
 
UNIVERSITÀ DEGLI STUDI DI TORINO 

 
SCUOLA DI DOTTORATO IN SCIENZE 

DELLA NATURA E TECNOLOGIE INNOVATIVE 
 

DOTTORATO IN 
SCIENZE AGRARIE, FORESTALI ED AGROALIMENTARI 

 
 
 
 
 
 
 
 

                                                                             
 

i 
 

 

 

 

 

CICLO: XXVII 

 

 

Genetic investigation of seed development in grapevi ne 

 

 

Chinedu Charles Nwafor  

 

 

 

Docente guida: Coordinatore del Ciclo: 

Prof. Silvia Guidoni Prof. Dr. Aldo Ferrero  

 

 

 

ANNI 

2012; 2013; 2014 

 
 

ii 
 

Table of Contents 
1. Summary ........................................... ................................................................................ 1 

2. Introduction ...................................... ................................................................................ 3 

2.1. Seed formation during berry development in grapevin e ......................................................... 3 

2.2. Fertilization  ........................................................................................................................................... 3 

2.3. Seed: embryo and endosperm  ........................................................................................................ 4 

2.4. Seedlessness in grapevine  .............................................................................................................. 6 

2.5. Genetic basis of seedlessness in grapevine  ............................................................................... 8 

2.6. A comprehensive approach for understanding the mole cular mechanism underlying 
seedlessness in grapevine  ............................................................................................................... 9 

2.7. Next Generation Sequencing technologies (NGS)  .................................................................... 9 

2.7.1. Current applications of NGS include ............... ...................................................... 10 

3. Aims and objectives ............................... ........................................................................ 11 

4. Phenotypic characterization of wild-type and mutant  ................................................ 12 

4.1. The importance of cultivar identification in viticu lture and enology  .................................. 12 

4.2. PCR based methods used for accurate cultivar identi fication  ............................................. 12 

4.3. Identification of a seedless somatic variant of San giovese in the Calabria grapevine 
germplasm  .......................................................................................................................................... 13 

4.5. Main objectives are  .......................................................................................................................... 14 

4.6. Methods  ............................................................................................................................................... 14 

4.6.1. Sample collection ................................. ................................................................... 14 

4.6.2. Genomic DNA extraction and SSR genotyping of the wi ld-type and the mutant 14  

4.6.3. Evaluation of the phenotypic differences between wi ld-type and mutant: berry 
development and seed content ...................... ........................................................ 15 

4.6.4. Investigating the physiological process responsible  for the seedlessness 
phenotype ......................................... ....................................................................... 16 

4.6.5. Heritability of the seedless phenotype ............ ...................................................... 17 

4.6.6. Extraction of pollen .............................. ................................................................... 18 

4.6.7. Germination test .................................. .................................................................... 19 

4.6.8. Vitality test ..................................... .......................................................................... 19 

4.7. Results and discussion  ................................................................................................................... 20 

4.7.1. Genotypic profile of wild-type and mutant based on molecular markers SSR ... 20  

4.7.2. Phenotypic characterization of wild type and mutant  .......................................... 20 



 
 

iii 
 

4.7.2.1. Comparison between wild-type and mutant clusters .. ......................................... 20 

4.7.3. Physiological process possibly responsible for the seedlessness phenotype .. 26  

4.7.3.1. Comparing the emasculated groups of the mutant and wild-type ....................... 26  

4.7.3.2. Comparing emasculated and un-emasculated groups of wild-type .................... 26  

4.7.3.3. Comparing emasculated and un-emasculated groups of mutant ........................ 26  

4.7.4. Qualitative characterization of seed content ...... ................................................... 27 

4.7.5. Phenotypic evaluation aimed at investigating the in heritance of the seedless 
phenotype ......................................... ....................................................................... 33 

4.7.6. Pollen germination and viability test ............. ........................................................ 34 

5. Transcriptomic and genomic variations between wild- type and mutant .................. 38  

5.1. Methods  ............................................................................................................................................... 39 

5.1.1. Sample collection ................................. ................................................................... 39 

5.1.2. Array-based SNP genotyping: 20K grapevine Illumina CHIP ............................... 40 

5.1.3. Genotype filtering and polymorphism detection ..... ............................................. 40 

5.1.4. RNA extraction .................................... .................................................................... 40 

5.1.5. Library preparation and sequencing ................ ...................................................... 41 

5.1.6. cDNA sequence alignment and mapping to the referenc e genome .................... 41  

5.1.7. Variant call data analysis ........................ ................................................................ 42 

5.1.7.1. Selection of putative SNPs related to the trait of interest .................................... 42  

5.1.7.2. Sanger sequencing ................................. ................................................................ 43 

5.1.8. RNA-Seq raw read data ............................. .............................................................. 43 

5.1.8.1. Gene expression analysis .......................... ............................................................ 43 

5.1.8.2. Functional annotation and enrichment analysis ..... .............................................. 46 

5.1.8.3. Selection of candidate genes ...................... ........................................................... 46 

5.1.8.4. Real-Time PCR validation of RNA-Seq data .......... ................................................ 46 

5.2. Results and discussion  ................................................................................................................... 47 

5.2.1. Array-based SNP genotyping: 20K grapevine Illumina CHIP ............................... 47 

5.2.2. cDNA sequence alignment and mapping to the referenc e genome .................... 48  

5.2.3. SNP detection in RNASeq variant call data ......... .................................................. 49 

5.2.4. Sanger validation of putative SNPs ................ ....................................................... 50 

5.2.5. Gene expression analysis .......................... ............................................................ 53 

5.2.6. Functional enrichment analysis .................... ......................................................... 55 

5.2.7. Real-time PCR validation of RNA-Seq data .......... ................................................. 55 

5.2.8. Selection of candidate genes ...................... ........................................................... 56 

 
 

iv 
 

6. General discussion and conclusions ................ ........................................................... 67 

6.1. Investigating the physiological process responsible  for seedlessness in a 
Sangiovese seedless somatic variant  ......................................................................................... 67 

6.2. Berry development after emasculation in both wild-t ype and mutant  ............................... 68 

6.3. Identification of genomic variations between wild-t ype and mutant  .................................. 69 

6.4. Evaluation of common and contrasting expression pro files of DE genes in wild-type 
and mutant: A candidate gene approach  ................................................................................... 71 

6.4.1. Non-DE genes specific to the wild-type ............ ..................................................... 71 

6.4.2. Non-DE genes specific to the mutant ............... ..................................................... 71 

6.4.3. Differential regulation of common transcriptional p rocesses in the wild-type 
and the mutant .................................... .................................................................... 71 

6.4.4. Differentially expressed genes specific to the wild -type background ................. 73  

6.4.4.1. Down-regulated genes specific to wild-type (from st age E-L15 to stage E-L 27)73  

6.4.4.2. Down-regulated genes specific to wild-type (from st age E-L 27 to stage E-L 38)75  

6.4.4.3. Up-regulated genes specific to the wild-type (from stage E-L 15 to stage E-L 27)75  

6.4.4.4. Up-regulated genes specific to the wild-type (from stage E-L 27 to stage E-L 38)77  

6.4.5. Differentially expressed genes specific to the muta nt background .................... 78  

6.4.5.1. Down-regulated genes specific to the mutant (from s tage E-L 15 to stage E-L 
27) ............................................................................................................................. 78 

6.4.5.2. Up-regulated genes specific to the mutant (from sta ge E-L 15 to stage E-L 27) 80  

7. List of reference ................................. ............................................................................ 81 

8. Appendix .......................................... ............................................................................... 94 

9. Acknowledgement ................................... ..................................................................... 132 

10. Dedication ........................................ ............................................................................. 133 

 
 

 

 

 

 

 

 

 

 



 
 

v 
 

List of figures 

Figure. 1.  Grapevine sexual reproductive organ………………………………………………4 

Figure. 2.  Seed development…………………………………………………………………... .6 

Figure. 3.  Picture showing field experiment……………………………………………………17 

Figure. 4.  Schematic representation of cross pollination experiment……………………….18 

Figure. 5 . Clusters from the two clones at harvest……………………………………………22 

Figure. 6 . Berries from the two clones………………………………………………………… 23 

Figure. 7.  Comparison of berry- and seed- related traits in wild-type and mutant………...24 

Figure. 8.  Dissected berries…………………………………………………………….……….25 

Figure. 9 . Qualitative analysis of seed………………………………………………… ………25 

Figure. 10.  Physical observation of experimental groups 20 days post anthesis………… 28 

Figure. 11.  Clusters from two experimental groups…………………………………………..28 

Figure. 12.  Berries from two experimental groups…………………………………………… 29 

Figure. 13 .…………………………………………………………………………………………30 

Figure. 14 ………………………………………………………………………………...………. 31 

Figure. 15 ………………………………………………………………………………………….32 

Figure. 16 ………………………………………………………………………………………….33 

Figure. 17 . Pollen germination test……………………………………………………………. 36 

Figure. 18 . Pollen viability test…………………………………………………………………..36 

Figure. 19.  Morphometric measurement of mutant pollens…………………………………. 37 

Figure. 20 . The eighteen relevant categories of triplets of significance…………………….45 

Figure. 21. Distribution of mapped reads among genomic features………………………...49 

Figure. 22.  Distribution of effects by type and genomic region…………………………….. 51 

Figure. 23.  Insertions and deletions length………………………………………………....... 51 

Figure. 24.  Variant coverage…………………………………………………………………… 52 

 
 

vi 
 

Figure. 25.  Gene expression overlap between the three key developmental stages……. 60 

Figure. 26.  Gene overlap between the wild-type and the mutant in the first two and last two 

  developmental stages…………………………………………………………….60 

Figure. 27. Comparison of differential gene expression in the pairwise comparison of  

  developmental stages in wild-type and mutant plants……………………….. 61 

Figure 28 . Quantitative real-time PCR validation of RNA-Seq data…………………………62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

List of tables  

Table. 1 . Seed types……………………………………………………………………………8 

Table. 2 . Cross pollination……………………………………………………………………18 

Table. 3 . Pollen germination test……………………………………………………………..35 

Table. 4 . Pollen viability test…………………………………………………………………..35 

Table. 5.  Morphometric measurement of mutant and wild-type pollens…………………37 

Table. 6. A pairwise comparison of SNP loci between the two clones…………………..47 

Table. 7.  Summary of variant call from RNA-Seq data……………………………………49 

Table. 8.  Number of effects by impact………………………………………………………52 

Table. 9.  Number of effects by functional class……………………………………………52 

Table. 10. Transcript abundance measurement at each developmental stage………...57 

Table. 11. Comparison of gene expression between the wild-type and the mutant……57 

Table. 12. Evaluation of significantly up- and down-regulated genes in each pairwise 

comparison between developmental stages……………………………………………….58 

Table. 13.  Number of genes in each group of differential expression patterns for the wild-

type and the 

mutant………………………………………………………….………………………………59 

Table 14.  Candidate genes for seed content that have altered expression in the wild-type 

and the 

mutant…………………………………………………………………………………………63 

 

 

 

 
 

viii 
 

 



 
 

1 
 

1. Summary 

In a comprehensive attempt to understand the molecular and cellular processes driving 

seedlessness in grapevine, a seeded variety (wild-type) and its seedless somatic variant 

(mutant) were characterized at the morphological, genomic and transcriptomic levels in 

relation to berry development and seed content. The overall importance of clonal variability 

and the application of Next Generation Sequencing technology in highlighting the molecular 

events during seed formation within a developing berry have been clearly demonstrated. 

In this thesis three hypothesis were formulated, tested and confirmed. First it was 

hypothesized that the seedless mutant has a gross morphology identical to the wild-type 

except for berry size. In testing this hypothesis quantitative and qualitative traits that relate to 

berry development and seed content were compared in the two clones. Here traits that were 

significantly different in the two lines are those related only to berry size and seed content. 

This evaluation was performed both in control conditions (self-pollination) and after 

anther/stigma removal which further allowed the investigation of a possible role for 

Parthenocarpy, Stenospermocarpy or other mechanisms in promoting the phenotype of the 

seedless somatic variant.  

The second hypothesis states that the mutant is sterile or partly sterile hence cannot produce 

viable seeds. In order to verify this hypothesis pollen germination and viability assays were 

carried out in both clones. The tests confirmed pollen germination and vitality percentage of 

the mutant was significantly lower than that of the wild-type. 

The third hypothesis concerned the existence of genomic/transcriptomic differences between 

the two lines and could be tested through the power of the Next generation Sequencing 

technology. In particular, we raised the following questions: are there somatic mutations that 

can allow the wild-type and mutant to be distinguished? What are the temporal and spatial 

changes that could occur in their respective transcriptomes? 

Especially how does expression levels of key regulatory genes change before, during and 

after fertilization in the two clones? These key questions were addressed with the aid of 

Molecular marker analysis, Array based SNP genotyping and RNA-Seq approach. Using 58 

microsatellites, the analyzed loci showed identical profile in the wild-type and the mutant. The 

20K grapevine Illumina CHIP revealed 16333 identical SNP loci in the two clones, thus a 

further confirmation of the true identity of the seedless line. Conversely variant calling from 
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RNA-Seq enabled the identification of numerous somatic mutations at the whole-genome 

level in the two lines. A total of 71,557 SNPs and 37,121 INDELs were initially identified 

relative to the Pinot Noir reference sequence. Following filtering and selection based on 

putative functions relevant to the trait of interest, 142 candidate SNPs could be discovered out 

of which 120 were selected for Sanger sequencing. Thirty-one of them were true positives 

and mostly mapping to exonic regions, i.e. Coding SNPs. 

At the same time, RNA-Seq allowed the creation of inventories of gene expression at 

successive stages of seed formation. i.e. stages E-L 15 (single flowers in compact groups), E-

L 27 (young berries enlarging) and E-L 38 (berries harvest-ripe). Here the transcriptomes 

revealed by Illumina mRNA-Seq technology had approximately 98% of grapevine annotated 

transcripts and about 80% of them were commonly expressed in the two lines. Differential 

gene expression analysis revealed a total of 1075 differentially expressed genes (DE) in the 

pairwise comparison of developmental stages, which included DE genes specific to the wild-

type background, DE genes specific to the mutant background and DE genes commonly 

shared in both backgrounds. The analysis of differential expression patterns and functional 

category enrichment of wild-type and mutant DE genes highlighted significant coordination 

and enrichment of pollen and ovule developmental pathways. The expression of some 

selected DE genes was further confirmed by real-time RT-PCR analysis. 

To the best of our knowledge the work presented in this thesis represents the most 

comprehensive attempt to characterize the genetic bases of seed formation in grapevine. We 

have shown that a seeded wine grape and its seedless somatic variant are similar in several 

biological processes except for berry size and seed content. With a high throughput method 

we could identify an inventory of genes with altered expression in the mutant compared to the 

wild-type, which may be responsible for the seedless phenotype. The genes located within 

known genomic regions regulating seed content may be used for the development of 

molecular tools to assist table grape breeding. Therefore the data reported here have 

provided a rich genomic resource for practical use and functional characterization of the 

genes that potentially underpin seedlessness in grapevine. 
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2. Introduction 

2.1. Seed formation during berry development in gra pevine 

Seed formation in grapevine represents a sexual reproduction process of which the first step 

is inflorescence initiation and its emergence, followed by flower and finally berry development. 

In brief, the establishment of sexual organs of grapevine, growing in temperate region, occurs 

over two successive growing seasons. In the first season uncommitted primordia, or Anlagen 

are initiated during the latent bud formation in late summer. Overwintered buds burst following 

the perception of spring in the preceding season and the formation of flowers takes place later 

during this period. Bud burst is preceded by the activation of all the structures in the latent 

bud (Figure 1A, Boss and Thomas 2002), especially the differentiation of inflorescences 

forming an organ primordium from which flower primordia may develop; these events mark 

the early stage of floral organ development. The successive development of floral organs is 

simultaneous in each flower of the inflorescence in the same primordium and follows an order 

of organ appearance that is similar to all angiosperms. A detailed review on floral organ 

development in grapevine has been reported by (Coombe 1973, Coombe 1976, Srinivasan 

and Mullins 1981, Mullins et al 1992, and Dokoozlian, 2000). 

Most cultivated Vitis vinifera varieties have hermaphroditic (perfect) flowers, consisting of 

male (five stamens which are pollen-bearing organs of the flower) and female (pistil houses 

the stigma, style, and ovaries) organs. Each stamen is tipped with a pollen-producing anther 

and a filament or stalk. The stigma serves as a pollen receiver while the style is a short, 

slender column of tissue arising from the ovary to the stigma. The ovary contains four ovules 

with each ovule consisting of an embryo sac that houses a single egg. Located at the base of 

the flower are five odor glands. (Figure 1B and 1C, Coombe, 1992, Dokoozlian, 2000). 

2.2. Fertilization 

At anthesis, the calyptra (cap) is dislodged due to the growth of the stamen. Briefly, the 

calyptra is a cap shaped green structure produced by the fusion of petals during floral organ 

development, it encloses the reproductive organs and other tissues within the flower 

(Dokoozlian 2000). Following the detachment of the cap, the stamens and the pistil become 

exposed. At full bloom the anther splits open releasing their pollen grains. Multiple pollen 

grains may adhere to substances secreted on the stigma at the tip of the pistil which consists 

primarily of sugars, proteins, and mineral nutrients required for pollen tube development. 
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Grape varieties with hermaphroditic flowers are considered self-pollinating. With favourable  

environmental conditions the pollen grains germinate and form pollen tubes. The pollen tube 

grows down the pistil to the ovary and penetrate an ovule, where a male gamete (sperm) fuse  

with an egg to form the embryo. This association is termed fertilization and under normal field 

conditions, it typically occurs two to three days after pollination (Dokoozlian 2000, Williams 

2000). Following fertilization is a period (fruit set) when the fertilized flower starts to develop a 

seed and grape berry which protects the seed (Figure 1D). 

 

Figure 1.  Grapevine sexual reproductive organs. (A) Bud burst (B) Cross section of a developing 

inflorescence with arrows indicating the male and female gametophytes. (C) A hermaphroditic 

(perfect) grape flower. (D) Fruit set.  

2.3. Seed: embryo and endosperm 
There is a paucity of information on the regulatory regime of pre- and post-embryonic 

development in grapevine. However earlier work on the reproductive anatomy of grapevine 

classified embryo formation as the Geum variation of the Asterad (Figure 2A and B). Similarly 

the order and pattern of cell division in the embryo was reported to be similar to other 

angiosperms (Pratt 1971, Mullins et al 1992). Following successful fertilization the zygote 

goes through a resting period of several weeks before cellular division. The pattern of zygotic 
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cellular division in grapevine has been reviewed by (Pratt 1971). The author reported 

endosperm cellular division to have occurred before cytokinesis during zygote development. 

Also the author classified the pattern of endosperm formation in the grapevine as helobial 

(free nuclear division) with the first cellular division of the primary endosperm nucleus, 

producing a transverse wall across the embryo sac, which in turn forms a small chalazal cell 

and a large micropylar cell (Figure 2B). The micropylar cell contains the endosperm nucleus, 

which further divides severely, without developing cell wall. Three to six free-nuclear divisions 

occur in the micropylar chamber before any wall formation occurs, in contrast to the chalazal 

cells where every division is accompanied by cell wall formation. In the mature seed the 

colour of the embryo ranges from toques orange to yellowish brown and varies in size and 

length. While the endosperm is whitish and irregular in shape, its cells contains nutrients 

which are absorbed as the embryo develops (Figure 2C). 

Following fertilization intensive meristematic growth takes place in the inner and outer 

integument (Figure 2B). The rate of mitosis in the outer integument was reported to be 

maximum at 25 days after bloom and ceases by 45 days after anthesis. The outer integument 

thickens and elongates to form the beak. The middle layers of the outer integument in the 

basal half of the seed forms two projections on either side of the raphe which push the inner 

integument and nucellus inward. These projections are called seed folds or fossettes. The 

cells of the inner integument divide anticlinally to keep pace with the growth of the outer 

integument. The nucellus grows with the integuments by cell enlargement and division. For 

details on the physiological and anatomical features of endosperm and integument formation 

as well as development see (Pratt 1971, Mullins et al 1992). 
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Figure 2.  Seed development. (A) Animation of fertilization process. (B) Illustration of different stages 

of embryo development after pollination. (C) Dissection of a matured seed, 60 days post anthesis. 

Violet arrow indicates the seed coat, green arrow indicates embryo embedded in the endosperm and 

blue arrow indicates the endosperm. (A) and (B) were adapted from (Dokoozlian 2000 and Pratt 1971) 

respectively. 

2.4. Seedlessness in grapevine 
The origin of ancient seedless cultivars is unclear, however they probably arose due to single 

mutation that took place in one shoot of an otherwise normal vine. Seedless varieties of Vitis 

vinifera have been cultivated and prized for many years, mainly because they are preferred 
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for fresh and dry fruit consumption. Currently two main mechanisms, namely parthenocarpy 

and stenospermocarpy, have been described to be responsible for most seedless forms of 

grape (Ledbetter and Ramming 1989). Parthenocarpic conditions are usually referred to as 

fruit developmental process where true seedlessness occurs, i.e. fruit develops from the 

ovary in the absence of fertilization, yielding small berries that completely lack seeds. 

Examples are Corinto and its related cultivars that are used mostly for making raisins 

(Ledbetter and Ramming 1989, Cabezas et al 2006). Whereas in stenospermocarpy, 

pollination and fertilization take place normally, but seed development aborts at an early stage 

(2-4 weeks) after fertilization (Ledbetter and Ramming 1989, Mejia et al 2007). In this more 

prevalent mechanism, the pericarp (berry flesh) keeps growing but the embryo and/or 

endosperm arrests its development, resulting in the presence of seed traces and a reduced 

berry size at harvest (Doligez et al. 2002, Fanizza et al. 2005, Mejia et al. 2007). 

Previous studies on seedless grapes have focused on the anatomical and morphological 

difference between seeded and seedless cultivars, showing that the gross morphology of the 

vines is mostly similar except for seed formation and berry size (Pearson 1933, Olmo 1934, 

Olmo 1937, Barritt 1970). For instance, in Black Corinth cultivars known to be parthenocarpic, 

all embryo sacs observed at anthesis were at various stages of degeneration (Olmo 1937). In 

many cases the entire egg apparatus was missing or appeared abnormal. In addition the 

ovules were very small, with only one layer of sclerenchymatous cells in the outer integument. 

For stenospermocarpic cultivars, double fertilization was shown to trigger fruit development 

(Ledbetter and Ramming 1989). Ovule development was reported to be abnormal and normal 

in some cases (occasionally berries within clusters contain lignified seeds). Also endosperm 

development was observed to precede embryo development prior to its degeneration. The 

endosperm degenerates from 20 to 25 days post anthesis depending on cultivar although 

embryos may remain viable as they are usually arrested after endosperm degeneration. 

Aborted embryos appear as small whitish seeds or seed traces in the ripe berry. Integument 

development in stenospermocarpic cultivars was also reported to be abnormal and 

independent of embryo sac development (Ledbetter and Ramming 1989). In most abnormal 

ovules the inner integument protrudes beyond the outer integument and probably towards the 

chalazal outside the ovule showing little or no sclerenchyma cells. Comparison of three 

stenospermocarpic cultivars from pre-bloom through to 25 days after anthesis showed that at 

ripening the size of seed traces is relative to the time of endosperm/embryo degeneration 
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(Barritt 1970, Ledbetter and Ramming 1989). 

Numerous degree of seed development with continuous variation have been observed in 

grapevine, a summary of the various types of seeds are shown in Table 1  as described by 

(Striem et al 1992). 

Table 1 . Seed types 

Type  Description  

Normal seed  Complete lignified seeds 

Empty/soft seed  Well-developed seed but devoid of embryo, 

endosperm or nucleus 

Large seed trace  Berries with late endosperm/embryo 

degeneration. Traces are visible and measure 

from 4 to 5.5 mm 

Medium seed trace  Visible trace but smaller than large seed trace 

Small seed trace  Very small trace measuring below 2 mm 

 

2.5. Genetic basis of seedlessness in grapevine 
Several models were earlier proposed for controlling inheritance of seedlessness, however 

the widely accepted model suggests that genetic inheritance of seedlessness is governed by 

the expression of three independent recessive genes under the control of a dominant 

regulator gene named Seed Development Inhibitor (SDI) (Bouquet et al 1996, Lahogue et al 

1998, Adam-Blondon et al 2001, Doligez et al 2002). These studies were based on the 

analysis of a segregating population, i.e a progeny segregating for seedlessness obtained by 

crossing two partially seedless genotypes. To date several other studies adopting a similar 

approach have reported the existence of a number of QTLs controlling seedlessness in 

grapevine such as the QTL intervals located on linkage groups (LGs) 1, 2, 4, 5, 12, 14 15 and 

18 (Doligez et al 2002, Fanizza et al 2005, Cabezas et al 2006, Mejía et al 2007, Costantini et 

al 2008, Doligez et al 2013). Costantini et al (2007) and Mejía et al (2011) proposed a MADS-

box ovule identity gene (VvAGL11) to be the most probable candidate gene for the major QTL 

on LG18 controlling both berry weight and seed traits. It was also successfully tested for 
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usefulness in marker-assisted selection (Bergamini et al 2013). Recently Doligez et al (2013), 

reported the most stable QTL intervals for berry weight and seed traits containing many 

genes whose functions are possible related to seedlessness. 

While the identification of candidate gene through co-localization with QTL has been useful in 

shedding light on the positional genes with functions relevant to seedlessness, it is probably 

not a comprehensive approach towards characterizing seedlessness in grapevine. Indeed, 

identifying the genomic regions that regulate seed content variation within a segregating 

population is still quite far away from understanding the underlying biological processes. 

Additionally, all the QTL studies performed till now focused on a single type of seedlessness 

and genetic background, as they used Sultanina (Also known as Thomson seedless) or its 

derived varieties as parents. 

2.6. A comprehensive approach for understanding the  molecular mechanism 
underlying seedlessness in grapevine 

A logical approach to better understand the processes driving seedlessness would be to 

highlight the molecular events during seed formation within a developing berry in a seeded 

cultivar and its seedless mutant. Various studies in grapevine have reported the existence of  

somatic variations affecting several traits (Torregrosa et al 2011). therefore somatic variants 

for seed content may be a valuable material. 

Useful tools to this purpose are those providing a holistic view of the genomic or more 

importantly the transcriptional landscape during seed development in the two lines as well as 

allowing their direct comparison. Recently, novel approaches enabled by Next Generation 

Sequencing technologies (NGS) are proving invaluable towards archiving this feat. 

2.7. Next Generation Sequencing technologies (NGS) 
NGS technologies have wide range of applications, nowadays more are being developed at a 

fast rate compared to five years ago when they were initially introduced. NGS techniques 

allow the sequencing of thousands of genomes from humans to plants through to microbes. 

This has opened entirely new areas of biological inquiry resulting in the ability of researchers 

to investigate biological questions that were not previously possible such as ancient 

genomes, human disease, ecological diversity. Detailed review of current and emerging NGS 

technologies can be found in (Wold et al 2008, Wang et al 2009, Ponting et al 2009, Caniato 

2011). 
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2.7.1. Current applications of NGS include 

I. Full genome (re-) sequencing or variant discovery by re-sequencing of targeted 

regions of interest among individuals (mapping of structural rearrangements, which 

may include copy number variation, deletions, insertions and chromosomal inversions 

II. Transcriptome analysis (RNA-Seq, gene prediction and annotation, alternative splicing 

discovery). 

III. Epigenetic (large scale analysis of DNA methylation). 
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3. Aims and objectives 

Seedless grapes are of interest for both fresh fruit consumption and raisin production. This 

thesis is an attempt aimed at unravelling the genetic regulation of seed development in 

grapevine through an integrative approach. A seeded variety (wild-type) and a seedless 

somatic variant (mutant) are compared at the morphological, genomic and transcriptomic 

level at different developmental stages in order to understand the biological processes 

underlying the two distinct phenotypes. Once identified, the allelic differences determining 

phenotypic differences might be integrated in marker-assisted breeding programs with the 

potential to produce a new generation of seedless grapevine . 
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4. Phenotypic characterization of wild-type and mut ant 

4.1. The importance of cultivar identification in v iticulture and enology  

Grapevine (Vitis vinifera L) is one of the most important fruit crops in the world. In Italy, it is 

presently cultivated over an area of about 700,000 ha with a productivity of approximately six 

million Tonnes (FAO stat 2012). These grapes are mainly used for wine purposes. 

Viticulturists and winemakers are increasingly interested in exploring genetic diversity among 

grapevine varieties, mainly to rationalise, preserve and exploit genetic resources. Special 

attention is given to local and old materials, which are mostly forgotten (relic). This interest 

resulted in a strong emphasis on proper identification of grapevine cultivars (ensuring 

trueness to type) and of their genetic relationships sometimes providing evidence of intra-

varietal variation (berry colour variants being the most frequent). Indeed the identification of 

grape varieties including their synonyms (different names for the same cultivar) and 

homonyms (same name for different cultivars), and how they relate with other grape cultivars 

is not only crucial for conservation and genetic improvement. It is equally important for wine 

production and marketing in several regions of the world. For example, proper identification 

and verification of synonyms has a practical significance with respect to countries where wine 

regulation is enforced by legislation e.g. Italy, a member state within the European Union, 

where the use of wine grapes for cultivation is strictly regulated: only registered and 

specifically authorized cultivars can be grown. In addition, the rules for the wine geographic 

appellations establish the grapes to be used (Schneider et al 2001). 

4.2. PCR based methods used for accurate cultivar i dentification 

PCR based molecular markers, i.e. Microsatellites also known as SSR (Simple Sequence 

Repeats), RAPDs (Random Amplified Polymorphic DNAs), AFLPs (Amplified Fragment 

Length Polymorphism) and SNPs (Single Nucleotide Polymorphism)  present an alternative 

and objective means for grapevine cultivar identification independent of the phenotypic 

characteristics used in ampelography (Pellerone et al 2001). In particular, SSRs are widely 

adopted for genetic assessment of grapevine cultivars mainly because they are highly 

polymorphic and co- dominantly inherited (Maul et al 2012). Also SSR and more recently SNP 

data are easy to interpret and both assay are amenable to automation allowing the 

genotyping of several hundred cultivars in a single run thereby saving cost and time 
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(Emanuelli et al 2008).  

4.3. Identification of a seedless somatic variant o f Sangiovese in the Calabria 
grapevine germplasm 

Calabria is one of the regions in the south of Italy with ancient viticultural practices and wine 

tradition. In this area several vineyards are small, holding ancient, local as well as widespread 

varieties, and represent a potential source of grapevine varietal diversity. In 2009, more than 

250 grapevine accessions held in the private collection of the Librandi winery (Cirò Marina, 

KR, Italy) were characterized using SSR and ampelographic descriptors with the aim of 

evaluating the genetic diversity. The study identified several synonyms for the major cultivars 

and the homonyms were distinctly defined (Schneider et al 2009). Among the synonyms was 

an accession named Corinto Nero which had the same profile at 10 SSR loci as Sangiovese, 

a widespread wine cultivar in Italy. Surprisingly, gross morphology of the Corinto Nero vines 

was the same as that of Sangiovese, except for the reduced berry size and seedless berries 

(berries with rudimental seeds). 

4.4. Is the Corinto Nero grown in Calabria the true  Corinto Nero?  

In today’s world the grape cultivar Corinto Nero as it is known in Italy is alleged to have come 

from Korinthos (Corinth) in the North-east of Peloponnese Greece where it was first called 

Korintiaki and known as Corinthian in Greek (Robinson et al 2012). Korintiaki has many 

synonyms which differed from country to country and region to region within a particular 

country. For example in some parts of Australia and United States of America (USA) it is 

called Currant Grape while in other parts it is called Zante Currant, in fact, in California it is 

called Black Corinth. In France it is called Corinthe Noir as well as Raisin de Corinthe. In Italy 

it has three official synonyms namely Corinto Nero, Passerilla and Passula di Corinto. 

In the DOC (Denominazione di origine controllata) wine Malvasia delle Lipari produced in the 

Eolie islands, off the northern coast of Sicily (not far from Calabria), 5% of Corinto Nero 

grapes are allowed. However the results of Schneider et al (2009) cast doubt on the trueness 

to type and origin of the so called “Corinto Nero” grown in the Eolie islands and Calabria 

region, if it was the true Korintiaki or perhaps a seedless form of Sangiovese mistaken for 

Korintiaki (the true Corinto). 

Although the true origin of Korintiaki may not be in Greece as genetic and morphological 

studies have distinguished it from other Mediterranean wine grape varieties (Robinson et al 

2012). Also Vargas et al (2007) reported that neither Corinthe Blanc from Greece nor Corinto 
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Noir from Italy were mutants of Korintiaki. Taken together, these information suggest that the 

Corinto Nero grown in the Eolie islands and Calabria may not be the true Korintiaki. 

This chapter is aimed at confirming the trueness to type of Corinto Nero (hereafter mutant) 

identified in Calabria region by performing a comprehensive genotypic and phenotypic 

characterization of the mutant in comparison with a reference true to type Sangiovese cultivar 

(hereafter wild-type). 

4.5. Main objectives are  

I. To analyse the DNA profile of mutant and compare it to the profile a reference wild-

type using fifty eight microsatellite loci. 

II. To perform quantitative and qualitative characterization of the phenotypic differences 

observed between mutant and wild-type if any. 

III. To investigate the physiological process possibly responsible for seedlessness 

phenotype of the mutant (parthenocarpy or stenospermocarpy). 

IV. To determine whether the seedless phenotype of the mutant is heritable. 

V. To test the viability of the mutant pollen. 

 

4.6. Methods 

4.6.1. Sample collection 
The grapevine germplasm collection of Grinzane Cavour maintained by CNR-Istituto di 

Virologia Vegetale di Grugliasco (Torino, Italy), holds the same mutant accession  identified in 

Calabria since it was vegetatively propagated, as well as the true reference Sangiovese. 

For molecular marker analysis, young leaves were collected from wild-type and mutant. 

For pollen germination and viability tests, wild-type and mutant pollens were obtained from 

inflorescence harvested on May 29th, 2014 when the plants were at flowering stage. Samples 

were kept in cooler bags with silica gel. Each genotype had two replicates, i.e. WT I, WT II, 

MT I, and MT II consisting of 1-2 opened flower clusters with a few flowers still closed. 

4.6.2. Genomic DNA extraction and SSR genotyping of  the wild-type and the mutant 
Total genomic DNA was extracted from young immature leaves as described by Emanuelli et 

al (2013). Fifty eight SSR markers, spread across the nineteen chromosomes of grapevine 

genome, were used to genotype the wild-type and the mutant (Appendix 1). Of this set, 

twenty SSR markers were previously described by (Emanuelli et al 2013), thirty-two SSR 
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markers used by (Costantini et al 2008) and six SSR markers developed by (Mejía et al 

2011). 

PCR amplifications for multiplex panels were carried out in a final volume of 12.5 µl containing 

10 ng of genomic DNA, 0.25 mM of each dNTP, 2 mM MgCl2, 1.5 U Taq DNA Polymerase 

(AmpliTaq Gold™, Applied Biosystems, Foster City, CA). The amplification protocol was as 

follows: 7 min at 95 °C; 30 cycles of 45 sec at 95 °C, 1 min at 54 °C, 30 sec at 72 °C; and 1 

hour at 72 °C. Primers failing to amplify at 54 °C were further tested in single panel at different 

annealing temperatures. PCR products (0.5 µl) were mixed with 9.3 µl of formamide and 0.2 

µl of the GeneScan™ 500 ROX® Size Standard (Applied Biosystems) and 0.5 µl of this mix 

was subjected to capillary electrophoresis on an ABI PRISM 3130 Genetic Analyzer (Applied 

Biosystems) to separate DNA fragments. GeneMapper v3.5 (Applied Biosystems) was 

employed for the allele size estimation. 

4.6.3. Evaluation of the phenotypic differences bet ween wild-type and mutant: berry 
development and seed content 

Wild-type and mutant phenotypes was reported for the first time by Schneider et al (2009).  

In the present study, quantitative and qualitative evaluation of berry development and seed 

content for wild-type and mutant was carried out in three successive growing seasons: 2012, 

2013 and 2014. In each plant, if available, 3-5 representative clusters or bunches were 

randomly selected and measured for bunch length (BHL) and weight (BHW) in order to 

compute mean values. Next 25 berries were randomly taken from a mixture of 4-5 

representative clusters, weighted (berry weight, BW) from which mean berry weight (MBW) 

was calculated. Subsequently 10 berry diameter readings were randomly taken and averaged 

for each cluster (MBD) . 

