystem composed of thousands 

species belonging principally to the bacterial phyla Firmicutes (principally Clostridium, 

Ruminococcus, Faecalibacterium, Lactobacillus) and Bacteroidetes (principally Prevotella and 

Bacteroides). Actinobacteria, Fusobacteria, Proteobacteria and Verrucomicrobia are also present 

but in small proportions [3], despite their importance in health and disease [10, 13]. Although the 

core gut microbiota in adulthood is quite stable (more in term of encoded functions rather that 

taxonomy [14], variables like age, sex, genetic and environmental factors, medical treatments and 

diet are accountable for inter-individual differences in the intestinal microbial structure. For example 

sex hormones determine some differences observed between genders [15] and diet can shift the 

microbiota composition in a sex-dependent manner [16]. Indeed it is exactly the diet that has the 

major impact on microbiota assembly. The switch from a high-fat/low-fibre diet to a low-fat/high-
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fibre diet causes notable changes in the gut microbiota within 24 hr [17]. In a fine study on the effect 

of short-term consumption of an animal-based or plant-based diet it has been showed how the human 

gut microbiota changes drastically and rapidly in response to dietary lifestyles [18]. Such changes 

reflect trade-offs between carbohydrate and protein fermentation which favour (or not) the 

overgrowth of microbial taxa promoting or protecting against intestinal inflammation. Cross-

sectional studies on different human populations have shown that there are evident differences 

between the gut microbiota composition of individuals from Western countries e.g. United States and 

Italy and from non-Westernised countries such as Burkina Faso, Malawi and the Amazonas states of 

Venezuela [19, 20]. Although these differences may also be ascribed to the distinct genetic pools of 

these populations, cultural factors related to diet, hygienic habits and antibiotic usage are critical in 

shaping the gut microbiota. Indeed the populations that have a diet rich in fibres tend to have a gut 

microbiota enriched in bacterial taxa known with enzymatic repertoires for the hydrolysis of complex 

plant polysaccharides (e.g. Prevotella or Xylanibacter). The fermentation of such fibres produces 

relevant amounts of Short Chain Fatty Acids (SCFAs) (especially acetate, propionate and butyrate) 

which are important for colon health because of their immune-regulatory activities [21] and are a 

primary energy source for colonic cells [22]. By contrast the gut microbiota of Western populations 

is deprived of these microorganism and tend to have less SCFAs [19]. Interestingly the incidence of 

Inflammatory Bowel Diseases (IBDs) and other immunological disorders is greater in industrialized 

populations than in communities in developing countries living as farmers or hunter gatherers. 

Intestinal cells interact with the gut microbiota secreting signalling molecules, such as gut hormones, 

chemokines and cytokines, in a fine interplay between the gut microbiota and the host that modulate 

the functionality of host tissues and organs maintaining the homeostatic control [23]. The subtle 

equilibrium between the gut microbiota and the host is a key element in human health. In fact, 

alterations in the composition of the microbial community structure, termed as “dysbiosis”, have been 

associated to an increasing number of health conditions such as metabolic disorders (e.g. diabetes, 

obesity) [24-26], blood pressure and heart disease [27], autoimmune disorders [28] and Autism 

Spectrum Disorders (ASDs) [29]. 

 

Mechanisms of interaction between the gut microbiota and the immune system  

The immune system and the gut microbiota start developing together since the beginning of birth and 

it has been hypothesized that their co-evolution maintains and selects mutualistic or symbiotic 

microorganisms within the GI niche [30]. This early co-existence is necessary to avoid phenomena 

of undesirable reactions against the healthy gut microbiota. Indeed the intestine and its associated 

immunological components have to deal with several, in some cases incompatible, tasks. Apart from 



Introduction 

5 

all the functions related to digestion and absorption of nutrients, the intestine has to be tolerant 

towards mutualistic/commensal microorganisms and to keep control over pathobionts (i.e. those 

resident microbes with pathogenic potential [31]), preventing microbial overgrowth and invasion of 

the epithelial intestinal barrier. In turn the gut microbiota has to modulate and regulate several aspects 

of host’s immune system towards tolerance rather than responsiveness. The impact of the gut 

microbiota on intestinal and systemic immunity regulation has been demonstrated by studying germ-

free (GF) mice models that develop an altered immune system and are more prone to microbial 

infections and colitis [32]. Before birth, when the gut of the foetus is not colonized by microbes, the 

lymphoid tissue inducer cells (LTi) stimulate the organization of the gut-associated lymphoid tissues 

(GALTs), including Payer’s patches, crypt patches and isolated lymphoid follicles (ILFs) [33-35]. 

However, maturation and differentiation of these tissues depends on subsequent gut microbiota 

stimulations [36]. As a consequence GF mice have underdeveloped GALTs [37]. In addition to 

stimulating the development of lymphoid tissues the gut microbiota modulates the differentiation of 

several immune cell subsets. The immune and epithelial cells recognize the so-called pathogen-

associated molecular patterns (PAMPs) (i.e. flagellin, chitin, LPS, lipoteichoic acid, mannans, 

microbial nucleic acids) of microorganisms through pattern recognition receptors (PRRs), among 

which the most relevant are the Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I 

(retinoic acid-inducible gene I)-like receptors (RLRs) [5]. The stimulation of such receptors activates 

the innate immunity determining a cascade of events (expressions of chemokine and cytokines from 

neutrophils, macrophages, NK cells or dendritic cells) that leads to the differentiation of specific 

CD4+ T-cells subpopulations, pro-inflammatory (Th1 and Th17) of regulatory (T-reg and TR1), in 

function of the type of stimulus [5, 23]. Different members of the gut microbiota, both symbionts and 

pathobionts, as well as pathogens, drive specific T-cells responses. Segmented filamentous bacteria 

(SFB), Gram-positive Clostridia-related bacteria, specifically induce a Th17 responses [38-40]. Th17 

cells, which preferentially accumulates in the intestine, are fundamental for host defence and their 

localization in the intestine is strongly affected by the microbiota, as observed in antibiotic-treated 

and GF mice models [38-40]. The adhesion of SFB to intestinal epithelial cells (IECs) of the host 

stimulates the production of IL-1β, IL-6 and IL-23 by lamina propria DCs and macrophages and 

subsequent expression of pro-inflammatory cytokines IL-17A and IL-22 by Th17 cells [40]. On the 

contrary the Gram-negative, polysaccharide A (PSA) producing Bacteroides fragilis as well as the 

Gram-positive Clostridium spp. belonging to the clusters IV and XIV elicit anti-inflammatory 

responses mediated by FOXP3+ CD4+ T-reg cells. This cell lineage produces principally IL-10, which 

promotes tolerance and maintains the immune homeostasis controlling/suppressing pro-inflammatory 

Th17 responses [41, 42]. Beside these CD4+ Th cell lineages, innate lymphoid cells (ILCs) cover also 



Introduction 

6 

an important role in the homeostatic balance between immunity and microbiota in the gut sharing 

some functional characteristics with T-cells [43]. ILCs have been categorized in three groups: T-bet+ 

ILCs (or ILC1s), GATA3+ ILCs (or ILC2s) and RORγt+ ILCs (or ILC3s) [44]. The latter in particular 

finely regulate microbiota composition producing IL-22. This cytokine promotes the production of 

antimicrobial peptides (AMPs) from IECs [45] and negatively regulates Th17 responses inhibiting, 

for example, the expansion of commensal SFB. IL-22 production by ILC3s is particularly dependent 

on aryl-hydrocarbon receptor (AhR) activation [46, 47]. In response to dietary tryptophan, commensal 

lactobacilli produce AhR ligands (in particular the indole-3-aldheide) inducing production of IL-22 

by ILC3s cells [47] that, in turn, inhibits SFB intestinal expansion. In addition to regulation of T-cell 

responses, the intestinal microbiota modulates also gut-specific B-cell responses. IgAs are produced 

by plasma cells (differentiated B-cells) in the GALTs via TLR5 binding of bacterial flagellin by DCs 

and subsequent promotion of B-cell differentiation through secretion of B-cell activating factor 

(BAFF), inducible nitric oxygen synthase (iNOS) or Tumor Necrosis Factor (TNF) [48]. Intestinal 

barrier homeostasis is finely regulated by luminal secreted IgA as they coat commensals avoiding 

their binding to the epithelium and their translocation into the lamina propria [49]. All these 

mechanisms are summarized in Figure 1. Any disruption of the delicate balance between the gut 

microbiota and the immune system has potentially pathological consequences on the health status of 

the host. Dysbiosis of the gut microbiota can lead to chronic inflammation encompassing hyper 

activation of Th1 and Th17 immune responses including chronic inflammation as observed in 

Inflammatory Bowel Diseases (IBDs) [5]. IBDs appear to be caused by a dysregulated immune 

response to the commensal microorganisms harbouring virulence traits in their genome (the so-called 

pathobionts) in a genetically susceptible host [50]. Gut microbiota influences also various extra-

intestinal (auto)immune disorders. Despite the role of gut microbes may vary from protection to 

stimulation of autoimmunity it has been shown that GF mice are unsusceptible to arthritis, T1D and 

even to experimental autoimmune encephalomyelitis (a study model for Multiple Sclerosis) [5]. 
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Figure 1: The recognition of specific PAMPs from pathobionts by PRRs induces antigen presenting cells 

(APCs) like macrophages and dendritic cells (DCs) to produce IL-1β, IL-6 and IL-23. Subsequently Th17 cells 

express the pro-inflammatory cytokines IL-17 and IL-22 that stimulates the production of AMPs by IECs, 

controlling the expansion of commensal microbes that could be harmful. Similarly, ILC3s contribute to control 

excessive expansion of microbiota by producing IL-22 in response to metabolites (e.g. indole-3-aldheyde) 

produced by commensal microorganisms (i.e. lactobacilli). On the other hand commensals such as 

Bifidobacteria, PSA+ B. fragilis and Clostridium spp. cluster XIV and IV stimulates APCs to promote anti-

inflammatory IL-10 T-reg responses regulating Th17 responses. Furthermore lamina propria DCs promote B-

cells differentiation in IgA-producing plasma cells secreting the B-cell activating factor (BAFF), inducible 

nitric oxygen synthase (iNOS) or Tumor Necrosis Factor (TNF). The gut microbiota composition is thus 

regulated by direct binding of the secreted IgAs on commensals and pathobionts, avoiding possible 

translocations of such microbes through IECs. 

 

The microbiome-gut-brain axis: how the gut microbiota interacts with the nervous system 

Several evidences demonstrated the bidirectional communication between the gut and the central 

nervous system (CNS) [6] and even more studies showed the impact of the gut microbiota on 
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neurological functions through varied and complex mechanisms. Well known pathways of interaction 

between the gut microbiota and the nervous system are i) the autonomous nervous system (ANS), in 

particular the enteric nervous system (ENS) and the vagal nerves [51], ii) the hypothalamic-pituitary-

adrenal (HPA) axis [52], iii) tryptophan metabolism [53] and others bacterial metabolites [54], iv) the 

immune system [55]. 

Recent studies have shown that Lactobacillus reuterii and Bacteroides fragilis activate colonic and 

intestinal afferent neurons [56, 57] probably through the direct interaction of the gut microbiota with 

TLRs expressed in the ENS [58].  

The HPA axis is one of the most relevant parts of the neuroendocrine system modulating stress 

responses and physiological processes, including digestion and immune regulation. GF mice exposed 

to stressful situations have been shown to present levels of adrenocorticotrophin and corticosterone 

higher than wild-type mice exposed to the same sources of stress [52], providing a first evidence of 

the direct interaction of the gut microbiota with the HPA. Furthermore cortisol release by the HPA 

axis regulates gut motility and integrity affecting the host-microbiota interaction at mucosal level 

[59]. 

The gut microbiota has an important effect on host metabolism affecting metabolic pathways directly 

related to the CNS signalling. Tryptophan metabolism in particular can affect CNS functions and 

impairments of serotonin and kynurenine pathways, two important branches of tryptophan 

metabolism, are implicated in different neurological disorders [60]. The serotonergic system is 

involved in mood regulation and it has an important role in GI secretion and signalling [61]. It has 

been observed that serotonin levels and related metabolites in GF mice are altered in the striatum and 

hippocampus [62, 63] while there is a 2.8 fold increase in plasma serotonin levels when GF mice are 

colonized by the gut microbiota [64]. Indeed the gut microbiota directly modulates serotonin 

biosynthesis [65, 66] and probiotic treatments have been shown to increase serotonin and kynurenine 

levels [67]. Moreover, dysfunctions of these pathways have been implicated in Autism Spectrum 

Disorders (ASDs) [60]. 

Some members of the gut microbiota, principally lactobacilli and bifidobacteria, can produce 

neuroactive molecules including neurotransmitters and neuromodulators such as γ-aminobutyric acid 

(GABA) [68, 69]. Interestingly, in-vivo administration of a probiotic strain of Lactobacillus 

rhamnosus increased CNS levels of GABA and diminished the anxiety-like behaviour of treated mice 

while vagotomised mice did not show behavioural changes [51]. Moreover the gut microbiota is the 

principal source of SCFAs that, even if they are not really neuroactive molecules, act also on neuronal 

physiology. Indeed SCFAs can pass through the blood-brain barrier (BBB) [70] and inhibit histone 

deacetylases (HDACs) in active neurons resulting in long-lasting effects on gene expression [71, 72]. 
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Acetate may further modulate hippocampal activity altering the levels of GABA and anorectic 

neuropeptide suppressing the appetite stimulus [73]. Nevertheless cumulative, chronic delivery of 

non-physiological levels of propionate may have detrimental effects on CNS activities promoting 

ASD-like behaviours [74]. Finally it is worth noting that the gut microbiota impacts also on 

neuroplasticity as observed by the altered levels of hippocampal brain-derived neurotrophic factor 

(BDNF) in GF mice [75]. 

The impact of the gut microbiota on stress-related behaviours is one of the best studied effect on the 

microbiome:gut:brain axis. Alterations in the gut microbiota, both resulting from antibiotic treatments 

or infections, increase anxiety-like behaviour in wild-type mice whereas GF mice showed increased 

motor activity and reduced anxiety [62]. The gut microbiota affects the development of neural 

systems that govern the endocrine response to stress. Indeed GF mice showed exaggerate HPA 

responses and reduced BDNF levels compared to gnotobiotic mice while this phenotype was reversed 

by treatment with probiotics or by restoration of GF mice microbiota during early stage of 

development [52]. 

Alterations in the composition of the gut microbiota have been implicated in a wide variety of other 

neurological disorders, including ASDs [29]. ASDs are neurodevelopmental disorders characterized 

by alterations in social interactions and communication and by restricted and repetitive behaviour 

[76]. Further, ASD subjects commonly suffer of GI abnormalities [77-79]. When compared to healthy 

subjects, the faecal microbiota of ASD subjects is characterized by high abundance of Clostridia [80, 

81], imbalances of the Bacteroidetes to Firmicutes ratio [82, 83] and reduced incidence of Prevotella, 

Ruminococcus and Bifidobacterium [82, 84]. The altered microbial community structure associated 

to ASDs and its metabolic impact on neurological and behavioural pathophysiology has been recently 

studied on the ASD-like maternal immune activation (MIA) mouse model [85]. Hsiao and colleagues 

observed that the MIA offspring harboured a dysbiotic gut microbiota, defects in intestinal 

permeability and increased levels of 4-ethylphenilsulphate (4EPS), a microbial metabolite related to 

p-cresol, a putative metabolic marker for autism [85]. Treatments with PSA+ Bacteroides fragilis 

attenuated the stereotypic behaviours of the MIA offspring, restored intestinal barrier functions and 

reduced the levels of 4EPS [85] highlighting the impact that the gut microbiota may have on the onset 

of extra-intestinal, neurological disorders. Furthermore the gut microbiota influences the 

development of immune-mediated CNS disorders as Multiple Sclerosis. The gut microbiota may 

interact indirectly with the CNS through the peripheral immune system affecting neurological 

functions and behaviour [6]. The activation of the immune system mediated by PAMPs interaction 

with PRRs leads to the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNFα that 

can cross the BBB modulating neuronal physiology [86]. Indeed, the increase of peripheral 
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inflammation is a risk factor for depression due to diminished concentration of serotonin available to 

signal in the synapses [87] and a reduction of 5-HT receptors on neurons [88]. In the experimental 

autoimmune encephalomyelitis (EAE) model of multiple sclerosis the colonization of the gut 

microbiota is required for the induction of the EAE. GF mice showed less severe EAE whereas 

colonization with SFB resulted in dysregulation of Th17 responses which exacerbate the severity of 

the disease [89]. On the contrary, treatments with PSA+ B. fragilis or Bifidobacterium alleviate EAE 

symptoms [90-92]. Additionally, immune dysregulation has been observed in several neurological 

disorder, including ASD, underlining the intricate crosstalk between immune system, CNS, 

metabolism and commensal microorganisms and the wide impact that the gut microbiota exerts at 

different levels of host physiology. 

 

The human gut mycobiota: a “hidden” regulator of host physiology 

The human gut microbiota has been extensively studied in several aspects of its interaction with the 

host in health and disease. Nevertheless the majority of the studies focused only on the bacterial 

component ignoring the mycobiota i.e. the fungal component of the gut microbiota. Despite fungi 

represent approximately 0.1% of total gut microorganisms [1, 93], in terms of biomass the gut 

mycobiota covers an important role in the GI niche since the average size of a fungal cell is 100 fold 

larger than the average bacterial cell [94]. Furthermore, the gut mycobiota, together with its bacterial 

counterpart, exerts key roles in maintaining microbial community structure, metabolic functions and 

it has strong immunomodulatory properties, being a main actor in host physiopathology [94]. Fungi 

interact with the immune system through mechanisms similar to those described in Figure 1. Fungal 

PAMPs are recognized by host cells’ PRRs, among which C‑type lectin receptors (CLRs; e.g. dectin 

1 and dectin 2, also known as CLEC7A and CLEC6A respectively) are central for fungal recognition 

and for the development of innate and adaptive immune responses [95]. Well balanced pro-

inflammatory and tolerogenic responses are a prerequisite to avoid potential harmful inflammatory 

responses triggered by GI fungi. Different subsets of DCs equipped with different PRRs have the 

ability to initiate adaptive antifungal immune responses enabling fungi to switch from commensalism 

to infection [95]. The activation of signal transduction pathways affecting the balance of NF-kB, a 

pleiotropic regulator of cell responses [96], and ultimately the expression of IDO1, has a key role on 

plasticity of DCs activities in balancing between CD4+ effector Th cells and T-reg cells [95]. Th1 and 

Th17 cell responses are crucial in antifungal immunity. Th1 cells, through the production of IFNγ 

and TNFα, are necessary for the activation and recruitment of phagocytes (macrophages, neutrophils) 

at potential sites of infection [95]. Although Th1 cell responses are central for host protection against 

fungi, patients with genetic defects in Th1 pathways do not have increased susceptibility to fungal 
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infections [97]. On the contrary, Th17 cells play a central role in protection against fungal infections 

[97, 98]. In fact the ability of IL-17 to mobilize neutrophils and induce AMPs contribute to an efficient 

control of the infection at different body sites [95]. However IL-10 producing T-reg cells are 

necessary to provide immune homeostasis and limiting immunopathology [95]. The shift between 

pro-inflammatory and tolerogenic DCs responses are mediated by the kynurenine pathway of 

tryptophan metabolism, in which IDO1 covers a central role [99]. IDO1 is widely recognized as a 

regulator of immune homeostasis and suppressor of inflammation by inducing IL-10 through the 

production of immune-active kynurenines that activate the AhR in lymphoid tissues [100] and 

promotes T-reg cells development [101]. The gut microbiota, in particular lactobacilli, modulates the 

immunological responses to Candida in the GI tract by providing tryptophan-derived AhR ligands 

(i.e. indole-3-aldheide) that stimulate ILC3s to produce IL-22 [47]. Together with IL-17, IL-22 avoids 

excessive proliferation of commensal fungi. GF mice are highly susceptible to Candida infections 

[102] and antibiotic-treated mice showed an overgrowth of the fungal population, with the genus 

Candida representing up to the 99% of total intestinal microbes [103-105]. Furthermore, prolonged 

antibiotic usage and subsequent colonization with C. albicans prevents from a rapid and full 

restoration of the bacterial community structure that results in altered abundances of Bacteriodetes, 

Lactobacillaceae, Ruminococcaceae and Lachnospiraceae [106]. At the mucosal site, fungal 

colonization induces the production of IL-17 and IFNγ which is a strong activator of IDO1 [107]. 

The activation of the IFNγ-IDO1 axis harmonizes the tolerogenic response against the fungal 

microbiota allowing commensalism [95]. Nevertheless commensal fungi, such as C. albicans, may 

shift IDO’s activity from kynurenine towards 5-hydroxytriptophan, an inhibitor of Th17 host 

responses [108]; furthermore IDO’s blockade induces the transition from yeast to hyphal morphology 

[107] resulting in a transition from commensalism to infection. The mechanisms through commensal 

C. albicans choses to shift its phenotype towards infection are not well understood but the disruption 

of the microbial community structure resulting in intestinal dysbiosis may be one of the reasons [109]. 

Although the GI tract is colonized by commensal fungi able to modulate immune responses, the 

composition and characteristics of the gut mycobiota in healthy hosts have been poorly explored. The 

bacterial gut microbiota evolves rapidly during the early stages of life but then remains relatively 

stable over time, more in term of functions than taxonomically [1]. On the contrary the gut mycobiota 

seems to be more variable with respect to its bacterial counterpart. It has been showed that the 

intestinal fungal population of a mouse model of study undergoes significant changes over 2.5 months 

while the bacterial population remained quite stable [105]. Despite some studies investigated the gut 

mycobiota using labour intensive experimental approaches [i.e. culture-based approaches, denaturing 

gradient gel electrophoresis (DGGE)], these are inadequate for the large scale characterization of 
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complex microbial communities. Only with the advent of high-throughput sequencing technologies 

it has become possible to characterize quantitatively the structure and composition of intestinal fungal 

communities. It has been found that the mammalian gut mycobiota is characterized by over 50-60 

fungal genera (in particular Candida, Saccharomyces, Cladosporium, Aspergillus and Penicillium) 

[110-112]. Interestingly, the distribution of species belonging to the genus Candida changes in 

function of the host geographical origin. In fact, a remote population of Amerindian showed an 

elevated gut colonization of foodborne Candida krusei and Saccharomyces cerevisiae over Candida 

albicans, that is one of the most abundant GI commensal species in industrialized countries [113]. 

This study suggested that the exposition to different dietary habits and environmental factors has an 

important role in shaping the gut mycobiota. Indeed an animal-based dietary regimen has been 

associated with an expansion of Penicillium species [112] whereas carbohydrate-rich, plant-based 

diets correlated with high abundance of Candida [18, 112]. The complex relationship existing among 

commensal fungi, bacteria and the immune system results in a delicate equilibrium which disruption 

could contribute to pathologies ranging from metabolic disorders (obesity) to colorectal adenomas 

and IBDs. Since diet is a dynamic variable shaping the composition of the gut microbiota and 

consequently mucosal immunity it is not surprising that the gut mycobiota of obese individuals is 

different from non-obese subjects. In fact Dipodascaceae, Saccharomycetaceae and Tremellomycetes 

showed an increase of their relative abundances in obese individuals, further correlating with 

adiposity, inflammatory parameters and the occurrence of metabolic abnormalities [114]. Another 

recent report showed an altered fungal microbiota in biopsies from colorectal adenomas characterized 

by reduced fungal diversity and dominated by the opportunistic fungal pathogens Phoma and 

Candida, representing up to the 45% of the relative abundance. Furthermore different fungal patterns 

were found at different stages of adenomas, resulting in potential diagnostic biomarkers [115]. These 

studies well describe how pathophysiological changes of the host may affect also the composition of 

the gut mycobiota, but the best studied pathologies directly involving alterations of the intestinal 

fungal population are IBDs. Crohn’s disease (CD) and ulcerative colitis (UC) are the two primary 

type of IBDs. Although the exact aetiology of IBDs remains elusive it probably involves altered 

immunological responses against the gut microbiota in genetically predisposed subjects, leading to 

extended intestinal inflammation [50]. Bacterial dysbiosis has been previously observed in IBDs 

[116], nevertheless the discovery of anti-Saccharomyces cerevisiae antibody (ASCA) in CD [117] 

highlighted the potential role of the gut mycobiota in IBDs pathophysiology. Preliminary studies 

based on DGGE analysis of fungal 18S rRNA revealed an increased abundance of fungal richness 

and diversity in IBD patients characterized by expansion of Candida spp., Penicillium spp., 

Saccharomyces spp., Gibberella moniliformis, Alternaria brassicicola, and Cryptococcus 
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neoformans [118, 119]. Moreover high-throughput sequencing analysis of the gut mycobiota in a 

DSS-induced colitis mouse model showed that dectin 1 deficiency (Clec7a−/−) increases the 

proportion of opportunistic pathogenic fungi, including Candida and Trichosporon, in inflamed 

tissues, whereas non-pathogenic Saccharomyces decreases [111]. Similarly, a recent study on an IBD 

cohort showed an altered gut mycobiota with a decreased proportion of S. cerevisiae and an increased 

proportion of C. albicans compared to healthy subjects [120]. However the role of the gut mycobiota 

in the maintenance of health is still far from being well understood. Indeed fungi are highly 

underrepresented in sequence databases compared to bacteria making the correct understanding of 

fungal population and community structures more difficult due to under-detection of fungal 

sequences in high-throughput metagenomics analysis [94]. 

 

Investigating the gut microbiota: how culture-independent approaches revolutionised the study 

of complex microbial communities 

To study the microbial intestinal communities, commensal microorganisms needs to be identified and 

quantified. Historically microbes were identified by microscopic observation and staining [121, 122]. 

The early observation that the number of organisms that can be observed under a microscope is much 

higher than the number of those that can be cultivated led to the deduction that microorganisms 

require particular conditions to grow, giving birth to the research field of microbial ecology [123]. 

Early studies on microbial communities relied on culturing microbes from various environmental 

sources, ignoring the full complexity of microbial communities. Molecular approaches such as 

restriction fragment length polymorphism (RFLP) analysis, amplified rDNA restriction analysis 

(ARDRA) and denaturing gradient gel electrophoresis (DGGE) were good at revealing more 

complexity than culturing methods but were unable to identify specific taxon. In the 70s and 80s the 

idea of using ribosomal RNA gene sequences as molecular markers for phylogenetic classification of 

(micro)organisms [124, 125], together with the development of pioneering methods in molecular 

biology such as PCR and Sanger sequencing [126], gave a great impulse to the application of culture-

independent DNA-based methods for the study of microbial communities. The advent of new high-

throughput sequencing technologies such as Roche 454 and Ilumina-Solexa then changed 

dramatically the way of how complex microbial communities were studied allowing to characterize 

microbial populations and their gene content, starting the so-called “metagenomics era” of 

microbiome research [127].  

Analysis of microbial communities can rely on two metagenomics approaches, targeted or amplicon-

based metagenomics (also known as metataxonomics [128]), and untargeted or shotgun 

metagenomics. By now, the most recent advancements in microbiome research are going to use whole 
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metagenomics shotgun because of their ability to infer genes, functional capabilities and metabolic 

potential of a microbial community [129]. Nevertheless shotgun sequencing is less sensitive with 

respect to metataxonomics which is still the preferred approach to investigate rare, less abundant 

components of a microbial community, as the fungal population of the gut microbiota [130]. 

Furthermore metataxonomics is still the most widely used approach in microbiome research due to 

the low sequencing costs and relying on the use of well-established bioinformatics pipelines. 

The metataxonomics analysis of complex microbial communities is based on the amplification and 

analysis of taxonomically informative sequences from a microbial community, such as the 16S rRNA 

gene for prokaryotes or the intergenic transcribed spacers (ITS) for eukaryotes. Amplicon-based 

sequencing of targeted marker genes has been widely used thanks to its versatility, since it can be 

adapted to many different sequencing platforms. Furthermore one of the advantages of using 

ribosomal genes as phylogenetic markers for metataxonomics is the huge amounts of deposited 

annotated sequences (in particular for bacterial 16S rDNA) in many databases (including RDP [131], 

Greengenes [132] and SILVA [133]), allowing for easy taxonomy assignments even in complex 

ecological niches. Since bacteria often represent the majority part of a microbial community, most of 

the metataxonomics analytical pipelines have been developed for the analysis of the 16S rRNA gene. 

The 16S rRNA gene sequence is about 1.5 kb in length and contains highly conserved, variable and 

hypervariable regions that vary in function of evolutionary time and that can be used as molecular 

markers to infer the phylogenetic structure of a microbial community [125]. Sequence similarity 

provides the only unambiguous definition of bacterial taxa and 16S rRNA sequences having at least 

97% identity are taken together as a proxy for species and defined as an operational taxonomic unit 

(OTU) [134, 135]. Horizontal gene transfer [136], multi-copy rDNA genes [137], sequencing errors 

[138] and other confounding factors represent the major pitfalls of this approach [139]. Indeed, such 

degree of sequence divergence (i.e. 97% or lower sequence similarity) is required for accurate 

taxonomic assignments although it can results in low resolution at species level [140]. Sequence 

assignments to OTUs, known as binning, is a crucial step in microbial ecology analyses and can use 

supervised and unsupervised methods [131, 141]. Bioinformatics pipelines for the analysis of 

metataxonomics data include the following steps: filtering of low quality sequences, OTUs clustering, 

multiple sequence alignment (MSA) and sample distance calculations for microbial ecology 

measures. Quality filtering, MSA and clustering rely on complex computational procedures that are 

critical in order to produce consistent data [142]. Filtering of low quality sequences [143] is necessary 

to avoid overestimation of samples complexity while the clustering algorithms have to be flexible 

and accurate enough in order to identify precisely the number of OTUs in a dataset without 

overestimating the number of different species present in the samples [144].  
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There are different algorithms to calculate clusters for binning sequences into OTUs. These can be 

categorized principally into hierarchical clustering methods and heuristic clustering methods. The 

hierarchical clustering methods calculate a distance matrix measuring the difference between each 

pair of sequences using then sequence dissimilarity to define OTUs within a pre-defined threshold 

(e.g. the 97%). Mothur [145] and ESPRIT [146] are two representative algorithms using hierarchical 

clustering methods. Nevertheless, aligning millions of reads and generating distance matrices are 

computationally expensive tasks. Therefore most of the clustering algorithms commonly used in 

microbiome research are based on heuristic approaches which are faster and require less memory then 

exhaustive searches. CD-HIT [147], UCLUST [148], and DNACLUST [149] are widely used 

heuristic clustering methods. These “greedy” clustering algorithms use the ‘k-mer’ strategy to avoid 

the computationally intensive step of pairwise alignment selecting an input sequence as a seed for the 

initial cluster, and then examining each input sequence sequentially. If the distance between the query 

sequence and representative sequences of the existing clusters is within a pre-defined threshold, the 

input sequence is added to the corresponding cluster, otherwise, a new cluster is created and the query 

sequence is stored as a new seed [144]. Independently from the selected clustering method, it is 

important to consider that these may generate different estimates of OTUs, and this fact should be 

taken into account when comparing the ecological diversity. 

Furthermore, the approach used to generate MSAs has a significant impact on downstream data 

analysis since it is a crucial step in order to calculate phylogenetic and pairwise genetic distances to 

be used for OTUs taxonomic assignments and phylogenetic-based measures for microbial ecology 

estimates [150] (e.g. UniFrac measures [151]). Popular aligner tools such as ClustalW [152], 

MUSCLE [153] and T-Coffee [154] are widely used to generate sequences alignments, nevertheless 

these de novo methods scale exponentially in space and time in function of the length and number of 

sequences and cannot provide the quality required for phylogenetic analysis, necessitating a manual 

curation step [155, 156]. On the other hand, large databases of curated alignments of 16S rRNA 

sequences exist, obtained taking secondary structure information into account, and reference-based 

methods have been proposed to use this pre-existing knowledge to guide the alignment step. With 

this approach the computation complexity is reduced, making the alignment process readily scalable 

by reducing also the excessive introduction of gaps within the informative, non-conserved positions 

of the alignment [155]. Currently RDP [131], SILVA [133] and Greengenes [132] are the most widely 

used 16S rRNA gene databases in microbiome research. All of them provides curated MSAs of 16S 

rRNA sequences and their own aligners which relies, for example, on the use of Hidden Markov 

Models such as in the case of Infernal, the RDP aligner [157], or on the use of k-mer approaches such 

as SINA [158] and NAST [159], the aligners provided within SILVA and Greengenes, respectively. 
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The NAST algorithm, used by Greengenes in its original implementation and in the more recent 

implementations provided by QIIME, mothur and micca [145, 160-162], is one of the most widely 

used aligner in microbiome research. 

All these computational steps are fundamental in order to assess the microbial population diversity 

of an ecological niche. In addition, one important goal in microbial ecology is to compare different 

microbial populations estimating the between-sample taxonomic diversity, i.e. the beta-diversity. 

Different beta-diversity measures have been used to characterize communities, e.g. Bray-Curtis 

dissimilarity, unweighted UniFrac and weighted UniFrac, but these ecological estimators were 

designed with different purposes and have different pros and cons [163]. The Bray-Curtis 

dissimilarity quantifies the compositional dissimilarity between two different populations basing on 

the relative abundance of each binned OTU but is limited by the fact that the taxa are treated as 

equally related to one another. Alternatively, the beta-diversity can be analysed by using the UniFrac 

distance matrices which take into account the phylogenetic distributions of the samples by measuring 

the phylogenetic relatedness of the OTUs [151]. The UniFrac distance, in its first implementation i.e. 

the unweighted UniFrac [164], is a qualitative measure because duplicate sequences contribute no 

additional branch length to the phylogenetic tree and therefore the unweighted UniFrac does not take 

into account for changes in the relative abundance of different taxa between ecological communities 

[163]. On the contrary the more recent weighted UniFrac [165] is a quantitative beta-diversity 

measure because it detects changes in how many sequences from each lineage are present, as well as 

changes in which taxa are present [163]. UniFrac distances depend on the quality of the input 

phylogenetic tree and this, in turn, relies on the quality of the MSA. Therefore it is clear that the MSA 

step is crucial for the correct interpretation of the microbial community structures. 

Although the sequencing methods and bioinformatics pipelines for the study of bacteria in complex 

ecological communities are well-established, the analysis of fungi in these communities presents 

some difficulties. The metataxonomics analysis of one of the two internal transcribed spacer (ITS) 

regions of the fungal rDNA [130] is best way to study complex fungal populations. The ITS1 and the 

ITS2 are located respectively between the 18S and 5.8S genes and between the 5.8S and the 28S 

genes. Both regions are variable enough to classify fungi down to genus or species level. Nevertheless 

they have some intrinsic limitations with respect to the bacterial 16S rDNA. First of all, fungal ITS 

have variable sequence length in function of the fungal species of origin [166, 167] while the bacterial 

16S rRNA gene has always the same length. The variable length often creates difficulties in preparing 

amplicon libraries necessary for the different steps of high-throughput sequencing. Furthermore, 

unlike bacterial 16S data, ITS sequences cannot rely on well-annotated databases of fungal sequences 

with which to compare the sequencing data, requiring the use of de novo methods for the MSA step 
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and therefore leading to the introduction of further uncertainty in the metataxonomics analysis. It has 

been estimated that the deposited fungal sequences represent only a small fraction of the currently 

fungal species discovered and often are misclassified or unclassified [167, 168]. Indeed fungal 

taxonomy is quite complicated since fungi may be classified in two different taxa based on their 

sexual dimorphism even if belonging to the same fungal species, making difficult OTUs taxonomy 

assignments [94]. However the development of new pipelines and curated DBs for fungal 

metagenomics is further improving our comprehensive understanding of microbiome interactions in 

their ecological niches, from environmental samples to the human gut. 
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Chapter 1 

Age and gender affect the composition of fungal population of the 

human gastrointestinal tract 
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 The human gut microbiota exerts key roles in host energy metabolism and the maintaining of 

homeostatic controls over the immune system [1]. The term microbiota usually refers to the bacterial 

component of a microbial community although virus, unicellular and multicellular eukaryotes co-

exists and co-evolved within and with the host. The fungal part of the microbiota is usually referred 

as the “mycobiota” and, although fungi represent only a small part of the microbiota compared to 

bacteria, its role in regulating host physiology is gaining great attention [2]. Despite the importance 

of the human mycobiota on host physiology, the prevalent interest in describing fungi as aetiological 

factors in infectious diseases lead to the underestimation of its role in the health status [2]. The aim 

of the study presented in this chapter was to characterize the microbial community structure of the 

human gut mycobiota by mean of culture-dependent and culture-independent methods in order to 

describe how the intestinal fungal microbiota varies in function of the life stage and gender of the 

host. In addition, we evaluated the ability of the isolated intestinal fungi to survive to gastrointestinal 

tract-like challenges and their susceptibility to antifungals in order to evaluate fungal adaptation to 

the gastrointestinal niche and virulence potentiality. The combination of metataxonomics and fungal 

cultivation allowed an in-depth understanding of the fungal intestinal community structure associated 

with the healthy status and the commensalism-related traits of the isolated fungi revealing that the 

human gut mycobiota changes during the lifetime of individuals and differs in a gender-related 

fashion. Interestingly, we found a high fraction of azole-resistant isolates from healthy subjects that 

had not been treated by antifungals, suggesting that the spread of antifungal resistance could represent 

a not yet recognized epidemiological problem. My personal contribution to this work concerned every 

aspect of the research project. After the conception of the study, I designed and performed all the 

experiments under the supervision and thanks to the expertise of all the co-authors of this paper. In 

particular I increased my past expertise in microbiology applying methods of classical microbiology 

to yeasts and moulds, deepening my knowledge in fungal and yeast biology. In addition I learned 

how to manage and analyse high-throughput sequencing data by applying different bioinformatics 

pipelines and their application in microbiome research by the integration of different type of data (e.g. 

ITS1 sequences, demographic or clinical data). The use of the R statistical programming language 

and the correct understanding of the different statistical tests used to fully support my discoveries 

gave a great impulse to this research project and to all the research work presented in this Ph.D. thesis. 

Finally, I wrote the paper and generated all the figures and tables. 
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The fungal component of the human gut microbiota has been neglected for long time

due to the low relative abundance of fungi with respect to bacteria, and only recently few

reports have explored its composition and dynamics in health or disease. The application

of metagenomics methods to the full understanding of fungal communities is currently

limited by the under representation of fungal DNA with respect to the bacterial one,

as well as by the limited ability to discriminate passengers from colonizers. Here, we

investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the

gap of knowledge concerning fungal intestinal communities in the healthy status further

screening for phenotypical traits that could reflect fungi adaptation to the host. We

studied the fecal fungal populations of 111 healthy subjects by means of cultivation

on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a

subset of 57 individuals. We then characterized the isolated fungi for their tolerance to

gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total

of 34 different fungal species were isolated showing several phenotypic characteristics

associated with intestinal environment such as tolerance to body temperature (37◦C),

to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of

azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses

of fungal communities revealed that the human gut mycobiota differs in function of

individuals’ life stage in a gender-related fashion. The combination of metagenomics and

fungal cultivation allowed an in-depth understanding of the fungal intestinal community

structure associated to the healthy status and the commensalism-related traits of isolated

fungi. We further discussed comparatively the results of sequencing and cultivation

to critically evaluate the application of metagenomics-based approaches to fungal gut

populations.
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INTRODUCTION

The human gut is a complex ecological niche in which
archaea, bacteria, protozoa, fungi, and viruses co-exist in close
association with the host (Reyes et al., 2010; Arumugam et al.,
2011; Human Microbiome Project Consortium, 2012). Even
if it has been estimated that the number of bacteria hugely
outreaches the number of fungi in the gastrointestinal (GI)
tract (Huffnagle and Noverr, 2013), fungi play a relevant
role in the physiology of the human host (Oever and Netea,
2014; Underhill and Iliev, 2014). Recent studies showed that,
while the composition of the bacterial community is relatively
stable over time, the fungal population inhabiting the murine
gut undergoes significant changes during the animal’s lifetime
(Dollive et al., 2013). This brought to the conclusion that gut
fungal populations are more variable than bacterial ones and
that their compositionmay be influenced by environmental fungi
(Underhill and Iliev, 2014). Despite evidence that fungi inhabit
the mammalian GI tract and interact with the host immune
system (Romani, 2011; Rizzetto et al., 2014; Underhill and Iliev,
2014), the composition and characteristics of the mycobiota
in healthy hosts have been poorly explored. The prevalent
interest in describing pathogenic fungi, their phenotypes and
the process by which they establish the infection is one of
the major cause that brought to neglect the harmless part
of the commensal fungal population. Despite this topic has
been only marginally explored to date, it has been shown that
mucosal fungi are able to modulate both the innate and adaptive
immune responses (Romani, 2011; Rizzetto et al., 2014; Underhill
and Iliev, 2014) thus supporting the need to further study
the whole gut mycobiota. Furthermore, alterations of the gut
mycobiota have been associated to different pathologies ranging
from metabolic disorders (obesity) to colorectal adenomas and
Inflammatory Bowel Diseases (IBDs) (Luan et al., 2015; Mar
Rodriguez et al., 2015; Sokol et al., 2016). A recent study showed
the association of IBDs to alteration of the gut mycobiota.
In particular Sokol and colleagues showed that IBD patients
bear a smaller proportion of Saccharomyces cerevisiae and
higher of Candida albicans compared to healthy subjects. In
addition, they highlighted the existence in Crohn’s disease
of interconnected alterations between bacterial and fungal
communities (Sokol et al., 2016). However, the role of the gut
mycobiota in the maintenance of health it is still far from
being well-understood because the studies carried out so far
focused on disease-causing taxa. Nevertheless, some yeasts have
been clinically prescribed for a long time because of their
potential probiotic properties, suggesting a beneficial role of
some fungi for host health. A great example of “beneficial”
fungus is represented by S. cerevisiae var. boulardii, used for
the relief of gastroenteritis (Hatoum et al., 2012). In order to
reduce the gap of knowledge concerning the gut mycobiota
and its interplay with the host, we characterized the gut
mycobiota composition of a cohort of healthy subjects by
means of metagenomics, fungal cultivation, and phenotypic
assays.

MATERIALS AND METHODS

Study Participants
Fecal samples were collected from 111 Italian healthy volunteers
(49 male and 62 female, average age, 10 ± 8.2; Table 1)
and analyzed within 24 h. Written informed consent has
been obtained from all the enrolled subjects or tutors in
accordance with the guidelines and regulations approved by
the Research Ethical Committees of the Meyer Children’s
Hospital and the Azienda Ospedaliera Careggi, Florence.
All the subjects enrolled were non-smokers, followed a
Mediterranean-based diet and they did not take antibiotics,
antifungals or probiotics in the 6 months prior to sample
collection. None of the participants had any history of GI
abnormalities.

Isolation and Identification of Cultivable
Fungal Species from Feces
Stool samples were diluted in sterile Ringer’s solution and
plated on solid YPD medium (1% Yeast extract, 2% Bacto-
peptone, 2% D-glucose, 2% agar) supplemented with 25 U/ml
of penicillin, 25µg/ml of streptomycin (Sigma-Aldrich) and
incubated aerobically at 27◦C for 3–5 days. All fungal isolates
grown on the selective medium were further isolated to obtain
single-cell pure colonies. Genomic DNA was extracted from pure
cultures of isolated colonies as previously described (Hoffman
and Winston, 1987). Strains were identified by amplification
and sequencing of the ribosomal Internal Transcribed Spacer
(ITS) region, using ITS1 (5′-GTTTCCGTAGGTGAACTTGC-
3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers, as
previously described (Sebastiani et al., 2002). Fungal isolates were
identified by using the BLAST algorithm in the NCBI database
(minimum 97% sequence similarity and 95% coverage with a
described species).

Phenotypical Characterization of Fungal
Isolates
Fungal isolates were tested for phenotypical features that could
be related to the ability of colonization and persistence in the
human gut. Cell growth in liquid media was monitored by
optical density measurement at 630 nm with a microplate reader
(Synergy2, BioTek, USA) after 48 h of incubation under tested
conditions. Three independent replicates were performed for
each test.

Growth at Supra Optimal Temperatures
Fungal isolates (∼105 cells/ml) were grown at supra optimal
temperatures in liquid YPD medium (40, 42, 44, and 46◦C).

pH Impact on Growth
Fungal isolates (∼105 cells/ml) were grown at 37◦C in liquid
YPD medium at pH 2.0 and pH 3.0 adding hydrochloric
acid/potassium chloride and citrate buffers, respectively, to test
their ability to resist to the acidic environments encountered
during GI tract passage.
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TABLE 1 | Characteristics of the study participants.

Age group (year) Infants (0–2) Children (3–10) Adolescents (11–17) Adults (≥18) All subjects

Number of subjects 18 48 24 21 111

% with fungi 88.9 83.3 70.8 76.2 80.2

Subject ID Gender Age (year) Subject ID Gender Age (year) Subject ID Gender Age (year)

HS1 M 5 HS38* F 25 HS75 F 1

HS2 M 5 HS39* F 27 HS76* M 1

HS3 M 14 HS40* M 27 HS77 F 4

HS4 M 1 HS41* F 24 HS78* M 12

HS5 F 20 HS42* F 24 HS79* M 0.1

HS6 F 20 HS43* M 26 HS80 F 0.1

HS7 F 20 HS44* F 24 HS81 F 7

HS8 M 5 HS45* F 6 HS82* M 10

HS9 M 14 HS46* F 6 HS83* M 12

HS10* F 2 HS47* F 10 HS84 F 6

HS11 M 16 HS48* F 2.5 HS85 F 10

HS12 M 15 HS49* M 2.5 HS86* M 7

HS13* F 18 HS50* F 1.5 HS87* M 9

HS14 F 0.3 HS51* F 8 HS88* M 7

HS15* F 11 HS52* F 23 HS89* M 12

HS16 M 14 HS53* F 23 HS90 F 8

HS17 M 15 HS54 M 2 HS91 F 2

HS18 M 11 HS55* M 2 HS92 F 12

HS19 F 3 HS56* M 2 HS93 F 4

HS20* F 4 HS57 F 12 HS94 F 4

HS21* F 5 HS58 F 3 HS95 F 10

HS22* F 15 HS59* M 5 HS96 F 12

HS23* F 11 HS60 F 3 HS97* M 6

HS24 M 15 HS61* M 2 HS98 F 16

HS25 M 7 HS62 F 4 HS99 F 3

HS26 M 3 HS63* M 5 HS100* M 0.1

HS27* F 9 HS64 F 3 HS101* M 4

HS28 M 5 HS65* M 5 HS102 F 13

HS29* F 16 HS66* M 0.1 HS103* M 7

HS30* F 12 HS67 F 1 HS104* M 4

HS31* F 24 HS68 F 4 HS105 F 8

HS32* F 32 HS69* M 6 HS106 F 5

HS33* F 32 HS70 F 11 HS107 M 13

HS34* F 25 HS71* M 1 HS108 M 4.5

HS35* F 26 HS72 F 10 HS109 M 1

HS36* M 20 HS73 F 4 HS110 M 12

HS37* F 28 HS74* M 6 HS111 M 18

*Samples analyzed also by mean of amplicon-based ITS1metagenomics.

Tolerance to Bile Acids
Fungal isolates (∼105 cells/ml) were grown in liquid YPD
medium at 37◦C in the presence of three different concentrations
of bile [Ox-bile, Sigma-Aldrich; 0.5, 1, and 2% (w/v)]
mimicking the physiological intestinal settings (Noriega
et al., 2004).

Resistance to Oxidative Stress
Fungal resistance to oxidative stress was evaluated by measuring
the inhibition halo induced by the treatment of fungal strains
(∼107 cells/ml) grown on YPD solid medium with 0.5mM
hydrogen peroxide (H2O2). The percentage of sensitivity to
oxidative stress was calculated as the deviation of the inhibition
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halo diameter (Ø) from that of the environmental, oxidative
stress sensitive M28-4D S. cerevisiae strain (Cavalieri et al., 2000)
according to the following formula: [(Ø sample—Ø M28-4D)/Ø
M284D]*100.

Invasive Growth
The ability of fungal strains to penetrate the YPD solid medium
was tested as previously described (Vopalenska et al., 2005).M28-
4D and BY4742 S. cerevisiae strains, known to be invasive and
non-invasive, respectively, have been used as controls. The strain
invasiveness was assigned with scores from 3 (highly invasive) to
0 (non-invasive).

Hyphal Formation
Fungal cells (∼105 cells/ml) were grown for 7 days in liquid YPD
and YNBmedia [0.67% Yeast Nitrogen Base w/o aminoacids and
(NH4)2SO4 (Sigma-Aldrich), 2% glucose], both at 27 and 37◦C in
order to evaluate hyphae or pseudohyphae formation. Formation
of hyphae was inspected by optical microscope observation with
a Leica DM1000 led instrument (magnification 40x and 100x).

Antifungal Susceptibility Testing
All fungal isolates were tested for susceptibility to fluconazole,
itraconazole, and 5-flucytosine (Sigma-Aldrich) by Minimum
Inibitory Concentration (MIC) assays according to the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
recommendations (Rodriguez-Tudela et al., 2008a,b). Clinical
and Laboratory Standards Institute (CLSI) clinical breakpoints
(CBPs) were used to evaluate the antifungal resistance (Pfaller
and Diekema, 2012; Castanheira et al., 2014). CBPs have not
been established for non-Candida yeasts and non-Aspergillus
molds, however have been used as a proxy for the evaluation of
antifungals susceptibility in such isolates.

DNA Extraction and PCR Amplification of
Fungal ITS1 rDNA Region
DNA extraction from fecal samples (250 mg) was performed
using the FastDNATM SPIN Kit for Feces (MP-Biomedicals,
USA) following manufacturer’s instructions. DNA quality
was checked on 1% agarose gel TAE 1X and quantified
with a NanoDrop R© spectrophotometer. For each sample,
fungal ITS1 rDNA region was amplified using a specific
fusion primer set coupled with forward primer 18SF (5′-
GTAAAAGTCGTAACAAGGTTTC-3′) and reverse primer
5.8S1R (5′-GTTCAAAGAYTCGATGATTCAC-3′; Findley et al.,
2013) containing adaptors, key sequence and barcode (Multiple
IDentifier) sequences as described by the 454 Sequencing
System Guidelines for Amplicon Experimental Design (Roche,
Switzerland). The PCR reaction mix contained 1X FastStart High
Fidelity PCR buffer, 2mM MgCl2, 200µM of dNTPs, 0.4µM
of each primer (PRIMM, Italy), 2.5 U of FastStart High Fidelity
Polymerase Blend, and 100 ng of gDNA as template. Thermal
cycling conditions used were 5min at 95◦C, 35 cycles of 45 s
at 95◦C, 45 s at 56◦C, and 1.30min at 72◦C followed by a final
extension of 10min at 72◦C. All PCR experiments were carried
out in triplicates using a Veriti R© Thermal Cycler (Applied
Biosystems, USA).

Library Construction and Pyrosequencing
The PCR products obtained were analyzed by gel electrophoresis
and cleaned using the AMPure XP beads kit (Beckman Coulter,
USA) following the manufacturer’s instructions, quantified via
quantitative PCR using the Library quantification kit—Roche 454
titanium (KAPA Biosystems, USA) and pooled in equimolar way
in a final amplicon library. The 454 pyrosequencing was carried
out on the GS FLX+ system using the XL+ chemistry following
the manufacturer’s recommendations (Roche, Switzerland).

Data Analysis
Pyrosequencing resulted in a total of 1.337.184 reads with a
mean of 19.379 ± 13.334 sequences per sample. Raw 454
files were demultiplexed using the Roche’s sff file software
and submitted to the European Nucleotide Archive with
accession number PRJEB11827 (http://www.ebi.ac.uk/ena/data/
view/PRJEB11827). Sample accessions andmetadata are available
in Supplementary Table S1. Reads were pre-processed using the
MICCA pipeline (Albanese et al., 2015) (http://www.micca.org).
Forward and reverse primers trimming and quality filtering were
performed using micca-preproc. De-novo sequence clustering,
chimera filtering, and taxonomy assignment were performed
by micca-otu-denovo: Operational Taxonomic Units (OTUs)
were assigned by clustering the sequences with a threshold of
97% pairwise identity and their representative sequences were
classified using the RDP classifier version 2.8 (Wang et al., 2007)
against the UNITE fungal ITS database (Koljalg et al., 2013). De
novomultiple sequence alignment was performed using T-Coffee
(Notredame et al., 2000). Fungal taxonomy assignments were
then manually curated using BLASTn against the GenBank’s
database for accuracy. High quality fungal sequences were
detected in all samples. Furthermore, the sequences belonging to
Agaricomycetes [unlikely to be residents of the human gut due to
their ecology Hibbett, 2006] were manually filtered out.

