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The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a

chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple

indicators of plastid developmental stage and altered plastid function, as part of

chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms

underlying signal integration by GUN1 have remained elusive, up until the recent

identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and

mass-spectrometric analyses, as well as protein–protein interaction assays. Here, we

review the molecular functions of the different GUN1 partners and propose a major

role for GUN1 as coordinator of chloroplast translation, protein import, and protein

degradation. This regulatory role is implemented through proteins that, in most cases,

are part of multimeric protein complexes and whose precise functions vary depending

on their association states. Within this framework, GUN1 may act as a platform to

promote specific functions by bringing the interacting enzymes into close proximity with

their substrates, or may inhibit processes by sequestering particular pools of specific

interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole

biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling

molecules in retrograde communication.

Keywords: nucleoid, GUN1, protein homeostasis, retrograde signaling, biogenic control

INTRODUCTION

Upon illumination, proplastids differentiate into functional chloroplasts in developing
photosynthetic tissues of cotyledons, leaves, and stems (Jarvis and López-Juez, 2013).
Chloroplast biogenesis also occurs during the growth of young green tissues, as cells expand
and mature chloroplasts undergo division by binary fission (Okazaki et al., 2010). This process is
characterized macroscopically by rapid greening of the young chloroplast and microscopically by
the concomitant formation of thylakoidmembranes and the reorganization of nucleoids, i.e., DNA-
containing structures without defined boundaries, which differ in number, size, and distribution
within plastids at different developmental stages, and harbor the plastid gene expression (PGE)
machinery (Pfalz and Pfannschmidt, 2013; Melonek et al., 2016).

At the molecular level, this rather complex biogenic transition is achieved by cytosolic synthesis
of chloroplast-targeted proteins, followed by import, assembly, folding, and degradation of
unfolded/misfolded proteins (Jarvis and López-Juez, 2013). Indeed, the plastid genome itself (the
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plastome) comprises fewer than 100 protein-coding genes,
and the vast majority of the 2000–3000 proteins that make
up the chloroplast proteome are encoded in the nucleus
(Richly and Leister, 2004). In particular, precursor proteins
carrying N-terminal transit peptides initially interact with two
multiprotein complexes termed Translocon at the outer envelope
membrane of chloroplasts (TOC) and Translocon at the inner
envelope membrane of chloroplasts (TIC), which facilitate their
active transport through the chloroplast envelope, powered
by an ATP import motor, consisting of the stromal heat-
shock protein 93 (Hsp93), heat-shock protein 70 (Hsp70),
and heat-shock protein 90 (Hsp90; Flores-Perez and Jarvis,
2013; Inoue et al., 2013; Shi and Theg, 2013a,b). Upon
translocation, proteins are exposed to different proteolytic
systems of prokaryotic origin, which are responsible for
protein maturation, control of protein abundance, and removal
of either misfolded or damaged components. Among these,
the stromal protease Clp is a multimeric complex made of
chaperones and serine protease subunits, which serve general
housekeeping functions. In contrast, the thylakoid-associated
FtsH (Filamentous temperature sensitive H) proteases are zinc-
containing metalloendopeptidases that have both chaperone and
proteolytic functions, and participate in the Photosystem II
repair cycle, together with the DEG serine proteases (Kato and
Sakamoto, 2010; Van Wijk, 2015).

Besides translation and post-translational processes,
chloroplast biogenesis also requires transcriptional coordination
of thousands of nuclear genes with the expression of the
comparatively few plastid genes in order to meet the needs
of the developing chloroplast (Chan et al., 2016; Kleine
and Leister, 2016). This is achieved through extensive
exchange of information between plastids and the nucleus,
for instance, via biogenic retrograde signaling—a system in
which developmentally relevant stimuli in plastids induce
the accumulation of specific signaling molecules that relay
information to the nucleus, and in turn adjust the expression of
nuclear genes to the needs of the plastids (Pogson et al., 2008;
Woodson and Chory, 2008; Chan et al., 2016).

During the last 30 years, experiments with the carotenoid
biosynthesis inhibitor norfluorazon (NF) and the inhibitor of
plastid translation lincomycin (LIN), each of which arrests
chloroplast development at the proplastid stage and represses
the expression of photosynthesis-associated nuclear genes
(PhANGs), have provided insights into the plastid’s biogenic
retrograde pathways (Oelmüller and Mohr, 1986; Oelmüller
et al., 1986).

Six genome uncoupled (gun) mutants have been characterized
in Arabidopsis thaliana that fail to repress transcription of the
nuclear gene Lhcb1.2 after NF treatment, and are thus impaired
in retrograde signaling (Susek et al., 1993; Mochizuki et al., 2001;
Larkin et al., 2003; Koussevitzky et al., 2007; Adhikari et al.,
2011; Woodson et al., 2011). Five of these genes, GUN2-6, were
found to be involved in tetrapyrrole biosynthesis (TPB), whereas
GUN1, which encodes a nucleoid-localized pentatricopeptide
repeat protein (PPR), has been shown to have a role in PGE,
and to act as an integrator of multiple retrograde signals, since
gun1 mutants are unique in exhibiting a gun phenotype in

response to both norfluorazon and lincomycin (Gray et al., 2003;
Koussevitzky et al., 2007). However, the exact molecular role of
GUN1 remained enigmatic until the new insights provided by
the recent identification of a set of GUN1-interacting proteins
(Tadini et al., 2016; Table 1).

Based on the functions of these partners, GUN1 appears
to take part in multiple processes essential for chloroplast
biogenesis andmaintenance of the chloroplast proteome. GUN1-
mediated control of plastid ribosomal protein S1 (PRPS1)
accumulation, together with co-immunoprecipitation (CoIP) of
proteins involved in different steps of plastid translation, support
the involvement of GUN1 in the regulation of plastid protein
synthesis. Furthermore, the presence of several chaperones in the
CoIP mixture suggests a role for GUN1 in the coordination of
chloroplast protein import and protein degradation.

Intriguingly, several GUN1 interactors appear to accumulate
to higher levels upon induction of the unfolded protein response
(UPR) in Chlamydomonas reinhardtii chloroplasts, which is
triggered upon conditional repression of the catalytic subunit
of Clp protease (ClpP1; Ramundo et al., 2013; Ramundo and
Rochaix, 2014; Rochaix and Ramundo, 2015). This finding
suggests the possible involvement of GUN1 in the UPR signaling
pathway.

In this review, we describe the functional roles of the different
GUN1 protein partners and propose some testable hypotheses
that should clarify the molecular role of GUN1 in chloroplast
biogenesis and chloroplast protein homeostasis.

GUN1 IS FOUND IN PLASTID NUCLEOIDS
AND INTERACTS WITH THE
TRANSCRIPTIONAL MACHINERY

GUN1 encodes a member of PPR-containing protein family,
which has a small MutS-related (SMR) domain at the C-terminal
end and a plastid targeting signal sequence at its N terminus.
PPRmotifs have been shown to mediate interactions with nucleic
acids, and the SMR domain is found in proteins that act in
DNA repair and recombination. However, in vivo RNA and DNA
immunoprecipitation on chip (NIP-chip), as well as one-hybrid
assays, have failed to detect any stable interaction of GUN1
with nucleic acids (Tadini et al., 2016), in contrast to a previous
report, in which a GUN1 fragment containing both the PPR and
SMR domains was shown to bind DNA in vitro (Koussevitzky
et al., 2007). Nevertheless, GUN1 appears to be associated with
nucleoids in the chloroplast, and more specifically with the
domain of active plastid transcription, as shown by the relatively
large and distinct foci of a fluorescent GUN1-YFP (Yellow
Fluorescence Protein) chimera that co-localize with a Plastid
Transcriptionally Active Chromosome 2-Cyan Fluorescence
Protein (pTAC2-CFP) fusion in chloroplasts of mesophyll cells
(Koussevitzky et al., 2007). However, although the repertoire of
nucleoid-associated proteins so far identified is quite extensive,
the GUN1 protein is not listed in any of the chloroplast or
nucleoid/pTAC proteomes published to date (for a review see
Melonek et al., 2016), most probably because it accumulates in
very small amounts at specific developmental stages or under
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TABLE 1 | GUN1 interactors together with their functions and impacts on plant development.

Designation AGI code Mutant phenotypea Molecular function/Defect Nucleoid

subunitb
Identification

assayc
References

TRANSCRIPTION AND RNA METABOLISM

pTAC6/PAP8 AT1G21600 Albino Low PEP activity + CoIP-MS Pfalz et al., 2006; Steiner et al.,

2011; Pfalz and Pfannschmidt,

2013

RH3/EMB1138 AT5G26742 Embryo lethal RNA splicing of group II

introns, assembly of the 50S

ribosomal particle

+ CoIP-MS Asakura et al., 2012; Majeran

et al., 2012

AtPPR_3g49240/

EMB1796

AT3G49240 Embryo lethal n.d. + CoIP-MS Cushing et al., 2005; Majeran

et al., 2012

TRANSLATION

rpl2 ATCG00830 n.d. Promotes translation initiation + CoIP-MS Manuell et al., 2007; Melonek

et al., 2016

rps3 ATCG00800 Essential for cell survival in

tobacco

Promotes translation initiation + CoIP-MS Manuell et al., 2007;

Fleischmann et al., 2011;

Melonek et al., 2016

rps4 ATCG00380 Essential for cell survival in

tobacco

Involved in the assembly of

the 30S ribosomal particle;

binds to16S rRNA

+ CoIP-MS Rogalski et al., 2008; Shoji et al.,

2011; Melonek et al., 2016

PRPL10/

EMB3136

AT5G13510 Embryo lethal Part of the L12 stalk and

required for translation, since

it recruits auxiliary translation

factors such as cpIF2

− CoIP-MS Baba et al., 2006; Bryant et al.,

2011; Shoji et al., 2011; Pfalz

and Pfannschmidt, 2013

PRPS1 AT5G30510 n.d. Promotes translation initiation − Y2H; BiFC Manuell et al., 2007; Shoji et al.,

2011; Tadini et al., 2016

cpIF2/FUG1 AT1G17220 Embryo lethal Promotes translation initiation;

leaky mutant alleles suppress

leaf variegation in var mutants

− CoIP-MS Miura et al., 2007

PROTEIN IMPORT, PROTEIN FOLDING, AND PROTEIN UNFOLDING/DEGRADATION

Hsp93-III/ClpC2 AT3G48870 Single mutant identical to

WT; hsp93-III hsp93-V

double mutant is embryo

lethal

Cooperates with Tic110 and

Tic40 in chloroplast protein

import; chaperone in the Clp

protease complex

− CoIP-MS Inaba et al., 2003; Kovacheva

et al., 2005; Chou et al., 2006;

Sakamoto, 2006; Kovacheva

et al., 2007; Van Wijk, 2015

Hsp93-V/ClpC1 At5g50920 Single mutant exhibits a

chlorotic phenotype;

hsp93-III hsp93-V double

mutant is embryo lethal

Cooperates with Tic110 and

Tic40 in chloroplast protein

import; chaperone in the Clp

protease complex

+ CoIP-MS Inaba et al., 2003; Kovacheva

et al., 2005; Chou et al., 2006;

Sakamoto, 2006; Kovacheva

et al., 2007; Van Wijk, 2015;

Melonek et al., 2016

Hsp70-1 AT4G24280 Single mutant exhibits

variegated cotyledons,

malformed leaves, growth

retardation and impaired

root growth; hsp70-1

hsp70-2 double mutant is

lethal

Involved in chloroplast protein

import, folding and onward

guidance of newly imported

polypeptide chains

+ CoIP-MS Su and Li, 2008; Shi and Theg,

2010; Su and Li, 2010; Liu et al.,

2014; Melonek et al., 2016

Hsp70-2 AT5G49910 Single mutant identical to

WT; hsp70-1 hsp70-2

double mutant is lethal

Involved in chloroplast protein

import, folding and onward

guidance of newly imported

polypeptide chains

− CoIP-MS Su and Li, 2008; Shi and Theg,

2010; Liu et al., 2014; Su and Li,

2010

ptCpn60α1 AT2G28000 Albino Involved in folding and onward

guidance of newly imported

polypeptide chains; essential

for plastid division in A.

thaliana; involved in Rubisco

and NdhH assembly

+ CoIP-MS Gutteridge and Gatenby, 1995;

Apuya et al., 2001; Suzuki et al.,

2009; Peng et al., 2011;

Flores-Perez and Jarvis, 2013;

Melonek et al., 2016

(Continued)

Frontiers in Plant Science | www.frontiersin.org 3 September 2016 | Volume 7 | Article 1427

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Colombo et al. GUN1 and Plastid Protein Homeostasis

TABLE 1 | Continued

Designation AGI code Mutant phenotypea Molecular function/Defect Nucleoid

subunitb
Identification

assayc
References

ptCpn60β1 AT1G55490 Leaves of the len1 mutant

have wrinkled and irregular

surfaces and display lesions

due to spontaneous cell

death

Involved in folding and onward

guidance of newly imported

polypeptide chains; essential

for plastid division in A.

thaliana; involved in Rubisco

and NdhH assembly

− CoIP-MS Gutteridge and Gatenby, 1995;

Boston et al., 1996; Kessler and

Blobel, 1996; Jackson-Constan

et al., 2001; Ishikawa et al.,

2003; Ishikawa, 2005; Suzuki

et al., 2009; Flores-Perez and

Jarvis, 2013

TPB ENZYMES

CHLD AT1G08520 Albino Encodes the D subunit of the

Mg-chelatase enzyme,

involved in chlorophyll

biosynthesis

− Y2H; BiFC Strand et al., 2003; Tanaka et al.,

2011

PBGD AT5G08280 n.d. Porphobilinogen deaminase

activity. Enzyme in the

tetrapyrrole biosynthesis

pathway

− Y2H; BiFC Tanaka et al., 2011

UROD2 AT2G40490 n.d. Uroporphyrinogen

decarboxylase activity;

Enzyme in the tetrapyrrole

biosynthesis pathway

− Y2H; BiFC Tanaka et al., 2011

FC1 AT5G26030 No visible phenotype;

overexpression of the FC1

gene is responsible for the

gun6 phenotype

Encodes ferrochelatase I,

involved in heme biosynthesis

− Y2H; BiFC Tanaka et al., 2011; Woodson

et al., 2011

DIVERSE FUNCTIONS

rbcL ATCG00490 Essential for

photoautotrophy

Large subunit of Rubisco + CoIP-MS Phinney and Thelen, 2005;

Majeran et al., 2012; Huang

et al., 2013

ATP-synthase β

subunit

ATCG00480 Essential for

photoautotrophy

Beta subunit of the thylakoid

ATP synthase complex

+ CoIP-MS Phinney and Thelen, 2005; Pfalz

et al., 2006; Majeran et al., 2012;

Melonek et al., 2012; Huang

et al., 2013

RER4 AT5G12470 Mutant exhibits stunted

growth, weak leaf

reticulation and smaller

mesophyll cells

Integral component of

chloroplast outer and inner

envelope membranes;

possibly involved in retrograde

signaling, supply of

metabolites, control of ROS

− CoIP-MS Perez-Perez et al., 2013

2-Cys PrxA AT3G11630 Mutant exhibits increased

tolerance to photo-oxidative

stress

Involved in peroxide

detoxification in the

chloroplast; functions as a

redox sensor and chaperone;

controls the conversion of

Mg-protoporphyrin

monomethyl ester into

protochlorophyllide

− CoIP-MS Stenbaek et al., 2008; Rey et al.,

2007; Pulido et al., 2010; König

et al., 2013; Dietz, 2016

Note that proteins Q9SIP7 (AT2G31610) and Q42112 (AT3G09200) reported to be identified in coimmunoprecipitates of GUN1-GFP (Tadini et al., 2016) are not listed in this Table,

since they have been described as subunits of cytosolic ribosomes. Furthermore, the protein Q9C5C2 (AT5G25980) has not been included, since it localizes to the tonoplast (Agee

et al., 2010).

n.d., not determined.
aPhenotype of knock-out mutants is described.
bProtein already identified as part of chloroplast nucleoid by proteomic approaches.
cAssays used to identify the corresponding protein as a GUN1 interactor: coimmunoprecipitation followed by mass spectrometry (CoIP-MS), yeast two-hybrid (Y2H) analysis, and

Bimolecular Fluorescence Complementation (BiFC).

particular physiological conditions. This inference is supported
by CoIP experiments with a Green Fluorescence Protein (GUN1-
GFP) fusion and subsequent mass spectrometry (MS), which
identified several nucleoid subunits as interactors with GUN1
(Tadini et al., 2016; Table 1).

pTAC6 is among the GUN1 interactors, and it has
been reported to interact directly with the plastid-encoded
RNA polymerase (PEP), building together with pTAC2 and
other polymerase-associated proteins (PAPs) the soluble RNA
polymerase (sRNPase) complex (Pfalz et al., 2006), a central
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component of nucleoids (Steiner et al., 2011; Figure 1).
Intriguingly, pTAC6 (also known as PAP8) contains no known
domain and exhibits no homologies that could provide hints as
to its function in PGE (Steiner et al., 2011). However, functional
genomics analyses have indicated that homozygous pap knockout
lines develop white cotyledons, fail to accumulate chlorophyll
even under low light intensities, and do not produce primary
leaves unless they are cultivated on MS medium supplemented
with sucrose (for a review, see Pfalz and Pfannschmidt, 2013).
Furthermore, analyses of PGE in pap mutants revealed strong
repression of the accumulation of PEP-dependent transcripts,
whereas levels of nucleus-encoded RNA polymerase (NEP)-
dependent transcripts were not depleted, while some were
enhanced, indicating that pTAC6/PAP8 and the other PAP
proteins are essential for the activity of PEP (see Table 1).

GUN1 CONTROLS PLASTID TRANSLATION
AND RIBOSOME BIOGENESIS

GUN1 also interacts with several ribosomal subunits, such as
the plastid-encoded ribosomal proteins L2, S3, and S4 (rpl2,
rps3, and rps4) and the nucleus-encoded plastid ribosomal
protein L10 (PRPL10; Figure 1). Furthermore, yeast two-hybrid
and Bimolecular Fluorescence Complementation (BiFC) assays
revealed a physical interaction between GUN1 and PRPS1

(Tadini et al., 2016). Ribosomal proteins have been reproducibly
detected in nucleoid and pTAC proteomes (Melonek et al., 2016),
further supporting the existence of a translational subdomain
within the nucleoids, as proposed by Pfalz and Pfannschmidt
(2013). The homologs of PRPL10, rpl2, PRPS1, rps3, and
rps4 are essential components of the protein biosynthetic
machinery in Escherichia coli (Baba et al., 2006; Shoji et al.,
2011) and the indispensability of rps3 and rps4 has been also
proven in tobacco plastids (Rogalski et al., 2008; Fleischmann
et al., 2011). Furthermore, PRPL10 is annotated as EMBryo
defective 3136 (EMB3136) in the SeedGenes Project database
(http://www.seedgenes.org/), and in its absence Arabidopsis
embryo development arrests at the globular stage (Bryant
et al., 2011). Mutants devoid of PRPS1 have not been
described. However, given the conservation of PRPS1 function in
prokaryotes and chloroplasts, it can be confidently assumed that
complete lack of PRPS1 is lethal in Arabidopsis.

Taking into consideration the function of these ribosomal
proteins, it can be argued that their interaction with GUN1 has
a dual purpose. On the one hand, GUN1 modulates protein
synthesis by controlling the abundance of PRPS1, which, together
with rps3 and rps2, has been reported to form the domain
responsible for the interaction of the 30S ribosomal subunit with
mRNA, promoting translation initiation (Manuell et al., 2007;
Tadini et al., 2016). This role is supported further by the stable
interaction of GUN1 with the chloroplast translation initiation

FIGURE 1 | Schematic overview of GUN1 protein interactors involved in gene transcription, ribosome biogenesis and plastid translation. The scheme

takes into account the partition of nucleoids into functional subdomains proposed by Pfalz and Pfannschmidt (2013). PPR refers to AtPPR_3g49240, also known as

EMB1796, as reported in Table 1.
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factor 2 (cpIF2; Tadini et al., 2016), also known as FUG1, and
reported to be essential for chloroplast biogenesis (Miura et al.,
2007).

On the other hand, GUN1 seems to be involved in the process
of ribosome biogenesis too, since nucleoid-associated ribosomes
are thought to be in various stages of assembly, with several
rRNA maturation steps occurring in a co-transcriptional and
assembly-assisted manner, as in prokaryotic systems (Bohne,
2014). For instance, the DEAD-box-containing, ATP-dependent
RNA helicase 3 (RH3), which has been functionally linked
to the chloroplast nucleoid (Majeran et al., 2012), is among
the proteins that interact with GUN1 (Tadini et al., 2016;
see also Figure 1 and Table 1). RH3 is directly involved in
the splicing of group II introns in the rpl2, trnA, trnI, and
rps12 transcripts and could be coimmunoprecipitated with
immature and mature 23S rRNA (Asakura et al., 2012).
Furthermore, the PPR protein At3g49240 also known as
AtPPR_3g49240, according to the PPR protein database
(http://www.plantenergy.uwa.edu.au/applications/ppr/ppr.php),
is also part of GUN1’s interactors, and its maize ortholog,
GRMZM2G074599_P01, has been identified in the chloroplast
nucleoid (Majeran et al., 2012). The gene is annotated as embryo
defective 1796 (EMB1796) in the SeedGenes database, since the
complete lack of AtPPR_3g49240 leads to the arrest of embryonic
development at the globular stage (Cushing et al., 2005), further
supporting the essential role of GUN1 interactors in chloroplast
biogenesis.

GUN1 AND THE IMPORT OF
CHLOROPLAST PROTEINS

Almost a quarter of the GUN1 interactors identified by CoIP-
MS are chaperones (see Table 1), a relatively high proportion
when comparedwith the extensive repertoire of protein functions
found within the nucleoid (Melonek et al., 2016). The stromal
Hsp93 and Hsp70 chaperones mediate different steps in protein
import into the chloroplast stroma, whereas the 60 KD
chaperonin Cpn60 is thought to be involved in the folding of
newly imported mature proteins and to function downstream
of Hsp93 and Hsp70 (Kessler and Blobel, 1996; Jackson-Constan
et al., 2001; Flores-Perez and Jarvis, 2013). Furthermore, the two
genes most highly co-regulated with GUN1 encode the proteins
TIC110 and TOC159 (Tadini et al., 2016), which are part of the
outer and inner chloroplast translocons, respectively, suggesting
a role of GUN1 in chloroplast protein import (Figure 2).

The Hsp93 Chaperones
In Arabidopsis, there are two nearly identical isoforms of
Hsp93, termed Hsp93-V and Hsp93-III (or ClpC1 and ClpC2,
respectively) and both interact with GUN1. The two proteins are
highly homologous, but Hsp93-V is expressed at much higher
levels than Hsp93-III (Kovacheva et al., 2005, 2007), and only
Hsp93-V has been reported as a component of the nucleoid
proteome (Phinney and Thelen, 2005; Majeran et al., 2012;
Melonek et al., 2012; Huang et al., 2013). Furthermore, both
hsp93 singlemutants are viable whereas hsp93-III hsp93-V double
mutant is embryo-lethal, indicating that the two proteins have

redundant functions in Arabidopsis chloroplasts (Constan et al.,
2004; Sjögren et al., 2004; Kovacheva et al., 2007).

The current model for chloroplast protein import assumes
that the preprotein transit peptide interacts with the TOC, and
is subsequently transported through the TIC in an energy-
dependent process (Shi and Theg, 2013b). In particular, the
Tic110–Tic40 interaction is proposed to trigger the release of
the transit peptide from Tic110 and enable the association of the
preprotein with Hsp93 (Inaba et al., 2003). Tic40 then stimulates
ATP hydrolysis by Hsp93, which harnesses the energy released to
draw the preprotein into the stroma (Chou et al., 2006).

The Hsp70 Chaperones
Recent work has also demonstrated the involvement of Hsp70 in
protein translocation into chloroplasts, as part of the translocon
energy-dependent engine together with Hsp93 and Hsp90 (Inoue
et al., 2013; Liu et al., 2014). Like Hsp93, Hsp70 proteins occur
in two isoforms, Hsp70-1 and Hsp70-2, in the chloroplasts
of Arabidopsis (Su and Li, 2008) and only Hsp70-1 was
found in the proteomes of pTAC and crude nucleoids (for
a review see Melonek et al., 2016). However, both Hsp70
proteins have been identified as GUN1 interactors (Tadini et al.,
2016). Protein import assays using chloroplasts isolated from
the Arabidopsis Hsp70 knockout mutants hsp70-1 and hsp70-
2 showed that stromal Hsp70s are important for the import of
both photosynthetic and non-photosynthetic precursor proteins,
especially in early developmental stages (Su and Li, 2010).
Furthermore, no hsp70-1 hsp70-2 double mutant has ever been
isolated. Thus, the two Hsp70s are likely to have redundant
functions that are essential for plant development and chloroplast
biogenesis.

The Cpn60 Chaperonins
After preproteins delivered to the stroma have been processed,
they may require accessory factors to enable them to fold
into their functional conformation, or to reach their final
intra-organellar destination. The stromal molecular chaperones
Hsp70, Cpn60, and Cpn10 are all believed to mediate the
folding or onward guidance of newly imported polypeptide
chains (Boston et al., 1996; Jackson-Constan et al., 2001). In
particular, immunoprecipitation experiments have revealed that
Cpn60 operates in close proximity with Tic110 (Kessler and
Blobel, 1996), while import experiments have shown a transient
association of mature, newly imported proteins with the Cpn60-
Tic110 complex, suggesting that Tic110 can recruit Cpn60 in
an ATP-dependent manner for the folding of proteins upon
their arrival in the stroma. It has also been suggested that
stromal Hsp70 and Cpn60 act sequentially to facilitate the
maturation of imported proteins, particularly those destined
for the thylakoid membranes (Madueno et al., 1993; Tsugeki
and Nishimura, 1993; Peng et al., 2011). The Arabidopsis
genome encodes two members of the Cpn60α family, denoted
ptCpn60α1 and ptCpn60α2, and four members of Cpn60β,
known as ptCpn60β1–β4 (Suzuki et al., 2009). Two of them,
ptCpn60α1 and ptCpn60β2, have been linked to the nucleoid
proteome (Melonek et al., 2016), and ptCpn60α1 and ptCpn60β1
are among the GUN1 interactors identified via the CoIP-MS
strategy (see Table 1). The complete loss of ptCpn60α1, in the
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FIGURE 2 | GUN1 interacts with different plastid chaperones. The chaperones Hsp93, Hsp70, and Cpn60 participate in different processes within the

chloroplast, such as protein import, protein folding/unfolding, prevention of protein aggregation, and regulation of plastid division, and they might play a key role in the

chloroplast Unfolded Protein Response (cpUPR). CoIP-MS analysis has shown that they are also part of GUN1-containing protein complexes.

mutant termed schlepperless (slp), causes retardation of embryo
development before the heart stage and an albino seedling
phenotype, indicating that ptCpn60α1 is essential for chloroplast
biogenesis (Apuya et al., 2001). Conversely, plants devoid of
ptCpn60β1, also known as lesion initiation 1 (len1), have leaves
with wrinkled and irregular surfaces and undergo localized,
spontaneous cell death in the absence of pathogen attack, i.e.,
lesion formation, under short-day conditions (Ishikawa et al.,
2003).

OTHER FUNCTIONS OF PLASTID
CHAPERONES

Besides their roles in plastid protein import, all GUN1-
interacting chaperones are present in the stroma at significant

amounts relative to their association with the chloroplast import
apparatus and perform various other functions together with
different protein complexes (Figure 2). For instance Hsp93, also
termed ClpC, acts as a regulatory chaperone in the Clp protease
complex, the most abundant stromal protease with general
household functions (Sakamoto, 2006; Van Wijk, 2015). Clp
substrates are selected through various signals intrinsic to amino
acid sequences and the ATP-dependent ClpC chaperone activity
helps to progressively unfold selected substrates that are delivered
to the ClpPR core for degradation into small peptides (∼8–10
amino acids long; Olinares et al., 2011).

Similarly, Cpn60 forms a large oligomeric protein complex

(>600 KDa) that promotes the assembly of Rubisco (Gutteridge
and Gatenby, 1995). In particular, it has been observed that the

large subunit of Rubisco (RbcL) is specifically associated with

Frontiers in Plant Science | www.frontiersin.org 7 September 2016 | Volume 7 | Article 1427

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Colombo et al. GUN1 and Plastid Protein Homeostasis

Cpn60 before assembly into the holoenzyme and that the Cpn60-
RbcL complex is an obligatory intermediate. Furthermore, Cpn60
proteins have been shown to be essential for plastid division
in A. thaliana (Suzuki et al., 2009). Thus, mesophyll cells in
ptcpn60α1-1 (a missense mutant) and ptcpn60β1-1 (a protein
null) plants, contain fewer and larger chloroplasts, indicating
that normal levels of plastid Cpn60 are required for the correct
folding of the stromal plastid division proteins and/or regulation
of FtsZ (Filamentous temperature-sensitive Z) polymer dynamics
(Suzuki et al., 2009).

The same holds true for the Hsp70 proteins, which are also
involved in modulation of protein activity, regulation of protein
degradation and prevention of irreversible protein aggregation
when they are free in the stroma (Su and Li, 2008). Potentially
GUN1 can be involved in a multitude of activities, besides plastid
protein import, thus further investigations are needed to clarify
the functional significance of GUN1–chaperone interactions.

GUN1 AND THE CHLOROPLAST
UNFOLDED PROTEIN RESPONSE (cpUPR)

Chaperones, together with enzymes that process and degrade
proteins, are also necessary to maintain protein folding
homeostasis in the various compartments of eukaryotic
cells. Distinct signal transduction pathways, known as
unfolded protein responses (UPRs), have evolved to couple
the unfolded/misfolded protein load to the expression of specific
chaperones and enzymes that promote folding and the disposal
of misfolded proteins in each compartment.

The unfolded protein response was first discovered in the
endoplasmic reticulum (ER) in yeast, where inhibition of protein
folding leads to the transcriptional up-regulation of several
chaperones (Cox et al., 1993), and subsequently in mitochondria,
where accumulation of unfolded proteins in the mitochondrial
matrix stimulates the expression of nuclear gene transcripts
coding for mitochondrial chaperones (Aldridge et al., 2007; Lin
and Haynes, 2016). Compared to yeast and metazoans, studies
of plant UPRs are less advanced, and molecular details are
known mainly for the ER-dependent UPR, which shows certain
similarities with the process in multicellular eukaryotes, as well as
plant-specific features (Ruberti et al., 2015). Recently, the possible
existence of a chloroplast UPR (cpUPR) has been investigated
in the green alga Chlamydomonas reinhardtii. Taking advantage
of a repressible chloroplast gene expression system (Rochaix
et al., 2014), Ramundo et al. (2014) induced the selective gradual
depletion of the essential stromal Clp protease, in order to follow
the early and late events caused by the decrease in its abundance.
Temporal profiles of gene expression and protein accumulation
revealed a marked increase in levels of chaperones, including
Hsp70B, upon Clp depletion. Similar data have also been
reported for Arabidopsis, where up-regulation of chloroplast
chaperones and protein-sorting components occurred upon
constitutive repression of Clp (Rudella et al., 2006; Zybailov
et al., 2009). In particular, characterization of total leaf proteomes
of WT and clpr2-1 highlighted differential expression of 768
proteins. The largest functional category quantified (with 205

proteins) comprised proteins involved in translation, folding
and degradation. Strikingly, all the chaperones interacting with
GUN1, including Hsp93, Hsp70, Cpn60, as well as the DEAD box
RNA helicase RH3, are among those up-regulated (by between
1.6- and 8.5-fold) in clpr2-1 leaves, whereas no significant change
in the chloroplast ribosomal protein population was observed
(Zybailov et al., 2009).

Taken together, these findings suggest that disruption of
protein homeostasis in organelles can be sensed and transduced
to the nucleus to induce the expression of a specific set
of factors responsible for promoting folding and monitoring
protein quality control (Ramundo and Rochaix, 2014; Rochaix
and Ramundo, 2015). After entering the higher plant chloroplast,
these factors are able to interact with the nucleoid-associated
GUN1 protein (Figure 2), which might therefore play a role in
the cpUPR process.

GUN1 AND CHLOROPLAST METABOLISM

The large subunit of ribulose bisphosphate carboxylase (RbcL)
and the β subunit of the ATP synthase are also among the
interactors of GUN1 identified by CoIP-MS analysis (Tadini
et al., 2016). Because of their relatively high abundance in
the chloroplast proteome, it is tempting to assume that these
proteins are simply contaminants. However, RbcL and subunits
of the ATP synthase have been repeatedly identified in the
pTAC/nucleoid proteomes, even though different procedures
were employed for isolation of crude nucleoid fractions and
highly purified pTAC complexes (for a review see Melonek
et al., 2016), thus suggesting these proteins might have a
dual localization to the chloroplast stroma and nucleoids. The
nucleoid association of RbcL and ATP synthase, i.e., of proteins
that are not directly involved in core nucleoid functions,
might also indicate that nucleoids also monitor photosynthesis
and energy metabolism and respond appropriately to any
perturbations (Figure 3).

Unlike RbcL and the ATP synthase β subunit, RETICULATA-
RELATED 4 (RER4), an integral component of the chloroplast
envelope membranes with three transmembrane α-helices, has
never been identified in the pTAC/nucleoid proteome, although
it appears to be an interactor of GUN1 (Table 1). The mutant
rer4-1 exhibits leaf reticulation, having green veins that stand
out against paler intervein tissue, with fewer and smaller
mesophyll cells than those of the wild type leaves (Perez-
Perez et al., 2013). The molecular function of RER4 remains
to be established. However, some hints as to its role in
the chloroplast can be derived from features of the rer4-
1 mutant phenotype. A possible involvement of RER4 in
retrograde signaling is suggested by the altered growth and
development of mesophyll cells. Alternatively, the absence of
RER4 might deplete the supply of essential metabolites during
early stages of leaf development, which could explain the
aberrant mesophyll structure. Furthermore, RER4 has been
suggested to be involved in the control of reactive oxygen
species (ROS), since the reticulated pigmentation of the rer4-
1 mutant grown under long-day conditions can be rescued
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FIGURE 3 | GUN1 is involved in photosynthesis and tetrapyrrole biosynthesis. The large subunit of Rubisco and the β-subunit of the thylakoid ATP synthase

have been coimmunoprecipitated with GUN1, supporting a role for GUN1 in coordinating nucleoid activities with chloroplast metabolism. GUN1 also interacts with

four enzymes of the tetrapyrrole biosynthesis pathway, i.e., the D subunit of Mg chelatase (CHLD), porphobilinogen deaminase (PBGD), uroporphyrinogen III

decarboxylase (UROD2), and ferrochelatase I (FC1), as shown by yeast two-hybrid and Bimolecular Fluorescence Complementation. Note that the proteins RER4 and

2-Cys PrxA have not been included in this scheme for reasons of clarity.

by a short-day photoperiod, which markedly dampens ROS
accumulation.

The 2-Cys peroxiredoxin A (2-Cys Prx A; see also Table 1),
another interactor with GUN1, appears also to have a role
in ROS scavenging (Rey et al., 2007; Pulido et al., 2010;
Dietz, 2016) and, like RER4, it has never been reported to
be part of the pTAC/nucleoid proteome (Pfalz et al., 2006;
Majeran et al., 2012; Huang et al., 2013). 2-Cys Prx A and the
highly homologous 2-Cys Prx B function as redox sensors and
chaperones, thanks to the flexibility of their protein structure
(König et al., 2013), and they have been shown to control
the conversion of Mg-protoporphyrin monomethyl ester into

protochlorophyllide (Stenbaek et al., 2008).
The involvement of GUN1 in TPB is further supported

by its interaction with four TPB enzymes, namely subunit
D of Mg chelatase (CHLD), porphobilinogen deaminase
(PBGD), uroporphyrinogen III decarboxylase (UROD2), and
ferrochelatase I (FC1), as demonstrated by both yeast two-hybrid
and BiFC assays (Tadini et al., 2016; Figure 3). Interestingly,
mutants defective in three of these GUN1 interactors—CHLD,

PBGD, and FC1—have themselves been described as gunmutants
(Strand et al., 2003; Huang and Li, 2009; Woodson et al., 2011),
but have never been identified in crude nucleoid preparations,
unlike subunit I of Mg chelatase (CHLI; Melonek et al., 2012;
Huang et al., 2013).

GUN1 AND PLASTID PROTEIN
HOMEOSTASIS: SOME TESTABLE
HYPOTHESES

The recent identification of the GUN1 protein’s partners in
chloroplasts of Arabidopsis by means of CoIP-MS studies as
well as in yeast two-hybrid and BiFC assays (Tadini et al., 2016)
strongly suggests a major role for GUN1 in plastid protein
homeostasis (Figure 4). This regulatory role involves proteins
that are, inmost cases, members of multimeric protein complexes
and whose functions are often context-dependent. Furthermore,
most GUN1 interactors appear to participate in four major
processes:
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Chloroplast Protein Synthesis
A wealth of evidence accumulated during the last two decades
supports the primacy of plastid protein synthesis in the control
of chloroplast gene expression (Choquet and Wollman, 2002;
Manuell et al., 2007; Tiller and Bock, 2014; Sun and Zerges,
2015). In this context, GUN1 has been suggested to regulate
translation in plastids by modulating the abundance and binding
affinity of PRPS1 (Tadini et al., 2016). In particular, PRPS1 is the
only ribosomal protein that shuttles between ribosome-bound
and ribosome-free forms (Merendino et al., 2003; Delvillani
et al., 2011), the latter being more abundant in plants that
lack GUN1. Based on observations in E. coli, where the
unbound form is thought to inhibit translation by competing
with ribosomes for mRNAs (Delvillani et al., 2011), it can be
argued that the GUN1-dependent equilibrium between the two
PRPS1 states has an important role in controlling polysome
assembly and protein synthesis in chloroplasts (Figure 4A).
However, further investigations are needed to clarify this issue.
For instance, lines characterized by the ectopic expression of
PRPS1 or carrying PRPS1 constructs under the control of
inducible promoters, coupled with assays aimed to measure the

translation rate in plastids, should allow us to verify the role
of PRPS1 in modulating protein synthesis. Furthermore, GUN1
controls the abundance of PRPS1 at the post-transcriptional
level. This suggests the involvement of an as yet unidentified
plastid protease in this aspect of GUN1 function. In addition,
the significance of the interaction of GUN1 with other
ribosomal proteins, factors involved in ribosome biogenesis
and regulators of plastid protein synthesis remains to be
elucidated.

Chloroplast Protein Import and
Degradation
Based on the observations reported above, it appears that
GUN1 may well control the interactions of a sub-set of
chaperones, promoting plastid protein import when their
association with the TIC complex is favored, and stimulating
protein degradation, folding/unfolding when they interact with
proteases or other protein complexes in the stroma or in the
thylakoid membranes (Figure 4B). Such a regulatory mechanism
would enable GUN1 to coordinate protein translocation across
the chloroplast envelope with protein degradation in the stroma,

FIGURE 4 | Models explaining GUN1-dependent regulation of chloroplast translation, protein import and protein degradation. (A) GUN1 controls the

abundance of PRPS1 and its aggregation state. Increased levels of free PRPS1 prevent loading of mRNAs onto the ribosome and inhibit polysome formation, thus

reducing overall rates of protein synthesis in the plastid. Conversely, when PRPS1 binds to ribosomes, polysome formation, and protein translation are stimulated. (B)

Under certain conditions, the interaction between GUN1 and the Hsp93/ClpC protein might serve to bring the chaperone into close proximity with the TIC complex,

thus favoring plastid protein import and reducing protein degradation. Alternatively, GUN1 could favor the interaction of Hsp93/ClpC with the Clp protease, thus

promoting protein degradation at the expense of protein import. Note that a similar pattern of behavior can also be proposed for the other GUN1-interacting

chaperones.
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as well as with plastid division, thus modulating the protein
content of the chloroplast in accordance with physiological
requirements.

Relatively simple biochemical analyses can be used to verify
the importance of GUN1 in influencing the interactions of
the stromal chaperones, such as protein complex fractionation
via sucrose-gradient ultracentrifugation and/or Blue-Native
PAGE coupled with two-dimensional (2D) SDS-PAGE, and
immunoblot analyses. Furthermore, the interactions of GUN1
with chaperones should be shown to occur at the plastid envelope
and protein import efficiency should be tested in chloroplasts
isolated from gun1 andWT seedlings in order to implicate GUN1
in regulating plastid protein import.

Retrograde Signal Induction
GUN1 may well be a master regulator of plastid-to-nucleus
communication in A. thaliana, as it appears to integrate signals
derived from perturbations in PGE, TPB, and redox state, in
order to modulate nuclear gene expression. Indeed, components
of all three pathways have been shown to interact with GUN1,
suggesting that signal integration might take place through
physical interaction.

Due to the limited abundance of GUN1, as indicated by
the fact that the protein has yet to be detected in plastid
proteome studies, it is tempting to disregard the idea that
its physical interaction with PGE-, TPB-, and redox-related
proteins could lead to protein sequestration and directly to
differences in protein translation, TPB, and redox balance
(Koussevitzky et al., 2007; Pogson et al., 2008; Woodson and
Chory, 2008; Kleine and Leister, 2016). Nevertheless, a direct
association with GUN1 could control protein abundance through
post-transcriptional mechanisms, as in the case of PRPS1 and
CHLD (Tadini et al., 2016). Thus, control of CHLD and
possibly of FC1 levels could alter the tetrapyrrole flux and
influence the abundance of the tetrapyrrole intermediate Mg-
protoporphyrin IX (Mg-ProtoIX), or the tetrapyrrole product
Fe-protoporphyrin IX (heme), which have been reported to
act as negative and positive retrograde signals, respectively
(for a review, see Chan et al., 2016). Alternatively, the
interaction of GUN1 with the near-identical paralogs ClpC1
and ClpC2 could contribute to the coordination of plastid
protein content with tetrapyrrole biosynthesis. Indeed, the
activity of the stromal Clp protease has been shown to
modulate tetrapyrrole flux by controlling (i) the accumulation
of chlorophyll a oxygenase, which converts chlorophyll a into
chlorophyll b (Nakagawara et al., 2007), and (ii) the level of
glutamyl-tRNA reductase (GluTR), thus regulating the rate-
limiting reaction in tetrapyrrole synthesis—the conversion of
glutamate-1-semialdehyde into 5-aminolevulinic acid (Apitz
et al., 2016).

Therefore, accurate determination of tetrapyrrole
intermediates should be performed in gun1 mutant and
WT backgrounds. The analyses should be restricted to
young seedlings or even to different developmental stages
of the chloroplast, in line with the roles of tetrapyrrole and
GUN1-mediated signaling in chloroplast development.

CONCLUDING REMARKS

In the past decade, substantial progress has been made in
elucidating retrograde signaling, with the identification of
multiple retrograde pathways and more than 40 components
involved at different levels in chloroplast-to-nucleus
communication. Nevertheless, the molecular function of GUN1
has remained unclear until the recent identification of the
GUN1 protein’s partners. Based on the functional roles of
GUN1 interactors and the embryo lethal or albino phenotypes
of most of the corresponding knock-out mutants, we have
learned that GUN1 plays a role in chloroplast biogenesis,
possibly by controlling protein turnover and protein import, and
through the coordination of plastid and nuclear gene expression.
Furthermore, GUN1 could have a role in the cpUPR process.
Nonetheless, the involvement of GUN1 in plastid biogenesis and
protein homeostasis is only just beginning to be understood.
For instance, other approaches will be needed to validate the
GUN1’s protein partners identified by CoIP-MS. The use of a
GUN1-GFP protein chimera, expressed under the control of a
strong constitutive promoter such as the Cauliflower Mosaic
Virus 35S (35S-CaMV), is indeed prone to the identification
of false interactors. CoIP-MS studies using a GUN1 specific
antibody appears to be the ideal strategy to identify protein
partners. Alternatively, the use of GUN1 chimeras under
the control of GUN1 native promoter is also practicable.
Moreover, we do not know whether all these activities take place
within one GUN1-containing nucleoid or if there are different
nucleoids/locations for each GUN1-dependent function. The
developmental stages of the chloroplast itself may even show
distinct patterns of compartmentalization of the different
functions. In addition, GUN1’s interactions with its diverse
partners might have quite different functional consequences:
(i) promote specific functions, by bringing enzymes into close
proximity with their own substrates and, ultimately, controlling
the enzyme abundance, (ii) inhibit processes by sequestering
sub-pools of specific proteins and, also in this case, controlling
their abundance.

We are confident that future work, based on the exciting
breakthroughs discussed in this Review, will shed new light
on the molecular functions of GUN1 and its involvement in
chloroplast biogenesis and protein homeostasis.
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