Seeds and seed traces extraction was performed on 25 berries randomly sampled from a 

cluster mix. Counts were taken for the number of berries that contain seeds and seed traces 

in both clones, in order to compute total seed number (SN) and mean seed number per berry 

(MSN). Total seed fresh weight (TSFW) was measured and seed number was used to 

compute mean seed fresh weight (MSFW = TSFW/SN). 

Qualitative assessment was performed based on classification of seed content, using a 

method previously described by Bergamini et al (2013). In brief, all analyzed clusters were 

divided in four classes, namely C1 for aborted and not evaluable seeds, C2 for aborted and 

rudimentary seeds, C3 for complete not lignified seeds, and C4 for lignified seeds. 
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The normality of each trait distribution was evaluated by the Kolmogorov-Smirnov test. 

Genotype effect was tested with analysis of variance and Kruskal-Wallis test (p< 0.05). 

Statistical analyses were performed with R packages. 

4.6.4. Investigating the physiological process resp onsible for the seedlessness 
phenotype 

In order to determine whether the mutant has a parthenocarpic or stenospermocarpic 

phenotype, emasculation and covering experiments were performed before anthesis in the 

two clones (Figure 3). When available 12 pre-capfall (fused petals) inflorescence were 

randomly selected, 8 inflorescences were manually decapped and emasculated. The 

emasculated inflorescences consisted of two groups: Group one (Emasculation plus stigma, 

EMS+ST) where only anthers were removed; group two (Emasculation minus stigma, EMS-

ST) both anthers and stigma were carefully removed. Next the remaining 4 pre-capfall 

inflorescences were left un-emasculated (self-pollinated, SP). Finally both emasculated and 

un-emasculated groups were tagged for easy identification and covered with paper bags. The 

self-pollinated inflorescences were used as a control making three treatments with four 

replicates per clone. At harvest, quantitative and qualitative evaluation of berry and seed traits 

were performed as follows. 

A. Comparing the emasculated groups of mutant and wild-type. 

B. Comparing emasculated and un-emasculated groups of wild-type. 

C. Comparing emasculated and un-emasculated groups of the mutant. 
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Figure 3.  Picture showing field experiment (A) Grapevine inflorescence before emasculation. (B) 

Emasculation process. (C) Tagging and covering of emasculated inflorescence. (D) Complete 

emasculation treatments imposed on experimental plants in the vineyard. 

4.6.5. Heritability of the seedless phenotype 
To test the heritability of the seedless trait of the mutant, control crossing experiments (Figure 

4) were carried out between the mutant and two cultivars, Nebbiolo and Trebbiano toscano 

respectively. Briefly Nebbiolo is an early flowering cultivar while Trebbiano toscano is late 

flowering. Both varieties are highly productive. Prior to their respective anthesis (Mutant, 

Nebbiolo and Trebbiano toscano), if available at least 5 pre-capfall inflorescences were 

randomly selected from 4 plants of each cultivar. The inflorescence were manually decapped 

and emasculated. The emasculated inflorescences of mutant were manually pollinated with 

pollens obtained from Nebbiolo and vice versa. The same was done for Trebbiano toscano. 

The total number of crosses carried out are detailed in Table 2. 
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Table 2 . Cross pollination 

Cross pollination Number of plants 

emasculated 

Number of clusters emasculated 

Mutant x Nebbiolo 4 4 

Nebbiolo x Mutant 4 5 

Mutant x Trebbiano toscano 4 4 

Trebbiano toscano x Mutant 4 10 

 

All manually pollinated inflorescences were tagged and covered with paper bags. At harvest 

quantitative and qualitative evaluation were performed for all crosses that set fruit, as 

described in Section 4.6.3  above. All seeds obtained from the respective crosses were 

washed, disinfected and stored at 4o C for three months prior to seed germination trials. 

 

Figure 4.  Schematic representation of cross pollination experiment. (A) Grapevine inflorescence 

before emasculation. (B) Emasculation process. (C) Emasculated inflorescence. (D) Nylon pollination 

brush. (E) Manual pollination. (F) Covering and tagging of pollinated inflorescence. 

4.6.6. Extraction of pollen 
Anthers from freshly opened flowers were gently removed by separating them from the petal 

and sepals. Next these anthers were then placed in Petri dishes in the desiccator (4 ° C) in a 

refrigerator for three days before pollen collection.  

For closed flowers  the inflorescences were placed in water for three days to allow for 
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maturation. Unfortunately, the flowers did not open to release pollens as expected. As a result 

all individual flowers from this cohort were removed and kept them under controlled conditions 

for 20 h, exposed to a temperature of 29 o  C, at 1 m from a 125 W lamp. Pollen grains were 

gathered from both opened and closed flowers separately, through a sieve. Finally all 

collected pollens were stored in a desiccator at (4 ° C) in a refrigerator.  

4.6.7. Germination test 
Germination tests were performed independently for wild-type and mutant, as previously 

described by Carreno et al (2006). The solution used for pollen germination assay was 

composed of the following: 

20% sucrose 

100 mg / L boric acid 

300 mg / L calcium nitrate. 

Prior to germination test assay, the pollen grains were set to rehydrate (equilibration of pollen 

in humid air, Relative Humidity = 100%) at room temperature for at least an hour. 

Germination assay  was carried out in a mass culture medium contained in 5-cm wide plastic 

Petri dishes at the recommended temperature of 25 ° C (approximately) for 24 hours. The 

quantity of pollen was proportional to the volume of the medium in each Petri dish (5 mg in 5 

ml of germination medium). Finally slides were prepared and samples were analysed in 

replicates. Sprouted grains were counted in random fields by photomicrographs, those that 

are considered germinated are only granules where the length of the pollen tube appeared 

double compared to the granule. 

4.6.8. Vitality test 
Pollen viability test was performed individually for wild-type and mutant. A solution of 2,3,5-

triphenyl tetrazolium chloride (TTC) was used for staining (few drops of 1% TTC (0.2 g. TTC 

and 12 g. sucrose) were dissolved in 20 ml distilled water). Replicates for each sample are 

prepared in the absence of light, TTC solution was dropped by Pasteur pipettes on 

microscope slides and pollen were re-shaken with a slim brush (one brush per plant type) 

covered with a coverslip. Next the microscope slides were placed in an incubator for one hour 

at temperature of 37 °C. The staining for both clon es were analysed under the microscope. 

Out of a population identified by random fields, approximately 300 grains per slide were 

counted separately; granules that are viable appeared red and non-viable as (yellowish to 
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colorless). Also quantitative analysis of pollen morphology was performed for both clones by 

measuring the polar and equatorial diameter of 50 randomly selected pollen grains. 

 

4.7. Results and discussion 

4.7.1. Genotypic profile of wild-type and mutant ba sed on molecular markers SSR 
Using a total of 58 SSR molecular markers to genotyping the wild-type and mutant, means 

that previous genotyping assay performed on the two clones (Schneider et al 2009) has been 

extended by at least 4 folds. The markers were selected such that they are spread across the 

grapevine genome. Analysis of microsatellite results showed the two clones to have identical 

allele sizes at all the fifty-eight analyzed loci. See (Appendix 1).  

4.7.2. Phenotypic characterization of wild type and  mutant 
The results of the first ampelographic characterization are described in (Schneider et al 

2009). The authors reported that the two varieties shared  all phenotypic characters except for 

the traits related to berry and seed size. Indeed the field observation carried out in this work 

for three successive years 2012, 2013 and 2014 showed the mutant had a gross morphology 

consistent with the wild-type except for the traits related to berry development and seed 

content, thereby confirming the earlier reports of Schneider and co-workers (Figures 5 and 6). 

Analysis of quantitative and qualitative data correlated to berry development and seed content 

for the growing seasons mentioned above produced very similar results therefore only data 

for one year (2014) are shown. Normality test indicates a departure from normal distribution of 

most traits (BHL, BHW, MBW, MBD, SN, TSFW, MSN and MSFW) under study, even after 

data sets were log-transformed; instead of a normal distribution most of the traits show a 

bimodal distribution, While only one trait (BHW)  exhibited a normal distribution. Therefore 

both parametric and nonparametric test were employed to highlight significant difference 

between wild-type and mutant with respect to traits correlated to berry development and seed 

content, (Appendix 2).  

4.7.2.1. Comparison between wild-type and mutant cl usters 
The results of comparison between wild-type and mutant self-pollinated experimental groups 

showed the mutant varied significantly (p < 0.05) from the wild-type in most of the traits under 

study (Appendix 2). For example the variation seen in bunch weight, mean berry weight, 

mean berry diameter, mean seed number, number of berries with and without seed (Figure 
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7). However there was no significant difference (p > 0.05) between the two clones in bunch 

length and mean seed fresh weight (Figure 7 and Appendix 2).  With regards to the non-

significant differences observed in the two clones, i.e. mean seed fresh weight is largely a 

less controlled parameter due to the fact that seeds may not be completely free of  pulp after 

extraction from berry, which could lead to weight artefacts, perhaps a better augmentation to 

this parameter would be seed dry weight (SDM). In terms of bunch length, the non-significant 

difference observed further highlights the co-linearity of the two clones during inflorescence 

development. 

Qualitative assessment of seed content revealed that the wild-type had two distinct berry 

sizes (Figure 5 and 6), all berries contained seeds and the two seed sizes can be visualized 

in (Figure 9). All wild-type seeds belonged to class C4 (Figure 6 and 9). Each berry contained 

a minimum of two seeds and a maximum of five seeds. Very few berries from mutant  clusters 

had comparable size to those of the wild-type and contained seeds (at most two) belonging to 

class C4 (Figure 7 and 8). These berries were mostly located on the upper part of the cluster 

(Figure 5). Majority of the mutant belonged to classes C2 and C3 having small berry diameter 

ranging from (0.2-0.6cm), occasionally containing small seeds that are either greenish or 

whitish in colour (Figure 8).  
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Figure 5 . Clusters from the two clones at harvest. (A) Wild-type cluster. (B) Mutant cluster. 
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Figure 6 . Berries from the two clones. (A) Wild-type berries. (B) Mutant berries. 

 

 

 
 

 

Figure 7.  Comparison of berry

(MBW). (C) Mean berry diameter (

number of berries without seed. 

 

Comparison of berry- and seed- related traits in wild

Mean berry diameter (MBD). (D) Mean seed number per berry (MSN). 

berries without seed. (G) Mean seed fresh weight (MSFW) and 
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related traits in wild-type and mutant. (A) Mean bunch weight (BHW). 

Mean seed number per berry (MSN). (E) Mean 

Mean seed fresh weight (MSFW) and (H) Bunch length (BHL).

Mean bunch weight (BHW). (B) Mean berry weight 

Mean number of berries with seed. 

Bunch length (BHL). 

 

Mean berry weight 

umber of berries with seed. (F) Mean 
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Figure 8.  Dissected berries. (A) Wild-type berries (B) Mutant berries. Red arrows indicate the 

presence of seeds. 

 

 

Figure 9 . Qualitative analysis of seed. (A) Wild-type seeds from berries in classes I and II. (B) Mutant 

seeds from all the berries in class I and seed traces from randomly selected berries in class II .
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4.7.3. Physiological process possibly responsible f or the seedlessness phenotype 
To investigating whether parthenocarpy or stenospermocarpy is responsible for the seedless 

phenotype of the mutant, three treatments were imposed on wild-type and mutant 

inflorescence respectively before anthesis. The experimental procedure included three groups 

(EMS+ST, EMS-ST and SP, see Figure 3 and Methods for details). Physical observation of all 

experimental groups 20 days post anthesis revealed that wild-type and mutant plants 

belonging to group EMS+ST were able to set fruits comparable to the SP groups after 

emasculation (Figure 10). Equally a few of the EMS-ST group had fruit set while majority of 

the inflorescences appeared dead. 

Following these intriguing observation, all clusters within the experimental groups were 

monitored at intervals (every two weeks) from 20 days post anthesis through to harvest. 

During this monitoring period, it was observed, that as berry development progressed 

individual berries as well as clusters of SP group grew bigger in size compared to the 

EMS+ST and few surviving EMS-ST in both clones. At harvest clusters of EMS+ST group in 

both wild-type and mutant had reduced berry size, with the mutant EMS+ST groups having 

much smaller size than the wild-type EMS+ST group (Figure 11 and 12). Quantitative traits 

related to bunch and berry weight as well as seed content were analysed as described in the 

method. However the EMS-ST group was excluded from further analysis as very few samples 

were available. 

4.7.3.1. Comparing the emasculated groups of the mu tant and wild-type 
The results shown in Figure 13 suggests that bunch weight and mean berry weight varied 

significantly between the experimental groups (p < 0.05, Appendix 3), while bunch length and 

mean berry diameter were not significantly different (p > 0.05), in addition to mean seed 

number, mean seed fresh weight, number of berries with and without seeds (Appendix 3). 

4.7.3.2. Comparing emasculated and un-emasculated g roups of wild-type 
As shown in Figure 14, all the traits under study showed significant difference (p < 0.05, 

Appendix 4) between the experimental groups except MSFW. Here the observed significant 

difference was not surprising, because it was evident during field observation, where the 

emasculated groups exhibited reduced berry size compared to the self-pollinated group. 

4.7.3.3. Comparing emasculated and un-emasculated g roups of mutant 
The results reported in Figure 15 showed that the mutant emasculated groups varied 
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significantly (p < 0.05, Appendix 5) from those of the self-pollinated group in bunch length, 

bunch and mean berry weight. While average berry diameter, mean seed number, mean seed 

fresh weight, number of berries with and without seeds were not significantly different (p > 

0.05, Appendix 5).  

4.7.4. Qualitative characterization of seed content  
Figure 16 shows different types of seedlessness observed in mutant (self-pollinated and 

emasculated) and wild-type emasculated groups. Similarly characterization of qualitative 

seedless level gave support to the type of seedlessness observed here (See Appendix 6, 

Figure 1). For example the evaluation of most berries from the wild-type and mutant EMS+ST 

group, revealed they belonged to class C1. Although some berries from the wild-type 

EMS+ST group contained seeds that appeared to be lignified, when these seeds were 

weighed they had extremely low weight (0.4g). The mutant SP group belonged to classes C2 

and C3, as most of the berries had noticeable seed traces and occasionally lignified seeds. 

While wild-type SP belonged to class C4 since nearly all the berries contained well lignified 

seeds (Figure 12).  

Taken together these observations could suggest that stenospermocarpy may be responsible 

for the seedless phenotype observed in the mutant (SP groups) since pollination and 

fertilization had occurred. Furthermore the non-detectable seed trace (class C1) observed in 

wild-type and mutant EMS+ST groups could be attributed to parthenocarpy. However what is 

puzzling is how some of the berries could contain seed, if emasculation was done without 

errors or no form of pollination had occurred. Then it is worth investigating the source of the 

seed. There are reports in the literature about  occurrence of cleistogamy and apomixis in 

grapevine hence it is worth carrying out further studies on these seeds at the genetic level n 

order to understand the origin of the embryo’s. 
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Figure 10.  Physical observation of experimental groups 20 days post anthesis. (A) Wild-type self-

pollination. (B) Mutant self-pollination. (C) Wild-type emasculated plus stigma. (D) Mutant 

emasculated plus stigma. 

  

Figure 11.  Clusters from two experimental groups. (A) Wild-type self-pollination. (B) Wild-type 

emasculated plus stigma. (C) Mutant self-pollination. (D) Mutant emasculated plus stigma. 
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Figure 12.  Berries from two experimental groups separated in two classes based on size. (A) Wild-

type self-pollination. (B) Wild-type emasculated plus stigma. (C) Mutant self-pollination. (D) Mutant 

emasculated plus stigma. 

 

  

 
 

 

Figure 13.  (A) Bunch weight (BHW). 

(MSN). (E) Mean Number of berries with seed. 

fresh weight (MSFW).

Bunch weight (BHW). (B) Mean berry weight (MBW). 

Mean Number of berries with seed. (F) Mean Number of berries without seed. 

fresh weight (MSFW). 
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Mean berry weight (MBW). (C) Mean berry diameter 

Mean Number of berries without seed. 

Mean berry diameter (MBD). (D) Mean seed number per berry 

Mean Number of berries without seed. (G) Bunch length (BHL) and (H)

 

Mean seed number per berry 

(H) Mean seed 



 
 

 

Figure 14.  (A) Bunch length (BHL). 

seed number per berry (MSN). 

berries without seed. 

Bunch length (BHL). (B) Bunch weight (BHW). 

seed number per berry (MSN). (F) Total seed fresh weight (TSFW). 
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Bunch weight (BHW). (C) Mean berry weight (MBW). 

Total seed fresh weight (TSFW). (G) Mean number of berries with seed and 

Mean berry weight (MBW). (D) Mean berry diameter (MBD). 

Mean number of berries with seed and (H) Mean number of 

 

Mean berry diameter (MBD). (E) Mean 

Mean number of 

 
 

 

Figure 15.  (A) Bunch length (BHL). 

seed number per berry (MSN). 

berries without seed. 

Bunch length (BHL). (B) Bunch weight (BHW). 

seed number per berry (MSN). (F) Mean seed fresh weight
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nch weight (BHW). (C) Mean berry weight (MBW). 

Mean seed fresh weight (MSFW), (G) Mean number of berries with seed and 

Mean berry weight (MBW). (D) Mean berry diameter (MBD). 

umber of berries with seed and (H) Mean n

 

Mean berry diameter (MBD). (E) Mean 

Mean number of 
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Figure 16 . Various degree of seedlessness observed in the experimental groups. Red arrows indicate 

aborted or undeveloped seeds. (A) Wild-type emasculated group. (B) Mutant self-pollinated group. (C) 

Mutant emasculated group. 

4.7.5. Phenotypic evaluation aimed at investigating  the inheritance of the seedless 
phenotype  

From 3 to 5 clusters each were observed in the crosses between Mutant x Nebbiolo and 

Trebbiano toscano x Mutant at harvest, indicating that the method described in Figure 3 was 

successful for pollination. For the Nebbiolo x Mutant cross, very few inflorescences were able 

to set fruit (two clusters and one later died due to infection). Therefore the cross between 

Mutant x Trebbiano toscano was excluded from the study due to lack of statistical power. 

Comparison of quantitative data for traits correlated to seedlessness among the crosses 

carried out was not possible due to the fact that only one cluster was observed for all the 

Nebbiolo x Mutant crosses. However seed count data showed that nearly all berries from the 

Nebbiolo x Mutant contained at most two seeds while majority of berries from cross Mutant x 

Nebbiolo had no seed. Furthermore qualitative data analysis showed that few berries from 

Mutant x Nebbiolo and  Trebbiano toscano x Mutant contained lignified seeds and most of the 

berries without seed belonged to class C2. Finally  all seeds obtained from the crosses failed 

to germinate after several germination trials. Taken together these results suggest that 

perhaps both male and female gametophyte of the mutant work in concert to promote 

seedlessness, how this is achieved in the mutant is still unknown, however a stated earlier 

our data suggests the mutant is a stenospermocarpic cultivar. 
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4.7.6. Pollen germination and viability test 
To test the hypothesis of a non- functional pollen in the mutant, pollen germination and 

viability tests were performed, using pollen samples from both the wild-type and mutant 

plants. The experimental procedure consists of pollen extracted from both clones at two 

different phases. See methods for details of experimental design. 

The result shown in Table 3 and Figure 17 A, suggest that pollens extracted from the opened 

flowers had a good germination capacity with respect to the wild-type (albeit with some 

differences between the replicates WTI and WTII). The pollen extracted subsequently showed 

very low (less than 4%) germination percentages. Furthermore the results indicated that none 

of the mutant pollen samples germinated, regardless of the replicate (MT I, MT II ) and 

extraction phase (Table 3 and Figure 17 B). 

Pollen viability test results are given in Table 4 and show the wild-type viability rate to be 

significantly higher than the mutant which had no reaction with the TTC in all stages and 

replicates under study (Figure 18 A and B).  

Following these results, morphometric analysis of the pollen grains were carried out, 

comparing the pollen samples of the mutant to the wild-type, as well as data from literature 

(Table 5). When considering the range of morphometric measures reported in the literature 

(Bucher et al, 2004 for instance), Vitis vinifera pollen polar diameter average is about 22.8 µm 

and range from 22-25µm; while equatorial diameter mean is 23.7µm, ranging from 23-27µm. 

Here about half of the mutant pollen grains measured (27 out of 50 for equatorial diameter; 26 

out of 50 for polar diameter) exhibited values lower than 21µm for both equatorial and polar 

diameter. In contrast the measurements performed on the wild-type pollen samples were 

homogeneous and showed very low variability although slightly lower than the measurements 

given in the bibliography (Table 5).  

Finally the morphometric result suggests mutant produced deformed pollen grains (Figure 

19). This is a new finding, in addition to the other morphological differences found between 

the two clones as it is the first time morphometric data are studied in the two clones. 
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Table 3 . Pollen germination test 

Cultivar  Replicate  Pollen 

extraction  

Total No. 

pollen 

observed  

Total No 

germinate

d 

pollen  

Average 

percentage of 

germinated 

pollen  

Wild -type   I Phase 1 1220 567 46,47 

Wild-type   II Phase 1 989 206 20,79 

Wild -type  I Phase 2 1220 0 0 

Wild -type  II Phase 2 989 0 0 

Mutant  I Phase 1 287 0 0 

Mutant  II Phase 1 415 0 0 

Mutant  I Phase 2 0 0 0 

Mutant  II Phase 2 0 0 0 

 

Table 4 . Pollen viability test 

Cultivar  Replicate  Pollen 

extraction  

Total No. 

pollen 

observed  

TTC 

positive + 

Medium  

Average 

percentage pollen 

positive TTC  

Wild-type   I Phase 1 387 146 37,7 

Wild -type   II Phase 1 401 195 48,6 

Wild -type  I Phase 2 392 39 9,9 

Wild -type  II Phase 2 403 46 11,4 

Mutant  I Phase 1 402 0 0 

Mutant  II Phase 1 406 0 0 

Mutant  I Phase 2 427 0 0 

Mutant  II Phase 2 412 0 0 
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Figure 17 . Pollen germination test. (A) Wild-type pollen tube growth. (B) Mutant pollen showing no 

germination. 

 

 

 

Figure 18 . Pollen viability test. (A) Wild-type pollens showing positive staining with TTC (reddish 

purple color). (B) Mutant pollens showing no reaction with TTC (yellowish colour). Stainings for both 

clones were analyzed under the microscope. 
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Table 5.  Morphometric measurement of mutant and wild-type pollens 

 Equatorial 

diameter  

Mean-dev.st  

Polar diameter  

mean-dev.st  

Equatorial 

diameter  

min -max  

Polar diameter  

min-max  

CN I 22,96+ 4,42 23,17+4,00 16,5-31,5 16,5-30,0 

SG I 23,21+0,84 21,82+0,98 21,0-24,0 19,5-24,0 

 

 

 

Figure 19.  Morphometric measurement of mutant pollens revealed abnormal shape and size. (A) 

Pollen extracted in phase 1. (B) Pollen extracted in phase 2. 
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5. Transcriptomic and genomic variations between wi ld-type and mutant 

The major events that take place in grapevine normal seed development, parthenocarpy and 

stenospermocarpy are shown schematically in (Appendix 6 Figure 2) and are described in 

detail by (Striem 1992, Varoquaux et al 2000). 

In Arabidopsis, genetic studies have revealed several genes that participate in seed 

development like SHOOT MERISTEMLESS (STM), CUP-SHAPED COTYLEDON (CUC1 and 

CUC2), AINTEGUMENTA (ANT), SPATULA (SPT), AGAMOUS (AG) MADS box genes AG-

SHATTERPROOF (SHP1 and SHP2), SEEDSTICK (STK, also known as AGL11), 

NOZZLE/SPOROCYTELESS (NZZ/SPL), EMBRYO DEFECTIVE (EMB) and INO (Skinner et 

al 2004, Jenik et al 2007, Devic 2008), including those that regulate endosperm formation 

such as CRINKLY4 and BET1 (Berger 1999, Huh et al 2008), embryo differentiation such as 

EMBRYO-DEFECTIVE (EMB) and LEAFY COTYLEDON (LEC) (Breuninger et al 2008, 

Braybrook and Harada 2008, Yin et al 2012), and seed coat development such as APETALA 

2 (AP2) and TRANSPARENT TESTA 16 (TT16) (Dean et al 2011). Also, molecular studies 

with Arabidopsis, tomatoes, and other plants have revealed cis-regulatory elements of several 

genes active during seed development, mostly the transcription factors(TFs) that play a role in 

their regulation, i.e. LEAFY COTYLEDON (LEC) genes and AGAMOUS like 15 (AGL15) 

(Riechmann and Meyerowitz 1998, Le et al 2010, Ruan et al 2012). Nevertheless, in 

grapevine the identities of most regulators of seed development and their direct targets are 

largely unknown. 

To date, very few studies have looked for genes possibly responsible for seedlessness by 

comparison of gene expression profiles in seeded and seedless grapes. For instance, 

differential expression analysis in seeded and seedless clones of cv Sultanina by (Hanania et 

al 2007, Hanania et al 200) allowed the identification of a chloroplast chaperonin (ch-Cpn21) 

resulting in seed abortion when silenced in tobacco and tomato, and of a ubiquitin extension 

protein (S27a) having a probable general role in the control of organ development in 

grapevine. Recently, differential expression analysis during ovule development in seeded and 

seedless cultivars identified grape metacaspase genes, consistent with a role of programmed 

cell death in stenospermocarpy (Zhang et al 2013). 

To identify regulators and processes required for seed development that may be altered in the 

seedless phenotype, somatic variants are vital resources. At the same time an experimental 
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procedure that gives a broad view of the genomic and transcriptional landscape of both 

phenotypes in time and space is as important. In grapevine, somatic variation arises from 

mutation or epimutation events that first occur in a single cell belonging to a specific cell layer. 

Once at least one shoot apical meristem is colonized by the mutated cell in one or both cell 

layers, the mutation can be transmitted by bud propagation or eventually sexual reproduction 

(Torregrosa et al 2011). However, identification of somatic variants in grapevine is a time and 

labor intensive task, which requires genetic and phenotypic characterization of large 

germplasm collections (Schneider et al 2009). At the same time, the application of deep 

sequencing techniques to survey the total population of RNA within a tissue has made RNA-

Seq a popular and comprehensive approach to deduce and quantify the transcriptome (Wang 

et al 2009). Its potential has been demonstrated in the de novo transcriptome characterization 

of Vitis vinifera cultivars (Zenoni et al 2012, Venturini et al 2013) and gene expression profile 

of grape berry during key developmental stages (Fasoli et al 2012, Sweetman et al 2012 ). 

This chapter exploits the availability of a seedless somatic variant (also known as mutant, MT) 

described in Chapter two. This mutant is derived from Sangiovese (also known as wild-type, 

WT), a widespread seeded wine cultivar in Italy, see (Schneider et al 2009) for more detail. 

Here the overall aim is to highlight DNA sequence variation and transcriptional regulatory 

processes that may be altered in the mutant, bearing in mind that this mutant has a gross 

morphology of vines identical to the wild-type except for absence of seeds, reduced berry and 

bunch size at harvest. Therefore to understand the molecular mechanisms driving the 

seedless phenotype, Illumina mRNA-Seq technology was used to analyze the allelic 

variations as well as the transcriptional responses possibly related to seed development in the 

wild-type and the mutant. 

 

5.1. Methods 

5.1.1. Sample collection 
Samples were collected from wild-type and mutant plants in the ger 

mplasm collection of Grinzane Cavour maintained by CNR-Istituto di Virologia Vegetale di 

Grugliasco (Torino, Italy). 

For array-based SNP genotyping and Sanger sequencing assay young leaves were gathered. 

To create inventories of gene expression at successive stages of seed formation, three key 

time points along grape berry development were selected corresponding to stages E-L 15 
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(single flowers in compact groups), E-L 27 (young berries enlarging) and E-L 38 (berries 

harvest-ripe) of the modified E-L system described by (Coom.be 1995). Samples were 

collected for both clones in the following dates: 12th May, 10th June and 16th September 

2010. When matched to the number of days from bloom (DFB) shown in (Appendix 6-Figures 

2 and 3), these time points could be assigned to two main categories: “before” (E-L 15) and 

“after” (E-L 27 and 38) fertilization. A detailed description of how sampling dates were 

matched to DFB is reported in (Appendix 6). For each developmental stage two independent 

samples (biological replicates) were collected. A biological replicate was composed of the 

whole inflorescence for stage E-L 15 and of the whole bunch for stages E-L 27 and 38. 

5.1.2. Array-based SNP genotyping: 20K grapevine Il lumina CHIP 
Genomic DNA was extracted with DNeasy Plant Mini Kits (Qiagen) from young leaves. DNA 

samples were quantified using Nanodrop 8000 (Thermo Scientific, Wilmington, DE) and 

quality was confirmed with gel electrophoresis. Next, 10ul of each DNA sample with a 

concentration of 100 ng/ul were sent to Illumina. For a detailed description of the experimental 

design of the 20k grapevine Illumina SNP CHIP see (link). Also detailed description of 

Infinium array chemistry can be found (here). 

SNP calling was carried out with Illumina Genomestudio software. Briefly, genotypes are 

called for each sample by their signal intensity and allele frequency relative to canonical 

cluster positions for a given SNP marker, see  link for further details. 

5.1.3. Genotype filtering and polymorphism detectio n 
A set of filtering criteria (quality thresholds) previously described by (Myles 2010) with slight 

modification were used to filter out inconsistent and bad quality genotypes. In short, SNPs 

with a call frequency of 0 were filtered out, we further required a minimum GenTrain score 

>0.6 and cluster separation >0.4. Finally an in house Perl script was used to carry out 

pairwise comparison of wild-type and mutant filtered genotype positions for polymorphism 

detection. 

5.1.4. RNA extraction 
For each sample total RNA extraction was performed from a lot of flowers/berries in triplicate 

(technical replicates), using the Spectrum™ Plant Total RNA kit (Sigma-Aldrich, St. Louis, 

MO) following the manufacturer’s protocol. RNA quality and quantity were determined using a 

Nanodrop 8000 (Thermo Scientific, Wilmington, DE) and a Bioanalyzer 2100 (Agilent, Santa 
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Clara, CA). 

5.1.5. Library preparation and sequencing 
For transcriptomic analysis a single biological replicate was used due to economic 

constraints. Total RNA from the three technical replicates of each sample were pooled for a 

total six pools representing each developmental stage for the two genotypes. 

Libraries were prepared using the TruSeq SBS v5 protocol (Illumina, San Diego, CA). In 

particular, 10 µg of total RNA were used to isolate poly(A) mRNA after double purification of 

transcripts using poly(T) oligos attached with magnetic beads. Subsequent mRNA quality 

control was carried out on a Bioanalyzer 2100 (Agilent). Purified mRNA was fragmented using 

Zn-catalyzed hydrolysis and converted into double-stranded cDNA by random priming. 

Following end repair, single ''A'' base addition to 3'-end, indexed adapters were ligated and 

cDNA fragments of 200 ± 25 bp were purified. Purified cDNA was amplified by PCR and 

quality control was done by TOPO cloning and capillary sequencing. The cDNA libraries were 

quantified and diluted to 10 nM, after which they were multiplexed and sequenced with an 

Illumina HiSeq 2000 sequencer at Fasteris (Fasteris SA, Switzerland). A hundred-bp paired-

end sequences were generated. 

Image analysis, error estimation and base calling were carried out using Illumina Pipeline 

(version 1.4.5) to generate the sequence data. Indexed primers were used to identify the 

different reads from different samples in the sequence data. Some low-quality reads were 

removed using a custom algorithm. Illumina TruSeq adapter sequences were clipped and the 

remaining reads were considered suitable for further analysis after passing quality control at 

Fasteris. 

5.1.6. cDNA sequence alignment and mapping to the r eference genome 
Short-read alignment and mapping of all the reads were carried on the 12x PN40024 genome 

assembly as well as 12x v1 transcript annotation (Vitulo et al 2014) using BWA (Burrows 

Wheeler Aligner) software (Li and Durbin 2010) with a maximum set of 2 mismatches in the 

first 32 bp sequences and a maximum of “n” mismatches in total (n from 2 to 9 depending on 

read length). 

For polymorphism detection variants were called from reads mapped to the genome 

sequence using SAMtools pileup with default parameters (link). Since putative SNPs were 

called one library at a time, it was reasoned that the pileup file will contain every position in 
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the alignment where at least one base is a mismatch to the reference sequence, hence many 

will be false positives. Therefore filters were applied to remove those by following the set of 

criteria listed below, 

(i) Minimum p-value for strand bias of 0.0001 

(ii) Min p-value for end distance bias of 0.0001 

(iii) Maximum read depth of 10000000 

(iv) Minimum p-value for base quality bias of 1e-100 

(v) Minimum RMS mapping quality for SNPs of 10 

(vi) Minimum value for quality of 10 

(vii) Minimum number of alternate bases of 2 

(viii) Window size for filtering adjacent gaps of 10 

(ix) Minimum p-value for map quality bias of 0 

(x) SNP within Intron bp around a gap of 10 to be filtered 

(xi) Minimum read depth of 5 

(xii) Less than or equal to 0 for samples having a genotype mismatching 

(xiii) The alternative base is observed in less than 2 reads in one of the directions 

(xiv) The mutation affects a coding sequence but all the alternatives imply a amino-acid 

sequence identical to the reference amino-acid sequence. The output was reported in 

a VCF file format.  

5.1.7. Variant call data analysis  

5.1.7.1. Selection of putative SNPs related to the trait of interest 
For a position to be considered a putative SNP or INDEL for the trait of interest in each 

library, the following approach was adopted. 

A. It was required that the alternate base was supported by at least 3 reads and the 

frequency of the alternative alleles was ≥ 0.75 (since majority of the reads mapped to a 

single location) calculated on the total number of read pairs aligned on the region. 

B. An ad hoc Perl script was written to take consensus positions that pass the initial filtering 

criteria in at least two libraries of wild-type and mutant respectively. From here INDELs 

were removed from further analysis. 

C. Putative mutations from B above were annotated using the Variant Effect Predictor SNPeff 

program (Cingolani et al 2012). 

D. An ad hoc Perl script was used to carry out a pairwise comparison between the wild-type 
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and mutant of all putative SNPs annotated as non-synonymous. 

E. Putative SNP positions that are different in the two clones from D above were further 

selected based on function of the gene that harbour them and finally validated by Sanger 

sequencing. 

5.1.7.2. Sanger sequencing 
To validate putative SNPs found with the above method, polymerase chain reaction (PCR) 

amplification and Sanger sequencing were performed in the same panel of two clones used 

for RNASeq, for hundred and twenty gene fragments. DNA was extracted with DNeasy Plant 

Mini Kits (Qiagen), from young leaves. PCR and sequencing primers were designed based on 

the 12x PN40024 grapevine reference sequence using Primer 3 (Rozen and Skaletsky 2000, 

primers are available upon request). Chromatograms were trimmed, aligned and edited with 

MEGA software (Kumar et al 2004). Putative SNP loci and the genotypes of each individual 

identified by RNASeq-SNP calling were compared to the Sanger sequencing. 

5.1.8. RNA-Seq raw read data 
For transcriptomic analysis, the mapping results were processed with SAMtools, to extract for 

each transcript the number of mapped reads and determine, whether their mapping position is 

unique. Reads mapping to several positions on the reference sequence with the same 

“mapping quality” (i.e. number of mismatches and quality of the bases generating the 

mismatches) were attributed at random to one of them with a “0” mapping quality.  

A Python script was developed to determine the distribution of mapped reads among genomic 

features for the wild-type and the mutant. 

5.1.8.1. Gene expression analysis 
Reads mapped to multiple locations and unmapped reads were excluded from gene 

expression analysis. Unique reads mapping to v1_mRNA annotated transcripts were summed 

for each gene model and normalized by million reads (RPM) because of read coverage bias 

towards 3' end of transcripts. A lower limit of detection for expression estimate was 

designated to be an RPM of 0.5 or, if the RPM value was less than 0.5, at least five uniquely 

mapped reads with identity > 98% over 100 bp, as previously described by (Sweetman et al 

2012). The full raw expression dataset have been submitted to GEO under the accession 

number GSE58061 by Nwafor et al 2014. 

The expression of all identified transcripts were ranked by order of magnitude. In Brief, p-
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values were computed to reflect the significance of the difference between two counts (n1 and 

n2 corresponding to any two library combination out of the six libraries) using a binominal 

model. The p-values were log-transformed in order to allow for greater numerical stability in 

comparing extreme values. Next all the p-values and the ratios of expression between the 

counts were considered to compute a ranking value for each transcript (Nwafor et al 2014, 

Appendix 8).  

Raw uniquely mapped read counts for the wild-type and the mutant were independently 

subjected to differential expression (DE) analysis in a pairwise comparison between 

developmental stages (E-L 15 vs E-L 27, E-L 27 vs E-L 38 and E-L 15 vs E-L 38) using the 

software DESeq (Anders and Huber 2010) in R (parameters: false discovery rate (FDR) ≤ 5%, 

log2-fold change (FC) > 1). Next, DE genes were compared between the wild-type and the 

mutant. This strategy was preferred to the direct comparison of the two clones at each 

developmental stage in order to minimize the eventual differences due to asynchronous 

sampling. 

An in-house R script was written to group DE genes with similar expression pattern based on 

the adjusted p-values. By indicating a significant up-regulation with "1", a significant down-

regulation with "-1" and a non-significant difference with "0", the three comparisons between 

the developmental stages can be summarized with a triplet, e.g. “1, 0, 1”. This example 

indicates that there is a significant up-regulation going from the first to the second time point, 

no significant difference between the second and third time points, and a significant positive 

difference when comparing the first and last time points. Altogether, 27 different categories 

can be defined in this way, and 18 of these contain relevant patterns (for example the pattern 

“1, 1, -1” is impossible). These 18 groups are visualized in Figure 20. Each gene showing at 

least one significant difference between developmental stages was classified into one of 

these categories, for both the wild type and the mutant. The number of differentially 

expressed genes that fell to each pattern were compared between the wild-type and the 

mutant. 
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Figure 20 . The eighteen relevant categories of triplets of significance. 
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5.1.8.2. Functional annotation and enrichment analy sis 
Wild-type and mutant genes were annotated against the v1 version of the 12x draft annotation 

of the grapevine genome using the CRIBI tools (link) combined with the grapevine molecular 

network VitisNet (Grimplet et al 2012). Next all DE genes for both genotypes were input into 

the AgriGO analysis tool (Du et al 2010). This allowed us to identify significantly enriched 

gene ontology (GO) terms in the whole set of DE genes or within each group when compared 

with GO terms in the complete Vitis vinifera genome. Using a hypergeometric test, a GO term 

was considered significantly enriched, if the FDR was < 0.05 and p-value < 0.01 when 

compared to all gene transcripts annotated in the reference genome (supported in AgriGO). 

Further, the REVIGO web server (Supek et al 2011) was used to summarize the processes 

represented in the lists of significantly enriched GO terms by removing redundant terms. 

5.1.8.3. Selection of candidate genes 
Candidate genes were chosen belonging to the three following groups: 

I. Wild-type and mutant specific not DE genes, i.e. the transcripts which are expressed in 

the wild-type but not in the mutant and vice versa, with no significant differences 

between developmental stages. These genes were tested for GO annotation 

enrichment using AgriGO. Ultimately, genes were selected, if they fulfilled the following 

criteria: significant GO enrichment, RPM values above the lower limit of detection (0.5) 

and putative function relevant to seed development; 

II. Wild-type and mutant specific DE genes, chosen based on their expression profile, fold 

change value, functional category enrichment, and putative function relevant to seed 

development. In addition, candidates were selected among DE genes with different 

expression profile or level of fold change in the two clones; 

III. Candidate genes affecting seed content, previously identified in QTL analyses 

(Costantini et al 2008, Doligez et al 2013). These genes were compared with DE 

genes in the wild-type and the mutant, and the overlapping candidates were evaluated, 

based on their expression profile and the level of fold change. 

5.1.8.4. Real-Time PCR validation of RNA-Seq data 
Quantitative real-time PCR was carried out on cDNA obtained from both biological replicates 

described above, one of which was used for RNA-Seq. First-strand cDNA synthesis was 

performed with 1 µg of total RNA in triplicate using SuperScript™ III Reverse Transcriptase 

(Invitrogen, Carlsbad, CA) and oligo-dT according to manufacturer’s protocol, after treatment 
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with DNase I (Invitrogen). The transcriptional profiles of 14 genes were analyzed. Sand and 

gadph (glyceraldehyde 3-phosphate dehydrogenase) were chosen as constitutive genes for 

normalization after evaluation of a set of five genes with the geNorm software (Vandesompele 

et  al 2002). Their stable expression along development in the wild-type and the mutant was 

confirmed by RNA-Seq expression data. Details on gene IDs, gene annotations and primer 

sets are included in (Appendix 7-Table 1). Reactions were carried out with Platinum SYBR 

Green qPCR SuperMix-UDG (Invitrogen) and specific primers using the LightCycler 480 

(Roche Applied Science, Mannheim, Germany). The PCR conditions were: 95 °C for 5 min as 

initial step, followed by 50 cycles of 95 °C for 15  s, 68 °C for 30 s and 72 °C for 10 s. Finally, 

a post-PCR melting curve analysis was performed to verify the specificity of cDNA 

amplification. Each sample was examined in three technical replicates, and analyzed using 

the LightCycler 480 SV1.5.0 software (Roche Applied Science). REST 2009 software was 

used to calculate relative expression of each gene (Pfaffl et al 2002). 

5.2. Results and discussion 
 

5.2.1. Array-based SNP genotyping: 20K grapevine Il lumina CHIP 
Following visual inspection of clusters and filtering (see method in sections 5.1.2 and 5.1.3 ), 

a total of 16563 SNPs displayed reliable cluster (Table 6). Analysis of pairwise comparison 

between the two clones revealed 16333 identical SNP loci. A total of 230 SNP loci were also 

identified with no call in either wild-type or mutant or in both. 

 

Table 6. A pairwise comparison of SNP loci between the two clones 

 Wild -type  Mutant  Total  

SNP 20,000 20,000 20,000 

Passing filters I 

(Illumina filters) 

16,563 16,563 16,563 

Identical SNP 

Passing filters II 

(Wild-type VS Mutant) 

16,333 16,333 16,333 

 

 
 

48 
 

5.2.2. cDNA sequence alignment and mapping to the r eference genome 
Sequencing generated from 126 to 143 million and from 102 to 127 million 100-bp reads for 

the wild-type and the mutant, respectively (Appendix 7-Table 2). After pre-processing and 

quality control, the majority of reads from wild-type (≈ 79-81%) and mutant (≈ 70-81%) were 

successfully aligned to transcriptome (v1_mRNA version of the 12x draft annotation of the 

grapevine genome). Similar result was obtained for reads mapped to the genome assemble 

(wild-type ≈ 76-77% and mutant ≈ 75-76%), hence we report only reads aligned to the 

transcriptome (Appendix 7-Table 2). 

For transcriptomic data analysis, a large fraction of mapped reads from each developmental 

stage for wild-type (≈ 87-89%) and mutant (≈ 85-87%) aligned to a single position. These 

uniquely mapped reads account on average for approximately 71% and 66% of the total 

number of sequenced reads for the wild-type and the mutant, respectively (Appendix 7-Table 

2). Distribution of mapped reads among genomic features was similar for both reads mapped 

to the genome and transcriptome, therefore only reads mapped to the transcripts are shown. 

The results showed that a high proportion (49% for both the wild-type and the mutant) 

mapped to protein coding regions indicative of high coverage of actual transcribed sequences 

(Figure 21). The other reads mapped to splice junctions (27% and 26%), introns (14% and 

16%) and untranslated regions (UTRs) (9% and 7%) for the wild-type and the mutant, 

respectively. The presence of intronic regions in RNA-Seq experiments is prevalent and has 

been attributed to various sources such as intron retention during splicing, DNA 

contamination during RNA-Seq preparation as well as alignment artefacts. Reads mapped to 

intronic regions in our data set are comparable to those obtained in similar experiments in 

grapevine (Zenoni et al 2010). Most of the intronic mapped reads in our data set show strand 

specificity, hence we infer they are mainly due to unspliced mRNA in our samples and others 

may be due to alignment artefacts. 
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Figure 21. Distribution of mapped reads among genomic features. (A) Wild-type. (B) Mutant. 

 

5.2.3. SNP detection in RNASeq variant call data 
Summary of SNPs and INDELs predicted from the six libraries are shown in (Table 7). The 

predicted SNPs and INDELs are based on the reference sequence. A total of 71,557 SNPs 

and 37,121 INDELs satisfied the Initial filtering criteria described in Sections 5.1.6 and 5.1.7. 

From this list, it was required for any position to be considered a candidate SNP, to be 

present in at least two libraries and to be different in wild-type compared to the mutant or vice 

versa (for instance, if such a SNP is homozygous it must be present in at least two libraries of 

either of the clones and heterozygous for one of the clones but not for both). This approach  

identified 1670 SNPs in at least two libraries. When combined with SNP selection based on 

putative functions relevant to the trait of interest, 142 candidate SNPs could be identified, 

from which 120 SNPs were selected for Sanger sequencing. Figures 22, 23, 24 and Tables 8 

and 9 show various features used to characterize the variants called from RNA-Seq data. i.e. 

distribution of SNPs among genomic features, distribution of insertions and deletions length, 

coverage number of effects by impact and number of variants by functional class. 

Table 7.  Summary of variant call from RNA-Seq data 

 SNP INDEL 

Total  373,407 206,050 

Passing filtering criteria  71,557 37,121 
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5.2.4. Sanger validation of putative SNPs 

To validate the putative SNPs identified by RNA-Seq, small DNA fragments (between 400 

and 320 bp) from different genes in the same plants of wild-type and mutant used for RNA-

Seq were sequenced. 

A total of 120 putative loci were resequenced and 31 of them were true positives. Interestingly 

most of the true positives mapped to exonic regions and were located in genes that play 

significant role during berry development, while most of the false positives SNPs were those 

that appeared mainly in one library and occasionally in two libraries. Similarly individual 

inferred genotypes from RNA-Seq were check for concordance with Sanger method. 

Approximately fifty percent (50%) of  the total inferred genotypes were in agreement with 

Sanger data (Appendix 7- Table 3 and Figure 1). 
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Figure 22.  Distribution of variant effects by type and genomic region. 

 

 

Figure 23.  Insertions and deletions length. 
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Figure 24.  Variant coverage. 

 

Table 8.  Number of variant effects by impact 

Type (alphabetical order)     Count  Percent  

HIGH     38,926  3.4%  

LOW     71,491  6%  

MODERATE     46,861  4%  

MODIFIER     1,006,336  86.5%  

 

 

Table 9.  Number of variant effects by functional class 

Type (alphabetical order)     Count  Percent  

MISSENSE     44,031  51.4%  

NONSENSE     656  0.8%  

SILENT     41,048  48% 
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5.2.5. Gene expression analysis 
The digital, count-based nature of RNA-Seq provided a number of potential advantages for 

downstream data analysis and interpretation. For every gene detected in wild-type and 

mutant samples, uniquely mapped reads were used to generate raw expression counts and 

normalized expression values. The normalized expression values were calculated as RPM 

since it provides a useful way to assess overall expression levels between samples. Following 

the normalization of read counts, we analysed the most abundant transcripts within our 

samples by ranking them based on their p-value and ratio of expression. This in turn 

highlighted the top most highly expressed genes across all possible pairwise comparisons of 

the libraries (These data are reported in Nwafor et al 2014). 

Overall the data-set identified approximately 98% of grapevine annotated transcripts 

(representing 27,495 genes) expressed throughout the three developmental stages under 

study. We detected a gene expression gradient from “before flowering” to “after flowering”, i.e. 

for wild-type E-L 15 (25,785 expressed genes) >E-L 27 (25,706 expressed genes) >E-L 38 

(24,822 expressed genes) and for mutant E-L 15 (25,848 expressed genes) >E-L 27 (25,197 

expressed genes) >E-L 38 (24,089 expressed genes) (Table 10). 

To put these results into perspective, slightly more genes were expressed before fertilization 

in the mutant than in the wild-type and by far more genes were expressed after fertilization in 

the wild-type than in the mutant. In the wild-type and the mutant 23,640 and 23,072 genes 

were expressed in all three developmental stages, respectively (Figure 25). While it is not 

surprising the comparable number of genes shared by the three developmental stages in 

each clone, it is interesting to note that fewer genes were expressed specifically at each 

developmental stage: 586, 430 and 421 genes at stages E-L 15, E-L 27 and E-L 38 in the 

wild-type (Figure 25A) and 802, 337 and 351 genes at respective stages in the mutant (Figure 

25B), which further highlights a reduction in gene expression in the mutant compared to the 

wild-type after fertilization. Thus we assessed what proportion of the expressed genes were 

common to both clones in the different stages and found that large number of expressed 

genes were shared among the wild-type and the mutant throughout development. In 

particular, 22,516 genes were commonly expressed in both clones in all three developmental 

stages (Table 11), 24,084 in the first two stages E-L 15 and E-L 27 (Figure 26A) and 22,790 

in the last two stages E-L 27 and E-L 38 (Figure 26B). This was expected based on the 

phenotypic evaluation of the two clones that revealed similar berry development and ripening 
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(they were at the same developmental stage in the same date). Nevertheless, a fewer 

number of genes were exclusively expressed in a particular developmental stage and clone 

(Table 11), suggesting they could be responsible for the specificity of each clone. Finally, a 

total of 565 genes were not expressed at all (Table 11). This set of genes could be genotype 

specific and restricted to the grapevine clone PN40024 used for reference mapping. 

The results of differential gene expression analysis of RNA-Seq data in the pairwise 

comparison between developmental stages are shown in Figure 27. In total 1075 genes were 

differentially expressed (DE) in both clones. With respect to the wild-type a total of 942 genes 

were found to be differentially expressed during development: 522 between stages E-L 15 

and E-L 27, 354 between stages E-L 27 and E-L 38 and 393 between stages E-L 15 and E-L 

38 (Figure 27A). For the mutant a total of 634 DE genes were identified: 458 between stages 

E-L 15 and E-L 27, 191 between stages E-L 27 and E-L 38 and 41 between stages E-L 15 

and E-L 38 (Figure 27B). Analysis of data set overlap (Nwafor et al 2014) revealed that about 

47% of the total DE genes (501/1075) were expressed in both the wild-type and the mutant 

(commonly shared expression), which supports the developmental alignment of the two 

clones. More strikingly, the percentage of DE genes specific to the wild-type with respect to all 

three developmental stages is 41% (441/1075), while for the mutant it is 12% (133/1075). We 

further evaluated the percentage of significantly up-regulated and down regulated genes in 

each pairwise comparison in both the wild-type and the mutant. On average approximately 

67% of DE genes in the wild-type and 75% of DE genes in the mutant were down-regulated 

along development, while 33% and 25% of DE genes were induced in the wild-type and the 

mutant, respectively (Table 12). Taken together these results suggest that most of the 

expressed genes were active in different contexts along the grape berry developmental 

gradient (Table 10). However, significant quantitative changes occurred in individual gene 

expression level that corresponds to a particular stage or switch in development during seed 

formation. Here the mutant exhibited the strongest reduction in gene expression after 

fertilization (Table 12). It is tempting to speculate that it might be due to shut down in 

transcriptional processes resulting from incomplete fertilization or failure of embryo 

development. However, further work will be necessary to test this hypothesis.  

Finally, we determined the expression pattern of all DE genes over the three developmental 

stages under investigation using the technique described in the methods. This approach 

revealed transcripts from a pool of DE genes that exhibit the same patterns of expression 
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over the three developmental stages. We present here 18 relevant groups (Figure 19). The 

wild-type and the mutant exhibited similar differential expression pattern except in groups 6, 

10 and 18. Four main groups (3, 11, 12 and 16), accounted for about 67% of the DE genes 

along the three developmental stages of the wild-type. Similarly, groups 3, 11 and 16 

accounted for 87% of DE genes in the mutant (Table 13). Additionally the analysis of 

expression pattern of all DE genes enabled us to identify relevant groups showing significant 

difference in the number of DE genes between the two clones, such as groups 2, 9, 10, 12 

and 17 (Table 13).  

5.2.6. Functional enrichment analysis 
To assess the biological meaning of the wild-type and the mutant differential expression 

pattern, we examined representation of GO terms in the whole set of DE genes and within 

each of the eighteen groups. When considering the whole set of DE genes the most striking 

difference between the two clones was the wild-type specific enrichment in GO terms related 

to reproduction, such as anther wall tapetum development, cell division and 

microsporogenesis (see Nwafor et al 2014). 

When considering the DE gene in each of the eighteen groups, for the wild-type we detected 

a number of significantly enriched GO terms in groups 3, 11, 12, 16 and 17, whereas in the 

mutant significantly enriched GO terms were found only in groups 11 and 16 (however, many 

of the GO terms in the wild-type group 17 were present in the mutant group 16) (These data 

are reported in Nwafor et al 2014). For example, we observed a specific significant 

enrichment of positively regulated (from stage E-L 15 to stage E-L 27) functional categories in 

the wild-type group 3, for which the genes were mainly related to cell wall modification. Here 

stage E-L 27 corresponded to ''after fertilization'', a phase of berry development mainly 

characterized with extensive cell division. Perhaps it is likely that these genes were highly 

active in the wild-type and may have played important role in cell wall re-assembly to 

encourage cell division during seed formation and embryo development. 

5.2.7. Real-time PCR validation of RNA-Seq data 
To confirm the results obtained by RNA-Seq, relative expression profiles of 14 genes were 

analysed by real-time PCR in the wild-type and the mutant. The tested genes encoded 

enzymes involved in cell wall metabolism, transcription factors from different families (MYB, 

MADS-346 box, PHD and AS2) and molecules playing a role in signalling, including hormone-
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mediated signalling. For both clones and all genes, the real-time PCR results were consistent 

with the expression profiles determined from RNA-Seq data. Seven genes had similar 

expression profiles in the wild-type and the mutant, while the expression of the remaining 7 

genes ranged from slightly different to completely opposite which suggests that some 

pathways may be altered in the seedless phenotype (Figure 28). In most cases biological 

replicates showed a consistent expression profile. 

5.2.8. Selection of candidate genes  
In this work gene expression analysis highlighted several genes with common and contrasting 

expression profiles in the two clones, which may contribute to trait variation (seed content, 

and the resulting berry size, are the only phenotypic differences between the two somatic 

variants). Therefore, in order to narrow down to specific genes whose expression and effect 

were altered in the seedless phenotype, we have applied the criteria described in Methods 

section 5.1.8.3. This allowed us to select a number of candidate genes for the seedless 

phenotype, which are listed in Table 14 and described in detail in Chapter 4. Among them are 

genes required for fertility, cell growth and development, transcription factors and signalling 

molecules. 
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Table 10. Transcript abundance measurement at each developmental stage 

 Wild -type  Mutant  

 E-L 15 E-L 27 E-L 38 E-L 15 E-L 27 E-L 38 

RPM >200 873 873 890 888 869 861 

RPM 10-200 11800 11748 9869 11681 11583 9412 

RPM 0.5-10 7415 7583 7765 7596 7443 7555 

RPM <0.5 5697 5502 6298 5683 5302 6261 

Total detected  25785 25706 24822 25848 25197 24089 

 

 

  

Table 11. Comparison of gene expression between the wild-type and the mutant 

 Wild-type Mutant 

Developmental stage E-L 15 E-L 27 E-L 38 E-L 15 E-L 27 E-L 38 

Genes expressed in all developmental stages in the two clones 

(common genes) 22516 22516 22516 22516 22516 22516 

Exclusively uniquely expressed genes for each developmental 

stage 183 187 169 190 70 97 

Non-detected expression for each developmental stage 1145 1224 2108 1082 1733 2841 

Constitutively non-expressed genes in the two clones 565 565 565 565 565 565 
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Table 12. Evaluation of significantly up- and down-regulated genes in each pairwise comparison between developmental stages 

 Wild -type  Mutant  

Pairwise 

comparison  

E-L 27  

vs  

E-L 15 Percentage 

E-L 38  

vs 

E-L 27 Percentage 

E-L 38  

vs 

E-L 15 Percentage 

E-L 27  

vs  

E-L 15 Percentage 

E-L 38  

vs  

E-L 27 Percentage 

E-L 38 

vs  

E-L 15 Percentage 

Down-regulated 

genes 332 63.6 256 72.3 256 65.1 327 71.4 136 71.2 34 82.9 

Up-regulated genes 190 36.4 98 27.7 137 34.9 131 28.6 55 28.8 7 17.1 

Total 522  354  393  458  191  41  
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Table 13.  Number of genes in each group of differential expression patterns for the wild-type and the 

mutant 

  Gene pattern Number of genes 

(Wild-type) 

Number of genes 

(Mutant) 

Number of groups       

1 111 0 0 

2 101 13 4 

3 100 155 112 

4 1-11 0 0 

5 1-10 21 15 

6 1-1-1 1 0 

7 011 66 26 

8 010 30 25 

9 001 58 4 

10 00-1 34 0 

11 0-10 101 118 

12 0-1-1 131 3 

13 -111 0 0 

14 -110 2 4 

15 -11-1 0 0 

16 -100 240 319 

17 -101 88 4 

18 -1-1-1 2 0 
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Figure 25.  Gene expression overlap between the three key developmental stages in (A) wild-type and 

(B) mutant. 

 

 

Figure 26.  Gene overlap between the wild-type and the mutant in the first two and last two 

developmental stages. (A), Venn diagram showing shared and unique expressed genes between the 

wild-type and the mutant during the first two developmental stages E-L 15 and E-L 27. (B), Venn 

diagram showing shared and unique expressed genes between the wild-type and the mutant during 

the last two developmental stages E-L 27 and E-L 38. 
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Figure 27. Comparison of differential gene expression in the pairwise comparison of developmental 

stages in wild-type and mutant plants. Venn diagrams indicate overlap of all differentially expressed 

genes obtained from each pairwise comparison between developmental stages (E-L 15 vs E-L 27, E-L 

27 vs E-L 38 and E-L 15 vs E-L 38) in wild-type (A) and mutant (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 28 . Quantitative real

change (FC) in the pairwise comparison between developmental stages for the 

expression fold changes as assessed by real

(left axis). Green lines represent expression fold changes as assessed by RNA

bar corresponds to the first biological replicate, while red column corresponds to the second biological replicate on which R

sequencing was carried out.

. Quantitative real-time PCR validation of RNA

change (FC) in the pairwise comparison between developmental stages for the 

expression fold changes as assessed by real-time PCR (by using REST), data are reported as means ± SE of three technical replicates 

(left axis). Green lines represent expression fold changes as assessed by RNA

bar corresponds to the first biological replicate, while red column corresponds to the second biological replicate on which R

sequencing was carried out. 

62 

time PCR validation of RNA-Seq data. Relative expression profile of 14 genes shows the expression fold 

change (FC) in the pairwise comparison between developmental stages for the wild-type and the mutant. Histograms represent 

time PCR (by using REST), data are reported as means ± SE of three technical replicates 

(left axis). Green lines represent expression fold changes as assessed by RNA-Seq (by using DESeq, right axis). Blue column with error 

bar corresponds to the first biological replicate, while red column corresponds to the second biological replicate on which R

Seq data. Relative expression profile of 14 genes shows the expression fold 

type and the mutant. Histograms represent 

time PCR (by using REST), data are reported as means ± SE of three technical replicates 

Seq (by using DESeq, right axis). Blue column with error 

bar corresponds to the first biological replicate, while red column corresponds to the second biological replicate on which R

 

Seq data. Relative expression profile of 14 genes shows the expression fold 

type and the mutant. Histograms represent 

time PCR (by using REST), data are reported as means ± SE of three technical replicates 

Seq (by using DESeq, right axis). Blue column with error 

bar corresponds to the first biological replicate, while red column corresponds to the second biological replicate on which RNA 
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Table 14.  Candidate genes for seed content that have altered expression in the wild-type and the mutant. Abbreviations: nd= not 

detected in a pairwise comparison, inf= infinity (when the mean of one stage in a pairwise comparison is the denominator with value 0), 

sig = significant. 

Gene ID 
Wild-type Gene 

Expression (RPM) 
Mutant Gene Expression 

(RPM) 
Wild-type Fold Change Mutant Fold Change 

Gene 

enrichment 
Annotation 

 E-L 15 E-L 27 E-L 38 E-L 15 E-L 27 E-L 38 
E-L 27 

vs  
E-L 15 

E-L 38 

vs  
E-L 27 

E-L 38 

vs  
E-L 15 

E-L 27 

vs  
E-L 15 

E-L 38 

vs  
E-L 27 

E-L 38 

vs  
E-L 15 

  

Non-DE genes specific to the wild-type 

VIT_09s0002g01980  0.5 0.7 0.2 0 0 0        Myosin-like protein XIK 

VIT_15s0048g01070 0.01 0.01 1.2 0 0 0        Vacuolar iron transporter 1 

VIT_04s0044g01520 0 0.8 0 0 0 0        GA 20-oxidase 2 

VIT_08s0058g01200 0 0.4 0 0 0 0       sig Alpha-expansin 2 

Non-DE genes specific to the mutant 

VIT_13s0106g00290 0 0 0 0.01 0 0.1        Histone deacetylase HDA14 

VIT_03s0088g00900 0 0 0 0 0.1 0.01        Pathogenesis-related protein 1B 

VIT_14s0006g00050 0 0 0 0.1 0 0        Transposase, IS4 

Common genes differentially regulated in wild-type and mutant 

VIT_01s0026g01680 0.02 24.6 0 0.01 1.9 0 1,133 0 nd 172.5 nd nd sig Pectate lyase 

VIT_05s0020g04850 1.0 2.4 89.1 0.9 0.9 101.8 nd nd 113.1 nd 153.3 nd sig H1flk 

VIT_15s0021g02700 0.3 7.4 1,103 0 2.0 1,396 nd nd 4,154 inf nd nd sig Beta-expansin (EXPB4) 

VIT_15s0048g00510 9.1 170.5 4.4 8.8 74.9 2.4 18.8 nd nd 8.7 nd nd  Pectinesterase family 

VIT_15s0021g02170 631.1 3.1 0.3 81.4 0.2 0.4 0.005 nd 0.0006 0.003 nd nd  Chalcone and stilbene synthase 
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VIT_18s0089g00140 40.7 0.2 2.7 3.5 0 8.0 0.004 nd nd 0 nd nd  1,4-beta-mannan endohydrolase 

VIT_19s0015g00960 150.2 0.7 0 59.3 0.1 0.1 0.004 nd 0 0.002 nd nd  ABC transporter G member 4 

VIT_18s0001g01760 969.1 8.1 0.04 854.3 3.2 1.0 0.008 nd 0.00005 0.004 nd nd  PISTILLATA (PI) floral homeotic protein 

VIT_18s0001g13460 107.1 13.8 0 84.4 7.9 0.1 0.1 nd 0 0.1 nd nd  MADS-box AP3 

Differentially expressed genes specific to the wild-type 

VIT_01s0011g06390 29.9 0.4 0.01 3.2 0.4 0.04 0.01 nd 0.0004 nd nd nd sig Male sterility 1 

VIT_08s0007g07100 20.5 0.8 0.02 3.7 0.06 0.04 0.04 nd nd nd nd nd sig Male sterility 2 

VIT_07s0005g05680 17.6 0.2 3.5 4.0 0.2 0.04 0.009 nd nd nd nd nd  Male sterility  5 

VIT_07s0005g05720 29.3 1.6 2.3 14.5 2.6 1.2 0.06 nd nd nd nd nd  Male sterility  5 

VIT_15s0107g00550 172.2 19.7 21.8 111.7 26.7 2.5 0.1 nd nd nd nd nd sig Male sterility  5 

VIT_19s0014g03940 7.7 0.2 0.06 4.5 0.3 0.06 0.02 nd nd nd nd nd  Sporocyteless 

VIT_12s0142g00040 49.6 2.6 0.07 12.5 0.7 0.08 0.05 nd 0.002 nd nd nd  Glycerol-3-phosphate acyltransferase 1 

VIT_00s1404g00010 17.5 22.6 0.04 18.1 14.6 0.04 nd 0.002 nd nd nd nd sig Calmodulin-binding 

VIT_01s0026g01420 22.2 58.8 0.3 22.8 57.2 0.2 nd 0.007 nd nd nd nd  Wall-associated kinase 4 

VIT_06s0061g00730 406.0 887.8 0.3 423.5 1,138 0.2 nd 0.0004 0.0009 nd nd nd  Aquaporin GAMMA-TIP3/TIP1;3 

VIT_18s0001g13200 31.7 143.9 0.3 38.7 110.9 0.5 nd 0.003 nd nd nd nd  Cytokinin dehydrogenase 5 precursor 

VIT_05s0094g00330 0.9 16.2 969.7 0.9 4.2 712.2 17.6 nd 1,332 nd nd nd  Chitinase, class IV 

VIT_10s0003g03030 0.02 6.5 0.4 0.06 0.5 0.6 300.4 nd nd nd nd nd  Cation/hydrogen exchanger (CHX15) 

VIT_01s0011g01560 0.2 14.2 0.07 0.4 2.4 0.07 72.6 nd nd nd nd nd  Transparent testa16 

VIT_18s0001g03010 0 1.5 0 0 0.2 0 inf  nd nd nd nd nd  BZIP transcription factor 

VIT_18s0041g01880 9.5 67.4 33.2 9.8 10.7 26.7 7.1 nd nd nd nd nd sig MADS-box protein SEEDSTICK 
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VIT_03s0038g04340 0.2 6.9 0.07 0.3 0.6 0.2 33.7 nd nd nd nd nd  Feronia receptor-like kinase 

VIT_17s0000g08110 1.1 23.1 0.01 0.2 1.4 0 20.1 0.0006 nd nd nd nd  Nodulin MtN3 

VIT_17s0000g09000 0.8 0.4 36.3 0.5 0.009 0.04 nd 125.8 nd nd nd nd  Oleosin OLE-2 

VIT_07s0151g00640 12.4 5.2 453.2 17.9 3.0 1.1 nd 109.3 nd nd nd nd  Globulin-1 S allele precursor 

VIT_14s0128g00200 0.04 0.1 42.5 0.09 0 0 nd 540.1 1,242 nd nd nd  7S globulin precursor 

VIT_13s0067g01250 0.06 0.1 26.0 0.02 0 0 nd 330.4 506.5 nd nd nd  Em protein GEA6 (EM6) 

VIT_14s0108g00520 0 0.2 89.3 0.03 0.09 0.03 nd 637.6 inf nd nd nd  Protease inhibitor/seed storage/lipid transfer protein (LTP) 

VIT_16s0039g00220 0.4 0.2 25.2 0.3 0.1 0.7 nd 192.0 nd nd nd nd  Aquaporin BETA-TIP 

VIT_07s0005g05400 0 0.08 22.1 0.05 0 0 nd 360.2 inf nd nd nd  Abscisic acid-insensitive protein 3 (ABI3) 

VIT_19s0014g04130 0.7 0.2 23.6 0.3 0.4 6.4 nd 179.8 nd nd nd nd  Serine/threonine-protein kinase receptor ARK3 

VIT_18s0001g01570 0.2 0.5 265.1 0.3 0.07 0.3 nd 631.3 1,548 nd nd nd  Seed maturation protein PM31 

VIT_14s0128g00340 0.1 0.08 17.0 0.1 0 0 nd 277.3 nd nd nd nd  Seed maturation protein PM34 

VIT_04s0008g01610 0 0.3 176.8 0 0 0 nd 776.9 inf nd nd nd  Heat shock protein 17.6 kDa class II 

Differentially expressed genes specific to the mutant 

VIT_14s0219g00270 20.3 2.5 0.08 21.6 0.5 0.08 nd nd nd 0.03 nd nd  TEL1 (Terminal EAR1-like 1) 

VIT_12s0059g00560 14.6 1.1 1.1 17.8 0.6 0.4 nd nd nd 0.04 nd nd  Fimbrin 2 

VIT_04s0008g04980 15.5 2.7 0.2 10.1 0.3 0.06 nd nd nd 0.03 nd nd  Boron transporter-like protein 4 

VIT_09s0002g01670 9.0 1.1 0.03 11.8 0.09 0 nd nd nd 0.007 nd nd  Myb domain protein 26 

VIT_09s0002g01370 13.2 1.3 0.2 14.0 0.3 0 nd nd nd 0.02 nd nd  AP2 AINTEGUMENTA 

VIT_14s0006g02950 25.4 12.6 37.4 53.1 5.4 123.3 nd nd nd 0.1 nd nd  Lateral organ boundaries protein 41 
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VIT_15s0046g03080 3.4 0.9 0.02 2.9 0 0 nd nd nd 0 nd nd  DTA2 (downstream target of AGL15 2) 

VIT_12s0134g00240 17.7 36.7 21.5 9.7 77.1 22.7 nd nd nd 8.1 nd nd  Avr9/Cf-9 rapidly elicited protein 20 

VIT_12s0028g03270 14.2 30.5 48.0 7.3 62.5 55.7 nd nd nd 8.8 nd nd  Ethylene-responsive transcription factor 9 

VIT_16s0013g00950 1.8 5.1 2.1 1.1 22.1 0.4 nd nd nd 20.5 nd nd  Ethylene-responsive transcription factor ERF105 

VIT_16s0013g00990 2.4 5.0 0.7 1.2 18.6 0.4 nd nd nd 16.1 nd nd  Ethylene-responsive transcription factor ERF105 

VIT_16s0013g01050 3.1 6.3 1.1 1.8 23.3 0.3 nd nd nd 13.2 nd nd  Ethylene-responsive transcription factor ERF105 

VIT_16s0013g01120 3.2 13.2 63.7 3.1 29.5 49.1 nd nd nd 9.8 nd nd  Ethylene-responsive transcription factor ERF105 
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6. General discussion and conclusions 

The work described in this thesis is part of the on-going global effort to characterize cellular 

and molecular events that lead to seedless forms of grape. Seedlessness is an important 

economic trait for table grape market and understanding the genetic processes that underpin 

seedlessness is justified by this economic reason (Costenaro-da-Silva et al 2010). 

This thesis proposed a new approach for unravelling the genetic processes that underpin 

seedlessness, see (Chapter 3). This approach was tested and validated in (Chapters 4 and 

5). Basically the approach draws strength from two main sources: first the exploration of the 

phenotypic variation that exists in grapevine germplasm and secondly the application of Next 

Generation Sequencing (NGS) technology. 

A mutant seedless form of Sangiovese, mistaken for another cultivar, was confirmed in 

(Chapter 4) proving that, for proper identification of cultivars, it is crucial not to rely only on 

traditional ampelographic data. In fact the combination of molecular (SSR) and morphological 

data provides a robust evidence for ascertaining a cultivar’s true identity,  an approach that is 

widely adopted not only for confirming trueness to type but also for kinship, pedigree and 

genetic diversity studies (Schneider et al 2001, Schneider et al 2009, Gasparro et al 2013, 

Emanuelli et al 2013). 

Equally the availability of the somatic variant afforded the extraordinary opportunity to 

compare phenotypic and genotypic variation between a seeded and a seedless grapevine 

cultivar. Not only that, it provided a rare insight to the temporal and spatial changes in the 

transcriptomes of the two clones , with a special emphasis on the expression levels of key 

regulatory genes. This has never been done before exhaustively in grapevine. A lot of 

differentially expressed genes were identified including those involved in gametophyte 

development, cell cycling, transcription factors and signalling molecules. Hereafter  major 

aspects of the thesis are discussed. 

6.1. Investigating the physiological process respon sible for seedlessness in a 

Sangiovese seedless somatic variant 

The availability of  this seedless somatic variant, see (Chapter 4), enabled the comparison of 

quantitative and qualitative traits that relate to berry development and seed content in the 

seedless somatic variant and its seeded type. Similarly it allowed the investigation of two 

main physiological processes known to cause seedlessness in grapevine (Parthenocarpy -like 
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in cv Corinto and Stenospermocarpy -like in cv Sultanina). In addition the heritability of the 

seedless trait coupled with the viability of the pollen of the seedless line could be tested, see 

(Chapter 4).  

The results of quantitative and qualitative analysis of berry- and seed- related traits (Figures 

5-9) and data from investigation of the two main physiological processes (Figures 10-16) 

suggest that the mutant is a stenospermocarpic cultivar. This could imply that 

stenospermocarpy is not restricted to Sultanina-derived cultivars because in most cases seed 

traces were detected in the mutant berries, and some normally developed seeds were 

observed, perhaps they were derived from non-aborted embryos. Whether the seedless 

phenotype of the mutant is heritable or not, remains to be confirmed as various trials and 

experiments to test this hypothesis failed. Here, embryo rescue experiments could be 

exploited in the future for the seeds obtained through crossing (Table 2). However pollen 

viability test suggests the mutant produced distorted and high variable sized pollen grains 

compared to the wild-type. Therefore it was concluded that the mutant pollen is not efficient 

perhaps defective and may be partly responsible for the seedless phenotype. However 

genetic validation of this hypothesis is required. For example pollen development marker 

genes (i.e. genes known to control morphometric patterning of pollen during development) 

could be compared in the two clones for variation in expression using several time points 

between before anthesis and at full bloom. 

6.2. Berry development after emasculation in both w ild-type and mutant 
The development of berries after emasculation was first observed in 2012 and subsequently 

in 2013 and 2014 growing seasons. This phenomenon was indeed surprising, at first it was 

thought to be due to out-pollination mediated by insects or wind. Although Forficula auricularia 

were found in some flowers, however at the date of emasculation there was no pollen in the 

air since flowers were still closed. Also parthenocarpy and stenospermocarpy were suspected 

to be responsible for this behavior because most of the berries from the emasculated groups 

were seedless. But in grapevine, if parthenocarpy is “stimulative” (as usually thought to be), 

the development of berries in absence of pollen stimulation (not fertilization) would be 

impossible; if it is a “vegetative” parthenocarpy, it is perhaps possible, but this requires 

experimental prove or a confirmation from an expert grapevine physiologist. Nevertheless, 

normally developed seeds were observed, whereas in parthenocarpic berries seeds are 
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expected to be completely absent. Stenospermocarpy seems also unlikely because 

emasculation and inflorescence covering should have excluded any presence of pollen and 

consequently any fertilization event.  

Alternative possibility are cleistogamy (Sampson et al 2001) and  apomixis, (Koltunow et al 

1995, Vielle-Calzada et al 1996, and Spillane et al 2001.).  

Cleistogamy is an automatic self-pollination process, relating to flowers that does not open 

before fertilization, here self-pollination occurs in the bud early before anthesis. Evidence of 

this phenomenon in grapevine was reported by Sampson et al (2001).   

In briefly, apomixis is said to be asexual reproduction through seed, in which meiosis 

precedes the formation of gametes, and double fertilization restores the somatic chromosome 

number. The resulting seed will have a genotype identical to that of its maternal parent. Two 

types of apomixis exist, namely: gametophytic and sporophytic. They both depend on the fate 

of the unreduced cells. If the unreduced cells give rise to a megagametophyte, then 

gametophytic apomixis occurs. If the unreduced cells give rise directly to an embryo, then 

sporophytic apomixis occurs (Spillane et al 2001, Vielle-Calzada et al 1996). 

Elsewhere apomixis has been tested in grapevine. Chkhartishvili et al (2006) reported fruit-set 

was not observed for the emasculated flowers, suggesting it is not a characteristic 

phenomenon in grapevine. However the cultivars under study are different from those 

reported by Chkhartishvili et al (2006) and we assumed apomixis as a plausible cause of 

normal development of seeds after flower emasculation. 

As convenient as it is to speculate on a possible role of apomixis considering all the scenario 

described above, care must be taken not to draw conclusions as there may be other unknown 

factors that could have possibly triggered normal seed development after emasculation and 

bunch covering. Maybe early cleistogamy, though this has been mentioned in grapevine 

before. One possible way to test the apomixis hypothesis, is to genetically characterize the 

embryo of the seeds from the berries that developed after emasculation, to determine if they 

originate from the maternal genome or not, however the major challenge here would be to 

accurately isolate the embryo without contamination with the testa and endosperm which are 

maternally derived. 

6.3. Identification of genomic variations between w ild-type and mutant 
Recent advances in the Next Generation Sequencing technology (NGS) have changed the 
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way and manner genomes and transcriptomes are studied. For instance, the ability to use 

different templates (genomic DNA versus cDNA) allows for the study of diverse biological 

questions; considering the determination of mRNA sequences after conversion to cDNA 

(mRNA-Seq) in particular is proving invaluable for expression profiling and genome 

annotation. Many examples are cited in (Chapter 5), highlighting the potential of NGS 

application in grapevine. 

To unravel the genotype/phenotype relationship between the wild-type and mutant we relied 

on effective identification of genomic variants. Here, two NGS techniques were applied (20K 

grapevine Illumina CHIP and RNA-Seq Variant call) to identify sequence variation that may be 

inherent in the two clones. The 20K grapevine Illumina CHIP is an array-based SNP 

genotyping method while RNA-Seq is a whole transcriptome sequencing approach. 

Result of 20K grapevine Illumina CHIP experiment supported earlier result obtained from 

molecular marker analysis (SSR) confirming the mutant to be identical to the wild-type see 

(Chapter 5). This result is particularly significant in highlighting the true identity of the mutant. 

Although the SNPs used in the 20K grapevine Illumina CHIP were pre-determined and 

validated, the number of reliable SNPs (16,333) from this study is obviously too small to 

unequivocally say there are no sequence variations between the genomes of the two clones. 

Variant calling from RNA-Seq is arguably a more cost effective means of identifying 

differences at a whole-genome level for somatic variants. However this approach is rife with 

transcriptome’s intrinsic complexity, mainly due to splicing, which leads to the various 

technical difficulty during computational analysis. Nevertheless, variant calling from both wild-

type and mutant transcriptomes (RNA-Seq libraries) identified several hundred thousands of 

SNPs and INDELs based on the reference genome. Because these SNPs and INDELs are 

reference-based many of them could be common in both clones including false positives. 

Here a direct comparison of all SNPs and INDELs found in both clones was a way of 

identifying the variants that differ in the two clones. Using the approach described in (Chapter 

5) several putative SNPs were identified and confirmed by Sanger sequencing. In general 

these SNPs could be used to differentiate the two clones. Majority of the validated SNPs are “ 

coding SNPs” (within protein-coding regions). 
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6.4. Evaluation of common and contrasting expressio n profiles of DE genes in wild-
type and mutant: A candidate gene approach 

6.4.1. Non-DE genes specific to the wild-type 
Within this category very few genes met the RPM selection criteria, however many genes 

were significantly enriched and some of them had a putative functional role relevant to seed 

development. We selected four genes that play roles in cellular process, transport and 

signalling. Among cellular process genes, VIT_09s0002g01980 encodes the myosin-like 

protein XIK, which is involved in actin organization and biogenesis as well as actin-driven 

movement (Grimplet et al 2012). Among transporters, the gene VIT_15s0048g01070 encodes 

the vacuolar iron transporter 1 protein, implicated in iron transport and storage (Grimplet et al 

2012). In seeds, iron has been demonstrated to be essential for Arabidopsis embryo 

development (Stacey et al 2008). Among the signalling genes are VIT_04s0044g01520 and 

VIT_08s0058g01200. VIT_04s0044g01520 encodes GA 20-oxidase 2, which is involved in 

gibberellic acid biosynthesis, whereas VIT_08s0058g01200 codes for the alpha-expansin 2 

protein that participates in auxin-mediated signalling pathway as well as regulating cell growth 

(Grimplet et al 2012). 

6.4.2. Non-DE genes specific to the mutant 
All the genes that fell within this category did not meet the RPM selection criteria described in 

the Methods and did not have defined function when annotated; meaning that, many of them 

returned no hit upon functional annotation. Nevertheless, we noticed a few genes whose 

functional roles could be implicated in seed development. They included the histone 

deacetylase HDA14 gene (VIT_13s0106g00290), involved in chromatin organization through 

protein acetylation and deacetylation, a gene (VIT_03s0088g00900) coding for a 

pathogenesis-related protein 1B implicated in jasmonate-mediated signalling as well as in 

plant-pathogen interaction and a transposase IS4 gene (VIT_14s0006g00050) that encodes a 

transposable element protein (Grimplet et al 2012). 

6.4.3. Differential regulation of common transcript ional processes in the wild-type and 
the mutant 

Significant number of expressed genes were common among wild-type and mutant growth 

stages, which suggests that the corresponding proteins may function in a common pathway to 

carry out a wide range of developmental processes. We reasoned that many of these shared 

genes will respond in both clones to the same signals that control the switch from one 
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developmental phase (before fertilization) to another (after fertilization), and will have similar 

pattern of expression. Indeed, differential expression analysis revealed 501 DE genes 

common to the wild-type and the mutant (47% of the total 1075 DE genes). Thirty-five of 

these genes showed different expression between the two clones along the time course. 

Among the 35 genes, six were significantly enriched and three of them had a functional 

annotation corresponding to seed development: pectate lyase, histone H1flk-like protein 

(H1flk), and beta-expansin (EXPB4). Pectate lyase is an enzyme involved in cell wall 

organization and biogenesis by catabolizing pectin. In tomato, two pectate lyases were found 

to be maximally expressed at the late stage of pollen development. It was suggested that the 

pollen expression of these genes might relate to a requirement for pectin degradation during 

pollen tube growth (Wing et al 1990). In the present study, the pectate lyase gene 

VIT_01s0026g01680 was up-regulated from stage E-L 15 to stage E-L 27 in both clones but 

the fold change was six times higher in the wild-type compared to the mutant. Based on its 

functional annotation, the H1flk-like gene VIT_05s0020g04850 plays a role in chromatin 

assembly. Its Arabidopsis homolog encodes a P-loop containing nucleoside triphosphate 

hydrolases superfamily protein that functions in ATP binding activity involved in cell killing 

(Wing et al 1990, TAIR). In the mutant background, this gene was specifically up-regulated 

from stage E-L 27 to stage E-L 38 while in the wild-type a significant differential expression 

with a lower fold change was 15 observed only between stages E-L 15 and E-L 38. The beta-

expansin gene VIT_15s0021g02700 was not expressed at stage E-L 15 in the mutant. 

Differential expression analysis in the mutant showed specific up-regulation from stage E-L 15 

to stage E-L 27, in contrast to a stable expression in the wild-type between the same stages. 

Based on its functional annotation, this gene encodes a protein involved in auxin-mediated 

signalling, which implies a late induction of auxin responsive genes in the mutant.  

As expected, 466 out of the 501 common DE genes shared the same group or expression 

profile in both the wild-type and the mutant. Functional annotation and GO term enrichment 

uncovered many biological processes, which included cell wall metabolism, cell cycling, 

primary and secondary metabolism, signalling and regulation of gene expression, water 

transport and abiotic stress responses. Within this set the following four genes are of interest. 

VIT_15s0048g00510 encodes a protein that belongs to the pectinesterase family, up-

regulated from stage E-L 15 to stage E-L 27 with double fold change in the wild-type 

compared to the mutant. Functional annotation revealed the protein involvement in cell wall 
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modification through pectin degradation. In Arabidopsis, it has been shown that cell type-

specific pectin degradation is required to separate microspores during pollen development 

(Rhee et al 1998). VIT_15s0021g02170, VIT_18s0089g00140 and VIT_19s0015g00960 

showed a similar behavior: they were down-regulated from stage E-L 15 to stage E-L 27 in 

both clones, but much more expressed in the wild-type than in the mutant. 

VIT_15s0021g02170 encodes chalcone and stilbene synthase. Its Arabidopsis homolog is 

involved in phenylpropanoid biosynthetic process and pollen exine formation (TAIR). 

VIT_18s0089g00140 encodes 1,4-beta-mannan endohydrolase, which is implicated in 

fructose and mannose metabolic pathways (Grimplet et al 2012). Description of biological 

processes associated to its Arabidopsis homolog revealed a role in seed germination (TAIR). 

The Arabidopsis homolog of VIT_19s0015g00960 is required for male fertility and pollen 

exine formation as it encodes an ATP-binding cassette transporter involved in tapetal cell and 

pollen development (TAIR). Finally, within this category we identified two genes already 

proposed to affect seed and/or berry development (Doligez et al 2013). They code for the 

PISTILLATA (PI) floral homeotic protein (VIT_18s0001g01760) and the MADS-box AP3 

transcription factor (VIT_18s0001g13460). The latter co-localizes with the stable QTL for 

berry weight, seed number and fresh weight identified by (Doligez et al 2013).  

6.4.4. Differentially expressed genes specific to t he wild-type background 
The 441 genes specifically modulated among the wild-type developmental stages 

represented 12 groups and included a range of functional categories. A large number 

(approximately 64%) of these genes were observed among nine groups, down-regulated from 

stage E-L 15 to stage E-L 27 and not differentially expressed from stage E-L 27 to stage E-L 

38 or vice versa. The remaining 36% were observed in three groups, and were up-regulated 

in the same manner (Nwafor et al 2014). 

6.4.4.1. Down-regulated genes specific to wild-type  (from stage E-L15 to stage E-L 27) 
Within this category we observed several interesting genes that showed significant 

enrichment of GO terms and very high negative fold change. They include five genes, three of 

which encode similar proteins: male sterility 1(MS1, VIT_01s0011g06390), male sterility 2 

(MS2, VIT_08s0007g07100) and tetratricopeptide repeat domain male sterility MS5 

(VIT_07s0005g05680, VIT_07s0005g05720 and VIT_15s0107g00550). The gene coding for 

MS1 protein belongs to the PHD family of transcription factors. The Arabidopsis MS1 gene 
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was described to be a sporophytic factor controlling anther and pollen development. It plays a 

critical role in the induction of pollen wall and pollen coat materials in the tapetum and, 

ultimately, the production of viable pollen. Indeed, mutants show a semi-sterile phenotype, as 

their pollen degenerates after microspore release. In addition their tapetum appears 

abnormally vacuolated (TAIR, Sanders et al 1999, Ito 2007, Yang et al 2007). The MS2 gene 

has an unclear function in Vitis vinifera, however its Arabidopsis best match was described as 

a fatty acid reductase gene, involved in oxidation-reduction process and pollen exine 

formation (Chen et al 2011). The function of the MS5 gene in Vitis vinifera is unknown, 

however in Arabidopsis it was suggested to be similar to POLLENNESS3 gene (Uniport). 

Mutants of this gene in Arabidopsis were shown to have defects in functional microspore 

production that lead to the degeneration of cells within the anther locules (Sanders et al 

1999). One of the three MS5 gene predictions co-located with a minor QTL for mean seed 

fresh weight on chromosome 15 (Costantini et al 2008). The significant down-regulation of 

these genes from stage E-L 15 to stage E-L 27 in the wild-type implies that they were highly 

induced at stage E-L 15, where they exhibited maximum expression levels, perhaps to ensure 

viable and functional pollen development for complete fertilization. On the other hand, in the 

mutant, these genes were not differentially expressed. Further analysis of their RPM values in 

the mutant revealed very low level of expression at stage E-L 15, when compared to the wild-

type. This observation might suggest abnormal pollen development in the mutant resulting in 

non-functional or partially sterile pollen. However, it needs to be tested and confirmed 

experimentally. 

Within this category we found two additional genes with a putative role in ovule and pollen 

differentiation: SPOROCYTELESS (VIT_19s0014g03940) and glycerol-3-phosphate 

acyltransferase 1 (VIT_12s0142g00040). The SPOROCYTELESS gene of Arabidopsis was 

described to encode a transcription factor that is required for the initiation of both micro- and 

megagametogenesis and is expressed in the sporogenous tissue of the anther and the ovule. 

It is involved in establishing the prospective chalaza of the ovule, plays a central role in 

patterning both the proximal-distal and the adaxial-abaxial axes in the ovule and regulates the 

anther cell differentiation. Mutant is defective in the differentiation of primary sporogenous 

cells into microsporocytes, and does not properly form the anther wall (TAIR, Yang et al 1999, 

Liu et al 2009). The Arabidopsis homolog of glycerol-3-phosphate acyltransferase 1 gene was 

shown to be expressed in flower buds and siliques. Its protein is involved in metabolic 
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processes such as phosphatidylglycerol biosynthetic process, pollen sperm cell 

differentiation, and response to karrikin. Interestingly, the homozygous mutant plants are male 

sterile (TAIR, Li et al 2012). 

 

6.4.4.2. Down-regulated genes specific to wild-type  (from stage E-L 27 to stage E-L 
38) 

Within this category we observed about 30 genes with high negative fold change, the majority 

of which belong to the functional categories of cellular process and signalling. The most 

relevant for seed development appeared the genes encoding a calmodulin-binding protein 

(VIT_00s1404g00010), the wall-associated kinase 4 (WAK4, VIT_01s0026g01420), the 

aquaporin GAMMA-TIP3/TIP1;3 (VIT_06s0061g00730) and a precursor of cytokinin 

dehydrogenase (VIT_18s0001g13200). Indeed, in rice a calmodulin-binding protein was 

found to be essential to pollen development (Zhang et al 2012), the silencing of a member of 

the WAK family led to sterility due to anther indehiscence (Kanneganti and Gupta 2008), while 

the aquaporin GAMMA-TIP3/TIP1;3 in Arabidopsis was reported to be a pollen-specific water 

transporter contributing to male sterility in the double knockout mutant tip1;3/tip5;1(Wudick et 

al 2014), and cytokinins were demonstrated to regulate seed yield (Bartrina et al 2014). 

6.4.4.3. Up-regulated genes specific to the wild-ty pe (from stage E-L 15 to stage E-L 
27) 

Amongst this group we noticed a number of genes with high positive fold change value. 

Besides genes encoding proteins involved in cell wall organization and biogenesis, the most 

relevant for seed development were found in the categories: metabolism, transport, regulation 

overview and signalling. For instance, we identified a chitinase class IV gene 

(VIT_05s0094g00330), whose best Arabidopsis match was described to be expressed during 

somatic embryogenesis in nursing cells surrounding the embryos and additionally in mature 

pollen and growing pollen tubes until they enter the receptive synergid (TAIR, Passarinho et 

al 2001). Among transporters, a cation/hydrogen exchanger (VIT_10s0003g03030) showed 

its best match with an Arabidopsis protein involved in pollen tube growth (TAIR). Of particular 

interest were a set of genes encoding transcription factors and signalling molecules. Among 

the transcription factors were TRANSPARENT TESTA 16 (TT16 or AGL32, 

VIT_01s0011g01560), BZIP family protein (VIT_18s0001g03010) and the MADS-box protein 

SEEDSTICK (VIT_18s0041g01880). The TT16 gene encodes a MADS-box family 
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transcription factor (Grimplet et al 2012, TAIR). In Arabidopsis it was reported to determine 

the identity of the endothelial layer within the ovule, to play a maternal role in fertilization and 

seed development and to regulate proanthocyanidin biosynthesis and cell shape of the inner-

most cell layer of the seed coat (TAIR, Nesi et al 2002). In canola (Brassica napus ) it was 

further demonstrated that the tt16 deficiency affects pollen tube guidance, resulting in 

reduced fertility and negatively impacting embryo and seed development due to the altered 

expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin 

transport, and signal transduction (Deng et al 2012). In addition, the TT16 gene was reported 

among the functional candidates potentially involved in seed and/or berry development that 

did not co-localize with QTLs detected for the same traits (Doligez et al 2013). The BZIP gene 

was previously described by (Lui et al 2014) to be expressed in pollen and other flower parts. 

Although the MADS-box protein SEEDSTICK gene did not show high positive fold change, it 

was significantly enriched in our data. In Arabidopsis and rice, this gene was described to 

encode a MADS-box transcription factor expressed in the carpel and ovules and to play a 

maternal role in fertilization and seed development. Mutants indeed exhibited reduced ovule 

fertilization and high seed abortion (TAIR, Favaro et al 2003, Mizzotti et al 2012, Dreni et al 

2011). Interestingly, this gene was among those that co-localized with the stable QTLs for 

seed-related traits (Costantini et al 2008, Doligez et al 2013). The signalling molecules 

included FERONIA receptor-like kinase (VIT_03s0038g04340). In Arabidopsis , it was shown 

to mediate male-female interactions during pollen tube reception (Escobar-Restrepo et al 

2007). Feronia mutant had impaired fertilization because pollen tube failed to arrest by 

continue growth inside the female gametophyte (Zou et al 2011). This study concluded that 

female control of pollen tube reception is based on a FERONIA-dependent signalling 

pathway. In our investigation, we observed low expression level (0.6 RPM) of FERONIA 

receptor-like kinase gene in the mutant, compared to higher expression (6.9 RPM) in the wild-

type. Finally, within this category we identified a gene coding for a nodulin 

(VIT_17s0000g08110), which was up-regulated from stage E-L 15 to stage E-L 27 and down-

regulated from stage E-L 27 to stage E-L 38. The Arabidopsis best match for this gene 

encodes a protein containing three domains, one of which is MtN3/saliva-related trans-

membrane protein, and has function in sugar trans-membrane transporter activity (TAIR). In 

rice the genes Xa13/Os8N3/OsSWEET11 and Os11N3/OsSWEET14 encode proteins with 

two MtN3/saliva domains similar to that of Arabidopsis, and were identified to play important 
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role in regulating reproductive development through promotion of fertilization. These genes 

were reported to have a very high expression level in rice panicles and anthers compared to 

other tissues. Suppressed plants showed reduced fertility or were sterile due to blockage of 

microspore development at the unicellular pollen grain stage. This resulted in the gradual 

degeneration of the immature pollen suggesting the proteins are required for pollen 

development in rice. In addition knockout mutants showed reduced seed size and delayed 

growth (Yuan and Wang 2013). The significant up-regulation of the nodulin MtN3 gene from 

stage E-L 15 to stage E-L 27 in the wild-type compared to the mutant could imply an active 

role in promoting fertilization. In contrast, down-regulation of this gene from stage E-L 27 to 

stage E-L 38, which corresponds to a period of seed maturation (after fertilization), seems to 

support the notion that genes participating or promoting seed formation are tightly regulated. 

6.4.4.4. Up-regulated genes specific to the wild-ty pe (from stage E-L 27 to stage E-L 
38)  

Within this category we found a gene coding for oleosin OLE-2 protein (VIT_17s0000g09000), 

with a putative role in oil body organization and biogenesis as well as in reproduction and 

seed development. 

Functional studies in Arabidopsis showed that the double mutant ole1/ole2 had irregular 

enlarged oil-containing structures throughout the seed cells which led to defects in 

germination or seed mortality (Shimada et al 2008). Three different genes encoded enzymes 

involved in primary metabolism, namely globulin-1 S allele precursor (GLB1, 

VIT_07s0151g00640), 7S globulin precursor (VIT_14s0128g00200) and Em protein GEA6 

(EM6, VIT_13s0067g01250). Functional annotation revealed that the three genes participate 

in generation of metabolite precursors and serve as energy storage proteins. The maize 

GLB1 gene was found to be expressed throughout embryo development specifically in seed 

tissues (Belanger et al 1989). Similarly, 7S globulin precursor was described as a major 

storage protein in legume species (Kagawa et al 1987). In our study, the expression of the 7S 

globulin precursor gene was highest at wild-type stage E-L 38 while it was almost abolished in 

the mutant. This suggests that induction of these genes may be required to complete seed 

development. The best Arabidopsis match for the EM6 gene was described to be the Late 

Embryogenesis Abundant 6 gene, involved in response to abscisic acid, required for normal 

seed development, and regulating the timing of desiccation tolerance and the rate of water 

loss during seed maturation (TAIR, Gaubier et al 1993). Other interesting genes are those 
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involved in lipid and water transport, e.g . the genes coding for a protease inhibitor/seed 

storage/lipid transfer protein (VIT_14s0108g00520) and aquaporin BETA-TIP 20 

(VIT_16s0039g00220).  

Equally worth mentioning are two genes coding for signalling molecules, namely the abscisic 

acid-insensitive protein 3 ABI3 (VIT_07s0005g05400) and the serine/threonine-protein kinase 

receptor ARK3 (VIT_19s0014g04130). The expression of ABI3 gene was completely 

abolished in the mutant from stage E-L 27 to stage E-L 38. ABI3 is a putative seed-specific 

transcriptional activator acting as a central regulator in ABA signalling. In different species it 

was described to play a major role in seed maturation and to regulate the transition between 

embryo maturation and early seedling development (TAIR, Zeng  et al 2013, Delmas et al 

2013). In Arabidopsis the ARK3 gene was proposed to participate in recognition of pollen 

(TAIR, Pastuglia et al 2002). Four stress response genes were also present and specifically 

induced, including those coding for the seed maturation proteins PM31 (VIT_18s0001g01570) 

and PM34 (VIT_14s0128g00340). Finally, the gene prediction for the heat shock protein 17.6 

kDa class II with a putative role in protein folding (VIT_04s0008g01610) was not expressed in 

the mutant in all three developmental stages.  

6.4.5. Differentially expressed genes specific to t he mutant background 
The 133 DE genes, which were peculiar to the mutant, fell within 4 groups (3, 8, 11 and 17) 

and were all stage specifically induced. The majority of these genes (63%) were either down-

regulated from stage E-L 15 to stage E-L 27 or from stage E-L 27 to stage E-L 38, whereas 

37% of them were up-regulated in the same manner (Nwafor et al 2014). The genes related 

to seed development showed differential expression between stages E-L 15 and E-L 27. 

6.4.5.1. Down-regulated genes specific to the mutan t (from stage E-L 15 to stage E-L 
27) 

In this category we identified genes with high negative fold change encoding proteins with a 

role in cellular processes, transport and regulation of gene expression. Among the genes 

involved in cellular processes we selected Terminal EAR1-like 1 (TEL1, VIT_14s0219g00270) 

and Fimbrin 2 (VIT_12s0059g00560). The TEL1 gene encodes an RNA binding protein with a 

function in shoot development, conserved among land and vascular plants (TAIR, Vivancos et 

al 2012). The Arabidopsis best match of TEL1 is a member of the mei2-like gene family, 

which plays a role in meiosis. Specific multiple mutant combinations were reported to display 

sterility and a range of defects in meiotic chromosome behavior (Kaur et al 2006). The 
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Fimbrin 2 gene is involved in actin organization and biogenesis; its Arabidopsis homolog is 

FIMBRIN5, an actin bundling factor required for pollen germination and pollen tube growth 

(Wu et al 2010). The same function was reported in lily (Su et al 2012). We observed high 

expression of the TEL1 and Fimbrin 2 genes at stage E-L 15 in both clones, however as 

development progressed towards stage E-L 27 a significant repression of both genes in the 

mutant was evident in their very low RPM values as compared to a stable expression of these 

genes in the wild-type. In addition the Fimbrin 2 gene in grape fell within a stable QTL for 

mean seed fresh weight reported by (Doligez et al 2013). In the transport category we 

identified a gene encoding the boron transporter-like protein 4 (VIT_04s0008g04980). 

Previously, boron deficiency has been associated with the occurrence of parthenocarpic 

seedless grapes in some varieties of Vitis vinifera L (Pérez-Castro et al 2012). We also 

noticed a set of genes coding for transcription factors, which included the MYB domain 

protein 26 (MYB26, VIT_09s0002g01670), AP2 AINTEGUMENTA (VIT_09s0002g01370) and 

lateral organ boundaries protein 41 (LBD41, VIT_14s0006g02950). The Arabidopsis MYB26 

protein was described to be involved in anther dehiscence, response to gibberellin stimulus 

and secondary cell wall biogenesis. Mutants for this gene produced fertile pollen but plants 

were sterile because anthers did not dehisce. When compared to wild type, no cellulosic 

secondary wall thickening was seen in the anther endothecium of the mutant (Yang et al 

2007). The AP2 AINTEGUMENTA gene belongs to the AP2 (APETALA2)/EREBP (ethylene-

responsive element binding protein) family of transcription factors, known to be key regulators 

of several developmental processes (Riechmann 1998). The Arabidopsis homolog was 

reported to have a role in ovule development among other functions. Mutants exhibited 

female-sterility as integuments did not develop and megasporogenesis was blocked at the 

tetrad stage (Elliott et al 1996). The LBD41 gene encodes a protein containing the conserved 

domain AS2/LOB. The Arabidopsis homolog of the LOB gene ASYMMETRIC LEAVES2 

(AS2) was demonstrated to function in the repression of KNOX genes and in the specification 

of adaxial/abaxial organ polarity (Lin et al 2003). The maize ortholog was also reported to be 

required to prevent KNOX gene expression in lateral organs and, in addition, to promote the 

switch from proliferation to differentiation in the embryo sac. The failure to limit proliferation in 

mutant embryo sacs was shown to lead to a variety of structural defects, including the 

production of extra gametes and synergids. Moreover, the fertilization process was frequently 

abnormal, producing seeds with haploid embryos and embryos and endosperms derived from 
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fertilization by different pollen tubes (Evans 2007). Although the role of these regulatory 

genes in growth and development is well documented in model species, in Vitis vinifera L. 

their specific functions are not well characterized and can only be inferred. However, we 

observed a general pattern in the mutant, in which expression of these genes was almost 

abolished at stage E-L 27 when compared to their stable expression in the wild-type. 

Finally, a gene DTA2 was observed (VIT_15s0046g03080, downstream target of AGL15). In 

Arabidopsis DTA2 was reported to encode an unknown protein with no significant similarity to 

any know n protein and to be expressed in developing seeds and in roots (Wang et al 2002). 

In our data, the DTA2 gene from the mutant was expressed at stage E-L 15, and the 

expression was abolished at stages E-L 27 and E-L 38 (in contrast to the stable expression in 

the wild-type). 

6.4.5.2. Up-regulated genes specific to the mutant (from stage E-L 15 to stage E-L 27) 
Within this category we selected six genes, one of which (VIT_12s0134g00240) encodes a 

signaLling molecule involved in stress response. This Avr9/Cf-9 rapidly elicited protein 20 was 

shown to function in the initial development of the defence response in tomato (Rowland et al 

2005). The remaining five genes encode proteins involved in the ethylene-mediated signalling 

pathway. These are ethylene -responsive transcription factor 9 (ERF9, VIT_12s0028g03270) 

and ethylene-responsive transcription factor ERF105 (VIT_16s0013g00950, 

VIT_16s0013g00990, VIT_16s0013g01050 and VIT_16s0013g01120). The ERF9 gene was 

shown to take part in repressing the activation of pathogen related genes in Arabidopsis 

(Camehl et al 2010). The Arabidopsis homolog of ERF105 encodes a member of the ERF 

(ethylene response factor) subfamily B-3 of ERF/AP2 transcription factor family that is 

involved in processes such as regulation of transcription, respiratory burst involved in defence 

responses, as well as responses to mechanical stimulus and wounding (TAIR, Camehl et al 

2010, Libault et al 2007). We noticed that the expression levels of these genes were always 

higher at stage E-L 27 in the mutant compared to the wild-type.  

It might be worthy of mention that a substantial proportion of our strongest candidate genes 

(that are the genes expressed specifically in either clone) were physically clustered in the 

vicinity of some previously identified QTLs (Costantini et al 2008, and Doligez et al 2013) 

mainly the loci on chromosomes 2 and 12 (Appendix 7-Table 4). While there may be no 

causal link between their expression and trait variation, they might provide a valuable starting 

point for developing DNA markers linked to the target trait, as discussed in (Jensen et al 
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2014). 

 

 

 

7. List of reference 

Adam-Blondon, A. F., Lahogue, F., Bouquet, A., Boursiquot, J. M., This, P., 2001. 

Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine 

cultivars. Vitis - Journal of Grapevine Research, 40,147-155. 

Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data: 

Genome Biology 11, R106. 

Barritt, B. H., 1969. Fruit set and ovule development in seedless grapes treated with 

growth retardants Alar and CCC. Ph.D. Thesis. Cornell Univ., Ithaca, NY. 

Barritt, B. H., 1970. Ovule  development in  seeded and seedless grapes. Vitis - Journal of 

Grapevine Research 9, 7-14. 

Bartrina, I., Otto, E., Strnad, M., Werner, T., Schmülling, T., 2011. Cytokinin regulates the 

activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield 

in Arabidopsis thaliana. Plant Cell 23, 69-80. 

Belanger, F. C., Kriz, A. L., 1989. Molecular characterization of the major maize embryo 

globulin encoded by the Glb1 gene. Plant Physiology 91, 636-643. 

Bergamini, C., Cardone, M. F., Anaclerio, A., Perniola, R., Pichierri,  A., Genghi, R., Alba, 

V., Forleo, L. R., Caputo, A. R., Montemurro, C., Blanco, A., Antonacci, D., 2013. 

Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early 

selection of stenospermocarpy in Vitis vinifera L. Molecular Biotechnology 54, 1021-1030. 

Berger, F., 1999. Endosperm development. Current Opinion in Plant Biology 2, 28-32. 

Huh, J. H., Bauer, M. J., Hsieh, T. F., Fischer, R. L., 2008. Cellular programming of plant 

gene imprinting. Cell 132, 735-744. 

Braybrook, S. A., Harada, J. J., 2008. LECs go crazy in embryo development. Trends 

Plant Science 139, 624-630. 

Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M., Laux, T., 2008. Differential 

expression of WOX genes mediates apical-basal axis formation in the Arabidopsis 

embryo. Dev Cell 14, 867-876. 

 
 

82 
 

Bica, D., 2007. Vitigni di Sicilia. pp:32 

Boccacci, P., Torello Marinoni, D., Gambino, G., Botta, R., Schneider, A., 2005. Genetic 

characterization of endangered grape cultivars of Reggio emilia province. American 

journal of enology and viticulture 56, 411-416. 

Boss, P. K., Thomas, M. R., 2002. Association of dwarfism and floral induction with a 

grape ‘green revolution’ mutation. Nature  416, 847-850. 

Bouquet, A., Danglot, Y., 1996. Inheritance of seedlessness in grapevine Vitis vinifera L. 

Vitis - Journal of Grapevine Research 35, 35-42. 

Cabezas, J. A., Cervera, M. T., Ruiz-Garcia, L., Carreño, J., Martinez-Zapater, J. M., 

2006. A genetic analysis of seed and berry weight in grapevine. Genome 49, 1572-1585. 

Camehl, I., Oelmüller, R., 2010. Do ethylene response factors-9 and -14 repress PR gene 

expression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal 

Behaviour 5, 932-936. 

Caniato, E., 2011. Development and Application of New Strategies for Genome 

Scaffolding and Gene Prediction applied to NGS data. Ph.D. Thesis. University of Padua, 

Italy. 

Carreno, J., Oncina, R., Carreno, I., 2006. In vitro studies on pollen germination capability 

and preservation of different cultivars of Vitis vinifera L. ISHS Acta Horticulture 827: IX 

International Conference on Grape Genetics and Breeding. 

Charlotte, P., 1971. Reproductive anatomy in cultivated grapes - a review. American 

Journal of Enology and Viticulture  22, 92-109. 

Chen, W., Yu, X. H., Zhang, K., Shi, J., De Oliveira, S., Schreiber, L., Shanklin, J., Zhang, 

D., 2011. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase 

required for pollen exine development in Arabidopsis. Plant Physiology 157, 842-853. 

Chkhartishvili, N., Vashakidze, L., Gurasashvili, V., And Maghradze, D., 2006. Type of 

pollination and indices of fruit set of some Georgian grapevine varieties. Vitis - Journal of 

Grapevine Research 45, 153–156. 

Cipriani, G., Marrazzo, M. T., Di Gaspero, G., Pfeiffer,  A., Morgante, M., Testolin, R., 

2008. A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) 

genotyping. BMC Plant Biology 8, 127. 

Cipriani, G., Spadotto, A., Jurman, I., Di Gaspero, G., Crespan, M., Meneghetti, S., Frare, 

E., Vignani, R., Cresti, M., Morgante, M., Pezzotti, M., Pe, E., Policriti,  A., Testolin, R., 



 
 

83 
 

2010. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions 

uncovers new synonymy and parentages, and reveals a large admixture amongst varieties 

of different geographic origin. Theoretical and Applied Genetics 121,1569-1585. 

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., 

Ruden, D. M., 2012. A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 

strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92. 

Coombe, B. G., 1973. The regulation and development of the grape berry. Acta 

Horticulture 34, 261-272. 

Coombe, B. G., 1976. The development of fleshy fruits. