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Abstract 

This thesis involves developing fast, rapid, and non-invasive headspace and nosespace analysis 

techniques based on PTR-ToF-MS coupled with an autosampler and tailored data analysis 

tools. The investigated case studies are related to coffee flavour also in connection with 

different technological and fundamental aspects as roasting and origin.  

In a first study, an automated headspace sampling method was developed by combining a GC 

autosampler to PTR-ToF-MS to analyse the aroma profiles of three monoorigin (Brazil, 

Ethiopia and Guatemala) roasted and ground Coffea arabica samples from different batches. 

Unsupervised and supervised multivariate data analysis techniques were applied for data 

exploration and to classify coffees according to origin. Coffee samples were successfully 

separated according to origin by unsupervised methods (Principal Component Analysis, PCA). 

This separation was confirmed with Partial Least Square Regression-Discriminant Analysis 

(PLS-DA). The samples of one batch could be used as training set to predict geographic origin 

of the samples of the other batch, suggesting the possibility to predict further batches in coffee 

production by means of the same approach. As a follow-up study, the developed headspace 

sampling method was applied to analyse six roasted Coffea arabica coffees, both brew and 

powder, of different geographical origins (Brazil, Ethiopia, Guatemala, Costa Rica, Colombia, 

and India). For the first time, the volatile compounds released from coffee were analysed with 

PTR-ToF-MS in Switching Reagent Ion (SRI) mode by using different ionization agents: H3O
+, 

NO+ and O2
+. Significant differences were found among volatile concentrations for the different 

origins both for powders and brews, in particular high concentrations of terpenes for Ethiopia, 

sulphur compounds for Colombia and thiazoles for Brazil and India. Effective classification 

models have been set for the different ionization modes and data fusion of the data obtained by 

different reagent ions further reduced the classification errors. 

The next project was the development and application of an experimental protocol to monitor 

the volatile compounds released from single coffee beans at different stages of roasting. A 

laboratory scale oven was used to roast the green coffee beans (Coffeea arabica) from different 

geographical origins (Brazil, Guatemala and Ethiopia) by sampling every one min up to 25 min. 

Two batches of one coffee origin were selected and at each time point, 3 coffee beans were 

roasted. This resulted in volatile profiling of a large sample-set: 468 coffee beans (3 origins x 

2 batches x 3 replicates x 26 time points). The weight losses due to roasting process were 
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calculated for each coffee bean and time point. The effect of coffee geographical origin was 

reflected on the final weight losses and therefore volatile compounds formation. We observed 

a reduction in the amount of terpene fragments and an increase in heat induced volatile 

compounds. Clear origin signatures, which are in agreement with previous findings, were 

observed especially in the concentration of the volatiles released. Depending on the phase of 

roasting, some mass peaks were released earlier than the others and vice versa (e.g. m/z 82.065 

around 6th min and m/z 101.060 around 10th min). 

Finally, nosespace analysis (NS) was performed via simultaneous combination of PTR-ToF-

MS with a dynamic sensory method called “Temporal Dominance of Sensations (TDS)” to gain 

insight about in-nose volatile release with the perceived aroma during espresso coffee drinking. 

One goal was to combine real-time instrumental and sensory methods and the second goal was 

to investigate the impact of roasting degree and sugar addition on aroma release and perception. 

A set of four coffee samples, two roasting degrees and two sugar levels, has been used for both 

sensory and instrumental measurements. Eighteen trained judges joined the study and they 

selected the dominant sensations among a 9-attribute list (sweet, sour, bitter, astringent, roasted, 

burnt, caramel, nutty and vegetal). The volatile compounds released in the nose of judges were 

monitored by NS analysis. A significant effect of roasting was observed with both techniques. 

More compounds and in larger quantity were released when increasing roasting degree, which 

was described in sensory perception as a greater dominance of the attributes burnt, roasted, 

astringent and bitter. Sugar addition did not significantly affect the aroma release of volatile 

compounds as demonstrated by the NS profiles of judges while changing completely the way 

the coffee was perceived by TDS. As expected, sweet taste became dominant over bitter and 

sour but it increased global flavour complexity with caramel and nutty notes via reducing the 

roasted or burnt notes. This result emphasized the presence of taste–smell perceptual 

interactions, due to congruence effect between sweet taste and some flavours of coffee, and the 

potential of combining dynamic methods to study the interactions. Besides, the treatment of NS 

data using clustering methods revealed two different release behaviours, which permitted 

identifying potential volatile compounds as TDS markers. 

The developed methods are of general interest and have been tested also in the case of other 

food matrixes such as tea. The automated headspace sampling method was applied to measure 

the volatile compounds emitted from black (n=63, from 12 different countries) and green tea 

(n=38, from 9 different countries) leaves and their infusions. Black and green teas were 
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correctly classified by the volatile compounds emitted from tea leaves and their infusions 

independent from their geographical origins. A fixed time and temperature was applied for 

preparing black and green tea infusions to reduce the possible variability. Results showed that 

the release of volatile compounds is higher for tea samples which have smaller leaves or contain 

broken leaves as compared with the tea samples with bigger leaves, in particular after tea 

infusion. Depending on the processing method, teas produced in different countries have 

diverse appearance and flavour. For this reason we built classification models to investigate the 

possibility to link tea aroma with geographical origin. Results provided a good separation of 

tea origins, classification errors being mostly between countries geographically close to each 

other. These findings suggested that a better discrimination of tea samples might have been 

achieved if teas were classified according to production region rather than just country of origin. 

The promising outcomes of this thesis suggest PTR-ToF-MS as a successful tool for monitoring 

the release of volatile compounds from different aspects in coffee flavour science from coffee 

bean roasting to coffee drinking and as well as from product discrimination to traceability. 
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Introduction 

Consumers nowadays are starting to engage with what they eat and drink. This prompted the 

food industry to change so that the information about the quality of the products; where their 

food comes from, and how they taste and/or smell and possibly the reasons behind these 

characteristics. For consumer acceptance and preferences, flavour plays a key role in 

determining the main characteristics of a food product [1], which is strongly linked to the 

perceived quality. 

Volatile organic compounds (VOCs) play a fundamental role in foods science and technology. 

They are not only responsible for the specific odours of foods but also they interact with human 

senses involved in flavour perception which is, in the end, associated to food liking and 

appreciation [2]. When VOCs are released from food they can directly reach human nose via 

direct sniffing (orthonasal perception, odor, above-the-food aroma) or via exhaled breath 

(retronasal perception, in-mouth aroma) after swallowing. As a result, consumers’ 

acceptability, judgment and their perception are shaped depending on these processes; the 

properties and concentrations of volatile compounds in the foods as well as consumer 

physiology [1, 3-5]. 

Coffee has been one of the most consumed drinks in the world, both for the stimulatory effects 

of caffeine and for its unique smell and flavour properties [6]. As a reaction to the rising 

consumer demand for product diversification, an increasing product differentiation based on 

geographical origin can also be observed in the coffee market, particularly in the so-called 

specialty coffee market [7]. Specialty coffees are defined as products that come from a 

particular geographical origin with higher quality attributes of distinctive flavour and aroma 

profile than other commodity coffees. For product differentiation and specification, more effort 

and attention have to be devoted to highlight the main differences behind the unique aroma 

characteristics of coffee. Moreover, when specific links are established between volatile 

compounds and sensory attributes, an enhanced understanding of flavour can be achieved [8] 

to ensure the perceived quality. 

Direct injection mass spectrometric (DIMS) techniques [9] broaden the borders of aroma 

analysis by eliminating the time consuming aroma isolation step and long analysis times those 

not permitting the real-time monitoring of VOCs, which is crucial for in-vivo aroma release 

studies. In particular, a break-through was recorded when proton transfer reaction-mass 
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spectrometry (PTR-MS) was introduced for the direct, simultaneous and real-time detection 

and quantification of volatile compounds at very low levels [10]. High mass resolution and 

sensitivity provided by combining time-of-flight (ToF) mass analysers to PTR-MS [11] allow 

the analysis of volatile compounds at very low levels and provide high time resolution. One of 

the main advantages of direct injection is that it brings a closer approach for the analyst to find 

connections between VOCs released from a food product and perceived aroma. Another aspect 

is that, VOCs directly detected in the headspace are expected to give significant information 

related to orthonasal perception whereas monitoring VOC release in the nose during food 

consumption, will clarify their role in aroma perception. The advantages of this novel 

methodology makes it a very valuable tool in flavour science however it has be noted that this 

technology does not propose an alternative to gas chromatographic methods due to the 

complications in compound identification but offer a reliable complementary tool for the study 

of volatile compounds especially when fast, sensitive and real-time measurements are needed.  

This thesis covers the potential applications of PTR-ToF-MS for the analysis of coffee volatile 

compounds for characterization of coffee powder, coffee brew and roasted single coffee beans 

from different geographical origins and also for in-vivo perception of coffee aroma via 

monitoring the in nose volatile compounds release during coffee drinking for an enhanced 

understanding of flavour perception in combination with dynamic sensory methods. 

This thesis is organized as follows. The first chapter is intended as an introduction into the 

background of this thesis. The first part of this chapter provides an overview about coffee, 

coffee volatile compounds and discusses the effect of geographical origin on the aroma profile 

of coffee. Later, it describes the role of volatile compounds in flavour perception and compares 

the existing analytical methods for detection of aroma compounds. This chapter gives detailed 

information of the methodologies applied in this thesis and in particular the analytical technique 

that has been used: PTR-ToF-MS. The final part of this chapter is dedicated to a brief outline 

about the scope and the aims of this thesis. Published results are introduced with Chapters 2, 3 

and 4. Chapter 2 consists of 2 published articles and focuses on the applications of PTR-ToF-

MS for discrimination of aroma profiles of coffees from different geographical origins. This 

chapter also represents the first examples of the application of an automated headspace 

sampling system developed for the rapid and high-throughput screening of large sample sets. 

Chapter 3 is dedicated to monitoring of volatile compounds released from single coffee beans. 

For this purpose, a large number of green coffee beans (n=468) were roasted and volatile 
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profiles were analysed with PTR-ToF-MS at different stages of roasting to obtain an insight 

into volatile formation and their relations with coffee geographical origin. Chapter 4 describes 

a methodology based on simultaneous combination of dynamic instrumental and sensory 

methods for monitoring flavour release. The effect of roasting degree and sugar addition on 

coffee aroma perception and in nose volatile compound release was investigated. Lastly, 

Chapter 5 demonstrates the interest of the developed methods by describing their application 

to a different, important matrix: the characterization of black and green teas from different 

countries. PTR-ToF-MS was used to analyse the volatile profiles of 63 black and 38 green teas 

from different countries emitted from dry tea leaves and tea infusions. Headspace volatile 

fingerprints were used to build different classification models for discrimination of black and 

green teas according to tea type and geographical origins. Two different cross validation 

methods were applied and their effectiveness for origin discrimination was discussed. Black 

and green teas were successfully separated and the differences in their volatile profiles were 

discussed. The classification models showed a separation of black and green teas according to 

geographical origins the errors being mostly between neighbouring countries.  

Finally, this thesis ends with summary and future perspectives. 
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The first chapter is intended as an introduction into the background of this thesis. The first part 

of this chapter provides an overview about coffee, harvesting and the properties of coffee beans. 

Following sections describe the reactions responsible for formation of aroma compounds 

during coffee roasting and discuss the specialty coffees and the effect of geographical origin on 

the final aroma characteristics of coffee. Later, it describes the flavour perception phenomena 

and the role of volatile compounds in flavour perception. The existing analytical methods for 

detection of aroma compounds are described and compared nevertheless more attention has 

been devoted to the analytical methodology that has been applied for this thesis. Therefore, 

proton transfer reaction-mass spectrometry has been introduced in detail via explaining the 

main parts of the instrumentation, the ionization mechanisms, recent developments and as well 

as an overview on the pros and cons. The so-called nosespace analysis for in-vivo flavour 

release monitoring has been described and the potential of combining this technique with 

dynamic sensory methods has been discussed. The final part of this chapter has been dedicated 

to the scope and the detailed aims of this thesis.  

 Coffee in perspective 

 Green coffee, harvesting and post processing 

The term ‘coffee’ comprises not only the consumable beverage obtained by extracting the 

roasted coffee with hot water, but also a whole range of intermediate products starting from the 

freshly harvested coffee cherries [12]. 

The coffee plant (Coffea) grows in tropical and subtropical regions of Central and South 

America, Africa and South East Asia, preferably in temperate and humid climates at altitudes 

between 600 and 2500 m. More than 100 species belong to Coffea genus; but two main species 

of commercial interest are Coffea arabica and Coffea canephora var. robusta. They are usually 

referred to as Arabica and Robusta, respectively [6, 12]. Arabica holds a higher price in the 

commercial market, is more delicate, demands greater care in its culture, and possesses superior 

organoleptic characteristics in comparison with Robusta. On the other hand, Robusta is more 

resistant, has a lower cost of production, but results in an inferior cup quality [6].  

The berries (or cherries) of the coffee plant contain the seeds (normally two in one berry), which 

are usually known as beans. Harvesting should start after a very careful examination of the level 

of maturation, when most of the cherries are ripe. It is carried out either by non-selective 

stripping of whole branches or by selective handpicking. Handpicking is more time consuming 
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but results in higher quality coffee. After harvesting, the pulp of the cherries (skin) is removed 

via dry processing or wet processing; the latter is more complex but provides a better quality 

coffee. The green coffees are then subjected to sorting and size grading to eliminate the foreign 

materials and as well as defective beans. Lastly, the outer silverskin covering the coffee beans 

are removed with polishing [6, 13]. The dry green coffee beans are then classified based on 

species and variety of origin, prior to shipping and/or roasting. 

The quality of the green beans are highly affected by the agricultural factors related to 

geographical origin including the chemistry of the soil, the weather conditions and the altitude 

the coffee plant is grown. The green coffee beans differ in many aspects. For instance, they 

vary in mass from 100 mg to over 200 mg, with some evidence of variation associated with the 

bean variety and its origin, degree of maturation, green coffee processing and storage of 

processed coffee. Depending on the processing method (dry or wet), green coffee beans may 

contain around 9–13% moisture. The total amount of carbohydrates represents about 50% on 

dry basis. Arabica contains more lipids (~16%) and trigonelline (~1.0%) than Robusta (~10 and 

0.7%, respectively); while Robusta contains more caffeine (2.2%, almost twice as much) and 

chlorogenic acids (10% compared to 6.5%). Total proteins in Arabica and Robusta coffee is 

around 10% [6, 13]. 

 Coffee roasting and aroma formation 

The unroasted green coffee beans have a greenish and pea-like odour which is not appealing to 

the consumers. However they contain all the necessary ingredients to form the desired and well-

known coffee flavour. Up to date, almost 300 volatile compounds have been detected in the 

aroma fraction of green coffee beans mainly for evaluating the quality of the raw material and 

for detecting the off-flavours caused by the defective coffee beans [13]. 

Roasting is defined as the method that utilizes dry heat (usually hot air) for cooking purposes, 

which results in enhancing the flavour of the food product. Coffee roasting is induced by the 

hot air coming from the roaster which brings the coffee beans within a temperature range (170-

230°C) in a given period of time. Roasting creates a complex series of reactions influenced by 

several parameters. The main aspects of coffee roasting are illustrated in Figure 1.1-1. As 

shown in Figure 1.1-1, the main physical and chemical changes observed during coffee roasting 

are the generation of the characteristic flavour, the development of brown to dark brown colour, 

and the increase of coffee bean volume (by 50-100%). During roasting, the coffee beans 
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undergo a two-stage transformation; at first the free moisture content is reduced from 10-12% 

to a few percent. Here, the colour of the beans changes from green to pale brown. When the 

coffee beans reach around 6% moisture content, pyrolytic reactions start (second stage) and 

therefore the beans swell, show a rapid darkening and large quantities of gases (mainly CO2) 

are generated which cause cracking of the coffee beans. Mainly due to the evaporation of water, 

the coffee beans lose weight between 14 and 20 %, depending on the green bean quality and 

the process conditions that affect the final degree of roast (light, medium-light, medium, 

medium-dark, dark, very dark) [12]. 

 

Figure 1.1-1. Main aspects of coffee roasting (Reproduced from [6, 12]) 

The non-volatile constituents of green coffee evolve differently during roasting which result in 

formation of different classes of aroma compounds with various odour characteristics. The 

extensive and complex chemical reactions mostly affect the carbohydrate fraction via Maillard 

reactions, Strecker degradation, pyrolysis and caramelization. Proteins are denatured and 

degraded while free amino acids, peptides and proteins with free amino groups react with 

reducing sugars (Maillard reactions) to form glycosylamines and/or aminoaldoses and/or 

aminoketones after Amadori and Heynes rearrangements [6, 12]. Several further rearrangement 

and breakdown reactions lead to the formation of various volatile compounds and dark coloured 
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compounds (i.e. melanoidins). Other components of green coffee, such as nitrogen containing 

substances, chlorogenic acids, and lipids, are also involved in reactions that lead to the 

generation of aroma compounds. A simplified scheme for the formation of coffee flavour 

compounds was presented by Yeretzian et al., 2002 [14] as shown in Figure 1.1-2. Chlorogenic 

acid contributes to body and astringency, sucrose contributes to colour, aroma, bitterness and 

sourness. Caffeine does not contribute to the aroma of coffee but to the bitterness [13].  

 

 

Figure 1.1-2. A simplified scheme showing the main classes of volatile compounds formed 

from non-volatile precursors in the green coffee beans during roasting  
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Roasting results in formation of more than 950 volatile compounds depending on the origin, 

degree of roasting and analytical methods used [15]. The classes of volatiles found in coffee 

are pyrans and furans, pyrazines, pyrroles, ketones and aldehydes, phenols, oxazoles, alcohols, 

hydrocarbons, esters and acids, sulphur compounds, thiazoles, pyridines and lactones. 

Generally, carbohydrates (including soluble polysaccharides) produce furans, aldehydes, 

ketones, and phenols; proteins, peptide, and amino acids produce ketones, pyrrols, and 

pyrazines; lipids are responsible for only small amounts of aldehydes and ketones (they show 

resistance during roasting); chlorogenic acids produce phenolic volatile compounds (e.g., 

catechols, pyrogallol, and phenol); and trigonelline produces pyrroles, pyridines, and pyrazines 

[15]. Among the high number of volatile compounds that have been found in coffee aroma, a 

small part has been considered to be responsible for the characteristic coffee aroma. Indeed, 

around 40 volatile compounds have been identified in a medium roasted Arabica coffee powder 

and brew as representative potent odorants of coffee [16]. Among them, 2-furfurylthiol, 4-

vinylguaiacol, the alkylpyrazines and furanones, acetaldehyde, propanal, methylpropanal, and 

2- and 3-methylbutanal were found to be the odorants with the highest impact on coffee aroma. 

Some potent coffee volatile compounds with odour properties are presented in Table 1.1-1. 

Table 1.1-1. Character impact odorants of roasted powder and brew of Arabica coffee 

No Compound Odor quality 

1 3-Methylbutanal Malty 

2 2,3-Butanedione Buttery  

3 2,3-Pentanedione Buttery 

4 3-Methyl-2-buten-1-thiol Amine-like 

5 2-Methyl-3-furanthiol Meaty, boiled 

6 2-Furfurylthiol Coffee-like 

7 3-(Methylthio)propanal (Methional) Boiled, potato-like 

8 3-Mercapto-3-methylbutyl formate Catty, roasty 

9 5-Ethyl-3-hydroxy-4-methyl-2(5H)-furanone Seasoning-like 

10 3-Hydroxy-4,5-dimethyl-2(5H)-furanone Seasoning-like 

11 (E)-β-Damascenone Honey-like, fruity 

12 2-Methoxyphenol (Guaiacol) Phenolic, burnt 

13 2-Methoxy-4-ethylphenol (4-Ethylguaiacol) Spicy 

14 2-Methoxy-4-vinylphenol (4-Vinylguaiacol) Spicy 

15 3-Methoxy-4-hydroxybenzaldehyde (Vanilline) Vanilla-like 

16 2-Ethyl-3,5-dimethylpyrazine Earthy, roasty 

17 2,3-Diethyl-5-methylpyrazine Earthy, roasty 

18 3-Isobutyl-2-methoxypyrazine Earthy 

19 Phenylacetaldehyde Honey-like 

20 2-Hydroxy-3,4-dimethyl-2-cyclo-penten-1-one Caramel-like 

21 p-Anisaldehyde Sweet, minty 

22 Linalool Flowery 
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 Coffee geographic origin 

Standardization of coffee quality starts from the green beans, for which, the information of 

geographical and botanic origins of the coffee, the harvest year, the moisture content, the total 

defects and the bean size is required [17]. According to The Specialty Coffee Association of 

America [18], coffees with attributes of high quality and distinctiveness coming from a 

particular origin are regarded as “specialty coffees”. These coffees can be also named as 

‘monoorigin coffees’ or ‘single-origin coffees’. Even though ‘single-origin’ term is not 

precisely defined, it can originate in one country, one region, or one estate or farm [7]. The 

main organoleptic characteristics of specialty coffees are their unique qualities (judged by a 

consumer), distinct taste and aroma different from other commodity coffees. 

Coffee beans used in commercial coffee blends may come from a wide range of geographical 

areas and have different chemical and organoleptic properties. From an economic point of view, 

data from U.S. online retail stores indicate that single-origin coffees receive significant higher 

retail prices [7]. Global recognition and market power also considerably increase the practices 

associated with selling coffees on the basis of their geographical origin. In this regards, 

declaration and marking of geographical origin is needed for product specification, traceability, 

and authentication [19].  

One of the most commonly utilized strategies in coffee authenticity is to discriminate coffees 

based on the coffee bean variety (i.e. Arabica or Robusta). Another important aspect of coffee 

authenticity is geographical origin declaration [20]. There are a number of analytical methods 

developed for the determination of the geographical origin of foods. Among them, methods 

based on determination of mineral contents or composition, light- or heavy-element isotope 

ratios (i.e. Isotope ratio mass spectrometry (IRMS), Inductively coupled plasma mass 

spectrometry (ICP-MS)) [21] are highly developed and commonly used by the legal authorities. 

However, they do not measure the properties directly related to sensory perception and do not 

reflect the organoleptic characteristics of a food sample which is crucial for specification of 

high quality products such as coffee. The need for the analytical methods capable of verifying 

the geographical origin of coffee and providing links to highlight the main differences behind 

their unique aroma characteristics is therefore outstanding. 
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 Volatile compounds and flavor perception  

Volatile organic compounds are the principal components of odour and flavour and literally 

hundreds of compounds might contribute to characteristic odours we associate with particular 

foods. Up to date, more than 7000 flavour compounds have been reported in various food 

products [22]. However, it is estimated that only 5%–10% of them play a significant role in the 

formation of specific aromas of food products [23]. A continuously updated database on 

published volatile compounds which have been found in natural (processed) food products can 

be retrieved online (http://www.vcf-online.nl). 

Volatile organic compounds go into gas phase by vaporizing at 0.01 kPa at room temperature 

with boiling points between the ranges from (50°C to 100°C) to (240°C to 260°C) [24]. The 

majority of the volatile compounds are also relatively nonpolar (hydrophobic) compounds, 

which favours their partition in aqueous media. Volatile compounds are relatively small 

molecules (molecular mass <400 Da) and consist of highly diverse chemical classes [25]. 

Volatile compounds in foods vary in concentration and might be present in foods at extremely 

low concentrations (mg/kg or even ng/kg). However, the concentration of a specific volatile 

compound is not the most significant factor determining its contribution to the characteristic 

aromas. It was proposed that only those odorants might contribute to the aroma whose 

concentrations in food exceed their odour thresholds (the smallest concentration of a compound 

that can be perceived by human nose). The importance of a volatile compound for the aroma of 

a particular food can be estimated via calculating the ratio of its concentration to its odour 

threshold which can be expressed by different terms such as “aroma value”, “flavour unit”, 

“odor unit”, “odour value” or ”odour activity value” [25]. Volatile compounds with 

concentrations lower than the odour and/or taste thresholds also contribute to aroma when 

mixtures of them exceed these thresholds. Briefly, volatile compounds that are attributed to the 

main contributors any foods should have high odour activity values [26]. Among the aroma 

substances, special attention is paid to those compounds that provide the characteristic aroma 

of the food and are, consequently, called key odorants (character impact aroma compounds).  

Flavour plays a fundamental role in determining the main organoleptic characteristics of a food 

product. It affects the overall quality and therefore its assessment by the consumers. It is defined 

as the combined perception of aroma, taste, and texture at the time of food consumption. While 

taste is limited to sweet, sour, bitter, salty, and umami sensations; aroma compounds stimulate 

much more qualities [27]. It is considered that texture is indirectly involved in flavour 

http://www.vcf-online.nl/
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perception; however aroma compounds directly affect the overall perception. During eating and 

drinking, VOCs (stimuli) are released from the food matrix and therefore transported to the 

odour receptors (olfactory epithelium) in the nose. Flavour integration is then driven by the 

differences depending on the route followed by the volatile compounds. The volatile 

compounds can reach the olfactory epithelium via direct sniffing with the nose when the food 

is not put in the mouth (orthonasal olfaction, odour perception) and/or through nasopharynx 

when the volatile compounds are released in the mouth and then swept by the airflow from the 

lungs and are exhaled through the nose after swallowing (retronasal olfaction, flavor 

perception). In both ways the volatile compounds reach the same stimuli, however the direction 

of the volatile flow will determine the order of the receptors to be stimulated and therefore 

different responses are likely to occur in the brain [27, 28]. A scheme of nasal cavity is and 

aroma perception is shown in Figure 1.2-1.  

 

 

Figure 1.2-1. Schematic drawing of the nasal cavity with the lower, middle, and upper/superior 

turbinates. The olfactory bulb/peduncle as the first relay station of olfactory processing (it is 

here where axons from olfactory receptor neurons synapse with mitral cells) is lying in the 

olfactory sulcus located just above the cribriform plate. The olfactory epithelium is found in 

the top of the nasal cavity, largely beneath the cribriform plate. Airflow in relation to orthonasal 

(through the nostrils) or retronasal (from the mouth/pharynx to the nasal cavity) presentation of 

odours to the olfactory epithelium is indicated by thick arrows [29]. 
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Different volatile compounds may show different concentration-perceived intensity 

relationships [30] and the interactions of volatile compounds with food matrices may influence 

their release and subsequently their perception [31]. Moreover, the measurement of these 

various stimuli can be challenging. The limited sensitivity as well as selectivity of various 

instruments and analytical techniques may not provide the same information that nasal 

receptors can detect (nose 10-17 g of flavour detection for some compounds). The detection 

threshold of the analytical instrument can be lower than the odour threshold for a specific 

volatile compound. Also, as the number of aroma compounds that can be detected in real time 

increases, the sensitivity of the instrumentation commonly decreases [28]. 

 Analytical methods for the analysis of aroma compounds 

Without aroma analysis, it is very difficult to identify the flavour of any food product. There 

has been so much focus on the understanding of this crucial component therefore several 

analytical methods have been developed for the detection of aroma compounds [32-35].  

Each analytical method offers different approaches with varying strengths and weaknesses in 

the isolation and detection of the volatile organic compounds. One of the biggest challenges in 

aroma analysis if the choice of method which is usually not as sensitive as the human nose. It 

has been reported that 8 molecules of a potent odorant can trigger 1 olfactory neuron and that 

only 40 molecules may provide an identifiable sensation [34]. Another difficulty is the 

distribution of the aroma compound in food matrix, which can complicate the aroma isolation 

and detection, accordingly. The nature of the aroma compounds (hydrophilic/lipophilic) [34] 

and interactions between flavor compounds and food ingredients (i.e. proteins, carbohydrates, 

lipids) significantly affect their release [31]. Another important point is the diverse chemical 

and physical properties of volatile compounds so that one single method may not be suitable 

for detection of the volatiles of interest. The concentration and number of the volatile 

compounds present in foods should be taken into account in aroma analysis. If the volatile 

compounds are present at trace levels, methods with high sensitivity and precision are needed 

for a reliable and robust analysis. The analyst should select the analytical method fits best to 

the objectives of the study [34-36]. 

Analysis of volatile compounds in foods are performed due to several purposes listed below: 

 To obtain a complete aroma profile (volatile fingerprint) of a sample; 

 To identify key aroma components responsible for a characteristic food aroma; 
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 To monitor the volatile release or production over time; 

 To detect off-notes in a food product for quality evaluation of detection of food spoilage; 

 To find links between sensory attributes and perceived aroma and, 

 To check the authenticity of the aroma compounds by detecting if the aroma compounds 

come from natural sources or produced synthetically [26, 34]. 

 Gas Chromatography- Mass Spectrometry (GC-MS) 

In flavour research, gas chromatography coupled with mass spectrometry (GC-MS) is 

considered as a golden standard for the detection of volatile compounds released from foods. 

GC-MS is used as the main analytical method for detection and quantification VOCs [37]. GC-

MS systems have high precision and can reach detection limits as low as 0.1 pptv but suffer 

from a relatively low time resolution. One of the most important limiting factors for the analysis 

is the chromatographic separation on the capillary column which ranges from minutes to tens 

of minutes. 

Preparation of samples for GC-MS analyses starts with VOC isolation which is usually 

laborious and time consuming. One should consider the polarity and the volatility of the target 

molecule during aroma isolation and concentration. Nevertheless, no single sample preparation 

technique is appropriate for every type of analyte or sample matrix [34]. Aroma concentration 

usually involves the adsorption of VOCs into a suitable fiber and then thermal desorption for 

injection into the column. Several aroma pre-concentration methods are available in the 

literature [37] for the detection of food volatiles; in most of the applications methods based on 

purge-and-trap (i.e. Tenax column), distillation methods (i.e. vacuum or steam distillation), 

direct solvent extraction and solid phase micro-extraction (SPME) methods are commonly used 

[35, 37]. With GC-MS, complex aroma mixtures are separated into individual components and 

further identified by using available reference libraries (e.g. the NIST-98/Wiley library). For 

improving the resolving power in GC analyses, capillary column GC (high-resolution gas 

chromatography, HRGC) is preferred as a standard with enhanced column capacities. The 

resolving power is further improved by multi-dimensional GC such as GCxGC especially when 

it is interfaced with a time-of-flight mass spectrometer (TOF-MS) [35]. The detailed 

applications of multi-dimensional gas chromatography in flavor analysis can be found in [38] 

and [39].  
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 Gas Chromatography-Olfactometry (GC-O) 

Gas chromatography-olfactometry (GC-O) methods are used to determine the odor active 

compounds. Main aim is to sort out the odorant compounds from odorless volatile fraction. The 

gas chromatographic effluent of a representative aroma isolate is split in two by volume (1:1) 

where one part is sniffed by a trained person in order to associate odor activity with the eluting 

compounds; the second half is sent to the detector. A trained person can smell the GC effluent 

and tell the potency (sensory intensity) of a GC peak, character and often even the chemical 

identity of a peak. The results help the flavor chemist to decide whether the aroma extract 

should be concentrated or a different isolation technique should be used to prepare the sample 

for GC [26, 35, 40].  

 Direct injection methods 

Analytical techniques based on ‘direct injection’ in particular Direct Injection Mass 

Spectrometry (DIMS) have successfully been applied in various fields for the detection of 

volatile organic compounds [9]. The main advantages brought by the development of DIMS 

techniques are the rapid, non-invasive and direct analysis of VOCs with improved mass and 

time resolution. Continuous sample injection allows online and real-time monitoring of VOC 

release which is in particular a crucial feature to study in-vivo flavor release during food 

consumption and to monitor online food processes.  

The mostly used DIMS techniques for monitoring VOCs and BVOCs in gas samples are 

Atmospheric-Pressure Chemical Ionization (ACPI), Ion-Molecule Reaction Mass 

Spectrometry (IMR-MS), Selected Ion-Flow-Tube Mass Spectrometry (SIFT-MS) and Proton 

Transfer Reaction Mass Spectrometry (PTR-MS) [9, 41]; moreover electronic noses (e-nose) 

and electronic noses based on mass spectrometry (MS-e-noses) can also be included in direct 

gas analysis. Among them, IMR-MS has been utilized mostly in medical and environmental 

applications [41] but not in aroma analysis, therefore further details will not be provided. More 

attention will be paid on the methods that have been used for volatile compound detection in 

foods. 

ACPI is commonly used as an ionisation source for many mass spectrometry techniques. The 

ionisation relies on gas phase ion–molecule reactions that take place at or near atmospheric 

pressure. Generally, multiple ion species are generated from air (e.g., N2
+, O2

+) by using a 

corona discharge that react with the analytes and as well as the water vapor present in the sample 
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to produce [MH+] ions from the neutral molecules [M] [41]. Successful applications of ACPI-

MS in flavour release monitoring [42] and in non-targeted foodomics [43] are available in 

literature. 

SIFT-MS and PTR-MS both have a big advantage over the other methods have been mentioned 

for direct analysis of gaseous samples in real time without chromatographic separation and 

calibration procedures. Similarly, both techniques allow simultaneous quantification of VOCs. 

However, SIFT-MS and PTR-MS differ in ion source: a microwave or electron-impact ion 

source is utilized in SIFT-MS [44]; whereas the ions are generated by a hollow cathode 

discharge in PTR-MS [10]. SIFT-MS requires pre-selection of main ionization agent (i.e. H3O
+, 

O2
+ and NO+) via a quadrupole mass filter and is less sensitive when compared to PTR-MS due 

to the mass analyzer employed. There is no electric filed employed in SIFT-MS which makes 

it possible to carry out ion-molecule reactions under thermal conditions [44]. The ion-molecule 

reaction rate coefficients can be determined with SIFT-MS under controlled conditions which 

can be directly used in quantitative analysis. PTR-MS mostly utilizes rate coefficients reported 

in literature which usually bring a fixed error in quantification [45]. More details on applications 

of these methods in food science and technology can be found in [41, 46]. 

Electronic nose (E-nose) instruments consist of an array of electronic chemical sensors with an 

integrated pattern recognition system [47] which are designed to mimic the human olfactory 

system. Two types of electronic nose technologies exist: electronic noses based on gas sensors 

and recently developed electronic nose technology based on MS [9, 33, 48]. Unlike most 

existing chemical sensors, MS-e-noses cannot identify specific VOCs but with the existing 

pattern recognition system it is possible to recognize simple or complex odors [41]. Aroma 

mixtures are directly introduced into the e-nose systems via an aroma delivery system without 

pre-separation of the sample analyte. Some of the disadvantages are the sensitivity to the 

operation temperatures and humidity [33]. The output of MS-e-nose is a fingerprint of the 

sample, however the degree of fragmentation due to the electron impact has to be taken into 

account for data interpretation. Several applications of e-noses and MS-e-noses are available in 

literature [48, 49].  

This thesis employs PTR-MS with a time-of-flight (ToF) mass spectrometer for the rapid, direct 

and high throughput analysis of volatile compounds. Therefore, the following section will 

present a detailed description about the utilized methodology. The applications of PTR-ToF-

MS for monitoring in vivo flavour release by nosespace analysis and its combination with 
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dynamic sensory methods will be provided and the advantages and disadvantages of the present 

technique will be discussed. 

 Applied methodology 

 Proton Transfer Reaction-Mass Spectrometry 

Proton transfer reaction-mass spectrometry (PTR-MS) is a technique developed for the 

detection of trace gaseous volatile organic compounds. PTR-MS is a form of soft chemical 

ionization mass spectrometry, which was developed in the mid-1990s by Werner Lindinger and 

co-workers at University of Innsbruck [50-53].  

PTR-MS is a direct injection mass spectrometric method which allows the analysis of volatiles 

without any pre-treatment in real-time and with high sensitivity. It is based on the ionization of 

VOCs by means of protonated water, hydronium ions (H3O
+), where the proton transfer is 

highly dependent on the proton affinities of volatile compounds. For proton transfer to occur, 

the proton affinities of the target VOCs should be higher than water. There is a big advantage 

of using H3O
+ primary ions is that many of their proton transfer processes are non-dissociative, 

so that only one product ion species occurs for each neutral reactant [53]. The proton transfer 

from H3O
+ is very selective to the organic constituents of air which makes it an outstanding 

proton source for the detection of trace VOCs. The common constituents of air, such as N2, O2 

and CO2 and inorganic species do not undergo proton transfer reaction due to their low proton 

affinities. Most of the volatile compounds have proton affinities larger than that of water 

molecules and therefore proton transfer occurs at every collision. Proton transfer from H3O
+ is 

exothermic because proton affinities of the volatiles exceed that of water [54]. Some selected 

compounds with proton affinities and molecular formulae are given in Table 1.4-1. 

The first PTR-MS instrument was commercialized in 1998 by Ionicon Analytik GmbH which is 

located in Innsbruck, Austria. Another PTR-MS producing company is KORE Technology Ltd. 

located in Ely, UK.  
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Table 1.4-1. Proton affinities of some gaseous compounds [55] 

Substance Molecule Proton affinity 

(kJ/mol) 

Oxygen 

Nitrogen 

Carbon dioxide 

Ozone 

Water 

Ammonia 

Methanol 

Ethanol 

Phenol 

Ethylene 

Acetaldehyde 

Propanal 

Acetone 

Pentan-2-one 

Pentan-3-one 

Acetic acid 

Propanoic acid 

Acetonitrile 

Dimethyl sulphide 

Isoprene 

O2 

N2 

CO2 

O3 

H2O 

NH3 

CH3OH 

C2H5OH 

C6H6O 

C2H4 

C2H4O 

C3H6O 

C3H6O 

C5H10O 

C5H10O 

C2H4O2 

C3H6O2 

C2H3N 

C2H6S 

C5H8 

421 

494 

541 

626 

691 

854 

754 

776 

817 

680 

769 

786 

812 

833 

837 

784 

797 

779 

831 

826 

 

A typical PTR-MS consists of mainly three parts: (i) ion source, (ii) drift tube and (iii) mass 

analyser. An exemplificative illustration of PTR-MS instrumentation with a quadrupole mass 

analyser is shown in Figure 1.4.1.  The first PTR-MS was introduced with a quadrupole mass 

analyser [52]; in the recent years PTR-MS with a time-of-flight mass analyser [11, 56] has been 

developed and applied successfully in various fields with improved mass resolution and 

sensitivity.  
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Figure 1.4-1. Schematics of a PTR-MS coupled with a quadrupole mass spectrometer [53] 

1.4.1.1 Ion source 

In the ion source, H3O
+ ions are generated. The most commonly employed ion source is a 

hollow-cathode discharge that generates high purity (>99.5%) ions through water vapor which 

is injected into the ion source region [57]. The discharge process is fast therefore all the 

potential contaminant ions generated (O+, OH+ and H2O
+) in this process lead to the formation 

of H3O
+. Despite the high purity of the primary ion, a small amount of air may enter the ion 

source (via back flow) as contaminant which leads formation of O2
+ and NO+ as impurities.  

The reactions that occur in the ion sources are presented in equations 1-12 [57]. 

𝑒−  + 𝐻2𝑂  →  𝐻2𝑂+ + 2𝑒−  (Eq. 1) 

𝑒−  + 𝐻2𝑂  →  𝐻2
+ + 𝑂 + 2𝑒−  (Eq. 2) 

𝑒−  + 𝐻2𝑂  →  𝐻+ + 𝑂𝐻 + 2𝑒−  (Eq. 3) 

𝑒−  + 𝐻2𝑂  →  𝑂+ + 2𝐻 + 2𝑒−  (Eq. 4) 

𝑒−  + 𝐻2𝑂  →  𝑂𝐻+ + 𝐻 + 2𝑒−  (Eq. 5) 

𝑂+  + 𝐻2𝑂  →  𝐻2𝑂+ + 𝑂   (Eq. 6) 

𝐻+  +  𝐻2𝑂  →  𝐻2𝑂+ + 𝐻   (Eq. 7) 

𝐻2
+  + 𝐻2𝑂  →  𝐻3𝑂+ + 𝐻   (Eq. 8) 

𝐻2
+  + 𝐻2𝑂 →  𝐻2𝑂+ + 𝐻2   (Eq. 9) 

𝑂𝐻+ +  𝐻2𝑂 →  𝐻3𝑂+ + 𝑂   (Eq. 10) 

𝑂𝐻+ +  𝐻2𝑂 →  𝐻2𝑂+ + 𝑂𝐻  (Eq. 11) 

𝐻2𝑂+ +  𝐻2𝑂 →  𝐻3𝑂+ + 𝑂H  (Eq. 12) 
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1.4.1.2 Drift tube 

Ions produced in the ion source are directed into the drift tube via an electric field. The sample 

analyte is then directly injected into this region. The drift tube contains a buffer gas (usually 

air) where the protonation reactions take place via collision. The temperature of the drift tube 

can be adjusted between 40 and 120 °C and the pressure is usually kept between 2.2 and 2.4 

mbar. The proton transfer reaction is controlled by E/N value where E is the electric field (Vcm-

1) across the drift tube and N is the number gas density (cm-3). The E/N value is given in 

Townsend (Td, 10-7 V.cm2) and the E/N value can be adjusted by changing the drift tube voltage 

by using the instrument software. Higher E/N ratios result in more energetic collisions which 

may increase fragmentation of the VOCs but also reduce the formation of cluster ions, 

especially water clusters: H3O
+(H2O)n. Increased collision energy may also increase the 

fragmentation of the ions produced by the reactions between H3O
+ and the analyte gas, which 

is usually undesirable due to the complications that appear in the mass spectra. For this reason, 

the E/N ratio should be carefully controlled. The most commonly preferred E/N values change 

between 100-140 Td [57, 58].  

1.4.1.2.1 Reactions with H3O+as main ionization agent 

H3O
+ ions travel through a buffer gas in the drift tube and the reactants (VOCs) are added in 

small amounts so that the density of the buffer gas [B] stays much larger than the density of the 

[VOCs]. The VOCs perform many non-reactive collisions with buffer gas atoms and molecules, 

however when they collide with the reactants, the proton transfer reaction occurs (if 

energetically allowed). If the analyte molecules are present in trace amounts, the H3O
+ ion 

signal does not decline significantly (about one to a few percent) so that [VOC.H+]<[H3O
+] 

remains valid. By creating a high ion count rate i[VOC.H+] per unit density of [H3O
+] in the 

gas, high sensitivity is obtained. 

Typical proton transfer reactions between H3O
+ and VOCs occur as follows [53]: 

Non-dissociative 𝐻3𝑂+ +  𝑉𝑂𝐶 →  𝐻2𝑂 +  𝑉𝑂𝐶. 𝐻+ (Eq.13) 

Dissociative 𝐻3𝑂+ +  𝑉𝑂𝐶 →  𝐻2𝑂 + (𝑉𝑂𝐶. 𝐻+)∗ (Eq.13) 

 (𝑉𝑂𝐶. 𝐻+)∗  →  𝐹+ + 𝑁 (F: Fragment,  

N: Neutral fragment) 
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The reactions of H3O
+ with the VOCs must occur under well-defined conditions in order to 

achieve an accurate quantification of the neutral reactants from the data on primary and product 

ion signals. The concentrations of target volatiles can be calculated without calibration or using 

standards according to the following formula [10]:  

 

𝐶 (𝑝𝑝𝑏𝑣) =
1

𝑘𝑡
.
[𝑉𝑂𝐶. 𝐻+]

[𝐻3𝑂+]
.

1

𝑁
. 109 

 

where C is the concentration reported in ppbv, k is the reaction rate constant for a given molecule 

(s-1.cm3), t is the ion travel time in the drift tube (~100 μs), [VOC.H+] and [H3O
+] indicate the 

measured counts per second (cps). N is the gas density in the drift tube (molecules/cm3). The 

method has been reversed from measuring the reaction rate coefficients to the usage of known 

reaction rate coefficients. Several limitations about the accuracy of this formula should be taken 

into account. For instance, the experimental k values may not be available for many compounds 

in real applications therefore constant reaction rate coefficients (kR=2x10-9 cm3/s) can be 

employed in calculations. However, this can introduce a systematic error for the absolute 

concentration of each compound which is below 30% in most of the cases and can be accounted 

for if the actual reaction rate constant is not available [59]. Moreover, the assumption of 

constant H3O
+ concentrations and the presence of other ionization mechanisms due to the 

contaminant ions (explained in the following section) can play significant role in the 

interpretation of the mass spectra and as well as in calculations of the absolute concentration.  

1.4.1.2.2 Ionization agents other than H3O+ 

With the recently developed Switchable Reagent Ion (SRI) system [60], it is possible to produce 

reagent ions other than H3O
+. This system allows easy and fast switching between H3O

+, NO+, 

O2
+, Xe+ and Kr+ primary ions with detection limits in the ppqv range. The reagent ions are 

produced by using O2, charcoal filtered air (or, alternatively, pure N2 and O2) and Kr and Xe+ 

as the reagent gases in the ion source, respectively. In this case, attention should be paid on the 

impurities while using different ionization agents: (i) H3O
+, NO+ and NO2

+ in case of O2
+ as 

the reagent ion; (ii) H3O
+, O2

+ and NO2
+, in case of NO+ as the reagent ion; and (iii) H3O

+ and 

KrH+ in case of Kr+ as the reagent ion.  
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The PTR-ToF-MS with SRI system allows the analysis of volatile compounds which are not 

detectable with H3O
+ due to lower proton affinities than H2O (i.e. some alkanes) and provides 

the separation of isobaric compounds such as isobaric aldehyde and ketone pairs.  

Different reaction pathways take place when O2
+ and NO+ are used as ionization agents where 

the reaction is not proton transfer anymore. When O2
+ is used the reactions occur as given in 

Eq. 14-15 via charge transfer: 

 

Non-dissociative 𝑂2
+  +  𝑉𝑂𝐶  →  𝑉𝑂𝐶+ + 𝑂2  (Eq. 14) 

Dissociative 𝑂2
+  +  𝑉𝑂𝐶  →  (𝑉𝑂𝐶+)∗ + 𝑂2 (Eq. 15) 

       (𝑉𝑂𝐶+)∗  →  𝐹+ + 𝑁 (F: Fragment,  

N: Neutral fragment) 

 

When NO+ is used, the target volatile may undergo charge transfer, hydride (H-) or hydroxyl 

(OH-) ion abstraction or both. The reactions of NO+ are given in Eq. 16-17. In this equations, 

X represents the abstracted ion (H- or OH-) and B the stabilizing buffer gas. 

 

𝑁𝑂+ + 𝑉𝑂𝐶 → [𝑉𝑂𝐶 − 𝑋]+ + 𝑋𝑁𝑂 (Eq. 16) 

𝑁𝑂+ + 𝑉𝑂𝐶 + 𝐵 → 𝑉𝑂𝐶. 𝑁𝑂+ + 𝐵 (Eq. 17) 

 

According to the reaction patterns of NO+ with VOCs as shown above, aldehydes and ketones 

appear at their parent masses and H- subtracted masses, respectively.  

PTR/SRI-MS system has been applied for detection of isoprene and 2-methyl-3-buten-2-ol 

[61], ethylene [62] emissions, picric acid [63], in the detection of drugs [64-66] and in the area 

of homeland security [67]. However, the applications in food science and technology is rather 

limited. One study has been recorded for discrimination of dry-cured ham samples which 

allowed separation of isobaric aldehydes and ketones in the headspace [68]. An example is 

shown in Figure 1.4-2 for the reactions of C6 aldehydes and ketones with different ionization 

agents.  
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Figure 1.4-2. Example of peaks related to C6 aldehydes and ketones measured by using 

different reagent ions: a: H3O+, b: NO+, and c: O2
+ (reproduced from [68]) 

1.4.1.3 Mass analysers  

Once the gas-phase ions are generated, they need to be separated according to their masses. The 

positions of peaks in a mass spectrum are determined according to m/z ratio where m is the 

mass of a specific ion and z is the electrical charge [69]. In PTR-MS instrumentation, the 

protonated volatiles are transferred to the mass analyser via a lens system. Up to date, three 

types of mass analysers have been utilized with PTR-MS instrumentation. These are 

quadrupole, ion trap and time-of-flight analysers. Each mass analyser has its advantages and 

limitations which are discussed in the related sections below.  

1.4.1.3.1 Quadrupole Mass Spectrometer (QMS) 

The earliest PTR-MS instruments employed only quadrupole mass spectrometers (QMS) [54]. 

From a technical point of view, a quadrupole mass spectrometer consists of 4 parallel rods 

where an electric current is applied on the rods to generate an electric field in xy plane. When 
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the frequency of an ion with a specific m/z is in resonance with the oscillation frequency of the 

electric field, the ions pass through the quadrupole and reach the detector [69]. All these 

properties explain a QMS to act as a mass filter.  

The QMS systems are limited to have low mass resolution (m/Δm) however they are operated 

in low vacuum levels (10-2-10-3 Pa) and are available in compact size [54]. PTR-MS measures 

the intensities of the protonated compounds and the nominal masses of the detected ions, thus 

many volatile compounds having the same nominal mass will not be distinguished therefore an 

appropriate compound identification cannot be achieved [10].  

1.4.1.3.2 Ion trap mass spectrometer (IT-MS) 

Ion trap (IT) mass spectrometers utilize an oscillating electric field to store the ions. Ions are 

trapped by using a radio frequency (RF) quadrupolar field which can trap the ions in two or 

three dimensions [69]. Several PTR-MS instruments have been constructed with IT mass 

spectrometers [70-72]. Utilization of an IT mass spectrometer with PTR-MS extends the 

analytical capabilities of quadrupole mass analysers employed in PTR-MS [72]. IT-MS shows 

faster data acquisition than QMS so that a full mass spectrum can be obtained in the same time 

as a QMS [70]. A better compound identification can be obtained by using IT-MS due to the 

capability to perform collision induced dissociation reactions which provide the possibility to 

distinguish between isomers and other isobars. Moreover lower E/N values can be reached with 

IT-MS which increases the sensitivity [71].  

1.4.1.3.3 Time of Flight – Mass Spectrometer (ToF-MS) 

The essential principle of a time-of-flight mass spectrometer is that a bunch of ions moving in 

the same direction and having a distribution of masses but a (more-or-less) constant kinetic 

energy, will have a corresponding distribution of velocities in which velocity is inversely 

proportional to the square root of m/z [73]. Ions are extracted from the ionization unit in pulses 

and they are separated according to their flight times under the influence of an electric field. 

Ions of different mass will arrive at the detector sequentially and in principle it is possible to 

detect all the ions that were present in the source. Once all the ions are in the flight tube, no 

further ions are injected till the slowest ion reaches the detector. The reflectron employed in the 

PTR-ToF-MS systems, acts as energy focusing via the ring electrodes with increasing potential 

energy allowing the faster ions of the same m/z then slower ones go deeper into the reflectron. 

The ions are reflected at the bottom of the flight tube therefore they move along a longer path. 



Chapter 1. Background 

39 

 

By adjusting the appropriate reflector voltages, the slow and fast ions reach the detector at 

approximately at the same time [11, 54, 58]. A scheme of PTR-ToF-MS is shown in Figure 

1.4-3. 

 

 

Figure 1.4-3. Schematic of a PTR-MS with time-of-flight mass spectrometer (courtesy of 

Ionicon Analytik, GmBH)  

One of the main and biggest advantages of using a ToF-MS is the simultaneous transmission 

of all ions which generates a full mass spectra in a very short time (less than a second). This 

allows the analysis of complex volatile mixtures in real time with high mass resolution 

(m/Δm=8000) and at very low detection limits (pptv levels) [60]. The high sensitivity is often 

in the range of the sensitivity of human nose which allows an easy and reliable comparison 

between PTR-ToF-MS and the human response. 

 Recent developments in PTR-MS technology 

Thanks to the recent developments in the past two years, a fast gas chromatographic separation 

can be coupled to PTR-MS that significantly improves the detection capabilities [74]. This 

recent technique is called as fastGC-PTR-MS and a schematic drawing is shown in Figure 

1.4-4. fastGC-PTR-MS has much shorter spectral run in contrast to classical GC analyses (less 

than one minute, depending on the applied temperature ramp and the complexity of the sample). 

This significantly reduces the long operating time of GC systems. This technique has been 
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successfully applied on wine matrix [75] which eliminated the saturation of the ethanol and the 

ethanol-VOC clusters in the mass spectra. With this system, ethanol leaves the column very 

fast and therefore formation of alcohol-clusters is prevented. fastGC-PTR-MS has been further 

applied for the separation of monoterpenes with same sum formula [76] and for monitoring 

isoprenoid emissions from trees [77] which were not available for normal PTR-MS analyses. 

 

 

Figure 1.4-4. Schematic drawing of a PTR-ToF-MS inlet system with a FastGC setup. The 

fastGC module consists of a heated column, a sample loop, several valves (1-4), and an 

additional flow controller. The valves can configure different operation modes: such as real-

time PTR-TOF measurement, sample loop loading and injection, and subsequent fastGC 

measurement. The valves are depicted in their normally open state, as they are when FastGC is 

disabled. The column is resistively heated by applying a current, which allows for fast heating 

rates (>10 °C/s). The low thermal mass of the heating module also ensures fast cooling rates 

(from 200 °C to 50 °C in less than 20 s) [75]. 

One of the most recent development is the development of a new prototype of PTR-TOF-MS 

instrument equipped with a quadrupole ion guide (PTR-QiToF, a scheme is shown in Figure 
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1.4-5) [78] in 2014 (Qi, Quadrupole interface). The main difference of this new system when 

compared to a PTR-ToF-MS is the transfer region between the drift tube and ToF mass analyser 

which enables highly effective transfer of ions. PTR-QiTOF can be optimized to a maximum 

sensitivity of maximum mass resolution depending on the basis of the study, especially for the 

applications where extremely small concentrations has to be analysed. In addition, PTR-QiTOF 

can be operated by using SRI system. 

 

 

Figure 1.4-5. Scheme of PTR-QiTOF [78] 

 Nosespace analysis with PTR-ToF-MS 

Nosespace analysis is the technique by which the VOC release is measured in the exhaled breath 

during food mastication or beverage consumption. The so-called “nosespace analysis” via PTR-

ToF-MS consists of sampling the exhaled breath through the nose via a nosepiece (usually 

glass) (Figure 1.4-6a) which allows the panelists to maintain their natural eating/drinking 

habits (Figure 1.4-6b) [3, 79]. 
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Figure 1.4-6. Experimental set-up for nosespace analysis with PTR-ToF-MS 

The main significance of nosespace analysis that it brings the flavor analyst closer to the real 

consumption experience. The nosepiece illustrated in Figure 1.4-6a a, has 4 openings: the two 

at the upper part are connected to the nostrils of the panellists; one at the lower part is connected 

to PTR-ToF-MS inlet and the other one is open to the air. The sampling rate (400 sccm) for 

nosespace analysis is in general faster than the static headspace measurements (40 sccm) which 

allows monitoring the fast changes happening in real-time during eating/drinking. Since volatile 

release processes occur on relatively short time, faster sampling rates will extend the analytical 

capabilities of the instrument. 

Aroma perception is a dynamic process where the intensity and profile of VOCs evolve with 

time. High resolution PTR-ToF-MS allows simultaneous recording of all the VOCs released in 

the nose. The output is the release curves of all the volatile compounds released in nose, which 

are described with unique characteristics. An example of a release curve is shown in Figure 

1.4-7 for m/z 80.045, tentatively identified as pyridine during coffee drinking. After the 

introduction of the coffee sample in the mouth (t=30 s), a significant increase is observed in the 

signal intensity where it reaches a maximum after swallowing the sample (a few seconds after 

the sample introduction in mouth).  

This release curve contains 5 important computable parameters such as (1) max, the maximum 

concentration reached; (2) tmax the time necessary to reach the maximum concentration; (3) 

PTR-ToF-MS 

inlet 

Glass nosepiece 

Nostrils of the 

panelist 

b) The nosepiece is connected to the 

inlet of PTR-ToF-MS for online 

monitoring of volatile release during 

drinking a) Scheme of a glass nosepiece 
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median of the release curve; (4) the slope of the first descending section of the curve and lastly 

(5) the area under the curve. These parameters characterize the volatile release in time-

independent (area, max, median) and time-dependent (slope, tmax) fashions [80].  

 

 

Figure 1.4-7. Release curve parameters for protonated pyridine (m/z 80.045; C5H6N
+) 

One of the major issues in real-time volatile analysis is the handling of the large data sets 

produced by PTR-ToF-MS [59]. Additionally, the time dimension increases the data size and 

therefore the complexity of data analysis. Nevertheless, a straightforward methodology was 

introduced by Romano et al., 2013 [81] for the analysis of complex PTR-ToF-MS mass spectra 

produced during nosespace analysis of coffee. The same approach was employed in this thesis 

for analysing the nosespace data. The presented methodology required using tailored data 

analysis tools which were described in detail from raw data handling to characterization of 

coffees and coffee tasters. 

 Combination of PTR-ToF-MS with dynamic sensory methods 

Sensory evaluation has been defined as a scientific method that measures, analyses and 

interprets the responses given to products though using our senses (odour, taste, sight, touch 

and hearing) [82] or it can be defined as a technique or referred to a technique that highlights 

and describes organoleptic properties of a product by the sense organs [83]. Different methods 

exist in literature for sensory analysis and perception [82-84] but the investigation of the 

Sample 
introduction 
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dynamic perception has gained a lot of interest due to the dynamic nature of sensory sensations 

during food consumption. Since the perception of flavour is a multi-dimensional phenomena, 

it is necessary to include sensory input in the interpretation of flavour analysis.  

Methods that acknowledge the dynamic properties of eating are likely to produce results more 

valid than static methods. Among the dynamic sensory methods [85], methods based on 

measuring the intensity of a sensation in relation to the time of its perception are named as ‘time 

intensity (TI)’. Initial applications of TI were primarily more related to taste sense, which 

changes during mastication in the mouth when eating, and particularly to the evolution of 

bitterness and sweetness [83, 85]. The evaluation starts when putting the sample into the mouth. 

The final point means that the perceived intensity is completely gone. Experiments are 

performed applying a special device coupled with the computer system which provides an 

output in the form of a special curve displaying the changes in the intensities with time and the 

differences between judges [85]. 

Another dynamic sensory method has been in introduced in the recent years. This method id 

called as Temporal Dominance of Sensations (TDS) which describes the temporal evolution of 

the different sensations developed during consumption. This method requires trained panellists 

and they are asked to choose the attribute which dominates their perception (the attribute that 

catches the attention of the consumer) among a pre-defined list of attributes. TDS is considered 

as a multi-attribute descriptive method more effective than the other dynamic methods when a 

food product is described by using a whole range of sensations [86]. This method allows 

evaluation of several attributes simultaneously (maximum 10) and has demonstrated its utility, 

through numerous and various applications [87]. TDS results are usually represented as average 

dominance curves with the estimates of chance and significance levels calculated by using 

statistical tests [86]. 

Dynamic sensory methods and in particular TDS, can provide useful information beyond that 

found using a conventional, ‘static’, descriptive sensory methods [88] for evaluating and 

understanding the flavour perception. It has also been underlined by several authors that the 

understanding of flavour perception phenomena could be considerably enriched by adding 

instrumental measurements performed simultaneously to sensory measurements or combining 

them particularly in the case of dynamic measurements ([87]; e.g. TDS) and in particular in the 

context of a coffee matrix [89].  
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Some combinations of PTR-QMS with TDS were shown to be successful to study the dynamics 

of aroma release and its relation with food texture [90, 91] and swallowing of liquid samples 

[92] and the effect of coffee crema on in-nose and in-mouth aroma release [93]. To the best of 

our knowledge, no studies have been recorded on the combination of TDS to PTR-ToF-MS 

before establishing this thesis. 

 Data analysis 

PTR-ToF-MS spectra handling and analysis require advanced methodologies [94] for 

improving the mass accuracy [95] and as well as for quantification of the mass peak 

concentrations [59, 96]. The high mass resolution provided by PTR-ToF-MS results in 

production of a very complex mass spectrum in short analysis time, that includes hundreds of 

mass peaks vary in concentration. The number of the mass peaks and their intensities 

significantly change depending on the matrix. For some food samples, in particular for coffee, 

this number may reach around 500. Thus, the resulting mass spectra preserve a lot of analytical 

information (mass peaks, their concentrations and time dimension when online measurements 

are performed) [97]. In the experiments where very high number of samples (more than 100) 

are analysed, the utilization of multivariate and data mining tools becomes crucial to process 

the PTR-ToF-MS data and to extract the necessary information. Good examples have been 

reported in the literature for supporting the utility and effectiveness of coupling PTR-ToF-MS 

with multivariate and data mining methods in fruit metabolomics [98] and for a reliable and 

fast characterization of agro-industrial products [99].  

The data mining methods can be grouped as supervised and unsupervised techniques [100]. As 

a first step into data exploration, the unsupervised techniques such as Principal Component 

Analysis (PCA) and clustering methods are employed to visualize the possible patterns and/or 

grouping in the data. Whereas the supervised methods include advanced classification and 

prediction models such as Partial Least Squares (PLS), Partial Least Squares-Discriminant 

Analysis (PLS-DA), Random Forests (RF), Penalized Discriminant Analysis (PDA), Support 

Vector Machines (SVM) [99]. In this second case, the data analyst is aware of the patterns in 

the data and usually built a model where the success of the employed method is usually 

evaluated by classification errors and confusion matrices. In this thesis, softwares created under 

Matlab and R programming language [101] have been employed for the analysis of PTR-ToF-

MS data and as well as for data mining. 
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 An overview on Pros-and-Cons of PTR-ToF-MS 

PTR-MS technology provides several advantages and various applications in flavour analysis. 

On the positive side, the biggest feature of this technology is the simultaneous ionization based 

on direct injection which allows obtaining a rapid full scan (fingerprint) of the whole mass 

spectra almost simultaneously [11, 56, 58]. The high time resolution brought by this technology 

allows real-time monitoring of fast food processes (i.e. food fermentation, formation of volatile 

compounds during cooking, baking or other thermal processes, volatile compounds release 

during and/or after food consumption in the case of nosespace analysis). Besides, the sensitivity 

of PTR-ToF-MS is often in the range of the sensitivity of human nose which allows an easy 

comparison between the instrument and human response via prediction of a scenario very close 

to human perception.  

On the other side, one weak aspect of this technology is the compound identification. When 

complex volatile mixtures are considered, it is practically not feasible to provide calibration 

curves for all the mass peaks for compound identification. For instance, when quadrupole mass 

analyser is employed with PTR-MS, the volatile compounds are characterized only via their 

nominal masses (one dimensional), which brings superimposing of several compounds on the 

same protonated peak. On the other hand, given the higher mass resolution, PTR-ToF-MS 

separates isobaric compounds and therefore strongly enhances compound identification. 

Nevertheless, isomers are still not distinguishable, the compound sum formula is in principle 

determinable [97]. When the sum formula has been identified, the step towards compound 

identification might not be trivial. A mass accuracy of 5 ppm is usually considered sufficient 

for the exact determination of the elemental composition of molecules [95]. However 

fragmentation, complex peak structure and/or the presence of isomeric compounds may still 

render the challenge unpractical, especially in complex matrices [102]. The ionization based on 

proton transfer provides a soft ionization where most of the mass peaks appear on their parent 

ions however, some residual fragmentation that is not always avoidable and negligible. 

Overall, it has to be noted that the aforementioned characteristics of PTR-MS technology do 

not suggest it as an alternative to any gas chromatographic method but as a complementary tool 

for the study of volatile compounds and a reliable choice when speed, sensitivity and online 

measurements are required. Still, for accurate compound identification the fragmentation 

patterns of the molecules has to be taken into account and/or a confirmation by GC-MS has to 

be performed for the compounds of interest. 
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 The scope of the thesis and outline 

The scope of this thesis is to develop rapid, automatic and high-throughput headspace and 

nosespace sampling methods based on PTR-ToF-MS for the analysis and characterization of 

coffee volatile compounds. This thesis covers the development of automated headspace 

sampling procedures by combining PTR-ToF-MS to a multipurpose autosampler for a more 

reproducible and straightforward analysis. Coffee is chosen due to the high number of volatile 

compounds which makes it a very suitable matrix for fingerprinting studies. Additionally, the 

link between coffee volatile compounds and product quality and the connection between 

perceived quality and volatile compounds are also taken into account. Moreover, the popularity 

of this drink among consumers and its value in the food market are some other aspects have to 

be mentioned. 

We can describe the detailed aims of the chapters included in this thesis as given below; 

Chapter 2: Discrimination of coffee origin 

 To develop an automated headspace sampling system by connecting a multipurpose 

autosampler to PTR-ToF-MS (Chapter 2.1), 

 To develop a methodology for rapid characterization and discrimination of 100 % 

Arabica coffee powders from different geographical origins (Chapter 2.1), 

 To find the possible volatile markers discriminating coffee geographical origins, 

 To investigate the effect of different batches in coffee production for ensuring quality 

control (Chapter 2.1), 

 To extend the methodology developed in Chapter 2.1 via increasing the number of 

coffee origins and analysing the volatile profiles of coffee powders and brews (Chapter 

2.2), 

 To use different ionization agents (H3O
+, NO+ and O2

+) via operating the PTR-ToF-MS 

in Switchable Reagent Ions mode (SRI) for the analysis of coffee volatile compounds 

(Chapter 2.2), 

 To investigate the effect of different ionization agents on discrimination of coffee origin 

by using different classification algorithms and data fusion method (Chapter 2.2), 

 To investigate the effect of coffee brewing on the volatile compound release and its 

relation with coffee geographical origin (Chapter 2.2)  
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Chapter 3: Single bean coffee roasting 

 To prepare an experimental set-up for monitoring the volatile compounds released from 

a single coffee bean during roasting, 

 To investigate the difference in the aroma profiles of single coffee beans from different 

geographical origins at different stages of roasting, 

 To monitor release behaviors of volatile compounds and their relations with coffee 

origin, 

Chapter 4: Nosespace analysis of coffee 

 Simultaneous combination of in-vivo nosespace analysis with PTR-ToF-MS 

(instrumental) and TDS (dynamic sensory method) for a better understanding of coffee 

flavor perception, 

 To investigate the effect of coffee roasting degree (dark and light roasted espresso 

coffees) and sugar addition on the release of volatile compounds in the nose in 

comparison with headspace results. 

 To find links underlying the mechanisms between volatile compound release in the nose 

and perceived aroma 

Chapter 5: Other projects 

 Applying the methodologies described in Chapters 2 and 3 in the case of black and green 

tea samples, 

 Discrimination of the aroma fractions from black and green tea leaves and infusions 

according to geographical origin based on volatile emissions  
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 PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different 

geographic origins 

 

Published as  

 

 

 

Highlights  

 PTR-ToF-MS has been used for the first time for rapid discrimination of ground and 

roasted 100 % Arabica coffees, 

 Three C. arabica coffees from different geographical origins (Brazil, Guatemala and 

Ethiopia) were successfully classified 

 Tentative identification of mass peaks highlighted volatile markers of origin 

discrimination  

 Models set on the samples from one batch correctly predicted the second batch 
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Abstract  

Characterisation of coffees according to their origins is of utmost importance for commercial 

qualification. In this study, the aroma profiles of different batches of three monoorigin roasted 

Coffea arabica coffees (Brazil, Ethiopia and Guatemala) were analysed by Proton-Transfer-

Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). The measurements were 

performed with the aid of a multipurpose autosampler. Unsupervised and supervised 

multivariate data analysis techniques were applied in order to visualize data and classify the 

coffees according to origin. Significant differences were found in volatile profiles of coffees. 

Principal component analysis allowed visualising a separation of the three coffees according 

to geographic origin and further partial least square regression-discriminant analysis 

classification showed completely correct predictions. Remarkably, the samples of one batch 

could be used as training set to predict geographic origin of the samples of the other batch, 

suggesting the possibility to predict further batches in coffee production by means of the same 

approach. Tentative identification of mass peaks aided characterization of aroma fractions. 

Classification pinpointed some volatile compounds important for discrimination of coffees. 

 

 

Keywords: PTR-ToF-MS; geographic origin; coffee; volatile compounds; multivariate 

analysis 
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 Introduction 

Coffee with its distinct aroma is one of the most consumed beverages all over the world [1]. 

The unroasted green beans are poor in aroma and have no desirable flavour however the roasted 

and ground coffee is highly aromatic due to the quite complex volatile profile formed during 

roasting. Hundreds of volatile compounds belonging to different chemical classes are 

responsible for the pleasant and rich ground and brewed coffee aroma [2]. Several coffee 

species have been identified worldwide but the two main species extensively cultivated and of 

commercial interest in the genus Coffea are Coffea arabica and Coffea canephora var. robusta. 

They are referred to as Arabica and Robusta, respectively. The Arabica beans have higher value 

than Robusta and the coffee produced has more pleasant aroma and superior cup quality [2-4]. 