The phylogenetic tree was inferred by using micca-phylogeny
(Price et al., 2010). Rarefaction analysis resulted in a sequencing
depth adequate to capture the ecological diversity of the
samples up to saturation. Sampling heterogeneity was reduced
by rarefaction.Alpha and beta-diversity estimates were computed
using the phyloseq R package (McMurdie and Holmes, 2013).
PERMANOVA (Permutational multivariate analysis of variance)
was performed using the adonis() function of the veganR package
with 999 permutations. Permutations have been constrained
within age groups (corresponding to 0–2, 3–10, 11–17, and >18
y/o) or gender to reduce possible biases related to the unequal
age and gender distributions among subjects using the “strata”
argument within the adonis() function. Two-sided, unpaired
Welch t-statistics were computed using the function mt() in the
phyloseq library and the p-values were adjusted for multiple
comparison controlling the family-wise Type I error rate (minP
procedure; Westfall and Young, 1993). Wilcoxon rank-sum tests
and Spearman’s correlations were performed using the R software
(Team, 2014) through the stats R package (version 3.1.2) and the
psych R package (Revelle, 2013), respectively. p-values have been
corrected for multiple comparison by using the false discovery
rate correction (Benjamini and Hochberg, 1995).
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RESULTS

Cultivable Gut Mycobiota
The cultivable gut mycobiota of 111 healthy volunteers was
investigated through isolation in selective media. Fungi
were detected in more than 80% of subjects leading to the
identification of 349 different isolates (Supplementary Table S2).
Thirty-four different fungal species were detected at different
frequencies of isolation (Table 2) among which Aspergillus
glaucus, Candida albicans, Candida deformans, Candida
fermentati, Candida glabrata, Candida intermedia, Candida
lusitaniae, Candida metapsilosis, Candida parapsilosis,
Candida pararugosa, Candida tropicalis, Candida zelanoydes,
Cryptococcus saitoi, Lichtheimia ramosa, Mucor circinelloides,
Pleurostomophora richardsiae, Rhodotorula mucilaginosa,
Trichosporon asahii, Yarrowia lipolytica. These species were
previously found in different human body sites, including the GI
tract as commensal or opportunistic pathogens (Araujo et al.,
2007; Johnson, 2009; Alastruey-Izquierdo et al., 2010; Kurtzman
et al., 2011; Levenstadt et al., 2012; Gouba et al., 2014; Lee et al.,
2014; Rizzetto et al., 2014). We also isolated the environmental
fungi Aspergillus pseudoglaucus, Eurotium amstelodami,
Eurotium rubrum, Penicillium brevicompactum, Penicillium
paneum, Penicillium crustosum, Pichia caribbica, Pichia
fermentans, Pichia kluyveri, Pichia manshurica, Rhodosporidium
kratochvilovae, Saccharomyces cerevisiae, Starmerella bacillaris,
and Torulaspora delbrueckii. Such species were previously found
in fermentations, oenological samples (Chitarra et al., 2004;
Butinar et al., 2005; Kurtzman et al., 2011; Barata et al., 2012;
Bezerra-Bussoli et al., 2013; Tristezza et al., 2013; Vardjan et al.,
2013; Belda et al., 2015; de Melo Pereira et al., 2014; Santini et al.,
2014; Wang et al., 2014) and rarely found in clinical samples (de
la Camara et al., 1996; Kaygusuz et al., 2003; Butinar et al., 2005;
Rizzetto et al., 2014). The 39.8% of subjects showed at least one
C. albicans isolate, which resulted in the most common yeast
species found in our samples, in line with previous reports on the
gut mycobiota of healthy subjects (Khatib et al., 2001; Bougnoux
et al., 2006).

Population level analysis of the cultivable gut mycobiota
revealed significant gender-related differences, with female
subjects showing a higher number of fungal isolates (p <

0.005, Wilcoxon rank-sum test; Figure 1A) and fungal species
(p < 0.05, Wilcoxon rank-sum test; Figure 1B) compared to
male subjects (not related to individual’s age) while we did not
observed significant differences in the fungal population among
the investigated age groups (Figures 1C,D). Finally, no species
per se was responsible for these differences, as indicated by
the fact that we did not find significant differences between
individual species abundances inmale and female subjects for any
investigated age group.

Fungal Gut Metagenomics
To better characterize the intestinal fungal community structure
associated to our cohort of healthy subjects we further analyzed
a subset of these subjects (57 subjects, 29 females, and 28
males, average age 12 ± 9.5) by means of amplicon-based
ITS1 targeted metagenomics, looking at gender and age groups

TABLE 2 | Fungal isolates and frequencies of isolation.

Species % Species %

Candida albicans 39.8 Rhodosporidium kratochvilovae 0.57

Rhodotorula mucilaginosa 12.6 Trichosporon asahii 0.57

Candida parapsilosis 12.3 Yarrowia lipolytica 0.57

Torulaspora delbrueckii 6.59 Aspergillus cristatus 0.28

Pichia fermentans 4.29 Candida deformans 0.28

Penicillium brevicompactum 3.72 Candida fermentati 0.28

Pichia manshurica 3.43 Candida glabrata 0.28

Pichia kluyveri 2.86 Candida intermedia 0.28

Candida lusitaniae 2.58 Candida metapsilosis 0.28

Pennicillium crustosum 1.43 Candida tropicalis 0.28

Saccharomyces cerevisiae 1.14 Candida zelanoydes 0.28

Penicillium paneum 0.58 Eurotium amstelodami 0.28

Aspergillus glaucus 0.57 Eurotium rubrum 0.28

Aspergillus pseudoglaucus 0.57 Lichtheimia ramose 0.28

Candida pararugosa 0.57 Pichia carribica 0.28

Cryptococcus saitoi 0.57 Pleurostomophora richardsiae 0.28

Mucor circinelloides 0.57 Starmerella bacillaris 0.28

differences. The analysis led to the identification of 68 fully
classified (to the genus level) fungal taxa and 26 taxa only
partially classified (of which 2 classified to the phylum level,
5 classified to the order level, 9 classified to the class level,
and 9 classified to the family level). Measurements of the
fungal richness within each sample i.e., the alpha-diversity
(see Materials and Methods), revealed no significant differences
among male and female subjects (Figure 2A), differently from
the above finding based on the culture-based analysis in which
we observed an increased number of intestinal fungal species
in females compared to males (Figure 1B). Furthermore, we
observed that infants and children harbor a higher fungal
richness compared to adults as indicated by the number of
the observed OTUs (p < 0.05, Wilcoxon rank-sum test,
Figure 2B). The analysis of beta-diversity identified significant
differences in the composition of the gut mycobiota among
gender and age groups. PCoA (Principal Coordinates Analysis)
revealed that samples cluster by gender, based on the unweighted
UniFrac distance and the Bray-Curtis dissimilarity (p < 0.05,
PERMANOVA; Figures 2C,D, Supplementary Table S3) and by
age groups, based on the unweighted UniFrac distance (p <

0.05, PERMANOVA; Figure 2C, Supplementary Table S3). We
calculated PERMANOVAs constraining permutations within
levels (gender or age groups) to avoid biases related to the
unequal distribution of genders among age groups and vice-
versa. Genus level analysis showed Penicillium, Aspergillus,
and Candida as the most abundant genera in this subset
of subjects (22.3, 22.2, and 16.9%, respectively; Figure 3,
Supplementary Table S4). We further observed that Aspergillus
and Tremellomycetes_unidentified_1 were significantly more
abundant in male than female subjects (p < 0.05, Welch t-
test) and in children than adults (p < 0.05, Welch t-test).
To note, the latter result could be biased by the unbalanced
distribution of male and female subjects in children and adults
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A C

B D

FIGURE 1 | Gender-related and age-related differences in the gut mycobiota of 111 healthy volunteers. Histogram of the mean of (A) abundances and (B)

the richness ± standard error of fungal isolates in female and male subjects; box-plot representation of the (C) abundance and (D) richness of fungal isolates in

different age groups i.e., infants (0–2 years old), children (3–10 years old), adolescents (11–17 years old) and adults (≥18 years old). **p < 0.005, *p < 0.05, Wilcoxon

rank-sum test.

groups (14/22 male children and 3/17 male adults). Furthermore,
the genus Penicillium was significantly more abundant in infants
than adults (p < 0.05, Welch t-test). Interestingly, we identified
sequences belonging to the single-cell protozoa Blastocystis,
eukaryotes abundant in the human gut microbiota (Scanlan
and Marchesi, 2008), only in adolescent and adult females
(Figure 3, Supplementary Table S4) that could potentially be
due to exposure to animals (Scanlan et al., 2014).

Phenotyping the Gut Mycobiota
The characterization of phenotypic features of the isolates related
to the ability to survive and colonize the human gut was
performed to estimate if such isolates were commensals adapted

to this ecological niche or passengers introduced through the diet
and delivered with the feces.

We therefore investigated the isolates’ resistance by a series of
assays mimicking the conditions that fungal isolates face during
passage through the human GI tract. In addition to the fact that
the human body temperature (37◦C) is higher than the optimum
for most fungal species, in the GI tract fungi are also exposed
to acidic and oxidative environments and to bile salts, produced
by the liver and secreted into the duodenum, exposing the
microorganisms to oxidative stress and DNA damage (Kandell
and Bernstein, 1991).

The majority of the isolates were found to tolerate acidic
conditions (58.9 and 94.8% of isolates were able to grow at pH
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A B

C D

FIGURE 2 | Box-plot representation of fungal alpha-diversity measures using the number of observed OTUs between (A) genders or (B) age groups

and measures of fungal beta-diversity by PCoA of the between samples distances measured using (C) the unweighted UniFrac distance and (D) the

Bray-Curtis dissimilarity. *p < 0.05, Wilcoxon rank-sum test.

2 and pH 3, respectively) and oxidative stress (85.7% of the
isolates showed higher tolerance compared to environmental
M28 S. cerevisiae strain), both conditions are characteristic of
the gut environment. Tolerance to physiological concentrations
of bile acids was also observed (89.8, 87.5, and 85.7% of fungal
isolates were able to grow in presence of ox-bile 0.5, 1, and
2%, respectively) as well as the ability to grow at supra optimal
temperatures with almost all the isolates (99.4%) being able
to grow at 37◦C (Supplementary Table S2). The comparison
of the growth ability of such isolates at pH 3 and at growing
concentrations of ox-bile (i.e., 0.5, 1.0, and 2.0% ox-bile) with
respect to the control growth condition (37◦C, no bile, pH 6.5)
revealed that these stressful conditions do not significantly affect
the growth ability of the fungal isolates (Figure 4). By contrast,
a significant growth reduction was observed when comparing
the isolated grown at pH 2 with respect to the control growth

condition (p < 0.0001, Wilcoxon rank-sum test; Figure 4). As
expected, a progressive reduction of growth ability was observed
in correspondence of incubation temperature increase (i.e., from
40 to 46◦C) for all the tested isolates (p < 0.0005, Wilcoxon
rank-sum test; Figure 4).

In addition to the ability of fungal isolates to tolerate the
intestinal environmental stresses, we also explored their ability to
undergo phenotypic changes favoring their persistence within the
human gut. Among these, we assessed the formation of hyphae
and the ability to penetrate the solid growth medium, thus to
adhere to host tissues. The 56.9% of fungal isolates was able
to form hyphae or pseudohyphae (Supplementary Table S2).
In addition, the morphotype switch to hyphae and pseudo-
hyphae was related to the isolates’ invasiveness, with hyphae
and pseudohyphae-forming isolates being the most invasive
(Figure 5A), suggesting that such isolates may be able to
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FIGURE 3 | Stacked bar-plot representation of the relative abundances at the genus level of the fecal mycobiota of healthy subjects from

metagenomics analysis distributed according to individuals’ life stage and gender.
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FIGURE 4 | Box-plot representation of the comparison of fungal isolates growth ability at 37◦C (control condition) vs. different stressful conditions

mimicking the gastrointestinal tract challenges. **p < 0.0005, ***p < 0.0001, Wilcoxon rank-sum test.

adhere to or invade the host tissues. Furthermore, we observed
that hyphae-forming isolates are significantly more resistant to
itraconazole than pseudohyphae-forming isolates and isolates
unable to form hyphae (p < 0.05, Wilcoxon rank-sum test;
Figure 5B). These phenotypic traits in conditions of altered

immune system or in association with intestinal dysbiosis, could
represent a pathogenic potential for the host.

It is now recognized that inappropriate antifungal use
contributes to the increase in microbial antifungal resistance,
complicating therapeutic intervention, and the eventual
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A B

FIGURE 5 | Box-plot representation of fungal isolates able (or not) to produce hyphae or pseudohyphae in relationship with (A) their ability to be

invasive on YPD solid medium, (B) their resistance to itraconazole. *p < 0.05, **p < 0.005, ***p < 0.001, Wilcoxon rank-sum test.

eradication of pathogens (Chen et al., 2010; Arendrup et al.,
2011). Due to the relevance of such aspect and its impact on
clinical studies, we tested all fungal isolates for their susceptibility
to the widely therapeutically used azoles, fluconazole, and
itraconazole (Martin, 2000) as well as the non-azole antifungal
5-flucytosine (Vermes et al., 2000). A total of 31.5% of the isolates
were resistant to fluconazole and, as expected, similar levels of
itraconazole resistance were found (for 39.2% of the isolates the
MIC was ≥1µg/ml; Supplementary Table S2). Previous studies
have indeed suggested that cross-resistance may occur between
fluconazole and other azole compounds (i.e., itraconazole)
(Pfaller et al., 2006) and we further confirmed such observations
with the finding of a significant positive correlation between
the isolates resistance to these two antifungals (Spearman’s
r = 0.43, p < 0.05; Figure 6). Most of the isolates (99.34%)
showed high susceptibility to 5-flucytosine with most MIC
values ≤0.125µg/ml (Supplementary Table S2). Among the
9 most abundant species (at least 6 isolates per species),
C. albicans, Pichia spp. and Rhodotorula mucillaginosa showed
the highest resistance to fluconazole, with MIC90 > 64µg/ml
(Table 3). Furthermore, it is worth to note that resistance to
tested antifungals is positively correlated with the ability of
strains to grow under stressful conditions, such as supra optimal
temperature, acidic conditions, and bile salts exposure (p < 0.05,
Spearman’s r correlation; Figure 6).

DISCUSSION

The vast majority of fungal species inhabiting our body are
commensals and opportunistic pathogens that could turn into

potential threats depending on strain virulence traits and on the
status of the host’s immune system. In this perspective to discover
a pathogenic infection it seems crucial to define exactly which
species are normally present in a given body district.

The humanGI tract is known to contain variable communities
of bacteria but also fungi have an important role in this
ecological niche (Underhill and Iliev, 2014). Nevertheless, the
phylogenetic characterization of fungal microorganisms and
their specific role as part of the GI niche have not yet been studied
extensively.

The advent of sanitation and food globalization has reduced
the possibility for humans to come across with the richness of
fungal species present in traditional fermented foods. Fungal
infections are an ever increasing problem either as side effects
of antibiotics use, high dose chemotherapy, and of the spread
of immunosuppressive diseases. Estimates of global mortality
rates suggest that fungi are responsible for more deaths than
either tuberculosis or malaria (Brown et al., 2012). Most of this
mortality is caused by species belonging to four fungal genera:
Aspergillus, Candida, Cryptococcus, and Pneumocystis that are
rapidly becoming resistant tomost antifungal drugs (Brown et al.,
2012; Denning and Bromley, 2015). The information on these
fungi so far derives from the study of lung infections, while little
is known on the gut mycobiota composition and its role in health
and disease. The knowledge on the gut mycobiota is currently
limited to few studies making it difficult to assess the significance
of differences found in the intestinal fungal populations of
diseases such as IBDs due to the lack of information on what the
healthy mycobiota is. Here we aimed at defining the “healthy”
gut mycobiota, showing that the intestinal fungal community of
a cohort of Italian healthy volunteers is a variegate ecosystem
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FIGURE 6 | Spearman’s r correlation analysis between antifungals susceptibility and growth ability of the tested fungal isolates under different stress

conditions. Solid squares represent the degree of correlation among the variables taken into account. Crossed squares indicate non-significant correlations;

significant results with p < 0.05.

that differs in function of individuals’ life stage in a gender-
dependent manner. We identified 34 fungal species of different
ecological origins. While the majority of our fungal isolates has
been previously described as inhabitants of the mammalian GI
tract (Kurtzman et al., 2011; Rizzetto et al., 2014), some of
the isolates belong to species so far identified in environmental
samples only. Environmental fungi, in particular putative food-
borne fungi, have been previously observed to be able to survive
the transition through the GI tract possibly being metabolically
active in the gut (David et al., 2014). The phenotypic properties
of fungi isolated in this study suggested that these isolates are able
to survive in the human GI tract, prompting the hypothesis of
an ecological selection and potential ability to colonize this niche
(David et al., 2014). Indeed the phenotypic features of the fungal
isolates identified endow such isolates with an excellent ecological
fitness in the human GI tract. We observed that approximately
half of the isolates form hyphae or pseudohyphae, which are
known to be involved in the adhesion to or penetration within
the GI mucosa (Staab et al., 2013), consolidation of the colony,
nutrient intake and formation of 3-dimensional matrices (Brand,
2011). A key factor of C. albicans commensalism/pathogenicity is
its ability to switch between different morphologies, comprising
cellular, pseudohyphae, and hyphae forms. As reported for
C. albicans, the reversible transition to filamentous growth as a
response to environmental cues (Sudbery, 2011) and phenotypic
switching is essential for mucosal fungal colonization (Vautier
et al., 2015).

Previous studies have also shown that C. albicans over-
expresses a wide range of genes involved in resistance to high
temperature and pH, oxidative stress, and hyphae formation
during ileum and colon commensal colonization of BALB/c mice
(Pierce et al., 2013). Similarly, the fungal isolates of this study,
showing resistance to oxidative, high temperature, bile acids, and
pH stresses may hold the potential to colonize the human gut. It
is plausible that fecal fungal isolates with specific characteristics
(such as high resistance to acidic pH and bile salts) survived to

the gut environment, and that these traits make them able to
colonize the gut. Thus, we can hypothesize a long process of
evolution, selection or adaptation of environmental and food-
borne strains to the human host, suggesting that pathogenic
strains of commensal species can evolve through a repeated
process of evolution and selection, depending on the immune
status of the host (De Filippo et al., 2014). These findings
encourage for in-depth, strain-level extensive studies on human
gut mycobiota and the integration of such data with immunology
to further establish the relevance of fungi in host physiology and
host-microbe interaction. Furthermore, fungi may train host’s
immune system simply when passengers, rather than necessarily
persisting only as continuous colonizers (Rizzetto et al., 2016).

We discovered that several fungal isolates displayed different
levels of antifungal resistance. About 20 years ago, azole-
sensitive C. albicans dominated infections, with other Candida
species rarely observed. Actually C. glabrata is the second most-
commonly isolated Candida species in the European Union and
United States and has high rates of antifungal resistance (Slavin
et al., 2015). Inappropriate antifungal use has contributed to the
increase in antifungal resistance, causing objective complications
for the treatment of invasive fungal infections that nowadays
represent a severe cause of morbidity and mortality among
immunocompromised individuals, neonates and elderly (Brown
et al., 2012). Recent studies indicated that fungal infections may
originate from individual’s own commensal strains suggesting
that the ability of a commensal microorganism to promote
disease is not merely a consequence of impaired host immunity
(Odds et al., 2006), suggesting that rural and other commercial
uses of azole could be the culprit for the emergence of these
resistant strains (Snelders et al., 2012). This underlines the risk
that the increase of antifungal usage outside of the clinic could
also lead to increased resistance to antifungals of individual’s own
commensal strains representing an important epidemiological
problem in the future and remarking the importance to increase
the investment in antifungal research.
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TABLE 3 | Antifungal activity against the most abundant fungal species.

#Species (Number of tested) Antifungal MIC (µg/ml) *CBPs

MIC50 MIC90 %S %SDD %R

Candida albicans (123) Fluconazole 0.5 >64 65.6 0.8 33.4

Itraconazole 2 >8 29.3 5.7 65

5-Flucytosine 0.125 0.5 98.4 0.8 0.8

Candida lusitaniae (6) Fluconazole 0.125 0.5 100 0 0

Itraconazole 0.0156 0.125 100 0 0

5-Flucytosine 0.125 0.125 100 0 0

Candida parapsilosis (40) Fluconazole 0.5 2 92.5 0 7.5

Itraconazole 0.031 >8 75 5 20

5-Flucytosine 0.125 0.125 100 0 0

Penicillium brevicompactum* (13) Fluconazole 0.125 0.125 100 0 0

Itraconazole 0.0156 0.0156 92.5 0 7.5

5-Flucytosine 0.125 0.125 100 0 0

Pichia fermentans* (15) Fluconazole 32 >64 15.4 0 84.6

Itraconazole 0.25 4 44.7 20 33.3

5-Flucytosine 0.5 2 92.3 7.7 0

Pichia kluyveri* (9) Fluconazole 32 32 11.1 0 88.9

Itraconazole 0.125 0.125 88.9 11.1 0

5-Flucytosine 0.5 0.5 100 0 0

Pichia manshurica* (9) Fluconazole 0.25 >64 77.8 0 22.2

Itraconazole 0.0156 >8 77.8 0 22.2

5-Flucytosine 0.125 8 77.8 11.1 11.1

Rhodotorula mucilaginosa* (41) Fluconazole 0.5 >64 63.4 0 36.6

Itraconazole 0.0156 2 75.6 2.4 22

5-Flucytosine 0.125 0.125 100 0 0

Torulaspora delbrueckii* (23) Fluconazole 0.125 8 87 0 13

Itraconazole 0.0156 2 69.6 4.3 26.1

5-Flucytosine 0.125 0.125 100 0 0

*species-specific CBPs are available only for Candida and Aspergillus spp.; for those non-Candida and non-Asperigillus isolates Candida and Asperigillus’ CBPs have been used as a

proxy; #MIC50, MIC90, and CBPs have been calculated only for those species with number of isolates >5; S, sensible; SDD, Sensibility Dose-Dependent or Intermediate; R, resistant.

MIC ranges: Fluconazole 0.125–64µg/ml; Itraconazole 0.0156–8µg/ml; 5-Flucytosine 0.125–64µg/ml.

It should be noted that all the samples analyzed by
metagenomics resulted in high quality fungal sequences,
indicating that all the fecal samples studied had fungal DNA.
So far, the estimated ratio fungi/bacteria of 1:10000 (Huffnagle
and Noverr, 2013), discourages an approach based on whole
metagenome shotgun sequencing (Underhill and Iliev, 2014).
We thus performed amplicon-based ITS1 metagenomics on a
subset of healthy donors identifying more than 90 different
fungal taxa. The first striking evidence was that metagenomics
detected also sequences belonging to Agaricomycetes, among
which several edible fungi, thus suggesting that dietary fungal
intake is a potential confounding effect when studying the
gut mycobiota. On the contrary 34 different fungal species
were isolated using the culture-based approach. Both methods
detected in any case differences in the diverse groups of
study (Supplementary Figure S1). The discrepancies observed
between culture-dependent and culture-independent approaches
on the description of fungal populations could be attributed to
the methodological differences of the two procedures applied

suggesting that several of the fungal taxa identified by the
metagenomics approach are not cultivable, either because we
lack the proper culture conditions or because these belong to
DNA from dead cells, environmental or food-borne fungi that
cannot survive the passage through the GI tract, but whose
DNA is still detectable. Furthermore, the DNA extractionmethod
used in this study could not be suited to extract all the fungal
DNA from the stool samples since the rare taxa Yarrowia,
Starmerella, Rhodosporidium, and Pleurostomophora have been
found only by the culture-based approach. On the other hand
the culture condition that we used might be responsible for some
of the discrepancies observed between the two methods. In our
experience most of the commensal fungi commonly found in the
human gut can be cultivated in YPD, yet other fungi that we were
not able to cultivate might need different culture conditions from
those we used in this work.

Although, for example, S. cerevisiae is often found in
fermented food, it has been shown that it can survive GI tract
challenges being a commensal of the human GI tract (Rizzetto
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et al., 2014) educating also adaptive immunity (Rizzetto et al.,
2016). S. cerevisiae has been introduced in the human intestine
through diet and fermented beverages and it has accompanied
human evolution for at least the past 5150 years (Cavalieri et al.,
2003). Our evidence, together with previous results, including
a recent description of S. cerevisiae in IBDs (Sokol et al., 2016)
showed that this microorganism is a potential commensal of
the human intestine. The overall reduction of the amount and
diversity of fungi introduced through consumption of fermented
beverages suggests that the human gut mycobiota could be
in dynamic change and certain potentially beneficial species
could be lost as a result of modern food processing procedures,
cultural changes, and food globalization. Ongoing studies
on microbial anthropology in human populations consuming
traditional fermented foods, hold the promise to shed light
on the evolution of the fungal microbiota as associated to the
evolution of diet. On the contrary the edible fungi belonging
to Agaricomycetes cannot settle in the human gut due to their
ecology (Hibbett, 2006) so we filtered-out these sequences for
downstream analyses to reduce statistical noises on ecological
measures, improving our results on the characterization of
intestinal fungal communities. We are aware that other taxa
identified by our analyses having environmental and food-borne
origin may not be able to settle in the human gut, however little
is known about these taxa while the Agaricomycetes sequences
that we retrieved had a very low prevalence in the dataset
and mostly belonged to edible fungi such as Boletus, Suillus or
Agrocybe.

We further observed that amplicon-based ITS1metagenomics
cannot confidently describe fungal populations at a deeper
level than genus overlooking species level information provided
by the fungal cultivation approach (see Figures 1B, 2A). On
the other hand, metagenomics analysis detected community
structure differences that fungal cultivation did not identified
(see Figures 2B–D). Nevertheless, the analysis of alpha-diversity
from cultivation data on the subset of subjects used for the
metagenomics analysis revealed no significant differences among
genders remarking that the different sample sizes used in this
work are an additional factor in the discrepancies observed
between the two methods. Although the major limitation of
culture-based methods for the study of microbial communities is
the loss of ecological information due to the inability to cultivate
most microorganisms by standard culturing techniques, fungi
included, culture-based analysis of the human gut mycobiota
is fundamental to discern fungal phenotypes that would be
otherwise lost by metagenomics.

However, population level analyses with both approaches
revealed interesting cues. As occurs for the bacterial microbiota,
the intestinal mycobiota is shaped by host’s age, gender, diet, and
geographical environment (Yatsunenko et al., 2012; Hoffmann
et al., 2013; David et al., 2014). Previous studies have shown
that the development of the gut bacterial microbiota starts at
birth with colonization by a low number of species from the
vaginal and fecal microbiota of the mother and is characterized
by many shifts in composition during infancy (Yatsunenko et al.,
2012). Similarly, the mycobiota may show the same fate, but
we observed an inverted trend in which the richness of the gut

mycobiota of infants (0–2 years old) and children (3–10 years
old) was higher than adults (≥18 years old). It has been shown
that suppression of the bacterial microbiota upon treatment
with antibiotics results in the outgrowth of the gut mycobiota
(Dollive et al., 2013) probably as a consequence of reduced
ecological competition. Similarly, a weak bacterial competition,
in particular during infancy when the bacterial microbiota is
less stable (Koenig et al., 2011; Lozupone et al., 2012), could be
the reason why we observed an increased fungal alpha-diversity
during the early stages of life or this could be due to the different
interactions between intestinal fungi and diet (Hoffmann et al.,
2013; David et al., 2014) which is peculiar during infancy.We also
found that female subjects had a higher number of fungal isolates
and different fungal species compared to male subjects and that
female mycobiota cluster apart from male mycobiota. This may
be ascribed to the role of sex hormones in modulating microbiota
composition (Markle et al., 2013) and of diet in shifting the
microbiota composition in a gender-dependent manner (Bolnick
et al., 2014). Furthermore, the higher relative abundance of
Candida in the fecal samples from female than male subjects
could be also attributed to the prevalence of Candida species in
the vaginal mycobiota (Drell et al., 2013) due to the anatomical
proximity of the two districts. To the best of our knowledge, this
is the first time that gender-related differences are described in
the human gut mycobiota.

In conclusion we can state that culture-independent
approaches are very promising for future investigation of the
mycobiota, but yet require significant improvements in the
selection of markers for amplicon-based metagenomics and
the reference databases. Additionally development of markers
targeting pathogenicity traits, including the genes involved
in host invasion or evasion of immune defenses, or markers
detecting resistance to azoles or other antifungals, is required
to thoughtfully apply metagenomics to fungal infections,
discriminating the healthy mycobiota from an altered one.
Such improvement can be achieved only through systematic
sequencing efforts of the cultivable mycobiota, paralleling what
happened for the prokaryotic microbiota. In our experience,
currently, the combination of the two methods compensated the
methodological limits intrinsic in both approaches avoiding to
overlook significant differences present in the gut mycobiota of
healthy subjects.
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poor growth as measured by 0.2 < OD630 ≤ 0.7 or 105 < cfu/ml ≤

106; ++ good growth as measured by 0.7 < OD630 ≤ 1.2 or 106 <

cfu/ml ≤ 107; +++, very good growth as measured by OD630 > 1.2 or

cfu/ml > 107. na, not applicable; nd, not detected.
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Bray-Curtis dissimilarity.

Supplementary Table S4 | Mean relative abundance (%) of OTUs at the

genus level of fungal gut microbiota of healthy subjects from

metagenomics analysis.

Supplementary Figure S1 | Mean relative abundances of the gut

mycobiota in the different groups of study measured according to

(A) the culture-based approach (at species level) and (B) the

amplicon-based ITS1 metagenomics approach (at genus level). In
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Supplementary material chapter 1 

 

Supplementary Table 1: Correspondences between deposited metagenomics data and samples. 

 

Supplementary Table 2: Phenotypic characteristics and antifungals susceptibility of fungal isolates. 

*calculated as the deviation of the inhibition halo diameter (Ø) from that of the M28-4D S. cerevisiae 

strain, according to the following formula: (Ø sample – Ø M284D strain) / Ø M284D strain *100. #, 

0= non-invasive; 1= poor invasive; 2= invasive; 3= very invasive. -, no growth as measured by OD630 

≤ 0.2 or cfu/ml ≤ 105; +, poor growth as measured by 0.2 < OD630 ≤ 0.7 or 105< cfu/ml≤ 106; ++ good 

growth as measured by 0.7 < OD630 ≤ 1.2 or 106< cfu/ml≤ 107; +++, very good growth as measured 

by OD630 > 1.2 or cfu/ml> 107. na, not applicable; nd, not detected. 

 

Supplementary Table 3: Permutational multivariate analysis of variance (PERMANOVA) tests on 

unweighted and weighted UniFrac distances and Bray-Curtis dissimilarity. 

 

Supplementary Table 4: Mean relative abundance (%) of OTUs at the genus level of fungal gut 

microbiota of healthy subjects from metagenomics analysis. 

 

Supplementary Figure 1: Mean relative abundances of the gut mycobiota in the different groups of 

study measured according to A) the culture-based approach (at species level) and B) the amplicon-

based ITS1 metagenomics approach (at genus level). In panel B are shown the most abundant genera 

(with relative abundances > 0.1%) while all the other less abundant genera were grouped together 

and labeled as “others”. 

 



Table S1: Correspondences between deposited metagenomics data and samples 

 

Study_accession Secondary_accession Sample_accession Experiment_accession Run_accession Sample_unique_name File_name Age Gender Age_group 

PRJEB11827 SAMEA3670898  ERS978047  ERX1221136 ERR1142295 HS10 healthy_subject_10.fastq 2 Female Infants 

PRJEB11827 SAMEA3670899 ERS978048 ERX1221137 ERR1142296 HS13 healthy_subject_13.fastq 18 Female Adults 

PRJEB11827 SAMEA3670900 ERS978049 ERX1221138 ERR1142297 HS15 healthy_subject_15.fastq 11 Female Adolescents 

PRJEB11827 SAMEA3670901 ERS978050 ERX1221139 ERR1142298 HS20 healthy_subject_20.fastq 4 Female Children 

PRJEB11827 SAMEA3670902 ERS978051 ERX1221140 ERR1142299 HS21 healthy_subject_21.fastq 5 Female Children 

PRJEB11827 SAMEA3670903 ERS978052 ERX1221141 ERR1142300 HS22 healthy_subject_22.fastq 15 Female Adolescents 

PRJEB11827 SAMEA3670904 ERS978053 ERX1221142 ERR1142301 HS23 healthy_subject_23.fastq 11 Female Adolescents 

PRJEB11827 SAMEA3670905 ERS978054 ERX1221143 ERR1142302 HS27 healthy_subject_27.fastq 9 Female Children 

PRJEB11827 SAMEA3670906 ERS978055 ERX1221144 ERR1142303 HS29 healthy_subject_29.fastq 16 Female Adolescents 

PRJEB11827 SAMEA3670907 ERS978056 ERX1221145 ERR1142304 HS30 healthy_subject_30.fastq 12 Female Adolescents 

PRJEB11827 SAMEA3670908 ERS978057 ERX1221146 ERR1142305 HS31 healthy_subject_31.fastq 24 Female Adults 

PRJEB11827 SAMEA3670909 ERS978058 ERX1221147 ERR1142306 HS32 healthy_subject_32.fastq 32 Female Adults 

PRJEB11827 SAMEA3670910 ERS978059 ERX1221148 ERR1142307 HS33 healthy_subject_33.fastq 32 Female Adults 

PRJEB11827 SAMEA3670911 ERS978060 ERX1221149 ERR1142308 HS34 healthy_subject_34.fastq 25 Female Adults 

PRJEB11827 SAMEA3670912 ERS978061 ERX1221150 ERR1142309 HS35 healthy_subject_35.fastq 26 Female Adults 

PRJEB11827 SAMEA3670913 ERS978062 ERX1221151 ERR1142310 HS36 healthy_subject_36.fastq 20 Male Adults 

PRJEB11827 SAMEA3670914 ERS978063 ERX1221152 ERR1142311 HS37 healthy_subject_37.fastq 28 Female Adults 

PRJEB11827 SAMEA3670915 ERS978064 ERX1221153 ERR1142312 HS38 healthy_subject_38.fastq 25 Female Adults 

PRJEB11827 SAMEA3670916 ERS978065 ERX1221154 ERR1142313 HS39 healthy_subject_39.fastq 27 Female Adults 

PRJEB11827 SAMEA3670917 ERS978066 ERX1221155 ERR1142314 HS40 healthy_subject_40.fastq 27 Male Adults 

PRJEB11827 SAMEA3670918 ERS978067 ERX1221156 ERR1142315 HS41 healthy_subject_41.fastq 24 Female Adults 

PRJEB11827 SAMEA3670919 ERS978068 ERX1221157 ERR1142316 HS42 healthy_subject_42.fastq 24 Female Adults 

PRJEB11827 SAMEA3670920 ERS978069 ERX1221158 ERR1142317 HS43 healthy_subject_43.fastq 26 Male Adults 

PRJEB11827 SAMEA3670921 ERS978070 ERX1221159 ERR1142318 HS44 healthy_subject_44.fastq 24 Female Adults 

PRJEB11827 SAMEA3670922 ERS978071 ERX1221160 ERR1142319 HS45 healthy_subject_45.fastq 6 Female Children 

PRJEB11827 SAMEA3670923 ERS978072 ERX1221161 ERR1142320 HS46 healthy_subject_46.fastq 6 Female Children 

PRJEB11827 SAMEA3670924 ERS978073 ERX1221162 ERR1142321 HS47 healthy_subject_47.fastq 10 Female Children 



PRJEB11827 SAMEA3670925 ERS978074 ERX1221163 ERR1142322 HS48 healthy_subject_48.fastq 2.5 Female Children 

PRJEB11827 SAMEA3670926 ERS978075 ERX1221164 ERR1142323 HS49 healthy_subject_49.fastq 2.5 Male Children 

PRJEB11827 SAMEA3670927 ERS978076 ERX1221165 ERR1142324 HS50 healthy_subject_50.fastq 1.5 Female Infants 

PRJEB11827 SAMEA3670928 ERS978077 ERX1221166 ERR1142325 HS51 healthy_subject_51.fastq 8 Female Children 

PRJEB11827 SAMEA3670929 ERS978078 ERX1221167 ERR1142326 HS52 healthy_subject_52.fastq 23 Female Adults 

PRJEB11827 SAMEA3670930 ERS978079 ERX1221168 ERR1142327 HS53 healthy_subject_53.fastq 23 Female Adults 

PRJEB11827 SAMEA3670931 ERS978080 ERX1221169 ERR1142328 HS55 healthy_subject_55.fastq 2 Male Infants 

PRJEB11827 SAMEA3670932 ERS978081 ERX1221170 ERR1142329 HS56 healthy_subject_56.fastq 2 Male Infants 

PRJEB11827 SAMEA3670933 ERS978082 ERX1221171 ERR1142330 HS59 healthy_subject_59.fastq 5 Male Children 

PRJEB11827 SAMEA3670934 ERS978083 ERX1221172 ERR1142331 HS61 healthy_subject_61.fastq 2 Male Infants 

PRJEB11827 SAMEA3670935 ERS978084 ERX1221173 ERR1142332 HS63 healthy_subject_63.fastq 5 Male Children 

PRJEB11827 SAMEA3670936 ERS978085 ERX1221174 ERR1142333 HS65 healthy_subject_65.fastq 6 Male Children 

PRJEB11827 SAMEA3670937 ERS978086 ERX1221175 ERR1142334 HS66 healthy_subject_66.fastq 0.1 Male Infants 

PRJEB11827 SAMEA3670938 ERS978087 ERX1221176 ERR1142335 HS69 healthy_subject_69.fastq 6 Male Children 

PRJEB11827 SAMEA3670939 ERS978088 ERX1221177 ERR1142336 HS71 healthy_subject_71.fastq 1 Male Infants 

PRJEB11827 SAMEA3670940 ERS978089 ERX1221178 ERR1142337 HS74 healthy_subject_74.fastq 6 Male Children 

PRJEB11827 SAMEA3670941 ERS978090 ERX1221179 ERR1142338 HS76 healthy_subject_76.fastq 1 Male Infants 

PRJEB11827 SAMEA3670942 ERS978091 ERX1221180 ERR1142339 HS78 healthy_subject_78.fastq 12 Male Adolescents 

PRJEB11827 SAMEA3670943 ERS978092 ERX1221181 ERR1142340 HS79 healthy_subject_79.fastq 0.1 Male Infants 

PRJEB11827 SAMEA3670944 ERS978093 ERX1221182 ERR1142341 HS82 healthy_subject_82.fastq 10 Male Children 

PRJEB11827 SAMEA3670945 ERS978094 ERX1221183 ERR1142342 HS83 healthy_subject_83.fastq 12 Male Adolescents 

PRJEB11827 SAMEA3670946 ERS978095 ERX1221184 ERR1142343 HS86 healthy_subject_86.fastq 7 Male Children 

PRJEB11827 SAMEA3670947 ERS978096 ERX1221185 ERR1142344 HS87 healthy_subject_87.fastq 9 Male Children 

PRJEB11827 SAMEA3670948 ERS978097 ERX1221186 ERR1142345 HS88 healthy_subject_88.fastq 7 Male Children 

PRJEB11827 SAMEA3670949 ERS978098 ERX1221187 ERR1142346 HS89 healthy_subject_89.fastq 12 Male Adolescents 

PRJEB11827 SAMEA3670950 ERS978099 ERX1221188 ERR1142347 HS97 healthy_subject_97.fastq 6 Male Children 

PRJEB11827 SAMEA3670951 ERS978100 ERX1221189 ERR1142348 HS100 healthy_subject_100.fastq 0.1 Male Infants 

PRJEB11827 SAMEA3670952 ERS978101 ERX1221190 ERR1142349 HS101 healthy_subject_101.fastq 4 Male Children 

PRJEB11827 SAMEA3670953 ERS978102 ERX1221191 ERR1142350 HS103 healthy_subject_103.fastq 7 Male Children 

PRJEB11827 SAMEA3670954 ERS978103 ERX1221192 ERR1142351 HS104 healthy_subject_104.fastq 4 Male Children 



Table S2: Phenotypic characteristics and antifungals susceptibility of fungal isolates. 

 
Isolate 

ID 
Subject Sex Age 

Fluconazole 
(MIC µg/ml) 

5-Flucytosine 
(MIC µg/ml) 

Itraconazole 
(MIC µg/ml) 

pH2 pH3 
oxbile 
0.5% 

oxbile 
1% 

oxbile 
2% 

*Ox stress 
resistance 

# Agar 
invasivity 

Hyphae and 
pseudohyphae 

37°C 40°C 42°C 44°C 46°C Species 

YHS1 HS1 M 5 na na na na na na na na na na na na na na na na Candida albicans 

YHS2 HS2 M 5 0. 25 0. 125 0. 0156 - - - - - -33.3 0 nd ++ + - + - Saccharomyces cerevisiae 

YHS3 HS3 M 14 na na na na na na na na na na na na na na na na Candida albicans 

YHS4 HS4 M 1 64 0. 125 0. 5 - ++ +++ +++ +++ -26.7 na na ++ ++ - - - Candida albicans 

YHS5 HS4 M 1 na na na na na na na na na na na na na na na na Yarrowia lipolytica 

YHS6 HS7 F 20 > 64 0. 125 > 8 ++ +++ +++ +++ +++ -66.7 1 nd +++ +++ +++ +++ + Saccharomyces cerevisiae 

YHS7 HS8 M 5 64 0. 125 1 - ++ +++ +++ +++ -20 0 nd ++ ++ + - - Saccharomyces cerevisiae 

YHS8 HS9 M 14 na na na na na na na na na na na na na na na na Candida parapsilosis 

YHS9 HS10 F 2 na na na na na na na na na na na na na na na na Candida albicans 

YHS10 HS11 M 16 na na na na na na na na na na na na na na na na Candida albicans 

YHS11 HS12 M 15 na na na na na na na na na na na na na na na na Candida albicans 

YHS12 HS13 F 18 na na na na na na na na na na na na na na na na Pichia carribica 

YHS13 HS14 F 0.3 0. 125 0. 25 0. 25 + +++ ++ ++ ++ -40 0 nd +++ ++ ++ - - Pichia fermentans 

YHS14 HS14 F 0.3 0. 125 0. 5 0. 125 + +++ +++ +++ ++ -26.67 0 nd +++ ++ + - - Pichia kluyveri 

YHS15 HS14 F 0.3 32 0. 5 0. 031 - +++ +++ +++ ++ -26.67 1 nd +++ + - - - Pichia fermentans 

YHS16 HS14 F 0.3 32 1 1 + ++ +++ +++ +++ -33.33 1 nd +++ + - - - Pichia fermentans 

YHS17 HS14 F 0.3 > 64 4 4 + ++ ++ ++ ++ -26.67 0 nd +++ + - - - Pichia fermentans 

YHS18 HS14 F 0.3 > 64 2 4 + +++ ++ ++ ++ -26.67 1 nd +++ ++ - - - Pichia fermentans 

YHS19 HS14 F 0.3 32 0. 5 0. 125 + +++ +++ ++ ++ -26.67 1 nd +++ ++ - - - Pichia fermentans 

YHS20 HS14 F 0.3 32 0. 5 0. 25 - +++ +++ ++ ++ -26.67 1 nd +++ ++ - - - Pichia fermentans 

YHS21 HS14 F 0.3 > 64 1 4 + +++ +++ ++ ++ -33.33 1 nd +++ + - - - Pichia fermentans 

YHS22 HS14 F 0.3 32 0. 5 0. 25 + +++ +++ ++ ++ -33.33 1 nd +++ + - - - Pichia fermentans 

YHS23 HS14 F 0.3 32 0. 5 0. 125 ++ +++ +++ ++ ++ -26.67 1 nd +++ + - - - Pichia fermentans 

YHS24 HS14 F 0.3 > 64 2 > 8 - ++ +++ ++ ++ -26.67 1 nd +++ +++ - - - Pichia fermentans 

YHS25 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -33.33 0 nd +++ + + - - Pichia fermentans 

YHS26 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -33.33 0 nd +++ + - - - Pichia fermentans 

YHS27 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia fermentans 

YHS28 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS29 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS30 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ +++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS31 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS32 HS14 F 0.3 32 0. 5 0. 25 - +++ +++ ++ ++ -26.67 0 nd + + - - - Pichia kluyveri 



YHS33 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -33.33 0 nd +++ - - - - Pichia kluyveri 

YHS34 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS35 HS14 F 0.3 32 0. 5 0. 125 - +++ +++ ++ ++ -26.67 0 nd +++ + - - - Pichia kluyveri 

YHS36 HS16 M 14 na na na na na na na na na na na na na na na na Candida zelanoydes 

YHS37 HS17 M 15 na na na na na na na na na na na na na na na na Candida tropicalis 

YHS38 HS18 M 11 na na na na na na na na na na na na na na na na Candida albicans 

YHS39 HS19 F 3 na na na na na na na na na na na na na na na na Candida lusitaniae 

YHS40 HS21 F 5 0. 5 0. 125 1 ++ +++ +++ +++ +++ -9.09 2 nd +++ +++ +++ ++ - Torulaspora delbrueckii 

YHS41 HS22 F 15 1 0. 125 2 ++ +++ +++ +++ +++ -18.18 2 nd +++ +++ +++ ++ - Candida albicans 

YHS42 HS22 F 15 0. 5 0. 125 0. 125 ++ +++ +++ +++ +++ -18.18 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS43 HS22 F 15 na na na - na na na na na na na na na na na na Candida albicans 

YHS44 HS24 M 15 na na na na na na na na na na na na na na na na Cryptococcus saitoi 

YHS45 HS25 M 7 na na na - na na na na na na na na na na na na Candida albicans 

YHS46 HS26 M 3 na na na na na na na na na na na na na na na na Candida lusitaniae 

YHS47 HS27 F 9 na na na na +++ na na na -50 2 Pseudohyphae +++ +++ +++ +++ - Candida albicans 

YHS48 HS28 M 5 na na na na na na na na na na na na na na na na Rhodotorula mucilaginosa 

YHS49 HS29 F 16 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -45.45 3 Pseudohyphae +++ +++ + + - Candida parapsilosis 

YHS50 HS29 F 16 0. 125 0. 125 0. 0156 + +++ +++ +++ +++ -36.36 3 Pseudohyphae +++ +++ ++ + - Candida parapsilosis 

YHS51 HS29 F 16 0. 5 0. 125 0. 0156 + +++ +++ +++ +++ -36.36 3 Pseudohyphae +++ +++ +++ ++ - Candida parapsilosis 

YHS52 HS29 F 16 0. 5 0. 125 0. 0156 ++ +++ +++ +++ +++ -36.36 3 Pseudohyphae +++ +++ +++ ++ - Candida parapsilosis 

YHS53 HS29 F 16 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -63.64 3 Pseudohyphae +++ +++ ++ + - Candida parapsilosis 

YHS54 HS29 F 16 0. 5 0. 25 0. 0156 - +++ +++ +++ +++ -63.64 3 Pseudohyphae +++ +++ + + - Candida parapsilosis 

YHS55 HS29 F 16 0. 5 0. 125 1 ++ +++ +++ +++ +++ -63.64 3 Pseudohyphae +++ +++ +++ ++ - Rhodotorula mucilaginosa 

YHS56 HS29 F 16 0. 25 0. 125 0. 0156 - +++ +++ +++ +++ -45.45 3 Pseudohyphae +++ +++ +++ ++ - Rhodotorula mucilaginosa 

YHS57 HS29 F 16 na na na na na na na na na na na na na na na na Pichia kluyveri 

YHS58 HS31 F 24 2 1 0. 0156 - +++ +++ ++ ++ -46.7 3 Pseudohyphae +++ +++ +++ + - Candida parapsilosis 

YHS59 HS31 F 24 0. 5 4 0. 0156 - +++ +++ +++ +++ -56.79 3 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS60 HS31 F 24 na na na na +++ na na na -100 3 Pseudohyphae +++ - - - - Candida parapsilosis 

YHS61 HS31 F 24 0. 25 64 0. 0156 + +++ +++ +++ +++ -53.3 0 nd +++ +++ +++ ++ - Candida albicans 

YHS62 HS31 F 24 na na na na - na na na -100 0 nd +++ +++ +++ - - Candida albicans 

YHS63 HS31 F 24 na na na na - na na na -100 0 nd +++ +++ +++ - - Candida albicans 

YHS64 HS31 F 24 1 0. 125 0. 031 - ++ + + + -62.96 0 nd +++ +++ +++ - - Rhodotorula mucilaginosa 

YHS65 HS31 F 24 na na na na +++ na na na -100 0 nd +++ +++ +++ - - Candida lusitaniae 

YHS66 HS31 F 24 0. 5 0. 5 0. 0156 ++ +++ +++ +++ +++ -40 0 nd +++ +++ +++ + + Rhodotorula mucilaginosa 

YHS67 HS31 F 24 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -66.7 0 nd +++ + - - - Rhodosporidium kratochvilovae 

YHS68 HS31 F 24 na na na na - na na na -75.31 1 Hyphae +++ - - - - Candida albicans 



YHS69 HS31 F 24 na na na na - na na na -56.79 0 nd +++ - - - - Candida albicans 

YHS70 HS31 F 24 na na na na +++ na na na -100 1 nd +++ +++ +++ - - Candida albicans 

YHS71 HS31 F 24 0. 125 0. 125 0. 0156 - - - - - 16.7 0 nd +++ +++ +++ - - Candida albicans 

YHS72 HS31 F 24 0. 25 0. 5 0. 0156 - +++ +++ +++ ++ -73.3 0 nd +++ +++ +++ - - Candida lusitaniae 

YHS73 HS31 F 24 0. 125 0. 125 0. 0156 - + - - - 6.7 1 nd +++ +++ +++ - - Candida albicans 

YHS74 HS31 F 24 na na na na - na na na -100 1 nd +++ +++ +++ - - Candida albicans 

YHS75 HS31 F 24 na na na na +++ na na na -100 3 Pseudohyphae +++ +++ +++ - - Candida parapsilosis 

YHS76 HS31 F 24 na na na na - na na na -100 1 nd +++ +++ +++ - - Candida albicans 

YHS77 HS32 F 32 0. 125 0. 5 0. 0156 - +++ +++ +++ +++ 13.3 0 nd +++ +++ +++ - - Pichia manshurica 

YHS78 HS32 F 32 0. 25 > 64 0. 0156 - +++ +++ +++ +++ 16.7 2 nd +++ +++ +++ ++ - Pichia manshurica 

YHS79 HS32 F 32 na na na na +++ na na na -75.31 2 Hyphae +++ +++ +++ - - Pichia manshurica 

YHS80 HS32 F 32 0. 25 8 0. 0156 + +++ +++ +++ +++ -66.7 0 nd +++ +++ +++ + - Pichia manshurica 

YHS81 HS32 F 32 > 64 0. 125 > 8 ++ +++ +++ +++ ++ -33.3 0 nd +++ +++ +++ ++ - Pichia manshurica 

YHS82 HS32 F 32 na na na na +++ na na na -50.62 0 nd +++ +++ +++ - - Pichia manshurica 

YHS83 HS32 F 32 0. 5 0. 5 0. 0156 - +++ +++ +++ ++ 16.7 2 nd +++ +++ +++ - - Pichia manshurica 

YHS84 HS32 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ 0 1 nd +++ +++ +++ ++ - Pichia manshurica 

YHS85 HS32 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ 0 2 Pseudohyphae +++ +++ +++ ++ - Pichia manshurica 

YHS86 HS32 F 32 > 64 0. 125 > 8 + +++ +++ +++ +++ -66.7 1 nd +++ +++ +++ +++ + Pichia manshurica 

YHS87 HS32 F 32 na na na na +++ na na na -81.48 2 nd +++ +++ +++ - - Pichia manshurica 

YHS88 HS33 F 32 na na na na +++ na na na -44.44 0 nd +++ +++ +++ - - Rhodotorula mucilaginosa 

YHS89 HS33 F 32 > 64 0. 125 > 8 + +++ +++ +++ +++ -26.7 1 nd +++ +++ +++ ++ - Candida albicans 

YHS90 HS33 F 32 > 64 0. 125 > 8 + +++ +++ +++ +++ -66.7 3 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS91 HS33 F 32 0. 25 0. 125 0. 0156 + +++ +++ +++ +++ -20 3 Hyphae +++ +++ +++ + - Candida albicans 

YHS92 HS33 F 32 0. 5 0. 125 0. 0156 ++ +++ +++ +++ +++ -20 3 Hyphae +++ +++ + + - Candida albicans 

YHS93 HS33 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ -26.7 2 nd +++ +++ +++ + - Pichia manshurica 

YHS94 HS33 F 32 > 64 0. 125 > 8 + +++ +++ +++ +++ -26.7 1 nd +++ +++ +++ ++ - Candida albicans 

YHS95 HS33 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ 0 3 nd +++ +++ +++ ++ - Candida albicans 

YHS96 HS33 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ -13.3 3 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS97 HS33 F 32 0. 25 0. 125 0. 0156 ++ +++ +++ +++ +++ -50.62 3 Hyphae +++ +++ +++ ++ + Candida albicans 

YHS98 HS33 F 32 > 64 0. 125 > 8 ++ +++ +++ +++ +++ -26.7 0 Hyphae +++ +++ + + - Rhodosporidium kratochvilovae 

YHS99 HS34 F 25 > 64 0. 125 > 8 ++ +++ +++ +++ +++ -66.7 3 nd +++ +++ +++ +++ + Candida albicans 

YHS100 HS36 M 20 0. 125 0. 125 0. 0156 - +++ - - - -100 0 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS101 HS36 M 20 0. 125 0. 125 0. 0156 - +++ + - - -100 1 Hyphae +++ +++ +++ +++ - Torulaspora delbrueckii 

YHS102 HS36 M 20 0. 125 0. 125 0. 0156 - +++ + - - -100 0 nd +++ +++ +++ +++ - Candida albicans 

YHS103 HS36 M 20 0. 125 0. 125 0. 0156 - +++ - - - -100 0 nd +++ +++ +++ +++ - Candida glabrata 

YHS104 HS36 M 20 0. 125 0. 125 2 + +++ +++ +++ +++ -7.41 3 Hyphae +++ +++ +++ +++ - Candida parapsilosis 



YHS105 HS36 M 20 > 64 0. 5 2 ++ +++ +++ +++ +++ -100 3 Hyphae +++ +++ +++ +++ - Starmerella bacillaris 

YHS106 HS37 F 28 0. 25 0. 5 1 + +++ +++ +++ +++ 4.94 3 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS107 HS37 F 28 0. 25 0. 5 2 ++ +++ +++ +++ +++ 4.94 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS108 HS37 F 28 0. 25 0. 5 2 ++ +++ +++ +++ +++ 23.46 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS109 HS37 F 28 0. 5 0. 5 2 ++ +++ +++ +++ +++ 17.28 1 Hyphae +++ +++ +++ +++ - Torulaspora delbrueckii 

YHS110 HS37 F 28 0. 5 0. 5 2 ++ +++ +++ +++ +++ 17.28 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS111 HS38 F 25 0. 125 0. 125 0. 0156 - +++ - - - -33.33 1 nd ++ + + + - Candida deformans 

YHS112 HS39 F 27 > 64 0. 125 > 8 + +++ +++ +++ +++ -100 0 nd +++ +++ +++ +++ - Candida albicans 

YHS113 HS39 F 27 > 64 0. 125 0. 125 + +++ +++ +++ +++ -13.58 3 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS114 HS39 F 27 > 64 0. 125 > 8 + +++ +++ +++ +++ -100 0 nd +++ +++ +++ +++ - Candida albicans 

YHS115 HS39 F 27 > 64 0. 125 0. 125 + +++ +++ +++ +++ -7.41 3 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS116 HS39 F 27 > 64 0. 125 > 8 + +++ +++ +++ +++ -100 0 nd +++ +++ +++ +++ - Candida albicans 

YHS117 HS39 F 27 32 0. 125 1 + +++ +++ +++ +++ -13.58 1 nd +++ +++ +++ +++ - Candida albicans 

YHS118 HS40 M 27 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 3 Hyphae ++ + + - - Pennicillium crustosum 

YHS119 HS40 M 27 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 3 Hyphae ++ + + - - Pennicillium crustosum 

YHS120 HS40 M 27 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 3 Hyphae ++ + + - - Pennicillium crustosum 

YHS121 HS40 M 27 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 3 Hyphae ++ + + - - Pennicillium crustosum 

YHS122 HS40 M 27 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 3 Hyphae ++ + + - - Pennicillium crustosum 

YHS123 HS41 F 24 0. 25 0. 125 0. 0156 - ++ +++ +++ +++ -33.33 2 Hyphae +++ +++ + - - Candida parapsilosis 

YHS124 HS41 F 24 1 0. 125 0. 0156 - +++ +++ +++ +++ -53.33 2 Hyphae +++ ++ - - - Candida parapsilosis 

YHS125 HS41 F 24 > 64 0. 125 0. 0156 - - + + + 20 3 Hyphae + + + + - Aspergillus glaucus 

YHS126 HS43 M 26 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -100 2 nd +++ - - - - Candida parapsilosis 

YHS127 HS44 F 24 0. 125 0. 125 0. 125 - +++ +++ +++ ++ -7.41 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS128 HS44 F 24 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -7.41 2 nd +++ +++ +++ +++ - Candida albicans 

YHS129 HS44 F 24 0. 125 0. 125 0. 25 - +++ +++ +++ +++ 4.94 0 Hyphae +++ +++ +++ +++ - Torulaspora delbrueckii 

YHS130 HS44 F 24 0. 5 0. 125 0. 25 + +++ +++ +++ +++ -7.41 0 nd +++ +++ +++ +++ - Candida albicans 

YHS131 HS44 F 24 0. 5 0. 125 0. 25 + +++ - - - -100 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS132 HS44 F 24 0. 125 0. 125 0. 0156 + +++ +++ +++ +++ -7.41 3 Pseudohyphae +++ +++ +++ +++ - Candida parapsilosis 

YHS133 HS44 F 24 > 64 0. 5 0. 125 + +++ +++ +++ +++ -7.41 2 nd +++ +++ +++ +++ - Candida parapsilosis 

YHS134 HS46 F 6 0. 5 0. 125 2 ++ - +++ +++ +++ -18.18 3 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS135 HS46 F 6 0. 5 0. 125 2 ++ +++ +++ +++ +++ -27.27 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS136 HS46 F 6 0. 5 0. 125 2 ++ +++ +++ +++ +++ -27.27 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS137 HS46 F 6 0. 5 0. 125 2 + +++ +++ +++ +++ -27.27 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS138 HS47 F 10 0. 125 0. 125 0. 0156 - +++ - - - 0 2 Hyphae +++ +++ +++ ++ - Torulaspora delbrueckii 

YHS139 HS47 F 10 0. 25 0. 125 1 ++ +++ +++ +++ +++ -18.18 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS140 HS47 F 10 0. 25 0. 125 0. 125 ++ +++ +++ +++ +++ -54.55 2 Hyphae +++ +++ +++ ++ - Torulaspora delbrueckii 



YHS141 HS47 F 10 0. 25 0. 125 1 ++ +++ +++ +++ +++ -9.09 3 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS142 HS50 F 1.5 0. 125 0. 125 0. 0156 - +++ + - - 27.27 2 nd +++ +++ +++ ++ - Candida intermedia 

YHS143 HS50 F 1.5 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -18.18 1 nd +++ +++ +++ ++ - Candida lusitaniae 

YHS144 HS50 F 1.5 0. 5 0. 125 0. 0156 ++ +++ +++ +++ +++ -18.18 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS145 HS50 F 1.5 0. 25 0. 125 0. 0156 ++ ++ +++ +++ +++ 63.64 1 Pseudohyphae +++ ++ +++ ++ - Rhodotorula mucilaginosa 

YHS146 HS50 F 1.5 0. 25 0. 125 0. 0156 ++ - ++ ++ + -18.18 1 nd +++ +++ +++ + - Candida lusitaniae 

YHS147 HS50 F 1.5 0. 5 0. 125 0. 125 - +++ +++ +++ +++ -54.55 1 nd +++ +++ +++ ++ - Candida parapsilosis 

YHS148 HS50 F 1.5 0. 5 0. 125 0. 125 ++ +++ +++ +++ +++ 36.36 1 nd +++ +++ +++ ++ - Candida lusitaniae 

YHS149 HS50 F 1.5 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -27.27 3 Pseudohyphae +++ +++ +++ + - Candida parapsilosis 

YHS150 HS50 F 1.5 na na na na na na na na na na na na na na na na Yarrowia lipolytica 

YHS151 HS51 F 8 na na na na +++ na na na 36.36 1 nd +++ +++ +++ ++ - Rhodotorula mucilaginosa 

YHS152 HS52 F 23 0. 25 0. 125 0. 0156 - +++ +++ +++ +++ -7.41 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS153 HS52 F 23 0. 25 0. 125 0. 0156 + +++ +++ +++ +++ -7.41 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS154 HS52 F 23 0. 125 0. 125 0. 0156 ++ +++ +++ +++ +++ 4.94 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS155 HS52 F 23 0. 5 0. 125 0. 0156 - +++ +++ +++ +++ -7.41 3 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS156 HS53 F 23 0. 5 0. 125 0. 0156 ++ +++ +++ +++ +++ -27.27 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS157 HS53 F 23 0. 5 0. 125 2 ++ +++ +++ +++ +++ -18.18 1 nd +++ +++ +++ ++ - Candida albicans 

YHS158 HS54 M 2 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -40 1 Pseudohyphae +++ +++ +++ +++ + Candida albicans 

YHS159 HS54 M 2 0. 5 0. 125 > 8 + +++ +++ +++ +++ -53.33 2 Hyphae +++ +++ + - - Candida parapsilosis 

YHS160 HS54 M 2 0. 25 0. 125 1 + +++ na na na -43.33 2 Hyphae ++ +++ + + + Candida albicans 

YHS161 HS54 M 2 0. 25 0. 125 2 + +++ +++ +++ +++ -46.67 1 nd +++ +++ + + + Candida albicans 

YHS162 HS54 M 2 0. 5 0. 125 4 + +++ +++ +++ +++ -33.33 1 nd +++ +++ +++ +++ + Candida albicans 

YHS163 HS54 M 2 0. 5 0. 125 2 + ++ +++ +++ +++ -46.67 2 Hyphae +++ +++ +++ ++ + Candida albicans 

YHS164 HS54 M 2 0. 25 0. 125 2 + na ++ ++ ++ -33.33 0 nd na na na na na Lichtheimia ramosa 

YHS165 HS55 M 2 > 64 0. 125 0. 0156 - + +++ +++ +++ na 1 Hyphae +++ ++ - - - Aspergillus glaucus 

YHS166 HS56 M 2 0. 25 0. 5 2 + +++ +++ +++ +++ -20 0 nd +++ ++ ++ ++ + Candida albicans 

YHS167 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS168 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS169 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS170 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS171 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS172 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS173 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS174 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS175 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS176 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 



YHS177 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS178 HS57 F 12 0. 125 0. 125 0. 0156 - + - - - -26.67 3 Hyphae ++ ++ - - - Penicillium brevicompactum 

YHS179 HS58 F 3 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -33.33 0 nd +++ +++ ++ ++ + Candida albicans 

YHS180 HS60 F 3 0. 5 0. 125 0. 0625 + +++ +++ +++ +++ -23.33 1 nd ++ ++ ++ ++ + Candida albicans 

YHS181 HS61 M 2 0. 5 0. 125 4 + ++ +++ ++ ++ -26.67 1 Pseudohyphae +++ ++ ++ ++ + Candida parapsilosis 

YHS182 HS61 M 2 0. 5 0. 125 4 + +++ +++ +++ +++ -33.33 2 Pseudohyphae +++ ++ ++ + - Candida parapsilosis 

YHS183 HS61 M 2 0. 25 0. 125 0. 0625 - +++ +++ ++ ++ -20 1 nd ++ ++ ++ ++ + Candida parapsilosis 

YHS184 HS61 M 2 0. 25 0. 125 0. 031 - +++ +++ +++ +++ -33.33 2 nd +++ ++ + - - Candida parapsilosis 

YHS185 HS61 M 2 0. 25 0. 125 0. 031 - ++ +++ +++ +++ -40 2 Pseudohyphae +++ ++ + - - Candida parapsilosis 

YHS186 HS61 M 2 0. 25 0. 125 0. 031 - +++ ++ ++ ++ -53.33 2 Pseudohyphae +++ +++ + + - Candida parapsilosis 

YHS187 HS61 M 2 0. 125 0. 125 0. 0156 - + ++ ++ ++ -20 1 nd ++ ++ + ++ - Torulaspora delbrueckii 

YHS188 HS61 M 2 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -40 1 nd +++ ++ - - - Candida parapsilosis 

YHS189 HS61 M 2 0. 5 0. 125 4 + ++ ++ ++ ++ -40 0 nd ++ ++ ++ ++ - Torulaspora delbrueckii 

YHS190 HS61 M 2 0. 25 0. 125 0. 031 - +++ +++ +++ +++ -26.67 1 nd +++ ++ - - - Candida parapsilosis 

YHS191 HS61 M 2 0. 25 0. 125 0. 031 - +++ +++ +++ +++ -33.33 2 Pseudohyphae +++ ++ ++ ++ + Candida parapsilosis 

YHS192 HS61 M 2 0. 25 0. 125 0. 031 - +++ +++ +++ +++ -53.33 2 Pseudohyphae +++ ++ - - - Candida parapsilosis 

YHS193 HS61 M 2 0. 25 0. 125 0. 031 - ++ +++ +++ +++ -100 2 Pseudohyphae +++ + - - - Candida parapsilosis 

YHS194 HS62 F 4 0. 5 0. 125 0. 0625 - - ++ ++ ++ -33.33 3 Hyphae +++ + + + - Trichosporon asahii 

YHS195 HS62 F 4 0. 5 0. 125 0. 0625 - +++ ++ ++ ++ -20 3 Hyphae ++ + + + - Trichosporon asahii 

YHS196 HS62 F 4 2 0. 125 0. 031 - +++ +++ +++ +++ -60 1 Pseudohyphae +++ ++ ++ ++ + Candida parapsilosis 

YHS197 HS62 F 4 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -60 3 Pseudohyphae +++ + + - - Candida parapsilosis 

YHS198 HS62 F 4 0. 125 0. 125 0. 0156 - + + + - -53.33 1 nd +++ ++ - - - Rhodotorula mucilaginosa 

YHS199 HS62 F 4 0. 5 0. 125 2 + +++ +++ +++ +++ -36.67 0 nd ++ ++ - - - Rhodotorula mucilaginosa 

YHS200 HS62 F 4 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -60 3 Pseudohyphae +++ ++ + + + Candida parapsilosis 

YHS201 HS62 F 4 0. 5 0. 125 0. 0625 + +++ +++ +++ +++ -60 3 Pseudohyphae +++ + + + - Candida parapsilosis 

YHS202 HS62 F 4 0. 125 0. 125 0. 0156 - + +++ ++ ++ -33.33 0 nd ++ - - - - Rhodotorula mucilaginosa 

YHS203 HS62 F 4 0. 125 0. 125 0. 0156 - +++ ++ ++ ++ -40 3 Pseudohyphae ++ + + + - Rhodotorula mucilaginosa 

YHS204 HS62 F 4 0. 5 0. 125 0. 0625 - +++ ++ ++ ++ -100 3 Pseudohyphae +++ ++ + - - Candida parapsilosis 

YHS205 HS62 F 4 0. 125 0. 125 0. 0156 - + - - - 20 0 nd + ++ - - - Rhodotorula mucilaginosa 

YHS206 HS62 F 4 0. 5 0. 125 0. 031 + +++ + + - -26.67 0 nd + +++ - - - Rhodotorula mucilaginosa 

YHS207 HS62 F 4 1 0. 125 0. 0156 - +++ +++ +++ +++ -60 3 Pseudohyphae +++ + + + - Candida parapsilosis 

YHS208 HS62 F 4 0. 125 0. 125 0. 0156 - + + + - 20 0 nd + +++ - - - Rhodotorula mucilaginosa 

YHS209 HS62 F 4 0. 125 0. 125 0. 0156 - - ++ ++ ++ -6.67 1 nd ++ ++ ++ ++ - Rhodotorula mucilaginosa 

YHS210 HS64 F 3 0. 125 0. 125 0. 0156 - +++ ++ ++ ++ -33.33 1 nd +++ +++ - - - Pichia fermentans 

YHS211 HS64 F 3 0. 5 0. 125 0. 0156 + +++ +++ +++ +++ -26.67 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS212 HS64 F 3 0. 5 0. 125 0. 0156 + +++ +++ +++ +++ -26.67 1 nd +++ +++ ++ ++ - Candida albicans 



YHS213 HS64 F 3 0. 5 0. 125 0. 25 + +++ +++ +++ +++ -33.33 1 nd +++ +++ +++ ++ - Candida albicans 

YHS214 HS64 F 3 0. 5 0. 125 0. 031 + +++ +++ +++ +++ -13.33 1 nd +++ +++ +++ ++ ++ Candida albicans 

YHS215 HS64 F 3 0. 5 0. 125 0. 25 + +++ +++ +++ +++ -26.67 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS216 HS64 F 3 0. 5 0. 125 0. 031 + +++ +++ +++ +++ -13.33 1 nd +++ +++ +++ ++ - Candida albicans 

YHS217 HS65 M 5 0. 5 0. 125 0. 125 - +++ +++ +++ +++ -46.67 1 nd +++ +++ +++ ++ - Candida lusitaniae 

YHS218 HS65 M 5 0. 5 0. 125 0. 125 + +++ +++ +++ +++ -50 1 nd +++ +++ +++ ++ - Candida lusitaniae 

YHS219 HS65 M 5 0. 5 0. 125 0. 125 - + ++ ++ ++ 20 3 nd ++ - - - - Candida pararugosa 

YHS220 HS65 M 5 0. 125 0. 125 0. 0156 - ++ + + + 20 0 nd ++ - - - - Rhodotorula mucilaginosa 

YHS221 HS65 M 5 0. 25 0. 125 2 + + ++ ++ - -13.33 0 nd +++ +++ - - - Rhodotorula mucilaginosa 

YHS222 HS65 M 5 0. 125 0. 125 0. 0156 - + +++ +++ +++ -3.33 0 nd + - - - - Rhodotorula mucilaginosa 

YHS223 HS65 M 5 0. 5 0. 125 0. 031 + +++ +++ +++ +++ -13.33 0 nd +++ +++ ++ ++ - Rhodotorula mucilaginosa 

YHS224 HS65 M 5 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 20 0 nd + + - - - Rhodotorula mucilaginosa 

YHS225 HS65 M 5 0. 125 0. 125 0. 0156 - + ++ ++ ++ -53.33 0 nd ++ ++ ++ ++ - Rhodotorula mucilaginosa 

YHS226 HS65 M 5 0. 125 0. 125 0. 0156 - + + + - 20 0 nd + - - - - Rhodotorula mucilaginosa 

YHS227 HS67 F 1 0. 125 0. 125 > 8 ++ +++ - - - -33.33 0 nd +++ +++ - - - Torulaspora delbrueckii 

YHS228 HS67 F 1 0. 125 0. 125 0. 0156 - +++ +++ - - 6.67 0 nd + - - - - Torulaspora delbrueckii 

YHS229 HS67 F 1 0. 125 0. 125 0. 0156 - + + - - 20 1 nd + - - - - Rhodotorula mucilaginosa 

YHS230 HS67 F 1 > 64 0. 5 2 + +++ - - - -33.33 1 nd + ++ - - - Rhodotorula mucilaginosa 

YHS231 HS67 F 1 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -20 2 nd ++ ++ ++ ++ - Torulaspora delbrueckii 

YHS232 HS67 F 1 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ -3.33 2 nd ++ ++ ++ ++ - Torulaspora delbrueckii 

YHS233 HS67 F 1 0. 125 0. 125 0. 0156 + +++ +++ +++ +++ -13.33 1 nd + + - - - Torulaspora delbrueckii 

YHS234 HS67 F 1 0. 125 0. 125 0. 0156 - - - - - -10 0 nd - - - - - Torulaspora delbrueckii 

YHS235 HS67 F 1 0. 125 0. 125 0. 0156 - - - - - 0 0 nd - - - - - Torulaspora delbrueckii 

YHS236 HS67 F 1 0. 125 0. 125 0. 0156 - +++ +++ - - -13.33 0 nd +++ +++ - - - Torulaspora delbrueckii 

YHS237 HS67 F 1 > 64 0. 125 2 + +++ - - - 13.33 0 nd + +++ - - - Torulaspora delbrueckii 

YHS238 HS67 F 1 > 64 0. 125 0. 0156 - +++ - - - 6.67 1 nd + +++ - - - Torulaspora delbrueckii 

YHS239 HS67 F 1 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 0 1 nd + ++ - - - Torulaspora delbrueckii 

YHS240 HS67 F 1 0. 5 0. 125 4 + +++ +++ +++ +++ -33.33 1 nd + ++ - - - Rhodotorula mucilaginosa 

YHS241 HS67 F 1 0. 25 0. 125 0. 0156 - + +++ +++ +++ -20 1 nd + - - - - Torulaspora delbrueckii 

YHS242 HS67 F 1 8 0. 125 2 + + - - - 0 0 nd +++ +++ - - - Torulaspora delbrueckii 

YHS243 HS67 F 1 0. 125 0. 125 0. 0156 - ++ + + + 13.33 0 nd + + - - - Torulaspora delbrueckii 

YHS244 HS68 F 4 0. 125 0. 125 0. 0156 - ++ +++ - - 0 0 nd + - - - - Torulaspora delbrueckii 

YHS245 HS68 F 4 0. 125 0. 125 0. 0156 - ++ ++ ++ ++ -10 1 Hyphae ++ ++ ++ ++ - Penicillium paneum 

YHS246 HS69 M 6 > 64 0. 125 2 + +++ - - - -26.67 1 Hyphae +++ +++ +++ +++ - Aspergillus pseudoglaucus 

YHS247 HS70 F 11 > 64 0. 125 2 + +++ - - - -20 3 Hyphae +++ +++ - - - Penicillium paneum 

YHS248 HS71 M 1 > 64 0. 125 2 + +++ +++ +++ +++ -23.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 



YHS249 HS73 F 4 > 64 0. 25 1 + ++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS250 HS74 M 6 > 64 0. 125 2 + ++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS251 HS75 F 1 > 64 0. 125 2 + ++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ + Candida albicans 

YHS252 HS76 M 1 > 64 0. 125 8 ++ ++ +++ +++ +++ -6.67 1 Hyphae +++ +++ +++ ++ - Aspergillus pseudoglaucus 

YHS253 HS77 F 4 0. 5 0. 25 1 + +++ +++ +++ +++ -20 2 nd +++ +++ ++ ++ - Candida albicans 

YHS254 HS79 M 0 64 0. 5 8 + +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ + + + Candida albicans 

YHS255 HS80 F 0 > 64 0. 5 2 + +++ +++ +++ +++ -20 2 Hyphae +++ +++ + ++ ++ Candida albicans 

YHS256 HS81 F 7 0. 5 0. 5 1 + +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS257 HS84 F 6 > 64 0. 5 4 + +++ +++ +++ +++ -20 2 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS258 HS85 F 10 0. 25 0. 125 > 8 ++ +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS259 HS85 F 10 0. 125 0. 125 8 ++ +++ +++ +++ +++ -20 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS260 HS85 F 10 0. 25 0. 125 > 8 ++ ++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS261 HS85 F 10 0. 25 0. 125 > 8 ++ ++ +++ +++ +++ -23.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS262 HS85 F 10 0. 25 0. 125 > 8 + ++ +++ +++ +++ -23.33 1 Hyphae +++ +++ + + + Candida albicans 

YHS263 HS85 F 10 4 0. 125 0. 25 + +++ +++ +++ +++ -20 2 Hyphae +++ +++ + + + Candida albicans 

YHS264 HS85 F 10 1 0. 125 1 ++ +++ +++ +++ +++ -23.33 1 Hyphae ++ +++ +++ +++ - Candida albicans 

YHS265 HS85 F 10 0. 125 0. 125 2 ++ +++ +++ +++ +++ -26.67 1 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS266 HS85 F 10 0. 125 0. 125 > 8 ++ +++ +++ +++ +++ -6.67 2 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS267 HS85 F 10 0. 125 0. 125 8 ++ +++ +++ +++ +++ -13.33 2 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS268 HS85 F 10 0. 125 0. 125 > 8 ++ +++ +++ +++ +++ -13.33 2 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS269 HS85 F 10 > 64 0. 125 > 8 ++ +++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS270 HS85 F 10 0. 25 0. 125 > 8 + +++ +++ +++ +++ -26.67 1 nd +++ +++ ++ + - Candida albicans 

YHS271 HS85 F 10 0. 125 0. 125 > 8 ++ +++ +++ +++ +++ -26.67 1 nd +++ +++ ++ +++ - Candida albicans 

YHS272 HS85 F 10 4 0. 125 0. 0625 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida fermentati 

YHS273 HS85 F 10 0. 125 0. 125 > 8 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS274 HS85 F 10 0. 125 0. 125 8 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS275 HS85 F 10 0. 125 0. 125 > 8 ++ +++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS276 HS85 F 10 0. 25 0. 125 2 ++ +++ +++ +++ +++ -46.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS277 HS85 F 10 0. 5 0. 125 0. 0625 + +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ + - Candida albicans 

YHS278 HS85 F 10 0. 25 0. 125 > 8 ++ +++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS279 HS85 F 10 0. 125 0. 125 0. 25 + +++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS280 HS85 F 10 0. 125 0. 125 0. 125 ++ +++ +++ +++ +++ -23.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS281 HS85 F 10 0. 25 0. 125 2 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS282 HS85 F 10 0. 5 0. 125 2 ++ +++ +++ +++ +++ -6.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS283 HS86 M 7 0. 5 0. 5 0. 125 ++ +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS284 HS87 M 9 0. 125 0. 125 0. 031 - - +++ +++ +++ 20 1 nd + + + - - Cryptococcus saitoi 



YHS285 HS87 M 9 > 64 0. 125 0. 0156 - - +++ +++ +++ -13.33 2 Hyphae ++ ++ ++ + - Eurotium rubrum 

YHS286 HS88 M 7 > 64 0. 125 2 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS287 HS89 M 12 0. 5 0. 125 0. 125 ++ +++ +++ +++ +++ -46.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS288 HS89 M 12 0. 5 0. 125 2 + +++ +++ +++ +++ -33.33 1 nd +++ +++ +++ ++ - Candida albicans 

YHS289 HS90 F 8 0. 25 0. 5 2 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS290 HS91 F 2 0. 25 0. 5 0. 25 ++ +++ +++ +++ +++ -40 2 Pseudohyphae +++ +++ +++ + - Candida parapsilosis 

YHS291 HS91 F 2 0. 5 0. 125 0. 25 - +++ +++ +++ +++ -46.67 2 Pseudohyphae +++ +++ +++ ++ - Candida parapsilosis 

YHS292 HS91 F 2 > 64 0. 125 > 8 ++ ++ +++ +++ +++ 13.33 2 Hyphae +++ ++ + - - Eurotium amstelodami 

YHS293 HS91 F 2 0. 25 0. 125 > 8 - +++ ++ ++ ++ -46.67 2 Pseudohyphae +++ ++ + - - Candida parapsilosis 

YHS294 HS92 F 12 0. 5 0. 125 > 8 + ++ +++ +++ +++ -6.67 3 Pseudohyphae +++ +++ +++ + - Saccharomyces cerevisiae 

YHS295 HS92 F 12 0. 25 1 4 ++ +++ +++ +++ +++ -20 2 Hyphae +++ +++ ++ ++ - Penicillium brevicompactum 

YHS296 HS93 F 4 > 64 0. 5 2 + +++ +++ +++ +++ -33.33 3 Hyphae +++ +++ +++ ++ - Aspergillus cristatus 

YHS297 HS94 F 4 0. 5 0. 125 1 + +++ +++ +++ +++ -33.33 1 nd +++ ++ +++ ++ - Candida albicans 

YHS298 HS95 F 10 0. 125 0. 125 4 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS299 HS96 F 12 0. 5 0. 125 1 + +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS300 HS97 M 6 > 64 0. 5 2 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS301 HS98 F 16 > 64 1 > 8 + +++ +++ +++ +++ -20 0 nd +++ ++ +++ ++ - Candida parapsilosis 

YHS302 HS99 F 3 0. 5 0. 125 > 8 ++ ++ +++ +++ +++ -53.33 2 Pseudohyphae +++ ++ + - - Candida parapsilosis 

YHS303 HS99 F 3 0. 5 0. 125 0. 031 ++ +++ +++ +++ +++ -53.33 2 Pseudohyphae +++ +++ + + - Candida parapsilosis 

YHS304 HS100 M 0 0. 5 0. 5 2 ++ +++ +++ +++ +++ 4.94 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS305 HS101 M 4 0. 125 0. 125 0. 0156 - +++ +++ +++ +++ 23.46 3 Hyphae +++ +++ - - - Candida albicans 

YHS306 HS102 F 13 0. 25 0. 125 > 8 ++ ++ - - - -60 0 nd ++ + - - - Rhodotorula mucilaginosa 

YHS307 HS102 F 13 0. 125 0. 125 4 ++ +++ + + + -56.67 3 Hyphae +++ +++ + - - Candida pararugosa 

YHS308 HS102 F 13 0. 5 0. 125 0. 0625 + ++ + + + -100 3 Hyphae +++ ++ + - - Mucor circinelloides 

YHS309 HS102 F 13 4 0. 125 0. 0156 + + +++ +++ +++ 20 3 Hyphae ++ + + - - Pleurostomophora richardsiae 

YHS310 HS103 M 7 > 64 0. 125 0. 031 + ++ ++ ++ ++ -100 3 Hyphae +++ ++ +++ ++ - Mucor circinelloides 

YHS311 HS104 M 4 > 64 1 4 ++ +++ +++ +++ +++ 17.28 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS312 HS105 F 8 > 64 0. 125 > 8 + +++ +++ +++ +++ -33.33 1 Pseudohyphae +++ +++ +++ ++ - Candida parapsilosis 

YHS313 HS105 F 8 > 64 0. 125 4 ++ +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS314 HS105 F 8 > 64 0. 125 2 + +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS315 HS105 F 8 > 64 0. 125 4 + +++ +++ +++ +++ -33.33 0 nd +++ +++ +++ ++ - Candida albicans 

YHS316 HS105 F 8 > 64 0. 125 4 + +++ +++ +++ +++ -26.67 0 nd +++ +++ +++ ++ - Candida albicans 

YHS317 HS105 F 8 > 64 0. 125 0. 25 + +++ +++ +++ +++ -100 0 nd +++ +++ +++ + - Candida metapsilosis 

YHS318 HS105 F 8 > 64 0. 125 2 ++ +++ +++ +++ +++ -20 0 nd +++ +++ +++ ++ - Candida albicans 

YHS319 HS105 F 8 > 64 0. 125 > 8 + +++ +++ +++ ++ -20 2 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS320 HS105 F 8 > 64 0. 125 8 ++ +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ ++ - Candida albicans 



YHS321 HS105 F 8 32 0. 25 > 8 ++ +++ +++ +++ ++ -26.67 2 Hyphae +++ +++ +++ ++ + Candida albicans 

YHS322 HS105 F 8 > 64 0. 125 2 + +++ +++ +++ +++ -20 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS323 HS105 F 8 > 64 0. 125 2 + +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS324 HS105 F 8 > 64 0. 125 2 + +++ +++ +++ +++ -26.67 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS325 HS105 F 8 > 64 0. 125 4 + +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS326 HS105 F 8 > 64 0. 125 8 + +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS327 HS105 F 8 > 64 1 8 + +++ +++ +++ +++ -33.33 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS328 HS105 F 8 > 64 0. 125 8 ++ +++ +++ +++ +++ -26.67 1 Hyphae +++ +++ +++ ++ - Candida albicans 

YHS329 HS105 F 8 64 0. 125 8 ++ +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ ++ ++ - Candida albicans 

YHS330 HS105 F 8 32 0. 125 4 + +++ +++ +++ +++ -26.67 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS331 HS105 F 8 > 64 0. 125 0. 0156 ++ +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS332 HS105 F 8 > 64 0. 125 0. 0156 ++ +++ +++ +++ +++ -33.33 2 Hyphae +++ +++ +++ +++ - Candida albicans 

YHS333 HS106 F 5 > 64 0. 125 8 ++ +++ ++ ++ ++ -33.33 0 nd + +++ + - - Rhodotorula mucilaginosa 

YHS334 HS106 F 5 0. 125 0. 125 0. 031 - + + + + -100 0 nd + ++ + - - Rhodotorula mucilaginosa 

YHS335 HS106 F 5 0. 25 0. 125 0. 031 ++ + + + + -100 0 nd + + + - - Rhodotorula mucilaginosa 

YHS336 HS106 F 5 0. 125 0. 125 0. 0156 - + + + + -100 0 nd + + + - - Rhodotorula mucilaginosa 

YHS337 HS106 F 5 > 64 0. 125 4 + ++ - - - -100 0 nd + + - - - Rhodotorula mucilaginosa 

YHS338 HS106 F 5 > 64 0. 125 0. 0156 - ++ + + + -100 0 nd +++ +++ + + - Rhodotorula mucilaginosa 

YHS339 HS106 F 5 > 64 0. 125 0. 0156 ++ +++ ++ ++ ++ -100 0 nd + + + - - Rhodotorula mucilaginosa 

YHS340 HS106 F 5 > 64 0. 125 0. 0156 + + ++ ++ ++ -100 0 nd + + + - - Rhodotorula mucilaginosa 

YHS341 HS106 F 5 > 64 0. 125 0. 0156 ++ + ++ ++ ++ -100 0 nd ++ + + + - Rhodotorula mucilaginosa 

YHS342 HS106 F 5 > 64 0. 5 0. 25 - + ++ ++ ++ -100 0 nd + + + - - Rhodotorula mucilaginosa 

YHS343 HS106 F 5 > 64 0. 125 0. 0156 ++ + + + + -100 0 nd ++ + + - - Rhodotorula mucilaginosa 

YHS344 HS106 F 5 > 64 0. 125 0. 0156 - + + + + -100 0 nd +++ +++ - - - Rhodotorula mucilaginosa 

YHS345 HS106 F 5 > 64 0. 125 0. 0156 - ++ ++ ++ ++ -100 0 nd + - - - - Rhodotorula mucilaginosa 

YHS346 HS106 F 5 > 64 0. 125 0. 0156 - +++ ++ ++ ++ -100 0 nd +++ + + - - Rhodotorula mucilaginosa 

YHS347 HS106 F 5 > 64 0. 125 2 ++ ++ ++ ++ ++ -100 0 nd ++ + - - - Rhodotorula mucilaginosa 

YHS348 HS106 F 5 > 64 0. 125 0. 0156 - + ++ ++ ++ -100 0 nd ++ + + - - Rhodotorula mucilaginosa 

YHS349 HS106 F 5 > 64 0. 125 0. 0156 - ++ ++ ++ ++ -100 0 nd ++ ++ + - - Rhodotorula mucilaginosa 

 

*calculated as the deviation of the inhibition halo diameter (Ø) from that of the M28-4D S. cerevisiae strain, according to the following formula: (Ø sample – Ø M284D strain) / Ø 

M284D strain *100. #, 0= non-invasive; 1= poor invasive; 2= invasive; 3= very invasive. -, no growth as measured by OD630 ≤ 0.2 or cfu/ml ≤ 105; +, poor growth as measured by 

0.2 < OD630 ≤ 0.7 or 105< cfu/ml≤ 106; ++ good growth as measured by 0.7 < OD630 ≤ 1.2 or 106< cfu/ml≤ 107; +++, very good growth as measured by OD630 > 1.2 or cfu/ml> 107. 

na, not applicable; nd, not detected 

 



Table S3: Permutational multivariate analysis of variance (PERMANOVA) tests on unweighted 

and weighted UniFrac distances and Bray-Curtis dissimilarity. 

 Metric F R2 p-value 

between genders 

unweighted Unifrac 3.15 0.054 0.033 

weighted Unifrac 2.48 0.043 0.07 

Bray-Curtis 4.80 0.08 0.001 

among age groups 

unweighted Unifrac 1.79 0.092 0.031 

weighted Unifrac 1.27 0.067 0.268 

Bray-Curtis 1.69 0.087 0.11 



Table S4: Mean relative abundance (%) of OTUs at the genus level of fungal gut microbiota of 

healthy subjects from metagenomics analysis. 

 mean relative abundance (%) 

Taxonomy Total Male Female Infants Children Adolescents Adults 

Penicillium 22.362 25.184 19.637 22.041 20.558 12.233 29.652 

Aspergillus 22.202 37.509 7.423 35.442 33.227 11.552 5.156 

Candida 16.918 10.975 22.657 11.963 12.165 20.226 24.427 

Fungi_unidentified_1_1 6.330 6.716 5.958 2.731 8.525 3.110 7.123 

Blastocystis 5.311 0.000 10.439 0.000 0.000 13.630 11.393 

Pichia 3.485 0.045 6.806 0.126 0.004 11.382 6.248 

Mucor 3.057 0.885 5.154 0.233 3.317 12.196 0.080 

Debaryomyces 2.979 1.322 4.578 3.644 1.683 2.065 4.693 

Malassezia 2.871 2.541 3.190 1.458 3.145 3.608 3.001 

Ascomycota_unidentified_1_1 2.133 3.148 1.153 6.803 0.813 0.862 1.692 

Eremothecium 1.671 0.010 3.274 0.039 3.671 0.000 0.829 

Eurotiomycetes_unidentified_1 1.500 2.690 0.352 7.065 0.459 0.534 0.029 

Tremellomycetes_unidentified_1 1.200 2.190 0.245 2.167 1.816 0.680 0.080 

Cyberlindnera 0.841 0.108 1.548 0.155 0.724 0.024 1.778 

Mucoraceae_unidentified 0.795 0.007 1.555 0.039 1.970 0.024 0.080 

Saccharomyces 0.713 1.243 0.201 0.301 0.437 3.122 0.177 

Ustilago 0.622 1.062 0.198 0.428 1.391 0.073 0.000 

Nectriaceae_unidentified 0.469 0.580 0.362 1.623 0.230 0.000 0.320 

Rhodotorula 0.450 0.132 0.757 0.437 0.517 0.595 0.303 

Malasseziales_unidentified_1 0.385 0.222 0.543 0.010 0.464 0.012 0.680 

Wallemia 0.298 0.132 0.459 0.097 0.552 0.279 0.097 

Xeromyces 0.290 0.569 0.020 0.010 0.747 0.000 0.000 

Trichosporon 0.247 0.496 0.007 1.390 0.009 0.000 0.000 

Preussia 0.237 0.482 0.000 0.000 0.614 0.000 0.000 

Pleosporales_unidentified_1 0.188 0.236 0.141 0.068 0.084 0.790 0.109 

Phoma 0.174 0.035 0.308 0.097 0.278 0.012 0.160 

Trichocomaceae_unidentified 0.174 0.021 0.322 0.049 0.031 0.000 0.514 

Aureobasidium 0.167 0.236 0.101 0.000 0.221 0.583 0.000 

Botrytis 0.162 0.014 0.305 0.194 0.186 0.061 0.160 

Ustilaginomycetes_unidentified_1 0.095 0.010 0.178 0.000 0.000 0.680 0.000 

Helotiales_unidentified_1 0.085 0.174 0.000 0.000 0.000 0.607 0.000 

Saccharomycetales_unidentified_1 0.085 0.010 0.158 0.117 0.119 0.000 0.063 

Talaromyces 0.080 0.017 0.141 0.311 0.022 0.000 0.057 

Ustilaginaceae_unidentified 0.080 0.007 0.151 0.000 0.208 0.000 0.000 

Rhizopus 0.080 0.024 0.134 0.000 0.053 0.000 0.200 

Cryptococcus 0.078 0.017 0.137 0.049 0.000 0.000 0.234 

Torulaspora 0.077 0.087 0.067 0.039 0.066 0.255 0.029 

Cordyceps 0.075 0.021 0.127 0.000 0.159 0.097 0.000 

Sarcosomataceae_unidentified 0.072 0.000 0.141 0.000 0.186 0.000 0.000 

Urocystis 0.072 0.146 0.000 0.000 0.186 0.000 0.000 

Incertae_sedis_12_unidentified 0.070 0.000 0.137 0.000 0.141 0.000 0.051 

Davidiella 0.056 0.021 0.090 0.049 0.062 0.012 0.074 

Helminthosporium 0.053 0.000 0.104 0.000 0.137 0.000 0.000 



Exophiala 0.051 0.073 0.030 0.204 0.035 0.012 0.000 

Wickerhamomyces 0.044 0.017 0.070 0.049 0.000 0.000 0.120 

Phaeosphaeriaceae_unidentified 0.039 0.000 0.077 0.000 0.000 0.000 0.131 

Basidiomycota_unidentified_1_1 0.038 0.045 0.030 0.068 0.053 0.036 0.000 

Tilletia 0.038 0.062 0.013 0.155 0.018 0.024 0.000 

Ascosphaera 0.036 0.073 0.000 0.000 0.088 0.000 0.006 

Ustilaginaceae_unidentified 0.034 0.000 0.067 0.000 0.088 0.000 0.000 

Hypocreales_unidentified_1 0.031 0.042 0.020 0.029 0.009 0.146 0.006 

Rasamsonia 0.029 0.031 0.027 0.039 0.027 0.000 0.040 

Periconia 0.027 0.056 0.000 0.000 0.071 0.000 0.000 

Incertae_sedis_25_unidentified 0.027 0.007 0.047 0.000 0.049 0.024 0.017 

Udeniomyces 0.027 0.000 0.054 0.000 0.071 0.000 0.000 

Dioszegia 0.026 0.007 0.044 0.019 0.053 0.012 0.000 

Thermomyces 0.026 0.031 0.020 0.087 0.000 0.000 0.034 

Sporobolomyces 0.020 0.035 0.007 0.058 0.022 0.012 0.000 

Lophiostoma 0.017 0.035 0.000 0.000 0.000 0.121 0.000 

Embellisia 0.015 0.028 0.003 0.000 0.004 0.097 0.000 

Saccharomycetaceae_unidentified 0.015 0.003 0.027 0.010 0.000 0.000 0.046 

Guehomyces 0.015 0.007 0.023 0.019 0.031 0.000 0.000 

Puccinia 0.012 0.010 0.013 0.010 0.018 0.024 0.000 

Pseudozyma 0.012 0.003 0.020 0.010 0.000 0.000 0.034 

Ustilaginales_unidentified_1 0.012 0.024 0.000 0.000 0.009 0.061 0.000 

Diatrypaceae_unidentified 0.009 0.017 0.000 0.000 0.022 0.000 0.000 

Leucosporidiella 0.009 0.017 0.000 0.049 0.000 0.000 0.000 

Endoconidioma 0.007 0.000 0.013 0.000 0.018 0.000 0.000 

Chaetothyriales_unidentified_1 0.007 0.007 0.007 0.019 0.000 0.024 0.000 

Tetracladium 0.007 0.014 0.000 0.000 0.000 0.049 0.000 

Kluyveromyces 0.007 0.000 0.013 0.000 0.000 0.000 0.023 

Diplodia 0.005 0.000 0.010 0.000 0.013 0.000 0.000 

Sarcinomyces 0.005 0.000 0.010 0.000 0.013 0.000 0.000 

Gymnoascus 0.005 0.000 0.010 0.000 0.013 0.000 0.000 

Kazachstania 0.005 0.000 0.010 0.000 0.000 0.000 0.017 

Arthrinium 0.005 0.000 0.010 0.000 0.013 0.000 0.000 

Erythrobasidium 0.005 0.000 0.010 0.000 0.013 0.000 0.000 

Dothideomycetes_unidentified_1 0.003 0.003 0.003 0.000 0.000 0.012 0.006 

Mycocentrospora 0.003 0.000 0.007 0.000 0.009 0.000 0.000 

Knufia 0.003 0.007 0.000 0.000 0.009 0.000 0.000 

Hanseniaspora 0.003 0.000 0.007 0.000 0.000 0.000 0.011 

Myrothecium 0.003 0.000 0.007 0.000 0.009 0.000 0.000 

Sordariomycetes_unidentified_1 0.003 0.000 0.007 0.000 0.009 0.000 0.000 

Taphrina 0.003 0.003 0.003 0.000 0.009 0.000 0.000 

Wojnowicia 0.002 0.003 0.000 0.000 0.004 0.000 0.000 

Podosphaera 0.002 0.000 0.003 0.000 0.004 0.000 0.000 

Schizosaccharomyces 0.002 0.003 0.000 0.000 0.000 0.012 0.000 

Coniochaeta 0.002 0.000 0.003 0.000 0.000 0.000 0.006 

Claviceps 0.002 0.000 0.003 0.000 0.000 0.012 0.000 

Sordariaceae_unidentified 0.002 0.003 0.000 0.000 0.004 0.000 0.000 



Sakaguchia 0.002 0.003 0.000 0.000 0.000 0.012 0.000 

Exobasidiales_unidentified_1 0.002 0.003 0.000 0.000 0.004 0.000 0.000 

Quambalaria 0.002 0.000 0.003 0.000 0.000 0.000 0.006 

Filobasidium 0.002 0.000 0.003 0.000 0.000 0.000 0.006 

Hannaella 0.002 0.000 0.003 0.000 0.004 0.000 0.000 

Lichtheimia 0.002 0.000 0.003 0.000 0.004 0.000 0.000 
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Alterations of the human gut microbiota can contribute to gastrointestinal disorders and 

inflammation [1] affecting also central nervous system activities through different mechanisms of 

interaction with the host [2]. Dysbiosis of the gut microbiota have been implicated in a wide variety 

of neurological disorders, including ASDs [3]. Nevertheless the studies that investigated the human 

gut microbiota in ASDs, although discovered clear imbalances in the intestinal microbial population 

of autistic subjects, failed to find common microbial features across all these studies, probably due to 

differences in sampling strategies and techniques applied [4]. The understanding of the bases leading 

to the alteration of the microbial community structure in ASDs would be of great importance for the 

design of therapeutic interventions aimed at the relief of gastrointestinal disorders that often affects 

these subjects. 

The aim of the work presented in this chapter focused on the characterization of the intestinal 

microbial community structure in autistic subjects, both at bacterial and fungal level, in order to 

elucidate how the gut microbiota in these individuals may impact on ASDs gastrointestinal 

pathophysiology. We discovered an altered gut microbiota in autistic subjects characterized by an 

increased Bacteroidetes/Firmicutes ratio and imbalances in several bacterial taxa. We observed that 

putative pro-inflammatory taxa belonging to Clostridium XIII and Escherichia/Shigella were 

enriched in the constipated autistic subject. Furthermore we discovered that the autistic subjects 

harbour an altered fungal gut microbiota, extending our understanding on the intestinal dysbiotic 

states associated with ASDs. 

Apart from the recruitment and diagnosis of autism in the subjects enrolled in this study, I designed 

and performed all the experiments, ranging from the extraction of total DNA from stool sample to 

the analysis of sequencing reads and interpretations of these results by applying state-of-the arts 

bioinformatics and statistical methods for microbiome research. Finally I wrote the manuscript and 

generated figures and tables. 
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Abstract 

Background 

Autism Spectrum Disorders (ASDs) are neurodevelopmental conditions characterized by social and 

behavioural impairments. In addition to neurological symptoms, ASDs subjects frequently suffer 

from gastrointestinal abnormalities, thus implying a role of the gut microbiota in ASDs 

gastrointestinal pathophysiology. 

Results 

Here we characterized the bacterial and fungal gut microbiota in a cohort of autistic individuals 

demonstrating the presence of an altered microbial community structure. A fraction of 90% of the 

autistic subjects were classified as severe ASDs. We observed a reduced relative abundance of 

Bacteroidetes in the ASDs group with Collinsella, Corynebacterium, Dorea and Lactobacillus being 

the bacterial taxa characterizing the gut microbiota of the ASDs cohort. On the contrary, the relative 

abundance of the bacterial taxa Alistipes, Bilophila, Dialister, Parabacteroides and Veillonella were 

significantly reduced in ASDs subjects. Furthermore constipation has been associated with different 

bacterial patterns in autistic and neurotypical subjects, with constipated autistic individuals 

characterized by high levels of bacterial taxa belonging to Escherichia/Shigella and Clostridium 

cluster XVIII. We also observed that the fungal genus Candida was more than two times more 

abundant, in terms of relative abundance, in autistic than neurotypical subjects. 

Conclusions 

The finding that, besides the bacterial gut microbiota, also the gut mycobiota contributes to the 

alteration of the intestinal microbial community structure in autism opens the possibility for new 

potential intervention strategies aimed at the relief of gastrointestinal symptoms in ASDs. 

 

Keywords: Autism spectrum disorders, gut microbiota, mycobiota, constipation, metataxonomy 
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Introduction 

The term “autism spectrum disorders” (ASDs) refer to a group of neurodevelopmental disorders with 

an early life stage onset characterized by alterations in social interactions and communication and by 

restricted and repetitive behaviour [1]. It is now well accepted the contribution of both genetic and 

environmental factors in the aetiology of ASDs [2, 3]. Among the non-neurological symptoms 

associated with ASDs, several studies indicate gastrointestinal (GI) symptoms as common 

comorbidities [4-7]. Alterations in the composition of the gut microbiota have been implicated in a 

wide variety of human diseases, including ASDs [8]. Since the gut microbiota makes critical 

contributions to metabolism, maintenance of immune homeostasis and may control central nervous 

system (CNS) activities through neural, endocrine and immune pathways [9] it has been hypothesized 

the active role of the gut microbiota in ASDs pathophysiology. There is more than a subtle link 

between the gut microbiota and the CNS, through the so-called “microbiome-gut-brain axis”. Indeed 

it has been demonstrated a direct interaction between the gut microbiota and enteric neurons [10, 11], 

its role in the regulation of the HPA axis [12] and the production of many chemicals important in 

brain functioning (e.g. serotonin, dopamine, kynurenine, γ-aminobutyric acid, SCFAs, p-cresol) [13, 

14]. A dysbiotic microbial community could lead to systemic inflammation due to hyper-activation 

of T-helper 1 and T-helper 17 cell responses [15] affecting also the reactivity of peripheral immune 

cells to the CNS [16] and the integrity of blood-brain barrier [17] which is known to be altered in 

ASDs [18]. Several evidences suggested an early immune activation with chronic inflammation and 

cytokine dysregulation in ASDs [19, 20] and it has been shown that systemic inflammation induced 

by LPS provokes behavioural changes and impairs the blood-brain barrier in animal models [17, 21]. 

Furthermore, fungal infections that may originate from alterations in commensal bacteria population 

[22], could shift the indoleamine 2,3-dioxygenase’s activity [23, 24] reducing the levels of kynurenine 

[25], a neuroprotective agent. Despite several reports disclosed an aberrant gut microbiota in ASDs, 

consensus across studies has not yet been established [8]. Here we characterized the bacterial gut 

microbiota and the less studied gut mycobiota of subjects affected by autism through amplicon-based 

metataxonomics analysis of the V3-V5 region of the prokaryotic 16S rDNA and of the ITS1 region 

of the fungal rDNA in order to better understand the microbial community structure associated with 

ASDs and its impact on GI abnormalities. 
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Results 

Autistic subjects harbour an altered bacterial gut microbiota 

For the characterization of the gut microbiota associated with autism we recruited 40 autistic subjects 

(36 out of 40 autistic subjects were classified as severe ASDs, CARS value >37) and 40 neurotypical 

controls (Table 1, Supplementary Table 1). 

 

Table 1: Characteristics of study participants 

 Autistic Neurotypical 

Subjects (n) 40 40 

Age (1st - 3rd quartile) 10 (5 - 17) 7 (3.6 - 12) 

Gender (n) 

female 

male 

 

22.5% (9) 

77.5% (31) 

 

30% (12) 

70% (28) 

Constipation (n) 

constipated 

non-constipated 

NA 

 

12.5% (5) 

72.5% (29) 

15% (6) 

 

27.5% (11) 

72.5% (29) 

0% (0) 

Calprotectin (1st - 3rd quartile) 

constipated 

non-constipated 

36.9 (17.6 - 76.0) µg/g 

39.1 (22.9 - 70.0) µg/g 

35.9 (15.0 - 57.8) µg/g 

40.9 (17 - 74.7) µg/g 

27.9 (20.3 - 97.6) µg/g 

50.5 (15.0 - 73.8) µg/g 

CARS (1st - 3rd quartile) 

constipated 

non-constipated 

47 (40 - 50.5) 

50 (36 - 52.0) 

48 (42 - 50.0) 

NA 

NA 

NA 

ESR (1st - 3rd quartile) 

constipated 

non-constipated 

7.5 (3.25 - 17.7) mm/h 

22.0 (12.0 - 25.0) mm/h 

7.0 (2.7 - 11.2) mm/h 

NA 

NA 

NA 

Serum IgA (1st - 3rd quartile) 

constipated 

non-constipated 

131.0 (70.0 - 172.2) mg/ml 

97.0 (82.0 - 153.0) mg/ml 

133.0 (67.0 - 181.0) mg/ml 

NA 

NA 

NA 

Data expressed as medians with interquartile ranges when applicable. AD, autistic subjects; NT, neurotypical subjects; 

NA, not applicable; CARS, childhood autism rating scale; ESR, erythrocyte sedimentation rate. 

 

Analysis of alpha-diversity revealed no significant differences between autistic and neurotypical 

subjects (hereinafter termed AD and NT respectively). However the analysis of the beta-diversity 

calculated on the unweighted, weighted UniFrac distances and the Bray-Curtis dissimilarity, revealed 

that the bacterial microbiota of AD clusters apart from that of NT (p<0.05, PERMANOVA; Figure 

1, Supplementary Table 2). Since we enrolled subjects suffering from constipation among NT and 

AD subjects, the impact of constipation on the beta-diversity of the two groups of study was also 

analysed. We observed that constipation has a significant effect on the microbial community structure 

within NT subjects (p<0.05, PERMANOVA), as expected [26, 27], but not within AD subjects 

(Supplementary Table 2). 
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Figure 1: PCoA of bacterial beta-diversity based on A) the unweighted and B) weighted UniFrac distances 

and C) Bray-Curtis dissimilarity. Autistic and neurotypical subjects are coloured in orange and blue, 

respectively. The constipation status of the subjects is indicated according to different shapes, circles for non-

constipated and triangles for constipated individuals. 

 

Furthermore we observed that the severity of the autistic phenotype, as measured by CARS scores, 

does not affect the bacterial community structure among AD individuals (p>0.05, PERMANOVA; 

Supplementary Table 3). Phylum level analysis showed a clear alteration of the bacterial gut 

community in AD characterized by a higher Firmicutes/Bacteroidetes ratio (p<0.005, Wilcoxon rank-

sum test; Figure 2A) in AD than NT due to a significant reduction of the relative abundance of 

Bacteroidetes (9.2% AD, 19.4% NT) (FDR-corrected p<0.05, Welch t-test; Figure 2B). 

 

Figure 2: A) Mean relative abundances (%) of Firmicutes and Bacteroidetes in autistic (AD) and neurotypical 

(NT) subjects; * p<0.005, Wilcoxon sum-rank test on the Firmicutes/Bacteroidetes ratio. B) Welch’s t-test 

statistics of the relative abundances of bacterial phyla in autistic and neurotypical subjects. Orange bars 

indicate significant FDR-corrected p-values adjusted for multiple comparison controlling the family-wise Type 

I error rate. 

 

Genus level analysis showed that the top ten most abundant genera in both AD and NT subjects were 

Bifidobacterium, Bacteroides, Faecalibacterium, Unknown Lachnospiraceae, Blautia, 

Ruminococcus, Clostridium XI, Streptococcus, Gemmiger and Lachnospiracea incertae sedis 

(Supplementary Fig. 1, Supplementary Table 4). Interestingly, the genus Prevotella was only barely 
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represented in AD with respect to NT (0.05% AD, 1.5% NT), in agreement with a previous study on 

the gut microbiota in ASD children [28] although this difference of relative abundance was not 

supported by the statistical analysis. We further analysed the bacterial community structure associated 

with AD and NT by using LEfSe, an algorithm for high-dimensional biomarker discovery which uses 

linear discriminant analysis (LDA) to estimate the effect size of each taxa which are differentially 

represented in cases and controls [29]. LEfSe analysis revealed a significant increase of the relative 

abundance of different bacterial taxa in AD than in NT among which Collinsella, Corynebacterium, 

Dorea and Lactobacillus and a significant reduction of the taxa Alistipes, Bilophila, Dialister, 

Parabacteroides and Veillonella in AD than in NT (p<0.01, Wilcoxon rank-sum test; LDA>2.0; 

Figure 3). 

  

Constipation select different bacterial taxa in autistic subjects and neurotypical healthy 

controls 

Autistic subjects frequently suffer of GI comorbidities [4-7] and constipation is a GI symptom often 

reported in these subjects, known to alter the physiology of the human GI tract and the gut microbiota 

itself [27, 30, 31]. Correlation analysis of the bacterial relative abundances between constipated and 

non-constipated subjects, both autistic and neurotypical, revealed that among the most abundant 

bacterial genera (with relative abundance >0.5% and detectable in at least the 70% of the investigated 

subjects) the taxa Gemmiger and Ruminococcus anti-correlates with the constipation status 

(Spearman’s correlation r= -0.39 and -0.36, respectively; FDR-corrected p<0.05; Supplementary 

Table 5) while Escherichia/Shigella and Clostridium cluster XVIII positively correlates with this GI 

symptom (Spearman’s correlation r= 0.31 and 0.38, respectively; FDR-corrected p<0.05; 

Supplementary Table 5). We further compared the relative abundance of these taxa among 

constipated and non-constipated subjects within and between groups. We observed that 

Escherichia/Shigella and Clostridium cluster XVIII were significantly more abundant in constipated 

AD compared to the non-constipated ones (FDR-corrected p<0.05, Wilcoxon rank sum test; Figure 

4A and 4B) while no differences have been detected between constipated and non-constipated NT for 

these taxa. On the other hand, the genus Gemmiger was significantly less abundant in constipated 

compared to non-constipated NT (FDR-corrected p<0.05, Wilcoxon rank sum test; Figure 4C). 

Remarkably, no significant differences have been observed in the levels of faecal calprotectin 

between AD and NT as well as between constipated and non-constipated subjects in both groups 

(Table 1 and Supplementary Table 1). Furthermore we analysed the levels of other two biomarkers 

of inflammations i.e. serum IgA and ESR in the autistic subjects and we did not observe significant 

differences among constipated and non-constipated AD (Table 1 and Supplementary Table 1). 
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Figure 3: A) Cladograms generated by LEfSe indicating differences in the bacterial taxa between autistic (AD) 

and neurotypical (NT) subjects. Nodes in orange indicate taxa that were enriched in AD compared to those in 

NT, while nodes in blue indicate taxa that were enriched in NT compared to those in AD. B) LDA scores for 

the bacterial taxa differentially abundant between autistic (AD) and neurotypical (NT) subjects. Positive and 

negative LDA scores indicate the bacterial taxa enriched in NT and AD subjects, respectively. Only the taxa 

having a p<0.01 (Wilcoxon rank-sum test) and LDA> 2.0 are shown in the figure legend  
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Therefore, while constipation resulted in a significant increase of Escherichia/Shigella and 

Clostridium cluster XVIII no differences have been observed in the levels of inflammation between 

constipated and non-constipated autistic subjects suggesting that constipation and the related 

alterations of the gut microbiota in autistic subjects as well as in neurotypical individuals is not 

associated with an increase of intestinal inflammation. It should be noted that the number of enrolled 

constipated subjects was quite low and therefore these analyses could be underpowered. 

 

Figure 4: Box plot representation of the relative abundances of bacterial genera correlating with the 

constipation status of the subjects enrolled in this study. Comparisons between A, B) constipated (C) and non-

constipated (NC) autistic subjects and C) constipated (C) and non-constipated (NC) neurotypical subjects; * 

FDR-corrected p<0.05, Wilcoxon sum-rank test. 

 

Autistic subjects harbour an altered gut mycobiota 

We then investigated the gut mycobiota of our study cohort through amplicon-based sequencing of 

fungal ITS1 region. High quality fungal sequences were detected respectively in 35 out of 40 autistic 

subjects and 38 out of 40 NT. As occurred for the bacterial gut microbiota we did not observe 

significant differences in fungal alpha-diversity between AD and NT. The analysis of beta-diversity 

revealed that the gut mycobiota of AD was different compared to NT as calculated by PCoA and 

PERMANOVA on the weighted UniFrac distance and Bray-Curtis dissimilarity (p<0.05, Figure 5). 

As for the bacterial beta-diversity, constipation showed a significant effect within NT subjects 

(p=0.046, PERMANOVA on Bray-Curtis dissimilarities) but not within AD subjects (Supplementary 

Table 6). Furthermore the severity of the autistic phenotype does not affect the gut mycobiota 

community structure among AD individuals (p>0.05, PERMANOVA; Supplementary Table 3). An 

in-depth analysis of the gut mycobiota lead to the identification of 50 fungal taxa fully classified to 

the genus level and 30 only partially classified. Genus level analysis showed Aspergillus (24.2% AD; 

28% NT), Candida (37.7% AD; 14.1% NT), Penicillium (13.2% AD; 23.5% NT) and Malassezia 

(3.05% AD; 3.3% NT) as the most abundant and widely distributed genera in our study cohort in 

terms of relative abundance (Supplementary Fig. 2, Supplementary Table 7). 
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Figure 5: PCoAs of fungal beta-diversity based on A) weighted UniFrac distance and B) Bray-Curtis 

dissimilarity. The right panel of the graphs A and B shows the same PCoA coordinates with the most abundant 

OTUs superimposed as coloured squares, with the size being proportional to the mean relative abundance of 

the taxon across all samples (grey dots). Autistic and neurotypical subjects are coloured in orange and blue, 

respectively. The constipation status of the subjects is indicated according to different shapes, circles for non-

constipated and triangles for constipated individuals. 

 

Although the relative abundance of the genus Candida was more than twice as much in AD than NT 

we did not identify significant differences among the two study groups (Welch t-test, FDR-corrected 

p-value=0.09, raw p-value=0.006; Supplementary Fig. 3) probably due to a larger dispersion of values 

in AD when compared to NT (p<0.001; Levene’s test). However the superimposition of the most 

abundant genera over the PCoA plots revealed that high levels of Candida abundance was associated 

with a group of subjects mainly affected by autism (Figure 5) suggesting that Candida could play a 

role in the altered microbial community associated with the autistic subjects. Correlation analyses 

among the most abundant fungi and bacteria (with relative abundance >0.5% and detectable in at least 

the 70% of the investigated subjects) revealed no significant correlations among autistic subjects 

while a significant positive correlation between the genera Aspergillus and Bifidobacterium was 

found within NT individuals (Spearman’s r= 0.6, FDR-corrected p=0.004) (Supplementary Table 8). 
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Discussion 

The gut microbiota is a crucial factor for the maintenance of GI tract functions and immune 

homeostasis. It is well known that dysbiosis of the GI tract could lead to inflammation and immune 

activation in several pathologies [15]. The frequent occurrence of GI symptoms in autistic subjects 

imply the possible involvement of the gut microbiota in ASDs gastrointestinal pathophysiology, 

further supported by the speculations on the increased incidence of ASDs cases due to “Western” 

habits (i.e. diet, medications and excessive overall hygiene) that can affect the composition of the gut 

microbiota [32]. Several studies demonstrated alterations in the bacterial gut microbiota of ASDs 

individuals, even if the differences reported in these studies were in some cases discordant, possibly 

due to variance in sampling strategies and methodologies used [8]. In addition, our recent findings 

showed an altered gut microbiota in Rett syndrome [33], a genetically determined 

neurodevelopmental disorder previously categorized in the ASDs group sharing some features of 

these conditions. We characterized the gut microbiota associated with autism, disclosing an altered 

microbial community both at bacterial and fungal level. We observed a significant increase in the 

Firmicutes/Bacteroidetes ratio in autistic subjects due to a significant reduction of Bacteroidetes in 

these individuals. Several inflammatory conditions have been related to an increase in the 

Firmicutes/Bacteroidetes ratio such as IBDs [34] and obesity [35]. Consistently with these 

observations, an increased Firmicutes/Bacteroidetes ratio has been reported also in subjects with 

autism [36, 37]. Furthermore we discovered that the relative abundances of the genera Collinsella, 

Corynebacterium, Dorea and Lactobacillus were significantly increased in the gut microbiota of 

autistic subjects with respect to that of the neurotypical subjects while the relative abundance of the 

genera Alistipes, Bilophila, Dialister, Parabacteroides and Veillonella were significantly reduced in 

these individuals. A recent study on a mouse model of ASDs demonstrated that treatments with a 

PSA+ Bacteroides fragilis strain restore autism-related behavioural and GI abnormalities, also 

reducing the reported high levels of Lachnospiraceae and 4-ethylphenylsulfate, a metabolite 

produced by this bacterial family related to p-cresol, a putative metabolic marker for autism [38]. 

Overall, these data are consistent with our findings and remark the importance of Bacteroidetes in 

ASDs pathophysiology. Moreover Lactobacillus resulted to be enriched in the gut microbiota of 

autistic individuals while Dialister and Veillonella resulted to be depleted, in line with the results 

obtained in previous studies [28, 39]. Since constipation is a common gastrointestinal problem in 

subjects with ASDs [4-7] we compared our data between constipated and non-constipated subjects in 

order to evaluate the contribution of constipation in shaping the gut microbiota of autistic subjects. 

Indeed it has been proposed that GI symptoms may be related to ASDs [40]. The evidence that the 

taxa belonging to the Clostridium cluster XVIII and the putative pro-inflammatory 
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Escherichia/Shigella [41, 42] positively correlated with the constipation status of the subjects as well 

as their enrichment in constipated autistic subjects supports the hypothesis that GI problems and 

related alterations of the gut microbiota may contribute to ASDs gastrointestinal symptoms [40]. 

Because of their ability to produce exotoxins and propionate that may exacerbate autistic symptoms 

[43], the role of clostridia in ASDs has been extensively explored. The species belonging to the 

Clostridium cluster XVIII have been shown to produce exotoxins [44] and to promote conditions 

favouring inflammation [45, 46] although other studies observed their potential ability to induce 

homeostatic T-reg responses [47]. It is also interesting to underline the occurrence of a subclinical 

acute phase response in ASDs plasma, as evidenced by advanced proteomic analysis [48]. 

Despite the importance given to the implications of the gut microbiota in health and disease few 

reports have explored the relevance of the fungal component of the gut microbiota in GI 

(patho)physiology [49]. Furthermore, none of the published studies on ASDs’ gut microbiota have 

assessed the fungal gut community structure associated with autism. Our dataset of autistic subjects 

displayed a different fungal community structure compared to neurotypical subjects. In particular the 

genus Candida was one of the most abundant taxa in the gut mycobiota of this study cohort, being 

two times more abundant in AD than NT. To the best of our knowledge this is the first time that 

alterations of the intestinal fungal microbiota are associated with ASDs. Although Candida is one of 

the most common and abundant genus of the human gut mycobiota [50, 51], its implication in 

phenomena of fungal dysbiosis have been reported in several GI and inflammatory conditions [52-

54] as well as in Rett syndrome [33]. It is therefore possible that alteration of the intestinal fungal 

population driven by an expansion of Candida in the gut mycobiota of autistic individuals may 

negatively impact on GI abnormalities through cytokine dysregulation. The gut microbiota, in 

particular some species of Lactobacillus, modulates the immunological responses to Candida in the 

GI tract by providing tryptophan-derived aryl-hydrocarbon receptor ligands that stimulate the 

immune system, principally ILC3 cells, to produce IL-22 [55]. Together with IL-17, IL-22 avoids the 

excessive proliferation of Candida and other fungal commensals in the gut. It is therefore possible 

that alterations of the gut microbiota in ASDs could lead to an expansion of the Candida population 

preventing from a full restoration of the bacterial community structure. Indeed it has been observed 

that alterations of the bacterial gut microbiota due to prolonged antibiotic usage and the subsequent 

colonization with C. albicans prevents from a full restoration of the bacterial community structure 

resulting in altered abundances of Bacteriodetes, Lactobacillaceae, Ruminococcaceae and 

Lachnospiraceae [56]. 
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Conclusions 

Here we observed an altered intestinal microbial community associated with autism, both at bacterial 

and fungal level. Furthermore such alterations of the gut microbiota did not depend by the 

constipation status of autistic individuals although a larger cohort would be necessary to validate 

these findings. Our results encourage an in-depth, extensive study on the impact of the gut microbiota 

in the GI physiology and neuroplastic changes in ASDs, as well as the integration of such data with 

immunology and metabolomics to further establish the relevance of the gut microbiota in the ASDs 

pathophysiology. 

 

Methods 

Study participants and samples handling and collection 

We recruited 40 subjects with clinical diagnosis of autism (average age 11.1±6.8; sex, male:female, 

31:9) and we compared them with 40 age and sex-matched neurotypical healthy subjects (average 

age 9.2±7.9; sex, male:female, 28:12). Autistic subjects with clinically evident inflammatory 

conditions were excluded. Constipation and inflammation (i.e. serum IgA, erythrocyte sedimentation 

rate and faecal calprotectin levels) were also assessed. The autistic subjects were consecutively 

admitted to the Child Neuropsychiatry Unit of the University Hospital of Siena, and ASDs were 

diagnosed according with the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition [1], 

and evaluated using Autism Diagnostic Observation Schedule and Autism Behaviour Checklist. 

Childhood Autism Rating Scale scores (CARS) [57] were calculated by an experienced child 

neuropsychiatrist. Average CARS values were 46.2 ± 6.8 (value range 32-57); a fraction of 90 % 

(36/40) were classified as severe ASDs (CARS value >37), with 10 % (4/40) being moderately severe 

ASDs (CARS values from 30 to 36) (Supplementary Table 9). No specific comorbidities in the 

autistic cohort were present with the single exception of a coexisting celiac disease in two patients (5 

%). Constipation has been defined according to Rome III criteria [58]. Stool samples from enrolled 

subjects were collected, aliquoted as it is and stored at -80°C until analysis. All subjects of this study 

were under a Mediterranean-based diet and no antibiotics, probiotics or prebiotics have been taken in 

the 3 month prior the sample collection. None of the subjects were on anti-inflammatory or 

antioxidant drugs. The study was conducted after the approval by the Institutional Review Board of 

the Siena University Hospital (AOUS, Siena, Italy) and all written informed consents were obtained 

from either the parents or the legal tutors of the enrolled subjects, in compliance with national 

legislation and the Code of Ethical Principles for Medical Research Involving Human Subjects of the 

World Medical Association (Declaration of Helsinki). 
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Faecal Calprotectin Assay 

Calprotectin determination was performed by using a polyclonal antibody in an enzyme-linked 

immunosorbent assay (Calprest, Eurospital, Trieste, Italy) according to the manufacturer’s 

instructions. Calprotectin values < 50 µg/g per stool sample were considered normal.  

 

Pyrosequencing and Data analysis 

Total DNA extraction from faecal samples (250mg, wet weight) was performed using the FastDNA™ 

SPIN Kit for Feces (MP Biomedicals, Santa Ana, CA, USA) following manufacturer's instructions. 

For each DNA sample, we amplified respectively the bacterial 16S rRNA genes using a primer set 

specific for V3-V5 hypervariable region (F357: 5’-TCCTACGGGAGGCAGCAG-3’ and R937: 5’-

TGTGCGGGCCCCCGTCAATT-3’) and the Internal Transcribed Spacer (ITS) using a primer set 

specific for fungal ITS1 rDNA region (18SF: 5’-GTAAAAGTCGTAACAAGGTTTC-3’ and 

5.8S1R: 5’-GTTCAAAGAYTCGATGATTCAC-3’) [59] containing adaptors, key sequence and 

barcode sequences as described by the 454 Sequencing System Guidelines for Amplicon 

Experimental Design (Roche, Basel, Switzerland). The PCR products obtained were then purified, 

quantified and pooled in equimolar way in a final amplicon library. The 454 pyrosequencing was 

carried out on the GS FLX+ system using the XL+ chemistry following the manufacturer's 

recommendations (Roche, Basel, Switzerland). Raw 454 data were demultiplexed using the Roche's 

sff file software and submitted to the European Nucleotide Archive (ENA) with accession numbers 

PRJEB15418 and PRJEB15420. Sample accessions IDs and metadata are available in Supplementary 

Table 9. Reads were pre-processed using the MICCA pipeline (v. 0.1) (http://www.micca.org) [60]. 

operational taxonomic units (OTUs) were assigned by clustering the sequences with a threshold of 

97% pairwise identity and their representative sequences were classified using the RDP classifier 

version 2.7 on 16S data and using the RDP classifier version 2.8 [61] against the UNITE fungal ITS 

database [62] on ITS1 data. Template-guided multiple sequence alignment (MSA) was performed 

using PyNAST [63] (v. 0.1) against the multiple alignment of the Greengenes [64] database (release 

13_05) filtered at 97% similarity for bacterial sequences and through de novo MSA using T-Coffee 

[65] for fungal sequences. Fungal taxonomy assignments were then manually curated using BLASTn 

against the GenBank’s database for accuracy. High quality fungal sequences have been also manually 

filtered out for sequences belonging to Agaricomycetes (unlikely to be residents of the human gut due 

to their ecology [66]). The phylogenetic tree was inferred using micca-phylogeny [67]. Sampling 

heterogeneity was reduced by rarefaction. Alpha (within-sample richness) and beta-diversity 

(between-sample dissimilarity) estimates were computed using the phyloseq R package [68]. 

Permutational MANOVA (PERMANOVA) test was performed using the adonis()function in the R 
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package vegan with 999 permutations. Permutations have been constrained within age groups 

(corresponding to 0-2 y/o, 3-10 y/o, 11-17 y/o and >18 y/o) or gender to evaluate possible biases 

related to the unequal age and gender distributions among subjects using the “strata” argument within 

the adonis() function. Two-sided, unpaired Welch t-statistics were computed using the function mt() 

in the phyloseq library and the p-values were adjusted for multiple comparison controlling the family-

wise Type I error rate (minP procedure) [69]. Spearman's correlation tests were computed using the 

psych R package [70]. Linear discriminant effect size analysis (LEfSe) was performed to find features 

(taxa) differentially represented between autistic and neurotypical subjects. LEfSe combines Kruskal-

Wallis test or pairwise Wilcoxon rank-sum test with linear discriminant analysis (LDA). It ranks 

features by effect size, which put features that explain most of the biological difference at top. LEfSe 

analysis was performed under the following conditions: α value for the statistical test equal to 0.01 

and threshold on the logarithmic LDA score for discriminative features equal to 2.0 [29]. All 

statistical analyses were performed using R [71] and p-values were FDR-corrected [72]. 
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Supplementary Table 1: Statistical comparisons (Wilcoxon rank sum test) of clinical data among 

autistic (AD) and neurotypical (NT) subjects both constipated (C) and non-constipated (NC). 

 
 AD vs NT AD-C vs NT-C AD-NC vs NT-NC AD-C vs AD-NC NT-C vs NT-NC 

Age 0.14 0.20 0.64 0.88 0.10 

Calprotectin  0.75 0.94 0.53 0.56 0.68 

CARS NA NA NA 0.98 NA 

ESR NA NA NA 0.98 NA 

Serum IgA NA NA NA 0.45 NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2: Permutational multivariate analysis of variance (PERMANOVA) tests of 

the bacterial gut microbiota on the unweighted and weighted UniFrac distances and the Bray-Curtis 

dissimilarity according to individuals’ health status and constipation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NT, neurotypical subjects; AD, autistic subjects; NT-C, constipated neurotypical subjects; NT-NC, non-

constipated neurotypical subjects; AD-C, constipated autistic subjects; AD-NC, non-constipated autistic 

subjects. 

 

 

Supplementary Table 3: Permutational multivariate analysis of variance (PERMANOVA) tests of 

the bacterial and fungal gut microbiota on the unweighted and weighted UniFrac distances and the 

Bray-Curtis dissimilarity according to the severity of the autistic phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 Metric F R2 p-value 

NT (n=40) 

vs 

AD (n=40) 

Unweighted Unifrac 2.31 0.02 0.001 

Weighted Unifrac 3.29 0.04 0.010 

Bray-Curtis 2.35 0.02 0.005 

     

AD-C (n=5) 

vs 

AD-NC (n=29) 

Unweighted Unifrac 1.36 0.04 0.058 

Weighted Unifrac 0.98 0.03 0.397 

Bray-Curtis 1.23 0.03 0.226 

NT-C (n=11) 

vs 

NT-NC (n=29) 

Unweighted Unifrac 2.21 0.05 0.001 

Weighted Unifrac 2.13 0.05 0.048 

Bray-Curtis 1.81 0.04 0.030 

AD-C (n=5) 

vs 

NT-C (n=11) 

Unweighted Unifrac 0.44 0.03 0.991 

Weighted Unifrac 0.37 0.02 0.925 

Bray-Curtis 0.44 0.03 0.989 

AD-NC (n=29) 

vs 

NT-NC (n=29) 

Unweighted Unifrac 3.10 0.05 0.001 

Weighted Unifrac 4.49 0.07 0.002 

Bray-Curtis 2.93 0.04 0.002 

Bacterial microbiota Metric F R2 p-value 

AD severe (n=36) 

vs 

AD moderate (n=4) 

Unweighted Unifrac 1.04 0.02 0.43 

Weighted Unifrac 1.19 0.03 0.27 

Bray-Curtis 1.27 0.03 0.24 

Fungal microbiota Metric F R2 p-value 

AD severe (n=31) 

vs 

AD moderate (n=4) 

Unweighted Unifrac 0.44 0.01 0.92 

Weighted Unifrac 0.77 0.02 0.52 

Bray-Curtis 0.54 0.01 0.69 



Supplementary Table 4: Mean relative abundance (%) ± standard deviation (SD) of bacterial taxa at genus levels in autistic (AD) and neurotypical 

(NT) subjects both constipated (C) and non-constipated (NC). 

 

 AD NT AD-NC AD-C NT-NC NT-C 

Genus mean SD mean SD mean SD mean SD mean SD mean SD 

Bifidobacterium 24.9000 18.1659 21.7741 20.2050 26.2459 19.3322 22.2564 17.4641 18.7076 16.1969 29.8585 27.5398 

Bacteroides 5.6545 9.2705 12.6658 15.8310 4.8177 9.0817 5.4283 6.4654 14.8957 17.2179 6.7872 9.7427 

Faecalibacterium 10.2981 11.7366 6.2955 6.1588 11.5902 11.9463 2.2778 2.7370 7.2501 6.6415 3.7789 3.8489 

Lachnospiraceae;Unknown 6.3966 4.5323 6.4080 4.8425 6.8836 4.5400 5.4699 4.5756 6.6496 4.4803 5.7713 5.8849 

Blautia 6.2533 6.7229 4.0792 4.3493 6.8504 6.8236 6.9322 8.1733 3.1402 2.5915 6.5549 6.7580 

Ruminococcus 3.4483 3.9080 3.9006 4.4747 3.8566 4.0712 1.7964 3.8777 4.5480 4.2181 2.1940 4.8837 

Clostridium XI 3.5446 3.2881 3.0968 3.9781 3.3952 3.0237 5.0716 5.6175 3.4110 4.4716 2.2685 2.1657 

Streptococcus 1.7234 3.3565 4.6497 12.6877 1.7628 3.6635 2.8009 2.9063 4.0161 11.7806 6.3204 15.3292 

Gemmiger 3.0106 4.2047 3.0436 3.3370 3.5163 4.6064 1.0224 1.3213 3.7067 3.4961 1.2953 2.1374 

Lachnospiracea_incertae_sedis 3.0411 2.7147 2.4181 2.2914 2.7028 1.3934 6.2676 6.3233 2.5923 2.5157 1.9589 1.5609 

Ruminococcaceae;Unknown 2.3921 3.6106 2.4617 2.3196 1.6564 1.9501 4.3666 8.1926 2.6479 2.1183 1.9708 2.8379 

Escherichia/Shigella 1.4706 3.8944 3.1831 8.7676 0.4731 1.2099 5.3189 7.4712 2.5425 9.3382 4.8721 7.1628 

Alistipes 1.2848 3.1149 3.1659 5.9674 0.6116 2.1424 2.8081 5.2410 2.4785 3.0930 4.9780 10.3494 

Anaerostipes 2.4452 3.4284 1.9146 1.8001 2.6335 3.7884 3.0161 2.4568 1.4996 1.2319 3.0089 2.5636 

Clostridium XVIII 2.4645 4.6033 1.2291 1.6523 1.8462 3.6987 6.6457 8.5055 1.0161 1.5696 1.7908 1.8084 

Dorea 2.1164 2.2171 1.1022 1.5706 2.3000 2.4804 1.4492 1.0954 1.0497 1.5281 1.2407 1.7473 

Collinsella 2.4212 3.0206 0.7377 1.7124 2.2217 2.8077 2.5441 1.6025 0.7855 1.6358 0.6117 1.9798 

Clostridium sensu stricto 1.7014 3.2238 1.1334 1.4337 1.9206 3.6399 1.2483 1.2948 1.0142 1.0385 1.4477 2.2014 

Erysipelotrichaceae_incertae_sedis 1.6220 4.7726 0.4596 0.8299 1.7466 5.4441 1.2091 1.8392 0.4071 0.8734 0.5982 0.7218 

Clostridiales;Unknown 1.0777 1.3254 0.9136 1.0758 0.9062 1.3068 1.1163 1.0965 0.9408 1.0560 0.8419 1.1760 

Dialister 0.5714 1.3153 1.4077 2.7441 0.6744 1.4609 0.0464 0.0773 1.6265 3.0762 0.8311 1.5381 

Prevotellaceae;Unknown 1.3324 7.7123 0.4882 2.8855 1.7257 8.9074 0.1938 0.4234 0.6721 3.3867 0.0032 0.0108 

Coprococcus 0.8026 0.5336 0.8585 0.6871 0.8014 0.5555 0.9059 0.5469 0.8047 0.6772 1.0003 0.7257 

Unknown 0.8041 0.8209 0.8570 1.1623 0.9125 0.8936 0.3329 0.2022 1.0150 1.3098 0.4404 0.4499 

Prevotella 0.0501 0.2717 1.5614 9.0676 0.0652 0.3137 0.0000 0.0000 2.0918 10.6478 0.1632 0.4924 

Coriobacteriaceae;Unknown 0.5268 0.9162 0.8099 1.3768 0.3230 0.3489 0.1153 0.1998 0.9298 1.5587 0.4939 0.6622 



Lactobacillus 1.0018 3.5838 0.2511 1.0308 1.1847 4.1198 0.4446 0.9513 0.2577 1.1633 0.2340 0.5951 

Clostridium IV 0.4069 0.6500 0.8271 1.3817 0.3021 0.5829 0.5243 0.9899 0.8672 1.5054 0.7214 1.0408 

Turicibacter 0.7895 1.5079 0.3824 0.7666 0.9308 1.7086 0.0725 0.0489 0.4725 0.8798 0.1448 0.1982 

Barnesiella 0.2219 0.6002 0.8845 1.9255 0.0535 0.1953 0.5041 0.9901 1.1470 2.1907 0.1924 0.5430 

Oscillibacter 0.4162 0.9883 0.5668 0.7707 0.3132 1.0566 0.3828 0.6825 0.6461 0.8050 0.3577 0.6602 

Clostridium XlVa 0.4605 0.4844 0.4947 0.6779 0.4421 0.4928 0.5552 0.4492 0.5299 0.7682 0.4020 0.3561 

Firmicutes;Unknown 0.3529 0.4567 0.5375 0.7557 0.3396 0.4758 0.2306 0.1516 0.6582 0.8487 0.2194 0.2379 

Parabacteroides 0.1896 0.3689 0.6876 1.1413 0.0765 0.1286 0.4530 0.6515 0.9002 1.2781 0.1270 0.1711 

Bifidobacteriaceae;Unknown 0.4625 0.3040 0.3696 0.3211 0.4831 0.3105 0.4006 0.2835 0.3687 0.3218 0.3718 0.3348 

Enterococcus 0.1428 0.4268 0.4562 1.8010 0.1008 0.2299 0.5445 1.0733 0.1857 0.5507 1.1694 3.3210 

Sarcina 0.3079 0.7661 0.2204 0.4950 0.3380 0.8600 0.1379 0.1350 0.1847 0.3732 0.3145 0.7432 

Butyricicoccus 0.3326 0.5226 0.1754 0.2275 0.3974 0.5849 0.1379 0.1575 0.1945 0.2308 0.1248 0.2209 

Peptostreptococcaceae;Unknown 0.2614 0.2492 0.1574 0.1747 0.2525 0.1991 0.4363 0.4903 0.1572 0.1919 0.1578 0.1257 

Megasphaera 0.3021 1.3036 0.0961 0.4098 0.3196 1.4333 0.0202 0.0419 0.1238 0.4801 0.0232 0.0382 

Veillonella 0.0627 0.1681 0.3180 1.0394 0.0336 0.0701 0.2972 0.4005 0.0924 0.1538 0.9127 1.9001 

Enterobacteriaceae;Unknown 0.0852 0.1755 0.2826 0.8837 0.0375 0.0637 0.4113 0.3301 0.0781 0.1533 0.8219 1.5934 

Eggerthella 0.1005 0.1384 0.2366 0.2953 0.0912 0.1315 0.1890 0.1960 0.1781 0.2389 0.3907 0.3800 

Bacteroidetes;Unknown 0.2511 1.5845 0.0639 0.3946 0.0004 0.0022 0.0000 0.0000 0.0881 0.4633 0.0000 0.0000 

Haemophilus 0.2372 1.1607 0.0727 0.1800 0.3259 1.3354 0.0048 0.0106 0.0676 0.1746 0.0859 0.2017 

Roseburia 0.1624 0.1926 0.1434 0.1685 0.1970 0.2090 0.0690 0.0729 0.1640 0.1818 0.0892 0.1175 

Erysipelotrichaceae;Unknown 0.1806 0.2920 0.0993 0.1429 0.1660 0.2107 0.3864 0.6496 0.0818 0.0820 0.1454 0.2399 

Megamonas 0.0000 0.0000 0.2794 1.7487 0.0000 0.0000 0.0000 0.0000 0.3854 2.0536 0.0000 0.0000 

Parasutterella 0.1560 0.6878 0.0898 0.1907 0.0232 0.0775 0.0321 0.0623 0.1084 0.2089 0.0405 0.1266 

Lactobacillales;Unknown 0.1061 0.1861 0.1259 0.2441 0.1068 0.1882 0.2128 0.2320 0.0990 0.1875 0.1967 0.3554 

Clostridiaceae 1;Unknown 0.1388 0.2252 0.0877 0.1618 0.1523 0.2481 0.1415 0.1486 0.0615 0.0766 0.1567 0.2800 

Clostridium XlVb 0.1277 0.3296 0.0901 0.2042 0.1201 0.3331 0.2627 0.4710 0.0717 0.1485 0.1383 0.3120 

Odoribacter 0.0878 0.2304 0.1266 0.1962 0.0264 0.0839 0.2794 0.5542 0.1658 0.2159 0.0232 0.0588 

Flavonifractor 0.0740 0.1251 0.1367 0.1392 0.0510 0.0818 0.0820 0.0971 0.1261 0.1407 0.1648 0.1376 

Lactococcus 0.1953 0.6485 0.0140 0.0338 0.1287 0.4673 0.8156 1.3953 0.0100 0.0320 0.0243 0.0378 

Eubacterium 0.0939 0.1480 0.0942 0.1122 0.0691 0.1275 0.0832 0.1264 0.1082 0.1164 0.0573 0.0955 

Clostridia;Unknown 0.0892 0.1915 0.0811 0.1913 0.0533 0.1709 0.0713 0.1466 0.0570 0.1236 0.1448 0.3061 

Catenibacterium 0.1268 0.6975 0.0198 0.1240 0.0240 0.1258 0.0000 0.0000 0.0273 0.1457 0.0000 0.0000 



Paraprevotella 0.1097 0.6417 0.0366 0.1304 0.1416 0.7405 0.0464 0.1037 0.0502 0.1516 0.0005 0.0018 

Akkermansia 0.0380 0.0833 0.1031 0.1674 0.0277 0.0748 0.0380 0.0547 0.0816 0.1679 0.1600 0.1597 

Phascolarctobacterium 0.0724 0.2345 0.0525 0.1542 0.0092 0.0241 0.1201 0.2138 0.0717 0.1781 0.0016 0.0054 

Porphyromonadaceae;Unknown 0.0196 0.1054 0.1015 0.3790 0.0020 0.0078 0.0119 0.0266 0.1386 0.4415 0.0038 0.0107 

Peptostreptococcus 0.0004 0.0021 0.1089 0.6841 0.0004 0.0022 0.0012 0.0027 0.0006 0.0033 0.3945 1.3044 

Butyricimonas 0.0259 0.0718 0.0367 0.1108 0.0018 0.0063 0.1153 0.1596 0.0504 0.1280 0.0005 0.0018 

Bilophila 0.0108 0.0247 0.0477 0.1039 0.0039 0.0101 0.0095 0.0108 0.0640 0.1184 0.0049 0.0074 

Actinomyces 0.0260 0.0252 0.0294 0.0404 0.0258 0.0200 0.0262 0.0486 0.0219 0.0254 0.0492 0.0629 

Sutterella 0.0022 0.0084 0.0508 0.1827 0.0016 0.0062 0.0083 0.0186 0.0701 0.2123 0.0000 0.0000 

Gordonibacter 0.0199 0.0295 0.0305 0.0690 0.0164 0.0183 0.0297 0.0371 0.0305 0.0781 0.0303 0.0387 

Coprobacillus 0.0104 0.0285 0.0397 0.1089 0.0055 0.0183 0.0440 0.0611 0.0375 0.1016 0.0454 0.1314 

Deltaproteobacteria;Unknown 0.0486 0.2397 0.0006 0.0029 0.0000 0.0000 0.2889 0.6460 0.0002 0.0011 0.0016 0.0054 

Desulfovibrio 0.0205 0.0637 0.0260 0.0609 0.0006 0.0024 0.1011 0.1392 0.0246 0.0559 0.0297 0.0752 

Bacteroidales;Unknown 0.0123 0.0375 0.0278 0.0465 0.0053 0.0131 0.0499 0.0989 0.0367 0.0519 0.0043 0.0080 

Mitsuokella 0.0385 0.1761 0.0000 0.0000 0.0336 0.1779 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Allisonella 0.0324 0.1082 0.0042 0.0194 0.0131 0.0557 0.0464 0.1037 0.0057 0.0227 0.0000 0.0000 

Gracilibacteraceae;Unknown 0.0250 0.0837 0.0089 0.0409 0.0010 0.0044 0.0440 0.0984 0.0123 0.0478 0.0000 0.0000 

Acidaminococcus 0.0091 0.0333 0.0232 0.1286 0.0057 0.0230 0.0000 0.0000 0.0281 0.1501 0.0103 0.0341 

Slackia 0.0265 0.1181 0.0052 0.0204 0.0115 0.0607 0.0095 0.0213 0.0072 0.0238 0.0000 0.0000 

Anaerotruncus 0.0111 0.0272 0.0146 0.0306 0.0025 0.0057 0.0428 0.0638 0.0139 0.0334 0.0162 0.0229 

Eubacteriaceae;Unknown 0.0177 0.0812 0.0071 0.0282 0.0055 0.0211 0.0036 0.0080 0.0033 0.0127 0.0173 0.0500 

Alphaproteobacteria;Unknown 0.0059 0.0229 0.0175 0.0635 0.0027 0.0141 0.0000 0.0000 0.0240 0.0738 0.0005 0.0018 

Pasteurellaceae;Unknown 0.0031 0.0188 0.0181 0.0840 0.0043 0.0217 0.0000 0.0000 0.0068 0.0221 0.0481 0.1575 

Olsenella 0.0166 0.0677 0.0025 0.0099 0.0014 0.0049 0.0273 0.0611 0.0035 0.0115 0.0000 0.0000 

Desulfovibrionaceae;Unknown 0.0120 0.0618 0.0064 0.0329 0.0133 0.0705 0.0143 0.0319 0.0084 0.0386 0.0011 0.0024 

Holdemania 0.0076 0.0167 0.0088 0.0138 0.0039 0.0077 0.0071 0.0106 0.0107 0.0149 0.0038 0.0089 

Streptophyta 0.0103 0.0247 0.0052 0.0194 0.0096 0.0217 0.0226 0.0473 0.0031 0.0134 0.0108 0.0304 

Burkholderiales;Unknown 0.0046 0.0264 0.0098 0.0311 0.0057 0.0304 0.0036 0.0080 0.0129 0.0360 0.0016 0.0054 

Enterorhabdus 0.0065 0.0256 0.0049 0.0236 0.0029 0.0152 0.0000 0.0000 0.0068 0.0276 0.0000 0.0000 

Alloscardovia 0.0007 0.0028 0.0097 0.0611 0.0010 0.0031 0.0000 0.0000 0.0000 0.0000 0.0351 0.1165 

Cellulosilyticum 0.0091 0.0573 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Varibaculum 0.0006 0.0038 0.0079 0.0379 0.0000 0.0000 0.0000 0.0000 0.0094 0.0444 0.0038 0.0067 



Hallella 0.0076 0.0479 0.0000 0.0000 0.0105 0.0553 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Anaerofustis 0.0042 0.0085 0.0030 0.0084 0.0043 0.0084 0.0024 0.0033 0.0029 0.0092 0.0032 0.0062 

Peptoniphilus 0.0045 0.0160 0.0027 0.0075 0.0031 0.0093 0.0000 0.0000 0.0027 0.0083 0.0027 0.0049 

Anaerofilum 0.0027 0.0075 0.0043 0.0103 0.0008 0.0043 0.0071 0.0160 0.0035 0.0085 0.0065 0.0144 

Succiniclasticum 0.0000 0.0000 0.0070 0.0442 0.0000 0.0000 0.0000 0.0000 0.0096 0.0519 0.0000 0.0000 

Corynebacterium 0.0058 0.0113 0.0010 0.0035 0.0033 0.0058 0.0143 0.0254 0.0012 0.0040 0.0005 0.0018 

Gemella 0.0037 0.0089 0.0021 0.0055 0.0031 0.0067 0.0036 0.0080 0.0018 0.0055 0.0027 0.0056 

Acidaminococcaceae;Unknown 0.0006 0.0038 0.0051 0.0320 0.0000 0.0000 0.0000 0.0000 0.0070 0.0375 0.0000 0.0000 

Pseudomonas 0.0027 0.0150 0.0022 0.0104 0.0033 0.0174 0.0000 0.0000 0.0020 0.0110 0.0027 0.0090 

Solobacterium 0.0015 0.0042 0.0030 0.0065 0.0016 0.0044 0.0000 0.0000 0.0029 0.0069 0.0032 0.0056 

Lactobacillaceae;Unknown 0.0043 0.0113 0.0000 0.0000 0.0039 0.0111 0.0059 0.0133 0.0000 0.0000 0.0000 0.0000 

Sporobacter 0.0006 0.0023 0.0037 0.0088 0.0000 0.0000 0.0012 0.0027 0.0039 0.0089 0.0032 0.0090 

Carnobacteriaceae;Unknown 0.0000 0.0000 0.0040 0.0132 0.0000 0.0000 0.0000 0.0000 0.0025 0.0093 0.0081 0.0203 

Anaerococcus 0.0009 0.0039 0.0031 0.0126 0.0010 0.0044 0.0000 0.0000 0.0010 0.0039 0.0086 0.0231 

Granulicatella 0.0004 0.0021 0.0030 0.0143 0.0006 0.0024 0.0000 0.0000 0.0008 0.0035 0.0086 0.0268 

Oxalobacter 0.0019 0.0078 0.0015 0.0077 0.0002 0.0011 0.0036 0.0053 0.0020 0.0090 0.0000 0.0000 

Raoultella 0.0012 0.0059 0.0022 0.0066 0.0004 0.0022 0.0071 0.0160 0.0006 0.0033 0.0065 0.0105 

Rothia 0.0021 0.0061 0.0012 0.0043 0.0025 0.0067 0.0024 0.0053 0.0006 0.0024 0.0027 0.0072 

Rikenellaceae;Unknown 0.0012 0.0051 0.0019 0.0074 0.0000 0.0000 0.0071 0.0129 0.0027 0.0086 0.0000 0.0000 

Proteus 0.0013 0.0068 0.0016 0.0086 0.0000 0.0000 0.0083 0.0186 0.0000 0.0000 0.0059 0.0162 

Delftia 0.0027 0.0169 0.0000 0.0000 0.0037 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Atopobium 0.0004 0.0016 0.0022 0.0093 0.0006 0.0018 0.0000 0.0000 0.0012 0.0066 0.0049 0.0143 

Actinomycetales;Unknown 0.0016 0.0050 0.0007 0.0028 0.0020 0.0057 0.0012 0.0027 0.0008 0.0031 0.0005 0.0018 

Cloacibacillus 0.0015 0.0094 0.0009 0.0042 0.0000 0.0000 0.0000 0.0000 0.0008 0.0044 0.0011 0.0036 

Fusobacterium 0.0001 0.0009 0.0021 0.0096 0.0002 0.0011 0.0000 0.0000 0.0010 0.0055 0.0049 0.0161 

Staphylococcus 0.0012 0.0034 0.0006 0.0023 0.0014 0.0037 0.0000 0.0000 0.0006 0.0024 0.0005 0.0018 

Clostridiales_Incertae Sedis XI;Unknown 0.0018 0.0095 0.0000 0.0000 0.0004 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Porphyromonas 0.0012 0.0051 0.0004 0.0021 0.0006 0.0024 0.0000 0.0000 0.0004 0.0022 0.0005 0.0018 

TM7_genera_incertae_sedis 0.0012 0.0066 0.0004 0.0021 0.0014 0.0076 0.0000 0.0000 0.0004 0.0022 0.0005 0.0018 

Peptococcus 0.0001 0.0009 0.0013 0.0085 0.0000 0.0000 0.0000 0.0000 0.0018 0.0099 0.0000 0.0000 

Parvimonas 0.0007 0.0024 0.0007 0.0031 0.0008 0.0026 0.0000 0.0000 0.0006 0.0033 0.0011 0.0024 

Actinomycetaceae;Unknown 0.0006 0.0029 0.0007 0.0039 0.0008 0.0034 0.0000 0.0000 0.0010 0.0045 0.0000 0.0000 



Brevundimonas 0.0010 0.0066 0.0003 0.0019 0.0014 0.0076 0.0000 0.0000 0.0004 0.0022 0.0000 0.0000 

Ralstonia 0.0012 0.0052 0.0000 0.0000 0.0016 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Mesorhizobium 0.0009 0.0034 0.0001 0.0009 0.0012 0.0039 0.0000 0.0000 0.0000 0.0000 0.0005 0.0018 

Bacillales;Unknown 0.0009 0.0056 0.0000 0.0000 0.0012 0.0065 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Abiotrophia 0.0003 0.0019 0.0006 0.0023 0.0004 0.0022 0.0000 0.0000 0.0004 0.0015 0.0011 0.0036 

Leptospira 0.0009 0.0056 0.0000 0.0000 0.0012 0.0065 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Actinobacteria;Unknown 0.0003 0.0019 0.0004 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0054 

Leptotrichia 0.0000 0.0000 0.0007 0.0047 0.0000 0.0000 0.0000 0.0000 0.0010 0.0055 0.0000 0.0000 

Neisseriaceae;Unknown 0.0000 0.0000 0.0007 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0090 

Desulfovibrionales;Unknown 0.0001 0.0009 0.0006 0.0038 0.0000 0.0000 0.0012 0.0027 0.0000 0.0000 0.0022 0.0072 

Leuconostoc 0.0001 0.0009 0.0004 0.0021 0.0002 0.0011 0.0000 0.0000 0.0004 0.0022 0.0005 0.0018 

Paraeggerthella 0.0000 0.0000 0.0004 0.0028 0.0000 0.0000 0.0000 0.0000 0.0006 0.0033 0.0000 0.0000 

Weissella 0.0000 0.0000 0.0004 0.0021 0.0000 0.0000 0.0000 0.0000 0.0006 0.0024 0.0000 0.0000 

Mogibacterium 0.0000 0.0000 0.0004 0.0028 0.0000 0.0000 0.0000 0.0000 0.0006 0.0033 0.0000 0.0000 

Sneathia 0.0004 0.0028 0.0000 0.0000 0.0006 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Ochrobactrum 0.0004 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cardiobacterium 0.0000 0.0000 0.0004 0.0028 0.0000 0.0000 0.0000 0.0000 0.0006 0.0033 0.0000 0.0000 

Microbacterium 0.0000 0.0000 0.0003 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0024 

Propionibacteriaceae;Unknown 0.0000 0.0000 0.0003 0.0019 0.0000 0.0000 0.0000 0.0000 0.0004 0.0022 0.0000 0.0000 

Dysgonomonas 0.0001 0.0009 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011 0.0000 0.0000 

Pediococcus 0.0000 0.0000 0.0003 0.0019 0.0000 0.0000 0.0000 0.0000 0.0004 0.0022 0.0000 0.0000 

Murdochiella 0.0001 0.0009 0.0001 0.0009 0.0002 0.0011 0.0000 0.0000 0.0000 0.0000 0.0005 0.0018 

Curvibacter 0.0003 0.0019 0.0000 0.0000 0.0004 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pyramidobacter 0.0003 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Rhodococcus 0.0001 0.0009 0.0000 0.0000 0.0002 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Propionibacterium 0.0001 0.0009 0.0000 0.0000 0.0002 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Bacillus 0.0000 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0018 

Dolosigranulum 0.0000 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0018 

Acetivibrio 0.0000 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0018 

Shinella 0.0000 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011 0.0000 0.0000 

 



Supplementary Table 5: Spearman’s correlation analysis among the most abundant bacterial genera 

and the constipation status of the subjects of the study cohort. 

 

Genus Spearman's r p-values FDR-corrected p 

Gemmiger -0.3950 0.0005 0.0097 

Clostridium XVIII 0.3811 0.0008 0.0097 

Ruminococcus -0.3606 0.0016 0.0128 

Escherichia/Shigella 0.3061 0.0080 0.0480 

Faecalibacterium -0.2843 0.0141 0.0676 

Dialister -0.2258 0.0531 0.2123 

Anaerostipes 0.1952 0.0956 0.2550 

Erysipelotrichaceae incertae sedis 0.1953 0.0955 0.2550 

Turicibacter -0.1960 0.0941 0.2550 

Collinsella -0.1654 0.1590 0.3816 

Oscillibacter -0.1440 0.2210 0.4822 

Dorea -0.1360 0.2479 0.4958 

Streptococcus 0.1245 0.2906 0.5083 

Lactobacillus 0.1230 0.2965 0.5083 

Alistipes 0.1079 0.3603 0.5686 

Coprococcus 0.1037 0.3791 0.5686 

Bacteroides -0.0922 0.4346 0.6135 

Blautia 0.0645 0.5848 0.7387 

Clostridium IV -0.0692 0.5581 0.7387 

Clostridium XlVa 0.0553 0.6396 0.7675 

Bifidobacterium 0.0430 0.7158 0.8181 

Lachnospiracea incertae sedis 0.0300 0.7999 0.8726 

Clostridium sensu stricto 0.0108 0.9275 0.9678 

Clostridium XI 0.0008 0.9948 0.9948 

 

  



Supplementary Table 6: Permutational multivariate analysis of variance (PERMANOVA) tests of 

the fungal gut microbiota on the unweighted and weighted UniFrac distances and the Bray-Curtis 

dissimilarity according to individuals’ health status and constipation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NT, neurotypical subjects; AD, autistic subjects; NT-C, constipated neurotypical subjects; NT-NC, non-

constipated neurotypical subjects; AD-C, constipated autistic subjects; AD-NC, non-constipated autistic 

subjects. 

 Metric F R2 p-value 

NT (n=38) 

vs 

AD (n=35) 

Unweighted Unifrac 1.55 0.02 0.095 

Weighted Unifrac 2.59 0.02 0.040 

Bray-Curtis 2.91 0.03 0.029 

     

AD-C (n=5) 

vs 

AD-NC (n=24) 

Unweighted Unifrac 0.61 0.02 0.777 

Weighted Unifrac 0.63 0.02 0.588 

Bray-Curtis 0.57 0.02 0.623 

NT-C (n=11) 

vs 

NT-NC (n=27) 

Unweighted Unifrac 1.06 0.02 0.336 

Weighted Unifrac 1.26 0.03 0.240 

Bray-Curtis 2.36 0.06 0.046 

AD-C (n=5) 

vs 

NT-C (n=11) 

Unweighted Unifrac 0.82 0.05 0.570 

Weighted Unifrac 1.60 0.10 0.169 

Bray-Curtis 1.48 0.09 0.204 

AD-NC (n=24) 

vs 

NT-NC (n=27) 

Unweighted Unifrac 1.27 0.02 0.199 

Weighted Unifrac 2.47 0.04 0.049 

Bray-Curtis 3.01 0.05 0.020 



Supplementary Table 7: Mean relative abundance (%) ± standard deviation (SD) of fungal taxa at genus levels in autistic (AD) and neurotypical 

(NT) subjects both constipated (C) and non-constipated (NC). 

 

 AD NT AD-NC AD-C NT-NC NT-C 

Genus mean SD mean SD mean SD mean SD mean SD mean SD 

Aspergillus 24.225 23.867 28.029 30.298 23.468 23.512 12.378 18.558 22.299 24.064 42.094 39.808 

Candida 37.701 41.069 14.164 27.493 37.431 40.429 56.324 50.747 12.053 26.803 19.343 29.788 

Penicillium 13.241 19.683 23.482 30.851 15.399 22.740 6.127 8.946 30.810 33.553 5.494 9.671 

Fungi_unidentified_1_1 4.887 7.175 4.350 10.143 5.075 8.112 3.863 5.164 5.081 11.816 2.558 3.569 

Blastocystis 0.000 0.000 7.742 26.718 0.000 0.000 0.000 0.000 10.896 31.308 0.000 0.000 

Malassezia 3.047 5.128 3.293 7.523 2.661 4.739 4.818 8.844 3.827 8.750 1.982 2.769 

Tremellomycetes_unidentified_1 3.103 7.905 2.998 4.488 3.405 9.445 1.620 2.523 2.811 3.411 3.455 6.631 

Eurotiomycetes;Unknown 2.038 9.419 1.634 9.987 0.017 0.085 0.353 0.789 2.296 11.848 0.009 0.031 

Pichia 2.762 16.126 0.044 0.270 4.028 19.470 0.000 0.000 0.000 0.000 0.151 0.501 

Basidiomycota_unidentified_1_1 0.050 0.298 2.618 15.795 0.074 0.360 0.000 0.000 0.008 0.028 9.025 29.317 

Ascomycota_unidentified_1_1 0.365 1.381 2.011 8.528 0.402 1.603 0.602 1.080 0.796 2.327 4.994 15.533 

Hypoderma 1.917 11.285 0.000 0.000 2.795 13.627 0.000 0.000 0.000 0.000 0.000 0.000 

Debaryomyces 0.288 0.622 1.418 3.261 0.260 0.595 0.208 0.220 0.769 1.690 3.011 5.290 

Saccharomyces 1.270 3.333 0.273 0.437 1.246 3.032 2.721 6.084 0.265 0.378 0.293 0.578 

Mucor 0.344 1.623 1.123 3.739 0.498 1.953 0.021 0.046 1.558 4.383 0.057 0.097 

Dothideomycetes_unidentified_1 0.688 2.088 0.697 1.304 0.394 0.652 2.679 5.363 0.635 1.047 0.850 1.845 

Eremothecium 0.000 0.000 1.112 6.804 0.000 0.000 0.000 0.000 1.561 8.072 0.009 0.031 

Xeromyces 0.095 0.544 0.618 2.401 0.138 0.657 0.000 0.000 0.385 1.421 1.189 3.945 

Aureobasidium 0.504 1.722 0.199 0.767 0.199 0.889 0.852 1.904 0.235 0.898 0.113 0.269 

Davidiella 0.368 1.166 0.246 0.567 0.169 0.358 0.395 0.768 0.188 0.476 0.387 0.755 

Cyberlindnera 0.312 0.918 0.213 0.728 0.234 0.503 0.997 2.229 0.285 0.854 0.038 0.125 

Trichosporon 0.006 0.035 0.473 2.914 0.009 0.042 0.000 0.000 0.000 0.000 1.633 5.417 

Podosphaera 0.475 2.754 0.000 0.000 0.684 3.327 0.000 0.000 0.000 0.000 0.000 0.000 

Mucoraceae_unidentified 0.131 0.772 0.314 1.903 0.190 0.933 0.000 0.000 0.442 2.257 0.000 0.000 

Thermomyces 0.418 2.369 0.019 0.118 0.000 0.000 0.125 0.279 0.000 0.000 0.066 0.219 

Malasseziales;Unknown 0.027 0.158 0.336 1.456 0.039 0.191 0.000 0.000 0.208 1.079 0.651 2.160 

Fusarium 0.003 0.018 0.353 2.156 0.000 0.000 0.000 0.000 0.000 0.000 1.218 4.005 



Rhodotorula 0.148 0.663 0.158 0.692 0.056 0.196 0.768 1.718 0.188 0.818 0.085 0.160 

Preussia 0.000 0.000 0.279 1.718 0.000 0.000 0.000 0.000 0.392 2.038 0.000 0.000 

Urocystidales;Unknown 0.000 0.000 0.246 1.448 0.000 0.000 0.000 0.000 0.346 1.717 0.000 0.000 

Pleosporales_unidentified_1 0.083 0.411 0.156 0.827 0.022 0.106 0.478 1.068 0.188 0.979 0.076 0.174 

Helminthosporium 0.000 0.000 0.230 1.415 0.000 0.000 0.000 0.000 0.323 1.679 0.000 0.000 

Herpotrichiellaceae_unidentified 0.228 1.334 0.000 0.000 0.333 1.610 0.000 0.000 0.000 0.000 0.000 0.000 

Torulaspora 0.045 0.143 0.183 0.554 0.022 0.075 0.000 0.000 0.135 0.369 0.302 0.873 

Exophiala 0.128 0.719 0.071 0.438 0.009 0.042 0.852 1.904 0.100 0.520 0.000 0.000 

Cryptococcus 0.131 0.643 0.049 0.209 0.000 0.000 0.748 1.672 0.027 0.121 0.104 0.344 

Pseudeurotium 0.160 0.948 0.000 0.000 0.000 0.000 1.121 2.508 0.000 0.000 0.000 0.000 

Helotiales;Unknown 0.036 0.211 0.107 0.657 0.052 0.254 0.000 0.000 0.150 0.779 0.000 0.000 

Rhizopus 0.074 0.439 0.044 0.253 0.108 0.530 0.000 0.000 0.058 0.300 0.009 0.031 

Urocystis 0.000 0.000 0.107 0.514 0.000 0.000 0.000 0.000 0.012 0.060 0.340 0.939 

Alternaria 0.083 0.457 0.022 0.135 0.009 0.042 0.540 1.207 0.031 0.160 0.000 0.000 

Phoma 0.030 0.132 0.071 0.438 0.043 0.159 0.000 0.000 0.100 0.520 0.000 0.000 

Tilletia 0.039 0.165 0.060 0.371 0.017 0.066 0.187 0.418 0.085 0.440 0.000 0.000 

Pseudogymnoascus 0.086 0.372 0.000 0.000 0.125 0.447 0.000 0.000 0.000 0.000 0.000 0.000 

Talaromyces 0.047 0.281 0.033 0.186 0.069 0.339 0.000 0.000 0.046 0.220 0.000 0.000 

Dothioraceae_unidentified 0.080 0.474 0.000 0.000 0.000 0.000 0.561 1.254 0.000 0.000 0.000 0.000 

Unknown 0.071 0.303 0.003 0.017 0.104 0.364 0.000 0.000 0.004 0.020 0.000 0.000 

Wallemia 0.009 0.039 0.057 0.223 0.004 0.021 0.042 0.093 0.081 0.263 0.000 0.000 

Sordariomycetes_unidentified_1 0.062 0.369 0.000 0.000 0.000 0.000 0.436 0.975 0.000 0.000 0.000 0.000 

Fungi;Unknown 0.000 0.000 0.060 0.240 0.000 0.000 0.000 0.000 0.085 0.282 0.000 0.000 

Botrytis 0.006 0.024 0.044 0.175 0.009 0.029 0.000 0.000 0.062 0.206 0.000 0.000 

Guehomyces 0.000 0.000 0.046 0.194 0.000 0.000 0.000 0.000 0.042 0.200 0.057 0.188 

Periconia 0.033 0.176 0.014 0.084 0.048 0.212 0.000 0.000 0.000 0.000 0.047 0.157 

Ascosphaera 0.000 0.000 0.041 0.253 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.470 

Lophiostoma 0.000 0.000 0.036 0.219 0.000 0.000 0.000 0.000 0.050 0.260 0.000 0.000 

Trichocomaceae_unidentified 0.015 0.088 0.019 0.087 0.000 0.000 0.000 0.000 0.008 0.028 0.047 0.157 

Chaetothyriales_unidentified_1 0.030 0.176 0.000 0.000 0.043 0.212 0.000 0.000 0.000 0.000 0.000 0.000 

Paraconiothyrium 0.024 0.140 0.000 0.000 0.035 0.170 0.000 0.000 0.000 0.000 0.000 0.000 

Lalaria 0.021 0.123 0.000 0.000 0.030 0.148 0.000 0.000 0.000 0.000 0.000 0.000 



Diatrypaceae_unidentified 0.006 0.035 0.014 0.084 0.009 0.042 0.000 0.000 0.019 0.100 0.000 0.000 

Leptosphaeriaceae_unidentified 0.015 0.088 0.003 0.017 0.000 0.000 0.104 0.232 0.004 0.020 0.000 0.000 

Hypocreaceae;Unknown 0.003 0.018 0.011 0.040 0.004 0.021 0.000 0.000 0.004 0.020 0.028 0.067 

Tetracladium 0.000 0.000 0.014 0.084 0.000 0.000 0.000 0.000 0.019 0.100 0.000 0.000 

Cordyceps 0.000 0.000 0.014 0.084 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.157 

Incertae_sedis_3_unidentified 0.012 0.070 0.000 0.000 0.000 0.000 0.083 0.186 0.000 0.000 0.000 0.000 

Sporobolomyces 0.009 0.053 0.003 0.017 0.000 0.000 0.000 0.000 0.004 0.020 0.000 0.000 

Eurotiales;Unknown 0.003 0.018 0.008 0.051 0.004 0.021 0.000 0.000 0.012 0.060 0.000 0.000 

Puccinia 0.000 0.000 0.011 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.125 

Amphisphaeriaceae_unidentified 0.009 0.053 0.000 0.000 0.013 0.064 0.000 0.000 0.000 0.000 0.000 0.000 

Pseudozyma 0.000 0.000 0.008 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.094 

Kluyveromyces 0.006 0.035 0.000 0.000 0.009 0.042 0.000 0.000 0.000 0.000 0.000 0.000 

Ustilaginales_unidentified_1 0.000 0.000 0.005 0.034 0.000 0.000 0.000 0.000 0.008 0.040 0.000 0.000 

Golovinomyces 0.003 0.018 0.000 0.000 0.004 0.021 0.000 0.000 0.000 0.000 0.000 0.000 

Pezizomycetes_unidentified_1 0.003 0.018 0.000 0.000 0.004 0.021 0.000 0.000 0.000 0.000 0.000 0.000 

Knufia 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.031 

Dipodascaceae_unidentified 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.031 

Wickerhamomyces 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.031 

Schizosaccharomyces 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.004 0.020 0.000 0.000 

Coniochaeta 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.004 0.020 0.000 0.000 

Sordariaceae_unidentified 0.000 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0.004 0.020 0.000 0.000 

 



Supplementary Table 8: Spearman’s correlation analysis among the most abundant bacterial genera and fungal genera in autistic and neurotypical 

subjects. 

 

Autistic subjects Spearman’s r correlations  FDR-corrected p-values 

Taxa Aspergillus Candida Penicillium Malassezia  Aspergillus Candida Penicillium Malassezia 

Bifidobacterium -0.145 -0.021 0.047 0.029  0.945 0.996 0.996 0.996 

Bacteroides 0.213 -0.109 -0.143 0.048  0.945 0.945 0.945 0.996 

Faecalibacterium -0.037 0.143 -0.079 -0.140  0.996 0.945 0.996 0.945 

Blautia -0.110 0.121 0.241 -0.011  0.945 0.945 0.945 0.996 

Ruminococcus 0.072 -0.167 0.174 0.044  0.996 0.945 0.945 0.996 

Clostridium XI 0.098 -0.129 0.230 -0.001  0.970 0.945 0.945 0.996 

Streptococcus -0.050 0.144 0.178 -0.109  0.996 0.945 0.945 0.945 

Gemmiger 0.007 0.174 -0.026 -0.391  0.996 0.945 0.996 0.645 

Lachnospiracea incertae sedis -0.165 0.301 0.013 -0.235  0.945 0.941 0.996 0.945 

Escherichia/Shigella -0.094 0.110 -0.008 0.136  0.976 0.945 0.996 0.945 

Alistipes 0.147 -0.205 -0.111 0.130  0.945 0.945 0.945 0.945 

Anaerostipes -0.041 0.277 -0.211 -0.162  0.996 0.941 0.945 0.945 

Clostridium XVIII -0.139 0.167 -0.145 -0.108  0.945 0.945 0.945 0.945 

Dorea 0.089 0.009 -0.024 0.023  0.996 0.996 0.996 0.996 

Collinsella 0.059 -0.054 0.301 0.193  0.996 0.996 0.941 0.945 

Clostridium sensu stricto 0.111 0.100 0.187 -0.139  0.945 0.970 0.945 0.945 

Dialister 0.156 -0.107 -0.050 0.058  0.945 0.945 0.996 0.996 

Erysipelotrichaceae incertae sedis 0.009 -0.290 0.015 0.018  0.996 0.941 0.996 0.996 

Coprococcus -0.149 -0.004 -0.171 -0.250  0.945 0.996 0.945 0.945 

Clostridium IV 0.302 -0.231 -0.003 0.020  0.941 0.945 0.996 0.996 

Lactobacillus 0.062 0.045 -0.002 0.009  0.996 0.996 0.996 0.996 

Turicibacter 0.334 -0.334 0.425 0.417  0.941 0.941 0.606 0.606 

Oscillibacter 0.225 -0.281 -0.065 0.246  0.945 0.941 0.996 0.945 

Clostridium XlVa 0.154 -0.018 -0.038 -0.002  0.945 0.996 0.996 0.996 

          

     
 

    



     
 

    

Neutotypical subjects Spearman’s r correlations  FDR-corrected p-values 

Taxa Aspergillus Candida Penicillium Malassezia  Aspergillus Candida Penicillium Malassezia 

Bifidobacterium 0.617 -0.097 -0.060 0.170  0.004 0.821 0.909 0.716 

Bacteroides -0.231 -0.049 0.229 -0.307  0.690 0.947 0.690 0.592 

Faecalibacterium -0.324 0.014 0.238 -0.254  0.592 0.978 0.690 0.690 

Blautia -0.111 0.207 -0.181 0.163  0.783 0.690 0.690 0.716 

Ruminococcus -0.321 -0.127 0.112 -0.069  0.592 0.774 0.783 0.903 

Clostridium XI 0.154 0.055 0.185 0.004  0.725 0.927 0.690 0.983 

Streptococcus -0.010 -0.072 0.037 0.198  0.982 0.903 0.956 0.690 

Gemmiger -0.196 0.091 0.247 0.005  0.690 0.843 0.690 0.983 

Lachnospiracea incertae sedis -0.236 -0.024 -0.065 -0.166  0.690 0.978 0.903 0.716 

Escherichia/Shigella 0.141 0.389 -0.085 0.143  0.747 0.378 0.865 0.747 

Alistipes -0.209 -0.004 -0.306 -0.152  0.690 0.983 0.592 0.725 

Anaerostipes -0.041 0.180 -0.273 0.016  0.956 0.690 0.690 0.978 

Clostridium XVIII 0.111 0.163 -0.158 -0.206  0.783 0.716 0.716 0.690 

Dorea 0.071 0.071 0.101 0.037  0.903 0.903 0.817 0.956 

Collinsella -0.116 0.210 0.019 0.123  0.783 0.690 0.978 0.774 

Clostridium sensu stricto 0.099 0.066 0.216 0.127  0.820 0.903 0.690 0.774 

Dialister -0.255 -0.158 0.123 0.030  0.690 0.716 0.774 0.967 

Erysipelotrichaceae incertae sedis 0.264 0.043 -0.205 0.208  0.690 0.956 0.690 0.690 

Coprococcus 0.128 0.106 -0.184 0.188  0.774 0.802 0.690 0.690 

Clostridium IV -0.189 -0.014 -0.060 -0.188  0.690 0.978 0.909 0.690 

Lactobacillus 0.142 0.121 -0.397 0.299  0.747 0.774 0.378 0.596 

Turicibacter 0.037 0.021 0.353 -0.215  0.956 0.978 0.573 0.690 

Oscillibacter -0.317 -0.159 -0.127 -0.208  0.592 0.716 0.774 0.690 

Clostridium XlVa -0.270 -0.032 0.013 -0.415  0.690 0.967 0.978 0.378 

 



Supplementary Table 9: Correspondences among deposited metagenomics data and samples. 

 

16S dataset 

Sample_unique_name Health_status Constipation Calprotectin (ug/g) CARS  ERS (mm/h) serum IgA (mg/ml) File_name 

AD109 Autism no 51.3 46 3 138 AUTISMO1_16S.MID44.fastq 

AD121 Autism NA 40.1 48 NA 71 AUTISMO1_16S.MID45.fastq 

AD122 Autism yes 114.6 50 2 192 AUTISMO1_16S.MID46.fastq 

AD128 Autism no 36.9 39 4 207 AUTISMO1_16S.MID50.fastq 

AD14 Autism no 12.4 40 21 137 AUTISMO1_16S.MID1.fastq 

AD152 Autism no 33.5 42 60 88 AUTISMO2_16S.MID1.fastq 

AD156 Autism no 35.9 48 22 147 AUTISMO2_16S.MID7.fastq 

AD169 Autism NA 135.7 40 18 63 AUTISMO2_16S.MID13.fastq 

AD170 Autism NA 101.8 56 NA NA AUTISMO2_16S.MID14.fastq 

AD18 Autism no 150 42 2 89 AUTISMO1_16S.MID7.fastq 

AD185 Autism no 57.8 50 2 34 AUTISMO2_16S.MID16.fastq 

AD186 Autism NA 45.5 46 17 156 AUTISMO2_16S.MID17.fastq 

AD194 Autism no 41 50 22 296 AUTISMO2_16S.MID19.fastq 

AD196 Autism no 36 48 2 54 AUTISMO2_16S.MID20.fastq 

AD197 Autism no 15 42 8 281 AUTISMO2_16S.MID22.fastq 

AD198 Autism no 74.4 48 25 70 AUTISMO2_16S.MID24.fastq 

AD202 Autism yes 23.1 57 NA 153 AUTISMO2_16S.MID28.fastq 

AD203 Autism no 15 35 8 156 AUTISMO2_16S.MID29.fastq 

AD204 Autism no 403.9 40 12 66 AUTISMO2_16S.MID33.fastq 

AD208 Autism no 15 52 5 188 AUTISMO2_16S.MID36.fastq 

AD216 Autism no 15 48 4 54 AUTISMO2_16S.MID41.fastq 

AD258 Autism yes NA 32 28 82 AUTISMO2_16S.MID44.fastq 

AD259 Autism no 83.4 42 NA 75 AUTISMO2_16S.MID45.fastq 

AD26 Autism no 8 39 8 158 AUTISMO1_16S.MID13.fastq 

AD260 Autism yes 22.4 36 NA 70 AUTISMO2_16S.MID46.fastq 

AD262 Autism NA 80.7 40 NA NA AUTISMO2_16S.MID50.fastq 

AD27 Autism no 14.6 45 2 26 AUTISMO1_16S.MID14.fastq 

AD28 Autism NA 28.1 45 6 161 AUTISMO1_16S.MID16.fastq 



AD29 Autism yes 55.2 52 22 97 AUTISMO1_16S.MID17.fastq 

AD30 Autism no 10.9 54 7 181 AUTISMO1_16S.MID19.fastq 

AD31 Autism no 20.3 40 4 67 AUTISMO1_16S.MID20.fastq 

AD32 Autism no 23.7 46 2 75 AUTISMO2_16S.MID42.fastq 

AD40 Autism no 77.6 57 7 234 AUTISMO1_16S.MID22.fastq 

AD48 Autism no 91.2 56 30 129 AUTISMO1_16S.MID24.fastq 

AD49 Autism no 9.8 50 2 55 AUTISMO1_16S.MID28.fastq 

AD61 Autism no 11.2 56 8 280 AUTISMO1_16S.MID29.fastq 

AD62 Autism no 44.1 50 2 225 AUTISMO1_16S.MID33.fastq 

AD67 Autism no 123.7 55 4 176 AUTISMO1_16S.MID36.fastq 

AD89 Autism no 33.2 52 8 60 AUTISMO1_16S.MID41.fastq 

AD95 Autism no 47.5 33 11 133 AUTISMO1_16S.MID42.fastq 

HC13 Neurotypical no NA NA NA NA RETT1_16S.MID94.fastq 

HC20 Neurotypical no NA NA NA NA RETT1_16S.MID106.fastq 

HC21 Neurotypical no NA NA NA NA RETT1_16S.MID121.fastq 

HC22 Neurotypical no NA NA NA NA RETT1_16S.MID122.fastq 

HC23 Neurotypical no NA NA NA NA RETT1_16S.MID125.fastq 

HC30 Neurotypical no NA NA NA NA RETT1_16S.MID91.fastq 

HC45 Neurotypical no NA NA NA NA RETT1_16S.MID71.fastq 

HC47 Neurotypical no NA NA NA NA RETT1_16S.MID79.fastq 

HC48 Neurotypical no NA NA NA NA RETT1_16S.MID82.fastq 

NT1 Neurotypical no NA NA NA NA AUTISMO1_16S.MID54.fastq 

NT10 Neurotypical no 15.00 NA NA NA AUTISMO1_16S.MID77.fastq 

NT11 Neurotypical no 73.8 NA NA NA AUTISMO1_16S.MID79.fastq 

NT12 Neurotypical no 15.00 NA NA NA AUTISMO1_16S_MFB035.MID82.fastq 

NT13 Neurotypical yes 119.4 NA NA NA AUTISMO1_16S_MFB037.MID82.fastq 

NT14 Neurotypical no 15.00 NA NA NA AUTISMO1_16S.MID84.fastq 

NT15 Neurotypical yes 15.00 NA NA NA AUTISMO1_16S.MID85.fastq 

NT16 Neurotypical yes 97.00 NA NA NA AUTISMO1_16S.MID92.fastq 

NT17 Neurotypical no 31.3 NA NA NA AUTISMO1_16S.MID94.fastq 

NT18 Neurotypical no 73.2 NA NA NA AUTISMO2_16S.MID61.fastq 

NT19 Neurotypical no 20.2 NA NA NA AUTISMO2_16S.MID67.fastq 



NT2 Neurotypical no NA NA NA NA AUTISMO1_16S.MID105.fastq 

NT20 Neurotypical no 62.5 NA NA NA AUTISMO2_16S.MID71.fastq 

NT21 Neurotypical yes 15 NA NA NA AUTISMO2_16S.MID77.fastq 

NT22 Neurotypical no 50.5 NA NA NA AUTISMO2_16S.MID79.fastq 

NT23 Neurotypical no 15 NA NA NA AUTISMO2_16S.MID82.fastq 

NT24 Neurotypical no 74.4 NA NA NA AUTISMO2_16S.MID84.fastq 

NT25 Neurotypical no 99.1 NA NA NA AUTISMO2_16S.MID85.fastq 

NT26 Neurotypical yes 26.8 NA NA NA AUTISMO2_16S.MID91.fastq 

NT27 Neurotypical yes 15 NA NA NA AUTISMO2_16S.MID92.fastq 

NT28 Neurotypical no 75.8 NA NA NA AUTISMO2_16S.MID94.fastq 

NT29 Neurotypical yes 25.7 NA NA NA AUTISMO2_16S.MID105.fastq 

NT3 Neurotypical no NA NA NA NA AUTISMO1_16S.MID55.fastq 

NT30 Neurotypical yes 69.5 NA NA NA AUTISMO2_16S.MID106.fastq 

NT31 Neurotypical yes 27.2 NA NA NA AUTISMO2_16S.MID121.fastq 

NT4 Neurotypical no NA NA NA NA AUTISMO1_16S.MID106.fastq 

NT5 Neurotypical no NA NA NA NA AUTISMO1_16S.MID58.fastq 

NT6 Neurotypical no NA NA NA NA AUTISMO1_16S.MID121.fastq 

NT7 Neurotypical no NA NA NA NA AUTISMO1_16S.MID61.fastq 

NT8 Neurotypical yes 500.00 NA NA NA AUTISMO1_16S.MID67.fastq 

NT9 Neurotypical yes 98.2 NA NA NA AUTISMO1_16S.MID71.fastq 

        

ITS1 dataset 

Sample_unique_name Health_status Constipation Calprotectin (ug/g) CARS  ERS (mm/h) serum IgA (mg/ml) File_name 

AD109 Autism no 51.3 46 3 138 AUTISMO_POOL1_ITS.MID83.fastq 

AD121 Autism NA 40.1 48 NA 71 AUTISMO_POOL1_ITS.MID86.fastq 

AD122 Autism yes 114.6 50 2 192 AUTISMO_POOL1_ITS.MID88.fastq 

AD128 Autism no 36.9 39 4 207 AUTISMO_POOL2_ITS.MID4.fastq 

AD14 Autism no 12.4 40 21 137 AUTISMO_POOL1_ITS.MID4.fastq 

AD152 Autism no 33.5 42 60 88 AUTISMO_POOL2_ITS.MID6.fastq 

AD156 Autism no 35.9 48 22 147 AUTISMO_POOL2_ITS.MID10.fastq 

AD169 Autism NA 135.7 40 18 63 AUTISMO_POOL2_ITS.MID11.fastq 

AD170 Autism NA 101.8 56 NA NA AUTISMO_POOL2_ITS.MID21.fastq 



AD18 Autism no 150 42 2 89 AUTISMO_POOL1_ITS.MID6.fastq 

AD185 Autism no 57.8 50 2 34 AUTISMO_POOL2_ITS.MID23.fastq 

AD186 Autism NA 45.5 46 17 156 AUTISMO_POOL2_ITS.MID35.fastq 

AD194 Autism no 41 50 22 296 AUTISMO_POOL2_ITS.MID37.fastq 

AD196 Autism no 36 48 2 54 AUTISMO_POOL2_ITS.MID39.fastq 

AD197 Autism no 15 42 8 281 AUTISMO_POOL2_ITS.MID47.fastq 

AD198 Autism no 74.4 48 25 70 AUTISMO_POOL2_ITS.MID52.fastq 

AD202 Autism yes 23.1 57 NA 153 AUTISMO_POOL2_ITS.MID59.fastq 

AD203 Autism no 15 35 8 156 AUTISMO_POOL2_ITS.MID62.fastq 

AD204 Autism no 403.9 40 12 66 AUTISMO_POOL2_ITS.MID65.fastq 

AD208 Autism no 15 52 5 188 AUTISMO_POOL2_ITS.MID68.fastq 

AD216 Autism no 15 48 4 54 AUTISMO_POOL2_ITS.MID70.fastq 

AD258 Autism yes NA 32 28 82 AUTISMO_POOL2_ITS.MID81.fastq 

AD259 Autism no 83.4 42 NA 75 AUTISMO_POOL2_ITS.MID83.fastq 

AD26 Autism no 8 39 8 158 AUTISMO_POOL1_ITS.MID10.fastq 

AD260 Autism yes 22.4 36 NA 70 AUTISMO_POOL2_ITS.MID86.fastq 

AD262 Autism NA 80.7 40 NA NA AUTISMO_POOL2_ITS.MID88.fastq 

AD27 Autism no 14.6 45 2 26 AUTISMO_POOL1_ITS.MID11.fastq 

AD28 Autism NA 28.1 45 6 161 AUTISMO_POOL1_ITS.MID21.fastq 

AD29 Autism yes 55.2 52 22 97 AUTISMO_POOL1_ITS.MID23.fastq 

AD30 Autism no 10.9 54 7 181 AUTISMO_POOL1_ITS.MID35.fastq 

AD31 Autism no 20.3 40 4 67 AUTISMO_POOL1_ITS.MID37.fastq 

AD32 Autism no 23.7 46 2 75 AUTISMO_POOL1_ITS.MID39.fastq 

AD40 Autism no 77.6 57 7 234 AUTISMO_POOL1_ITS.MID47.fastq 

AD48 Autism no 91.2 56 30 129 AUTISMO_POOL1_ITS.MID52.fastq 

AD49 Autism no 9.8 50 2 55 AUTISMO_POOL1_ITS.MID59.fastq 

AD61 Autism no 11.2 56 8 280 AUTISMO_POOL1_ITS.MID62.fastq 

AD62 Autism no 44.1 50 2 225 AUTISMO_POOL1_ITS.MID65.fastq 

AD67 Autism no 123.7 55 4 176 AUTISMO_POOL1_ITS.MID68.fastq 

AD89 Autism no 33.2 52 8 60 AUTISMO_POOL1_ITS.MID70.fastq 

AD95 Autism no 47.5 33 11 133 AUTISMO_POOL1_ITS.MID81.fastq 

HC13 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID142.fastq 



HC20 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID144.fastq 

HC21 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID144.fastq 

HC22 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID141.fastq 

HC23 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID143.fastq 

HC30 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID146.fastq 

HC45 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID145.fastq 

HC47 Neurotypical no NA NA NA NA AUTISMO_POOL2_ITS.MID146.fastq 

HC48 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID145.fastq 

NT1 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID97.fastq 

NT10 Neurotypical no 15.00 NA NA NA AUTISMO_POOL1_ITS.MID117.fastq 

NT11 Neurotypical no 73.8 NA NA NA AUTISMO_POOL1_ITS.MID119.fastq 

NT12 Neurotypical no 15.00 NA NA NA AUTISMO_POOL1_ITS.MID126.fastq 

NT13 Neurotypical yes 119.4 NA NA NA AUTISMO_POOL1_ITS.MID124.fastq 

NT14 Neurotypical no 15.00 NA NA NA AUTISMO_POOL1_ITS.MID131.fastq 

NT15 Neurotypical yes 15.00 NA NA NA AUTISMO_POOL1_ITS.MID135.fastq 

NT16 Neurotypical yes 97.00 NA NA NA AUTISMO_POOL1_ITS.MID136.fastq 

NT17 Neurotypical no 31.3 NA NA NA AUTISMO_POOL1_ITS.MID137.fastq 

NT18 Neurotypical no 73.2 NA NA NA AUTISMO_POOL2_ITS.MID97.fastq 

NT19 Neurotypical no 20.2 NA NA NA AUTISMO_POOL2_ITS.MID102.fastq 

NT2 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID141.fastq 

NT20 Neurotypical no 62.5 NA NA NA AUTISMO_POOL2_ITS.MID103.fastq 

NT21 Neurotypical yes 15 NA NA NA AUTISMO_POOL2_ITS.MID112.fastq 

NT22 Neurotypical no 50.5 NA NA NA AUTISMO_POOL2_ITS.MID114.fastq 

NT23 Neurotypical no 15 NA NA NA AUTISMO_POOL2_ITS.MID115.fastq 

NT24 Neurotypical no 74.4 NA NA NA AUTISMO_POOL2_ITS.MID117.fastq 

NT25 Neurotypical no 99.1 NA NA NA AUTISMO_POOL2_ITS.MID119.fastq 

NT26 Neurotypical yes 26.8 NA NA NA AUTISMO_POOL2_ITS.MID126.fastq 

NT27 Neurotypical yes 15 NA NA NA AUTISMO_POOL2_ITS.MID124.fastq 

NT28 Neurotypical no 75.8 NA NA NA AUTISMO_POOL2_ITS.MID131.fastq 

NT29 Neurotypical yes 25.7 NA NA NA AUTISMO_POOL2_ITS.MID135.fastq 

NT3 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID102.fastq 

NT30 Neurotypical yes 69.5 NA NA NA AUTISMO_POOL2_ITS.MID136.fastq 



NT31 Neurotypical yes 27.2 NA NA NA AUTISMO_POOL2_ITS.MID137.fastq 

NT4 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID142.fastq 

NT5 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID103.fastq 

NT6 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID143.fastq 

NT7 Neurotypical no NA NA NA NA AUTISMO_POOL1_ITS.MID112.fastq 

NT8 Neurotypical yes 500.00 NA NA NA AUTISMO_POOL1_ITS.MID114.fastq 

NT9 Neurotypical yes 98.2 NA NA NA AUTISMO_POOL1_ITS.MID115.fastq 
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Supported by the increasing appreciation on the important role of the microbiome-gut-brain 

axis we studied the gut microbiota in Rett syndrome, a genetic, neurological disorder characterized 

also by gastrointestinal dysfunctions [1]. Since Rett syndrome is a genetic-determined disease due to 

impairments of the epigenetic regulator MeCP2 [2], this represented a unique occasion to better 

understand how the composition of the gut microbiota in RTT subjects may be affected by mutations 

in a gene that appears to be essential for the normal function of nerve cells but apparently is unrelated 

to gastrointestinal dysfunctions. The results of this study were fascinating. We discovered for the first 

time and to the best of our knowledge that RTT is characterized by an altered microbial community 

structure, both at bacterial and fungal level. Furthermore we observed that the gut microbiota of RTT 

subjects was characterized by high levels of SCFAs-producing bacteria, with Bifidobacterium being 

the most abundant bacterial taxa. As expected, but in contrast with the common perception on the 

health-promoting role of SCFAs in intestinal physiology, we discovered high levels of these 

metabolites in RTT suggesting the strengthening role of SCFAs in the establishment of constipation 

in RTT subjects. This project, more than any other in this Ph.D. thesis, required my total involvement 

and dedication. Thanks to the expertise of the physicians of the University Hospital of Siena and 

Florence we enrolled 50 subjects diagnosed with RTT, collecting also several clinical data that I 

integrated with the amplicon-sequencing data. During this work I applied several analytical pipelines 

and bioinformatics tool for microbiome research greatly improving my knowledge of multivariate 

analyses in microbial ecology. Furthermore I learned how to prepare and analyse faecal samples for 

targeted metabolomics analysis i.e. SCFAs analysis, by mean of GC-MS. As in the previous 

manuscripts, I designed and performed all the experiments related to the analysis of the gut 

microbiota, analysed the data, wrote the manuscript, and generated figures and tables. 

 

References 

1. Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron 

2007, 56(3):422-437. 

2. Liyanage VR, Rastegar M: Rett syndrome and MeCP2. Neuromolecular medicine 2014, 

16(2):231-264. 

 



RESEARCH Open Access

Altered gut microbiota in Rett syndrome
Francesco Strati1,2, Duccio Cavalieri1,3, Davide Albanese1, Claudio De Felice4, Claudio Donati1, Joussef Hayek5,
Olivier Jousson2, Silvia Leoncini5, Massimo Pindo6, Daniela Renzi7, Lisa Rizzetto1, Irene Stefanini1,
Antonio Calabrò7 and Carlotta De Filippo8*

Abstract

Background: The human gut microbiota directly affects human health, and its alteration can lead to
gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly
caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation,
suggesting a link between RTT’s gastrointestinal abnormalities and the gut microbiota. The aim of this study was to
evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and
metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with
gastrointestinal abnormalities and inflammatory status.

Results: Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured
by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT
subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy
controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several
Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces,
Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida.
We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT
subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles.

Conclusions: We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and
fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the
establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered
production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT
subjects and contribute to RTT gastrointestinal physiopathology.

Keywords: Gut microbiota, Mycobiota, Rett syndrome, SCFAs, Metataxonomics, Intestinal dysbiosis, Constipation

Background
Rett syndrome (RTT; OMIM #312750) is a severe and
progressive neurological disorder that almost exclusively
affects females with an incidence of ~1:10,000 live births
[1]. Loss-of-function mutations of the X-linked methyl-
CpG binding protein 2 (MeCP2) gene is the major cause
(approximately 90 %) of classical cases of RTT while
cyclin-dependent kinase-like 5 (CDKL5) and forkhead
box protein G1 (FOXG1) gene mutations represent the
remaining 10 % of the cases [2]. MeCP2 is a fundamen-
tal mediator of synaptic development and plasticity, and

its function is critical in the regulation of synaptic activ-
ities during early postnatal development [1]. Different
MeCP2 mutations are also known to correlate with the
clinical severity of RTT [3, 4] and the role of MeCP2 in
other neurodevelopmental disorders, such as autism, has
been demonstrated [5]. RTT subjects develop normally
up to 6–18 months of age after which they undergo a
period of neurological regression [1]. Microcephaly, dys-
praxia, stereotyped hand movements, transient autistic
features, respiratory abnormalities, bruxism, seizures and
gastrointestinal (GI) dysfunctions are symptoms com-
monly reported in RTT indicating it as a multisystemic
disorder [1]. Among the above-mentioned comorbidities,
several epidemiological studies indicated that GI dys-
functions are prevalent through the entire life of RTT
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subjects [6, 7] with constipation as one of the most fre-
quently reported GI symptoms [6, 7]. Recently, it has
been shown that the phenomenon of gut dismotility ob-
served in RTT may arise from impairments in the func-
tion of MeCP2 in the enteric nervous system (ENS) [8].
Nevertheless, the direct causes of these GI dysfunctions
are still unclear and the role of gut microbiota in host
physiology should not be neglected. Indeed, the human
gut microbiota plays a crucial role in the function and
integrity of the GI tract, maintenance of immune
homeostasis and host energy metabolism [9]. Alterations
in the composition of commensal bacterial population
can lead to chronic inflammation encompassing hyper-
activation of T-helper 1 and T-helper 17 immune re-
sponses [10], also predisposing individuals to fungal
infections [11]. Abnormal immunological response to
fungi can in turn contribute to systemic responses in-
cluding chronic inflammation as observed in inflamma-
tory bowel diseases [12]. Dysbioses of the gut microbiota
have been associated with an increasing number of
health conditions [13]. A strict relationship between the
gut microbiota and the central nervous system (CNS)
has been observed, and numerous studies have shown
alterations of the gut microbiota in the heterogeneous
group of neurological disorders belonging to the autism
spectrum disorders (ASDs) [14]. In addition, the gut
microbiota may modulate CNS activities through neural,
endocrine, metabolic and immune pathways [15] affect-
ing complex physiological and behavioural states of the
host [15, 16] so it is possible to hypothesize gut micro-
biota alterations in RTT as occur in ASDs. Supported by
the increasing appreciation of the gut-microbiome-brain
axis, we asked whether MeCP2 impairments in RTT
might affect also the composition of the gut microbiota
resulting in an eventual intestinal dysbiosis in RTT sub-
jects. Indeed, in the case of RTT, it is possible that alter-
ations in the composition of gut microbiota triggered by
the neurophysiological changes typical of the disease
could contribute to GI abnormalities and be an add-
itional factor relevant to previously observed cytokine
dysregulation and systemic inflammation [17, 18]. Here,
we characterized for the first time the intestinal micro-
biota, both bacterial and fungal, in subjects affected by
RTT in order to investigate the implication of gut micro-
organisms and their metabolism on RTT gastrointestinal
physiology evaluating also how the constipation status
may affect the composition of the gut microbiota in
RTT subjects.

Results
RTT is associated with mild intestinal inflammation
We analysed the inflammatory status and GI abnor-
malities in a cohort of 50 RTT subjects by measuring
the erythrocyte sedimentation rate (ESR), C-reactive

protein (CRP), serum IgA and faecal calprotectin
(Additional file 1: Table S1). We found that RTT sub-
jects presented elevated values of ESR (median value
22 mm/h; interquartile range 10–36.5 mm/h; average
26.8 ± 22.4 mm/h) and faecal calprotectin (median
value 63.45 μg/g; interquartile range 44–123 μg/g;
average 104 ± 97.8 μg/g) compared to a healthy popu-
lation [19, 20]. Constipation, one of the most common
GI symptoms of RTT, was present in 70.8 % of the ex-
amined RTT cohort, and it correlated with the titre of
serum IgA antibodies (Spearman’s r = 0.43, p = 0.011)
while the levels of serum IgA positively correlated
with the ESR values (Spearman’s r = 0.462, p = 0.011).
Constipation, ESR and serum IgA titre correlated with
the age of RTT subjects (Spearman’s r = 0.35, 0.409
and 0.596, respectively, p < 0.05) (Additional file 2:
Figure S1, Additional file 3: Table S2). Altogether,
these parameters confirmed the presence of a mild GI
inflammation in RTT subjects.

RTT subjects harbour an altered and less diverse gut
microbiota
We characterized the bacterial gut microbiota associated
with RTT by means of high-throughput sequencing of
the V3-V5 region of the 16S rDNA gene. We quantified
the bacterial richness within each sample (alpha-diver-
sity) of the two groups, RTT subjects and healthy con-
trols (hereinafter termed HC). Three different alpha-
diversity estimators were used, namely the observed
number of OTUs, the Chao1 index and the Shannon en-
tropy index. The bacterial gut microbiota of RTT sub-
jects was significantly less diverse compared to that of
HC (p < 0.005, Wilcoxon rank-sum test) with all the
three estimators used.
Since constipation affects more than the 70 % of the

RTT study cohort, we asked whether the constipation
status might be responsible for the differences observed
between RTT subjects and HC. The analysis of alpha-di-
versity revealed that, even when analysed separately,
both constipated and non-constipated RTT subjects (re-
spectively RTT-C and RTT-NC) harbour a less diverse
gut microbiota with respect to HC (p < 0.05, Wilcoxon
rank-sum test; Fig. 1a and Additional file 3: Figure S2a)
while there was no significant difference between RTT-C
and RTT-NC (p > 0.05, Wilcoxon rank-sum test; Fig. 1a
and Additional file 4: Figure S2a). To assess the robust-
ness of these results, we repeated the computation of
the alpha-diversity using 100 independent rarefactions
and for different values of the rarefaction depth. Alpha
rarefaction curves are reported in the Additional file 5:
Figure S3a.
To identify possible differences between the bacterial

components of the gut microbiota of RTT subjects and
HC, we calculated the beta-diversity of the samples using
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the unweighted and weighted UniFrac distances and the
Bray-Curtis dissimilarity. The Principal Coordinates Ana-
lysis (PCoA) based on these measures (Fig. 1b and Add-
itional file 4: Figure S2b) revealed that the gut microbiota of
RTT subjects was distinct from those of the HC (p ≤ 0.003,
PERMANOVA) (Table 1). The analysis of beta-diversity
among HC, RTT-C and RTT-NC revealed significant differ-
ences between HC and both RTT-C and RTT-NC (p ≤
0.003, PERMANOVA), but no significant difference was de-
tected when comparing the gut microbiota of RTT-C and
RTT-NC (Table 1). Multiple-rarefaction PCoA plots (“jack-
knifed” PCoA plots, [21]) (Additional file 6: Figure S4a and
Additional file 7: Figure S5a) were computed to assess the
robustness of bacterial beta-diversity analyses, showing that
these results hold independently from rarefaction.

Bifidobacterium is the hallmark of intestinal dysbiosis in
RTT
Since we did not observe population differences in the gut
microbiota of RTT subjects in function of the constipation

status, only the health condition of the subjects (i.e., healthy
or RTT) was considered in the following analyses. To iden-
tify the taxa that were differentially represented in HC and
RTT subjects, we compared the relative abundances be-
tween these two groups at different taxonomic levels.
Phylum level analysis showed that Actinobacteria was

the most abundant phylum in RTT with a significant in-
crease of its relative abundance in RTT subjects compared
to HC (p = 0.0017, Wilcoxon rank-sum test; Additional file
8: Table S3 and Additional file 9: Table S4). Furthermore,
while Firmicutes was the most abundant phylum in HC,
we observed a significant decrease of the relative abun-
dance of Bacteroidetes in RTT subjects (p = 0.002,
Wilcoxon rank-sum test; Additional file 8: Table S3 and
Additional file 9: Table S4). Indeed, the significant increase
of the Firmicutes/Bacteroidetes ratio, a rough estimator of
intestinal dysbiosis, in RTT subjects (median value 3.95)
compared to HC (median value 1.64) (p = 0.003, Wilcoxon
rank-sum test) indicated the presence of an intestinal dys-
biosis associated with RTT.
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Analysis of the relative abundance of bacterial taxo-
nomic groups at the genus level showed that the ten
most abundant genera were Bifidobacterium (mean
relative abundance, RTT, 36.7 %; HC, 17.2 %), Bacter-
oides (RTT, 12.3 %; HC, 18.3 %), Faecalibacterium
(RTT, 3.6 %; HC, 9.2 %), Lachnospiracea incertae sedis
(RTT, 4.6 %; HC, 3.9 %), Blautia (RTT, 4.7 %; HC,
3.7 %), Escherichia/Shigella (RTT, 5.2 %; HC, 2.4 %),
Alistipes (RTT, 1.3 %; HC, 4.7 %), Streptococcus (RTT,
2.3 %; HC, 2.9 %), Gemmiger (RTT, 1.1 %; HC, 3.1 %)
and Ruminococcus (RTT, 1.5 %; HC, 2.2 %) (Additional
file 10: Figure S6 and Additional file 8: Table S3). Com-
paring the relative abundance of all the genera among
the two groups of study, we discovered Actinomyces,
Bifidobacterium, Clostridium XIVa Eggerthella, Entero-
coccus, Erysipelotrichaceae incertae sedis, Escherichia/
Shigella and Megasphaera, as significantly more abun-
dant in RTT subjects compared to HC while several
other bacterial genera usually associated with a
healthy human gut were less abundant in RTT sub-
jects compared to HC (p < 0.05, Wilcoxon rank-sum
test; Additional file 11: Figure S7, Additional file 8:
Table S3 and Additional file 9: Table S4).
To define more precisely the taxa that were driving

the differentiation of the microbiota of the groups, we

performed an analysis based on PhyloRelief [22], a re-
cent phylogenetic-based feature weighting algorithm
for metagenomics data. Being independent from a pre-
compiled taxonomy, PhyloRelief includes in the analysis
unclassified taxa that would be otherwise ignored by
other methods. The PhyloRelief analysis confirmed that
the Bifidobacterium clade was significantly more repre-
sented in RTT subjects with respect to HC (Fig. 2). In
addition, several OTUs classified as belonging to differ-
ent members of Clostridia (e.g., Anaerostipes, Clostrid-
ium XIVb, unknown-Lachnospiraceae) as well as
Erysipelotrichaceae (Clostridium XVIII and Erysipelotri-
chaceae incertae sedis), Actinomyces, Lactobacillus,
Eggerthella, Enterococcus and Enterobacteriaceae (in
particular Escherichia/Shigella) were significantly more
abundant in the gut microbiota of RTT subjects com-
pared to HC (Fig. 2). Remarkably, the PhyloRelief ana-
lysis identified significant differences in the taxa
Anaerostipes, Clostridium XIVb, Clostridium XVIII,
Lactobacillus and Clostridium IV that went undetected
by using the Wilcoxon rank-sum test (Additional file 9:
Table S4).
Differentially abundant taxa were further confirmed by

LEfSe [23], an algorithm for high-dimensional biomarker
discovery which exploits linear discriminant analysis
(LDA) to robustly identify features statistically different
among classes. Figure 3 shows the most relevant clades
identified by LEfSe (logarithmic LDA score > 2.0; see also
Additional file 12: Figure S8).
To evaluate the absolute amount of Bifidobacterium

and validate their increase in RTT-associated dysbiosis,
we performed quantitative PCR analysis (qPCR). We ob-
served that Bifidobacterium was twofold more abundant
in RTT subjects than in HC (median values
4.08*108 CFU/g and 1.99*108 CFU/g, respectively; p =
0.009, Wilcoxon rank-sum test; Fig. 4a). We also noticed
that among the Bifidobacterium species investigated,
Bifidobacterium longum ssp. longum was significantly
more abundant in RTT subjects compared to HC (me-
dian values 4.94*108 CFU/g and 2.44*108 CFU/g respect-
ively; p = 0.019, Wilcoxon rank-sum test; Fig. 4b).

High levels of faecal short chain fatty acids in RTT
subjects
PICRUSt was used for inference of microbial metabolic
pathways [24] in the gut microbiota of RTT subjects and
HC (Additional file 13: Table S5). The analysis predicted
the enrichment, among others, of carbohydrate and pro-
panoate metabolism in the gut microbiota of RTT sub-
jects, which are metabolic pathways related also to the
metabolism of short chain fatty Acids (SCFAs). Since
SCFAs are important for colonic health and may act on
neuronal physiology [9, 25, 26], we measured the faecal
content of SCFAs in our samples by means of GC-MS.

Table 1 Permutational multivariate analysis of variance
(PERMANOVA) tests of the bacterial gut microbiota on the
unweighted and weighted UniFrac distances and the Bray-
Curtis dissimilarity according to individuals’ health status and
constipation

Metric F R2 p value*

HC (n = 29)
vs
RTT (n = 50)

Unweighted UniFrac 6.84 0.08 ≤0.003

Weighted UniFrac 15.6 0.16 ≤0.003

Bray-Curtis 6.94 0.08 ≤0.003

HC (n = 29)
vs
RTT-C (n = 34)

Unweighted UniFrac 5.59 0.08 ≤0.003

Weighted UniFrac 12.1 0.16 ≤0.003

Bray-Curtis 5.39 0.08 ≤0.003

HC (n = 29)
vs
RTT-NC (n = 14)

Unweighted UniFrac 5.27 0.11 ≤0.003

Weighted UniFrac 8.75 0.17 ≤0.003

Bray-Curtis 5.47 0.11 ≤0.003

RTT-C (n = 34)
vs
RTT-NC (n = 14)

Unweighted UniFrac 1.31 0.02 0.180

Weighted UniFrac 1.10 0.02 0.687

Bray-Curtis 1.76 0.03 0.180

HC healthy controls, RTT-C constipated Rett syndrome subjects, RTT-NC non-
constipated Rett syndrome subjects
*Bonferroni corrected p values
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Fig. 2 (See legend on next page.)
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We observed that the overall content of SCFAs in
RTT subjects’ faeces was higher than in HC (median
values RTT, 191.5 μmol/g; HC 156.6 μmol/g). Particu-
larly, we observed that propionate (median values
RTT, 20.4 μmol/g; HC 13.2 μmol/g), isovalerate\2-
methylbutyrate (median values RTT, 4.7 μmol/g; HC
2.2 μmol/g) and isobutyrate (median values RTT,
3.1 μmol/g; HC 1.6 μmol/g) were significantly more
abundant in RTT subjects than HC (p < 0.05,
Wilcoxon rank-sum test; Fig. 5).

RTT-associated gut mycobiota shows clear population
composition differences compared to HC
The human gut mycobiota has been poorly explored so
far, although there is an increasing awareness of its im-
portance in human (patho)physiology [27]. We charac-
terized the gut mycobiota of the study cohort by means
of high-throughput sequencing of the ITS1 region of the
ribosomal Internal Transcribed Spacer (ITS).
High-quality fungal sequences were detected respect-

ively in 49 out of 50 RTT subjects and 28 out of 29 HC.
The analysis of the alpha-diversity revealed that the gut
mycobiota of RTT subjects, both constipated and non-
constipated, was slightly less diverse compared to HC
even if no significant differences were observed (p > 0.05,
Wilcoxon rank-sum test; Additional file 14: Figure S9a).
Alpha rarefaction curves (using 100 independent rare-
factions) are reported in the Additional file 5: Figure
S3b. As for the bacterial microbiota, a PERMANOVA
analysis on the unweighted, weighted UniFrac distances
and Bray-Curtis dissimilarity revealed that the gut myco-
biota of RTT subjects was significantly different from
that of HC (p < 0.05, PERMANOVA; Table 2, Fig. 6 and
Additional file 14: Figure S9b), while no significant dif-
ference was detected between the gut mycobiota of con-
stipated and non-constipated RTT subjects (Table 2).
Multiple-rarefaction PCoA plots (“jackknifed” PCoA
plots, [21]) (Additional file 6: Figure S4b and Additional
file 7: Figure S5b) computed to assess the robustness of
the fungal beta-diversity analyses showed that the un-
weighted UniFrac measure on the gut mycobiota was
sensitive to rarefaction (although PERMANOVA p
values were significant, see Additional file 7: Figure S5b),
while the other beta-diversity measures support a differ-
entiation between the gut mycobiota of HC and RTT
subjects.

The genus Candida predominates in the altered gut
mycobiota of RTT subjects
Metataxonomics analysis of the gut mycobiota led to the
identification of 77 fungal taxa unambiguously classified
to the genus level and 19 taxa only partially classified.
The ten most abundant annotated fungal genera were
Candida (RTT 61.3 %; HC 25.5 %), Penicillium (RTT
13.5 %; HC 19.4 %), Aspergillus (RTT 7.3 %; HC 6.5 %),
Malassezia (RTT 3.5 %; HC 4.5 %), Debaryomyces (RTT
1.7 %; HC 5.5 %), Mucor (RTT 1.1 %; HC 4.6 %), Ere-
mothecium (RTT 0.07 %; HC 3.7 %), Pichia (RTT 0.1 %;
HC 3.5 %), Cyberlindnera (RTT 0.5 %; HC 1.7 %), and
Trichosporon (RTT 1.3 %; HC 0.007 %) (Additional file
15: Figure S10). The relative abundance of the genus
Candida was significantly higher in RTT subjects than
HC (p = 0.002, Wilcoxon rank-sum test; Additional file
16: Figure S11). Remarkably, we detected sequences be-
longing to the single-cell protozoa Blastocystis in differ-
ent healthy controls (in 24.1 % of the inspected healthy
individuals) while this genus was present only in one
RTT subject. Blastocystis is an important eukaryote of
the GI tract of healthy individuals [28] being less com-
mon in subjects affected by irritable bowel syndrome
and inflammatory bowel diseases [29]. The reported high
relative abundance of the genus Candida in the gut
mycobiota of RTT subjects was further confirmed by
LEfSe analysis (Additional file 17: Figure S12).

Discussion
Our study identified a clear dysbiosis of the fungal and
bacterial gut microbiota in individuals affected by RTT, a
neurological disorder also associated with gastrointestinal
symptoms and systemic inflammation. The elevated values
of calprotectin and ESR measured in RTT subjects correl-
ating also with the titre of serum IgA antibodies indicated
the occurrence of an intestinal sub-inflammatory status,
in line with previous indication of a pro-inflammatory sta-
tus in MeCP2-related RTT [18]. A state of intestinal in-
flammation is also related to loss of intestinal barrier
function and the subsequent translocation of pathobionts
that may induce systemic responses [10]. RTT subjects
displayed on average a lower bacterial gut microbiota rich-
ness and diversity compared to HC. We observed a sig-
nificant increase in the Firmicutes/Bacteroidetes ratio in
RTT subjects due to a reduction of the relative abundance
of Bacteroidetes in these subjects. An increased Firmi-
cutes/Bacteroidetes ratio has recently been reported also

(See figure on previous page.)
Fig. 2 PhyloRelief analysis (RTT vs HC) of bacterial OTUs using the unweighted UniFrac distance. The heat-map shows the relative abundances of
the OTUs that are differentially represented in Rett syndrome (RTT) subjects and healthy controls (HC) (PhyloRelief selected clades with FDR-
corrected p < 0.01, Kruskal-Wallis test). OTUs are classified according to their genus on the left side of the figure. The OTUs more represented in
RTT subjects than HC are highlighted in bold characters. The ultrametric pruned phylogenetic tree of the OTUs is shown on the right side of the
figure. RTT subjects and healthy controls are coloured in red and green, respectively. Abundances are expressed in terms of their z-score
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Fig. 3 Cladogram showing the most discriminative bacterial clades identified by LEfSe. Coloured regions/branches indicate differences in the
bacterial population structure between Rett syndrome (RTT) subjects and healthy controls (HC). Regions in red indicate clades that were enriched
in RTT subjects compared to those in HC, while regions in green indicate clades that were enriched in HC compared to those in RTT subjects
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in children affected by autism [30], and treatment with
Bacteroides fragilis has been shown to restore autism-
related behavioural and GI abnormalities in a mouse
model of neurodevelopmental disorders [31].
An in-depth analysis of bacterial taxa revealed that the

relative abundances of Bifidobacterium and several Clos-
tridia, i.e. Anaerostipes, Clostridium XIVa, and Clostrid-
ium XIVb, as well as Erysipelotrichaceae (Clostridium
XVIII and Erysipelotrichaceae incertae sedis), Actinomyces,
Eggerthella, Enterococcus, Escherichia/Shigella and Lacto-
bacillus, were significantly higher in RTT subjects than in
HC. Bifidobacteria are well recognized as health-
promoting bacteria [32], with potential probiotic proper-
ties [33], and have been rarely associated with pathological
states [34, 35]. Measuring the absolute abundances of the
most common intestinal Bifidobacterium species by
qPCR, we found that Bifidobacterium longum ssp. longum

was the most abundant in RTT subjects, with absolute
abundance twofold higher than in HC. The reported high
abundance of Bifidobacterium in RTT subjects could indi-
cate Bifidobacterium adaptation to the GI niche associated
with RTT.
In line with our results, various studies on the gut

microbiota of ASDs subjects reported also the increased
incidence of Clostridia [36, 37], one of the most abun-
dant Gram-positive bacteria known to reside in the hu-
man gut. Moreover, Erysipelotrichaceae, Lactobacillus
and Escherichia/Shigella resulted to be enriched in ASDs
[38, 39] in concomitance with a reduction of Prevotella
[39], consistently with our observations. Prevotella is an
important member of the human gut microbiota in-
volved in the maintenance of the microbial community
structure [40] while Escherichia/Shigella genera may
exert pro-inflammatory activities and are abundant in
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subjects with active states of intestinal inflammation [41,
42]. However, given the lack of a consensus [14] and the
methodological differences, it is difficult to draw general
conclusions by directly comparing the results of the dif-
ferent studies on ASDs’ gut microbiota.
It is well known that perturbations in the composition of

commensal bacteria can predispose individuals to fungal in-
fections [43]. We observed a dysbiotic gut mycobiota

associated with RTTcharacterized by an altered community
structure dominated by the genus Candida. Candida is
one of the most common fungal commensals of the GI
tract [28] but bacterial dysbiosis can shift Candida com-
mensalism to pathogenesis, leading to extended infections
and candidiasis [44]. It was also observed that the propor-
tion of opportunistic pathogenic fungi, including Candida,
increases in a mouse model of intestinal inflammation [12].
The herein described intestinal dysbiosis could be asso-

ciated with changes in gut metabolite profiles conse-
quently affecting the RTT gastrointestinal physiology.
Bifidobacterium as well as Anaerostipes, Clostridium
XIVa, Clostridium XIVb and Clostridium XVIII are known
producer of SCFAs as fermentation end-products of car-
bohydrates and proteins [45]. Also, the lactic-acid bacteria
Lactobacillus and Enterococcus can sustain the production
of SCFAs through cross-feeding mechanisms that involves
lactate-utilizing gut bacteria [46]. We observed that the
faecal content of SCFAs in RTT subjects was significantly
enriched in propionate, isobutyrate and isovalerate\2-
methylbutyrate. Non-physiological high levels of SCFAs in
the gut could contribute to GI symptoms, including the
constipation status (which affect more of the 70 % of this
RTT study cohort), through the alteration of goblet cell
mucin discharge [47] and the inhibition of smooth muscle
contraction in the colon [48] mediated by the release of
the peptide YY from enteroendocrine cells [49]. Also, pro-
longed exposure to protein-derived SCFAs (among which
isobutyrate, 2-methylbutyrate and isovalerate) and other
protein fermentation products, such as ammonia, phen-
olic compounds or p-cresol, may affect the metabolism
and the physiology of colonocytes [50]. Remarkably, en-
teric SCFAs, principally propionate and butyrate, can
modulate gene expression, brain function and behaviour,
affecting neurotransmitter systems, neuronal cell adhe-
sion, inflammation, oxidative stress, lipid metabolism and

Table 2 Permutational multivariate analysis of variance
(PERMANOVA) tests of the gut mycobiota on the unweighted
and weighted UniFrac distances and the Bray-Curtis dissimilarity
according to individuals’ health status and constipation

Metric F R2 p value*

HC (n = 28)
vs
RTT (n = 49)

Unweighted UniFrac 2.76 0.03 0.006

Weighted UniFrac 7.45 0.09 ≤0.003

Bray-Curtis 6.84 0.08 0.006

HC (n = 28)
vs
RTT-C (n = 33)

Unweighted UniFrac 2.23 0.03 0.018

Weighted UniFrac 5.60 0.08 0.009

Bray-Curtis 5.82 0.08 ≤0.003

HC (n = 28)
vs
RTT-NC (n = 14)

Unweighted UniFrac 2.00 0.04 0.036

Weighted UniFrac 5.95 0.12 ≤0.003

Bray-Curtis 4.59 0.10 0.006

RTT-C (n = 33)
vs
RTT-NC (n = 14)

Unweighted UniFrac 1.01 0.02 1.000

Weighted UniFrac 1.27 0.02 0.837

Bray-Curtis 1.00 0.02 1.000

HC healthy controls, RTT-C constipated Rett syndrome subjects, RTT-NC non-
constipated Rett syndrome subjects
*Bonferroni corrected p values
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P
C

2 
[1

2.
3%

]

PC1 [33%]

bWeighted UniFrac, PCoA

P
C

2 
[1

9.
2%

]

PC1 [41.2%]

a

Fig. 6 Measures of fungal beta-diversity. PCoA plots of fungal beta-diversity based on a the Weighted UniFrac distance and b the Bray-Curtis dissimilarity
analysed according to individuals’ health status. Constipated Rett syndrome subjects (RTT-C), non-constipated Rett syndrome subjects (RTT-NC) and healthy
controls (HC) are coloured in red, orange or green, respectively
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mitochondrial function in rat and in vitro cell models of
ASDs [51, 52].
Taken together, these observations suggest that func-

tional impairments of MeCP2 favour the establishment
of both constipation and adaptation of an intestinal dys-
biotic microbial community that may reinforce the con-
stipation status through non-physiological levels of
SCFAs. Nevertheless, we are not able to infer the conse-
quentiality of the two phenomenons, i.e. constipation or
dysbiosis. The SCFAs produced by the gut microbiota
are thus potentially implicated in the chronic constipa-
tion often associated with RTT, yet their role in the
pathophysiology of RTT remains elusive. Indeed, the
high faecal content of SCFAs in RTT subjects could be
also related to a reduced intestinal absorption of these
and other metabolites in the gut [53], or to increased lib-
eration of SCFAs due to fibre retention in a costive gut.
The establishment of intestinal dysbiosis, both at bacter-
ial and fungal level, may reinforce, rather than deter-
mine, constipation, which is one of the most common
GI problems in RTT. It is worth noting that the consti-
pation status correlates with age suggesting that consti-
pation and intestinal dysbiosis could be temporally
connected with the progression of the disease. Further-
more, the reduction of the mucin layer due to the inhib-
ition of goblet cells induced by the high levels of SCFAs
might trigger an immunological response that might
boost ERS values, serum IgA and the levels of calprotec-
tin simplifying the putative translocation through the in-
testinal barrier of pathobionts equipped with proper
virulence factors, such as Candida and Escherichia/Shi-
gella, and overall contributing to systemic inflammation
and cytokine dysregulation.

Conclusions
Here, we demonstrated for the first time that RTT is
characterized by a dysbiotic bacterial and fungal
microbiota showing an overall reduction of the mi-
crobial richness and diversity as well as an altered
composition of the microbial community structure in
RTT subjects. In particular, the increase in the rela-
tive abundance of Bifidobacterium, Clostridia and
Candida drives the dysbiotic state associated with
RTT. We hypothesize that impairments of MeCP2
functioning promote the establishment of a dysbiotic
intestinal microbial community that, in turn, could
affect RTT gastrointestinal physiopathology through
altered SCFAs production, reinforcing the constipa-
tion status itself and favouring inflammation and
cytokine dysregulation. Due to the importance that
our findings might have in the design of potential
therapeutic interventions aimed at gastrointestinal
relief in RTT, we are planning to further investigate
the gut microbiota dynamics during the progression

of the disease in a MeCP2-null mouse model apply-
ing specific probiotics and prebiotics treatments.

Methods
Study participants and sample handling and collection
We recruited 50 female subjects with clinical diagnosis
of RTT (average age 12 ± 7.3), genotyped for MeCP2
and CDKL5 gene mutations (Additional file 1: Table
S1) and 29 age-matched healthy subjects as controls
(average age 17 ± 9.6) (Additional file 18: Table S6).
RTT subjects with clinically evident inflammatory con-
ditions (i.e. upper respiratory tract infection, pneumo-
nia, urinary infection, stomatitis and periodontal
inflammation), either acute or chronic, were excluded.
A “compressed” clinical severity score (CSS) was attrib-
uted to RTT subjects following thirteen criteria: regres-
sion, microcephaly, somatic growth, independent
sitting, ambulation, hand use, scoliosis, language, non-
verbal communication, respiratory dysfunction, auto-
nomic symptoms, stereotypies and seizures [4]. ESR,
CRP and serum IgA levels were assessed as markers of
inflammation or GI abnormalities. Gastrointestinal
symptoms (i.e. constipation) and intestinal inflamma-
tion (i.e. faecal calprotectin levels) [54] were also
assessed (Additional file 1: Table S1). The diagnosis of
constipation was defined according to Rome III criteria
[55]. Stool samples from enrolled subjects were col-
lected, aliquoted as it is and stored at −80 °C until
analysis. All subjects of this study were under a
Mediterranean-based diet and no antibiotics, probiotics
or prebiotics have been taken in the 3 months prior the
sample collection. The study was approved by the insti-
tutional review board of the Siena University Hospital
(AOUS, Siena, Italy), and all enrolled subjects or tutors
gave written informed consent in accordance with the
sampling protocol approved by the local Ethical Com-
mittee (No. 2012-005021-76).

Faecal calprotectin assay
Calprotectin determination was performed by using a
polyclonal antibody in an enzyme-linked immunosorb-
ent assay (Calprest, Eurospital, Trieste, Italy).
Briefly, frozen stool samples were thawed at room

temperature; 100 mg of faeces (wet weight) were weighed
and placed in a disposable screw cap-tube containing the
extraction buffer (weight/volume 1:50). Samples were then
mixed vigorously for 30 s, homogenized for 25 min on a
shaker, and centrifuged for 20 min at 10,000g at room
temperature; 0.5 ml of clear extract supernatant was trans-
ferred to new tubes and stored at –80 °C. Finally, samples
were diluted 1:50, and absorbance was measured at
405 nm. According to the manufacturer’s instructions,
normal values were considered <50 μg/g of calprotectin
per faecal sample.
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DNA extraction, PCR amplification of the V3-V5 region of
bacterial 16S rDNA and of the ITS1 region of fungal rDNA
Total DNA extraction from faecal samples (250 mg, wet
weight) was performed using the FastDNA™ SPIN Kit for
Feces (MP Biomedicals, Santa Ana, CA, USA) following
manufacturer’s instructions. DNA integrity and quality
were checked on 1 % agarose gel TAE 1X and quantified
with a NanoDrop® spectrophotometer. For each DNA sam-
ple, 16S rRNA gene was amplified using fusion primer set
specific for V3-V5 hypervariable regions (357F: 5′-
TCCTACGGGAGGCAGCAG-3′ and 937R: 5′-TGTGCG
GGCCCCCGTCAATT-3′) containing adaptors, key
sequence and barcode (Multiple IDentifier) sequences as
described by the 454 Sequencing System Guidelines for
Amplicon Experimental Design (Roche, Basel, Switzerland).
PCR reactions were performed using the FastStart

High Fidelity PCR system (Roche, Basel, Switzerland) ac-
cording to the following protocol: 5 min at 95 °C, 25 cy-
cles of 30 s at 95 °C, 30 s at 58 °C and 1 min at 72 °C,
followed by a final extension of 8 min at 72 °C. The PCR
reaction mix contained 1X FastStart High Fidelity PCR
buffer 1.8 mM MgCl2, 200 μM of dNTPs, 0.4 μM of
each primer (Eurofins, PRIMM, Milano, Italy), 2.5 U of
FastStart High Fidelity Polymerase Blend and 10 ng of
gDNA as template. For ITS1 amplicon sequencing, fu-
sion primer sets were designed as described above
coupled with forward primer 18SF (5′-GTAAAAGTCG-
TAACAAGGTTTC-3′) and reverse primer 5.8S1R (5′-
GTTCAAAGAYTCGATGATTCAC-3′) [56] specific for
fungal ITS1 rDNA region. The PCR reaction mix con-
tained 1X FastStart High Fidelity PCR buffer, 2 mM
MgCl2, 200 μM of dNTPs, 0.4 μM of each primer
(PRIMM, Milano, Italy), 2.5 U of FastStart High Fidelity
Polymerase Blend and 100 ng of gDNA as template.
Thermal cycling conditions used were 5 min at 95 °C,
35 cycles of 45 s at 95 °C, 45 s at 56 °C and 1.30 min at
72 °C followed by a final extension of 10 min at 72 °C.
All PCR experiments were carried out in triplicates
using a Veriti® Thermal Cycler (Applied Biosystems, Fos-
ter City, CA, USA).

Library construction and pyrosequencing
The PCR products obtained were analysed by gel
electrophoresis and cleaned using the AMPure XP
beads kit (Beckman Coulter, Brea, CA, USA) follow-
ing the manufacturer’s instructions, quantified via
quantitative PCR using the Library quantification
kit—Roche 454 titanium (KAPA Biosystems, Boston,
MA) and pooled in equimolar way in a final amplicon
library. The 454 pyrosequencing was carried out on
the GS FLX+ system using the XL+ chemistry follow-
ing the manufacturer’s recommendations (Roche, Ba-
sel, Switzerland).

qPCR analysis
Amplifications of Bifidobacterium sp. 16S rDNA gene were
performed in triplicate for each sample using the KAPA
SYBR® FAST qPCR Kit Optimized for LightCycler® 480
(Kapa Biosystems, Inc., Wilmington, MA, USA) and the
LightCycler® 480 II instrument (Roche, Basel, Switzerland)
with primers and protocols described previously [57, 58].
The PCR reaction mix contained 1X KAPA SYBR FAST
qPCR Master Mix, 0.2 μM of each Bifidobacterium-specific
primer and 10 ng of gDNA as template. For quantification
of each Bifidobacterium species, we constructed a seven-
point standard curve consisting in tenfold serial dilutions of
gDNA extracted from a pure culture at known concentra-
tion. For quantification of the genus Bifidobacterium, we
used the strain Bifidobacterium animalis ssp. lactis BB12.
The following Bifidobacterium type strains were used
for the species-specific quantification: B. angulatum
ATCC27535, B. adolescentis ATCC15703, B. animalis
ssp. lactis ATCC15705, B. bifidum DSM20456, B.
breve ATCC15700, B. dentium ATCC27534, B. longum
ssp. infantis ATCC15697, B. longum ssp. longum
ATCC15707 and B. pseudocatenulatum ATCC27917.
Amplification specificity of target gene was checked
by melting curve analysis. Efficiency and reliability of
PCR amplifications were calculated.

SCFAs analysis
Frozen faecal samples (∼150 mg, wet weight) were di-
luted 1:10 in sterile PBS 1 M (pH 7.2) and centri-
fuged at 13.000g for 5 min. Supernatants were then
filtered using a 0.2-μm polycarbonate syringe filter
and acidified by the addition of one volume of HCl
6 M to three volumes of sample. After 10-min incu-
bation at room temperature, samples were centrifuged
at 13.000g for 5 min. One volume of 10 mM 2-
ethylbutyric acid was added to four volumes of sam-
ple as internal standard. Calibration was done using
standard solutions of acetate, propionate, butyrate,
isobutyrate, 2-methyl-butyrate (2-MeBut), valerate and
isovalerate in acidified water (pH 2). Standard solu-
tions containing 50, 20, 10, 5, 1 and 0.5 mM of each
external standard were used.
Analysis was performed using a TRACE™ Ultra Gas

Chromatograph (Thermo Scientific, Waltham, MA, USA)
coupled to a TSQ Quantum GC mass spectrometric de-
tector (Thermo Scientific, Waltham, MA, USA). SCFAs
were separated using a Restek Stabilwax-DA (30 m×
0.25 mm; 0.25-μm film thickness) (Restek corp., Bellafonte,
PA, USA). The injected sample volume was 1 μl in split
mode with a ratio of 10:1. The initial oven temperature was
at 90 °C and maintained for 0.5 min and then increased
20 °C/min to 240 °C. The carrier gas helium was delivered
at a flow rate of 1 ml min−1. The temperatures of the inlet,
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transfer line and electron impact (EI) ion source were set at
280, 250 and 250 °C, respectively. The electron energy was
70 eV, and the mass spectral data was collected in a full
scan mode (m/z 30–200).

Data analysis
Pyrosequencing resulted in a total of 2,227,864 reads
for 16S rDNA with a mean of 27,987 ± 5782 sequences
per sample and 1,678,227 reads for ITS1 region with a
mean of 21,118 ± 13,270 sequences per sample. Raw
454 files were demultiplexed using the Roche’s sff file
software and submitted to the European Nucleotide
Archive with accession number PRJEB12607. Sample
accession IDs and metadata are available in Additional
file 18: Table S6. Reads were pre-processed using the
MICCA pipeline (http://www.micca.org) [59]. Forward
and reverse primer trimming and quality filtering were
performed using micca-preproc. De novo sequence
clustering, chimera filtering and taxonomy assignment
were performed by micca-otu-denovo: operational
taxonomic units (OTUs) were assigned by clustering
the sequences with a threshold of 97 % pairwise iden-
tity, and their representative sequences were classified
using the RDP classifier version 2.7 on 16S rDNA data
and using the RDP classifier version 2.8 [60] against the
UNITE fungal ITS database [61] on ITS1 data.
Template-guided multiple sequence alignment (MSA)
was performed using PyNAST [62] (v. 0.1) against the
multiple alignment of the Greengenes [63] database (re-
lease 13_05) filtered at 97 % similarity for bacterial se-
quences and through de novo MSA using T-Coffee [64]
for fungal sequences. Fungal taxonomy assignments
were also manually curated using BLASTn against the
GenBank’s database for accuracy. High-quality fungal
sequences have been also manually filtered out for se-
quences belonging to Agaricomycetes (unlikely to be
residents of the human gut due to their ecology) [65].
Samples with less than 1000 reads have been excluded
from the analysis. The phylogenetic trees were inferred
using micca-phylogeny [66]. Sampling heterogeneity
was reduced rarefying samples at 90 % of the less abun-
dant sample (16S data) and at the depth of the less
abundant sample (ITS1 data). Alpha- (within-sample
richness) and beta-diversity (between-sample dissimi-
larity) estimates were computed using the phyloseq R
package [67]. Multiple-rarefaction PCoA plots (“jack-
knifed” PCoA plots, [21]) were computed to assess the
robustness of the beta-diversity analyses. Permutational
MANOVA (PERMANOVA) was performed on the Uni-
Frac distances and Bray-Curtis dissimilarity using the
adonis() function of the vegan R package with 999 per-
mutations, and p values were corrected using the
Bonferroni correction [68]. The non-parametric Wil-
coxon rank-sum test was used for the comparison of

relative abundances of microbial taxa between groups,
and the resulting p values were corrected for multiple
testing controlling the false discovery rate [69] at all
taxonomic levels taken into account. Further identifica-
tion of taxa differentially distributed in case/control
groups was obtained by PhyloRelief, a phylogenetic-
based feature weighting algorithm for metagenomics
data. This method unambiguously groups taxa into
clades without relying on a precompiled taxonomy and
accomplishes a ranking of the clades according to their
contribution to the sample differentiation [22]. Linear
discriminant effect size analysis (LEfSe) [23] with de-
fault parameters was performed to find taxonomic
clades differentially represented between RTT subjects
and HC. LEfSe combines Kruskal-Wallis test and Wil-
coxon rank-sum tests with linear discriminant analysis
(LDA). LEfSe ranks features by effect size, putting at
the top features that explain most of the biological dif-
ference. In order to investigate the microbial metabolic
potential of the gut microbiota in healthy controls and
RTT subjects, we applied PICRUSt (Phylogenetic Inves-
tigation of Communities by Reconstruction of Unob-
served States) [24], a computational approach used to
predict the functional composition of a metagenome
using marker gene data and a database of reference ge-
nomes. PICRUSt uses an extended ancestral-state re-
construction algorithm to predict which gene families
are present and then combines gene families to esti-
mate the composite metagenome starting from the
taxonomic composition estimated from 16S rDNA data.
Starting from a table of OTUs with associated Green-
genes identifiers, we obtained the final output from
metagenome prediction as an annotated table of pre-
dicted gene family counts for each sample, where the
encoded function of each gene family be orthologous
groups or other identifiers such as KEGG orthologues.
Spearman’s correlation tests for each correlation were
computed using the psych R package [70]. All statistical
analyses were performed using R [71].

Additional files

Additional file 1: Table S1. Characteristics of study participants
affected by Rett syndrome. (DOCX 24 kb)

Additional file 2: Figure S1. Correlation plots of clinical data from RTT
subjects. Significant positive correlations were observed among age, IgA
and ESR. (PDF 37 kb)

Additional file 3: Table S2. Spearman’s correlation analysis among RTT
clinical data. (DOCX 14 kb)

Additional file 4: Figure S2. Measures of bacterial diversity. a) Alpha-
diversity estimated on the Chao1 estimator and the Shannon entropy;
***, p < 0.001; **, p < 0.01; *, p < 0.05; Wilcoxon rank-sum test. b) PCoA
plot based on the unweighted UniFrac distance among samples analysed
according to individuals’ health status. Constipated Rett syndrome
subjects (RTT-C), non-constipated Rett syndrome subjects (RTT-NC) and
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average location of 100 rarefaction replicates. Ellipses show the 95 %
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the unweighted and weighted UniFrac distances and the Bray-Curtis
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Rett syndrome subjects (RTT-C), non-constipated Rett syndrome subjects
(RTT-NC) and healthy controls (HC) are coloured in red, orange or green,
respectively. (PDF 185 kb)

Additional file 7: Figure S5. PERMANOVA p values distribution. For
each rarefaction replicate (n = 100), a PERMANOVA test was conducted to
assess the robustness of the results over the rarefaction. a) PERMANOVA
p values distributions of bacterial beta-diversity based on the unweighted
and weighted UniFrac distances and the Bray-Curtis dissimilarity analysed
according to individuals’ health status; b) PERMANOVA p values distributions
of fungal beta-diversity based on the unweighted and weighted UniFrac
distances and the Bray-Curtis dissimilarity analysed according to individuals’
health status. (PDF 27 kb)
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Additional file 11: Figure S7. Bacterial taxa which relative abundances
were significantly different (p < 0.05; Wilcoxon rank-sum test) between
healthy controls (HC) and Rett syndrome (RTT) subjects. (PDF 319 kb)

Additional file 12: Figure S8. LDA scores of the most discriminant
bacterial taxa identified by LEfSe. Positive and negative LDA scores
indicate the taxa enriched in healthy controls (HC) and Rett syndrome
(RTT) subjects, respectively. (PDF 62 kb)

Additional file 13: Table S5. Statistics of the significantly different
metabolic pathways (KEGG categories) inferred with PICRUSt in the gut
microbiota of healthy controls (HC) and Rett syndrome (RTT) subjects
(Welch’s t test, p < 0.05 FDR-corrected) from 16S rDNA data. (DOCX 26 kb)

Additional file 14: Figure S9. Measures of fungal diversity. a) Three
estimators of alpha-diversity have been calculated: the number of
observed OTUs, the Chao1 estimator and the Shannon entropy; b) PCoA
plot based on the unweighted UniFrac distance among samples analysed
according to individuals’ health status. Constipated Rett syndrome
subjects (RTT-C), non-constipated Rett syndrome subjects (RTT-NC) and
healthy controls (HC) are coloured in red, orange or green, respectively.
(PDF 63 kb)

Additional file 15: Figure S10. Genus level relative abundances of the
fungal gut microbiota of healthy controls (HC) and Rett syndrome (RTT)
subjects. (PDF 2981 kb)

Additional file 16: Figure S11. Candida relative abundance in the gut
microbiota of healthy controls (HC) and Rett syndrome (RTT) subjects
(p < 0.05; Wilcoxon rank-sum test). (PDF 20 kb)

Additional file 17: Figure S12. a) LDA scores of the most discriminant
fungal taxa identified by LEfSe. Positive and negative LDA scores indicate
the taxa enriched in healthy controls (HC) and Rett syndrome (RTT)

subjects, respectively. b) Cladogram showing the most discriminative
fungal clades identified by LEfSe. Coloured regions/branches indicate
differences in the fungal population structure between Rett syndrome
(RTT) subjects and healthy controls (HC). Regions in red indicate clades
that were enriched in RTT subjects compared to those in HC, while
regions in green indicate clades that were enriched in HC compared to
those in RTT subjects. (PDF 116 kb)
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Additional file 19. MICCA pipelines used for the analysis of the 16S and
ITS1 datasets. (PDF 7 kb)

Abbreviations
ASDs, autism spectrum disorders; CDKL5, cyclin-dependent kinase-like 5; CNS,
central nervous system; CRP, C-reactive protein; CSS, clinical severity score;
ENS, enteric nervous system; ESR, erythrocyte sedimentation rate; FDR, false
discovery rate; GC-MS, gas chromatography–mass spectrometry; GI, gastro-
intestinal; HC, healthy controls; ITS, internal transcribed spacer; LDA, linear
discriminant analysis; LEfSe, linear discriminant effect size analysis; MeCP2,
methyl-CpG binding protein 2; OTU, operational taxonomic unit; PCoA, prin-
cipal coordinates analysis; PERMANOVA, permutational multivariate analysis
of variance; PICRUSt, phylogenetic investigation of communities by recon-
struction of unobserved states; qPCR, quantitative PCR; RTT, Rett syndrome;
RTT-C, constipated Rett syndrome subjects, RTT-NC, non-constipated Rett
syndrome subjects; SCFAs, short chain fatty acids.

Acknowledgements
The authors would like to thank Prof. Paola Mattarelli from the University of
Bologna for providing the Bifidobacterium strains used in this work;
Maddalena Sordo, Francesca Fava, Urska Vrhovsek, Silvia Carlin and the lab
staff of the Sequencing Platform from Fondazione Edmund Mach for their
technical support and Kieran Tuohy and Nicola Segata for their helpful
discussion. We thank also Unifarm S.p.A. for the financial support to FS.

Funding
This work was financially supported from the “Accordo di Programma
Integrato MetaFoodLabs” and funded by the research office of the Provincia
Autonoma di Trento (Italy) (PAT Prot. S116/2012/537723).

Availability of supporting data
Raw sequences are available in the European Nucleotide Archive (ENA) with
accession number PRJEB12607 (http://www.ebi.ac.uk/ena/data/view/
PRJEB12607). Sample metadata, unrarefied OTU tables and taxonomic
classifications are available in the Additional file 18: Table S6. Furthermore,
the pipelines used for the processing of the raw data are available as
Additional file 19.

Authors’ contributions
FS designed and performed the experiments, analysed the data and wrote
the manuscript. DR and SL analysed and collected the clinical data. IS, DA,
MP and CD supervised and contributed to the data analysis. CDFe, JH and
AC recruited the subjects and collected the specimens. IS, LR, OJ, AC and CD
critically reviewed the manuscript. DC, AC and CDF conceived the study and
approved the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Written informed consent was obtained from the enrolled subjects or tutors.

Ethics approval and consent to participate
The study was approved by the institutional review board of the Siena
University Hospital (AOUS, Siena, Italy), and all enrolled subjects or tutors
gave written informed consent in accordance with the sampling protocol
approved by the local Ethical Committee (No. 2012-005021-76).

Strati et al. Microbiome  (2016) 4:41 Page 13 of 15

dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
dx.doi.org/10.1186/s40168-016-0185-y
http://www.ebi.ac.uk/ena/data/view/PRJEB12607
http://www.ebi.ac.uk/ena/data/view/PRJEB12607


Author details
1Department of Computational Biology, Research and Innovation Centre,
Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’ Adige, Italy.
2Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123
Trento, Italy. 3Department of Biology, University of Florence, Via Madonna del
Piano 6, 50019 Sesto Fiorentino, Florence, Italy. 4Neonatal Intensive Care Unit,
University Hospital AOUS, Viale Bracci 16, 53100 Siena, Italy. 5Child
Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100 Siena,
Italy. 6Department of Genomics and Biology of Fruit Crop, Research and
Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San
Michele all’ Adige, Italy. 7Department of Experimental and Clinical Biomedical
Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40,
50139 Florence, Italy. 8Institute of Biometeorology (IBIMET), National Research
Council (CNR), Via Giovanni Caproni 8, I-50145 Florence, Italy.

Received: 18 April 2016 Accepted: 21 July 2016

References
1. Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to

neurobiology. Neuron. 2007;56(3):422–37.
2. Liyanage VR, Rastegar M. Rett syndrome and MeCP2. Neruomol Med. 2014;

16(2):231–64.
3. Cuddapah VA, Pillai RB, Shekar KV, Lane JB, Motil KJ, Skinner SA, Tarquinio

DC, Glaze DG, McGwin G, Kaufmann WE, et al. Methyl-CpG-binding protein
2 (MECP2) mutation type is associated with disease severity in Rett
syndrome. J Med Genet. 2014;51(3):152–8.

4. Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A,
Glaze DG. Specific mutations in methyl-CpG-binding protein 2 confer
different severity in Rett syndrome. Neurology. 2008;70(16):1313–21.

5. Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and
neurodevelopmental disorders. Curr Psychiatry Rep. 2010;12(2):127–34.

6. Motil KJ, Caeg E, Barrish JO, Geerts S, Lane JB, Percy AK, Annese F, McNair L,
Skinner SA, Lee HS, et al. Gastrointestinal and nutritional problems occur
frequently throughout life in girls and women with Rett syndrome. J Pediatr
Gastroenterol Nutr. 2012;55(3):292–8.

7. Leonard H, Ravikumara M, Baikie G, Naseem N, Ellaway C, Percy A, Abraham S,
Geerts S, Lane J, Jones M, et al. Assessment and management of nutrition and
growth in Rett syndrome. J Pediatr Gastroenterol Nutr. 2013;57(4):451–60.

8. Wahba G, Schock SC, Claridge E, Bettolli M, Grynspan D, Humphreys P,
Staines WA. MeCP2 in the enteric nervous system. Neurogastroenterol Motil.
2015;27(8):1156–61.

9. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat
Immunol. 2011;12(1):5–9.

10. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in
immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.

11. Underhill DM, Iliev ID. The mycobiota: interactions between commensal
fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–16.

12. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J,
Becker CA, Fleshner PR, Dubinsky M, et al. Interactions between commensal
fungi and the C-type lectin receptor Dectin-1 influence colitis. Science.
2012;336(6086):1314–7.

13. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut
microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

14. Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity
or causative mechanisms? Bioessays. 2014;36(10):933–9.

15. Sampson TR, Mazmanian SK. Control of brain development, function, and
behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–76.

16. Wang Y, Kasper LH. The role of microbiome in central nervous system
disorders. Brain Behav Immun. 2014;38:1–12.

17. Leoncini S, De Felice C, Signorini C, Zollo G, Cortelazzo A, Durand T, Galano
JM, Guerranti R, Rossi M, Ciccoli L, et al. Cytokine dysregulation in MECP2-
and CDKL5-related Rett syndrome: relationships with aberrant redox
homeostasis, inflammation, and omega-3 PUFAs. Oxidative Med Cell
Longev. 2015;2015:421624.

18. Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Pecorelli A,
Zollo G, Landi C, Valacchi G, Ciccoli L, et al. Subclinical inflammatory status
in Rett syndrome. Mediat Inflamm. 2014;2014:480980.

19. Bochen K, Krasowska A, Milaniuk S, Kulczynska M, Prystupa A, Dzida G.
Erythrocyte sedimentation rate–an old marker with new applications.
Journal of Pre-clinical and Clinical Research 2011;5(2):50–55.

20. Joshi S, Lewis SJ, Creanor S, Ayling RM. Age-related faecal calprotectin,
lactoferrin and tumour M2-PK concentrations in healthy volunteers. Ann
Clin Biochem. 2010;47(Pt 3):259–63.

21. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective
distance metric for microbial community comparison. ISME J. 2011;5(2):169–72.

22. Albanese D, De Filippo C, Cavalieri D, Donati C. Explaining diversity in
metagenomic datasets by phylogenetic-based feature weighting. PLoS
Comput Biol. 2015;11(3):e1004186.

23. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,
Huttenhower C. Metagenomic biomarker discovery and explanation.
Genome Biol. 2011;12(6):R60.

24. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,
Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive
functional profiling of microbial communities using 16S rRNA marker gene
sequences. Nat Biotechnol. 2013;31(9):814–21.

25. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM. Fatty acid
transport protein expression in human brain and potential role in fatty acid
transport across human brain microvessel endothelial cells. J Neurochem.
2011;117(4):735–46.

26. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L,
Anastasovska J, Ghourab S, Hankir M, Zhang S, et al. The short-chain fatty
acid acetate reduces appetite via a central homeostatic mechanism. Nat
Commun. 2014;5:3611.

27. Rizzetto L, De Filippo C, Cavalieri D. Richness and diversity of mammalian
fungal communities shape innate and adaptive immunity in health and
disease. Eur J Immunol. 2014;44(11):3166–81.

28. Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut
microbiota: qualitative assessment using culture-dependent and
-independent analysis of faeces. ISME J. 2008;2(12):1183–93.

29. Andersen LO, Stensvold CR. Blastocystis in Health and Disease: Are We
Moving from a Clinical to a Public Health Perspective? J Clin Microbiol.
2016;54(3):524–528.

30. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K,
Ostatnikova D. Gastrointestinal microbiota in children with autism in
Slovakia. Physiol Behav. 2015;138:179–87.

31. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA,
Chow J, Reisman SE, Petrosino JF, et al. Microbiota modulate behavioral and
physiological abnormalities associated with neurodevelopmental disorders.
Cell. 2013;155(7):1451–63.

32. Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D. Host-
microbe interactions that facilitate gut colonization by commensal
bifidobacteria. Trends Microbiol. 2012;20(10):467–76.

33. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO,
Shanahan F, Nally K, Dougan G, et al. Bifidobacterial surface-exopolysaccharide
facilitates commensal-host interaction through immune modulation and
pathogen protection. Proc Natl Acad Sci U S A. 2012;109(6):2108–13.

34. Pathak P, Trilligan C, Rapose A. Bifidobacterium–friend or foe? A case of
urinary tract infection with Bifidobacterium species. BMJ case reports. 2014;
doi:10.1136/bcr-2014-205122.

35. Tena D, Losa C, Medina MJ, Saez-Nieto JA. Peritonitis caused by Bifidobacterium
longum: case report and literature review. Anaerobe. 2014;27:27–30.

36. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces
of autistic children. Appl Environ Microbiol. 2004;70(11):6459–65.

37. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between
the gut microflora of children with autistic spectrum disorders and that of
healthy children. J Med Microbiol. 2005;54(Pt 10):987–91.

38. de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J,
Knol J, Garssen J, Kraneveld AD, Oozeer R. Altered gut microbiota and
activity in a murine model of autism spectrum disorders. Brain Behav
Immun. 2014;37:197–206.

39. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-
Brown R. Reduced incidence of Prevotella and other fermenters in intestinal
microflora of autistic children. PLoS One. 2013;8(7):e68322.

40. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR,
Fernandes GR, Tap J, Bruls T, Batto JM, et al. Enterotypes of the human gut
microbiome. Nature. 2011;473(7346):174–80.

41. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah
SA, LeLeiko N, Snapper SB, et al. Dysfunction of the intestinal microbiome in
inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.

42. Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM,
McCafferty J, Fodor AA, Jobin C. Microbial genomic analysis reveals the

Strati et al. Microbiome  (2016) 4:41 Page 14 of 15



essential role of inflammation in bacteria-induced colorectal cancer. Nat
Commun. 2014;5:4724. doi:10.1038/ncomms5724.

43. Oever JT, Netea MG. The bacteriome-mycobiome interaction and antifungal
host defense. Eur J Immunol. 2014;44(11):3182–91.

44. Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB.
Modulation of post-antibiotic bacterial community reassembly and host
response by Candida albicans. Sci Rep. 2013;3:2191.

45. Cummings J, Macfarlane G. The control and consequences of bacterial
fermentation in the human colon. J Appl Bacteriol. 1991;70(6):443–59.

46. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human
feces, that produce butyrate as a major fermentation product. Appl Environ
Microbiol. 2004;70(10):5810–7.

47. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P. Mucin
secretion is modulated by luminal factors in the isolated vascularly perfused
rat colon. Gut. 2000;46(2):218–24.

48. Squires PE, Rumsey RD, Edwards CA, Read NW. Effect of short-chain fatty
acids on contractile activity and fluid flow in rat colon in vitro. Am J Phys.
1992;262(5 Pt 1):G813–817.

49. Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G, Galmiche JP.
Short-chain fatty acids modify colonic motility through nerves and
polypeptide YY release in the rat. Am J Phys. 1998;275(6 Pt 1):G1415–1422.

50. Blachier F, Mariotti F, Huneau JF, Tome D. Effects of amino acid-derived
luminal metabolites on the colonic epithelium and physiopathological
consequences. Amino Acids. 2007;33(4):547–62.

51. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites
propionic and butyric acid modulate gene expression, including CREB-
dependent catecholaminergic neurotransmission, in PC12 cells—possible
relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740.

52. MacFabe DF. Enteric short-chain fatty acids: microbial messengers of
metabolism, mitochondria, and mind: implications in autism spectrum
disorders. Microb Ecol Health Dis. 2015;26:28177.

53. Manokas T, Fromkes JJ, Sundaram U. Effect of chronic inflammation on ileal
short-chain fatty acid/bicarbonate exchange. Am J Physiol Gastrointest Liver
Physiol. 2000;278(4):G585–590.

54. Aomatsu T, Yoden A, Matsumoto K, Kimura E, Inoue K, Andoh A, Tamai H.
Fecal calprotectin is a useful marker for disease activity in pediatric patients
with inflammatory bowel disease. Dig Dis Sci. 2011;56(8):2372–7.

55. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC.
Functional bowel disorders. Gastroenterology. 2006;130(5):1480–91.

56. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D,
Nomicos E, Park M, Program NIHISCCS, et al. Topographic diversity of fungal
and bacterial communities in human skin. Nature.
2013;498(7454):367–70.

57. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an
extensive set of 16S rDNA-targeted primers for quantification of pathogenic
and indigenous bacteria in faecal samples by real-time PCR. J Appl
Microbiol. 2004;97(6):1166–77.

58. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka
R. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers
for analysis of human intestinal bifidobacteria. Appl Environ Microbiol.
2004;70(1):167–73.

59. Albanese D, Fontana P, De Filippo C, Cavalieri D, Donati C. MICCA: a
complete and accurate software for taxonomic profiling of metagenomic
data. Sci Rep. 2015;5:9743.

60. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol. 2007;73(16):5261–7.

61. Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST,
Bruns TD, Bengtsson-Palme J, Callaghan TM, et al. Towards a unified paradigm
for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271–7.

62. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R.
PyNAST: a flexible tool for aligning sequences to a template alignment.
Bioinformatics. 2010;26(2):266–7.

63. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T,
Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA
gene database and workbench compatible with ARB. Appl Environ
Microbiol. 2006;72(7):5069–72.

64. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and
accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17.

65. Hibbett DS. A phylogenetic overview of the Agaricomycotina. Mycologia.
2006;98(6):917–25.

66. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-
likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.

67. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217.

68. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. 8th ed
Florence R. Istituto superiore di scienze economiche e commerciali, Libreria
internazionale Seeber; 1936.

69. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc B (Methodological).
1995;57(1):289–300.

70. Revelle W. psych: procedures for psychological, psychometric, and
personality research. R package version 1.3. 10. Evanston, IL: Northwestern
University; 2013.

71. Team RC. R: A language and environment for statistical computing. 2014th
ed. Vienna, Austria: R Foundation for Statistical Computing; 2012. ISBN 3-
900051-07-0.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Strati et al. Microbiome  (2016) 4:41 Page 15 of 15



Supplementary material chapter 3 

 

Supplementary Table 1: Characteristics of study participants affected by Rett syndrome. 

 

Supplementary Figure 1: Correlation plots of clinical data from RTT subjects. Significant 

positive correlations were observed among age, IgA and ESR. 

 

Supplementary Table 2: Spearman’s correlation analysis among RTT clinical data. 

 

Supplementary Figure 2: Measures of bacterial diversity. a) Alpha-diversity estimated on the 

Chao1 estimator and the Shannon entropy; ***, p<0.001; **, p<0.01; *, p<0.05; Wilcoxon rank-

sum test. b) PCoA plot based on the unweighted UniFrac distance among samples analysed 

according to individuals’ health status. Constipated Rett syndrome subjects (RTT-C), non-

constipated Rett syndrome subjects (RTT-NC) and healthy controls (HC) are coloured in red, 

orange or green, respectively. 

 

Supplementary Figure 3: Alpha-diversity rarefaction curves. The plot shows the alpha-

diversity for HC, RTT-C and RTT-NC averaged over 100 independent rarefactions as a function 

of the rarefaction depth for a) the bacterial gut microbiota and b) the fungal gut microbiota. The 

points in the curves are the averages, while the whiskers represent the standard deviations. 

 

Supplementary Figure 4: Multiple-rarefaction PCoA plots. Each PCoA replicate was 

optimally superimposed by Procrustes analysis on the master PCoA scatter plot (used in the main 

text). Points represent the average location of 100 rarefaction replicates. Ellipses show the 95% 

confidence region assuming a multivariate normal distribution. a) PCoA plots of bacterial beta-

diversity based on the unweighted and weighted UniFrac distances and the Bray-Curtis 

dissimilarity analysed according to individuals’ health status; b) PCoA plots of fungal beta-

diversity based on the unweighted and weighted UniFrac distances and the Bray-Curtis 

dissimilarity analysed according to individuals’ health status. Constipated Rett syndrome subjects 

(RTT-C), non-constipated Rett syndrome subjects (RTT-NC) and healthy controls (HC) are 

coloured in red, orange or green, respectively. 

 

Supplementary Figure 5: PERMANOVA p-values distribution. For each rarefaction replicate 

(n=100), a PERMANOVA test was conducted to assess the robustness of the results over the 

rarefaction. a) PERMANOVA p-values distributions of bacterial beta-diversity based on the 



unweighted and weighted UniFrac distances and the Bray-Curtis dissimilarity analysed according 

to individuals’ health status; b) PERMANOVA p-values distributions of fungal beta-diversity 

based on the unweighted and weighted UniFrac distances and the Bray-Curtis dissimilarity 

analysed according to individuals’ health status. 

 

Supplementary Table 3: Mean relative abundance (%) ± standard deviation (SD) of bacterial 

OTUs at phylum and genus levels in Rett syndrome (RTT) subjects and healthy controls (HC). 

 

Supplementary Table 4: Wilcoxon rank-sum test comparison of bacterial relative abundances at 

phylum and genus levels. 

 

Supplementary Figure 6: Genus level relative abundances of the bacterial gut microbiota of 

healthy controls (HC) and Rett syndrome (RTT) subjects. 

 

Supplementary Figure 7: Bacterial taxa which relative abundances were significantly different 

(p<0.05; Wilcoxon rank-sum test) between healthy controls (HC) and Rett syndrome (RTT) 

subjects. 

 

Supplementary Figure 8: LDA scores of the most discriminant bacterial taxa identified by LEfSe. 

Positive and negative LDA scores indicate the taxa enriched in healthy controls (HC) and Rett 

syndrome (RTT) subjects, respectively 

 

Supplementary Table 5: Statistics of the significantly different metabolic pathways (KEGG 

categories) inferred with PICRUSt in the gut microbiota of healthy controls (HC) and Rett 

syndrome (RTT) subjects (Welch’s t-test, p<0.05 FDR-corrected) from 16S rDNA data. 

 

Supplementary Figure 9: Measures of fungal diversity. a) Three estimators of alpha-diversity 

have been calculated: the number of observed OTUs, the Chao1 estimator and the Shannon 

entropy; b) PCoA plot based on the unweighted UniFrac distance among samples analysed 

according to individuals’ health status. Constipated Rett syndrome subjects (RTT-C), non-

constipated Rett syndrome subjects (RTT-NC) and healthy controls (HC) are coloured in red, 

orange or green, respectively. 

 

Supplementary Figure 10: Genus level relative abundances of the fungal gut microbiota of 

healthy controls (HC) and Rett syndrome (RTT) subjects. 



 

Supplementary Figure 11: Candida relative abundance in the gut microbiota of healthy controls 

(HC) and Rett syndrome (RTT) subjects (p<0.05; Wilcoxon rank-sum test). 

 

Supplementary Figure 12: a) LDA scores of the most discriminant fungal taxa identified by 

LEfSe. Positive and negative LDA scores indicate the taxa enriched in healthy controls (HC) and 

Rett syndrome (RTT) subjects, respectively; b) cladogram showing the most discriminative fungal 

clades identified by LEfSe. Coloured regions/branches indicate differences in the fungal 

population structure between Rett syndrome (RTT) subjects and healthy controls (HC). Regions 

in red indicate clades that were enriched in RTT subjects compared to those in HC, while regions 

in green indicate clades that were enriched in HC compared to those in RTT subjects. 

 

Supplementary Table 6: Correspondences among deposited metagenomics data and samples, 

unrarefied OTU tables and taxonomic classifications of the 16S and ITS1 datasets. 

 This table can be found within this paper online at: 

http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0185-y 

 

Supplementary methods: MICCA pipelines used for the analysis of the 16S and ITS1 datasets 

MICCA (v 0.1) (http://www.micca.org) 

 

# 16S dataset pipeline 

micca-preproc -f TCCTACGGGAGGCAGCAG -r TGTGCGGGCCCCCGTCAATT -O 16 -q 20 -l 

400 fastq/*.fastq -o preprocessed 

 

micca-otu-denovo preprocessed/*.fastq -s 0.97 -d -l 200 -c -o otus 

 

micca-phylogeny otus/representatives.fasta -a template -o otus/phylo --

template-min-perc 75 --template-file 

~/greengenes_2013_05/rep_set_aligned/97_otus.fasta 

 

micca-midpoint-root otus/phylo/tree.tre otus/phylo/tree_rooted.tre 

 

# ITS1 dataset pipeline 

micca-preproc -f GTAAAAGTCGTAACAAGGTTTC -r GTTCAAAGAYTCGATGATTCAC -O 18 -q 15 

-l 150 fastq/*.fastq -o preprocessed 

 

http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0185-y


micca-otu-denovo preprocessed/*.fastq -s 0.97 -c -d -l 140 -o otus -t rdp --

rdp-gene fungalits_unite --rdp max-memory 2000 

 

micca-phylogeny otus/representatives.fasta -a denovo_tcoffe --tcoffe-num-

threads 1 -o otus/phylo  

 

micca-midpoint-root otus/phylo/tree.tre otus/phylo/tree_rooted.tre 
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RTT4 25 c.747_751dup5 p.P251fs 
Frameshift 

in/del 
TRD intermediate 7 yes 55 128 <0.35 116.9 

RTT9 3 deletion exon 3. 4a. 4b deletion exon 3. 4a. 4b 
Large 

deletion 

Large 

deletion 
intermediate 6 no NA 52 <0.35 57.3 

RTT10 21 c.1163_1197del35 p.P388fs 
Frameshift 

in/del 
C-term intermediate 7 yes 74 372 0.69 171.4 

RTT34 9 c.502C>T p.R168X Nonsense 
Inter-domain 

region 
intermediate 8 yes 49 171 0.92 110.1 

RTT35 7 c.1072_1186del113 Large deletion 
Large 

deletion 
C-term intermediate 7 no 13 9.9 0.85 64.3 

RTT38 7 deletion exon 4 deletion exon 4 
Large 

deletion 

Large 

deletion 
mild 4 yes 21 122 <0.35 21.9 

RTT39 17 Large deletion Large deletion 
Large 

deletion 

Large 

deletion 
intermediate 8 yes 9 253 <0.35 296.1 

RTT43 13 c.473C>T p.T158M Missense MBD severe 10 no 39 215 2.39 50.5 

RTT51 7 c.397C>T p.R133C Missense MBD intermediate 7 no 12 171 <0.35 72.1 

RTT53 15 del.MECp2 del.MECp2 
Large 

deletion 

Large 

deletion 
severe 9 yes 40 381 <0.35 28.8 

RTT72 31 c.880C>T p.R294X Nonsense TRD severe 9 yes 4 22 <0.35 379.8 



RTT80 4 c.473C>T p.T158M Missense MBD NA NA no 5 54 <0.35 44.9 

RTT91 24 c.916C>T p.R306C Missense TRD severe 11 yes NA 317 0.55 41.1 

RTT97 19 c.547G>C p.G183R Missense 
Inter-domain 

region 
intermediate 5 yes 10 278 <0.35 92.2 

RTT99 19 c.763C>T p.R255X Nonsense TRD severe 9 yes 28 209 <0.35 91.4 

RTT100 6 c.808C>T p.R270X Nonsense TRD-NLS intermediate 8 no 7 58 <0.35 76.2 

RTT101 23 c.455C>G p.P152R Missense MBD intermediate 8 yes 31 250 6.91 191.2 

RTT111 17 c.763C>T p.R255X Nonsense TRD intermediate 7 yes 26 143 <0.35 28.3 

RTT112 14 c.808C>T p.R270X Nonsense TRD-NLS intermediate 8 yes 25 226 <0.35 73.9 

RTT114 15 c.880C>T p.R294X Nonsense TRD intermediate 6 yes 10 184 <0.35 26.6 

RTT116 11 c.808C>T p.R270X Nonsense TRD-NLS severe 9 yes 10 233 <0.35 45.7 

RTT119 2 c.808C>T p.R270X Nonsense TRD-NLS severe 9 no 74 96 2.54 71.2 

RTT123 22 c.808C>T p.R270X Nonsense TRD-NLS severe 11 yes 29 146 0.44 206.4 

RTT129 4 c.502C>T p.R168X Nonsense 
Inter-domain 

region 
intermediate 6 yes 14 111 <0.35 41.5 

RTT132 8 deletion exon 3. 4a. 4b deletion exon 3. 4a. 4b 
Large 

deletion 

Large 

deletion 
intermediate 8 yes 38 231 1 55.5 

RTT134 11 deletion exon 1. 2 deletion exon 1. 2 
Large 

deletion 

Large 

deletion 
severe 10 yes 22 288 <0.35 32.2 

RTT135 18 c.1152_1192del41 p.P385fs 
Frameshift 

in/del 
C-term intermediate 6 no 31 209 2.01 143.4 

RTT136 9 c.1157_1200del44 p.L386fs 
Frameshift 

in/del 
C-term intermediate 8 yes 11 135 <0.35 57.5 



RTT137 16 
c.[1111_1115del; 

1116_1137inv] 
p.H371LfsX34 

Frameshift 

in/del 
C-term severe 10 no 37 172 <0.35 122.3 

RTT138 2 c.473C>T p.T158M Missense MBD severe 11 yes 2 96 <0.35 41.4 

RTT140 11 c.398G>T p.R133L Missense MBD severe 9 yes 9 160 <0.35 48.2 

RTT142 10 CDKL5 mutation CDKL5 mutation 
CDKL5 

mutation 
NA intermediate 8 no 24 135 <0.35 500 

RTT147 2 c.431delA p.K144fs 
Frameshift 

in/del 
MBD intermediate 7 no NA 130 <0.35 56.8 

RTT151 6 c.763C>T p.R255X Nonsense TRD intermediate 6 yes 5 154 0.46 96.2 

RTT154 6 c.905C>T p.P302L Missense TRD severe 11 no 25 110 1 240.9 

RTT155 25 CDKL5 mutation CDKL5 mutation 
CDKL5 

mutation 
NA severe 9 yes 36 283 <0.35 124.4 

RTT158 6 c.1164_1172del14 p.P388fs 
Frameshift 

in/del 
C-term intermediate 6 yes 9 157 <0.35 49.3 

RTT159 7 c.502C>T p.R168X Nonsense 
Inter-domain 

region 
severe 10 yes NA 191 <0.35 62.6 

RTT163 10 c.808C>T p.R270X Nonsense TRD-NLS intermediate 6 no 8 134 <0.35 NA 

RTT164 15 c.808C>T p.R270X Nonsense TRD-NLS severe 11 yes 15 180 <0.35 NA 

RTT165 15 c.1157_1197del41 p.L386fs 
Frameshift 

in/del 
C-term intermediate 7 no NA 118 NA 31.9 

RTT167 8 c.455C>G p.P152R Missense MBD severe 10 yes 27 166 <0.35 121.1 

RTT171 6 c.916C>T p.R306C Missense TRD intermediate 7 yes 19 111 <0.35 59.3 

RTT172 13 c.431delA p.K144fs 
Frameshift 

in/del 
MBD severe 11 yes 21 182 <0.35 19.7 



RTT177 11 c.1162_1179del18 p.P388_P393del 
In-frame 

in/del 
C-term intermediate 5 NA 7 140 <0.35 61.5 

RTT190 14 c.1165_1233del69ins21 p.P389_P411del23ins7 
In-frame 

in/del 
C-term severe 11 yes 49 427 0.75 206.6 

RTT199 2 c.808C>T p.R270X Nonsense TRD-NLS intermediate 8 yes NA 40 NA 213.8 

RTT200 26 c.1157_1197del41 p.L386fs 
Frameshift 

in/del 
C-term mild 3 yes 62 273 1.51 204.3 

RTT215 19 c.547G>C p.G183R Missense 
Inter-domain 

region 
intermediate 5 NA NA NA NA 15 

RTT250 22 Large deletion Large deletion 
Large 

deletion 

Large 

deletion 
severe 11 yes 109 210 <0.35 29.8 

*According to RettBASE (http://mecp2.chw.edu.au/). CSS, Clinical Severity Score; ESR, Erythrocyte Sedimentation Rate; CRP, C-reactive protein; 

NA, not applicable. #Clinic phenotype attributed according to the CSS (mild, 1-4; intermediate, 5-8; severe, 9-13). 
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Supplementary Table 2: Spearman’s correlation analysis among RTT clinical data. 

 

 

 

 

 

 

 

 

 

 

 

  

Spearman's r Age CSS Constipation IgA ESR Calprotectin 

Age 1.000 0.090 0.350 0.596 0.409 0.177 

 CSS 1.000 0.137 0.211 0.234 0.092 

  Constipation 1.000 0.430 0.051 -0.089 

   IgA 1.000 0.462 0.017 

    ESR 1.000 0.205 

     Calprotectin 1.000 

       

       

p-value Age CSS Constipation IgA ESR Calprotectin 

Age 0.000 0.642 0.045 0.00009 0.024 0.379 

 CSS 0.000 0.539 0.323 0.323 0.642 

  Constipation 0.000 0.011 0.800 0.642 

   IgA 0.000 0.011 0.907 

    ESR 0.000 0.374 

     Calprotectin 0.000 
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Supplementary Table 3: Mean relative abundance (%) ± standard deviation (SD) of bacterial OTUs 

at phylum and genus levels in Rett syndrome (RTT) subjects and healthy controls (HC). 

 RTT HC 

Phylum mean SD mean SD 

Firmicutes 36.6560 16.3355 43.6145 14.4643 

Actinobacteria 40.5576 21.7507 19.5674 17.4821 

Bacteroidetes 15.1573 15.9453 30.2396 17.9768 

Proteobacteria 7.0502 11.3086 6.2200 9.7279 

Unknown 0.4947 0.8526 0.3044 0.2567 

Verrucomicrobia 0.0589 0.1550 0.0450 0.0804 

Synergistetes 0.0110 0.0591 0.0028 0.0120 

Fusobacteria 0.0080 0.0210 0.0003 0.0015 

TM7 0.0027 0.0064 0.0019 0.0104 

Lentisphaerae 0.0022 0.0158 0.0022 0.0091 

Elusimicrobia 0.0000 0.0000 0.0017 0.0089 

Cyanobacteria 0.0013 0.0061 0.0003 0.0015 

 

 RTT HC 

Genus mean SD mean SD 

Bifidobacterium 36.7042 21.9180 17.2935 16.4407 

Bacteroides 12.3152 13.8314 18.3145 15.2315 

Faecalibacterium 3.6678 4.9853 9.2303 9.4653 

Lachnospiracea incertae sedis 4.6103 4.9332 3.9995 2.5715 

Blautia 4.7655 7.0012 3.7541 5.6668 

Escherichia/Shigella 5.2332 11.0378 2.4657 9.0906 

Lachnospiraceae;Unknown 2.5140 2.2392 4.3575 2.9834 

Alistipes 1.3665 2.0459 4.7119 6.2269 

Streptococcus 2.3251 4.1986 2.9697 11.3418 

Gemmiger 1.1117 2.0365 3.1772 3.1064 

Ruminococcaceae;Unknown 1.2905 1.7899 2.9735 2.8355 

Ruminococcus 1.5287 2.5080 2.2076 1.9194 

Clostridium XI 1.5268 1.8281 1.2691 1.3289 

Collinsella 1.9867 3.3628 0.7221 1.0007 

Clostridiales;Unknown 0.6234 1.3096 2.0696 2.5707 



Parabacteroides 1.0523 1.9446 1.4590 1.5945 

Clostridium XVIII 1.3167 1.8063 1.1703 1.4937 

Anaerostipes 1.2669 1.5410 1.2065 1.0610 

Prevotella 0.0285 0.0968 2.2137 10.4531 

Erysipelotrichaceae incertae sedis 1.3897 2.0083 0.7190 1.6414 

Dialister 0.3793 1.3711 1.5186 3.5555 

Barnesiella 0.1787 0.4704 1.5752 2.8878 

Oscillibacter 0.5675 1.3085 1.1060 1.3587 

Enterococcus 1.2751 3.2763 0.2677 0.9199 

Coriobacteriaceae;Unknown 0.5619 1.3252 0.9567 1.6284 

Lactobacillus 1.2687 3.8816 0.0447 0.0689 

Clostridium sensu stricto 0.6903 1.5974 0.6045 0.7939 

Prevotellaceae;Unknown 0.0507 0.1724 1.1107 3.8195 

Firmicutes;Unknown 0.2289 0.7742 0.7980 1.2740 

Eggerthella 0.7638 1.8753 0.2498 0.5586 

Clostridium IV 0.4129 0.6337 0.4747 0.5825 

Veillonella 0.8229 2.1017 0.0547 0.1136 

Unknown 0.4947 0.8526 0.3044 0.2522 

Megamonas 0.6157 2.7667 0.0803 0.4250 

Phascolarctobacterium 0.1319 0.2905 0.4954 0.8446 

Flavonifractor 0.2888 0.3677 0.2713 0.3345 

Enterobacteriaceae;Unknown 0.4359 0.8197 0.1041 0.2101 

Butyricicoccus 0.2009 0.5159 0.3265 0.4766 

Catenibacterium 0.4675 2.6156 0.0276 0.1461 

Bifidobacteriaceae;Unknown 0.2497 0.1642 0.1615 0.1800 

Dorea 0.1787 0.2538 0.2219 0.2247 

Megasphaera 0.3791 1.4683 0.0000 0.0000 

Clostridium XlVa 0.2955 0.4094 0.0704 0.0715 

Odoribacter 0.1001 0.2170 0.2448 0.3198 

Coprococcus 0.0842 0.1999 0.2357 0.2602 

Acidaminococcus 0.1823 0.5856 0.1223 0.4516 

Turicibacter 0.2044 0.6219 0.0696 0.1336 

Clostridium XlVb 0.1561 0.2811 0.1063 0.1835 

Bacteroidetes;Unknown 0.0050 0.0194 0.2186 0.7603 



Olsenella 0.1324 0.6047 0.0618 0.2847 

Eubacterium 0.0751 0.1190 0.1143 0.1453 

Bilophila 0.0355 0.0899 0.1460 0.1932 

Paraprevotella 0.0125 0.0557 0.1568 0.3086 

Roseburia 0.0403 0.0522 0.1231 0.1111 

Parasutterella 0.0953 0.3672 0.0588 0.1199 

Butyricimonas 0.0331 0.0896 0.1140 0.1654 

Eubacteriaceae;Unknown 0.1372 0.4310 0.0019 0.0078 

Desulfovibrio 0.0482 0.1399 0.0789 0.1998 

Lactobacillales;Unknown 0.0874 0.1231 0.0334 0.0749 

Lactococcus 0.1087 0.4339 0.0097 0.0279 

Lactonifactor 0.0413 0.0465 0.0734 0.0600 

Porphyromonadaceae;Unknown 0.0040 0.0211 0.1021 0.3562 

Akkermansia 0.0584 0.1546 0.0450 0.0790 

Sarcina 0.0018 0.0075 0.0961 0.3427 

Granulicatella 0.0652 0.1346 0.0315 0.1098 

Peptostreptococcaceae;Unknown 0.0551 0.0655 0.0386 0.0532 

Coprobacillus 0.0453 0.1166 0.0362 0.0851 

Actinomyces 0.0631 0.1206 0.0155 0.0213 

Anaerotruncus 0.0519 0.1073 0.0248 0.0678 

Clostridia;Unknown 0.0115 0.0386 0.0638 0.2839 

Erysipelotrichaceae;Unknown 0.0499 0.1590 0.0229 0.0395 

Haemophilus 0.0207 0.0938 0.0491 0.1256 

Gordonibacter 0.0303 0.0561 0.0337 0.1103 

Slackia 0.0171 0.0546 0.0425 0.1459 

Clostridiaceae 1;Unknown 0.0157 0.0334 0.0389 0.0719 

Mitsuokella 0.0311 0.2185 0.0213 0.1125 

Sutterella 0.0154 0.0480 0.0356 0.1047 

Holdemania 0.0239 0.0409 0.0232 0.0282 

Alphaproteobacteria;Unknown 0.0019 0.0082 0.0439 0.1366 

Proteobacteria;Unknown 0.0232 0.1641 0.0039 0.0165 

Veillonellaceae;Unknown 0.0261 0.0729 0.0000 0.0000 

Enterorhabdus 0.0080 0.0371 0.0177 0.0822 

Burkholderiales;Unknown 0.0005 0.0034 0.0248 0.1123 



Allisonella 0.0216 0.0912 0.0006 0.0029 

Peptoniphilus 0.0118 0.0479 0.0066 0.0236 

Varibaculum 0.0155 0.0898 0.0022 0.0103 

Peptostreptococcus 0.0163 0.0536 0.0008 0.0024 

Desulfovibrionaceae;Unknown 0.0002 0.0011 0.0132 0.0470 

Pyramidobacter 0.0106 0.0590 0.0025 0.0117 

Sutterellaceae;Unknown 0.0062 0.0305 0.0063 0.0270 

Anaerofustis 0.0072 0.0131 0.0044 0.0112 

Porphyromonas 0.0061 0.0353 0.0052 0.0187 

Anaerococcus 0.0088 0.0231 0.0019 0.0058 

Pediococcus 0.0093 0.0432 0.0011 0.0046 

Morganella 0.0077 0.0236 0.0011 0.0058 

Corynebacterium 0.0056 0.0100 0.0030 0.0118 

Fusobacterium 0.0080 0.0210 0.0003 0.0015 

Bacteroidales;Unknown 0.0011 0.0040 0.0069 0.0160 

Clostridiales Incertae Sedis XI;Unknown 0.0027 0.0181 0.0052 0.0263 

Parvimonas 0.0074 0.0259 0.0003 0.0015 

Finegoldia 0.0056 0.0173 0.0019 0.0062 

Weissella 0.0067 0.0453 0.0003 0.0015 

Gemella 0.0050 0.0110 0.0014 0.0042 

Actinomycetales;Unknown 0.0051 0.0135 0.0008 0.0032 

Staphylococcus 0.0059 0.0198 0.0000 0.0000 

Proteus 0.0058 0.0206 0.0000 0.0000 

Oxalobacter 0.0011 0.0061 0.0044 0.0134 

Anaerofilum 0.0029 0.0107 0.0025 0.0060 

Pasteurellaceae;Unknown 0.0030 0.0136 0.0022 0.0091 

TM7 genera incertae sedis 0.0027 0.0064 0.0019 0.0102 

Peptococcus 0.0043 0.0153 0.0003 0.0015 

Victivallis 0.0022 0.0158 0.0022 0.0089 

Actinobacteria;Unknown 0.0011 0.0051 0.0033 0.0080 

Howardella 0.0043 0.0306 0.0000 0.0000 

Anaerovorax 0.0003 0.0023 0.0039 0.0148 

Rikenella 0.0011 0.0079 0.0030 0.0161 

Sporobacter 0.0008 0.0037 0.0030 0.0057 



Anaeroglobus 0.0037 0.0186 0.0000 0.0000 

Atopobium 0.0034 0.0111 0.0003 0.0015 

Kocuria 0.0030 0.0113 0.0000 0.0000 

Hydrogenoanaerobacterium 0.0000 0.0000 0.0028 0.0146 

Dysgonomonas 0.0021 0.0136 0.0006 0.0029 

Xylanibacter 0.0003 0.0023 0.0022 0.0078 

Actinomycetaceae;Unknown 0.0021 0.0082 0.0003 0.0015 

Propionibacterium 0.0018 0.0073 0.0006 0.0029 

Solobacterium 0.0021 0.0094 0.0000 0.0000 

Mogibacterium 0.0005 0.0034 0.0014 0.0052 

Deltaproteobacteria;Unknown 0.0002 0.0011 0.0017 0.0049 

Elusimicrobium 0.0000 0.0000 0.0017 0.0088 

Succiniclasticum 0.0016 0.0113 0.0000 0.0000 

Streptophyta 0.0013 0.0061 0.0003 0.0015 

Desulfovibrionales;Unknown 0.0006 0.0027 0.0008 0.0044 

Comamonas 0.0011 0.0079 0.0003 0.0015 

Acinetobacter 0.0008 0.0046 0.0006 0.0020 

Mobiluncus 0.0002 0.0011 0.0008 0.0032 

Cardiobacterium 0.0000 0.0000 0.0008 0.0044 

Scardovia 0.0008 0.0037 0.0000 0.0000 

Pseudomonas 0.0008 0.0040 0.0000 0.0000 

Cloacibacillus 0.0005 0.0034 0.0003 0.0015 

Pseudoramibacter 0.0006 0.0036 0.0000 0.0000 

Clostridiales Incertae Sedis XIII;Unknown 0.0006 0.0045 0.0000 0.0000 

Rothia 0.0003 0.0023 0.0003 0.0015 

Gordonia 0.0000 0.0000 0.0006 0.0029 

Paraeggerthella 0.0000 0.0000 0.0006 0.0029 

Actinobaculum 0.0005 0.0025 0.0000 0.0000 

Trueperella 0.0005 0.0034 0.0000 0.0000 

Abiotrophia 0.0005 0.0034 0.0000 0.0000 

Murdochiella 0.0005 0.0025 0.0000 0.0000 

Schwartzia 0.0005 0.0034 0.0000 0.0000 

Rhizobacter 0.0005 0.0034 0.0000 0.0000 

Puniceicoccaceae;Unknown 0.0005 0.0034 0.0000 0.0000 



Leclercia 0.0002 0.0011 0.0003 0.0015 

Arcanobacterium 0.0003 0.0023 0.0000 0.0000 

Devosia 0.0003 0.0023 0.0000 0.0000 

Enhydrobacter 0.0003 0.0023 0.0000 0.0000 

Rikenellaceae;Unknown 0.0000 0.0000 0.0003 0.0015 

Pseudoflavonifractor 0.0000 0.0000 0.0003 0.0015 

Mesorhizobium 0.0000 0.0000 0.0003 0.0015 

Alloscardovia 0.0002 0.0011 0.0000 0.0000 

Bacillus 0.0002 0.0011 0.0000 0.0000 

Facklamia 0.0002 0.0011 0.0000 0.0000 

Tetragenococcus 0.0002 0.0011 0.0000 0.0000 

Lactobacillaceae;Unknown 0.0002 0.0011 0.0000 0.0000 

Selenomonas 0.0002 0.0011 0.0000 0.0000 

 

 

  



Supplementary Table 4: Wilcoxon rank-sum test comparison of bacterial relative abundances at 

phylum and genus levels. 

Phylum p-value FDR 

Actinobacteria 0.00005 0.00170 

Bacteroidetes 0.00008 0.00213 

Fusobacteria 0.02407 0.08647 

Firmicutes 0.07023 0.20600 

TM7 0.07675 0.21441 

Lentisphaerae 0.11732 0.27065 

Elusimicrobia 0.19816 0.36712 

Cyanobacteria/Chloroplast 0.61100 0.73654 

Unknown 0.72561 0.78848 

Verrucomicrobia 0.82300 0.87787 

Proteobacteria 1.00000 1.00000 

Synergistetes 1.00000 1.00000 

 

Genus p-value FDR 

Clostridiales;Unknown 0.00003 0.00152 

Firmicutes;Unknown 0.00002 0.00152 

Gemmiger 0.00001 0.00152 

Barnesiella 0.00004 0.00170 

Coprococcus 0.00008 0.00213 

Bifidobacterium 0.00011 0.00222 

Roseburia 0.00011 0.00222 

Eggerthella 0.00016 0.00286 

Ruminococcaceae;Unknown 0.00027 0.00434 

Escherichia/Shigella 0.00033 0.00446 

Veillonellaceae;Unknown 0.00031 0.00446 

Enterococcus 0.00044 0.00518 

Porphyromonadaceae;Unknown 0.00042 0.00518 

Lactobacillales;Unknown 0.00048 0.00533 

Erysipelotrichaceae incertae sedis 0.00082 0.00847 

Alistipes 0.00104 0.01014 



Odoribacter 0.00116 0.01076 

Lachnospiraceae;Unknown 0.00129 0.01131 

Butyricimonas 0.00137 0.01151 

Bilophila 0.00156 0.01251 

Enterobacteriaceae;Unknown 0.00169 0.01280 

Haemophilus 0.00175 0.01280 

Megasphaera 0.00197 0.01387 

Ruminococcus 0.00273 0.01846 

Clostridium XlVa 0.00309 0.02012 

Lactonifactor 0.00322 0.02025 

Oscillibacter 0.00382 0.02317 

Eubacteriaceae;Unknown 0.00429 0.02515 

Dialister 0.00451 0.02562 

Coriobacteriaceae;Unknown 0.00547 0.03006 

Faecalibacterium 0.00592 0.03159 

Actinomyces 0.00658 0.03311 

Bifidobacteriaceae;Unknown 0.00659 0.03311 

Butyricicoccus 0.00700 0.03423 

Sporobacter 0.00894 0.04251 

Desulfovibrionaceae;Unknown 0.01314 0.05928 

Parabacteroides 0.01291 0.05928 

Granulicatella 0.01377 0.06060 

Alphaproteobacteria;Unknown 0.01456 0.06102 

Burkholderiales;Unknown 0.01441 0.06102 

Paraprevotella 0.01553 0.06358 

Bacteroidales;Unknown 0.01689 0.06756 

Bacteroides 0.01804 0.07056 

Sarcina 0.02012 0.07696 

Lactobacillus 0.02140 0.08013 

Fusobacterium 0.02407 0.08647 

Parvimonas 0.02457 0.08648 

Prevotella 0.02635 0.09094 

Corynebacterium 0.03468 0.11737 

Deltaproteobacteria;Unknown 0.03929 0.13047 



Phascolarctobacterium 0.04454 0.14517 

Anaerotruncus 0.05115 0.16368 

Kocuria 0.05544 0.16824 

Proteus 0.05543 0.16824 

Staphylococcus 0.05544 0.16824 

Allisonella 0.06077 0.18127 

TM7 genera incertae sedis 0.07675 0.21441 

Veillonella 0.07562 0.21441 

Solobacterium 0.08268 0.22737 

Peptostreptococcus 0.09151 0.24777 

Bacteroidetes;Unknown 0.09792 0.25344 

Dorea 0.09768 0.25344 

Morganella 0.09518 0.25344 

Anaerococcus 0.09997 0.25499 

Actinobacteria;Unknown 0.11330 0.27065 

Clostridium IV 0.11594 0.27065 

Eubacterium 0.11708 0.27065 

Gemella 0.11841 0.27065 

Oxalobacter 0.11592 0.27065 

Victivallis 0.11732 0.27065 

Xylanibacter 0.10821 0.27065 

Lactococcus 0.12012 0.27103 

Anaeroglobus 0.12372 0.27563 

Streptococcus 0.14862 0.32697 

Actinomycetales;Unknown 0.15086 0.32779 

Clostridiaceae 1;Unknown 0.16208 0.34631 

Sutterella 0.16331 0.34631 

Atopobium 0.19007 0.36712 

Cardiobacterium 0.19816 0.36712 

Elusimicrobium 0.19816 0.36712 

Gordonia 0.19816 0.36712 

Hydrogenoanaerobacterium 0.19816 0.36712 

Mesorhizobium 0.19816 0.36712 

Paraeggerthella 0.19816 0.36712 



Parasutterella 0.18578 0.36712 

Pseudoflavonifractor 0.19816 0.36712 

Rikenellaceae;Unknown 0.19816 0.36712 

Scardovia 0.18658 0.36712 

Clostridium XlVb 0.21116 0.38713 

Gordonibacter 0.24322 0.44130 

Actinobaculum 0.28677 0.48033 

Anaerovorax 0.26886 0.48033 

Mobiluncus 0.27554 0.48033 

Mogibacterium 0.28929 0.48033 

Murdochiella 0.28677 0.48033 

Peptococcus 0.27305 0.48033 

Peptostreptococcaceae;Unknown 0.27728 0.48033 

Pseudomonas 0.28677 0.48033 

Pseudoramibacter 0.28677 0.48033 

Megamonas 0.29292 0.48181 

Proteobacteria;Unknown 0.29637 0.48297 

Acidaminococcus 0.30026 0.48482 

Olsenella 0.30607 0.48971 

Varibaculum 0.33763 0.53535 

Anaerofustis 0.35423 0.55665 

Clostridium sensu stricto 0.36173 0.56340 

Finegoldia 0.37028 0.57166 

Erysipelotrichaceae;Unknown 0.37391 0.57224 

Holdemania 0.38664 0.58662 

Abiotrophia 0.46215 0.59371 

Alloscardovia 0.46215 0.59371 

Anaerofilum 0.40288 0.59371 

Anaerostipes 0.40712 0.59371 

Arcanobacterium 0.46215 0.59371 

Bacillus 0.46215 0.59371 

Clostridiales Incertae Sedis XIII;Unknown 0.46215 0.59371 

Devosia 0.46215 0.59371 

Enhydrobacter 0.46215 0.59371 



Facklamia 0.46215 0.59371 

Howardella 0.46215 0.59371 

Lactobacillaceae;Unknown 0.46215 0.59371 

Propionibacterium 0.43349 0.59371 

Puniceicoccaceae;Unknown 0.46215 0.59371 

Rhizobacter 0.46215 0.59371 

Schwartzia 0.46215 0.59371 

Selenomonas 0.46215 0.59371 

Succiniclasticum 0.46215 0.59371 

Tetragenococcus 0.46215 0.59371 

Trueperella 0.46215 0.59371 

Unknown 0.41255 0.59371 

Prevotellaceae;Unknown 0.48211 0.61486 

Turicibacter 0.48796 0.61785 

Collinsella 0.52711 0.66265 

Coprobacillus 0.53092 0.66271 

Unknown 0.57398 0.71142 

Flavonifractor 0.58619 0.72147 

Acinetobacter 0.60160 0.73529 

Streptophyta 0.61100 0.73654 

Catenibacterium 0.62043 0.74282 

Blautia 0.64352 0.75506 

Pediococcus 0.63506 0.75506 

Pyramidobacter 0.64239 0.75506 

Desulfovibrionales;Unknown 0.65869 0.76774 

Slackia 0.67791 0.78495 

Cloacibacillus 0.72253 0.78848 

Clostridia;Unknown 0.69455 0.78848 

Comamonas 0.72253 0.78848 

Lachnospiracea incertae sedis 0.72185 0.78848 

Leclercia 0.70856 0.78848 

Porphyromonas 0.72576 0.78848 

Rikenella 0.69472 0.78848 

Rothia 0.72253 0.78848 



Unknown 0.72561 0.78848 

Desulfovibrio 0.74359 0.80289 

Akkermansia 0.80929 0.86850 

Enterorhabdus 0.88503 0.93246 

Sutterellaceae;Unknown 0.88503 0.93246 

Weissella 0.89007 0.93246 

Clostridium XVIII 0.90285 0.93566 

Dysgonomonas 0.91439 0.93566 

Mitsuokella 0.91439 0.93566 

Pasteurellaceae;Unknown 0.91364 0.93566 

Peptoniphilus 0.92302 0.93902 

Clostridium XI 0.96755 0.97867 
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Supplementary Table 5: Statistics of the significantly different metabolic pathways (KEGG categories) inferred with PICRUSt in the gut microbiota of 

healthy controls (HC) and Rett syndrome (RTT) subjects (Welch’s t-test, p<0.05 FDR-corrected) from 16S rDNA data. 

KEGG categories 
Healthy controls RTT patients 

p-values p-adj 95.0% lower CI 95.0% upper CI 
mean rel. freq. (%) std. dev. (%) mean rel. freq. (%) std. dev. (%) 

Phosphotransferase system (PTS) 0.371433 0.123433 0.598653 0.258281 0.000002 0.000536 -0.314180 -0.140261 

Transporters 6.808851 0.965836 7.889148 0.943105 0.000014 0.000887 -1.534563 -0.626031 

Chromosome 1.575911 0.091076 1.479764 0.062469 0.000011 0.000936 0.057055 0.135238 

Restriction enzyme 0.216111 0.043790 0.166141 0.042151 0.000009 0.000982 0.029472 0.070469 

Chaperones and folding catalysts 1.008852 0.092890 0.911429 0.077359 0.000021 0.001145 0.055760 0.139086 

Transcription machinery 0.976725 0.100412 0.867090 0.102835 0.000025 0.001186 0.061622 0.157648 

Lipid biosynthesis proteins 0.579641 0.036582 0.534886 0.042453 0.000007 0.001227 0.026391 0.063119 

Ascorbate and aldarate metabolism 0.098602 0.022726 0.128234 0.036042 0.000032 0.001324 -0.042985 -0.016279 

Plant-pathogen interaction 0.140824 0.018886 0.120213 0.021061 0.000040 0.001456 0.011284 0.029937 

General function prediction only 3.608275 0.137215 3.458786 0.155383 0.000045 0.001468 0.081304 0.217673 

Xylene degradation 0.058345 0.019100 0.076697 0.017200 0.000101 0.001944 -0.027109 -0.009596 

ABC transporters 3.178954 0.422589 3.605578 0.441775 0.000092 0.002010 -0.630201 -0.223046 

Protein processing in endoplasmic reticulum 0.064067 0.015210 0.048903 0.015541 0.000099 0.002028 0.007897 0.022431 

Chagas disease (American trypanosomiasis) 0.008754 0.008443 0.018124 0.011049 0.000084 0.002111 -0.013845 -0.004894 

Protein export 0.603850 0.032683 0.571587 0.031658 0.000091 0.002125 0.016933 0.047595 

Transcription related proteins 0.003437 0.002811 0.007184 0.005401 0.000145 0.002163 -0.005612 -0.001881 

Epithelial cell signaling in Helicobacter pylori infection 0.094189 0.011868 0.082544 0.012551 0.000144 0.002253 0.005904 0.017387 

Chlorocyclohexane and chlorobenzene degradation 0.011154 0.005722 0.017594 0.007702 0.000083 0.002257 -0.009515 -0.003365 

Energy metabolism 0.869032 0.121532 0.750978 0.127371 0.000159 0.002265 0.059453 0.176656 

Drug metabolism - other enzymes 0.335110 0.037774 0.302137 0.020652 0.000127 0.002322 0.017333 0.048613 

Prostate cancer 0.040448 0.009196 0.031359 0.009916 0.000143 0.002348 0.004607 0.013571 

Dioxin degradation 0.060495 0.020803 0.079556 0.016884 0.000139 0.002406 -0.028330 -0.009793 

African trypanosomiasis 0.009944 0.008824 0.019585 0.011132 0.000083 0.002462 -0.014238 -0.005045 



Chloroalkane and chloroalkene degradation 0.197584 0.035617 0.230084 0.031046 0.000182 0.002483 -0.048675 -0.016324 

Glycerophospholipid metabolism 0.556524 0.045365 0.514331 0.043530 0.000197 0.002484 0.020979 0.063406 

Riboflavin metabolism 0.211331 0.039616 0.176516 0.029317 0.000191 0.002507 0.017544 0.052085 

Ion channels 0.017188 0.010138 0.026582 0.010465 0.000276 0.003348 -0.014256 -0.004533 

Drug metabolism - cytochrome P450 0.032544 0.015327 0.047231 0.017704 0.000300 0.003519 -0.022366 -0.007008 

Metabolism of xenobiotics by cytochrome P450 0.032463 0.015297 0.047071 0.017762 0.000322 0.003640 -0.022289 -0.006927 

Cytoskeleton proteins 0.392817 0.047263 0.350158 0.048095 0.000361 0.003816 0.020111 0.065207 

Ubiquitin system 0.013709 0.007738 0.021551 0.010444 0.000350 0.003828 -0.012007 -0.003677 

Progesterone-mediated oocyte maturation 0.036074 0.007734 0.028931 0.008823 0.000446 0.004307 0.003287 0.010997 

Synthesis and degradation of ketone bodies 0.021521 0.006037 0.016095 0.006313 0.000423 0.004333 0.002518 0.008335 

Prion diseases 0.003041 0.001880 0.005617 0.004260 0.000479 0.004365 -0.003981 -0.001172 

Antigen processing and presentation 0.036074 0.007734 0.028931 0.008823 0.000446 0.004437 0.003287 0.010997 

NOD-like receptor signaling pathway 0.038380 0.009217 0.030182 0.009629 0.000478 0.004476 0.003759 0.012637 

Butirosin and neomycin biosynthesis 0.076643 0.012314 0.065715 0.013611 0.000619 0.005491 0.004868 0.016987 

One carbon pool by folate 0.639248 0.058686 0.593137 0.042400 0.000683 0.005897 0.020657 0.071563 

Flagellar assembly 0.207395 0.095427 0.126996 0.094264 0.000723 0.006078 0.035341 0.125457 

Carbon fixation in photosynthetic organisms 0.673432 0.036854 0.643658 0.032598 0.000811 0.006654 0.012967 0.046582 

Function unknown 1.221045 0.106717 1.314148 0.124039 0.000931 0.007448 -0.146709 -0.039496 

Proximal tubule bicarbonate reclamation 0.020030 0.008701 0.012757 0.009208 0.001010 0.007886 0.003063 0.011484 

Others 0.927654 0.072299 0.983807 0.060567 0.001070 0.008159 -0.088631 -0.023676 

Polyketide sugar unit biosynthesis 0.237731 0.030644 0.213450 0.030187 0.001377 0.010264 0.009825 0.038737 

Carbohydrate metabolism 0.195214 0.030237 0.220358 0.034839 0.001486 0.010832 -0.040277 -0.010010 

Histidine metabolism 0.690466 0.074480 0.637199 0.052650 0.001721 0.012269 0.021108 0.085426 

Inositol phosphate metabolism 0.101559 0.012481 0.112350 0.016401 0.001789 0.012485 -0.017420 -0.004162 

Fatty acid metabolism 0.258928 0.041966 0.294572 0.053866 0.001912 0.012801 -0.057683 -0.013604 

Proteasome 0.052386 0.012189 0.062559 0.014996 0.001883 0.012868 -0.016450 -0.003896 

Ribosome biogenesis in eukaryotes 0.055503 0.013070 0.066227 0.015763 0.002045 0.013417 -0.017394 -0.004053 

Translation factors 0.552452 0.040026 0.524852 0.028837 0.002494 0.016043 0.010250 0.044950 



Base excision repair 0.440707 0.021299 0.424864 0.021213 0.002622 0.016537 0.005758 0.025928 

Tyrosine metabolism 0.360993 0.032997 0.388238 0.043420 0.002793 0.016967 -0.044782 -0.009707 

Polycyclic aromatic hydrocarbon degradation 0.117622 0.012024 0.108404 0.013412 0.002870 0.017114 0.003280 0.015157 

Bacterial chemotaxis 0.288587 0.078897 0.232275 0.071952 0.002990 0.017207 0.020004 0.092621 

Primary immunodeficiency 0.048920 0.007695 0.055219 0.010062 0.002940 0.017222 -0.010377 -0.002222 

Transcription factors 1.690215 0.177764 1.823132 0.183453 0.002786 0.017244 -0.218151 -0.047684 

Shigellosis 0.000000 0.000000 0.000004 0.000010 0.003219 0.018207 -0.000007 -0.000002 

Pathways in cancer 0.039025 0.008329 0.032571 0.010061 0.003486 0.019379 0.002200 0.010708 

Carbon fixation pathways in prokaryotes 0.949869 0.081717 0.892225 0.077806 0.003703 0.020242 0.019527 0.095761 

Lipid metabolism 0.123550 0.023902 0.104193 0.033699 0.004484 0.024113 0.006202 0.032512 

Bacterial motility proteins 0.556595 0.189692 0.425357 0.184722 0.004626 0.024474 0.042100 0.220374 

Ribosome Biogenesis 1.429153 0.078921 1.378516 0.061728 0.005296 0.027571 0.015793 0.085481 

Selenocompound metabolism 0.387517 0.028658 0.409540 0.038965 0.005928 0.030379 -0.037503 -0.006542 

Glutathione metabolism 0.194576 0.037021 0.220928 0.042683 0.006022 0.030386 -0.044885 -0.007818 

Membrane and intracellular structural molecules 0.489043 0.137976 0.392971 0.152215 0.006243 0.031026 0.028225 0.163918 

Other transporters 0.256346 0.029236 0.232426 0.045811 0.006605 0.031862 0.006862 0.040978 

Zeatin biosynthesis 0.056130 0.008212 0.051131 0.005685 0.006582 0.032220 0.001468 0.008530 

Ethylbenzene degradation 0.040695 0.014248 0.031044 0.015234 0.007055 0.033537 0.002729 0.016573 

Propanoate metabolism 0.461379 0.036262 0.485831 0.040058 0.008005 0.035966 -0.042292 -0.006612 

Styrene degradation 0.011358 0.005122 0.015654 0.008668 0.007786 0.035968 -0.007425 -0.001166 

Arginine and proline metabolism 1.282244 0.086147 1.228878 0.071400 0.007691 0.036038 0.014776 0.091956 

Retinol metabolism 0.035106 0.012620 0.044640 0.017861 0.007927 0.036114 -0.016493 -0.002574 

Glycosphingolipid biosynthesis - ganglio series 0.069709 0.042315 0.042320 0.042644 0.008474 0.037561 0.007270 0.047508 

Insulin signaling pathway 0.089897 0.011488 0.082731 0.011126 0.010051 0.042816 0.001778 0.012555 

Tuberculosis 0.155036 0.012125 0.147335 0.012348 0.009963 0.043000 0.001914 0.013487 

Basal transcription factors 0.002927 0.003096 0.001199 0.001756 0.009916 0.043365 0.000439 0.003016 

Glutamatergic synapse 0.116836 0.011225 0.109912 0.010650 0.010393 0.043703 0.001694 0.012154 

Biosynthesis of ansamycins 0.112961 0.011872 0.104325 0.017073 0.011067 0.045948 0.002033 0.015239 



Supplementary Figure 9 

 



Supplementary Figure 10

 



Supplementary Figure 11 

 



Supplementary Figure 12

 



159 

Chapter 4 

Intestinal Candida isolates from Rett syndrome subjects bear 

potential virulent traits and capacity to persist within the host 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter will be shortly submitted for publication as an original research article: 

 

Strati F, De Filippo C, Rizzetto L, De Felice C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, Donati C and 

Cavalieri D (2016). Intestinal Candida isolates from Rett syndrome subjects bear potential virulent traits and capacity to 

persist within the host. 
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The gut mycobiota, together with its bacterial counterpart, exerts key roles in maintaining 

microbial community structure, metabolic functions and has strong immunomodulatory properties, 

being a main actor in host physiopathology [1, 2]. Since previous observations indicated the presence 

of a subclinical inflammatory status [3], cytokine dysregulation in both Th1 and Th17 responses [4, 

5] and intestinal dysbiosis in RTT subjects, we asked whether fungal isolates from stool samples of 

RTT subjects may hold virulence traits and immunomodulatory properties favouring the not yet well 

understood sub-inflammatory status triggered by MeCP2 deficiency.  

We discovered that C. parapsilosis was the most abundant species retrieved in RTT’s faecal samples. 

These isolates were characterized by high resistance to azoles antifungals and using RAPD 

genotyping we found them genetically unrelated to the C. parapsilosis isolates from healthy controls. 

Furthermore, RTT C. parapsilosis isolates exerted strong immunological responses in human PBMCs 

inducing high levels of IL-10 and a mixed population of Th1/Th17 cells suggesting the capacity of 

these fungi to persist within the host being potentially involved in chronic, pro-inflammatory 

responses. 

This research project gave me the possibility to gain experience in immunology and cellular 

microbiology being specifically trained in isolation, stimulation of human peripheral blood 

mononuclear cells, intracellular staining of transcription factors and measurements of cytokines by 

using flow cytometry and immunoassays. As first author I designed and performed all the 

experiments, analysed the data, wrote the manuscript and generated figures and tables. 
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Abstract 

Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has 

been shown that MeCP2 impairments can lead to cytokine dysregulation due to the MeCP2 regulatory 

role in T-helper and T-reg mediated responses, therefore contributing to the pro-inflammatory status 

associated with RTT. Furthermore the intestinal dysbiosis recently demonstrated in RTT is a known 

factor responsible for hyper activation of pro-inflammatory immune responses in different intestinal 

and extra-intestinal pathologies. Here, we studied the cultivable gut mycobiota of RTT subjects 

characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and 

immunomodulatory properties in order to elucidate the role of fungi in RTT’s intestinal dysbiosis and 

gastrointestinal physiology. Phenotypical analysis of the gut mycobiota in RTT revealed that RTT’s 

isolates produced more biofilm and were significantly more resistant to fluconazole compared to the 

isolates from the healthy subjects. Furthermore C. parapsilosis was the most abundant yeast species 

in RTT subjects, showing distinct genotypic profiles if compared to healthy controls’ C. parapsilosis 

isolates as measured by hierarchical clustering analysis from RAPD genotyping. Such C. parapsilosis 

isolates were also characterized by high levels of resistance to azoles antifungals, making them a 

difficult target in case of fungal infections. In addition, the high levels of IL-10 produced by PBMCs 

and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates, suggest the 

capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-

inflammatory responses which mechanisms are still to be elucidated in RTT. 

 

Introduction 

Rett syndrome (RTT) is a neurological disorder that almost exclusively affects females with an 

incidence of 1:10,000 live births [1] due to a loss-of-function mutations of the X-linked methyl-CpG 

binding protein 2 (MeCP2) gene in approximately the 90% of classical cases of RTT [2]. RTT 

subjects develop normally up to 18 months of age after which they undergo a period of neurological 

regression [1]. RTT affects several organs and system among which the autonomic nervous system 

[1], the gastrointestinal tract [3] and the immune system [4] making it eligible as a multisystemic 

disease [1]. Indeed, it has been shown that MeCP2 deficiency is able to lead to cytokine dysregulation 

[4, 5], to influence the expression of Foxp3 [6], important transcription factor involved in the 

generation of regulatory T (T-reg) cells, and to determine the significant increase of secreted IL-17A 

[6]. Since the T-helper (Th)17/T-reg balance is crucial for the development of 

autoimmune/inflammatory disorders it is possible to hypothesize the presence of an autoimmune 

component in RTT [7]. To this regard, intestinal dysbiosis may cause chronic intestinal inflammation 

and autoimmunity as occur in Inflammatory Bowel Diseases (IBDs) [8]. The disruption of the 
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microbial community structure may lead to inflammation involving hyper activation of Th1 and Th17 

immune responses [9]. Altered immunological response to fungi can in turn contribute to systemic 

inflammatory responses. Remarkably, fungal infections shift indoleamine 2,3-dioxygenase’s activity 

(IDO1) [10, 11], reducing the levels of kynurenine [12], a neuroprotective agent. The levels of 

kynurenine are moreover affected by the immune system, dysfunction of which has been implicated 

in several pathologies, including autism spectrum disorders [13]. The host response to fungi is 

mediated at first by innate immunity and then by adaptive immune responses, especially by Th1 and 

Th17 responses [14]. Previous studies indicated the presence of a subclinical inflammatory status in 

subjects affected by RTT [15] remarked by cytokine dysregulation in both Th1 and Th17 responses 

[5, 6, 16, 17] and an intestinal dysbiosis characterized by high relative abundance of the genus 

Candida [18]. Therefore we asked whether the intestinal fungal population of RTT subjects may be 

involved in the sub-inflammatory status triggered by MeCP2 deficiency that still remains elusive. 

Here we studied the cultivable gut mycobiota of RTT subjects characterizing the isolated fungi for 

their virulence-related traits and antifungal resistance. Moreover we characterized the genetic 

diversity of C. albicans and C. parapsilosis isolates and their ability to induce innate and adaptive 

immunological responses in human PBMCs in order to elucidate the role of fungi in RTT 

gastrointestinal physiology. 

 

Results 

RTT gut mycobiota shows a reduction of C. albicans and an expansion of C. parapsilosis 

population 

We identified 122 fungal isolates belonging to different species (Supplementary Table 1). Twenty-

four of such isolates were obtained from stool samples of RTT subjects (Supplementary Table 1). We 

discovered a significant reduction of fungal species richness in RTT subjects compared to HC 

(p=3.9e-05, Wilcoxon rank-sum test) in agreement with the results obtained in our previous work 

[18]. Candida was the most abundant genus present in both RTT subjects (91.7%) and HC (71.4%) 

with C. albicans and C. parapsilosis as the two most abundant species in both RTT subjects and HC. 

Interestingly we observed a particular trend in which the higher was the number of isolated C. 

albicans the lower was the number of isolated C. parapsilosis and vice versa i.e. in RTT subjects 4 

out of 24 fungal isolates belonged to C. albicans (16.7%) while 14 out of 24 belonged to C. 

parapsilosis (58.3%); in the HC, 49 out of 98 fungal isolates belonged to C. albicans (50%) while 15 

out of 98 belonged to C. parapsilosis (15.3%) (Supplementary Fig. 1). Although the cultivable gut 

mycobiota of the inspected individuals was often characterized by a predominant fungal species, the 

concomitant presence of different Candida species in different subjects, as well as other fungi, was 
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also observed (Supplementary Table 1) making possible to hypothesize the presence of phenomena 

of competitive exclusion. 

We then characterized the fungal isolates for putative virulence-associated traits and resistance to 

antifungals (Supplementary Table 1). The 50% and the 63.8% of fungal isolates from RTT subjects 

and HC respectively were able to form hyphae or pseudohyphae (Supplementary Table 1). In 

addition, we observed that the morphotype switch to hyphae or pseudohyphae was related to the 

isolates’ invasiveness, with hyphae- and pseudohyphae-forming isolates being the most invasive 

(Supplementary Fig. 2a). We also observed that RTT isolates produced more biofilm (p=1.3e-05, 

Wilcoxon rank-sum test; Supplementary Fig. 2b) and were significantly more resistant to fluconazole 

compared to HC isolates (45.8% of RTT isolates were resistant vs 18.1% of HC isolates; p=5.1e-06, 

Wilcoxon rank-sum test). As previously observed, we found the co-occurrence of azole cross-

resistance between fluconazole and itraconazole (Spearman’s correlation r=0.57; p=2.2e-10) [19]. 

Almost the totality of the isolates were susceptible to 5-flucytosine with MIC≤0.125μg/ml 

(Supplementary Table 1). C. parapsilosis isolates from HC were sensible to fluconazole 

(MIC90=2μg/ml; R=7.7%) and itraconazole (MIC90=0.0156μg/ml; R=0%) while C. parapsilosis 

isolates from RTT subjects exhibited a high resistance to these antifungals (fluconazole, 

MIC90>64μg/ml, R=35.7%, p=0.003, Wilcoxon rank-sum test, Figure 1a; itraconazole, 

MIC90>8μg/ml, R=35.7%; Table 1). On the contrary, C. albicans isolates from HC exhibited low 

susceptibility to fluconazole (MIC90>64μg/ml, R=23.8%) and itraconazole (MIC90>8μg/ml, 

R=47.6%; p=0.03, Wilcoxon rank-sum test; Figure 1b) while the totality of RTT C. albicans isolates 

were susceptible to such azoles (Table 1). 

 

Figure 1: a) Fluconazole and b) itraconazole resistance as measured by MIC values in C. albicans and C. 

parapsilosis isolates from HC and RTT subjects. MIC values are reported as means ± standard errors. Exact 

p-values are reported and considered significant if < 0.05. 
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Noteworthy, all the others Candida species isolated from RTT subjects (i.e. C. glabrata, C. 

pararugosa and C. tropicalis) were resistant to fluconazole (MIC90>64μg/ml; R=100%) and 

itraconazole (MIC90=8μg/ml; R=100%) while the Candida spp. isolated from HC (i.e. C. deformans, 

C. intermedia and C. lusitaniae) were completely susceptible to these azoles (Table 1). 

 

 Table 1. Antifungals resistance of Candida isolates from HC or RTT subjects 

 #According to Pfaller et al. 2012; S = sensible; SDD = Sensibility Dose-Dependent or Intermediate; R = Resistant; MIC 

ranges: Fluconazole 0.125-64 μg/ml; Itraconazole 0.0156-8 μg/ml; 5-Flucytosine 0.125-64 μg/ml. *Candida spp. isolated 

from RTT subjects (i.e. C. glabrata, C. pararugosa and C. tropicalis); Candida spp. isolated from HC (i.e. C. deformans, 

C. intermedia and C. lusitaniae). 

 

Taken together these results suggest that RTT isolates may be more virulent and difficult to treat in 

case of infection than HC isolates. Finally, we have been able to isolate Trichosporon asteroides and 

Saccharomyces cerevisiae only from RTT subjects. These isolates were both resistant to fluconazole 

(with MIC>64μg/ml and MIC=8μg/ml respectively) while Trichosporon asteroides was also resistant 

to itraconazole (MIC>8μg/ml). Such species are recognized as potential new emerging fungal 

pathogens [20] representing a potential treat in RTT subjects.  

 

C. parapsilosis isolates from RTT subjects and HC are genetically distinct  

The genetic diversity among Candida isolates from HC and RTT subjects was determined by 

UPGMA hierarchical clustering analysis of Jaccard distances calculated from RAPD genotyping. We 

observed that C. parapsilosis isolates from RTT samples were genetically unrelated to those from 

HC, with most of RTT C. parapsilosis isolates clustering in a single group (Figure 2 and 

Supplementary Fig. 3; p=0.002, PERMANOVA). On the contrary C. albicans isolates from RTT 

subjects were genetically more variable among them, clustering in different clade of the tree 

Species Antifungals 

Healthy controls (HC) Rett syndrome (RTT) subjects 

MIC (μg/ml) #Clinical breakpoints MIC (μg/ml) #Clinical breakpoints 

MIC50 MIC90 %S %SDD %R MIC50 MIC90 %S %SDD %R 

C. albicans 

Fluconazole 0.5 > 64 76.2 0 23.8 1 2 75 25 0 

Itraconazole 0.25 > 8 47.6 4.8 47.6 0.0156 0.0156 100 0 0 

5-Flucytosine 0.125 0.5 95.2 2.4 2.4 0.125 0.125 100 0 0 

C. parapsilosis 

Fluconazole 0.5 2 92.3 0 7.7 2 > 64 64.3 0 35.7 

Itraconazole 0.0156 0.125 100 0 0 0.0156 > 8 64.3 0 35.7 

5-Flucytosine 0.125 0.5 100 0 0 0.125 0.125 100 0 0 

*Candida spp. 

Fluconazole 0.125 0.25 100 0 0 > 64 > 64 0 0 100 

Itraconazole 0.0156 0.0156 100 0 0 8 8 0 0 100 

5-Flucytosine 0.125 0.125 100 0 0 0.125 0.125 100 0 0 
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(Supplementary Fig. 4; p=0.779, PERMANOVA). It is worth to note that we only obtained 4 C. 

albicans isolates from RTT samples. 

 

Figure 2: Multidimensional scaling analysis of C. parapsilosis genetic diversity calculated by UPGMA 

hierarchical clustering analysis of samples’ distance similarities (Jaccard index) from RAPD genotyping. C. 

parapsilosis isolates from HC and RTT subjects in green and red, respectively. 

 

Candida parapsilosis from RTT subjects induces high levels of IL-10 in PBMCs 

The first step in the immunological response against Candida is the production of pro-inflammatory 

cytokines, such as IL-1β, IL-6 and TNFα, by innate immune cells. Later, these cytokines will promote 

adaptive immunity mediated by Th1 or Th17 responses [14]. Stimulation of PBMCs with C. albicans 

and C. parapsilosis isolates from HC and RTT subjects revealed that RTT Candida isolates induces 

higher levels of IL-1β, IL-6 and TNFα with respect to HC Candida isolates (Figure 3). On the 

contrary, any remarkable difference was observed in the levels of IL-17A, IL-22 and INFγ (Figure 

3). Furthermore we observed that C. parapsilosis isolates from RTT subjects induced highly 

significant levels of IL-10 compared to HC C. parapsilosis isolates and RTT C. albicans isolates 

(p<0.003, Wilcoxon rank-sum test; Figure 3) suggesting an increased fungal tolerance towards these 

C. parapsilosis isolates, potentially favouring fungal persistence within the host.  

 

Figure 3: Cytokines production by peripheral blood mononuclear cells (PBMCs; 5x105 cell) after stimulation 

with 5x106 heat-killed C. albicans or C. parapsilosis isolates from HC and RTT subjects. In panels a-d) are 

reported the values for the cytokines produced by innate immune cells (IL-1β, IL-6, TNFα and IL-10 after 24h 

of PBMCs stimulation) while in e-h) the values for the cytokines produced following adaptive immune 

responses (IL-17A, IL-22, IFNγ and IL-10 after 5 days of PBMCs stimulation). The dots represent each of the 

three replicates per isolate tested; *p<0.05, Wilcoxon rank-sum test. (See figure 3 on next page). 



Chapter 4 

167 

Figure 3 
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Nevertheless we did not observe significant differences in the expression of IDO1 in PBMCs 

stimulated by C. parapsilosis isolates. Since we observed variable levels of Th-driving cytokines, we 

asked whether Candida isolates were able to induce a different Th1/Th17 polarization. We therefore 

measured the intracellular levels of the key transcription factors T-bet and RORγt (Supplementary 

Fig. 5), involved in the differentiation of CD4+ naïve cells in Th1 and Th17 cells, respectively [21]. 

Reflecting the potential of different strains to elicit the immune response at different extents, as 

previously observed in culture supernatants, we measured variable, but not significant, levels of T-

bet and RORγt in response to the different C. parapsilosis and C. albicans isolates (Supplementary 

Fig. 5). This could be due to the diverse immune reactivity shown by the different isolates of the same 

species, as previously observed [22, 23]. However, C. parapsilosis isolates from RTT subjects 

induced more cells co-expressing both RORγt and T-bet compared to HC C. parapsilosis isolates 

(raw p-value=0.04, FDR-corrected p-value=0.12; Wilcoxon rank-sum test; Supplementary Fig. 5c) 

suggesting the potentiality of RTT C. parapsilosis isolates in promoting pro-inflammatory responses. 

 

Discussion 

In this study we showed that in RTT, a multisystemic neurological disorder, faecal C. parapsilosis 

isolates hold potential phenotypic traits favouring the previously observed intestinal sub-

inflammatory status [18]. Species level analysis of the cultivable gut mycobiota revealed C. 

parapsilosis as the most abundant yeast species in RTT subjects, genetically unrelated to HC C. 

parapsilosis isolates as measured by hierarchical clustering analysis from RAPD genotyping. 

Interestingly RTT C. parapsilosis isolates were characterized by high levels of resistance to azoles 

antifungals, making them a difficult target in case of fungal infections in these subjects. Furthermore 

the high levels of IL-10 produced by PBMCs suggest the RTT C. parapsilosis’ capacity to persist 

within the host and to be tolerated by the immune system. IL-10 usually exert a homeostatic control 

to keep inflammation under control although high levels of IL-10 characterize the cases of chronic 

fungal infections dominated by non-resolving inflammation [14]. It has been observed that C. 

albicans induces host’s immunosuppression through increased IL-10 production by immune cells 

representing an important mechanisms in Candida pathogenesis [24]. Similarly, RTT C. parapsilosis 

isolates could escape immune clearance through a similar mechanism mediated by high levels of IL-

10 that, in turn, could impair antifungal Th1 immunity and thus favouring persistent infection. 

C. parapsilosis has been described as one of the leading causes of invasive candidal disease [25], to 

be responsible of macrophage activation and allergic airways inflammation [26] and to be one of the 

dominant Candida species leading IBDs’ dysbiosis [27]. Fungal opportunistic infections are generally 

ascribed to defective host immunity but may require specific microbial population dysbiosis [28] as 
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recently observed in RTT [18]. Recent studies indicated that fungal infections may originate from 

individual’s own commensal strains and that the ability of a commensal organism to produce disease 

is not merely a consequence of impaired host immunity [29] as in the case of C. albicans GUT 

(gastrointestinal induced transition) in which virulence-associated genes are down-regulated, 

enabling fungal adaptation for long-term survival in the large intestine [30]. Therefore C. parapsilosis 

isolates from RTT subjects may be commensals potentially dangerous for the host due to RTT’s 

altered immunological status and the presence of a dysbiotic gut microbiota. Moreover, RTT C. 

parapsilosis isolates induced a higher proportion of a mixed Th1/Th17 cells population compared to 

HC C. parapsilosis isolates. Although Th1 and Th17 responses usually counter-regulate each other, 

there are increasing evidences of co-operation and dependency between these two immunological 

responses [31] which are involved in chronic, pro-inflammatory responses as observed in IBDs [32] 

potentially resulting in adaptive immunity against the commensal microbiota [33]. Interestingly, it 

has been previously shown that MeCP2 could actually play a regulatory role in T-cells’ resilience to 

inflammation [6]. In particular, emerging evidence indicates that MeCP2 deficiency is able to lead to 

cytokine dysregulation including macrophage-related cytokines in Mecp2-null mice and RTT girls 

[4, 5], although the understanding of the possible molecular mechanisms underlying this pro-

inflammatory status remains elusive. To this regard, the dysbiosis demonstrated in our previous study 

[18] and the presence of putative virulent, pro-inflammatory intestinal C. parapsilosis strains could 

represent an additional factor in RTT’s gastrointestinal pathophysiology. 

 

Methods 

Isolation and identification of cultivable fungal species from faeces 

Stool samples from a cohort of 50 RTT patients and 29 Healthy Controls (HC) [18] were 

homogenized in sterile Ringer's solution and plated on solid YPD medium (1% Yeast extract, 2% 

Bacto-peptone, 2% D-glucose, 2% agar) supplemented with 25U/ml of penicillin, 25µg/ml of 

streptomycin (Sigma-Aldrich) and incubated aerobically at 27°C for 3-5 days. All fungal isolates 

grown on the selective medium were further isolated to obtain single-cell pure colonies. Genomic 

DNA was extracted from pure cultures of the isolated colonies as previously described [34]. Fungal 

isolates were identified by amplification and sequencing of the ribosomal Internal Transcribed Spacer 

(ITS) region, using ITS1 (5’-GTTTCCGTAGGTGAACTTGC-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’) primers [35]. ITS1-4 sequences were then classified by using 

the BLAST algorithm in the NCBI database (minimum 97% sequence similarity and 95% coverage 

with a described species). 
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Invasive growth 

The ability of fungal strains to penetrate the YPD solid medium was tested as previously described 

[36]. M28-4D and BY4742 S. cerevisiae strains, known to be invasive and non-invasive respectively, 

have been used as controls. The strain invasiveness was assigned with scores from 3 (highly invasive) 

to 0 (non-invasive). 

 

Hyphal formation 

Fungal cells (~105 cells/ml) were grown for 7 days in liquid YPD and YNB media (0.67% Yeast 

Nitrogen Base w/o aminoacids and (NH4)2SO4 (Sigma-Aldrich), 2% glucose), both at 27°C and 37°C 

in order to evaluate hyphae or pseudohyphae formation. Formation of hyphae was inspected by 

optical microscope observation with a Leica DM1000 led instrument (magnification 40x and 100x). 

 

Biofilm formation 

Fungal cells (~105 cells/ml) were grown in liquid YPD at 37°C for 48 hours in flat-bottom 96-well 

microtiter plates. After the incubation period cell suspensions were aspirated and each well with the 

adhered fungal cells was washed three times with deionized H2O and one time with PBS 1X. Biofilm-

coated wells were then incubated with 0.01% of crystal violet (Sigma) for 30 minutes and washed as 

above. Finally, each well of the dried microtiter plate was incubated with 100μl of 100% EtOH for 

10 minutes and biofilms quantified by optical density measurement at 570nm with a microplate reader 

(Synergy2, BioTek, USA). 

 

Antifungal susceptibility testing. All fungal isolates were tested for susceptibility to fluconazole, 

itraconazole and 5-flucytosine (Sigma-Aldrich) by Minimum Inhibitory Concentration (MIC) assays 

according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

recommendations [37, 38]. Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints 

(CBPs) were used to evaluate the antifungal resistance [19, 39]. CBPs have not been established for 

non-Candida yeasts and the non-Aspergillus moulds, however have been used as a proxy for the 

evaluation of antifungals susceptibility in such isolates. 

 

RAPD genotyping and clustering analysis 

C. albicans and C. parapsilosis isolates were genotyped by Random Amplification of Polymorphic 

DNA (RAPD) using the primer Oligo 2 (5’-TCACGATGCA-3’) as described previously [40]. 

Amplifications were performed according to the following protocol: 5 min at 94°C, 40 cycles of 30sec 

at 94°C, 30sec at 36°C and 2min at 72°C, followed by a final extension of 10min at 72°C. The PCR 
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reaction mix contained 1X PCR buffer 2mM MgCl2, 200µM of dNTPs, 0.4µM of the primer, 2.5U 

of Taq Polymerase and 10ng of gDNA as template. PCR amplicons were separated using a 1.5% 

agarose gel in 1x TAE buffer at 90V for 2 hours and visualized with 0.5μg/ml ethidium bromide 

staining. The presence or absence of an amplicon at any position of the gel was used for the 

construction of a binary matrix that has been used for the calculation of samples’ distance similarity 

according to the Jaccard index [41] by mean of the “vegdist” function within the vegan R package 

and then clustered hierarchically according to the UPGMA method by using the “hclust” function 

within the stats R package. 

 

Isolation and stimulation of PBMCs 

Human peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque density 

gradient centrifugation (Biochrom, Berlin, Germany) from buffy coats provided by the Transfusion 

Unit of Ospedale Santa Chiara in Trento. The experimental plan was approved by the local hospital 

ethical committee, and informed consent was obtained from all the healthy donors (protocol No: 

54896583). Candida isolates were cultured in YPD medium for 18 h at 37°C, then collected. Fungal 

cells were harvested by centrifugation, washed twice with PBS, heat-killed for 3h at 65°C and 

resuspended in culture medium (RPMI1640; Sigma Aldrich). For stimulation experiments, 5 x 105 

PBMCs in RPMI1640 were incubated with 5 x 106 heat-killed C. albicans, C. parapsilosis or 

RPMI1640 medium alone (negative control). After the incubation periods (24 hours for IL-1β, IL-6, 

TNF-α, IL-10 production and 120 hours for IL-17A, INFγ, IL-22, IL-10 production) cell suspensions 

were centrifuged and supernatants were collected and stored at -20°C until assayed. Each experiment 

was performed in triplicate. 

 

Cytokine Assays 

Cytokine detection i.e. IL-17A, INFγ, IL-22, IL-1β, IL-6, TNF-α, IL-10 production, were assayed 

using the MAP human cytokine/chemokine kit (Merck Millipore) according to the manufacturer’s 

instructions (MagPix technology). 

 

Flow cytometry 

PBMCs were collected after stimulation with Candida isolates in a ratio of 10:1 (stimuli:cells) and 

washed with PBS. Intracellular staining for IDO1 (after 24 hours of stimulation), T-bet and RORγt 

(after 5 day of stimulation) were performed using the fixation/permeabilization buffer kit (Life 

Technologies) following the manufacturing recommendations. Cells were then stained with adequate 

concentrations of labelled antibodies diluted in PBS+10% heat-inactivated foetal bovine serum (FBS) 
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for 20 min at room temperature, A minimum of ten thousand events for each sample were acquired 

using a Guava easyCyte 8T flow cytometer (Merck Millipore) and using the inCyte software (Merck 

Millipore). Cells were gated first based on forward and side scatter to exclude dead cells and cell 

debris. The area of positivity was determined by using an isotype-matched control MAb. Antibodies 

used: Fluorescein isothiocyanate (FITC)-IDO1 (BD Biosciences, Prodotti Gianni, Italy), FITC-Tbet 

(Millipore), allophycocyanin (APC)-RORγt (BD Biosciences, Prodotti Gianni, Italy). 

  

Statistical analysis 

Wilcoxon rank-sum tests and Spearman’s correlations were performed using the R software [42] 

through the stats R package (version 3.1.2) and the psych R package, respectively. Permutational 

MANOVA (PERMANOVA) test was performed by using the adonis()function in the R package 

“vegan” with 999 permutations. All p-values have been corrected for multiple hypothesis testing 

controlling the false discovery rate [43]. 
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Supplementary Figure 1: Relative abundances of Candida albicans and Candida parapsilosis 

isolates in Rett syndrome subjects (RTT) and healthy controls (HC). The total abundance of all the 

other fungal isolates is also reported as “other species”. 

 

Supplementary Figure 2: a) Intestinal fungal isolates ability (or not) to produce hyphae or pseudo-

hyphae in relationship with their ability to be invasive on YPD solid medium; b) biofilm production 

by intestinal fungal isolates from HC and RTT subjects; ***p<0.0001, Wilcoxon rank-sum test. 

 

Supplementary Figure 3: UPGMA hierarchical clustering of C. parapsilosis genetic diversity 

calculated by using samples’ distance similarities (Jaccard index) from RAPD genotyping. C. 

parapsilosis isolates from HC and RTT subjects in green and red, respectively. 

 

Supplementary Figure 4: UPGMA hierarchical clustering of C. albicans genetic diversity calculated 

by using samples’ distance similarities (Jaccard index) from RAPD genotyping. C. albicans isolates 

from HC and RTT subjects in green and red, respectively; in gray the lab strain SC5314. 

 

Supplementary Figure 5: Percentage of positive T-cells to T-bet and as measured by intracellular 

staining and flow cytometry of PBMCs stimulated with a, b, c) C. parapsilosis isolates and d, e, f) 

C. albicans isolates from HC and RTT subjects. Cells were gated for CD4 and data are given as 

percentage of total gated CD4+ cells. 

 

Supplementary Table 1: Phenotypic characteristics and antifungals susceptibility of fungal isolates. 
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Supplementary Table 1: Phenotypic characteristics and antifungals susceptibility of fungal isolates. 

 

Subject Status isolate ID Fluconazole§  Itraconazole§ 5-flucytosine§ Biofilm*  Agar invasion# Hyphae formation Species 

HC21 HC YHC1 0.5 1 0.125 0.82 2 no hyphae Torulaspora delbrueckii 

HC22 HC YHC2†ǂ 1 2 0.125 0.66 2 no hyphae Candida albicans 

HC22 HC YHC3 0.5 0.125 0.125 1.18 2 Hyphae Candida albicans 

HC29 HC YHC4 0.5 0.0156 0.125 2.04 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC5 0.125 0.0156 0.125 1.99 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC6 0.5 0.0156 0.125 1.59 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC7†ǂ 0.5 0.0156 0.125 1.57 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC8 0.5 0.0156 0.125 1.96 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC9 0.5 0.0156 0.25 2.03 3 Pseudohyphae Candida parapsilosis 

HC29 HC YHC10 0.5 1 0.125 1.44 3 Pseudohyphae Rhodotorula mucilaginosa 

HC29 HC YHC11 0.25 0.0156 0.125 1.97 3 Pseudohyphae Rhodotorula mucilaginosa 

HC31 HC YHC12† 2 0.0156 1 0.93 3 Pseudohyphae Candida parapsilosis 

HC31 HC YHC13 NA NA NA NA NA NA Candida albicans 

HC31 HC YHC14 0.5 0.0156 4 0.94 3 Pseudohyphae Candida parapsilosis 

HC31 HC YHC15 NA NA NA NA NA NA Candida albicans 

HC31 HC YHC16 0.25 0.0156 64 1.09 0 no hyphae Candida albicans 

HC31 HC YHC17 NA NA NA NA 0 no hyphae Candida albicans 

HC31 HC YHC18 1 0.031 0.125 NA 0 no hyphae Rhodotorula mucilaginosa 

HC31 HC YHC19 0.25 0.0156 0.5 1.63 0 no hyphae Candida lusitaniae 

HC31 HC YHC20 0.5 0.0156 0.5 NA 0 no hyphae Rhodotorula mucilaginosa 

HC31 HC YHC21 0.5 0.0156 0.125 1.24 0 no hyphae Rhodosporidium kratochvilovae 

HC31 HC YHC22 0.125 0.0156 0.125 1.57 0 no hyphae Candida albicans 

HC31 HC YHC23 NA NA NA NA NA NA Candida albicans 

HC31 HC YHC24 NA NA NA NA NA NA Candida albicans 

HC31 HC YHC25 NA NA NA NA NA NA Candida albicans 

HC31 HC YHC26 0.25 0.0156 0.5 0.20 0 no hyphae Candida lusitaniae 

HC31 HC YHC27 0.125 0.0156 0.125 0.23 1 no hyphae Candida albicans 



 

HC31 HC YHC28 NA NA NA 0.34 1 no hyphae Candida albicans 

HC31 HC YHC29 NA NA NA NA 3 Pseudohyphae Candida parapsilosis 

HC31 HC YHC30 NA NA NA NA 1 no hyphae Candida albicans 

HC32 HC YHC31 0.125 0.0156 0.5 0.25 0 no hyphae Pichia manshurica 

HC32 HC YHC32 0.25 0.0156 > 64 0.47 2 no hyphae Pichia manshurica 

HC32 HC YHC33 NA NA NA NA 2 Hyphae Pichia manshurica 

HC32 HC YHC34 0.25 0.0156 8 0.62 0 no hyphae Pichia manshurica 

HC32 HC YHC35 > 64 > 8 0.125 0.54 0 no hyphae Pichia manshurica 

HC32 HC YHC36 NA NA NA NA NA NA Pichia manshurica 

HC32 HC YHC37 0.5 0.0156 0.5 0.30 2 no hyphae Pichia manshurica 

HC32 HC YHC38 0.25 0.0156 0.125 0.30 1 no hyphae Pichia manshurica 

HC32 HC YHC39 0.25 0.0156 0.125 0.67 2 Pseudohyphae Pichia manshurica 

HC32 HC YHC40 > 64 > 8 0.125 0.18 1 no hyphae Pichia manshurica 

HC32 HC YHC41 NA NA NA NA 2 no hyphae Pichia manshurica 

HC33 HC YHC42 NA NA NA NA 0 no hyphae Rhodotorula mucilaginosa 

HC33 HC YHC43 > 64 > 8 0.125 0.24 1 no hyphae Candida albicans 

HC33 HC YHC44 > 64 > 8 0.125 NA 3 Hyphae Candida albicans 

HC33 HC YHC45 0.25 0.0156 0.125 0.14 3 Hyphae Candida albicans 

HC33 HC YHC46 0.5 0.0156 0.125 NA 3 Hyphae Candida albicans 

HC33 HC YHC47 0.25 0.0156 0.125 0.24 2 no hyphae Pichia manshurica 

HC33 HC YHC48 > 64 > 8 0.125 0.57 1 no hyphae Candida albicans 

HC33 HC YHC49 0.25 0.0156 0.125 0.61 3 no hyphae Candida albicans 

HC33 HC YHC50 0.25 0.0156 0.125 0.26 3 Hyphae Candida albicans 

HC33 HC YHC51 0.25 0.0156 0.125 0.41 3 Hyphae Candida albicans 

HC33 HC YHC52 > 64 > 8 0.125 0.17 0 Hyphae Rhodosporidium kratochvilovae 

HC34 HC YHC53 > 64 > 8 0.125 0.18 3 no hyphae Candida albicans 

HC37 HC YHC54 0.25 1 0.5 0.41 3 Hyphae Candida albicans 

HC37 HC YHC55 0.25 2 0.5 0.71 1 Hyphae Candida albicans 

HC37 HC YHC56†ǂ 0.25 2 0.5 0.42 1 Hyphae Candida albicans 

HC37 HC YHC57 0.5 2 0.5 0.75 1 Hyphae Torulaspora delbrueckii 

HC37 HC YHC58 0.5 2 0.5 0.35 2 Hyphae Candida albicans 



 

HC38 HC YHC59 0.125 0.0156 0.125 0.30 1 no hyphae Candida deformans 

HC39 HC YHC60† > 64 > 8 0.125 0.39 0 no hyphae Candida albicans 

HC39 HC YHC61 > 64 0.125 0.125 0.16 3 Hyphae Candida albicans 

HC39 HC YHC62 > 64 > 8 0.125 0.38 0 no hyphae Candida albicans 

HC39 HC YHC63 > 64 0.125 0.125 0.19 3 Hyphae Candida albicans 

HC39 HC YHC64 > 64 > 8 0.125 0.36 0 no hyphae Candida albicans 

HC39 HC YHC65 32 1 0.125 0.33 1 no hyphae Candida albicans 

HC41 HC YHC66† 0.25 0.0156 0.125 0.31 2 Hyphae Candida parapsilosis 

HC41 HC YHC67 1 0.0156 0.125 0.90 2 Hyphae Candida parapsilosis 

HC41 HC YHC68 > 64 0.0156 0.125 NA 3 Hyphae Aspergillus glaucus 

HC44 HC YHC69 0.125 0.125 0.125 0.27 1 Hyphae Candida albicans 

HC44 HC YHC70 0.125 0.0156 0.125 0.13 2 no hyphae Candida albicans 

HC44 HC YHC71 0.125 0.25 0.125 0.20 0 Hyphae Torulaspora delbrueckii 

HC44 HC YHC72 0.5 0.25 0.125 0.18 0 no hyphae Candida albicans 

HC44 HC YHC73 0.5 0.25 0.125 0.21 2 Hyphae Candida albicans 

HC44 HC YHC74 0.125 0.0156 0.125 0.63 3 Pseudohyphae Candida parapsilosis 

HC44 HC YHC75†ǂ > 64 0.125 0.5 0.17 2 no hyphae Candida parapsilosis 

HC46 HC YHC76 0.5 2 0.125 0.40 3 Hyphae Candida albicans 

HC46 HC YHC77 0.5 2 0.125 0.76 2 Hyphae Candida albicans 

HC46 HC YHC78 0.5 2 0.125 1.42 2 Hyphae Candida albicans 

HC46 HC YHC79† 0.5 2 0.125 0.29 2 Hyphae Candida albicans 

HC47 HC YHC80 0.125 0.0156 0.125 0.20 2 Hyphae Torulaspora delbrueckii 

HC47 HC YHC81 0.25 1 0.125 0.29 2 Hyphae Candida albicans 

HC47 HC YHC82 0.25 0.125 0.125 0.55 2 Hyphae Torulaspora delbrueckii 

HC47 HC YHC83 0.25 1 0.125 0.19 3 Hyphae Candida albicans 

HC50 HC YHC84 0.125 0.0156 0.125 2.54 2 no hyphae Candida intermedia 

HC50 HC YHC85 0.125 0.0156 0.125 0.69 1 no hyphae Candida lusitaniae 

HC50 HC YHC86 0.5 0.0156 0.125 0.86 1 Hyphae Candida albicans 

HC50 HC YHC87 0.25 0.0156 0.125 0.44 1 Pseudohyphae Rhodotorula mucilaginosa 

HC50 HC YHC88 0.25 0.0156 0.125 1.05 1 no hyphae Candida lusitaniae 

HC50 HC YHC89 0.5 0.125 0.125 0.67 1 no hyphae Candida parapsilosis 



 

HC50 HC YHC90 0.5 0.125 0.125 0.56 1 no hyphae Candida lusitaniae 

HC50 HC YHC91† 0.5 0.0156 0.125 0.65 3 Pseudohyphae Candida parapsilosis 

HC50 HC YHC92 NA NA NA NA NA NA Yarrowia lipolytica 

HC52 HC YHC93 0.25 0.0156 0.125 0.63 1 Hyphae Candida albicans 

HC52 HC YHC94 0.25 0.0156 0.125 0.70 1 Hyphae Candida albicans 

HC52 HC YHC95 0.125 0.0156 0.125 0.90 1 Hyphae Candida albicans 

HC52 HC YHC96† 0.5 0.0156 0.125 0.54 3 Hyphae Candida albicans 

HC53 HC YHC97 0.5 0.0156 0.125 1.07 2 Hyphae Candida albicans 

HC53 HC YHC98 0.5 2 0.125 0.81 1 Hyphae Candida albicans 

RTT9 RTT YRTT1 > 64 2 0.125 2.42 2 Pseudohyphae Candida parapsilosis 

RTT9 RTT YRTT2 > 64 2 0.125 2.20 2 Pseudohyphae Candida parapsilosis 

RTT9 RTT YRTT3 64 > 8 0.125 0.60 2 Pseudohyphae Candida parapsilosis 

RTT9 RTT YRTT4†ǂ 1 0.0625 0.125 1.49 2 no hyphae Candida parapsilosis 

RTT9 RTT YRTT5†ǂ 1 0.0156 0.125 0.81 0 no hyphae Candida albicans 

RTT9 RTT YRTT6† 1 0.0156 0.125 0.35 0 no hyphae Candida albicans 

RTT10 RTT YRTT7†ǂ 4 0.0156 0.125 0.77 1 no hyphae Candida albicans 

RTT35 RTT YRTT8 > 64 2 0.125 2.35 2 Hyphae Candida tropicalis 

RTT35 RTT YRTT9 8 0.0156 0.125 1.33 3 Hyphae Saccharomyces cerevisiae 

RTT35 RTT YRTT10 > 64 8 0.125 1.79 3 Hyphae Candida tropicalis 

RTT73 RTT YRTT11†ǂ 2 0.0156 0.125 1.77 2 no hyphae Candida albicans 

RTT73 RTT YRTT12† 2 0.0156 0.125 2.04 2 no hyphae Candida parapsilosis 

RTT73 RTT YRTT13 2 0.0156 0.125 2.10 2 no hyphae Candida parapsilosis 

RTT116 RTT YRTT14† 16 > 8 0.125 1.04 1 no hyphae Candida parapsilosis 

RTT147 RTT YRTT15 1 0.0156 0.125 0.68 2 Pseudohyphae Candida parapsilosis 

RTT147 RTT YRTT16†ǂ 2 0.0156 0.125 0.93 2 no hyphae Candida parapsilosis 

RTT147 RTT YRTT17 1 0.0156 0.125 1.46 2 Pseudohyphae Candida parapsilosis 

RTT147 RTT YRTT18 1 0.0156 0.125 0.97 2 Pseudohyphae Candida parapsilosis 

RTT147 RTT YRTT19 1 0.0156 0.125 0.82 2 Pseudohyphae Candida parapsilosis 

RTT163 RTT YRTT20† > 64 > 8 0.125 0.91 2 no hyphae Candida parapsilosis 

RTT199 RTT YRTT21 > 64 > 8 0.125 0.94 3 Hyphae Trichosporon asteroides 

RTT199 RTT YRTT22 > 64 > 8 0.125 0.74 2 no hyphae Candida pararugosa 



 

RTT199 RTT YRTT23 > 64 > 8 0.125 0.83 0 no hyphae Candida glabrata 

RTT199 RTT YRTT24†ǂ 0.125 0.0156 0.125 1.88 0 Pseudohyphae Candida parapsilosis 

†, isolates used for cytokine assays; ǂ, isolates analysed by flow cytometry; §, MIC ranges: fluconazole, 0.125-64 μg/ml; itraconazole, 0.0156-8 μg/ml; 

5-flucytosine, 0.125-64 μg/ml; #, 0= non-invasive; 1= poor invasive; 2= invasive; 3= very invasive. *, measured by optical density at 570nm; NA, not 

applicable; nd, not detected. 
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This chapter will be shortly submitted for publication as an original research article: 

 

Strati F, Albanese A, Donati C (2016). The importance of multiple sequence alignment in microbiome research: 

comparison of NAST algorithm implementations. 
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The bioinformatics pipelines widely used in microbiome research often, if not always, require 

the alignments of millions of sequences. However the MSA step represents a bottleneck in these 

pipelines since MSAs scale exponentially in memory and time in function of the number of 

sequences. In addition, “de novo” MSAs often lack the quality needed for phylogenetic analysis. The 

use of a reference MSA with fixed column positions makes the alignment process of candidate 

sequences readily scalable and allows the generation of very accurate alignments that incorporate the 

phylogenetically relevant information related to the secondary structure of the 16S rRNA gene, 

avoiding the excessive introduction of gaps in the alignment of non-conserved positions characteristic 

of de novo approaches [1]. The NAST algorithm is one of the most widely used reference-based MSA 

algorithm for metataxonomics analysis of 16S rRNA data [2]. Improved implementations of the 

NAST algorithm have been released but not comparatively tested. In this chapter we developed a 

computational testing procedure to compare the implementation of NAST included in the micca 

metagenomics data analysis pipeline with PyNAST [3] and the mothur’s NAST [4], evaluating 

performances and alignment accuracy on synthetic and biological 16S rRNA sequence datasets. We 

showed that micca’s NAST produced accurate MSAs and, by using a cross validation approach, we 

also observed that the alignments obtained with the micca’s NAST retained highly conserved 

positions of the reference MSA better than the other implementations. 

This work, in the framework of the research activities carried out within the “Transdisciplinary 

program in Computational Biology” gave me the possibility to improve my computational and 

programming skills learning the use of the Python programming language and addressing an 

important, but underrated issue in microbiome research: the importance to generate accurate MSAs 

for the correct interpretation of metagenomics data in microbial ecology. As author of this work, I 

participated to the design of the experiments, analysis of the data, figures generation and drafting of 

the manuscript. 
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Abstract 

In the present study we compared three different implementations of the NAST sequence aligner, i.e. 

PyNAST, the mothur’s NAST and the recently introduced NAST algorithm in the micca pipeline, 

evaluating performances and alignment accuracy on synthetic and biological 16S rRNA sequence 

datasets. Although the accuracy and performances of MICCA, MOTHUR and PYNAST were quite 

similar, MICCA produced more robust MSAs compared to the other methods tested both in term of 

identity and retention of highly conserved positions in the alignment. Indeed MICCA, together with 

PYNAST, provided better results in the alignment of highly conserved positions compared to 

MOTHUR. Speed and memory benchmark analysis showed that MOTHUR is faster than MICCA 

and PYNAST although MICCA required minor memory usage and scaled better than MOTHUR in 

function of templates size. PYNAST, on the contrary, showed high speed at the expenses of larger 

memory requirements. 

 

Introduction 

The 16S rRNA gene sequence, of about 1.5 kb, contains highly conserved, variable and hypervariable 

regions that can be used as molecular markers to infer the phylogenetic structure of a microbial 

community and to distinguish bacteria in function of their evolutionary distance [1]. Since sequence 

similarity provides the only unambiguous definition of bacterial taxa, 16S rRNA sequences having at 

least 97% identity are grouped into operational taxonomic units (OTU) as a proxy for species [2, 3]. 

Multiple sequence alignment (MSA) is crucial step in order to calculate phylogenetic and pairwise 

genetic distances to be used for binning sequences into OTUs. Popular aligner tools such as ClustalW 

[4], MUSCLE [5] and T-Coffee [6] have been used to generate generic and multiple alignments, 

nevertheless these methods have two great limitations: i) they scale exponentially in time and memory 

in function of the length and number of sequences, ii) they do not incorporate information regarding 
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the secondary structure of the 16S rRNA gene which is important to retain conserved positional 

homologies in the MSA [7, 8]. 

Using curated reference alignments reduces the computational complexity of the MSA, and increases 

the alignment quality with respect to a de novo alignments avoiding the excessive introduction of 

gaps within the informative, non-conserved positions of the alignment. Currently RDP [9], SILVA 

[10] and Greengenes [11] are the 16S rRNA sequence databases most widely used in microbiome 

research. All of them provide curated MSAs of 16S rRNA sequences and their own aligners. Infernal, 

the RDP aligner [12], uses a model-based approach in which Hidden Markov Models are applied to 

16S rRNA secondary structures to generate models to be applied to unaligned sequences. SINA [13], 

the aligner provided within the SILVA database, combines k-mer distance search with Partial Order 

Alignment [14] allowing high alignment accuracy and performance. 

The NAST method used by Greengenes in its original implementation [15] uses BLAST [16] to obtain 

a pairwise alignment between the candidate sequence and the best match in the reference MSA, and 

subsequently introduces gaps in the candidate sequence to obtain a final alignment of the same length 

of the reference MSA. PyNAST [17] and the aligner within mothur [18] implement improved versions 

of the NAST algorithm. PyNAST relies on UCLUST [19] which uses a heuristic seed and extend 

aligner, while mothur uses an implementation of the k-mer strategy and Needleman-Wunsch 

algorithm. In addition to these NAST implementations, the micca pipeline (http://www.micca.org) 

[20] provides a new implementation of NAST based on VSEARCH [21]. VSEARCH is an open 

source tool, which uses an optimal global aligner based on a full dynamic programming Needleman-

Wunsch. In the present study we compared the micca implementation of NAST with PyNAST and 

the mothur’s NAST evaluating performances and alignment accuracy on synthetic and biological 16S 

rRNA sequence datasets. 

 

Methods 

Synthetic datasets 

The synthetic datasets have been generated by random picking 100 near-full length 16S query 

sequences and 1000 reference sequences from the Greengenes and SILVA MSA templates clustered 

at different thresholds of similarity (for Greengenes, from 79% to 99%, for SILVA, from 90% to 

99%). The gaps in the query sequences have been removed. For each reference set, 10 replicates have 

been created. The query replicate have been aligned against each corresponding template replicate by 

using micca’s NAST, PyNAST and mothur’s NAST. 

For each replicate we assessed: the percentage of sequence aligned; the percentage of trimmed 

sequences (the NAST algorithm trims the candidate sequences to that which is bound by the 

http://www.micca.org/
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beginning and end points of the alignment span [15]); the average Hamming distance between the 

original query alignment versus the NAST alignment; the difference in length (average) between the 

original sequences and the (trimmed) NAST aligned sequences. 

 

Biological Datasets 

In order to evaluate the NAST performances on typical experimental settings nine datasets from the 

Qiita open-source microbial study management platform (https://qiita.ucsd.edu/), the red colobus 

dataset [22] (Table 1) and 11 samples of the V1-V3, V3-V5 and V6-V9 hypervariable regions of the 

bacterial 16S rRNA gene from the Human Microbiome Project (HMP) dataset [23] have been selected 

and aligned on the reference MSAs “Greengenes Core Set”, “Greengenes 85% OTUs (v13_5)” and 

“PyNAST-curated Greengenes 85% OTUs”. For the HMP datasets the sequences have been clustered 

before the NAST alignment by using a de novo greedy clustering method from the micca pipeline 

(micca otu -i input.fasta --method denovo_greedy --id 0.97 -c) while all 

the other datasets used were already clustered. 

 

Table 1: Biological datasets used in this study 

 *from https://qiita.ucsd.edu/ 

 

These biological datasets have been chosen because they represent (both in terms of sequencing 

platform used, variable regions of the 16S rRNA gene amplified and environmental origin of the 

samples) most of the variables affecting the results of a metataxonomics analysis. 

For each replicate we assessed: the percentage of pairwise identities between the NAST aligned 

sequences; the percentage of sequences aligned; the percentage of trimmed sequences; the difference 

in length (average) between the original sequences and the (trimmed) NAST aligned sequences; the 

Shannon’s entropy per position (only columns with coverage >= 75% in the NAST alignment were 

considered) for each datasets and the template MSA used (Greengenes “Core set”). 

 

Dataset Samples 16S  region Seq. Platform Qiita ID* Ref (PMID) EBI 

Brazilian Antarctic Station* 43 V4 Illumina  1033 NA ERP016586 

Cannabis Soil* 21 V4 Illumina  1001 NA ERP016540 

Columbia Mice* 31 V1-V3 454 pyroseq 107 21593810 NA 

Great Lake Microbiome*  49 V4 Illumina  1041 NA ERP016492 

Green Hospital Air Sloan*  13 V1-V3 454 pyroseq 1345 22278670 NA 

Jansson Twins IBD* 118 V3-V5 454 pyroseq 1070 20816835 NA 

Koren Oral Gut Plaque*  73 V1-V3 454 pyroseq 349 20937873 NA 

McGuire Nicaragua Soil* 63 V4 Illumina  1715 NA NA 

NICU contamination data* 30 V1-V3 454 pyroseq 386 NA NA 

Red Colobus 31 V1-V3 454 pyroseq NA 26445280 PRJEB8977 

https://qiita.ucsd.edu/
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Micca’s NAST implementation 

Micca’s NAST is implemented in the micca msa command (option --method nast) and in 

principle it applies the same protocol of NAST in its original implementation [15]. However the 

micca’s NAST implementation identifies the most similar sequence in the template alignment for 

each candidate sequence by using VSEARCH [21] (v1.9.5 in micca 1.5), with the options:  

--usearch_global --maxaccepts 8 --maxrejects 32 

 

NAST parameters 

All the 16S rRNA sequence datasets have been aligned by using the NAST implementations of micca 

(v1.5), PyNAST (v1.2.1) and mothur (v1.37.3). The following parameters have been used: 

 

 micca msa -m nast -i query.fasta -o msa.fasta \ 

--nast-threads 1 --nast-template template.fasta \ 

--nast-hits hits.txt --nast-nofilter \  

--nast-notaligned notaligned.fasta 

 

 pynast -i query.fasta -a msa.fasta -t template.fasta \ 

-l 1 –f notaligned.fasta -g hits.txt 

 

 mothur "#align.seqs(candidate=query.fasta, \ 

template=template.fasta, flip=t, processors=1)" 

 

Speed and Memory benchmark 

Ten replicate synthetic datasets have been generated by randomly picking 1000 near-full length 16S 

rRNA sequences (without gaps) from the Greengenes 99% OTUs and NAST aligned by using the 

Greengenes reference databases, from 79% to 99% OTUs, which are characterized by an increasing 

number of sequences. Speed and memory benchmarks have been performed by using the python 

package Memory Profiler (v0.41) in order to evaluate speed and memory requirements of the different 

NAST aligners when using an equal number of candidate sequences in function of the increasing size 

of the templates and a single thread. All tests were run on a Linux\Ubuntu 13.04, 64 bit machine 

equipped with Intel® Core™ i7-3770 CPU @ 3.40GHz × 8 and 16 GB RAM. 
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Results 

Evaluation of NAST implementations comparing the accuracy of MSAs 

We first tested the alignment accuracy of the three used implementations of NAST, i.e. micca’s 

NAST, PyNAST and mothur’s NAST (hereinafter termed MICCA, PYNAST and MOTHUR) on the 

synthetic datasets comparing the NAST alignments with the original query alignments. The results 

reported in the supplementary figure 1 show that the average Hamming distances among the query 

alignments versus the NAST alignments did not vary substantially among MICCA, PYNAST and 

MOTHUR. 

However, the evaluation of MICCA, PYNAST and MOTHUR alignments of the HMP datasets [23] 

and of the ten biological datasets (Table 1) revealed interesting clues. For these analysis we used as 

reference alignments the Greengenes “Core Set”, because composed of circa 10.000 manually 

aligned non-chimeric sequences representative of a wide variety of bacterial and archaeal taxa, and 

the Greengenes 85% OTUs (v13_5) template because it is the default reference alignment used in the 

QIIME pipeline [24]. Nevertheless, it has been reported a bug in the PYNAST algorithm in which 

the sequences generated within the V1-V3 variable region of the 16S rRNA gene fail to align when 

using PYNAST with the default Greengenes 85% OTUs (v13_5) reference alignment. The bug has 

been fixed by the PYNAST developers generating a new template from the original Greengenes 85% 

OTUs (v13_5), here called “PyNAST-Greengenes 85% OTUs” that we included in our analysis for 

completeness. 

We observed that PYNAST failed to align the vast majority of sequences from the HMP R1 dataset 

(V1-V3 16S region sequences) (Supplementary Fig. 2) with the default Greengenes 85% OTUs 

(v13_5). When aligning the HMP R2 datasets (V3-V5 16S region sequences) (Figure 1) MICCA 

showed slightly improved performances compared to MOTHUR and PYNAST while the latter 

aligned better the sequences from the HMP R3 datasets (V6-V9 16S region sequences) 

(Supplementary Fig. 3). Anyway, all the three NAST implementations had similar and better 

performances when using the “Core set” reference MSA compared to the less curated Greengenes 

85% OTUs (v13_5) template, remarking that the use of well-curated templates can help in providing 

more accurate results. 

 

Figure 1: Comparison of the alignment performances of MICCA, MOTHUR and PYNAST on the HMP R2 

datasets. A) average Hamming distance between the query alignments versus the NAST alignments; B) 

sequences aligned (in %); C) trimmed sequences (in %). The NAST algorithm trims the candidate sequences 

to that which is bound by the beginning and end points of the alignment span; D) difference in length (average 

in %) between the candidate sequences and the (trimmed) NAST aligned sequences. (See figure 1 on next 

page). 
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Figure 1 
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The analysis of the biological datasets (Figure 2) showed that MICCA and PYNAST alignments were 

slightly better than MOTHUR alignments in terms of pairwise identities (Figure 2A). For two datasets 

(i.e. the Green Hospital Air Sloan and the Red Colobus) PYNAST failed to align the vast majority of 

the sequences. Furthermore we observed that MOTHUR frequently trims the candidate sequences 

more than MICCA and PYNAST (Figure 1C and 2C) with a difference in length between the original 

sequences and the (trimmed) aligned sequences exceeding the 75% (Figure 1D and 2D).  

This is due to the fact that MOTHUR always retains all the sequences of each dataset, even those 

low-quality sequences that both MICCA and PYNAST usually discard because not aligning over the 

reference MSAs. 

Nevertheless, the use of pairwise identities as a measure of alignments accuracy is only as a coarse 

way to evaluate the goodness of a MSA, since the pairwise identity depends on the percentage of 

sequences retained in the alignment or how much the sequences were trimmed. Therefore we also 

evaluated the quality and the robustness of the NAST alignments by calculating how frequently a 

highly conserved position was retained in the alignment compared to the template. For this purpose 

we calculated the Shannon entropy of each column of the MSAs obtained with MICCA, MOTHUR 

and PYNAST and we compared them only for those columns with coverage ≥ 75%. As template we 

used the “Core Set” since it provided the best and homogeneous results with all the three NAST 

implementations. The alignments of the HMP datasets (Supplementary Fig. 4, 5 and 6) revealed no 

evident differences among MICCA, MOTHUR and PYNAST. However when using the biological 

datasets, which reflect better the empirical variability encountered in different experimental settings, 

MOTHUR was less able to align some highly conserved positions characterized by very low entropy. 

In the Great Lake Microbiome dataset, MOTHUR aligned approximately 10% less highly conserved 

positions compared to MICCA and PYNAST (Figure 3). These results were further supported by the 

observation that the per position entropy of the MOTHUR alignments was frequently higher than 

MICCA and PYNAST alignments when compared to the per position entropy of the “Core Set” 

reference MSA (Supplementary Fig. 7). 

 

Figure 2: Comparison of the alignment performances of MICCA, MOTHUR and PYNAST on the real 

datasets. A) average Hamming distance between the query alignments versus the NAST alignments; B) 

sequences aligned (in %); C) trimmed sequences (in %). The NAST algorithm trims the candidate sequences 

to that which is bound by the beginning and end points of the alignment span; D) difference in length (average 

in %) between the candidate sequences and the (trimmed) NAST aligned sequences. (See figure 2 on next 

page). 
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Figure 2 
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Figure 3: Histogram-based estimation of the differential entropy of the MSAs for the real datasets. The entropy 

has been calculated only for those columns with coverage ≥ 75% in the NAST alignment. Only the columns 

with entropy ≤ 0.5 have been considered. (See figure 3 on next page). 

 

Speed and Memory benchmark 

We then benchmarked speed and memory requirements for MICCA, MOTHUR and PYNAST by 

aligning 1000 candidate sequences with different reference databases of increasing sizes. MOTHUR 

aligned the candidate sequences faster than MICCA and PYNAST although MICCA required minor 

memory usage and scaled better than MOTHUR in function of the increasing size of the reference 

alignments. PYNAST on the contrary showed high speed and memory requirements. (Figure 4). 

 

 

Figure 4: A) Run time of MICCA, MOTHUR and PYNAST; B) Max memory usage of MICCA, MOTHUR 

and PYNAST. The analysis have been performed by using a single thread. 
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Figure 3
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Conclusions 

The NAST algorithm aligns a candidate sequence and the best match in the template MSA and, by 

introducing gaps, finally guarantees an alignment of the same length of the template alignment. The 

advantage in using NAST is therefore its ability to align conserved positions avoiding the excessive 

introductions of gap extensions in the informative, non-conserved regions. By now, three 

implementations of NAST have been developed (i.e. MICCA, MOTHUR and PYNAST) but no one 

tested and compared the performances and the accuracy of the MSAs generated with these 

implementations. Here, we showed that micca (http://www.micca.org), a new bioinformatics pipeline 

for the processing of amplicon sequencing data improves the quality of NAST alignments by using a 

fast, multithread and memory efficient reimplementation of the NAST algorithm which relies 

completely on open source applications and therefore increasing its portability and accessibility. 
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Supplementary Figure 1: Comparison of the alignment performances of MICCA, MOTHUR and 

PYNAST on synthetic datasets. A) average Hamming distance between the query alignments versus 

the NAST alignments; B) sequences aligned (in %); C) trimmed sequences (in %). The NAST 

algorithm trims the candidate sequences to that which is bound by the beginning and end points of 

the alignment span; D) difference in length (average in %) between the candidate sequences and the 

(trimmed) NAST aligned sequences. 

 

Supplementary Figure 2: Comparison of the alignment performances of MICCA, MOTHUR and 

PYNAST on the HMP R1 datasets. A) average Hamming distance between the query alignments 

versus the NAST alignments; B) sequences aligned (in %); C) trimmed sequences (in %). The NAST 

algorithm trims the candidate sequences to that which is bound by the beginning and end points of 

the alignment span; D) difference in length (average in %) between the candidate sequences and the 

(trimmed) NAST aligned sequences. 

 

Supplementary Figure 3: Comparison of the alignment performances of MICCA, MOTHUR and 

PYNAST on the HMP R3 datasets. A) average Hamming distance between the query alignments 

versus the NAST alignments; B) sequences aligned (in %); C) trimmed sequences (in %). The NAST 

algorithm trims the candidate sequences to that which is bound by the beginning and end points of 

the alignment span; D) difference in length (average in %) between the candidate sequences and the 

(trimmed) NAST aligned sequences. 

 

Supplementary Figure 4: Histogram -based estimation of the differential entropy of the MSAs for 

the HMP R1 datasets. The entropy has been calculated only for those columns with coverage ≥ 75% 

in the NAST alignment. Only the columns with entropy ≤ 0.5 have been considered. 

 

Supplementary Figure 5: Histogram -based estimation of the differential entropy of the MSAs for 

the HMP R2 datasets. The entropy has been calculated only for those columns with coverage ≥ 75% 

in the NAST alignment. Only the columns with entropy ≤ 0.5 have been considered. 

 



Supplementary Figure 6: Histogram -based estimation of the differential entropy of the MSAs for 

the HMP R3 datasets. The entropy has been calculated only for those columns with coverage ≥ 75% 

in the NAST alignment. Only the columns with entropy ≤ 0.5 have been considered. 

 

Supplementary Figure 7: Entropy of the “Core Set” reference MSA vs entropy of the MICCA, 

MOTHUR and PYNAST MSAs by using the real datasets. Only the columns with entropy ≤ 0.3 have 

been considered. 
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Conclusions 

 

  The impact of the gut microbiota on metabolic processes, immune homeostasis and even 

neurological functions of the host is now well established. All these complex interactions are 

delicately balanced and disruption of this equilibrium can lead to pathologic states. Numerous studies 

over the years demonstrated the direct link between alterations of the gut microbiota and several 

pathologies, ranging from IBDs to ASDs. Nevertheless it is often not clear if the dysbiosis of the gut 

microbiota is a comorbidity or an aetiological factor in the pathophysiological mechanisms in which 

it is involved. The results obtained during this Ph.D. thesis suggest that the gastrointestinal symptoms, 

specifically constipation, commonly associated with neurological disorders such as ASDs and Rett 

syndrome are more likely a consequence of enteric nervous system dysfunctions rather than a direct effect 

of a dysbiotic gut microbiota. Indeed such neurological disorders have an important impact on the 

physiology of peripheral tissues (e.g. the gastrointestinal system) further triggering the observed 

alterations of the gut microbiota. A new picture is therefore emerging from this research work in which 

the intestinal microbial population of hosts affected by extra-intestinal, neurological disorders is shaped 

and adapted to the abnormal gastrointestinal physiology commonly associated with these pathologies, 

ultimately resulting in a positive feedback loop that amplify the gastrointestinal symptoms themselves. 

Accordingly, we provided the first evidence of an altered gut microbiota in Rett syndrome, hypothesising 

that this dysbiotic microbiota might reinforce the constipation status often observed in Rett syndrome by 

producing abnormal levels of SCFAs and therefore contributing to Rett syndrome’s gastrointestinal 

physiopathology and intestinal inflammation. Moreover, we demonstrated that not only the intestinal 

bacterial communities, but also the gut mycobiota takes part to the complex set of interactions 

involving the host and the gut microbiota, requiring a further effort to better decipher host-microbial 

relationships in health and disease. In this sense, the observation that the gut mycobiota of Rett 

syndrome subjects is enriched in Candida parapsilosis isolates characterized by phenotypic and 

immunological properties favouring the low-grade intestinal inflammatory status observed in these 

subjects opens the possibility for a better understanding of the subclinical conditions derived from 

neurological disorders. Given the importance of the gut microbiota in host physiopathology other 

questions has to be addressed like whether alterations in microbiota-mediated immunomodulation 

leading to inflammatory disorders are associated with changes in microbiota-mediated 

neuromodulation and vice-versa. These new insights could stimulate the scientific and medical 

communities to develop novel therapeutic strategies, based on restoring the gut microbiota 

equilibrium, for the relief of gastrointestinal and behavioural abnormalities in Rett syndrome and 

other neurological disorders. 
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