The taste and aroma of high quality coffee can vary considerably among samples from the same 

species and variety grown in different regions. The differences originate from several factors 

such as degree of maturation, genetics, soil composition, and climate. These elements cause 

changes in chemical compositions of the beans and sensory attributes of final product [4]. In 

addition to the fact that geographic origin is embedded in coffee quality, marking of origin for 

product differentiation is highly demanded for traceability [5], authentication, and marketability 

purposes [6]. 

Coffee is known as a product with added value therefore analysis of coffee aroma has been 

widely performed by several analytical techniques in order to characterize the potent odorants, 

differentiate coffee varieties and discriminate the geographical origin. Gas chromatography-

mass spectrometry (GC-MS) was widely used for determination of volatile compounds in the 

headspace of ground coffee. Evaluation of headspace volatile fractions of Arabica and Robusta 

coffees by GC-MS enabled characterisation of the two species according to their origins [7]. 

The separation of coffee species and origin discrimination were obtained also by means of 

solid-phase microextraction-GC-MS equipped with fibers made of different coatings [8-10] and 

by electronic aroma sensing arrays [11]. In another study[12] healthy and defective Arabica 

coffee beans were discriminated according to three different roasting degrees (light, medium, 

dark) based upon their volatiles. In the aforementioned study, Principal Component Analysis 

(PCA) was used to evaluate the discrimination of the samples. The chromatographic data 

obtained allowed separation of Arabica and Robusta varieties according to geographical origin 

and determination of important volatiles responsible for discrimination. 
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Besides the techniques mentioned above used for coffee aroma identification and 

quantification, proton-transfer-reaction mass-spectrometry (PTR-MS) brings a new approach 

for volatile compound analysis. PTR-MS is a form of soft chemical ionization direct injection 

mass spectrometry based on proton transfer from a protonated reagent, most commonly H3O+. 

Compounds with higher proton affinity than H2O react with H3O+ and accept a proton [13]. 

PTR-MS, coupled with a time of flight (ToF) mass analyser provides high mass range, fast 

measuring time (a complete mass spectrum in a split second) and high mass resolution [14]. It 

is a powerful tool for rapid, direct and highly sensitive on-line monitoring of volatile organic 

compounds (VOCs) [15]. PTR-MS and, in particular, PTR-ToF-MS have been applied for 

coffee headspace analysis [16], online monitoring of volatile release during coffee roasting [17, 

18] and also for investigating the dynamics of real-time VOC formation of coffees from 

different origins [19], for the study of release kinetics of coffee aroma compounds [20] and 

recently the possible differentiation of organic and conventional coffees by PTR-MS head-

space analysis [21]. In addition to the studies mentioned here, PTR-MS has been used as a 

powerful tool for geographic discrimination and characterisation of several food products like 

olive oils [22], palm oils [23] butters [24], cheese [25] and dry cured ham [26]. 

Most of the coffee consumed in Italy is home brewed and made with a stove-top coffee maker, 

known as “moka” [27, 28]. This brewing technique needs a specific coffee grinding to ensure 

both cup quality and safety. In this study the headspace of 3 moka-type ground coffees from 

different origins (Brazil, Ethiopia and Guatemala) were analysed by PTR-ToF-MS in order to 

investigate their VOC profiles and use this information to classify samples according to 

geographic origin. 

 Materials and Methods  

2.1.2.1 Materials 

Commercially available medium roasted (total weight loss: 15-18% w/w) C. arabica 

(Monoarabica™) coarsely ground powder for stove-top coffee maker from Brazil (BRA), 

Ethiopia (ETH) and Guatemala (GUA), packed in inert atmosphere under pressure in 125 g 

stainless steel cans, were obtained from illycaffè S.p.A, (Trieste, Italy) and kept at room 

temperature prior to analysis. Samples included two different batches of one origin coffee and 

3 jars per batch. 6 measurements were performed for each jar. 100-mg aliquots of ground coffee 

were weighed in 22-ml glass vials (Supelco, Bellefonte, PA) and 12 empty vials were measured 
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together with coffee samples and employed as blanks. The final data set consisted of 3 types of 

coffee x 2 batches x 3 jars x 6 replicates = 108 measurements. 

2.1.2.2 PTR-ToF-MS Analysis 

The headspace measurements were performed by using a commercial PTR-ToF-MS 8000 

instrument (Ionicon Analytik GmbH, Innsbruck, Austria). The instrumental conditions for the 

proton transfer reaction were the following: drift voltage 550 V, drift temperature 110°C, drift 

pressure 2.33 mbar affording an E/N value of 140 Townsend (1Td = 10-17 cm2 V-1 s-1). Sampling 

was performed with a flow rate of 40 sscm. The mass resolution (m/Δm) was at least 3700.  

Measurements were performed in an automated way by using a multipurpose GC automatic 

sampler (Gerstel GmbH, Mulheim am Ruhr, Germany). The automatic sampler syringe was 

connected to the inlet of PTR-ToF-MS together with the clean air generated by a gas calibration 

unit (GCU, Ionicon Analytik GmbH, Innsbruck, Austria) used as zero air generator. The 

measurement cycle for each vial consisted of flushing the headspace of the sample with clean 

air for 1 minute at 200 sccm, then incubation for 30 min at 40°C, and finally measurement. The 

measurement order was randomized to avoid possible systematic memory effects. The sample 

head-space was measured by direct injection into the PTR-ToF-MS drift tube via a heated 

(110°C) peek inlet. Each sample was measured for 30 s, at an acquisition rate of one spectrum 

per second. Headspace volume mixing ratios were calculated by averaging over the whole 

measurement time. 

2.1.2.3 Data analysis 

The autosampler and PTR-ToF-MS were synchronized by means of a binary electrical signal 

(differential TTL). This allowed initialisation of data acquisition at the beginning of each 

measurement in an automated way. The data thus generated (a distinct file for each sample) 

were further addressed to the following steps of data analysis. Dead time correction, internal 

calibration of mass spectral data and peak extraction were performed according to a procedure 

described elsewhere [29, 30] and the experimental m/z values were reported up to the third 

decimal. In this paper, we report the VOCs concentrations in ppbv (part per billion by volume) 

and the calculations from peak areas according to the formula described by Lindinger et al.[31] 

using a constant reaction rate coefficient (kR=2×10−9 cm3/s). For H3O
+ as a primary ion, this 

introduces a systematic error for the absolute concentration for each compound that is in most 

cases below 30% and can be accounted for if the actual rate constant is available [32].  
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Principal Component Analysis (PCA) and Partial Least Square Regression – Discriminant 

Analysis (PLS-DA) were carried out for graphical visualisation of the data and sample 

discrimination, respectively. To investigate the significant changes in VOC concentrations one-

way ANOVA was performed. Tentative identifications of mass peaks were performed by 

automated matching against an in-house library of coffee aroma compounds. The processing of 

raw spectral data was performed with the aid of packages running in MATLAB environment 

(MathWorks, Natick, MA) while all additional data analysis was carried out with scripts 

employing R programming language (Vienna, Austria). 

 Results  

2.1.3.1 PTR-ToF-MS spectra analysis 

The analysis of raw PTR-ToF-MS data resulted in extraction of 476 mass peaks in an m/z range 

of 15-300 Th. After calculation of estimated concentrations in the headspace, a concentration 

threshold of 1 pbbv was set and the mass peaks with less concentration were filtered out. The 

signals related to interfering ions (O2
+, NO+ and, water clusters) at m/z 30, 32, 37 and 55 were 

also eliminated from the matrix and 270 mass peaks remained in the final data set for further 

analysis.  

2.1.3.2 Discrimination of coffees according to origin  

2.1.3.2.1 ANOVA results and characterisation of coffees 

With regards to peak assignment 85 of the mass peaks (including the 13C isotopes) were 

tentatively identified by predicting the sum formula and then comparing the measured m/z 

values with those reported as aroma compounds in headspace of roasted coffee by previous 

studies [7, 16, 33-43]. A peak can be tentatively assigned to a specific compound but it is 

impossible to distinguish isomeric and isobaric compounds (e.g. C6 aldehydes and ketones) 

[44]. Therefore, a mass peak extracted from the coffee headspace spectra has been presented 

here by its sum formula can be related to single compound or mixtures of different aroma 

compounds. 

The final data set was subjected to one-way ANOVA in order to evaluate the differences 

between coffee origins and between two batches. The results are shown in Table 1 for the 

tentatively identified volatile compounds (excluding 13C isotopologues).  
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A mixture of main aroma components of roasted ground coffee [3] and their fragments were 

found in the headspace of coffees. When two different batches of same coffee origin were 

compared there were no significant differences observed between them (p<0.01). Therefore the 

one way-ANOVA results indicating batch differences are not presented in Table 2.1-1. The 

significant differences are pointed out according to Tukey’s post-hoc test. On the contrary, 

significant differences were found in the aroma profiles of coffees from different origins 

(p<0.01). The aroma differences between different origins can be considered to be effected by 

the concentration differences and the odour qualities of the volatiles present in headspace. 

Among 51 mass peaks presented in Table 2.1-1, 5 identified volatile compounds (m/z 57.034, 

75.044, 97.028, 111.044, 135.121) showed significant concentration differences for different 

origins of coffee. 

The most abundant volatiles found in the headspace of coffees were methanol, fragments of 

diverse chemical classes, acetaldehyde, methyl pyrazine and acetic acid/methyl formate. The 

volatile profiles of the three coffee origins consisted of similar chemical groups however it is 

noteworthy to emphasize that BRA was richer in N-heterocyclic compounds (e.g. pyrroles, 

pyrazines, pyridines) and furans; ETH and GUA shared closer VOC concentrations higher for 

aliphatic hydrocarbons (e.g. aldehydes, ketones), in particular ETH had higher concentrations 

for terpene fragments [45]. 

The volatile concentrations are plotted against coffee origins and different batches are indicated 

together with the blank vials. Some distinct examples of volatile compounds in the headspace 

of coffees clearly different from the others are shown in Figure 2.1-1. It’s clearly seen from 

Figure 1 that blank vials have zero concentration for any of the volatiles measured showing the 

absence of contamination with other volatiles during the experiments and other impurities 

coming from the zero air generator. 
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Table 2.1-1. Tentatively identified mass peaks showing average concentrations in the headspace of coffee samples with p-values where 

significant differences are indicated with Tukey letters (one–way ANOVA, p<0.01) Peaks that are highly influential on coffee discrimination 

(VIP scores higher than 1.5) are marked by an asterisk 

   Average volatile concentrations (ppbv)    

Measured 

Mass (Th) 

Sum. 

Formula 
Tentative identification BRA ETH GUA pvalue VIPs Ref. 

33.032 CH5O+ methanol 18268 ab 20296 b 16666 a 0.009  [33] 

41.039 C3H5
+ alkylic fragment 946 a 1253 b 1103 ab 0.001  [16] 

43.017 C2H3O+ fragment (diverse origin) 6805 a 9303 b 8316 b < 0.001  [16] 

43.055 C3H7
+ fragment (diverse origin) 169 a 194 b 184 ab 0.003  [16] 

45.033 C2H5O+ acetaldehyde 4652 a 6423 b 5826 b < 0.001  [34] 

57.034 C3H5O+ acrolein/ acetol fragment 646 a 869 c 786 b < 0.001  [35] 

57.071 C4H9
+ alcohol fragment 155 a 203 b 180 ab < 0.001  [36] 

61.027 C2H5O2
+ acetic acid/methyl-formate 3164 a 4865 b 4296 b < 0.001  [34] 

67.054 C5H7
+ terpene fragment 111 a 116 a 107 a 0.521  [37] 

68.050 C4H6N+ pyrrole 334 b 194 a 197 a < 0.001 * [34] 

69.034 C4H5O+ furan 1056 b 969 ab 939 a 0.013  [34] 

71.086 C5H11
+ terpene fragment 11 a 12 a 14 b < 0.001  [37] 

73.065 C4H9O+ isobutanal/butanone 1391 a 1862 b 1637 ab 0.012  [34] 

75.044 C3H7O2
+ methyl-acetate/acetol 2024 a 2727 c 2345 b < 0.001  [34] 

80.048 C5H6N+ pyridine 6227 b 3501 a 3019 a < 0.001 * [16] 

81.033 C5H5O+ furan fragment 7887 b 6040 a 6377 a < 0.001 * [34] 

82.066 C5H8N+ methyl-pyrrole 513 b 387 a 339 a < 0.001  [34] 

83.049 C5H7O+ methyl-furan 1146 a 1571 b 1337 ab 0.005  [34] 

85.065 C5H9O+ methyl-butenal 390 a 395 a 379 a 0.827  [38] 

86.007 C3H4NS+ thiazol 20 b 15 a 16 a 0.000  [39] 

87.044 C4H7O2
+ butanedione/butyrolactone 1257 a 1255 a 1155 a 0.155  [34] 

87.081 C5H11O+ methyl-butanal 628 a 930 b 811 ab < 0.001  [16] 

89.060 C4H9O2
+ methyl-propanoate/hydroxy-butanone 381 a 492 b 431 a < 0.001  [34] 

93.070 C7H9
+ terpene fragment 26 a 32 b 26 a 0.001  [40] 

95.059 C5H7N2
+ methyl-pyrazine 3893 b 2653 a 2810 a < 0.001  [16] 

96.084 C6H10N+ non identified 103 b 62 a 61 a < 0.001   

97.028 C5H5O2
+ furfural 1040 a 2631 c 1909 b < 0.001 * [34] 

97.065 C6H9O+ dimethyl-furan 354 a 398 a 381 a 0.283  [34] 

99.043 C5H7O2
+ furfuryl alcohol/a-angelica lactone 445 a 459 a 436 a 0.451  [16] 

100.024 C4H6NS+ methyl-thiazole 54 b 33 a 37 a < 0.001 * [39] 

101.059 C5H9O2
+ pentanedione/methyl-tetrahydrofuranone 1832 a 2959 b 2608 b < 0.001  [34] 

101.098 C6H13O+ methyl-pentanone/hexanal 28 a 32 a 28 a 0.191  [34] 

103.075 C5H11O2
+ hydroxy-pentanone/methyl-butanoic acid 201 a 258 b 239 b < 0.001  [16] 
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(Table 2.1-1 continues) 

   Average volatile concentrations (ppbv    

Measured 

Mass (Th) 

Sum. 

Formula 
Tentative identification BRA ETH GUA pvalue VIPs Ref. 

107.087 C8H11
+ terpene fragment 11 a 20 b 10 a < 0.001  [40] 

109.074 C6H9N2
+ dimethylpyrazine/ethylpyrazine 2971 b 2160 a 2250 a < 0.001  [16] 

110.061 C6H8ON+ formyl-methylpyrrole/acetylpyrrole 91 b 90 b 71 a < 0.001  [16] 

111.044 C6H7O2
+ acetyl_furan/methyl-furfural 1202 a 1868 c 1620 b < 0.001 * [34] 

111.081 C7H11O+ 2/3-dimethyl-2-cyclopenten-1-one 151 a 142 a 148 a 0.558  [38] 

112.080 C6H10ON+ trimethyl-oxazole 46 b 33 a 36 a < 0.001  [38] 

113.060 C6H9O2
+ methyl-furfuryl-alcohol/dimethyl-furanone/methyl-cyclopentanedione/cyclotene 280 a 329 b 312 ab 0.010  [16] 

113.098 C7H13O+ heptenone 16 b 12 a 14 ab < 0.001  [38] 

115.076 C6H11O2
+ 4-methyltetrahydro-2H-pyran-2-one 268 a 291 a 291 a 0.279  [38] 

117.054 C5H9O3
+ 2-oxopropyl-acetate 303 a 326 a 304 a 0.257  [16] 

117.094 C6H13O2
+ hexanoic acid 15 a 26 b 14 a < 0.001  [16] 

120.080 C8H10N+ non identified 8 b 6 a 5 a < 0.001   

121.074 C7H9N2
+ 2-ethenyl-6-methyl-pyrazine/6/7-dihydro-5H-cyclopentapyrazine 71 b 55 a 54 a < 0.001  [16] 

123.059 C6H7ON2
+ 2-acetyl-pyrazine 53 b 45 a 44 a < 0.001  [41] 

123.091 C7H11N2
+ ethyl-methyl-pyrazine/trimethylpyrazine 588 b 409 a 439 a < 0.001 * [16] 

125.061 C7H9O2
+ guaiacol/methyl-benzenediol/furyl acetone 145 a 152 a 147 a 0.546  [16] 

127.041 C6H7O3
+ maltol/methyl-furoate 82 a 80 a 83 a 0.751  [16] 

127.076 C7H11O2
+ 3-ethyl-1/2-cyclopentanedione 120 a 133 a 130 a 0.122  [16] 

129.091 C7H13O2
+ pentenyl-acetate/heptanedione 59 a 57 a 61 a 0.559  [38] 

135.091 C8H11N2
+ 2-ethyl-6-vinyl-cyclopentapyrazine/6/7-dihydro-methyl-cyclopentapyrazine 25 b 19 a 19 a < 0.001  [16] 

135.121 C10H15
+ terpene fragment 1 a 7 c 2 b < 0.001 * [40] 

137.108 C8H13N2
+ ethyl-dimethyl-pyrazine 79 b 53 a 56 a < 0.001 * [16] 

138.095 C8H12ON+ 2-acetyl-1-ethylpyrrole/1-acetyl-2/5-dimethylpyrrole 28 b 21 a 23 a < 0.001  [49] 

139.076 C8H11O2
+ 4-ethyl-1/2-benzenediol 61 a 60 a 62 a 0.762  [16] 

139.114 C9H15O+ E/E-2/4-nonadienal 8 a 8 a 8 a 0.998  [50] 

141.054 C7H9O3+ furfuryl-acetate 79 b 64 a 72 ab < 0.001  [16] 

148.075 C9H10ON+ 1-furfurylpyrrole 11 a 11 a 10 a 0.196  [16] 

149.060 C9H9O2+ furfuryl-furan 14 b 12 a 14 b < 0.001  [38] 

151.123 C9H15N2+ diethyl-methyl-pyrazine 7 b 4 a 5 a < 0.001 * [38] 

153.059 C8H9O3+ vanillin 9 a 11 b 10 b < 0.001  [16] 

153.094 C9H13O2+ 4-ethyl-guaiacol 10 a 10 a 9 a 0.365  [16] 

153.128 C10H17O+ E/E-2/4-decadienal 7 a 22 b 9 a < 0.001 * [41] 

157.086 C8H13O3
+ 4-ethoxy-2/5-dimethyl-3-2H-furanone/ethylfuraneol 4 a 5 b 4 ab 0.003  [16] 

160.075 C10H10ON+ methyl-quinolinone 5 b 3 a 3 a < 0.001 * [42] 

163.076 C10H11O2
+ methyl-furfurylfuran 4 a 3 a 4 a 0.157  [43] 

165.096 C10H13O2
+ methyl-cinnamate 3 a 3 a 3 a 0.154  [7] 

183.100 C10H15O3+ ethyl-syringol 1 a 1 b 1 a 0.001  [42] 
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Figure 2.1-1. Strip charts of some selected mass peaks significantly different for the three 

monoorigin coffees (the mass peaks tentatively identified as; a) m/z 75.044: methyl 

acetate/acetol; b) m/z 97.028: furfural; c) m/z 111.044: acetyl furan/ methyl furfural). 

2.1.3.2.2 Principal Component Analysis (PCA) 

For further evaluation of the data, the final data matrix was mean centred, scaled and PCA was 

performed. The mass peaks in the final data set were chosen as variables and three principal 

components (PC) were extracted. The score plots corresponding to PC1 vs PC2 and PC2 vs 

PC3 are shown in Figure 2.1-2 a and b, respectively.  
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As presented in Figure 2.1-2, the first two principal components which explain 80.88% of the 

total variability in the data and grouping of them according to geographic origin is clearly 

visible. PC2 I Separation of coffees seems to be more affected by PC2 than by PC1 due to the 

variability caused by PC1. The coffee “BRA”, located in the negative scores of PC2, is better 

discriminated than GUA and ETH which were located in the positive scores of PC2. In Figure 

2, different batches belonging to same coffee (indicated by means of different symbols) were 

placed relatively close to each other showing similar patterns and the separation based on 

geographical origin was still respected.  

 

Figure 2.1-2. Scatter plots of PCA scores (a: PC1 vs PC2 and b: PC3 vs PC2, respectively). 

Different coffee samples are represented by empty polygons. Symbols “Δ” and “о” indicate 

two different production batches. 

2.1.3.2.3 Partial Least Squares Linear Discriminant Analysis (PLS-DA) 

To evaluate the possibility to predict coffee origin on the basis of the PTR-ToF-MS data a PLS-

DA classification model was employed. The model was constructed on the basis of the samples 

from batch 1 (training set) and cross-validated by using samples from batch 2 (test set). 

Different models, based on 2 to 10 components, were evaluated on the training set and a model 

based on three components was finally selected. The selection of the optimal regression model 

was performed according to Osten [46], by selecting the model that displayed the first local 

minimum in the prediction error. On the basis of the cross-validated results it was possible to 

predict the geographic origin of coffees. The confusion matrix (Table 2.1-2) shows that the 
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model was successful to predict the origin of all samples correctly. The model used in the 

present study was successful to use one batch to predict the other batch showing that this 

approach can be useful also to predict the following batches in coffee production. 

Table 2.1-2. Confusion matrix generated by PLS-DA 

  Predicted 

O
ri

g
in

a
l 

 BRA ETH GUA 

BRA 18 0 0 

ETH 0 18 0 

GUA 0 0 18 

 

The cross-validated PLS-DA model was also used as basis for the calculation of Variable 

Importance in Projection (VIP) values. VIP values higher than 1.5 are considered to be highly 

influential on the prediction model [47]. Hence, this approach was used to pinpoint the variables 

most influential for discrimination of coffee aroma. The score plot of the first two dimensions 

of the PLS-DA model are presented in Figure 2.1-3 and the VIP values higher than 1.5 are 

indicated in Table 2.1-1. The correlation plots show gathering of some mass peaks around 

different coffee origins where BRA is mostly located in the positive scores than ETH and GUA. 

Among the variables with VIP values higher than the threshold 12 of them could be associated 

to tentatively identified mass peaks. The majority of the mass peaks which might be important 

in discrimination according to geographic origin were found to be in the group of N-

heterocycles followed by furans, aldehydes and terpenes. The mass peaks corresponding to N-

heterocycles were always at higher concentrations for BRA. The coffee from Ethiopia was 

richer in aldehydes, terpenes and some furans whereas the Guatemalan coffee had moderate 

concentration values in the headspace. 

As green coffee beans have no pleasant aroma on their own however some aldehydes, ketones, 

furans, heterocycles and terpenic constituents were identified presumed to be responsible for 

fruity (coconut, peach, apricot), fatty and soapy notes [42]. Even though, the characteristic 

coffee aroma and major volatile compounds are formed during roasting by several chemical 

reactions [3] some r compounds like terpenes and aldehydes can resist roasting and be traced 

from flower to cup contributing the final flavour of the product. Among the terpenic compounds 

identified in coffee, especially mono-, di- and sesquiterpenes are known to be responsible for 
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fruity and flowery aroma [45]. Similarly, acetaldehyde found in green and roasted beans and 

can contribute to fruity notes [3] whereas N-heterocyclic compounds produced during roasting 

are mainly responsible for chocolate and roast notes [48]. The presence and amount of volatiles 

in coffee hold great importance in terms of contributing to the originality the flavour. Therefore 

some of them can be referred as key flavour descriptors for particular C. arabica varietes [42]. 

The findings of this study presented so far were in agreement with some previous studies [7, 8, 

11]. Some volatile compounds were identified belonging to similar chemical classes which 

could be effective on discrimination of coffees. GC-MS analysis of aroma fractions was 

successful to distinguish Arabica and Robusta varieties according to their geographic origins 

[7]. Tentative identification of mass peaks after GC-MS analysis has proved that the separation 

between coffees was influenced by N-heterocycles like pyrazines (e.g. 3-methylpyrazine), 

pyrroles (methyl pyrrole), pyrazole and furans (3-penthlyfuran). In another study [8] 

ethyldimethylpyrazine, propanoic acid, 2-furfurylthiol and 1H-pyrrole-1(2-furanyl-methyl) 

were found to be important and sufficient for geographic differentiation of coffees from 8 

different countries including Brazil and Guatemala as impact odorants.  

  

Figure 2.1-3. Score and correlation plots of PLS-DA analysis (a and b, respectively). Variables 

with VIP scores higher than 1.5 are shown in correlation plots 

 

The data obtained confirm that the volatile composition of roasted and ground coffee is highly 

influenced by the geographic origin of the coffee beans. As one way-ANOVA results showed 

the significant differences in volatile concentrations, PLS-DA, in accordance with PCA results, 
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was able to highlight the differences in the aroma profiles of Brazilian, Guatemalan and 

Ethiopian C. arabica varieties and discriminate them.  

 Conclusions 

PTR-ToF-MS has been used for the first time for the rapid classification of the origin of ground 

roasted coffee samples. Three C. Arabica from different geographical origins (Brazil, Ethiopia 

and Guatemala) were successfully classified by their volatile profiles. PTR-ToF-MS spectra of 

the coffees analysed contained almost five hundred mass peaks and the high mass resolution 

allowed the tentative identification of diverse volatile compounds. Unsupervised principal 

component analysis indicated the importance of aroma fingerprints enabling origin 

discrimination which has also been further confirmed by PLS-DA. Models set on samples of 

one production batch could correctly predict the origin of the samples of the other batch 

considered. Since geographic origin verification of food products are of great importance, this 

study shows PTR-ToF-MS as a rapid, direct and non-invasive technique can be used for 

characterization and geographic origin verification of coffee.  
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 Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS 

 

Published as  

 

 

Highlights  

 Brew and powder coffee headspace has been analysed for the first time by PTR/SRI-

MS 

 An automated set-up allows the rapid measurement of samples (5 min/sample) 

 Data mining and data fusion methods efficiently handle the complex datasets  

 The volatile profile of coffee is highly affected by geographical origin 

 Switching reagent ions improves the classification efficiency of coffees by PTR-MS 
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Abstract 

The headspace of six roasted Coffea arabica coffees, both brew and powder, of different 

geographical origins (Brazil, Ethiopia, Guatemala, Costa Rica, Colombia, and India) was 

analysed by Proton Transfer Reaction-Time of Flight-Mass Spectrometry. For the first time, in 

the case of coffee, a Switching Reagent Ion System has been used to produce different ionisation 

agents: H3O
+, NO+ and O2

+. Significant differences were found among volatile concentrations 

for the different origins both for powders and brews, in particular high concentrations of 

terpenes for Ethiopia, sulphur compounds for Colombia and thiazoles for Brazil and India. 

Effective classification models have been set for the different ionisation modes and data fusion 

of the data obtained by different reagent ions further reduced the classification errors. 

 

 

Keywords: Geographic origin, Volatile compounds, Switchable reagent ions, Coffee brew, 

Coffee powder, Moka 
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 Introduction 

Globalization brings a great variety of food products to the market and increases consumers’ 

awareness on food authenticity and product specification. Therefore more information about 

food products and their geographical and/or botanical origin is required and could support 

marketing in the positioning of their products. The increasing consumption trend towards single 

origin food products induces the necessity of to verify and certify origin during quality 

assurance [1]. Coffee, one of the most important agricultural products traded worldwide, is 

consumed mostly for its pleasing aroma. Besides its stimulatory effects, the aroma of coffee is 

one of the most contributory factors for its high acceptability [2, 3]. It is composed of a mixture 

of more than 800 different volatile compounds (VOCs) [4] which can play a role even if present 

at trace levels. Therefore coffee flavour research and quality control can take advantage from 

fast and high sensitivity analytical techniques. Coffee origin is usually determined by elemental 

composition analysis [5] and stable isotope techniques [6, 7]. These methods are highly 

developed and used by legal authorities. However, they do not measure properties related to the 

perceived quality of coffee. A coffee origin signature in its volatile profile would have a direct 

link to the sensory attributes related to aroma which is significant for the acceptance of coffee. 

Proton transfer reaction-mass spectrometry (PTR-MS) enables the analysis of VOCs at very 

low concentrations by direct injection. A soft chemical ionisation is applied in this system by 

using H3O
+ ions as proton donors which can react with a wide variety of volatile compounds 

[8]. The coupling of PTR-MS to Time-of-Flight (TOF) mass analysers increases the sensitivity 

of the VOC analysis by detecting the concentrations at parts per billion per volume level (ppbv) 

[9] with high mass resolution [10]. H3O
+ is the mostly used ionisation agent in PTR-MS studies, 

however, recently a Switchable Reagent Ion system (SRI) was developed which allows the 

usage of NO+, O2
+, Kr+ and Xe+

 as precursor ions. The PTR-ToF-MS with SRI system allows 

the analysis of volatiles which are not detectable with H3O
+ as alkanes (due to lower proton 

affinities than H2O) and moreover the separation of isobaric compounds is possible as in the 

case of aldehydes and ketones (with NO+) [11]. PTR-MS have been widely used in food science 

and technology especially for fingerprinting and profiling of food products [12, 13]. Besides, 

PTR/SRI-MS system has been recently applied for detection of isoprene [14] and ethylene [15] 

emissions, in drug research [16, 17] and homeland security [18] and lastly in food science for 

product discrimination [19] o the best of the authors’ knowledge no studies have been published 
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so far on the application of SRI system for geographical origin discrimination of food products 

and in particular: coffee. 

In a recent paper we demonstrated the possibility of using PTR-ToF-MS for rapid 

discrimination of coffee origin in the case of coffee powder [20]. In this follow up study we 

extend the number of coffee origins considered (from 3 to 6), measure both powder and brewed 

coffee being the latter the product actually consumed, extend the analytical capability of our 

method by using different precursor ions. Therefore in this study, we aimed to (1) analyse the 

volatile profiles of six roasted and ground coffees (Coffea arabica) from different geographical 

origins (Brazil, Colombia, Costa Rica, Ethiopia, Guatemala and India) in powder and brew 

headspace (2) investigate the applicability of SRI system coupled with PTR-ToF-MS on coffee 

by using H3O
+, NO+ and O2

+ as precursor ions and compare their classification efficiencies both 

separately and combined by data fusion methods. 

 Experimental 

2.2.2.1 Sample preparation 

2.2.2.1.1 Coffee powder 

Six coffees from different geographic origins, Brazil (BRA), Colombia (COL), Costa Rica 

(CRC), Ethiopia (ETH), Guatemala (GUA) and India (IND), were supplied by Illycaffè S.p.A, 

(Trieste, Italy) in commercially available forms (Monoarabica™). The coffee beans, C. 

arabica, were medium roasted (total weight loss: 15-18% w/w) at temperatures up to 220°C, 

coarsely ground to powder for stove-top coffee maker (moka) and packed in inert atmosphere 

under pressure in 125 g stainless steel cans in the production plant by the producer.  

For coffee powder headspace measurements two different jars were taken from one batch. After 

opening the jars, 100 mg powder coffee was weighed into 22-ml glass vials (Supelco, 

Bellefonte, PA) and 3 analytical replicates were prepared for each jar. Four empty vials were 

analysed and considered as blanks.  

2.2.2.1.2 Coffee brew 

Coffee brewing was performed by steam pressure coffee extraction in a stove-top coffee maker 

known as “moka” in Italy (two-cup version, Bialetti, Omegna, Italy). For each preparation 100 

ml mineral water (bicarbonate 313 mg/l, calcium 50.3 mg/l, magnesium 30.8 mg/l, sodium 6.0 

mg/l, potassium 0.9 mg/l, chlorides 2.2 mg/l, as specified by the producer (San Benedetto 
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S.p.A., Venice, Italy) and 10 g of coffee powder were used. The coffee maker was heated on 

an electrical plate at 150°C for about 14 min. When almost all coffee was brewed and air started 

to come out of the nozzle (i.e. at the onset of the so-called “Strombolian” phase [21]) the moka 

was immediately removed from the heating plate. Brewed coffee was poured into a glass vessel, 

stirred well and 1 ml aliquots were transferred into 22-ml glass vials. Coffee brewing was 

performed once for each coffee origin and 6 vials were prepared for headspace analysis as 

analytical replicates. The coffee brews were analysed immediately after the preparation. Four 

blank vials were also analysed with coffee brews.  

2.2.2.2 PTR/SRI-MS Analyses 

The headspace measurements were performed by using a commercial PTR-ToF-MS 8000 

instrument (Ionicon Analytik GmbH, Innsbruck, Austria). The instrument was equipped with a 

switchable reagent ion system that allowed the operation of PTR-ToF-MS in H3O
+, NO+ or O2

+ 

modes as described elsewhere [15, 19]. The instrumental conditions in the drift tube were kept 

the same for the three ionisation modes as following: drift voltage 550 V, drift temperature 

110°C, drift pressure 2.33 mbar affording an E/N value of 140 Townsend (1 Td = 10-17 

cm2/V.s). Sampling was performed with a flow rate of 40 sscm. The mass resolution (m/Δm) 

was at least 3900. Measurements were performed in an automated way by using a multipurpose 

GC automatic sampler (Gerstel GmbH, Mulheim am Ruhr, Germany) as previously described 

[20]. The measurement order was randomized to avoid possible systematic memory effects. All 

the vials were incubated at 40°C for 30 min before PTR-MS analysis. Each sample was 

measured for 30 s, at an acquisition rate of one spectrum per second. One sample was analysed 

at every 5 minutes. 

2.2.2.3 Data processing and analysis 

Data processing of ToF spectra included dead time correction, internal calibration and peak 

extraction steps performed according to a procedure described elsewhere [22] to reach a mass 

accuracy (≥0.001 Th) which is sufficient for sum formula determination. The baseline of the 

mass spectra was removed after averaging the whole measurement and peak detection and peak 

area extraction was performed by using modified Gaussian to fit the data [23]. Whenever a peak 

was detected, the volatile concentrations were calculated directly via the amount of detected 

ions in ppbv (part per billion by volume) levels according to the formulas described by 

Lindinger, Hansel & Jordan (1998) [8] by assuming a constant reaction rate coefficient 

(kR=2×10−9 cm3/s) for H3O
+ as primary ion. Concentration data in ppbv are called “raw data” 



Chapter 2. Discrimination of coffee origin 

80 

 

and used directly for most data analysis. Each spectrum was also normalized to unit area, in 

order to remove sources of systematic variation and produce the “normalized data”, which was 

used for discriminant analysis. Further tentative peak identification was performed by using an 

in-house library developed by the authors where the peak annotations were done automatically 

with the scripts developed under R programming language (Vienna, Austria). 

The mass spectrometric data obtained by using H3O
+ as primary ion were subjected to three 

different analyses. First, principal component analysis (PCA) was applied on the dataset 

containing all the mass peaks extracted for the three ionization modes to explore clustering of 

coffee samples in terms of their volatile compound composition.  

Second, supervised classification methods were employed on the data obtained by three 

precursor ions to assess the separation of the classes. Random Forest (RF), Penalized 

Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector 

Machines (SVM) methods were applied following to Granitto et al. (2007) [24]. A six-fold 

cross-validation procedure was used by dividing the full dataset in six folds, each containing 

six samples, one from each origin. Then we repeated six times the following procedure: At each 

time, one of the folds was removed and used as a test set, the rest of the data was used to adjust 

the discriminant methods, and all methods were used to predict the origins of the samples in 

the corresponding test set. Results were evaluated using mean classification errors and 

confusion matrices. In addition to the individual analysis of the three precursor ions, the same 

data was merged into a multi-precursor dataset, following a data fusion strategy [25]. The same 

discriminant procedure was applied to the merged dataset.  

Third, a one-way ANOVA followed by Tukey’s post hoc comparison test (where appropriate) 

was applied to the three datasets, in order to find the mass peaks that are significantly different 

between the 6 coffees, both in powder and brew.. 

 Results and discussion 

2.2.3.1 Classification of coffees according to geographical origin in switching reagent ion 

system 

2.2.3.1.1 Data exploration by multivariate analysis (PCA)  

Analysis of mass spectral data resulted in the extraction of 563, 524 and 563 mass peaks for 

H3O
+, NO+ and O2

+, respectively. The whole data matrix was mean centred and scaled after 
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eliminating the interfering ions and the mass peaks with a concentration lower than 1 ppbv. The 

resulting data matrices with 263 (for H3O
+), 260 (for NO+) and 233 (for O2

+) were separately 

subjected to Principal Component Analysis (PCA) for visualisation of the coffee data. In a first 

analysis, the powder and brew headspace data were treated together. Two big groups were 

observed in the score plots located far from each other showing a clear separation of powder 

and brewed coffee (data not shown). Then data referring to brew and powder coffee were 

analysed separately.  

Figure 2.2-1-Panel A shows the score plots of the first two principal components (PCs) 

explaining more than 62% of the total variance in H3O
+ data. A good discrimination of coffees 

in the powder and brew headspace was observed. Separation of coffees according to origin was 

clear except for BRA and IND in the powder headspace. However these coffees were well 

separated when they were brewed. On the contrary COL and GUA were well separated in the 

powder form but not in the brew headspace. These two plots also point out grouping of “BRA-

IND” and “ETH-GUA-COL-CRC” both in powder and brew headspace indicating potential 

similarities within each group. However this grouping was not related to the geographical 

location of the coffees.  

When PCA was performed on the NO+ and O2
+ data separately, the separation of coffees was 

not clear for the powder headspace. Figure 2.2-1-Panel B and Figure 2.2-1-Panel C show the 

score plots of the first two components explaining more than 75% variance in NO+ data and 

more than 60% variance in O2
+ data, respectively. Similarly to the score plots obtained by H3O

+ 

data, “BRA-IND” was located close to each other as one group and “ETH-GUA-COL-CRC” 

as another group in the powder and brew headspace for NO+ and O2
+. Interestingly, data 

obtained by using O2
+ as precursor ion suggested a good discrimination of coffees in the brew 

headspace better than the other two ionisation agents. 
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Figure 2.2-1. Score plots of principal components analysis (PCA) for 3 ionisation modes. 

Panel A: H3O
+, Panel B: NO+ and Panel C: O2

+. The first two principal components are 

shown. Open and solid circles indicate different jars of the same batch. 
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2.2.3.1.2 Data fusion: classification methods using more than one parent ion 

Last column of Table 2.2-1 shows the results corresponding to the merged dataset, which 

contains 1650 masses from the 3 reagent ions. For all classification methods and all 

experimental conditions (brewed/powder, raw/normalized) there is perfect discrimination: all 

samples are correctly classified. Adding the information gained by 3 ionisation agents 

significantly increased the performance of classification and provided an optimum 

discrimination of coffees. As an additional experiment, we developed discriminant methods 

over all three possible combinations of two diverse reagent ions. Results (not shown) indicate 

that any combination of reagent ions improves the results of single ions, but cannot reach the 

complete discrimination of the merged dataset. These results suggest that each ion provides 

some new information about the volatiles profile of each coffee improving the fingerprinting 

of the different products. 

Table 2.2-1.  Classification errors (%) obtained by random forest (RF), penalized discriminant 

analysis (PDA), discriminant partial least square analysis (dPLS) and support vector machine 

(SVM) classification models for 3 ionisation modes showing before and after data 

normalization. 

   Primary ion 

  
Classification 

Method 
H3O+ NO+ O2

+ 
Aggregate 

matrix 

P
o
w

d
er

 Raw data 

RF 16.7 19.4 19.4 0.0 

PDA 2.8 8.3 5.6 0.0 

SVM 8.3 16.7 8.3 0.0 

dPLS 5.6 8.3 11.1 0.0 

Normalized data 

RF 2.8 8.3 5.6 0.0 

PDA 0.0 0.0 2.8 0.0 

SVM 0.0 2.8 8.3 0.0 

dPLS 5.6 2.8 8.3 0.0 

B
re

w
 

Raw data 

RF 5.6 8.3 11.1 0.0 

PDA 0.0 2.8 5.6 0.0 

SVM 11.1 2.8 5.6 0.0 

dPLS 0.0 5.6 8.3 0.0 

Normalized data 

RF 5.6 2.8 8.3 0.0 

PDA 0.0 0.0 0.0 0.0 

SVM 5.6 0.0 2.8 0.0 

dPLS 2.8 0.0 2.8 0.0 
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Table 2.2-2. Confusion matrices obtained by random forest (RF), penalized discriminant analysis (PDA), discriminant partial least square analysis 

(dPLS) and support vector machine (SVM) classification models by using raw and normalized H3O
+  data. 

  RAW DATA  NORMALIZED DATA 

Classification 

Method 

 Powder  Brew  Powder  Brew 

Coffees 

B
R

A
 

C
O

L
 

C
R

C
 

E
T
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G
U

A
 

IN
D
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 B
R

A
 

C
O

L
 

C
R

C
 

E
T

H
 

G
U

A
 

IN
D

 

RF 

BRA 5 0 0 0 0 1  6 0 0 0 0 0  6 0 0 0 0 0  6 0 0 0 0 0 

COL 0 5 1 0 0 0  0 5 1 0 0 0  0 6 0 0 0 0  0 5 1 0 0 0 

CRC 0 1 4 0 1 0  0 0 6 0 0 0  0 0 5 0 1 0  0 0 6 0 0 0 

ETH 0 0 0 5 1 0  0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0 

GUA 0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0 

IND 1 0 0 0 0 5  1 0 0 0 0 5  0 0 0 0 0 6  1 0 0 0 0 5 
                             

PDA 

BRA 6 0 0 0 0 0  6 0 0 0 0 0  6 0 0 0 0 0  6 0 0 0 0 0 

COL 0 6 0 0 0 0  0 6 0 0 0 0  0 6 0 0 0 0  0 6 0 0 0 0 

CRC 0 1 5 0 0 0  0 0 6 0 0 0  0 0 6 0 0 0  0 0 6 0 0 0 

ETH 0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0 

GUA 0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0 

IND 0 0 0 0 0 6  0 0 0 0 0 6  0 0 0 0 0 6  0 0 0 0 0 6 
                             

SVM 

BRA 5 0 0 0 0 1  5 0 0 0 0 1  6 0 0 0 0 0  6 0 0 0 0 0 

COL 0 6 0 0 0 0  0 4 1 0 1 0  0 6 0 0 0 0  1 5 0 0 0 0 

CRC 0 0 4 0 2 0  0 0 6 0 0 0  0 0 6 0 0 0  0 0 6 0 0 0 

ETH 0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0 

GUA 0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 0 6 0 

IND 0 0 0 0 0 6  1 0 0 0 0 5  0 0 0 0 0 6  1 0 0 0 0 5 
                             

dPLS 

BRA 6 0 0 0 0 0  6 0 0 0 0 0  6 0 0 0 0 0  6 0 0 0 0 0 

COL 0 6 0 0 0 0  0 6 0 0 0 0  0 6 0 0 0 0  0 5 1 0 0 0 

CRC 0 0 4 0 1 1  0 0 6 0 0 0  0 0 5 0 1 0  0 0 6 0 0 0 

ETH 0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0  0 0 0 6 0 0 

GUA 0 0 0 0 6 0  0 0 0 0 6 0  0 0 0 1 5 0  0 0 0 0 6 0 

IND 0 0 0 0 0 6  0 0 0 0 0 6  0 0 0 0 0 6  0 0 0 0 0 6 
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2.2.3.1.3 Monovariate analysis 

Coffee powder and brew with H3O+ as precursor ion 

The mass peaks extracted from H3O
+ data was subjected to one-way ANOVA (p<0.001) 

separately on powder and brewed coffee. In the powder headspace 151 mass peaks where found 

to be significant between the different coffee origins whereas 210 mass peaks were at 

significantly different concentrations in the brew headspace. Among the mass peaks have been 

extracted sum formulas could be assigned to 102 which leads a possible tentative identification 

(Table 2.2-3).  

To better visualize the differences between aroma profiles of coffees, the tentatively identified 

mass peaks were grouped according to their chemical classes (alcohols, carbonyl compounds, 

esters/acids, pyrans/furans, oxazoles, phenols, pyrazines, pyridines, pyrroles, sulphur 

compounds, terpenes and thiazoles). The concentrations of compounds belonging to same 

group were summed for each coffee type and condition and an average value of each group was 

calculated including all coffees as the basis of comparison. The percentage difference (%) 

between a chemical group belonging to one coffee and the averaged value was calculated and 

presented by column charts for brew and powder, separately (Figure 2.2-2 a-b).   

In Figure 2.2-2 a and b the most noticeable difference was found in terpene levels. The coffee 

from Ethiopia had highest amount of terpenes (more than 3 times) in both powder and brew. 

High levels of terpenes in Ethiopian coffee powder have been reported by the authors in a recent 

paper [20] which have been supported by these recent findings once more and also for brewed 

coffee. Moreover in the coffee powder, ETH was also higher in esters/acids, pyrans/furans and 

alcohols. Coffees COL, CRC and GUA were rich in sulphur compounds in the powder and 

brew headspace being COL the richest. BRA and IND had similar volatile profiles in the 

powder headspace having high levels in pyridines, pyrroles and thiazoles than the average.  

Coffee brews showed similar distribution of volatiles to coffee powder for some chemical 

groups. The alcohols, carbonyl, acids/esters and terpenes for ETH can be given as an example. 

When the similar powder headspace compositions were compared for IND and BRA, however 

in the brewed form, the difference in the concentration levels were higher for IND than BRA 

for the mentioned chemical groups and others like esters/acids, oxazoles and phenols. Overall, 

the change in the percentage distribution of a chemical group was dependant on coffee origins 

which will be explained in the following section (2.2.3.2).  
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Figure 2.2-2. Column charts showing the differences (%) between chemical groups of the 

volatile compounds identified for coffee powder (a) and coffee brew (b). 

Lastly, the results of the current study were compared with our previous study on coffee powder 

[20]. All the previously identified ass peaks in the headspace of coffees from Brazil, Ethiopia 

and Guatemala were found in the same origin samples. The differences among volatile 

concentrations of the new and former study were found to be very small for most of them and 

the trend of the volatiles was found to be same for the majority. 
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2.2.3.2 The effect of brewing on volatile release 

Brewing of coffees affected the release of diverse chemical compounds in the headspace by a 

shift in the concentration those led significant changes in the volatile profiles (Figures 2a, 2b 

and Table 3). The headspace concentrations of brewed coffee were in general lower than that 

of powder. The total concentrations of some chemical groups tend to increase or decrease: 

alcohols, esters/acids, furans and pyrans, phenols, pyrazines, pyridines, pyrroles, oxazoles, 

terpenes and thiazoles were always higher in the powder for all coffee types. However the level 

of total carbonyls and sulphur compounds were higher in the brew. The biggest losses were 

recorded for pyrazines, followed by alcohols and pyridines whereas the minimum reduction 

was observed in pyrrole levels. As previously showed [26] significant increase in methional, 5-

Ethyl-3-hydroxy-4-methyl-2(5H)-furanone (sotolon) and vanillin levels and significant 

decrease in some thiols and pyrazines was observed when an Arabica coffee was brewed. Our 

results are in accordance with these findings except the changes for methional and sotolon 

together with some thiols which might be due to the coffee bean structure and the method used 

for aroma analysis [27, 28]. The formation of volatile organic compounds depends on several 

physical and chemical reactions occur during roasting of coffee and highly effected by the non-

volatile composition of coffee as being precursors of volatile production [2]. The release of 

volatiles from coffee is highly dependent on preparation technique that the changes in the 

concentration of the several chemical groups [2, 21, 29]. Moreover, these changes can be due 

to the lower solubility of aroma compounds in the brew or degradation of them by hot water 

[26]. Since the chemical composition of coffee beans is important for their evolution during 

roasting and the final structure of beans [30] it is expected that the degree of chemical reactions 

responsible for flavour formation and their texture-dependent release behaviour [31] would be 

different for coffees from different geographical origins.  

To assess whether the release of a mass peak during brewing is dependent on coffee origin a 

two way-ANOVA was performed. The models with and without interaction were compared by 

means of an F-test which allowed selection of the interacting variables (Table 3). In most cases, 

significant interactions were found between coffee origins and brewing. More than 60% of the 

mass peaks pointed out significant interactions (p<0.01) due to the brewing of coffees from 

different origins.  
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Table 2.2-3. Average concentrations (ppbv) of tentatively identified mass peaks in the headspace of coffees detected by PTR-ToF-MS. Mean 

concentrations are reported for each sample with Tukey letters (p b 0.01) showing the significant differences between coffee origins in the powder 

and brew forms separately. p-values for powder and brew coffees were obtained on the basis of one-way ANOVA; p-values for interaction were 

obtained by two-way ANOVA. 

Meas. 

mass 

(m/z) 

Sum 

formula 

 POWDER 
p-value 

powder 

BREW 
p-value 

brew 

p-value 

interac

tion Tentative identification BRA COL CRC ETH GUA IND BRA COL CRC ETH GUA IND 

 49.010 CH5S+ methanethiol10 11a 16bc 14ac 13ab 11a 16c <10-3 58a 114ab 171b 93a 112a 74a <10-3 <10-3 

 59.048 C3H7O+ propanal/acetone2 5045ab 4834ab 5021ab 6064b 4745a 5854ab 0.036 9149b 8526b 6743a 9237b 9004b 10277c <10-3 <10-3 

 61.028 C2H5O2
+ acetic acid/methyl-formate3 3945a 7426c 6392c 6182bc 5645ac 4388ab <10-3 2001a 3257c 2146a 3358c 2693b 2793b <10-3 0.001 

 63.027 C2H7S+ ethanethiol/dimethylsulfide10 19a 86d 68c 66c 71cd 46b <10-3 43a 212c 144b 128b 211c 114b <10-3 <10-3 

 68.049 C4H6N+ pyrrole9  298e 140a 199c 185bc 160ab 265d <10-3 346e 146a 166b 205d 183c 331e <10-3 <10-3 

 69.033 C4H5O+ furan4 572a 637a 652a 809b 630a 582a 0.003 933ab 1124ac 897a 1321c 1131ac 1157bc 0.001 0.037 

 73.064 C4H9O+ isobutanal/butanone2  3066ab 2452a 3612bc 4248c 3183ab 2837ab 0.001 5265ab 5687abc 5143a 6628d 6299cd 6017bd <10-3 0.002 

 75.043 C3H7O2
+ methyl-acetate/acetol3 1856a 2490bc 2537bc 2807c 2180ab 1985a <10-3 2031b 1860b 1157a 2723c 1913b 2642c <10-3 <10-3 

 78.967 CH3S2
+ dimethyl-disulfide fragment10 21a 23ab 24ab 27b 23ab 25ab 0.031 47a 56ab 53a 52a 46a 70b 0.001 0.002 

 80.049 C5H6N+ pyridine8 5348d 1649a 2535b 3474c 2340ab 3733c <10-3 1219c 448a 358a 664b 490a 1138c <10-3 <10-3 

 81.035 C5H5O+ furan fragment4 2929a 2626a 2843a 2809a 2719a 2750a 0.846 1104ab 1201b 841a 1169b 1143b 1312b 0.003 0.191 

 82.065 C5H8N+ methyl-pyrrole9 887d 303a 492b 657c 498b 611bc <10-3 881d 380a 405a 723c 558b 803cd <10-3 0.001 

 83.049 C5H7O+ methyl-furan4 2522ab 1811a 2199ab 3685c 2638b 2388ab <10-3 2428a 2410a 2319a 3603b 2977ab 3247b <10-3 0.095 

 85.065 C5H9O+ methyl-butenal2 548bc 370a 517bc 590c 528bc 468b <10-3 247b 195a 173a 282c 258b 262bc <10-3 <10-3 

 86.007 C3H4NS+ thiazol12 26c 16a 22b 22b 19ab 23bc <10-3 20c 14a 14a 18b 16b 22d <10-3 <10-3 

 87.045 C4H7O2
+ butanedione/butyrolactone2 952a 1039a 1306bc 1449c 1172ab 1000a <10-3 799a 903b 974b 944b 936b 808a <10-3 0.002 

 87.079 C5H11O+ methyl-butanal2 1671bc 1127a 2038cd 2279d 1858bd 1438ab <10-3 2051a 2126ab 2368ab 3104d 2801cd 2481bc <10-3 0.003 

 89.059 C4H9O2
+ 

methyl-propanoate/ 

hydroxy-butanone3 
406a 433ab 540c 580c 497bc 372a <10-3 86b 100b 61a 128c 95b 105b <10-3 <10-3 

 91.054 C4H11S+ diethylsulfide10 7cd 5a 6ac 8d 7bc 6ab <10-3 3a 3a 4a 3a 3a 3a 0.405 <10-3 

 91.073 C4H11O2
+ butandiol1 2a 2ab 2b 2b 2ab 2a 0.003 4a 5ac 4ab 6d 5cd 5bcd <10-3 0.001 

 95.059 C4H11O2
+ methyl-pyrazine 4464c 2253a 3293b 3209b 2996b 3307b <10-3 387a 337a 548a 366a 341a 390a 0.337 <10-3 

 96.083 C5H7N2
+ 

dimethyl-pyrrole 

ethyl-pyrrole 
129bc 70a 102ab 118b 97ab 160c <10-3 77c 33a 39a 62b 54b 83c <10-3 0.162 

 97.028 C6H10N+ furfural 890a 2098bc 2471d 2263cd 1947b 909a <10-3 649a 1553e 1315c 1578e 1419d 754b <10-3 <10-3 

 97.064 C5H5O2
+ dimethyl-furan 644b 444a 575b 818c 689b 583b <10-3 200a 198a 215ab 312d 272cd 255bc <10-3 <10-3 

 98.063 C5H8ON+ dimethyl-oxazole5 129d 69a 98b 124cd 108bc 109bd <10-3 49b 36a 34a 54c 48b 55c <10-3 <10-3 

 99.041 C5H7O2
+ 

furfuryl alcohol 

/a-angelica lactone4 
262a 328b 408c 341b 312ab 262a <10-3 91a 114b 95ab 105ab 101ab 104ab 0.105 <10-3 
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(Table 2.2-3 continues) 

Meas. 

mass 

(m/z) 

Meas 

Sum 

formula 

 POWDER 

p-value 

powder 

BREW 
p-

value 

brew 

p-

value 

intera

ction 
Tentative identification BRA COL CRC ETH GUA IND BRA COL CRC ETH GUA IND 

 99.080 C6H11O+ hexenal/methyl-pentenone2 97bc 66a 85b 101c 94bc 93bc <10-3 49b 42a 39a 59c 55c 58c <10-3 0.001 

 100.022 C4H6NS+ methyl-thiazole12 72d 34a 49bc 44b 42b 56c <10-3 33c 19a 19a 23b 22b 32c <10-3 <10-3 

 101.059 C5H9O2
+ 

Pentanedione/methyl-

tetrahydrofuranone2 
2828a 3106a 4207b 4398b 3908b 2621a <10-3 541a 825d 683c 1009f 915e 612b <10-3 <10-3 

 103.075 C5H11O2
+ 

hydroxy-pentanone/methyl-

butanoic acid3 
213ab 217ac 257cd 264d 239bcd 191a <10-3 27ab 37ab 22a 39b 29ab 28ab 0.037 <10-3 

 105.039 C4H9OS+ methional10 10bc 7a 10bc 11c 10bc 9b <10-3 5b 4a 5b 5b 4b 5b <10-3 <10-3 

 105.069 C8H9
+ 

styrene/phenylethanol 

fragment13 
15c 11a 12b 14c 12b 13b <10-3 6a 6a 7ab 7ab 6ab 7b 0.026 <10-3 

 105.093 C5H13O2
+ methyl-butanol1 1abc 1a 1d 1cd 1bd 1ab <10-3 3a 3a 4ab 5c 4b 4ab <10-3 <10-3 

 107.053 C7H7O+ benzaldehyde2 44c 28a 35b 35b 33ab 36b <10-3 23c 18a 18a 21b 19ab 23c <10-3 <10-3 

 109.074 C6H9N2
+ 

dimethylpyrazine/ethylpyrazin

e7 
2998c 1691a 2174b 2205b 2070b 2317b <10-3 197a 205a 177a 221a 207a 220a 0.264 <10-3 

 111.044 C6H7O2
+ acetyl_furan/methyl-furfural4 788a 1081b 1247b 1191b 1107b 762a <10-3 187a 308b 216ab 280ab 244ab 210ab 0.020 <10-3 

 111.079 C7H11O+ 
2/3-dimethyl-2-cyclopenten-1-

one2 
221bc 176a 204ab 243c 227bc 212b <10-3 54a 54a 52a 70b 64b 67b <10-3 <10-3 

 112.078 C6H10ON+ trimethyl-oxazole5 75d 41a 52b 61bc 55bc 64c <10-3 22c 15a 14a 21c 19b 24d <10-3 <10-3 

 113.019 C5H5O3
+ furancarboxylic acid4 7b 6a 7ab 7b 7ab 7ab 0.008 9c 5ab 9c 5a 5ab 6b <10-3 <10-3 

 113.059 C6H9O2
+ 

methyl-furfuryl-

alcohol/dimethyl-

furanone/methyl-

cyclopentanedione/cyclotene4 

222a 236ab 271b 259ab 238ab 216a 0.032 34a 41a 31a 40a 35a 40a 0.115 0.014 

 113.095 C7H13O+ heptenone2 40c 26a 34b 34b 33b 36bc <10-3 21bc 18a 19ab 22c 22c 25d <10-3 <10-3 

 114.039 C5H8NS+ 
ethyl-thiazole/dimethyl-

thiazole12 
24d 12a 15b 14ab 14ab 20c <10-3 9b 5a 5a 6a 6a 9b <10-3 <10-3 

 115.039 C5H7O3
+ dihydroxy-cyclopentenone2 6b 5ab 6ab 6ab 5a 6b 0.008 24b 8a 30b 4a 11a 10a <10-3 <10-3 

 115.076 C6H11O2
+ 

4-methyltetrahydro-2H-pyran-

2-one4 
377abc 327a 396bd 431d 411cd 355ab <10-3 86a 101b 86a 135d 122c 97b <10-3 <10-3 

 115.108 C7H15O+ heptanal/heptanone2 19b 14a 18b 20b 19b 18b <10-3 9ab 9ab 8a 12c 10b 12c <10-3 <10-3 

 117.053 C5H9O3
+ 2-oxopropyl-acetate3 278abc 243a 308cd 333d 308bd 256ab <10-3 22a 34a 20a 22a 21a 22a 0.570 <10-3 

 117.091 C6H13O2
+ hexanoic acid/C6 ester3 39c 25a 31ab 72d 35bc 40c <10-3 19b 16a 15a 50d 21b 29c <10-3 <10-3 

 119.052 C8H7O+ benzofuran4 8a 8a 9ab 10b 9ab 9ab 0.018 4a 6d 4ab 6cd 5bc 6d <10-3 <10-3 

 121.073 C7H9N2
+ 

2-ethenyl-6-methyl-pyrazine 

6/7-dihydro-5H-

cyclopentapyrazine7 

22a 20a 21a 22a 20a 19a 0.692 9ab 12bc 8a 11bc 10ab 12c <10-3 0.034 

 122.061 C7H8NO+ 2-acetylpyridine8 8a 7a 7a 8a 7a 7a 0.594 5bcd 4ab 3a 5d 4ac 5cd <10-3 0.389 
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(Table 2.2-3 continues) 

Meas. 

Mass 

(m/z) 

Sum 

formula 

 POWDER 
p-value 

powder 

BREW 
p-

value 

brew 

p-

value 

intera

ction 
Tentative identification BRA COL CRC ETH GUA IND BRA COL CRC ETH GUA IND 

 122.095 C8H12N+ propyl-pyridine8 5c 1a 3b 4bc 3b 4bc <10-3 3c 2a 2a 4c 3b 4c <10-3 0.002 

 123.089 C7H11N2
+ 

ethyl-methyl-

pyrazine/trimethylpyrazine7 
348b 229a 248a 278a 258a 281a <10-3 50ab 56ac 47a 65d 58bcd 65cd <10-3 <10-3 

 124.079 C7H10ON+ 2-acetyl-1-methylpyrrole9 33a 32a 32a 35a 32a 29a 0.624 21b 22b 15a 23b 20ab 25b 0.001 0.032 

 124.109 C8H14N+ 
butylpyrrole/methyl-

propylpyrrole9 
34d 15a 20b 21b 20b 28c <10-3 9c 6a 7b 7b 7b 11d <10-3 <10-3 

 125.060 C7H9O2
+ 

guaiacol/methyl-

benzenediol/furyl acetone6 
69ab 79ab 81ab 82b 79ab 67a 0.023 38a 45b 34a 48b 41ab 46b <10-3 0.003 

 125.096 C8H13O+ 
butylfuran/methyl-

propylfuran4 
49b 42a 48ab 50b 49b 48ab 0.021 17a 17a 19ab 20bc 18ab 22c <10-3 0.044 

 126.094 C7H12NO+ 
acetyl-dimethylpyrrole/ 

alkyloxazole9 
21c 13a 15b 16b 14ab 19c <10-3 7b 5a 5a 6b 5a 8c <10-3 0.000 

 127.038 C6H7O3
+ maltol/methyl-furoate4 26a 29a 30a 28a 27a 26a 0.778 11a 11a 12a 12a 11a 12a 0.519 0.670 

 127.076 C7H11O2
+ 

3-ethyl-1-2-

cyclopentanedione2 
58a 65a 65a 64a 59a 55a 0.598 17a 24b 17a 24b 20ab 23b <10-3 0.431 

 129.091 C7H13O2
+ 

pentenyl-acetate 

heptanedione2 
67b 58a 62ab 69b 67b 68b 0.006 19a 22ab 20a 26c 24bc 25c <10-3 0.028 

 131.070 C6H11O3
+ 

acetyloxy-butanone/ 

ethanediol diacetate/ 

oxopropoxy-propanone/  

ethyl-oxobutanoate3 

34ab 34ab 38ab 41b 38ab 32a 0.038 3a 5a 4a 4a 4a 3a 0.587 0.041 

 131.107 C7H15O2
+ heptanoic acid/C7 ester3 4b 3a 4b 5c 4b 4b <10-3 3a 3a 3a 4c 4bc 4b <10-3 1.041 

 134.061 C8H8ON+ methyl-benzoxazole5 2a 2a 2a 2a 2a 2a 0.312 2ab 2ac 2a 2bc 2ac 3c 0.005 0.002 

 135.044 C8H7O2
+ bifuran4 3a 4c 4c 4c 4bc 3ab <10-3 4a 5c 5c 5b 4ab 5bc <10-3 0.009 

 135.091 C8H11N2
+ 

2-ethyl-6-vinyl-

cyclopentapyrazine 

6/7-dihydro-methyl-

cyclopentapyrazine7 

15a 13a 16a 16a 14a 12a 0.164 5ab 6ab 5a 7ab 6ab 7b 0.025 0.030 

 135.121 C10H15
+ terpene fragment13 2a 2ab 2a 6d 3bc 3c <10-3 1a 1ab 1ab 4d 1bc 2c <10-3 <10-3 

 136.077 C8H10NO+ acetyl-methylpyridine8 8a 7a 8a 8a 7a 7a 0.518 4ac 4ac 3a 5bc 4ab 5c 0.001 0.054 

 136.112 C9H14N+ 
butyl-pyridine/ethyl-

propylpyridine8 
3bc 2a 2ab 4c 2ab 3ab <10-3 2b 1a 1a 2c 1ab 2c <10-3 0.005 

 137.108 C8H13N2
+ ethyl-dimethyl-pyrazine7 23a 23a 25a 27a 24a 21a 0.542 13ab 12ab 10a 14ab 12ab 15b 0.082 0.308 

 137.135 C10H17
+ various monoterpenes11 13a 17a 17a 60b 16a 18a <10-3 5a 5a 7b 27c 6ab 6ab <10-3 <10-3 

 138.059 C7H8O2N+ 
pyridinecarboxylic acid 

methyl ester8 
5a 5a 5a 5a 5a 4a 0.506 5ac 5ac 4a 5bc 4ab 5c 0.004 0.022 
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(Table 2.2-3 continues) 

Meas. 

Mass 

(m/z) 

Sum 

formula 

 POWDER 
p-value 

powder 

BREW 
p-

value 

brew 

p-

value 

intera

ction 
Tentative identification BRA COL CRC ETH GUA IND BRA COL CRC ETH GUA IND 

 138.093 
C8H12NO+ 

C3H14N4S+ 

dimethyl-pyrrolylethanone 

ethyl-pyrrolylethanone/2-

acetyl-1-ethylpyrrole/ 

1-acetyl-2/5-dimethylpyrrole9 

9a 11a 11a 10a 10a 9a 0.695 4ab 5b 3a 5b 5ab 6b 0.001 0.160 

 138.131 C9H16N+ butyl-pyridine8 7b 5a 6a 13c 6a 8b <10-3 3b 2a 3b 5d 3ab 4c <10-3 <10-3 

 139.076 C8H11O2
+ 4-ethyl-1/2-benzenediol6 16a 19a 20a 18a 17a 15a 0.224 13ab 17bc 12a 18c 15ac 18c <10-3 0.007 

 139.113 C9H15O+ E/E-2/4-nonadienal2 12a 12a 12a 14b 13ab 13a <10-3 5a 5a 6bc 6c 5ab 6bc <10-3 0.260 

 141.053 C7H9O3
+ furfuryl-acetate4 35a 35a 35a 34a 35a 35a 1.000 18ab 18ab 15a 20bc 18ab 22c <10-3 0.335 

 141.127 C9H17O+ nonenal2 1a 1a 1a 2a 1a 1a 0.232 1a 1ab 1a 1b 1ab 1b 0.001 0.302 

 143.107 C8H15O2
+ 

methyl-heptanedione/ 

octenoic acid2 
7a 7a 10b 8a 8a 8a <10-3 3a 4b 4bc 4bc 4b 4c <10-3 <10-3 

 145.123 C8H17O2
+ ethyl-hexanoic acid/C8 ester3 1ab 1a 1bc 2c 1ab 1ab <10-3 3a 3a 2a 4c 4bc 4b <10-3 <10-3 

 148.076 C9H10ON+ 1-furfurylpyrrole9 5ab 7ab 8b 7ab 6ab 5a 0.085 8ab 11bc 5a 14c 10ac 13bc 0.001 <10-3 

 149.060 
C9H9O2

+ 

C6H13O2S+ 

furfuryl-furan4 

mercapto-3-

methylbutylformate10 

4a 4a 5a 4a 4a 4a 0.131 5ab 6cd 4a 6bd 5abc 7d <10-3 <10-3 

 149.106 C9H13N2
+ 

ethenyl-ethyl-methylpyrazine 

dihydrocyclopentapyrazines 

quinoxalines7 

7b 5a 7b 7b 6ab 6ab 0.002 2a 2ac 2a 3c 2ab 3bc <10-3 <10-3 

 151.078 C9H11O2
+ vinylguaiacol6 11ab 11ab 13b 12ab 11ab 10a 0.117 9bc 10c 4a 12c 8b 11c <10-3 <10-3 

 151.121 C9H15N2
+ diethyl-methyl-pyrazine7 5a 6a 6a 7a 6a 5a 0.217 3ab 3ab 3a 4ab 3ab 4b 0.027 0.046 

 153.056 C8H9O3
+ vanillin6 7ab 8ab 9b 7ab 7ab 6a 0.119 5a 7b 5a 6ab 5a 7b <10-3 0.001 

 153.093 C9H13O2
+ 4-ethyl-guaiacol6 6ab 7ab 8b 7ab 7ab 6a 0.081 5a 7ab 5a 8bc 6ab 8c <10-3 0.000 

 153.128 C10H17O+ E/E-2/4-decadienal2 5a 5a 5a 10b 5a 6a <10-3 2a 3bc 2ab 6d 3ab 4c <10-3 0.001 

 157.085 C8H13O3
+ 

4-ethoxy-2/5-dimethyl-3-2H-

furanone/ethylfuraneol4 
3ab 3ab 4b 4ab 3ab 3a 0.046 1a 1c 1ab 1bc 1ac 1ac 0.008 0.033 

 159.140 C9H19O2
+ nonanoic acid/C9 ester3 1ab 1a 1ab 1b 1ab 1ab 0.061 2a 2a 2a 3b 3b 2a <10-3 <10-3 

 161.072 C9H9ON2
+ furyl-methylpyrazines7 2a 2a 2a 2a 2a 2a 0.553 1c 1cd 0a 1c 1b 1d <10-3 <10-3 

 163.077 C10H11O2
+ methyl-furfurylfuran4 2a 2ab 2b 2ab 2ab 1a 0.015 2ab 3bc 1a 3bc 2ac 3c <10-3 <10-3 

 165.095 C10H13O2
+ methyl-cinnamate6 2a 2a 2b 2ab 2a 2a 0.002 1b 2c 1a 2c 1b 2c <10-3 <10-3 

 166.088 C9H12O2N+ methyl-pyrrolyl-butanedione9 1ab 1ab 2b 1ab 1ab 1a 0.034 1a 1bcd 1ab 1cd 1ac 2d <10-3 <10-3 

 167.069 C9H11O3
+ methylvanillin6 3ab 3bc 4c 3bc 3ab 2a <10-3 3ab 3bc 2a 3c 3bc 3c <10-3 <10-3 

 167.112 C10H15O2
+ ethyl-dimethoxy-benzene6 1a 1ab 2b 1ab 1ab 1a 0.029 1a 1bc 1ab 1ac 1ac 1c 0.004 0.001 
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(Table 2.2-3 continues) 

Meas. 

Mass 

(m/z) 

Sum formula 

       
p-value 

powder 

      
p-

value 

brew 

p-

value 

intera

ction 
Tentative identification BRA COL CRC ETH GUA IND 

BR

A 
COL CRC ETH GUA IND 

 175.087 C10H11ON2
+ dimethyl-furanyl-pyrazine7 1b 1a 1ab 1ab 1ab 1ab 0.082 <1cd <1cd <1a <1c <1b <1d <10-3 <10-3 

 176.070 C10H10O2NS+ pyrrole-carboxaldehyde9 1ab 1a 1b 1ab 1ab 1a 0.036 1c 1c <1a 1c 1b 1c <10-3 <10-3 

 179.073 C10H11O3
+ vinyl-syringol6 1a 1a 1a 1a 1a <1a 0.142 1c 1d <1a 1cd <1b 1e <10-3 <10-3 

 183.103 C10H15O3
+ ethyl-syringol6 <1a 1ab 1b 1ab 1ab <1a 0.008 <1a <1bc <1ab 1d <1ac <1c <10-3 <10-3 

 191.148 C13H19O+ beta-damascenone2 <1a <1a <1a <1a <1a <1a 0.176 <1a <1b <1a <1c <1bc <1bc <10-3 <10-3 

 
*Coffee samples in powder and brew form: BRA: Brazil, COL: Colombia, CRC: Costa Rica, ETH: Ethiopia, GUA: Guatemala, IND: India.  
**m/z= mass to charge ratio.  
***The chemical classes annotated to mass peaks after tentative identification: 1.alcohols, 2.carbonyls, 3.esters/acids, 4.pyrans/furans, 5.oxazoles, 6.phenols, 

7.pyrazines, 8.pyridines, 9.pyrroles, 10.sulphur compounds, 11.terpenes, 12.thiazoles, 13.various fragments 

 



Chapter 2. Discrimination of coffee origin 

93 

 

 Conclusions 

The rapid analysis of volatile compounds in the headspace of six Arabica coffees, brew and 

powder, was performed with PTR-ToF-MS allowing successful separation according to their 

geographical origins. The high sensitive and high resolution PTR-MS technique enabled 

quantification of mass peaks at ppb levels and further tentative identification of volatile 

compounds. The results showed significant differences in the concentrations of volatile 

compounds in the powder headspace. When the coffees were brewed the release of these 

volatiles was less in general and significant interactions were recorded between volatile release 

and coffee origin.  

The switching reagent ion system in PTR-MS instrumentation was applied for the first time to 

coffee by using not only H3O
+ but also NO+ and O2

+ as precursor ions. All methods and 

precursor ions provide low classification errors. PDA showed the best classification 

performance in all ionisation modes. The data obtained by all ionisation modes provided 

valuable information on highlighting the applicability of SRI system on real complex food 

matrices like coffee. Although data obtained using O2
+ allow the classification of the samples, 

the spectra interpretation in this case is more difficult. In general, the data produced showed the 

possibility and advantages of switching reagent ion system in coffee for successful 

discrimination of geographic origin by extending the fingerprinting capabilities of PTR-ToF-

MS. Merging all the information of the different reagent ions by means of data fusion increased 

the efficiency of classification.  

In conclusion PTR-MS and the SRI system provide a rapid non-invasive method that allows 

the classification of coffee with different origins. This approach is based on the measuring of 

volatile compound concentration and is thus expected that the differences observed should be 

reflected on the sensory characteristics of the investigated samples. 
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Highlights 

 Volatile compounds released from 468 single coffee beans was measured with PTR-

ToF-MS 

 Aroma profiles of single coffee beans from different geographical origins were 

characterized  

 Volatile compounds showed different release behaviors during coffee roasting 

 Coffee beans from different geographical origins showed different volatile compound 

release  
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Abstract  

This study applies proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) for 

the rapid analysis of volatile compounds released by single coffee beans. The headspace 

volatile profiles of single coffee beans (Coffeea arabica) from different geographical origins 

(Brazil, Guatemala and Ethiopia) were analyzed via offline profiling at different stages of 

roasting. The effect of coffee geographical origin was reflected on the final weight losses and 

therefore volatile compounds formation. Clear origin signatures were observed in the volatile 

release and as well as in the formation of different coffee odorants.  

 

Keywords: direct injection mass spectrometry, geographical origin, volatile compound, coffee 

roasting, profiling 
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 Introduction 

Aroma of coffee is one of the most important attributes to evaluate its quality. It can be 

considered as a first indication of how your coffee might taste by completing and improving 

the overall flavour perception. Coffee volatiles are formed during roasting by a series of 

complex reactions via breaking down the natural components of raw green beans [1]. The non-

volatile constituents of green coffee (i.e. sugars, acids, alkaloids, free amino acids) evolve 

differently and contribute to formation of different classes of aroma compounds in coffee with 

various odour characteristics.  

During roasting, heat is transferred from the outer surface through inside the coffee beans. High 

heat induces evaporation of water (dehydration phase) and temperature increase inside the bean. 

Outer surface of coffee beans get dry and with the initiation of roasting process, several volatile 

compounds and roasting gases are formed which are released via bean crack and burst [2-4]. 

Each individual coffee bean acts as a key unit during roasting and consequently contribute to 

the final flavour of coffee. When the desired roasting degree is achieved, the process is ended 

via rapid cooling of the coffee beans. The final flavour profile depends on several factors such 

as roasting conditions (time-temperature profile) and as well as the variety and origin of coffee 

beans, growth (i.e. climate and soil) and harvest conditions) [1, 4].  

PTR-MS is a well-known tool for the direct and online analysis of volatile compounds via soft 

chemical ionization in various fields [5, 6] and as well as in coffee flavour research [7]. The 

high mass resolution and sensitivity provided by the recent implementation of ToF mass 

analysers [8] enables the detection of volatiles at very low levels which is essential for the 

matrices with low volatile compound emissions such as single coffee beans. Significant amount 

of literature is available on the detection of coffee volatile compounds however there are a few 

studies where the volatile compounds released from single coffee beans were measured with 

PTR-MS or other methods. The earliest study has been recorded on analysing the volatile 

compounds released from 6 coffee beans [9] during roasting by using PTR-MS in comparison 

to industrial roasting. Other studies implemented laser-based resonance enhanced multiphoton 

ionization-time of flight-mass spectrometry [10, 11] and single photon ionization-mass 

spectrometry [12] for the online and real-time monitoring of aromatic volatile compounds 

produced inside and outside of an individual coffee bean during coffee roasting with a focus on 

distinguishing Arabica and Robusta coffee beans. To the best of our knowledge, PTR-MS with 

a ToF mass analyser was not utilized for volatile profiling of single coffee beans.  
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In this study, we used PTR-ToF-MS, for the first time, for simple and rapid profiling of volatile 

compounds released from a large number of single coffee beans (>450) at different stages of 

roasting. We selected two different samples of pure green Arabica beans from Brazil, 

Guatemala and Ethiopia and investigated the differences between different coffee samples and 

coffee origins on volatile formation. 

 Experimental  

3.1.2.1 Green Coffee Samples 

In this study, green coffee beans (Coffea arabica) from Brasil (2 samples), Guatemala (2 

samples) and Ethiopia (2 samples) were used. All samples were wet processed with zero 

primary and secondary defects and with a clean cup. The samples were received in 200 g bags 

and stored at room temperature prior to analysis.  

3.1.2.2 Roasting 

Roasting was performed by using a laboratory oven with ventilation (Binder GmbH, Tuttlingen, 

Germany) at 190°C. This is in the typical range of coffee roasting (170-230°C) at which the 

reactions responsible for the characteristic flavour and aroma of roasted coffee are initiated [2]. 

Single green coffee bean were put in 22 ml-clear open glass vials. The green beans were 

selected randomly after opening the bags. The open glass vials containing the green coffee 

beans were placed on the metal oven tray with grid in 3 rows and 6 cloumns. For each time 

point 18 coffee beans (3 coffee origins x 2 samples x 3 beans) were selected and placed in a 

randomized order to avoid memory effetcs and to prevent the green bean from the same origin 

and sample being in the same location. Roasting process was performed by roasting the green 

beans starting from 1 to 25 min by preparing a new set of beans for each time point. After each 

roasting step was completed, the vials were cooled down to room temperature and closed. The 

overall roasting process created a data set consisting of 468 data points (26 time points x 3 

origins x 2 samples x 3 replicates). Each coffee bean was weighed before and after the roasting. 

Weight losses were calculated accordingly: “(green bean weight-roasted bean weight)/green 

bean weight x 100”. 

3.1.2.3 Volatile profiling by PTR-MS 

The headspace volatile compounds of roasted coffee beans were analyzed with a commercial 

PTR-ToF-MS 8000 instrument (Ionicon Analytik GmbH, Innsbruck, Austria) in an automated 
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manner by using a multipurpose autosampler (Gerstel GmbH & Co. KG, Mulheim am Ruhr, 

Germany). The instrumental conditions were as described in [13] and mass spectral data was 

processed as described in [14-16]. In addition to the vials with coffee beans, 14 vials containing 

lab air (blanks) were analyzed and their signals were subtracted from the original samples for 

further data analysis. 

 Results and Discussion 

3.1.3.1 The weight losses during roasting  

Total weight loss (or roast loss) is an important parameter for determining the final roasting 

degree [2]. One-way ANOVA (p<0.05) showed significant changes in weight losses with time 

showing similar weight loss trends for all coffee origins and different samples (Figure 3.1-1). 

From time 0 to 14 min, the losses were linear (min R2 =0.94; data not shown) for all coffee 

origins and samples; after that a plateu region was observed where the weight loss rates were 

slower. In the first part of the linear region (0-6 min) the weigh losses were rapid and slightly 

decreased in the second part (7-14 min). Coffee beans lost around 5% after 6th min and reached 

approximately 10% roast loss after 14th min. The weight losses were independent of coffee 

origin for the linear part; however in the last region, the final weight losses were significantly 

different for different coffee origins (p<0.05). The first sample of BRA exhibited smaller final 

weight loss than BRA sample 2 (p<0.05). In addition, there were no significant differences in 

the final weight losses between the two samples of GUA and ETH.  

Table 3.1-1. Average weight losses (%) obtained at 6, 11, 14 and 25th min of single coffee bean 

roasting 

Roasting  

time 

(min) 

Weight loss (%) 

BRA GUA ETH 

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 

6 4.9 ± 0.41 4.8 ± 0.80 5.6 ± 0.30 5.2 ± 0.50 5.3 ± 0.51 5.0 ± 0.24 

11 7.8 ± 0.15 8.8 ± 0.51 10.4 ± 0.28 9.3 ± 0.58 9.9 ± 0.71 9.2 ± 1.01 

14 9.9 ± 0.69 9.8 ± 0.81 12.2 ± 1.28 10.6 ± 0.17 10.7 ± 1.04 10.4 ± 0.42 

25 11.4 ± 0.28 12.4 ± 0.63 13.9 ± 0.90 13.0 ± 0.34 13.9 ± 0.67 13.9 ± 0.11 
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Figure 3.1-1. Weight losses (%) obtained during roasting. Each data point shows the average 

of 3 coffee beans. 

3.1.3.2 Volatile compounds released from single coffee bean  

PTR-ToF-MS data processing resulted in extraction of 571 mass peaks. The interfering ions 

(O2
+, NO+, water clusters and their isotopologues) were discarded from the whole mass spectra 

and the average signals of blank vials were subtracted from the samples for noise reduction. 

The resulting data matrix was used for further data analyses (526 mass peaks x 468 samples).  

3.1.3.3 Green coffee beans 

The volatile emissions of green coffee beans were compared between the two samples of same 

coffee origin. Despite the expected biological variability between green coffee beans, no 
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significant differences were found between the two samples of BRA, ETH and GUA (p<0.01 

with Bonferroni correction) while 7 mass peaks were significantly different according to origin 

being at higher concentrations for ETH, followed by BRA and GUA, respectively. These 

significant mass peaks are given with measured mass, sum formula and tentative identifications 

as follows: m/z 78.049 (C6H6
+; phenyl ring), m/z 79.055 (C6H7

+; benzene ring), m/z 91.057 

(C4H11S
+; buthanethiol); m/z 106.076 (C8H10

+; phenylethenyl), m/z 107.087 (C8H11
+; terpene 

fragment) and m/z 108.086 (13C isotope of C8H11
+). 

3.1.3.4 Roasted coffee beans 

Plotting mass peak concentrations against time allowed us to visualize different release 

behaviours and as well as different evolutions among different coffee origins. For some mass 

peaks we observed a clear decrease in the headspace (group 1); some mass peaks did not show 

a clear trend over time (group 2) and mass peaks increased during roasting (group 3). These 

mass peaks are given with annotated sum formula and possible tentative identifications in 

Supplemetary file 1. Group 1 consist of mainly water clusters, terpenic fragments and a sulphur 

compound; group 2 compounds contain alcohols, some fragments and a few compounds 

detected in green and roasted coffee [3, 9]. Most of the peaks belong to group 3 were releated 

to the compounds formed during coffee roasting [3]. 

Some examples are shown for group 1 and 2 compounds in Figure 3.1-2a-b and Figure 3.1-2c-

d, respectively. As seen in Fig. 2 and b, the concentrations of water cluster and a sulphur 

compound (m/z 93.073) decrease in the headspace. Up to now, many sulphur compounds have 

been identified in roasted coffee beans [3] and some of them are also present in the raw beans, 

but no literature was recorded indicating the presence of this sulphur compound 

(methylthioethanol) in green coffee beans.  

 



Chapter 3. Single coffee bean roasting 

104 

 

 

Figure 3.1-2. The release behaviour of different groups of volatile compounds at m/z 93.073 

(A), m/z 38.034 (B), m/z 80.049 (C) and m/z 99.041 (D) with annotated sum formula and 

tentative identifications. Each time point is average emissions of 3 coffee beans.  

The abundance of pyridine and furfuryl alcohol do not show clear trends with time Figure 3.1-3 

represents an example for group 3 compounds (m/z 49.010, methanethiol) which highlights 

some differences between different coffee origins and, to a leeser extent, also between two 

samples of same coffee origin e.g. BRA. Lower volatile intensities for the first batch can be 

explained by the relatively low roasting temperature to exploit abundant volatile formation. 

Highest intensities were seen in BRA sample 1 followed by GUA and ETH, respectively. The 

final weigh losses were lower for BRA than ETH and GUA, however the release of 

methanethiol shows a higher trend and faster evolution for BRA, which may indicate the effect 

of coffee geographical origin. 
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Figure 3.1-3. The release of m/z 49.010 (CH5S
+, methanethiol) in the headspace of coffee 

beans. Each time point is the average volatile emissions of 3 coffee beans.  

Cumulative boxplots were created by plotting the summed concentrations up to a given time 

point (e.g. 3rd minute is a sum of 3rd, 2nd, 1st and 0th minutes) to obtain information about the 

production and/or release rate of the volatile compounds in the headspace and also to reduce 

the noise. Some examples are given in Figure 3.1-4a, b and c for mass peaks m/z 82.065 

(C5H8N
+; methylpyrrole), 101.060 (C5H9O2

+; pentanedione) and 137.135 (C10H17
+; 

monoterperpenes), respectively.  
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Figure 3.1-4. The cumulative release curves of m/z 82.065 (A), m/z 101.060 (B) and m/z 

137.135 (C) for second batches of BRA, ETH and GUA with annotated sum formula and 

tentative identifications. Each time point is average emissions of 3 coffee beans. 

Differences in the amount of the released compounds among the coffee origins were clear and 

in accordance to our previous findings in which we compared the headspace volatiles of coffee 

powders from different geograhical origins [13, 17]. The release behaviour of methylpyrrole 

and pentanedione were similar and interestingly, methylpyrrole showed an earlier release 

(around 6th min) than pentanedione (around 11th min) as highligted with gray shadows in the 

Figure 3.1-4. Earlier release of methylpyrrole was reported in literature [18] during roasting of 

100 g coffee beans which was also supported by our findings in single bean level. The 

difference in the release times of these compounds can be explained via weight loss release 

curves (linear part) where most of the water is removed from coffee beans (dehyration stage 

[19]) and lead formation of volatile compounds and also due to the low volatility of 

pentanedione [20]. Since the formation pathways of the volatile compounds in coffee are quite 

diverse [19] and need different activation energies [18]; the highest increase exhibited by 

volatile compounds may differ depending on the process conditions [3, 9, 21]and the 
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composition of green beans which is highly affected by the geographical origin [22, 23]. 

Monoterpenes, associated to flowery and fruity notes [24], exhibited a low level but continuous 

release being highest for ETH that has been associated with higher amounts of monoterpenes 

was in accordance with previous findings [13, 17, 25]. This unique group of compounds resist 

during roasting and their release might be due to the changes happen in bean structure [2] which 

might allow continous release of these compounds. 

 Conclusions 

In summary, PTR-ToF-MS has been used for the first time to analyze the volatile compounds 

released from 468 single coffee beans from different geographical origins. Thanks to the high 

sensitivity provided by PTR-ToF-MS [8] quantification of volatile compounds at very low 

levels was possible which allowed visualizing clear differences at single bean level. When same 

roasting conditions were applied, coffee beans showed different final roast degrees and 

therefore volatile compound evolutions. Offline aroma profiling coffee beans gave an insight 

into the volatile formation at different stages of roasting indicating the clear differences in the 

aroma profiles of coffee beans from different coffee origins. The study pointed out the potential 

of the experimental approach for the characterization of foods (in particular food origin) and as 

well as food processes (e.g. roasting) in small scales.  
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Supplementary file 3.1. Classification of mass peaks according to headspace release 

behaviours. The mass peaks are given with measured mass and sum formula.  

 

Behavior Measured mass 

(m/z) 

Sum formula Tentative identification  

Group 1: 

Decreasin

g 

38.034 (H2O)2H+  Water cluster 

39.032 (H2O)2H+  Water cluster 

55.038 (H2O)3H+  Water cluster 

79.055 C6H7
+  Benzene ring 

93.037 C3H9OS+  Methylthioethanol 

106.076 C8H10
+ Terpene fragment (phenyethenyl) 

107.087 C8H11
+  Terpene fragment 

Group 2:  

Decrease, 

increase 

33.033 CH5O+  Methanol 

43.018 C2H3O+  Fragment 

47.013 CH3O2
+  Formic acid 

51.043 [H2O]CH5O+  Water-methanol cluster 

57.033 C3H5O+  Acrolein/ acetol fragment 

61.028 C2H5O2
+  Acetic acid 

69.033 C4H5O+  Furan 

75.044 C3H7O2
+  Methyl-acetate/acetol 

80.049 C5H6N+  Pyridine 

81.034 C5H5O+  Furan fragment 

83.085 C6H11
+  Terpene fragment (cyclohexene) 

87.044 C4H7O2
+  Butanedione 

99.044 C5H7O2
+  Furfuryl alcohol 

103.076 C5H11O2
+  Hydroxy-pentanone/methyl-butanoic acid 

123.092 C7H11N2
+  Ethyl-methyl-pyrazine/trimethylpyrazine 

Group 3: 

Increasing 

31.018 CH3O+  Fragment 

39.023 C3H3
+  Fragment 

41.038 C3H5
+  Alkylic fragment 

45.033 C2H5O+  Acetaldehyde 

49.011 CH5S+  Methanethiol 

55.054 C4H7
+  Butadiene 

57.070 C4H9
+  Alcohol fragment 

59.045 C3H7O+  Acetone/ 

63.027 C2H7S+  Dimethyl disulfide 

68.049 C4H6N+  Pyrrole 

69.070 C5H9
+  Isoprene 

73.065 C4H9O+  Isobutanal/butanone 

82.065 C8H5N+  Methylpyrrole 

83.049 C5H7O+  Methylfuran 

85.065 C5H9O+  Methylbutenal 

87.081 C5H11O+  Methylbutanal 

89.059 C4H9O2
+  Methyl-propanoate/hydroxy-butanone 

95.060 C5H7N2
+  Methylpyrazine 

97.028 C5H5O2
+  Furfural 

97.065 C6H9O+  Dimethylfuran 

98.065 C5H8ON+ Dimethyl-oxazole 

101.060 C5H9O2
+  Pentanedione  

109.076 C6H9N2
+  Dimethylpyrazine/ethylpyrazine 

111.045 C6H7O2
+  Acetylfuran/methylfurfural 

113.060 C6H9O2
+  Methyl-furfuryl-alcohol/dimethyl-furanone/ 

Methyl-cyclopentanedione/cyclotene 
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 Understanding flavour perception of espresso coffee by the combination of a 

dynamic sensory method and in-vivo nosespace analysis 

 

Published as  

 

 

Highlights 

 Dynamic sensory and instrumental methods are useful and complementary to study in 

vivo aroma perception and release 

 TDS paired with nosespace can point out the presence cross-modal interactions and is 

a promising tool to study them 

 Nosespace by PTR-ToF-MS allowed to identify some compounds as possible “temporal 

dominance markers” important for product discrimination 
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Abstract 

The first goal of this work was to gain insight into the mechanism underlying flavour perception 

and aroma release by coupling two real-time methods: Temporal Dominance of Sensations 

(TDS) and nosespace (NS) analysis via Proton Transfer Reaction–Time of Flight–Mass 

Spectrometry (PTR–ToF–MS). The second goal was to investigate the impact of roasting 

degree and sugar addition on aroma release and perception in espresso coffee. A set of four 

coffee samples, two roasting degrees and two sugar levels, has been used for both sensory and 

instrumental measurements. The in-mouth flavour evolution in terms of dominant sensations 

was measured by mean of TDS carried out by 18 trained judges with a 9-attribute list (Sweet, 

Sour, Bitter, Astringent, Roasted, Burnt, Caramel, Nutty and Vegetal). The same judges were 

subjected simultaneously to NS analysis in order to identify and quantify the volatile compounds 

reaching their olfactory receptors during coffee consumption. A significant effect of roasting 

was observed with both techniques. More compounds and in larger quantity were released 

when increasing roasting degree, which was described sensorially as a greater dominance of 

the attributes Burnt, Roasted, Astringent and Bitter. Sugar addition did not significantly affect 

the aroma release of volatile compounds as demonstrated by the NS profiles of judges while 

changing completely the way the coffee was sensorially perceived in mouth. As expected, sweet 

taste became dominant over bitter and sour but it increased more globally the flavour 

complexity with Caramel and Nutty notes reducing the Roasted or Burnt ones. This result 

emphasizes the presence of taste–smell perceptual interactions, due to congruence effect 

between sweet taste and some flavours of coffee, and the potentialities of this combination of 

dynamic methods to study them. Besides, the treatment of NS data using clustering methods 

revealed two different release behaviours, which permitted to identify potential TDS markers. 

 

Keywords: Temporal Dominance of Sensations (TDS), Aroma release, Proton Transfer 

Reaction Time of Flight Mass Spectroscopy (PTR-ToF-MS), nosespace, multisensory 

interactions, coffee 
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 Introduction 

Product consumption is a complex multisensory experience which changes during the time of 

consumption itself. It is well known that flavour of food is of greatest importance in the food 

global sensory experience and in its appreciation. Flavour has been defined by von Sydow [1] 

as an interaction of the food and the consumer suggesting that to be complete flavour study 

should consider both sensory and instrumental point of view. Flavour has been studied for many 

years according to different subtopics such as flavour release, chemoreceptor mechanisms and 

mathematical modelling (for a review see [2]). It has been demonstrated that flavour release 

and perception is changing over the time due to different physico-chemical, biochemical and 

physiological phenomena occurring in-mouth (salivation, changes of temperature, mastication, 

tongue movements, breathing, swallowing, etc.) [3-6]. Thus, classical sensory methods, which 

require integration and time-average processes of the perceptions perceived during the whole 

time of evaluation [7] are not suited to describe the whole perception. 

The investigation of the dynamic of perception gained a lot of interest in the recent years and 

is currently deeply explored. Different sensory descriptive methods allow measuring the 

temporal aspects of product perception as Time-intensity and Temporal Dominance of 

Sensations.  

Time-intensity (TI) was created a long time ago by Larson-Powers & Pangborn (1978) [8] and 

permits to follow the intensity of a given attribute over a certain period of time [9].Temporal 

Dominance of Sensations (TDS) method on the contrary has been developed in the past few 

years in order to avoid the time consuming aspect and the “halo dumping” effect of TI [10-12]: 

this technique measures the in-mouth evolution of dominant sensations during product 

consumption. The panellist has to select within a list of attributes the one dominant at each 

moment of the evaluation time. This method allows the evaluation of several attributes 

simultaneously, with a maximum of 10 [13], and has demonstrated its utility, through numerous 

and various applications (see [14] for a review). TDS has already been applied on coffee either 

to investigate the influence of different sweeteners [15] or of the foam/“crema” [16] on the in-

mouth perceptions. But it should be reminded that one or the other method - TI or TDS - is 

recommended depending on the objectives of the study: TI when the interest is focused on the 

kinetic of one specific sensory attribute while TDS when the concern is to evaluate the sequence 

of the consecutive perceived sensations, chosen within a multiple sensory attribute list. 

It has also been underlined by several authors that the understanding of flavour perception 

phenomena could be considerably enriched by adding instrumental measurements performed 
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simultaneously to sensory measurements or combining them particularly in the case of dynamic 

measurements ([14]; e.g. TDS) and in the context of a coffee matrix [17]. 

Proton Transfer Reaction- Mass Spectrometry (PTR-MS) is a powerful tool for rapid, direct 

and highly sensitive on-line monitoring of volatile organic compounds (VOCs) [18]. PTR-MS 

uses a soft chemical ionisation based on proton transfer from a protonated reagent, most 

commonly H3O
+. The compounds with higher proton affinity than H2O will react with H3O

+ 

and the products are further analysed [19]. The addition of a time of flight (ToF) detector to the 

PTR-MS allows performing in vivo aroma release measurement such as nosespace (NS) 

analysis since it has the advantage to provide high mass range, very fast measurement and high 

mass resolution [20]. During eating or drinking, VOCs are first released into the oral cavity 

then reach the olfactory epithelium, via the retronasal route, where a sensory perception occurs. 

Thus, the in vivo measure of aroma by NS analysis is of primary importance to better understand 

the flavour perception of consumers [21] and NS analysis seems to be a very promising tool to 

be combined to sensory methods. Among the studies published on NS analysis with PTR-MS, 

very few have used a ToF mass analyser and have been applied to real food matrices as cereal 

bars [22] and coffee [23]. 

Until now and to our knowledge, only four studies [16, 24-26] have used in combination 

sensory (TDS method) and instrumental (NS analysis) real-time measurements to investigate 

aroma release and flavour perception: the existing works dealt with the impact of product 

properties and/or evaluation protocol on flavour. Déléris and colleagues (2011a)[24] and 

Mesurolle and co-workers (2013) [26] have studied the effect of texture on temporal aroma 

release and sensory perception respectively on candies and yogurts with fruit pieces. In this first 

study [24], some relations between the dynamics of release and perception on temporal 

parameters were evidenced (notably dominance duration, sequence of dominant attributes for 

sensory data and for instrumental data tmax value and intensity ratio for each ion) but it was not 

clearly the case in the work on yogurts [26] underlying that these links are not so obvious and 

probably depending on the food matrix. In this second study, they could not distinguish the 

different influence of sample texture from the natural adaptation of food oral processing when 

changing the texture on aroma release and perception. Another study explored the impact of 

swallowing on aroma release and perception of flavoured vodka [25]. They have showed that 

swallowing implied more complex sensory perceptions than spitting out even if the attribute 

dominances were weaker. Volatile compounds instrumental analysis corroborated the sensory 

results as they revealed that swallowing induced a higher and earlier release of larger amounts 
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of aroma. Barron et al. (2012) [16] have applied these two temporal methods to espresso coffee 

to measure the impact of foam/“crema” on the aroma release and in-mouth sensory perception. 

They showed that the presence of foam/“crema” was associated with the dominance of the 

roasted attribute and also to the release of pleasant high volatile [16]. These four discussed 

studies indicate the existence of some links between the dynamics of flavour perception and 

aroma release even though it remains challenging to relate these two types of data (sensory and 

instrumental data) due to the variety and the convoluted phenomena involved (salivation, 

breathing, chewing, individual sensitivity to volatile and non-volatile compounds, etc.). This is 

even more accentuated by the complexity of the coffee matrix [17]. 

The goal of this study is to get better insight into the flavour perception processes by clarifing 

the link between the evolution of descriptors of flavour dominant at each moment during the 

consumption of a complex real product (coffee) and the release kinetics of aroma compounds. 

In this purpose, we propose and evaluate the pairing of two dynamic methods, one based on the 

sensory responses by a trained panel (Temporal Dominance of Sensations) and the other one 

on in-vivo instrumental monitoring of volatile compounds present in the nose of judge (NS 

analysis with PTR-ToF-MS) . As a case study, the effect of roasting degree and sugar addition 

on espresso coffee in terms of dominance of sensations during the consumption and of 

simultaneous in-vivo aroma release is investigated. 

 Materials and methods 

4.1.2.1 Samples 

Two 100% Arabica coffees naturally low in caffeine were provided by Illycaffè S.p.a. (Trieste, 

Italy) in capsules (Iperespresso) suitable to prepare an espresso coffee beverage. They had 

different roasting degrees according to commercial illycaffè colour standards: light roast (A) 

and dark roast (B) and were tested at two levels of sugar (Table 4.1-1). These two coffee types 

were selected on results of QDA profile carried out in duplicate by the trained panel of Illycaffè 

composed of 8 experts (data not shown) in a sensory laboratory designed in accordance with 

ISO 8589 (2007) [27]. They were described as being significantly different, for 8 attributes out 

of 11, according to ANOVA results, in terms of taste and flavour: A is sourer and B is bitterer 

and more aromatic, notably with a stronger chocolate, toasted bread and burnt odour and 

flavour. The two types of coffee were tested with two level of sugar concentrations: 0 and 100 

mg/ml. This sugar dose corresponds to mean value of sugar used in espresso coffee by the panel 

(from the Fondazione Edmund Mach). 



Chapter 4. Nosespace analysis 

117 

 

Table 4.1-1. Composition of the tested samples 

 Light Roast Dark Roast 

Without sugar CoffeeA CoffeeB 

With sugar CoffeeAZ CoffeeBZ 

 

Coffee was prepared using an espresso coffee machine (Iperespresso X7.1, Illy), coffee 

capsules and mineral water (San Benedetto S.P.A., Italy, composition: Ca++ 50.3 mg/l, Mg++ 

30.8 mg/l, Na+ 6.0 mg/l, K+ 0.9 mg/l). The espresso machine was set up to prepare standard 

volume espresso (30 ml, volume normally served for an Italian espresso). The samples were 

prepared by pipetting from the bottom of the coffee cup 10 ml of the espresso coffee without 

“crema”, the foamy surface of espresso, and afterwards eventually by dissolving the sugar. 

They were prepared one-by-one and served at 55°C in a polystyrene cup with a lid and a straw 

in order to avoid that the judges smell the sample before putting it in their mouth. Samples were 

presented in an anonymous manner with random three-digit codes. The four products were 

analysed in triplicate by each judge. The judges evaluated three products per session: either two 

coffees without sugar and one with or two coffees with sugar and one without. For each panellist 

four individual sessions were performed in consecutive days. The presentation order was set up 

following a Williams Latin square design balancing order and position effects. The complete 

design for NS/TDS experiment was carried out in 8 days. 

4.1.2.2 Subjects 

A panel composed of eighteen subjects (10 women and 8 men, aged from 23 to 37) was 

recruited from the Fondazione Edmund Mach where they were all employed. They were all 

volunteered and selected for their availabilities during all the duration of the study (3 months). 

Only three judges had previous experience in sensory analysis. The judges had no history of 

oral perception disorders. They were all daily coffee consumers except two who consume 

coffee only several times per week or per month. Espresso and moka coffees are the two types 

of coffees they were generally drinking. Half of the panel drank usually coffee without sugar. 

They were asked not to smoke, eat, drink or use persistent products at least one hour before the 

session. 



Chapter 4. Nosespace analysis 

118 

 

4.1.2.3 Sensory analysis: Temporal Dominance of Sensations (TDS) 

4.1.2.3.1 Training 

The training period was set up over a period of two months. The judges were first introduced 

to sensory analysis principles: 1) “Concept of sequence” which corresponds to the description 

over the time or in other terms to the succession of the different sensations perceived in-mouth. 

2) “Concept of dominance” which is defined as the sensation which triggers the most attention 

at a given time. 3) “Concept of weak but dominant” which illustrates the fact that a perception 

can be weak but dominant. Then, the judges were trained to describe and perceive changes over 

the time of simple aqueous model solutions based on the combination of two or three stimuli 

(made of varying ingredients sucrose, citric acid, caffeine and potassium alum combined with 

different simple volatile compounds (linalool, methyl cinnamate and ethyl hexanoate) and 

thickner (locust bean flour). They were also trained to recognise and describe basic tastes and 

representative odours/aroma in coffee. Two sessions were dedicated to attribute generation 

followed by the selection and definition of the most important attributes for coffee evaluation. 

For these two sessions, light, medium, dark and decaffeinated espresso coffees plus two 

experimental ones (light and dark roasted coffees both naturally low in caffeine) were used 

(provided by Illycaffè S.p.a). The judges were also trained to use the data acquisition software 

(Fizz, Biosystemes, Couternon, France, 2.46A version) and the tasting procedure.  

4.1.2.3.2 Evaluation 

Nine flavour attributes were selected during the training and used for the TDS evaluation: 

Sweet, Sour, Bitter, Astringent, Roasted, Burnt, Caramel, Vegetal and Nutty. They were 

presented simultaneously on the computer screen and their order was randomised over judges 

as recommended by Pineau et al. (2012) [13] who showed that judges tend to choose the 

attributes from the top of the list. The attribute order was identical for all the evaluations of one 

judge. 

The assigned task during TDS evaluation of a product was to choose the attribute corresponding 

the dominant sensation among the list of attributes. An attribute was considered as dominant 

until another attribute was chosen. The judges were also told that an attribute can be dominant 

several times during the evaluation and that it is not necessary that all attributes were selected 

as dominant for the evaluation of each product. 

The evaluation started as soon as the panellist put the whole sample (10 ml) in his/her mouth 

and click on start button. After five seconds, the panellist was asked to swallow the sample and 
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continue the evaluation of the dominant sensations while breathing at a normal and regular 

speed. The TDS evaluation lasted 60 seconds in total. Between two successive samples, judges 

were asked to clean their mouth with unsalted bread and mineral water and to wait at least 10 

minutes. Three samples per session were monadically presented to panellists according to a 

design balancing order of evaluation over the four session carried out in consecutive days.  

TDS and nose-space analysis were performed simultaneously and required individual session. 

Evaluations were conducted in an individual computerised sensory booth under white cold light 

located in a room with filtered air at constant temperature (20 °C).  

4.1.2.3.3 Data treatments 

According to the researchers who set up the TDS method [12], it is difficult to evaluate the 

method in terms of panellists’ performance because of the nature the data: the results consist in 

an evaluation is a sequence of dominant attributes chosen at different times. Besides that, the 

number and the nature of attributes chosen by each panellist in the different replicates and over 

the panel were checked. 

To build TDS curves, each attribute is considered separately. For each point of time, a 

dominance rate consisting in the proportion of runs (subjects x replications, here, 18 x 3 so 54) 

for which the given attribute was assessed as dominant is calculated. The TDS curves are 

obtained by computing the dominance rate of each point [12]. The TDS curves were represented 

on one graph per product. To help in curve interpretation, two supplementary lines were drawn 

on the graphs [12, 28]: 1) the “chance level” which corresponds to the dominance rate that an 

attribute can obtain by chance. Its value, P0, is equal to 1/p, p being the number of attributes. 2) 

the “significance level” represents the minimum value that must be reached to consider the 

dominant rate as significantly higher than P0. This value, Ps, is calculated following the 

equation (1), in other words establishing the confidence interval of a binomial proportion based 

on a normal approximation [12]. 

 

(1) 𝑃𝑠 = 𝑃0 + 1.645√
𝑃0(1−𝑃0)

𝑛
 

n: number of subject x replication. 

 

All significant attributes are also represented on a horizontal bar graph in order to have a more 

global view per product and better observe the simultaneous significance of different attributes 

over the time and the differences between products. 
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4.1.2.4 Instrumental analysis 

4.1.2.4.1 Instrumental conditions 

All measurements were performed by using a commercial PTR-ToF-MS 8000 instrument 

(Ionicon Analytik GmbH, Innsbruck, Austria).  The ionisation conditions were the following: 

550 V drift voltage, 110 °C drift temperature, and 2.33 mbar drift pressure, resulting in an E/N 

ratio of 140 Td (1 Td = 10-17 cm2 V-1 s-1). Acquisition was set to 1 mass spectrum per second. 

Sampling was carried out via a heated (110 °C) PEEK tube. Inlet flow was set to 40 and 440 

sccm for headspace and NS measurements, respectively. The use of a higher inlet flow rate 

during NS measurements was found to better comply with the high time resolution required by 

the technique. 

4.1.2.4.2 Headspace analysis of coffee brews 

Freshly prepared coffee was briefly stirred and 2-ml aliquots were transferred into 22-ml glass 

vials (Supelco, Bellefonte, PA). The vials were equilibrated at 40°C for 30 min before the 

analysis. Each coffee type was prepared and measured eight times, once for every day of 

NS/TDS experiment, thus encompassing the whole range of experimental variability. Each 

measurement was the averaged result of 30 seconds of acquisition. 

4.1.2.4.3 Nosespace (NS) analysis 

NS analysis and TDS evaluation were performed at the same time. Sampling of NS was carried 

out by applying an ergonomic glass nosepiece to the nose of the judges. The nosepiece was 

connected to the PTR-ToF-MS by means of a PEEK tube (at room temperature for 10 cm, then 

heated at 110 °C). 

After positioning the nose-piece in the nostrils, judges were asked to breathe normally through 

nose (mouth closed). Then the panellist received the sample and had to sip it in whole. As soon 

as he/she put the sample in mouth, he/she had to press a button on the screen to let the 

experimenters know when he/she put the sample in-mouth and to start the TDS evaluation 

which lasted 60 s. After the TDS evaluation, the panellist had to continue breathing for 60 s. 

During all the evaluation, the judges had to keep their mouth closed. In total, the NS 

measurement lasted around 2.5 minutes. 
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4.1.2.4.4 PTR-ToF-MS data treatment 

Dead time correction, internal calibration of mass spectral data and peak extraction were 

performed according to a procedure described elsewhere [29, 30]. The analysis of the data 

generated during NS analysis required additional processing as reported below (Figure 4.1-1). 

4.1.2.4.5 Peak selection 

Following data extraction, a total of 465 mass peaks were obtained, ranging from m/z 15 to m/z 

300. An algorithm for peak-like feature selection was applied with the aim to select the release 

curves related to coffee and discard those that were not associated to NS sessions (e.g. linked 

to compounds from the judges’ breath or interfering ions). The algorithm, which is described 

in detail elsewhere [23], compares data populations right before and after sample introduction 

by means of a non-parametric statistical test. A p-value lower than 0.01 (after false discovery 

rate correction according to Benjamini & Hochberg, 1995 [31]) was deemed to indicate an 

increase in signal upon sample introduction and the corresponding mass peaks were retained 

for further analysis. After this selection step, a subset of 168 mass peaks was obtained. This 

subset, after elimination of redundant peaks related to 13C isotopologues and water clusters, 

was further reduced to 136 mass peaks. 

4.1.2.4.6 Conditional averaging 

In order to improve the robustness of parameter extraction (see further), the three curves 

obtained from the corresponding replicates of individual NS sessions were averaged. The 

original dataset, containing 216 NS sessions, was thus reduced to 72 aggregate sessions. An 

additional step of peak-like feature selection was applied before averaging, consisting of the 

same statistical test applied before (paragraph 4.1.2.4.5), but upon setting a more compliant 

statistical threshold (p-value < 0.1, no correction for false discovery rate). Whenever a curve 

was not recognised as peak (not significantly different from the background noise of the 

instrument, calculated during the 30 first seconds of measurement before sample introduction) 

this was consequently not employed in constructing the corresponding averaged curve. In the 

case when none of the three curves, corresponding to each aggregate session, contained peak-

like features, the data processing software restituted a “NaN” (Not a Number) type of entry. 
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Figure 4.1-1. Schematic representation of the protocol employed for the analysis of nosespace 

data. Representations of the actual datasets are merely schematic (■= numeric cell; ■ = non 

numeric cell). Italicized references relate to materials and methods sections where the 

corresponding steps are explained. 

4.1.2.4.7 Parameter extraction 

From each of the 136 selected peaks the baseline (obtained by averaging the first 30 cycles) 

was subtracted and 6 parameters were extracted: the maximum (maximum), the area under the 

curve (area), the median (median), the time to reach the maximum (tmax), the average of the 

last five seconds of the NS session (final), and the slope of the first descending section of the 

curve (slope), assuming a linear relationship between time and the logarithm of peak intensity 
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[32]. In agreement with the step of data selection described previously (paragraph 4.1.2.4.6.), 

parameter extraction was not performed on missing NS curves and NaN-containing cells were 

generated in correspondence to the missing parameters. 

4.1.2.4.8 Elimination of NaN-containing columns 

As a final step of data processing, all columns having at least one NaN-containing cell were 

excluded from further analysis. The final data matrix consisted of 234 columns, corresponding 

to the 6 parameters extracted from 39 mass peaks, and 72 rows corresponding to the aggregate 

NS sessions. 

4.1.2.4.9 Software 

Data analysis and statistical analyses (one-way ANOVA with product factor, cluster analysis 

with “partitioning around medoids” algorithm) were performed using software packages and 

scripts developed in MATLAB (MathWorks, Natick, MA) and R (R foundation for statistical 

computing, Vienna, Austria). 

 

 Results 

4.1.3.1 A better differentiation of sensory dynamic perceptions of coffees related to sugar 

concentration than roasting degree   

Figure 4.1-2 and Figure 4.1-3 show the temporal description in terms of dominance of the four 

products studied: respectively coffee A/without sugar, coffee AZ/with sugar, coffee B/without 

sugar and coffee BZ/with sugar. Each curve (Figure 4.1-2) represents the evolution of 

dominance rate over the consumption time (60s). Only attributes with a significant dominance 

rate are represented. Four attributes for Coffee A and five attributes for the other products 

(Coffee AZ, Coffee B and Coffee BZ) were significant. P0 (chance level) and Ps (significance 

level) were calculated and corresponds respectively to 0.11 and to 0.18. Figure 4.1-3 shows the 

significance of the attributes for all 5s time-periods without taking into account the dominance 

rate and this allows having a more global point of view. 
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Figure 4.1-2. TDS curves of the different significant attributes for the four coffee samples over 

a 1 minute time period: Coffee A (a), Coffee AZ (b), Coffee B (c), and Coffee BZ (d). P0 

represents the chance level and Ps is the significance level. 

 

 

Figure 4.1-3. Simplified representation of significant attribute dominances for each 5s time-

period.   = sweet;  = sour; ■ = bitter;  = astringent;  = vegetal;   = nutty;  = caramel;  = 

roasted;  = burnt. 

 

a 

b 

c 

d 
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For example, Figure 4.1-2a shows Bitter as a dominant attribute for Coffee A 3s after the 

beginning of the tasting with a maximum at 9s for 37% of the judges. The temporal dominance 

description of this product is then Sour with a maximum dominance between 18 and 21s for 

44% of judges. Burnt reaches barely the significant level twice meaning a weaker consensus of 

the panel on the dominance on this aromatic note and to finish, Roasted is significantly 

dominant at the beginning of the evaluation but it is mainly perceived as dominant at the end 

from 42 to 60s with a maximum rate of 24%. More globally this coffee is perceived as being 

Sour, Bitter and with a Roasted flavour (Figure 4.1-3a). 

Coffee AZ is mainly perceived Sweet and with a Caramel flavour (Figure 4.1-3b).  The Sweet 

sensation becomes significant at 2s until the end with a maximum at 5s after the beginning of 

the evaluation for 50% of the panel (Figure 4.1-2b). Other sensations are nevertheless 

perceived during the one-minute evaluation. The dominance rate of Sour becomes significant 

very briefly at 10s and the Roasted flavour at 17s but the judges don’t agree perfectly on the 

dominance of these two attributes as the dominance rate is equal only to 20.4%. The Caramel 

flavour is not significantly dominant at the very beginning of the evaluation (only after 14s) 

and its dominance is then not continuous. Three peaks can be observed from 14 to 18s (with a 

max. dominance of 22.2%), from 25 to 29s (with a max. dominance of 22.2%) and from 39 to 

the end (with a max. dominance of 27.8%). The Nutty flavour is also briefly dominant (during 

2s at 26s). The temporal description of this sample shows one more significant attribute 

implying that the addition of sugar seems to add complexity to the perception of espresso 

coffee. In complexity, we mean the number and the variety of attributes. Another thing to point 

out, probably due to the addition of sugar, is the change within the nature of the significant 

attributes over the time: the Bitter and Sour tastes are erased by the Sweet perception. It affects 

also the flavour perception: from Burnt and Roasted (Coffee A) the description of dominant 

attributes switch to Caramel mainly (Coffee AZ) and Nutty slightly. The changes due to sugar 

addition can also be observed on Figure 4.1-3 (a and b) which summarises the information 

from TDS and allows an easier sample comparison by pair. 

Coffee B (Figure 4.1-2c and Figure 4.1-3c) is described as mostly Bitter and with a Burnt 

flavour. Compared to coffee A, it is less Sour in the first 30s and more Bitter at the end. The 

differences between the two coffees consist mainly in taste dominance but in the second half of 

the tasting (from 30 to 60s) a difference in the main dominant flavour is observed: Roasted for 

Coffee A and Burnt for Coffee B (Figure 4.1-2 and Figure 4.1-3). The latter is also perceived 

Astringent dominating at 27s and 28s by 20.4% of the judges. The TDS method seems to show 
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here that two coffees different in nature (different type of roasting) result to be described 

differently signifying that this sensory dynamic method allows differentiating samples. 

When looking at Coffee BZ (Figure 4.1-2d and Figure 4.1-3d; Coffee B with sugar), the sugar 

effect is very clear as well but the dominant sensation pattern from Coffee B is maintained: it 

is more Bitter and less Sour than Coffee A. The sugar effect is also underlined here by a 

modification of the dominant attributes of flavour in a quite similar manner than when sugar is 

added to Coffee A (Coffee AZ). The attributes Caramel and Nutty become dominant 

respectively from 15 to 17s (with a max. dom. rate of 20.8%) and from 42s to 44s (with a max. 

dom. rate of 20.8%). In addition, the attribute Roasted is dominant in the evaluation of the 

sample from 25s to the end with a maximum 26.4%. In both coffees A and B, the effect of 

adding sugar tends to mask/decrease Sour and Bitter taste dominance as expected but also to 

enhance the “empyreumatic flavour” perception described with the attributes Caramel, Nutty 

and Roasted instead of Burnt (Figure 4.1-2 and Figure 4.1-3). 

4.1.3.2 NS profiles are greatly influenced by roasting degree, whereas sugar addition plays 

a minor role 

As discussed in a previous work [23], the processing of data generated during NS analysis by 

PTR-ToF-MS poses multiple challenges to the experimenter, especially when non-modified 

real food matrices are studied. Most complications originate from the complexity of the data, 

given by the presence of an additional dimension (i.e. time), as well as by its sheer size. The 

PTR-ToF-MS measurement generated up to 465 mass peaks over a total of 19,440 mass spectra, 

distributed over 216 sessions overall. In order to isolate the data most relevant to NS itself, the 

matrix was submitted to a series of steps of reasoned data reduction (see also paragraph 

4.1.2.4.4 and Figure 4.1-1). 

The dataset thus obtained was submitted to one-way ANOVA and p-values were corrected 

taking into account the false discovery rate. Table 2 reports all mass peaks and parameters 

associated to a p-value lower than 0.01. Statistically significant differences were found for 21 

mass peaks. Based upon estimation of exact mass (up to three decimal digits) and literature data 

[33, 34] a tentative identification was proposed for 20 mass peaks. Thirteen of these masses 

could be related to chemical classes known to be, at least in part, responsible for the olfactory 

sensory notes employed in TDS; these included pyrroles (Burnt sensory attribute), furans 

(Caramel, Nutty), pyridines (Roasted, Burnt), oxazoles (Nutty), and thiazoles (Nutty) [33]. 
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The parameters that, among the six extracted, showed more often sample-wise variation were 

those characterising release in time-independent fashion. Statistically significant differences 

were found for parameters related to overall intensity (area, occurring 19 times), maximum 

intensity (maximum, 15 times), mean intensity (median, 13 times) and final intensity of the 

sensory stimulus (final, 7 times). The aforementioned parameters were always higher in dark 

roasted coffees (i.e. B and BZ) than in light roasted samples (i.e. A and AZ), showing a two- to 

four-fold increase (Table 2). The impact of sugar addition appeared to be negligible: of all NS 

mass peaks considered only m/z 99.079 showed a sugar-dependent response, as it was absent 

in samples A, AZ, and B, being instead detectable in coffee BZ.  

Time-related parameters (i.e. slope, tmax) were scarcely represented in Table 4.1-2, with slope 

showing differences for mass m/z 97.027 only (tentatively assigned to furfural). For this mass 

peak the concentration decrease observed after swallowing was faster in light roasted coffees 

(A and AZ) than in dark roasted samples (B and BZ).  

The results obtained by headspace analysis corroborated well those from NS analysis (results 

not shown), with a great influence being played by the roasting factor in accordance with the 

previously cited study on coffee (Romano et al., 2014). One-way ANOVA (p < 0.01) resulted 

into 121 statistically different mass peaks, out of which 15 could also be encountered among 

the previously described NS mass peaks. The impact of sugar addition appeared once more to 

be negligible. 
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Table 4.1-2. Selected nosespace mass peaks and corresponding parameters. Means and standard deviations are reported for each sample. p-values 

were obtained on the basis of one-way ANOVA and corrected taking into account false discovery rate. Only parameters whose p-values were lower 

than 0.01 are shown. Superscript annotations are used to display differences between coffees (Tukey’s HSD). 

meas. 

mass (Th) 

sum formula tentative identification parameter Coffee A Coffee AZ Coffee B Coffee BZ p-value 

68.050 C4H6N+ pyrrole maximum 3.5±1.8a 4.2±2.6a 11.3±6b 13.2±6.7b < 10-3 

    area 99.3±45a 102.9±40.3a 274.6±120.5b 320.3±131.9b < 10-3 

    median 0.7±0.4a 0.8±0.3a 2±0.9b 2.2±0.9b < 10-3 

    final 0.3±0.2a 0.3±0.1a 0.7±0.3b 0.8±0.4b < 10-3 

69.033 C4H5O+ furan area 321.3±120a 404.1±188.4a 718.2±358.8b 908±343.7b < 10-3 

  median 1±0.7a 1.2±0.7a 2.4±1b 2.6±1.2b < 10-3 

  final 0.3±0.2a 0.3±0.2a 0.8±0.3b 0.8±0.4b < 10-3 

73.065 C4H9O+ Isobutanal, butanone area 1883.3±804.4a 2169.2±882.7ab 3269.5±1728.4bc 4329.3±1669.8c < 10-3 

75.044 C3H7O2
+ methyl-acetate/acetol maximum 86.5±52.4a 98.6±47.1a 236±200.5b 333.6±188.2b < 10-3 

  area 1119.2±417.6a 1310.7±528a 2690.7±1329.3b 3498.9±1355.4b < 10-3 

  median 6±2.6a 6.4±3.1a 10.5±5.1b 12.2±5.6b 0.009 

78.968 n.a. non identified maximum 0.7±0.5a 0.7±0.4a 1.3±0.8ab 1.9±1.3b 0.003 

    area 6.1±2.4a 6.4±2.6a 11.8±6.1b 14.9±5.7b < 10-3 

80.049 C5H6N+ pyridine maximum 17.6±8.9a 18.6±9.1a 58.8±30.6b 68.5±41.8b < 10-3 

  area 868.8±403.4a 859±345.5a 2481.2±1127.4b 2805.1±1253.1b < 10-3 

  median 8.6±4.2a 8.3±3.2a 22.2±9.8b 25.1±10.5b < 10-3 

  final 4.5±2.5a 4.2±1.7a 10.6±4.1b 11.9±4.5b < 10-3 

81.034 C5H5O+ furan fragment maximum 30±14.8a 40.8±33ab 69.2±37.6bc 88±47.7c 0.003 

    area 856.1±418.3a 895.9±430.9a 1654.8±656.9b 1905.2±828.1b < 10-3 

    median 6.2±3.4a 6.2±3.3a 11.6±4.9b 12±5.2b 0.002 

82.065 C5H8N+ methyl-pyrrole maximum 12.8±7.9a 14.2±7.8a 34.1±26.8b 48.5±29.1b < 10-3 

  area 128.1±55.5a 151.7±69.5a 358.2±196.9b 459.4±187b < 10-3 

  median 0.5±0.3a 0.6±0.3a 1.2±0.7b 1.5±0.8b < 10-3 

  final 0.2±0.1a 0.2±0.1a 0.3±0.1b 0.3±0.1b < 10-3 
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(Table 4.1-2 continues) 

meas. 

mass (Th) 

sum formula tentative identification parameter Coffee A Coffee AZ Coffee B Coffee BZ p-value 

83.049 C5H7O+ methyl-furan area 462±188.7a 566.9±282.7a 1110.9±645.6b 1331.5±573b < 10-3 

    median 1.2±0.7a 1.4±0.7a 2.4±1.2b 2.8±1.5b 0.008 

85.064 C5H9O+ methyl-butenal maximum 5.3±2.7a 6±2.8ab 11.1±7.7bc 14.9±8.8c 0.004 

  area 97.3±40.3a 104.8±38.7a 181.6±82.8b 218.4±84.7b < 10-3 

  median 0.6±0.3a 0.6±0.2a 1.1±0.4b 1.1±0.4b 0.006 

87.043 C4H7O2
+ butanedione butyrolactone area 405.5±161.3a 429.7±156.5ab 588.8±215.5bc 708.5±237.3c 0.006 

    median 2.2±0.9a 2.2±0.9a 3.5±1.3b 3.9±1.3b 0.003 

    final 0.9±0.3a 0.8±0.3a 1.5±0.5b 1.4±0.5b < 10-3 

89.059 C4H9O2
+ methyl-propanoate hydroxy-butanone maximum 3.3±1.6a 3.7±1.5a 7.6±4.2b 11.5±6.7c < 10-3 

  area 96.8±33.2a 111.1±37.5ab 147.5±47.4bc 182.4±47.5c < 10-3 

97.027 C5H5O2
+ furfural slope 0±0b 0±0b 0±0a 0±0a < 10-3 

98.060 C5H8ON+ dimethyl-oxazole maximum 0.8±0.5a 0.9±0.5a 2.1±1.5b 2.6±1.5b 0.002 

  area 21.2±9.6a 22.9±9.9a 46.5±23.6b 55.8±25.5b < 10-3 

  median 0.2±0.1a 0.2±0.1a 0.3±0.1b 0.3±0.1b < 10-3 

99.079 C6H11O+ hexenal methyl-pentenone maximum 0±0a 0±0a 0±0a 6.3±7.2b < 10-3 

    slope 0±0a 0±0a 0±0a 0±0b < 10-3 

100.020 C4H6NS+ methyl-thiazole area 11.7±5.5a 11±4.8a 19.1±7.8b 21.7±8.7b 0.002 

124.072 C7H10ON+ 2-acetyl-1-methylpyrrole maximum 0.5±0.3a 0.7±0.5a 1.2±0.6b 1.4±0.7b 0.004 

  area 18.1±8.9a 18.4±8.7a 35.7±14.3b 39.5±16.6b < 10-3 

  median 0.2±0.1a 0.2±0.1a 0.3±0.1b 0.3±0.1b < 10-3 

  final 0.1±0a 0.1±0a 0.1±0b 0.1±0.1b 0.001 

125.057 C7H9O2
+ guaiacol methyl-benzenediol furyl-acetone maximum 1.5±0.7a 1.9±1.4ab 3.3±1.6bc 4±2.2c 0.006 

  area 46.2±21.2a 47.9±19.4a 87.4±34.3b 99.3±39.8b < 10-3 

  median 0.4±0.2a 0.4±0.1a 0.6±0.2b 0.7±0.3b < 10-3 

  final 0.2±0.1a 0.2±0.1a 0.3±0.1b 0.3±0.1b < 10-3 

139.072 C8H11O2
+ 4-ethyl-1,2-benzenediol maximum 0.7±0.3a 0.8±0.5ab 1.4±0.6bc 1.8±1c 0.007 

    area 23.7±10.1a 24±10a 40.9±16.5b 46.2±18.5b 0.001 

    median 0.2±0.1a 0.2±0.1a 0.3±0.1b 0.3±0.1b 0.006 

141.056 C7H9O3
+ furfuryl-acetate maximum 0.9±0.5a 0.9±0.5a 1.8±1.1b 2.3±1.3b 0.003 

  area 19.7±7.9a 20.1±7.6a 34.2±13.7b 38.8±15.4b < 10-3 

149.058 C9H9O2
+ furfuryl-furan maximum 0.5±0.3a 0.5±0.2a 1±0.6b 1.3±0.7b 0.001 

    area 10.6±5a 9.9±5.4a 17.7±8.5b 20±8.5b 0.008 
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4.1.3.3 NS curves fall into two different groups, characterised by distinct release patterns 

The results of sensory analysis showed that flavour related TDS curves underwent great 

variations, both upon roasting and sugar addition. It can be surmised that these differences are 

due, at least in part, to the fact that the time evolution of coffee NS is different in the different 

coffees. In the attempt to test this hypothesis, a novel approach was adopted for data analysis. 

The different mass peaks and corresponding NS curves were considered to be distinct samples, 

each represented by six variables (i.e. the different parameters). In order to even out differences 

in absolute concentrations all NS curves were transposed to the same scale, ranging between 

zero and one. Parameters were extracted as described in paragraph 3.2 and for each mass peak 

the parameters were averaged. This averaging step, aimed at expeditiously reducing the data 

size, entailed a considerable degree of approximation, as it evened out all inter-individual 

differences between judges; nevertheless it must be noted this simplification did not undermine 

the validity of the final conclusions, as it is demonstrated further. A separate analysis was 

carried out for each coffee and for each sample a matrix was obtained, composed by 39 rows 

(the different peaks, selected according to the procedure described in paragraph 3.2) and five 

averaged parameters (maximum, which always resulted equal to one after normalisation, was 

eliminated). 

The search for groups within each dataset was conducted by means of cluster analysis, using 

the “partitioning around medoids” method encoded by the “pam” function of the R “cluster” 

package. This methodology, which is described in detail elsewhere [35], is based upon an 

algorithm that divides the dataset into k clusters, where k is defined arbitrarily. A range of k-

values between 1 and 10 was tested, with k=1 corresponding to no observed clustering. For 

each k tested, the algorithm carries out the clustering and also yields a silhouette value (Si), 

ranging from 0 to 1. This represents a “quality index” of the clustering. Similarly, Si values can 

be obtained for each group and for every single variable within a group. For all four datasets, 

the highest Si value was obtained for k=2, with values for the single groups ranging from 0.55 

to 0.71. According to the literature [35], these values were indicative of the presence of either 

“reasonable” (for Si > 0.50) or “strong” (Si > 0.70) cluster structures. 
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Table 4.1.3 depicts the clustering of each mass peak for the four different coffees. Whenever a 

variable was characterised by Si higher than 0.50, a cluster membership was assigned, otherwise 

the variable was assigned to no cluster. The overall data showed a clearly discernible pattern, 

with low m/z compounds being more often assigned to cluster 1 and vice versa. Comparing 

different samples, mass peaks did not generally shift from one cluster to another. Interestingly, 

cluster memberships also appeared to be dependent upon chemical structures: cluster 1 

comprised esters, acids, and carbonyls whereas cluster 2 was mainly composed by N-

heterocycles and phenols. Furans were almost equally represented by both clusters. 

 

The two aforementioned clusters corresponded to NS curves having two distinct time 

evolutions. Figure 4.1-4 depicts an example of this difference, as observed in coffee BZ, and 

relative to mass peaks m/z 73.065 (attributed to isobutanal/butanone) and mass peak m/z 

139.072 (tentatively assigned to 4-ethyl-1,2-benzenediol). These peaks were selected as typical 

representatives of the distinct behaviours depicted by the two clusters. It can be observed that 

compounds belonging to cluster 1 were associated to NS release curves that increased steeply, 

reached maximum intensity after approximately 10 s, tailed down relatively fast, and had almost 

reached zero by the end of the TDS/NS session. As for the release curves of the mass peaks 

from cluster 2, these increased more slowly, reached maximum intensity at 20 s or later, and, 

60 s after sample introduction (i.e. at the end of the session), still retained around 20% of 

maximum intensity. This difference in release patterns between the two clusters, based upon 

averaged parameters, was also reflected by the parameters extracted from the individual NS 

curves, with normalised curves from cluster 2 having higher area, median, final and tmax, and 

lower slope, than those from cluster 1 (Figure 4). These differences could regularly be observed 

between release curves belonging to different clusters, and in spite of the well-known inter-

individual differences (results not shown). 
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Table 4.1-3. Mass peaks and corresponding cluster assignments. ■ = cluster 1; ■ = cluster □ = 

no assignment. 

 

n.a. = non applicable  

meas. 

mass  

(Th) 

Coffees sum 

formula 
chem. class tentative identification 

A AZ B BZ 

43.018         C2H3O+ fragment fragment (diverse origin) 

45.034         C2H5O+ aldehydes acetaldehyde 

49.012         CH5S+ sulfurs methanethiol 

61.029         C2H5O2
+ acids/esters acetic acid/methyl-formate 

63.043         C2H7O2
+ n.a. non identified 

68.050         C4H6N+ N-heterocycles pyrrole 

69.033         C4H5O+ furans furan 

71.049         C4H7O+ fragments/aldehydes/ketones fragment (methyl-butanol)/butenal/butenone 

73.065         C4H9O+ aldehydes/ketones isobutanal/butanone 

75.044         C3H7O2
+ esters/hydroxyketones methyl-acetate/acetol 

78.968         n.a. n.a. non identified 

80.049         C5H6N+ N-heterocycles pyridine 

81.034         C5H5O+ fragments furan fragment 

82.065         C5H8N+ N-heterocycles methyl-pyrrole 

83.049         C5H7O+ furans methyl-furan 

85.064         C5H9O+ aldehydes methyl-butenal 

87.043         C4H7O2
+ ketones butanedione/butyrolactone 

87.080         C5H11O+ aldehydes methyl-butanal 

89.059         C4H9O2
+ esters/hydroxyketones methyl-propanoate/hydroxy-butanone 

94.039         n.a. n.a. non identified 

95.010         n.a. n.a. non identified 

97.027         C5H5O2
+ furans furfural 

98.060         C5H8ON+ N-heterocycles dimethyl-oxazole 

99.041         C5H7O2
+ furans/lactones furfuryl alcohol/angelica lactone 

99.079         C6H11O+ aldehydes/ketones hexenal/methyl-pentenone 

100.020         C4H6NS+ N-heterocycles methyl-thiazole 

101.058         C5H9O2
+ ketones pentanedione/methyl-tetrahydrofuranone 

103.072         C5H11O2
+ esters/hydroxyketones hydroxy-pentanone/methyl-butanoic acid 

105.068         C8H9
+ aromatic hydrocarbons/fragments styrene/phenylethanol fragment 

109.071         C6H9N2
+ N-heterocycles dimethylpyrazine/ethylpyrazine 

111.042         C6H7O2
+ furans acetyl_furan/methyl-furfural 

113.056         C6H9O2
+ mixed 

methyl-furfuryl-alcohol/dimethyl-furanone 

methyl-cyclopentanedione/cyclotene 

115.072         C6H11O2
+ pyrans 4-methyltetrahydro-2H-pyran-2-one 

124.072         C7H10ON+ N-heterocycles 2-acetyl-1-methylpyrrole 

125.057         C7H9O2
+ phenols/furans guaiacol/methyl-benzenediol/furyl acetone 

139.072         C8H11O2
+ phenols 4-ethyl-1/2-benzenediol 

141.056         C7H9O3
+ furans furfuryl-acetate 

148.069         n.a. n.a. non identified 

149.058         C9H9O2
+ furans furfuryl-furan 
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Figure 4.1-4. Comparison between peaks from cluster 1 (blue) and cluster 2 (red), measured in 

coffee BZ. The normalized release curves show mean, maximum, and minimum values (dots 

and error bars). Stripcharts display the distribution of single values for the curve parameters, 

with letter annotations indicating statistically significant differences (one-way ANOVA, 

p<0.01). 

 Discussion 

As it was already demonstrated on different types of matrices, liquid, semi-liquid or solid (see 

[14] for a review), TDS allows to differentiate and to describe the different product samples in 

terms of dominant sensations during their consumption time. In this study, samples were 

discriminated and characterised according to the nature of selected attributes/sensations, the 

number of significant attributes and the evolution of sensations in time (sequence of attributes). 

Recently, some studies have been published on describing the perception of complex products 

like coffee. Barron and co-workers (2012) [16] studied the impact of “crema”, the foamy 
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surface of espresso coffee, on the overall perception of coffee including flavour (Carbony, 

Roasted, Cereal, Fruity), taste (Bitter, Acidic, Sweet) and texture (Liquid, Thick, Gritty, Silky) 

attributes. TDS evidenced that the presence of “crema” induced a dominance of the Roasted 

attribute and that this dominance increased with the quantity of foam by pressure. Their results 

showed also that the presence of “crema” tends to mask bitterness of coffee. Dinnella and 

colleagues (2013) [15] chose to use a shorter attribute list (5 attributes in total) to describe the 

evolution of coffee perception: three tastes (Bitter, Sour, Sweet), one tactile sensation 

(Astringent) and one flavour (Coffee Flavour). They analysed one type of coffee sweetened 

with three different kind of sweeteners (sucrose, acesulfame, steviol). The perception of coffee 

changed depending on the used sweetener considering TDS curves produced when no intensity 

rating was collected. Coffee sweetened with sucrose was described with Sweet then Coffee 

flavour dominant sensations while for the coffee with acesulfame, the main dominant sensation 

was Coffee flavour (after 37s), the Sweet sensation was a lot lower (below significance level) 

and a slight Bitter dominant sensation appeared after 20s. Regarding the addition of steviol in 

coffee, it modified a lot its perception, which was then described as Sour and then Bitter. One 

thing, worthy to mention, is that a different attribute list will necessarily generate different 

temporal descriptions. Indeed, the TDS method consists in selecting an attribute within a list 

and so consequently TDS results - a sequence of selections of a specific attribute at a specific 

time - is very dependent on the attributes available in that list. The decision to add or not in the 

list only taste, flavour, texture attributes or all categories together is not trifling especially when 

the link between TDS data and instrumental data (e.g. NS data) is investigated afterwards. In 

this regard, it made more sense to us not to use texture/mouthfeel attributes in our study, as one 

of the objective was to correlate both sensory and instrumental aroma data and to evaluate their 

complementarities. Moreover, less attention is usually given to texture characteristics when 

analysing liquid matrices compared to solid or semi-solid ones. Considering taste attributes, it 

was not easy to decide whether to include them in the list or not. On one side, as the objective 

of the study was to investigate the link between flavour perception and aroma release, they 

would be considered as adding noise in the results. But on the other side, flavour should be 

considered in its complexity and therefore taste attributes must be included as well to obtain a 

complete description of the perceptions of the tasting [36]. Thus, we decided to keep taste 

attributes in the list. 

The roasting effect of coffee was well underlined both in TDS curves and NS data. The increase 

of roasting degree (from light (Coffee A) to dark (Coffee B)) was characterised sensorially 
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mainly by a change in the taste of coffee, a decrease of sourness and an increase of bitterness 

(in the first half of the evaluation) corroborating the work of Clifford (1985)[37] saying that 

roasting is the most efficient way to reduce acid content and perceived acidity in coffee. From 

a sensory point of view, a change in the flavour perception is also observed with a switch of 

dominance from Roasted to Burnt (in the second half of the evaluation; Figure 4.1-2a and b). 

The NS data indicated that globally more volatiles and in higher concentrations were released 

in the NS of the panellist and as well as in the headspace of coffee samples with increasing 

roasting degree. The literature agrees well with this flavour/aroma modification due to roasting 

observed at a sensory level [38] and also at an instrumental level both with in vitro (headspace) 

or in vivo (NS) [23, 38, 39]. 

Furthermore, TDS shows that differences in flavour attributes between samples come out at the 

middle/end of the session and the cluster analysis performed on NS data shows that release of 

potent odorants of coffee show different characteristics. For instance N-heterocycles and most 

furans are in cluster 2 (late and persistent release). That being so, these compounds could be 

related to the flavour attributes used in TDS and NS analysis could be used as a tool to identify 

some key compounds/markers might be responsible for some sensory attributes due to their 

odour activities. In terms of sensory perception, when the roasting degree increases (from A to 

B), a surprising reduction in the dominance of the Roasted note is observed. In addition to this, 

a rise in the Burnt note dominance in coffee B is recorded. When considering sensory and NS 

data together, different compounds seem to be potential markers for Burnt sensory note: e.g. 

methyl-pyrrole (Cluster 1) and pyridine and acetyl-methyl-pyrrole (Cluster 2). The fact that 

these three possible markers come from different clusters could predict an early and a late onset 

for a Burnt sensory note upon Roasting, observed in sensory data. When coffee AZ and BZ 

(increase of roasting degree but with sugar in both samples) were compared, an increase of 

Roasted flavour note dominance can be seen. Related to this finding, a good temporal 

dominance marker from NS data, could be pyrazines (peak m/z 109) that expectedly are in 

Cluster 2 (late and persistent perception). By saying this, we also accept that the flavour of a 

product is made up of a complex mixture of volatiles [40] and it is difficult to determine the 

contribution of a single volatile compound responsible for a sensory note. 

Considering the analytical aroma measurement in real time called NS analysis, this study 

describes a novel methodology to analyse data and points out the possibility to describe tasting 

experience in terms of “temporal dominance markers” as opposed to the classical approach 

where “static” sensory perception or overall sensory experience is described by means of 
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“static” chemical markers. The clustering of volatile compounds in two groups can be justified 

on a physico-chemical basis: “lighter” compounds tend to interact less and are released more 

quickly, vice versa for “heavier” compounds. Obviously it is more complicated than this 

because chemical and physiological characteristics (e.g. hydrophilicity/hydrophobicity, 

interactions with specific salivary constituents, different coefficient of partition into the lipid 

phase of the espresso coffee) seem to play a role, for example carbonyls (aldehydes, ketones) 

supposedly interact less with mucosal surfaces and are released faster than N-heterocycles that 

interact more and are more persistent. 

The effect of sugar addition can be observed when comparing results from sample A to AZ and 

from B to BZ. Only a modification in the sensory results was observed (Fig. 2). In other words, 

even though it has been not possible to identify a significant effect of sugar addition neither on 

in-nose aroma release nor on headspace aroma composition, the coffee was very differently 

perceived in-mouth. For both coffees, A and B, the addition of sugar provoked a dramatic drop 

of the dominances of Sour and Bitter attributes which were replaced by a dominance of the 

Sweet taste. Additionally, it caused a modification in the perception of flavour. The description 

of coffees changed from being Burnt and Roasted to Roasted, Caramel and Nutty. These 

changes suggest the presence of taste-smell interactions occurring at the brain level when 

treating and combining different type of simultaneous sensory stimuli (i.e. tastes and odours, 

[36]). 

First, a masking effect of sugar is observed on bitterness and acid taste: the sweet perception 

overcame and reduced the two others. Some works of the literature are in agreement with the 

switch of dominance observed by sugar addition both on bitterness [41-43] and/or on sourness 

[43, 44] in water solutions and in complex matrices (see [45]; for a review). 

Second, an interaction between sweet taste and flavour of coffee seemed to occur: when sucrose 

was added, the perception of the flavour of coffee was modified and particularly the dominance 

of empyreumatic flavour notes increased (with Caramel, Roasted and Nutty notes). Sugar seems 

to play the role of a flavour enhancer. This confirms the results of different studies showing 

that a specific tastant can increase the perceived intensity of a specific flavour when the two 

stimuli taste and flavour are congruent in other words when they are appropriated to be 

combined in a food product [46]. For instance, Hort & Hollowood (2004)[47], demonstrated a 

rise of ‘fruity’ flavour by sweetness and Hewson and colleagues (2008) [48] an increase in 

‘lemon’ flavour by sour taste. Furthermore Dalton et al. (2000) [49] demonstrated a taste-smell 

interaction for congruent pair of stimuli (benzaldehyde-sodium saccharin) and not for 
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incongruent pair (benzaldehyde-msg) (see also [50]; for a review). Here in our study, we talk 

about dominance, as TDS was the sensory chosen method, and not intensity of flavour attributes 

however it is the same perceptual process taking place. 

 Conclusions 

This study proposes to combine two temporal methods, one sensorial and one instrumental, in 

order to better understand coffee flavour perception. TDS method permits to describe the 

evolution of in-mouth perception over the time during product consumption. TDS curves 

allowed differentiating the samples, according to their roasting degree and level of sugar in both 

terms of taste and flavour. This study confirmed the ability of TDS to be applied and to describe 

complex products like coffee. NS analysis, as an in vivo dynamic instrumental method, allowed 

monitoring the aroma release during drinking and also discrimination of the products according 

to their roasting degrees. The addition of sugar did not affect aroma release of coffee. The novel 

NS data analysis methodology employed permits to identify compounds with two distinct 

release behaviours along the time dimension. Coupling TDS with NS analysis underlined the 

presence of multisensory taste-smell interactions in coffee and demonstrates the potentialities 

of this method combination to study cognitive interactions with a temporal dimension. It also 

offers the possibility to describe “tasting experience” by using “temporal dominance markers” 

as opposed to the classical approach where you describe “static” products by means of “static” 

chemical markers.  
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Supplementary File 4.1. Tentative identifications of detected mass peaks.  

meas. 

mass 

(Th) 

theor. 

mass 

(Th) 

sum 

formula 

 

tentative 

identification 

 

ref.a 

 

 

31.018 31.018 CH3O
+ formaldehyde 1 

33.034 33.033 CH5O
+ methanol 1 

35.038 n.a. n.a. non identified  

41.039 41.039 C3H5
+ alkylic fragment 2 

42.010 42.010 C2H2O
+ fragment (diverse origin)  

43.018 43.018 C2H3O
+ fragment (diverse origin) 2 

43.055 43.054 C3H7
+ fragment (diverse origin) 2 

45.034 45.033 C2H5O
+ acetaldehyde 3 

46.999 n.a. n.a. non identified  

47.013 47.013 CH3O2
+ formic acid 1 

49.012 49.011 CH5S
+ methanethiol 1 

53.003 n.a. n.a. non identified  

53.040 53.039 C4H5
+ fragment (diverse origin)  

54.038 n.a. n.a. non identified  

56.046 n.a. n.a. non identified  

57.038 57.033 C3H5O
+ acrolein/ acetol fragment 1 

57.070 57.070 C4H9
+ alcohol fragment 4 

59.049 59.049 C3H7O
+ propanal/acetone 1 

61.029 61.028 C2H5O2
+ acetic acid/methyl-formate 3 

63.026 63.026 C2H7S
+ ethanethiol/dimethylsulfide 1 

63.043 63.044 C2H7O2
+ non identified  

67.054 67.054 C5H7
+ terpene fragment 5 

68.026 68.026 C4H4O
+ furan fragment 3 

68.050 68.049 C4H6N
+ pyrrole 3 

69.033 69.033 C4H5O
+ furan 3 

69.070 69.070 C5H9
+ isoprene/fragment (diverse origin) 1,2 

71.049 71.049 C4H7O
+ fragment(methyl-butanol)/butenal/butenone 1,2 

71.085 71.086 C5H11
+ terpene fragment 5 

73.065 73.065 C4H9O
+ isobutanal/butanone 3 

74.035 n.a. n.a. non identified  

75.044 75.044 C3H7O2
+ methyl-acetate/acetol 3 

77.059 77.060 C3H9O2
+ propandiol 2 

78.968 n.a. n.a. non identified  

79.039 n.a. n.a. non identified  

79.052 79.054 C6H7
+ benzene/benzaldehyde fragment 1 

80.049 80.049 C5H6N
+ pyridine 2 

81.034 81.033 C5H5O
+ furan fragment 3 

81.066 81.070 C6H9
+ methylpentene/terpene fragment 1 

82.065 82.065 C5H8N
+ methyl-pyrrole 3 

83.049 83.049 C5H7O
+ methyl-furan 3 

83.084 83.086 C6H11
+ fragment (diverse origin)  

85.023 n.a. n.a. non identified  
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(Supplementary file 4.1 continues) 

meas. 

mass 

(Th) 

theor. 

mass 

(Th) 

sum 

formula 

 

tentative 

identification 

 

ref.a 

 

 

85.064 85.065 C5H9O
+ methyl-butenal 6 

85.100 85.101 C6H13
+ methyl-butene 1 

87.043 87.044 C4H7O2
+ butanedione/butyrolactone 3 

87.080 87.080 C5H11O
+ methyl-butanal 2 

89.059 89.060 C4H9O2
+ methyl-propanoate/hydroxy-butanone 3 

90.058 n.a. n.a. non identified  

90.948 n.a. n.a. non identified  

91.033 n.a. n.a. non identified  

91.074 91.075 C4H11O2
+ butandiol 1 

93.068 93.070 C7H9
+ terpene fragment 7 

94.039 n.a. n.a. non identified  

94.065 94.065 C6H8N
+ methyl-pyridine 1 

95.010 n.a. n.a. non identified  

95.056 95.060 C5H7N2
+ methyl-pyrazine 2 

96.075 n.a. n.a. non identified  

97.027 97.028 C5H5O2
+ furfural 3 

97.064 97.065 C6H9O
+ dimethyl-furan 3 

97.099 97.101 C7H13
+ fragment (aldehydes) 4 

98.060 98.060 C5H8ON+ dimethyl-oxazole 1 

99.041 99.044 C5H7O2
+ furfuryl alcohol/-angelica lactone 2 

99.079 99.080 C6H11O
+ hexenal/methyl-pentenone 1 

100.020 100.022 C4H6NS+ methyl-thiazole 1 

101.058 101.060 C5H9O2
+ pentanedione/methyl-tetrahydrofuranone 3 

103.037 n.a. n.a. non identified  

103.072 n.a. n.a. non identified  

103.072 103.075 C5H11O2
+ hydroxy-pentanone/methyl-butanoic acid 2 

105.032 n.a. n.a. non identified  

105.068 105.070 C8H9
+ styrene/phenylethanol fragment 1 

107.049 107.049 C7H7O
+ benzaldehyde 6 

107.082 107.086 C8H11
+ terpene fragment 7 

108.049 n.a. n.a. non identified  

108.080 108.081 C7H10N
+ ethyl-pyridine 1 

108.956 n.a. n.a. non identified  

109.071 109.076 C6H9N2
+ dimethylpyrazine/ethylpyrazine 2 

110.058 110.060 C6H8ON+ formyl-methylpyrrole/acetylpyrrole 2 

110.097 110.096 C7H12N
+ propyl-pyrrole/metyl-ethylpyrrole 2 

111.042 111.044 C6H7O2
+ acetyl_furan/methyl-furfural 3 

111.084 111.080 C7H11O
+ 2,3-dimethyl-2-cyclopenten-1-one 6 

113.017 n.a. n.a. non identified  

113.056 113.060 C6H9O2
+ 

methyl-furfuryl-alcohol/dimethyl-

furanone/methyl-

cyclopentanedione/cyclotene 

2 

113.094 113.096 C7H13O
+ heptenone 6 
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(Supplementary file 4.1 continues) 

meas. 

mass 

(Th) 

theor. 

mass 

(Th) 

sum 

formula 

 

tentative 

identification 

 

ref.a 

 

 

114.041 114.037 C5H8NS+ ethyl-thiazole/dimethyl-thiazole 1 

115.072 115.075 C6H11O2
+ 4-methyltetrahydro-2H-pyran-2-one 6 

115.110 115.112 C7H15O
+ hepanal/heptanone 1 

116.072 116.071 C5H10O2N
+ non identified  

117.047 n.a. n.a. non identified  

117.086 117.091 C6H13O2
+ hexanoic acid 2 

119.047 119.049 C8H7O
+ benzofuran 1 

121.061 121.065 C8H9O
+ phenylacetaldehyde 1 

121.096 n.a. n.a. non identified  

122.095 122.096 C8H12N
+ propyl-pyridine 1 

123.040 123.044 C7H7O2
+ 

benzoic acid/hydroxy-

benzaldehyde/furanyl-propenal/ 
1 

123.085 123.080 C8H11O
+ 2-phenylethanol/4-ethylphenol 1 

124.072 124.076 C7H10ON+ 2-acetyl-1-methylpyrrole 2 

124.109 124.112 C8H14N
+ butylpyrrole/methyl-propylpyrrole 1 

125.057 125.060 C7H9O2
+ guaiacol/methyl-benzenediol/furyl acetone 2 

125.099 125.096 C8H13O
+ butylfuran/methyl-propylfuran 1 

125.956 n.a. n.a. non identified  

126.057 n.a. n.a. non identified  

126.092 126.091 C7H12ON+ acteyl-dimethylpyrrole/alkyloxazole 1 

127.031 n.a. n.a. non identified  

127.070 n.a. n.a. non identified  

127.106 n.a. n.a. non identified  

129.040 n.a. n.a. non identified  

129.084 n.a. n.a. non identified  

129.122 n.a. n.a. non identified  

131.066 131.070 C6H11O3
+ 

acetyloxy-butanone/ethanediol 

diacetate/oxopropoxy-propanone/ethyl-

oxobutanoate 

1 

131.098 n.a. n.a. non identified  

135.048 135.044 C8H7O2
+ n.a.  

135.102 135.102 C6H15O3
+ n.a.  

138.050 n.a. n.a. non identified  

138.087 138.091 C8H12ON+ 
dimethyl-pyrrolylethanone/ethyl-

pyrrolylethanone 
1 

138.129 138.128 C9H16N
+ butyl-pyridine 1 

139.072 139.075 C8H11O2
+ 4-ethyl-1,2-benzenediol 2 

139.116 139.112 C9H15O
+ E,E-2,4-nonadienal 1 

140.074 140.071 C7H10O2N
+ dimethyl-oxazolyl-ethanone 1 

141.056 141.055 C7H9O3
+ furfuryl-acetate 2 

143.088 n.a. n.a. non identified  

145.114 n.a. n.a. non identified  

148.069 n.a. n.a. non identified  
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(Supplementary file 4.1 continues) 

meas. 

mass 

(Th) 

theor. 

mass 

(Th) 

sum 

formula 

 

tentative 

identification 

 

ref.a 

 

 

148.069 n.a. n.a. non identified  

149.058 149.060 C9H9O2
+ furfuryl-furan 6 

149.110 149.107 C9H13N2
+ 

ethenyl-ethyl-methylpyrazine 

dihydrocyclopentapyrazines/quinoxalines 
1 

152.067 152.071 C8H10O2N
+ n.a.  

153.046 n.a. n.a. non identified  

153.086 153.091 C9H13O2
+ 4-ethyl-guaiacol 2 

153.124 153.127 C10H17O
+ E,E-2,4-decadienal 1 

155.125 n.a. n.a. non identified  

159.125 n.a. n.a. non identified  

163.123 163.123 C10H15N2
+ dihydrocyclopentapyrazines/quinoxalines 1 

177.149 177.149 C9H21O3
+ non identified  

201.164 n.a. n.a. non identified  

235.174 n.a. n.a. non identified  

239.208 n.a. n.a. non identified  

  (n.a. = non applicable). 

a) references: 1.Flament, I. & Bessière-Thomas, Y. Coffee flavor chemistry (Wiley, 2002); 

2.Yeretzian, C., Jordan, A. & Lindinger, W. Analysing the headspace of coffee by proton-

transfer-reaction mass-spectrometry. Int. J. Mass Spectrom. 223-224, 115–139 (2003); 

3.Lindinger, C. et al. When Machine Tastes Coffee: Instrumental Approach To Predict the 

Sensory Profile of Espresso Coffee. Anal. Chem. 80, 1574–1581 (2008); 4.Buhr, K., van Ruth, 

S. & Delahunty, C. Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass 

Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric 
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 Rapid and direct volatile compound profiling of black and green teas (Camellia 

sinensis) from different countries with PTR-ToF-MS 
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compound profiling of black and green teas (Camellia sinensis) from different countries with 

PTR-ToF-MS. Talanta, 2016.” 

 

Main Highlights 

 101 teas, both leaves and infusions, of different origins have been analysed by PTR-

ToF-MS 

 Black and green teas were separated based on VOC emissions 

 The volatile profiles of teas are highly affected by type and brewing process 

 Multivariate data analyses indicate a possible classification according to geographical 

origin  
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Abstract 

Volatile profiles of 63 black and 38 green teas from different countries were analysed with 

Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) both for tea leaves 

and tea infusion. The headspace volatile fingerprints were collected and the tea classes and 

geographical origins were tracked with pattern recognition techniques. The high mass 

resolution achieved by ToF mass analyser provided determination of sum formula and tentative 

identifications of the mass peaks. The results provided successful separation of the black and 

green teas based on their headspace volatile emissions both from the dry tea leaves and their 

infusions. The volatile fingerprints were then used to build different classification models for 

discrimination of black and green teas according to their geographical origins. Two different 

cross validation methods were applied and their effectiveness for origin discrimination was 

discussed. The classification models showed a separation of black and green teas according to 

geographical origins the errors being mostly between neighbouring countries. 

 

Key words: tea aroma, tea leaf, tea infusion, volatile profiling, headspace volatile 

fingerprinting, geographic origin classification  
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 Introduction 

In tea production, the leaves of the tea plant Camellia sinensis are used as the same starting 

material but the differences in the processing techniques result in a wide range of characteristic 

teas with distinct sensory properties. According to the way of processing, teas are usually 

classified into three big groups based on their fermentation degrees: non-fermented (green and 

white), semi-fermented (oolong) and fully fermented (black tea including pu-erh tea) [1]. There 

are several tea producing countries in the world. The main five tea producing countries are 

China, India, Kenya, Sri Lanka and Turkey [2]. Each country has different regions with their 

own climate and tea processing methods which characterize colour, appearance and flavour of 

the final product. For this reason, most tea products are marketed with the indication of the 

production region for product authentication and valorisation. 

Aroma compounds play an important role for consumer preferences and perception of tea. 

Starting with the fresh tea leaves, which have a greenish and unripe odour, the characteristic 

tea aroma is developed during tea leaves processing. The most investigated volatile compounds 

(VOCs) in tea mainly consist of non-terpenoid and terpenoid components; the former are 

products of fatty acid degradation and provide the fresh green flavour, the latter are mostly 

monoterpene alcohols which give a floral sweet aroma [3, 4].  

Various studies have been conducted in the field of tea aroma research as recently reviewed by 

Yang et al. (2013) [5]. In short, gas chromatography-mass spectrometry (GC-MS) is generally 

used as a reference method in order to identify and quantify VOCs. The odour characteristics 

of volatiles have been detected with aroma dilution and GC-olfactometry; and recently 

electronic nose techniques have been used for fast analysis of tea aroma. These methods have 

allowed analysing the volatile profiles of teas at different fermentation degrees and also to 

classify green, black and oolong teas according to their geographical origins [6-11]. Among 

them, GC-MS has turned out to be the most accurate and effective method for identification, 

separation and quantification of volatile compounds; however it requires capturing volatiles by 

various extraction methods which are generally time consuming and their efficiency depends 

on the characteristics and limitations of the analytical approach (e.g. the absorption and 

desorption of volatiles from a specific material in the case of SPME)[12].  

To link sensory perception of tea with instrumental data, direct and non-destructive 

instrumental analysis of volatiles can be considered to be the most appropriate approach 

because it provides a direct estimation of the VOCs released of from tea and that reach the 
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human olfactory system. In this regard, proton transfer reaction-mass spectrometry, PTR-MS, 

provides an efficient approach as a direct injection, soft chemical ionization method for the 

analysis of VOCs at trace levels. The direct injection method requires no sample pre-treatment 

which allows real-time monitoring of VOCs [13, 14] without making any changes in the volatile 

composition of samples. The technique uses H3O
+ ions for protonation of VOCs with proton 

affinities higher than that of water which can be further analysed by a quadruple or a time-of-

flight (ToF) mass analyser [15]. ToF mass analysers provide high sensitivity that leads to 

detection of volatiles at ppt levels and high mass resolution which allows, in most cases, the 

identification of the sum formula of the observed peaks [13].  

PTR-MS allows collecting the overall mass spectral fingerprints of the samples which can be 

further processed with advanced data analysis tools for successful discrimination and 

classification of the food products [16]. To the best of our knowledge, neither a study has been 

conducted on the analysis of volatile compounds emitted from various tea types by PTR-MS 

nor was this method applied for discrimination of teas from different geographical origins. 

With this study, we aim to apply PTR-ToF-MS, for the first time, for aroma profiling of black 

and green tea samples, both leaves and brew, from different countries and to investigate the 

possibility of origin tracing on the basis of their geographical origins with the aid of 

chemometric tools. 

 Materials and Methods 

5.1.2.1 Tea samples 

In total, 101 commercially available pure tea samples, without addition of flavouring agents, 

from 16 different countries (Table 5.1-1) were purchased from the market; 63 black teas and 

38 green teas. The samples were stored in their original bags at room temperature before 

analysis. Trademarks and producers were kept confidential but the commercial names, origins 

and other characteristics of the tea samples are provided in Supplementary material S1. 
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Table 5.1-1. Distribution of tea samples according to tea types and countries of origin 

 Tea Types 

Country (code) Black Green 

Argentina (ARG) 1 - 

China (CHI) 13 15 

India (IND) 25 4 

Indonesia (INDO) 3 - 

Japan (JAP) - 9 

Kenya (KEN) 2 - 

Korea (KOR) 1 4 

Nepal (NEP) 4 1 

Rwanda (RWA) - 1 

Sri Lanka (SRI) 8 1 

Tanzania (TNZ) 1 1 

Turkey (TUR) 3 - 

Vietnam (VIE) 1 2 

Zimbabwe (ZIM) 1 - 

(Total) 63 38 

 

5.1.2.2 Analysis of tea volatiles by PTR-ToF-MS 

The volatile compounds of dry tea leaves and their infusions were analysed by PTR-ToF-MS 

by direct injection headspace analysis without destructing the original samples. For the analysis 

of dry tea leaves, 500 mg tea leaves were weighted into 22-ml glass vials (Supelco, Bellefonte, 

PA) and 3 replicates were prepared for each tea sample. Tea brewing was performed by 

applying a 3 min fixed infusion time for all tea samples. Deionized hot water (25 ml, 85°C) was 

used for brewing of tea leaves (400 mg) in 40 ml amber vials (Supelco, Bellefonte, PA). The 

liquid infusion was taken right after brewing by a micropipette and 2 ml of aliquots were 

transferred into 22-ml glass vials. Each tea sample was brewed 3 times and each brew was 

analysed in duplicate. 

The headspace measurements were performed by using a commercial PTR-ToF-MS 8000 

instrument (Ionicon Analytik GmbH, Innsbruck, Austria). The instrumental conditions in the 
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drift tube were set as following: drift voltage 550 V, drift temperature 110°C, drift pressure 

2.33 mbar affording an E/N value (electric field strength/gas number density) of 140 Townsend 

(Td, 1 Td = 10-17 V.cm2). All the vials containing samples and blank vials (air for tea leaves 

and hot water for tea brews) were incubated at 37°C for 30 min before headspace analysis. The 

headspace mixture was directly injected into PTR-MS drift tube with a flow rate of 40 sscm via 

a PEEK tube at 110°C. Sample injection was performed with a multipurpose autosampler 

(Gerstel GmbH, Mulheim am Ruhr, Germany). A different sample was analysed every 5 min. 

Each sample was measured for 30 s, at an acquisition rate of one spectrum per second. The 

measurement order was randomized while measuring the volatile emissions of tea leaves and 

tea brews. 

5.1.2.3 Data processing and analysis 

5.1.2.3.1 Treatment of mass spectrometric data 

Data processing of ToF spectra included dead time correction, internal calibration and peak 

extraction steps performed according to a procedure described elsewhere [17] to reach a mass 

accuracy (≥0.001 Th) which is sufficient for sum formula determination. The baseline of the 

mass spectra was removed after averaging the whole measurement and peak detection and peak 

area extraction was performed by using modified Gaussian to fit the data [18]. Whenever a peak 

was detected, the volatile concentrations were calculated directly via the amount of detected 

ions in ppbv (part per billion by volume) levels according to the formulas described by 

Lindinger et al. (1998) [13] by assuming a constant reaction rate coefficient (kR=2×10−9 cm3/s). 

For H3O
+ as a primary ion, this introduces a systematic error for the absolute concentration for 

each compound that is in most cases below 30% and can be accounted for if the actual rate 

constant is available [19]. 

5.1.2.3.2 Selection of mass peaks 

The direct injection headspace analysis of tea (leaves and infusion) samples resulted in 

identifying 455 mass peaks in the range 15-300 m/z. After eliminating the interfering ions (O2
+, 

NO+ and water clusters) and their isotopologues, 438 mass peaks remained for further analysis. 

The signals belonging to blank vials were subtracted from the whole data set (air from tea leaf 

emissions, water from infusion emissions). A concentration threshold of 0.1 ppb was set for 

further reduction of noise in the data matrices. After this step 257 mass peaks x 303 (i.e. 101 

samples, three biological replicates) data points were left to build the matrix containing tea leaf 
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emissions; 162 mass peaks x 606 (i.e. 101 samples, three infusions, two analytical replicates) 

data points were left for tea infusion data matrix. These final data matrices were used for 

univariate and multivariate data analysis methods. 

After mass peak selection and extraction, tentative peak identification was performed by using 

an in-house library developed by the authors where the peak annotations were done 

automatically with the scripts developed under R programming language [20].   

5.1.2.4 Statistical analyses 

The significant differences between tea types were calculated using ANOVA (99% confidence 

level) and the pairwise comparison was performed with Tukey’s test to highlight these 

differences with letter annotations. 

As a first step, the final data matrices were subjected to principal component analysis (PCA). 

Secondly, Random Forests (RF), Penalized Discriminant Analysis (PDA), Support Vector 

Machines (SVM) and Discriminant Partial Least Squares (dPLS) classification methods were 

applied for sample discrimination [21] and their classification power was compared. 

Two types of validation methods were tested for each classification method: a simple 6-fold 

cross validation and Leave-Group-Out (LGO) cross-validation. The six-fold cross-validation 

was performed by randomly dividing the whole data set into 6 folds. One of the folds was 

removed at each time and used as a test set where the rest of the data (the train set) was used to 

build the discriminant method and predict the origins of samples. Using this cross validation 

method, analytical or biological replicates of the same tea sample can be at the same time in 

both the train and test sets. With the highly flexible classification methods used in this work, 

this can easily leads to overfitting the data and to produce biased estimates of classification 

errors. This effect was verified in preliminary experiments (not shown) and the method was 

discarded. In the case of the more elaborated LGO cross-validation, the analytical and 

biological replicates of each tea sample were considered as a group when discriminating tea 

types and geographical origin. Each time, one group was removed from the full dataset and 

used as a test set. Mean classification errors and confusion matrices were used to evaluate the 

performance of each classification method. All the multivariate data analyses were performed 

by using the scripts and packages developed under R programming language [20]. 
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 Results and Discussion 

5.1.3.1 Volatile profiling of black and green teas and discrimination based on tea type 

One-way ANOVA of the mass peaks extracted in black and green tea headspace, showed 135 

mass peaks significantly different (p<0.01 with Bonferroni correction) between emissions of 

black and green tea leaves and 125 mass peaks between their infusions. Among the mass peaks 

extracted, 62 of them were tentatively identified as one or more volatile compounds based on 

their presence in dry tea leaves and brews reported in literature. The details of the tentatively 

identified mass peaks are shown in Table 5.1-2 with their average concentrations in black and 

green tea leaves and infusions.  

The leaves of different tea types showed greater volatile emissions than that of their infusions. 

Various terpenes and their fragments dominated the volatile emission of tea leaves, followed 

by esters/acids and aldehydes/ketones. In particular, green tea leaves emitted more terpenes and 

sulphur compounds than black teas. The most abundant volatile compounds in the headspace 

of green tea infusions were sulphur compounds, aldehydes/ketones and terpenes. The 

headspace of black tea infusions contained aldehydes/ketones the highest; sulphur compounds, 

terpenes and alcohols were other most abundant chemical groups.  

Some distinct differences and similarities can be pointed out between black and green teas: the 

most abundant sulphur compound detected in both tea infusions was tentatively identified as 

dimethyl sulphide. It has been reported that this sulphur compound improves the flavour of 

green teas harvested in spring [3]. The information about the season when the green teas were 

picked was not available for all the tea samples but for some of the black teas. Interestingly, we 

observed that the black teas that had the highest dimethyl sulphide contents were indeed picked 

during spring (e.g. sample no 102, 110, and 116 in Supplementary file 1).
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Table 5.1-2. The average concentrations (ppb) of tentatively identified mass peaks in the headspace of black and green tea leaves and infusions. 

Peaks were selected on the basis of one-way ANOVA and the relative p-values are listed in the right columns. 

     
Average concentration ± 

standart deviation (ppbv) 
p-value 

Average concentration ± 

standart deviation (ppbv) 
p-value Reference 

Measured  

mass 

The.  

mass 
Sum formula Chemical class Tentative identification 

Black tea  

leaves 

Green tea  

leaves 
 

Black tea 

infusion 

Green tea 

infusion 
  

33.0336 33.033 CH4OH+ Alcohols Methanol 11756±3992 9555±3826 <0.001 170±82 120±63 <0.001 [28] 

45.0333 45.034 C2H4OH+ Aldehydes Acetaldehyde 804±608 265±260 <0.001 416±158 108±58 <0.001 [28] 

47.0491 47.049 C2H5OH+ Alcohols Ethanol 138±152 110±360 0.345 6±14 11±18 <0.001 [28] 

49.0110 49.011 CH4SH+ Sulphur compounds Methanetiol 0.9±0.5 0.5±0.3 <0.001 0.4±0.5 1.2±1.5 <0.001 [28] 
59.0488 59.049 C3H6OH+ Aldeydes/ketones Propanal/acetone 340±479 265±784 0.293 115±99 92±85 0.002 [28] 

61.0280 61.028 C2H4O2H
+ Esters and acids Acetic acid 804±605 390±848 <0.001 2.3±4.8 6.34±17 <0.001 [29] 

63.0260 63.026 C2H6SH+ Sulphur compounds Dimethylsulfide 10±8 12±12 0.191 264±289 275±299 0.675 [28] 
69.0333 69.034 C4H4OH+ Furans Furan fragment 7.0±7.4 4.7±6.1 0.004 7.2±7.8 2.0±3.0 <0.001 [30] 

69.0697 69.070 C5H8H
+ Terpene fragment Isoprene 183±145 220±217 0.067 145±76 35±21 <0.001 n.a. 

71.0489 71.049 C4H6OH+ Aldehydes Butenal 19±17 12±8 <0.001 4.6±4.0 2.2±2.3 <0.001 [31] 
73.0646 73.065 C4H8OH+ Aldehydes Methylpropanal 206±143 195±565 0.811 292±159 43±26 <0.001 [29] 

75.0438 75.044 C3H6O2H
+ Esters and acids Propionic acid 96±103 42±42 <0.001 9.7±6.1 4.5±2.6 <0.001 [28] 

79.0536 79.054 C6H6H
+ Aromatic hydrocarbons Benzene 40±18 26±22 <0.001 5.3±7.3 4.1±7.7 0.043 [29] 

81.0697 81.070 C6H8H
+ Terpene fragment 

Cyclohexadiene 

(Terpene fragment) 
612±905 423±461 0.035 29±24 9±12 <0.001 [28] 

83.0854 83.086 C6H10H
+ Terpene fragment 

Cyclohexene  
(Terpene fragment) 

175±166 60±70 <0.001 71±63 19±23 <0.001 [28] 

85.0646 85.065 C5H8OH+ Aldehydes/Ketones Pentenal/pentenone 32±33 37±37 0.229 12±9 7.5±7.6 <0.001 [24, 29, 32] 
87.0431 87.044 C4H6O2H

+ Ketones Butanedione 19±16 6.4±4.6 <0.001 2.7±3.1 1.3±0.7 <0.001 [29] 

87.0802 87.080 C5H10OH+ Alcohols Pentenol 55±37 62±157 0.549 165±89 23±14 <0.001 [24, 29] 

91.0559 91.058 C4H10SH+ Sulphur compounds 
Diethylsulphide/butanethiol 
(fragment) 

7.9±3.6 4.4±2.7 <0.001 0.9±0.9 0.3±0.5 <0.001 [33] 

93.0365 93.037 C3H8OSH+ Sulphur compounds Methylsulfanylethanol 8.6±3.7 5.6±2.6 <0.001 1.7±1.2 0.4±0.6 <0.001 n.a. 

93.0698 93.070 C7H8H
+ Aromatic hydrocarbons Toluene 55±88 34±34 0.014 5.9±7.5 2.2±2.3 <0.001 [28, 29, 32] 

95.0173 95.016 C2H6O2SH+ Sulphur compounds 
Dimethyl sulfone 

(methylsulfonylmethane) 
2.4±0.9 1.3±0.7 <0.001 0.2±0.3 n.d. <0.001 n.a. 

95.0478 95.049 C6H6OH+ Phenols Phenol 6.5±4.8 3.8±2.1 <0.001 0.3±0.4 0.4±0.4 0.188 [34] 

95.0854 95.086 C7H10H
+ Terpenes 

Methylcyclohexadiene 

(α-terpinene fragment) 
87±121 64±61 0.051 4.2±3.2 2.6±2.2 <0.001 [33] 

96.0814 96.081 C6H9NH+ Heterocyclic compounds Ethylpyrrole 7.1±8.2 5.9±4.4 0.144 2.1±1.8 2.5±1.6 0.002 [32] 
97.0282 97.028 C5H4O2H

+ Aldehydes Furfural 13±12 2.9±1.9 <0.001 1.8±2.7 0.4±0.7 <0.001 [32, 33] 

97.0647 97.065 C6H8OH+ Aldehydes/Furans Hexadienal/ethylfuran 19±23 19±24 0.797 25±26 8.3±8.6 <0.001 [24, 32] 

99.0803 99.080 C6H10OH+ Aldehydes Hexenal/methylpentenone 19±16 15±9 0.009 21±22 4.6±2.8 <0.001 [24, 29] 
101.0960 101.096 C6H12OH+ Alcohols Hexenol 24±28 10±13 <0.001 13±11 3.7±4.5 <0.001 [32, 33] 

103.0755 103.075 C5H10O2H
+ Esters and acids Methylbutanoic acid 12±9 11±11 0.414 1.1±1.4 0.7±1.1 0.002 [23] 

105.0343 105.037 C4H8OSH+ Sulphur compounds Methional 2.0±0.8 0.4±0.4 <0.001 0.2±0.2 n.d. <0.001 [30] 
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(Table 5.1-2 continues) 

     
Average concentration ± 

standart deviation (ppbv) 
p-value 

Average concentration ± 

standart deviation (ppbv) 
p-value Reference 

Measured  

mass 

The.  

mass 
Sum formula Chemical class Tentative identification 

Black tea  

leaves 

Green tea  

leaves 
 

Black tea 

infusion 

Green tea 

infusion 
  

105.0689 105.070 C8H8H
+ Aromatic hydrocarbons Styrene/ethylbenzene/vinylbenzene 13±5 1.4±0.8 <0.001 1.0±0.7 0.1±0.3 <0.001 [9] 

107.0488 107.049 C7H6OH+ Aldehydes Benzaldehyde 33±15 13±9 <0.001 9.4±5.9 1.8±1.8 <0.001 [24, 29, 33, 35] 
107.0855 107.086 C8H10H

+ Aromatic hydrocarbons Xylene/ethylbenzene 58±43 43±37 0.002 9 ±16 8±15 0.398 [24, 35] 

109.0658 109.065 C7H8OH+ Phenols Benzyl alcohol (cresol) 3.2±1.9 1.8±1.3 <0.001 0.5±0.3 0.2±0.2 <0.001 [24, 29, 33] 

109.1013 109.101 C8H12H
+ Hydrocarbons Cyclooctadiene 25±29 21±17 0.154 4.0±3.5 2.3±2.2 <0.001 [29] 

111.0466 111.044 C6H6O2H
+ Furans Acetyl furan 3.8±3.5 2.2±1.6 <0.001 0.3±0.7 0.2±0.4 0.028 [24, 33] 

111.0805 111.080 C7H10OH+ Aldehydes Heptadienal 17±20 20±24 0.213 7.3±7.2 6.4±7.4 0.120 [24, 36] 

113.0960 113.096 C7H12OH+ Aldehydes Heptenal 3.3±2.5 2.6±2.2 0.010 1.6±1.3 0.7±0.7 <0.001 [24, 29, 32] 
115.0738 115.074 C6H10O2H

+ Ketones Caprolactone 2.5±1.7 1.2±1.0 <0.001 0.2±0.1 0.1±0.1 <0.001 [29] 

115.1119 115.112 C7H14OH+ Ketones Heptanone 10±10 5.5±5.9 <0.001 3.6±2.9 1.2±1.1 <0.001 [28] 

121.0291 121.028 C7H4O2H
+ Terpenes cyclohexadienone (fragment) 0.8±0.4 n.d. <0.001 0.2±0.3 n.d. <0.001 [24, 29, 33] 

121.0648 121.065 C8H8OH+ Aldehydes Methylbenzaldehyde - coumaran 2.5±1.2 1.1±0.6 <0.001 2.3±1.3 0.5±0.6 <0.001 [24, 32, 35] 

121.1004 121.101 C9H12H
+ Aromatic hydrocarbons Methylethylbenzene 8.7±6.9 7.6±6.1 0.134 0.8±0.4 0.5±0.5 <0.001 [29] 

123.1170 123.117 C9H14H
+ Terpenes Santene 5.6±2.3 5.9±2.3 0.242 1.2±0.5 0.7±0.4 <0.001 n.a. 

127.1116 127.112 C8H14OH+ Ketones Octenone/methylheptenone 9±11 7.3±6.2 0.030 2.6±2.3 1.2±1.1 <0.001 [24, 29] 

129.0901 129.091 C7H12O2H
+ Esters and acids Hexenyl formate 1.7±1.1 0.8±1.1 <0.001 0.4±0.3 n.d. <0.001 [32] 

129.1276 129.127 C8H16OH+ Ketones Octanone/Dimethylcyclohexanol 2.9±2.7 2.1±1.8 0.002 1.2±1.1 0.4±0.3 <0.001 [32, 33] 
131.1069 131.107 C7H14O2H

+ Esters and acids Heptanoic acid/hexyl formate 9.9±9.4 8.2±11.0 0.138 2.3±2.1 1.1±1.7 <0.001 [24, 32, 33] 

135.1170 135.117 C10H14H
+ Aromatic hydrocarbons Methylpropylbenzene 12±14 6.2±4.9 <0.001 1.0±1.0 0.4±0.4 <0.001 [29] 

136.1212 136.112 C9H13NH+ Heterocyclic compounds Butyl-pyridine/ethyl-propylpyridine 3.7±4.9 2.3±2.3 0.005 0.2±0.2 n.d. <0.001 n.a. 
137.1321 137.133 C10H16H

+ Terpenes Various monoterpenes 368±548 252±277 0.033 13±14 5.6±7.5 <0.001 [29, 32, 33, 36] 

139.1124 139.112 C9H14OH+ Aldehydes Nonadienal 27±16 19±12 <0.001 2.8±1.5 1.3±0.9 <0.001 [29, 33, 36] 

141.1271 141.127 C9H16OH+ Aldehydes Nonenal 3.2±1.5 2.5±1.2 <0.001 0.9±0.6 0.5±0.3 <0.001 [29, 36] 
143.1435 143.143 C9H18OH+ Ketones/Aldehydes Nonanone/nonanal 0.9±0.9 0.6±0.4 0.002 0.8±0.8 0.3±0.3 <0.001 [24, 29] 

151.1114 151.112 C10H14OH+ Terpenes Carvacrol/ safranal 1.0±0.4 0.9±0.5 0.365 0.3±0.13 0.2±0.1 <0.001 [24, 33, 36] 

153.0550 153.055 C8H8O3H
+ Aldehydes Vanillin, methyl salicylate 6.1±4.0 n.d <0.001 4.2±3.4 n.d. <0.001 [33, 36, 37] 

153.1272 153.127 C10H16OH+ Aldehydes Decadienal 29±26 4.4±2.9 <0.001 2.9±1.9 0.6±0.5 <0.001 [36] 

155.1430 155.143 C10H18OH+ Alcohols Linalool/ geraniol 2.1±1.5 1.1±1.5 <0.001 0.6±0.4 0.2±0.3 <0.001 [29, 33, 35, 36] 

171.1332 171.138 C10H18O2H
+ Terpenes Linalool oxide 2.9±2.6 0.2±0.1 <0.001 0.2±0.2 n.d. <0.001 [24, 29, 36] 

193.1587 193.159 C13H20OH+ Terpenes Β-ionone 0.4±0.2 0.3±0.2 0.141 0.2±0.2 0.2±0.2 0.626 [29, 33, 35, 36] 

195.0879 195.088 C8H10N4O2H
+ Ketones Caffeine n.d. 0.2±0.1 <0.001 0.2±0.1 n.d. <0.001 [29] 

 

n.a.: Not available, n.d. : Not detected 
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We observed that the percentage of total monoterpenes and their fragments in the headspace of 

black tea infusions (~20%) was higher than the amount emitted from green tea infusion (~12%). 

Terpenes, especially monoterpenes, are responsible for the characteristic floral odour of tea 

[22]. Important aroma compounds derived from breakdown of carotenoids during black tea 

processing like linalool, geraniol, linalool oxide and ionone [3] were also higher in the 

headspace of black teas and their infusions than in green teas. Most of the monoterpenes and 

derived compounds were significantly lost during tea brewing; in particular linalool oxide (m/z 

171.133) in green tea infusions. 

Vanillin was previously reported to be one of the compounds of highest flavour dilution factor 

(FD) in black tea infusion [23]. In our study, the peak corresponding to vanillin was negligible 

in green tea infusions, but clearly observable in black teas with little effect of brewing.  

When PCA was performed, the first three principal components provided a separation of black 

teas from green teas based on the volatile emissions from dry leaves and infusions (Figure 

5.1-1a, b).  

 

Figure 5.1-1. 3D PCA score plots of black and green tea leaves (a) and tea infusions (b). Black 

and green colors represent black and green teas, respectively. 

The first PCs explain 53.2 and 54.7% variances for the dry tea leaves and infusions, 

respectively. This reflects the high variance between black and green tea volatile emissions as 

well as within each tea type (black or green) depending on the different production methods 

and origins. The release mechanisms of volatiles might be influenced by matrix characteristics 

(i.e. leave shape and size) as teas can be produced in various shapes. For example, the green 
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teas can be shaped like needle, twisted, flat, round, compressed shape or even as ground powder 

as a results of fixing and drying methods. Besides, leaf disruption also occurs in cutting and 

rolling steps of black tea production that leads to grading of black teas according to leaf size 

[22]. 

Figure 5.1-2a and Figure 5.1-2b show score plots of the first two PCs of tea leaves and tea 

infusions (loadings of the first two components of tea leaves and infusions are provided in 

Supplementary file S2). According to these Figure 5.1-2a and Figure 5.1-2b, some black tea 

samples with broken leaves (sample numbers 1, 10, 30, 43, 112, 146-148) were closely located 

and separated from others. These samples were characterized by the mass peaks at m/z 59.049, 

85.065, 97.065, 99.081, 111.081, 113.096, 115.074, 115.112, 139.113, 141.127 and 143.144 

which were mostly attributed to aldehydes and ketones; mass peaks at m/z 101.096 and 87.080 

to alcohols and mass peak at m/z 169.126 to geranic acid in the headspace of dry tea leaves. In 

addition, mass peaks; m/z 71.049 (butenal), 77.058 (propandiol), 129.099 (hexenyl formate), 

127.112 (methylheptenone) had high loadings in the headspace of tea infusions with broken 

leaf shape. Broken and smashed tea may release more catechins than firmly pressed tea leaves 

and they may undergo heavier oxidation [24]. Broken leaves also provide a larger surface area 

during fermentation favouring enzymatic (i.e. glycosidases, fatty acid hydroperoxide lyase) 

activity for production of volatile aldehydes [25]. These findings indicate the importance of leaf 

shape on volatile compound generation and their extraction during the infusion process.  

PCA showed a relatively good separation of black and green teas by using three principal 

components (Figure 5.1-1a-b, Figure 5.1-2a-b). To be able to assess the performance of 

discrimination, we applied 4 classification models by using two different cross validation 

methods for discrimination of black and green teas. According to LGO cross validation the 

average errors for classification black and green tea leaves were 2.6, 3.9, 1.3 and 3.6 %; the 

average errors for classification black and green tea infusions were 0.6, 0.2, 0.0 and 0.5 % 

obtained by RF, PDA, SVM and dPLS classification models, respectively. In general, all the 

classification techniques showed very good classification efficiency with an average error rate 

less than 4.0% for differentiating black and green tea volatile profiles emitted from leaves and 

infusions. In all cases, the classification errors were lower for tea infusions than tea leaves. 
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Figure 5.1-2-a. 2D PCA score plots of black and green tea leaves and infusions. Black and 

green colours represent black and green teas, respectively. Due to the good repeatability of the 

analytical replicates, PCA was built via averaging the replicates. This improved the 

visualization of each sample. The numbers on the points indicate the sample codes given in 

Supplementary file S1. 
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Figure 5.1-2-b. 2D PCA score plots of black and green tea leaves and infusions. Black and 

green colours represent black and green teas, respectively. Due to the good repeatability of the 

analytical replicates, PCA was built via averaging the replicates. This improved the 

visualization of each sample. The numbers on the points indicate the sample codes given in 

Supplementary file S1. 

 

 

 



Chapter 5. Other projects 

160 

 

5.1.3.2 Geographical origin discrimination with supervised classification methods 

The results described above highlighted significant differences between black and green tea 

aroma profiles and successful separation of large number of tea samples according to tea type. 

However it would more relevant to demonstrate that the volatile composition of tea might be 

related to its geographical origin, as well. For this reason, we applied supervised classification 

methods on the black and green tea volatile profiles in order to differentiate them according to 

their origins.  

To get a more representative data set for classification studies, we selected origins (countries) 

represented by at least 4 different teas. Black teas from China, India, Sri Lanka and Nepal (50 

samples) were included for classification of black teas; China, India, Japan and Korea (32 

samples) were selected for classification of green teas. Each classification algorithm ended up 

with an average classification error and a confusion matrix where the original tea origins were 

compared with the origins assigned by the classification method. The classification methods 

were applied on normalized volatile concentrations with LGO cross validation tests. The 

normalized concentrations were obtained by normalizing each mass spectrum to unit are as 

described in [26]. 

The classification performances obtained by using emissions of the tea leaves and tea infusions 

were similar and they provided relatively good separations which were between 30-50%. Due 

to the fact that, the tea infusions are the final consumed products, in the following discussion, 

we will focus on the classification models tested for black and green tea infusions. 

Table 5.1-3 shows confusion matrices and the performances of the classification models 

applied on black and green tea infusions. Among the 50 black teas from 4 countries tested, the 

lowest prediction error was around 32% obtained by RF; the same method also provided the 

highest classification performance for green tea infusions prepared by 32 samples from 4 

countries. Among the black teas, teas from Sri Lanka were classified with lowest errors 

followed by India, China and Nepal. In the case of green teas, Chinese teas had the lowest error 

followed by Japan, India and Korea. The confused tea samples were mostly from the 

neighbouring countries. For instance, Korean green teas were confused with Chinese and 

Japanese green teas but not with Indian green teas with RF method. This finding is not 

surprising because political borders are not likely to affect tea quality while climate, growing 

conditions, picking method and processing traditions [3, 22, 27] are the key factors for 
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differentiating tea classes and their characteristics. Unfortunately we were not able to find better 

geographical indications for many samples.  

Similar cases have been reported in literature with various classification performances when 

different tea samples were discriminated according to geographical origin based on their 

volatile profiles. Togari, Kobayashi and Aishima (1995) [10] performed the first study on the 

geographical origin determination of different tea categories based on their volatile profiles. 

The study included GC-MS analysis of 44 tea samples where tea volatiles were extracted by 

simultaneous dilution and extraction (SDE) method by mixing the tea samples with hot water. 

Black teas from India (8), Sri Lanka (4) and Japan (1) were successfully classified by supervised 

pattern recognition techniques, however neither oolong (China (10) and Taiwan (4)) nor green 

teas (15, from different regions of Japan) could be classified according to origin. Kovács et al., 

(2010) [8] applied electronic nose technology with electronic tongue and sensory assessment 

for geographical origin discrimination of five Sri Lankan teas. When electronic tongue 

responses of tea infusion headspace was treated with linear discriminant analysis, 100% correct 

classification was obtained for middle and low elevation regions (n=3) however two samples 

from high elevation showed overlapping. Ye, Zhang and Gu (2011) [11] analysed volatile 

profiles of 23 green tea samples produced in two different regions of China with SPME/GC-

MS via extracting the volatiles from tea powder. They could classify the production areas of 

tea samples. Lee et al. (2013) [9] analysed 24 green tea samples from 8 different countries 

(China (7), India (1), Japan (6), Kenya (2), Korea (4), Sri Lanka (2), Tanzania (1) and Vietnam 

(1)) with GC-SPME method nevertheless no relationship has been found between country of 

origin and aroma where specific information about the samples other than origin was not known 

for the tested tea samples. In another study, 38 tea samples from China (2 oolong, 2 green, 3 

black), Japan (5 green, 3 black, 2 oolong), India (5 black), Sri-Lanka (5 black), and Chinese 

Taipei (6 oolong, 2 black) were analysed by GC-MS and they were classified according to their 

origins by clustering methods [6]. Lastly, four varieties of oolong teas were analysed by 

olfaction and gustation sensing systems, the samples were classified according to producing 

regions by using the information each sensing system provided. When all information was 

merged with data fusion techniques, the discrimination power increased compared to individual 

classification performances suggesting the possibility to use these systems with multivariate 

methods for discriminating and classifying tea samples [7].    
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When our results and the literature were considered together, different tea types from various 

countries can be discriminated to some extent according to geographical origin based on their 

volatile emissions from dry tea leaves or tea infusions. Moreover fermented tea products are 

better classified than non-fermented and semi-fermented teas which was also observed from 

our results when we compare the classification efficiencies of black and green teas.  

When black tea infusions from India (Assam (9) and Darjeeling (12)), China (Anhui (3) and 

Yunnan (7)), Sri Lanka (all country) and Nepal (all country) were classified according to tea 

producing regions a significant improvement on the classification performance was observed 

providing 15% average error rate (confusion matrices not shown). The results indicated 4 

classes: China Anhui (class 1); Sri Lanka and India Assam (class 2) Nepal and Darjeeling (class 

3) and China Yunnan (class 4) by showing the geographically close regions in the same group. 

Overall, these findings point out that the regions might be better differentiators instead of the 

country and the regions closely located to each other share more similar properties and they are 

likely to create a group. Besides, there might be other factors affecting the volatile composition 

of different types of tea in addition to geographical location such as the age of the tea plant, 

plucking (fine or coarse), plucking season, tea processing, packaging of tea, conditions during 

storage and  storage time, which should be taken into consideration.  
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Table 5.1-3. Confusion matrices showing the origin separation of black and green tea infusions for leave-group-out cross validation obtained by 

random forests (RF), penalized discriminant analysis (PDA), support vector machine (SVM) and discriminant partial least squares (dPLS) 

classification models 

Classification 

method Black tea 
Average Error 

rate (%) Green tea 
Average Error 

rate (%) 

RF  Chi Ind Sri Nep   Chi Ind Jap Kor  

 Chi 58 19 0 1 

32.4 

Chi 74 6 4 0 

39.6 
 Ind 9 146 0 1 Ind 15 0 9 0 

 Sri 0 24 0 0 Jap 10 3 42 5 

 Nep 12 35 0 1 Kor 16 0 8 0 

             

PDA  Chi Ind Sri Nep   Chi Ind Jap Kor  

 Chi 55 11 4 8 

36.5 

Chi 69 2 10 3 

45.3 
 Ind 2 108 30 16 Ind 5 5 14 0 

 Sri 0 19 5 0 Jap 17 0 28 15 

 Nep 0 24 0 24 Kor 5 0 16 3 

             

SVM  Chi Ind Sri Nep   Chi Ind Jap Kor  

 Chi 57 16 1 4 

37.5 

Chi 62 5 14 3 

42.2 
 Ind 4 105 22 35 Ind 7 14 3 0 

 Sri 0 18 6 0 Jap 17 0 31 12 

 Nep 1 26 0 21 Kor 8 0 12 4 

             

dPLS  Chi Ind Sri Nep   Chi Ind Jap Kor  

 Chi 44 12 7 15 

43.3 

Chi 67 0 12 5 

48.4 
 Ind 2 101 29 24 Ind 7 4 13 0 

 Sri 0 19 5 0 Jap 17 0 24 19 

 Nep 0 27 0 21 Kor 6 0 14 4 
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 Conclusions 

In this study, for the first time, the volatile profiles of black and green teas from 12 different 

geographical origins were analysed by PTR-ToF-MS. The volatile compounds of a large 

sample set (101 samples, with replicates, both leaves and infusions) were analysed by direct 

injection of the headspace without altering the original tea components and destructing the 

original sample. The high mass resolution and sensitivity achieved by the mass analyser enabled 

annotation of sum formulas to the detected mass peaks. Tentative identifications lead defining 

important aroma compounds in black and green tea volatile emissions and pointed out the 

differences among them.  

Black and green teas were correctly classified by the volatile compounds emitted from tea 

leaves and their infusions independent from their geographical origins. Classification models 

were built to predict the geographical origins of black and green teas. Results provided a good 

separation of tea origins; however countries geographically close to each other were most likely 

to be confused. Preliminary analysis indicated that a better discrimination of tea samples might 

have been achieved if teas were classified according to production region rather than just 

country of origin. This was not feasible here, since information about production region was 

available only for a limited number of samples.  

Our results showed that PTR-ToF-MS fingerprints combined with multivariate statistical 

techniques provided successful evaluation of tea products. Considering the very promising 

results obtained so far, in discriminating for processing and country, it seems highly warranted 

to collect significantly more detailed information about the individual tea samples, for future 

studies. This may include e.g. information on production region, producer, harvesting season, 

post-harvest treatment and age of the product. It may also be significant to investigate the effect 

of tea leave shape and infusion conditions. Finally, it is also important to direct our interest 

towards the consumer, by analysing the volatile compounds release from the nosespace and 

analysed by PTR-ToF-MS, when a tea product is being consumed, and conducting sensory 

profiling as well. Combining such a large spectrum of different data sets might currently seem 

to be a veritably challenging task; we believe this will need to be approached in steps towards 

a more complete understanding of the factors affecting tea aroma profiles.  
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Supplementary file 5.1 

Sample 

code Commercial Tea Name Country Region Tea type Notes 

1 Argentina OP Flor De Oro Argentina Unknown Black  

20 Golden Monkey King China Hunan Black  

21 Golden Spiral China Yunnan Black  

24 Keemun Congou China Anhui Black  

25 Keemun Mao Feng China Anhui Black  

26 Ming Orchidee China Yunnan Black  

35 Sichuan China Sichuan Black  

39 Wuyi Gongfu China Unknown Black  

40 Yunnan China Yunnan Black  

41 Yunnan Celeste China Yunnan Black  

42 Yunnan Golden Bud China Yunnan Black  

114 Keemun Congou China Anhui Black  

125 Yunnan Flowery Orange Pekoe China Yunnan Black  

126 Yunnan Gold China Yunnan Black  

2 Assam Bijleejan India Assam Black Second flush, with golden tips 

3 Assam Birjhora India Assam Bongaigoan District Black Lower Assam region 

4 Assam Borengajuli India Assam (Naangaldia) Black  

5 Assam Bukhial India Assam (Golaghat) Black  

6 Assam Dirial India Assam (Dibrugahr) Black  

15 Darjeeling Gielle India Darjeeling Teesta Valley Black  

16 Darjeeling Lingia India Darjeeling (East Valley) Black  

18 Darjeeling Pussimbing India Darjeeling (East Valley) Black  

19 Darjeeling Tukdah India Darjeeling (East Valley) Black  

30 Nilgiri Korakundah India Nilgiri Black  

36 Sikkim Temi India Sikkim Black  

101 Ambootia Autumnpluck India Darjeeling (Ambootia) Black  

102 Ambootia Springpluck India Darjeeling (Ambootia) Black  

103 Ambootia Rainpluck India Darjeeling (Ambootia) Black  

104 Assam Goudblad Summerpluck India Assam Black  

107 Darjeeling Summerpluck India Darjeeling Black  

108 Dunsandle Jungle India Nilgiri (Dunsandle) Black  
109 Happy Valley Autumnpluck India Darjeeling (Happy Valley) Black 
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(Supplementary file 5.1 continues) 

Sample 

code Commercial Tea Name Country Region Tea type Notes 

110 Happy Valley Springpluck India Darjeeling (Happy Valley) Black  

111 Happy Valley Summerpluck India Darjeeling (Happy Valley) Black  

116 Margareth’s Hope Springpluck India Darjeeling (Margareth's Hope) Black  

117 Mokalbari Summerpluck India Assam (Mokalbari) Black  

120 Sewpur Broken Orange Pekoe India Assam (Sewpur) Black  

121 Sewpur Summerpluck India Assam (Sewpur) Black  

122 Sikkim Summerpluck India Sikkim Black  

22 Java Malabar Indonesia Java Black  

23 Java Santosa Indonesia Java Black  

113 Java Kertasari Indonesia Java Black  

56 Kenia Kaimosi Kenya Ndanai (Rift Valley) Black  

115 Kenya Flowery Orange Pekoe Kenya Unknown Black  

112 Jangwon Korea Jeju (South Korea) Black  

27 Nepal Antu Valley Nepal Unknown Black  

28 Nepal Himalaya Tips Nepal Unknown Black  

29 Nepal Maloom Nepal Unknown Black  

118 Nepal Tippy Orange Pekoe Nepal Unknown Black  

10 Ceylon Dimbulla Sri Lanka Dimbulla (Western Highlands) Black Orange Pekoe, whole leaf  

12 Ceylon Kenilworth Sri Lanka Dimbulla (Western Highlands) Black Orange Pekoe, whole leaf  

31 Nuwara Eliya Sri Lanka Nuwara Eliya (Central Highlands) Black  

105 Balangoda Orange Pekoe Sri Lanka Ratnapura (Balangoda) Black  

106 Blackwood Orange Pekoe Sri Lanka Uva (Blackwood) Black  

119 Ruhuna Orange Pekoe Sri Lanka Ruhuna Black  

123 Tippy Orange Pekoe Sri Lanka Unknown Black  

124 Uva Highlands Pekoe Sri Lanka Uva Black  

37 Tanzania Luponde Tanzania Njobe Black  

146 Rize Turist Turkey Rize Black  

147 Filiz Turkey Rize Black  

148 Çay Çiçeği Turkey Rize Black  

38 Vietnam O.P. Vietnam Unknown Black  

43 Zimbabwe Wamba Zimbabwe Honde Valley Black  
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(Supplementary file 5.1 continues) 

Sample 

code Commercial Tea Name Country Region Tea type Notes 

46 Chun Mee China Unknown Green  

50 Green Monkey China Fujian (Wuyi Mountains) Green  

51 Gui Pian China Anhui Green  

52 Gunpowder China Zhejiang Green  

55 Hou Kui China Hou Gang City (Yellow Mountains) Green  

62 Long Ying China Zhejiang (Hangzou) (Longying Village) Green  

63 Lu Ching China Zhejiang (Hangzou) Green  

66 Pi Lo Chun Bio 1 China Jiangsu (Suzhou)  Green  

79 Yunnan Green China Yunnan Green  

129 Dragonwell Xi Hu Lung Ching China Zhejian Green  

131 Springdew Mao Feng China Anhui (Yellow Mountains) Green  

134 Sencha China Unknown Green  

135 Sencha Biologic China Unknown Green bio-organic 

136 Snow Bud Lu Xue Ya China Fujian Green  

65 Nilgiri Chamraj  India Nilgiri Green  

127 Ambootia Green India Darjeeling (Ambootia) Green  

133 Nilgiri Green India Nilgiri Green  

143 Assan Jamguri India Assam Green  

44 Bancha Japan Kyushu Green  

45 Bancha Arashiyama Japan Kyoto Green  

48 Gabalong Japan Unknown Green  

53 Gyokuro Asahi Japan Yame Green  

61 Kukicha Japan Shizuoka Green  

69 Sencha Makinohara Japan Shizuoka Green  

71 Sencha Shimizu Japan Shizuoka Green  

72 Sencha Tokiwa Japan Unknown Green  

73 Sencha Uji Japan Kyoto Green  

75 Tamaryokucha Japan Kyushu Green  

58 Korea Jeju Korea Jeju Island Green  

59 Korea Jeoncha Korea Jeju Island Green  

60 Korea Sejak Korea Jeju Island Green  

 



Chapter 5. Other projects 

171 

 

(Supplementary file 5.1 continues) 

Sample 

code Commercial Tea Name Country Region Tea type Notes 

132 Nepal Green Nepal Unknown Green  

67 Rwanda Green Rwanda Unknown Green  

128 Blackwood Green Sri Lanka Uva Green  

76 Tanzania Luponde Green Tanzania Njobe Green  

77 Vietnam Shan Tran Vietnam Unknown Green  

142 Vietnam Green A42o.P. Vietnam Unknown Green  
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Summary and future perspectives  

This thesis demonstrates the applicability of PTR-ToF-MS as an efficient method for rapid, 

non-invasive and high-throughput characterization and discrimination of coffee aroma via 

headspace and nosespace analyses. 

In Chapter 2, we address the issues related to the characterization of 100% Arabica coffees 

according to geographical origin based on rapid, direct and non-destructive headspace volatile 

compound analysis with proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-

MS). A fingerprinting approach was adapted for discrimination of coffee samples by applying 

multivariate data exploration methods and advanced classification tools. Chapter 2.1 shows a 

methodological approach on discrimination of roasted and ground coffee powders from three 

geographical origins (Brazil, Guatemala and Ethiopia). This study represents one of the first 

applications of rapid and automated headspace sampling procedure by combining PTR-ToF-

MS to a multipurpose autosampler for a more reproducible and straightforward analysis. By 

adjusting the autosampler set-up parameters, it was possible to analyse 1 sample every 5 min 

(when the headspace is flushed before sample incubation), which can be reduced to 1 sample 

every 2 min if flushing the headspace before sample incubation is not desired. This study 

involved two different batches of Brazil, Guatemala and Ethiopia, which were roasted under 

the same conditions to a medium roast degree and ground to same particle size. There were no 

significant differences observed in the aroma profiles between two batches of same coffee 

origin according to one-way ANOVA results (p<0.01) and PCA showed successful separation 

of coffee origins. A PLS-DA classification model was built where the volatile emissions of one 

batch were used to predict the second batch. Additionally, PLS-DA suggested mass peaks (VIP 

values>1.5) significant for separation of coffee origins. For instance, tentative identification of 

these mass peaks pointed out pyrazines for Brazilian coffee and terpenes for Ethiopian coffee, 

those could be associated to the chocolate and roasted notes for Brazilian coffee and fruity and 

flowery notes for Ethiopian coffee. The associated volatile compounds can be referred as key 

flavour descriptors for particular Arabica coffee origins. The results overall, highlighted the 

applicability of rapid headspace analysis with PTR-ToF-MS to characterize coffee aroma and 

to ensure quality control during coffee production. Chapter 2.2 describes a comprehensive 

follow-up study by extending the number of coffee origins; and by measuring the headspace 

volatile compounds of both roasted and ground coffees and their brews prepared by using a 

stove-top coffee maker (moka pot). For the first time, PTR-ToF-MS in Switchable Reagent 
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Ions (SRI) mode was used to analyse coffee aroma compounds by using H3O
+, NO+ and O2

+ as 

ionisation agents. Six Arabica coffee samples from Brazil, Colombia, Costa Rica, Ethiopia, 

Guatemala and India were successfully separated according to geographical origins by using 

not only H3O
+ but also NO+ and O2

+ as precursor ions by advanced classification models. 

Merging all the volatile profiles obtained by three different ionisation modes via data fusion 

further improved the classification efficiency. One way-ANOVA showed significant 

differences between coffee origins and changes during coffee brewing indicating possible 

effects of coffee geographical origin on volatile compound release.  

Chapter 3 covers the development of a methodology based on rapid and simple monitoring of 

volatile compounds released from a single coffee bean during different stages of roasting. PTR-

ToF-MS has been used for the first time to analyse the volatile compounds released from 468 

single coffee beans come from different geographical origins. Due to the high sensitivity 

provided by PTR-ToF-MS, it was possible to detect volatile compounds at very low levels, 

which allowed visualizing the differences in volatile formations at a single bean level. We 

observed a reduction in the amount of terpene fragments and increase in heat induced volatile 

compounds. Clear origin signatures were observed especially in the concentration of the 

volatiles released. Depending on the phase of roasting, some volatile compounds were released 

earlier than the others and vice versa.  

Chapter 4 includes simultaneous combination of Nosespace analysis and dynamic sensory 

methods for understanding coffee flavour perception and effect of coffee roasting degree and 

sugar on VOC release. Dark and light roasted espresso coffees were evaluated by 18 trained 

panellists in the presence and absence of sugar. Sensory evaluation and in-nose aroma release 

provided successful discrimination of coffees according to roasting degrees with an increase in 

overall dominance of attributes (i.e. roasted, burnt) and the quantity of volatiles released in the 

nose. Sugar addition completely modified the sensory description of coffees however; its effect 

on retronasal aroma release was rather not significant. Indeed, due to the presence of taste-smell 

perceptual interactions and the congruence effect between sweet taste and some flavors of 

coffee, the interpretation of sugar effect remained more visible for TDS evaluation. The volatile 

compounds showed two different release behaviours analysed by clustering methods signifying 

the degree of their persistence in nose which were strongly linked to the dominance of selected 

aroma attributes.  
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Chapter 5 shows the application of PTR-ToF-MS on discrimination of black and green teas 

according to tea type and geographical origin. A large sample set was collected (101 teas, 

without additional flavouring) and the volatile emissions of dry tea leaves and tea infusions 

were analysed for the first time with PTR-MS technology. The separation of black and green 

teas were clear and results provided a good separation of tea origins. However countries 

geographically close to each other were most likely to be confused. Preliminary analyses 

indicated that a better discrimination of tea samples might have been achieved if teas were 

classified according to production region rather than just country of origin. 

In this work, we have addressed several aspects of PTR-ToF-MS applications in flavour 

science. Considering the very promising results and the developed methodologies so far, PTR-

ToF-MS appears as an effective analytical tool to study the relationships between volatile 

organic compounds in vitro (headspace) and in vivo (nosespace) product discrimination and 

characterization. The results highlighted significant issues in authentication and discrimination 

of high value food products not only via static headspace measurements but also via real-time 

monitoring during product consumption. For the first time, we have utilized Switchable 

Reagent Ion System- SRI (that the primary ion can be switched from H3O
+ to other ions, such 

as O2
+ or NO+) to measure the volatile compounds released from coffee which improved the 

discrimination and characterisation capabilities. We believe that, the application of SRI system 

in food sciences can be extended to other fields such as fruit VOC emissions and bioprocess 

monitoring.   

For future studies, the automated headspace sampling system can be successfully applied for 

rapid screening of large sample sets and to diverse food matrices. The outcomes also direct our 

interest towards the consumer, by analysing the volatile compounds released during food 

consumption and investigate the links between sensory perception and volatile compounds not 

only in the case of coffee matrix but also for other products. Even though the newly developed 

fastGC-PTR-ToF-MS system has not been utilized in this thesis, the different applications of 

this methodology are of interest, in particular for separation of monoterpenes in coffee and/or 

tea which constitute a significant group volatile compounds responsible for flowery and fruity 

notes and also might be considered as volatile geographical origin markers.   

Further applications of these present methodologies are expected in the near future for other 

food matrices.  
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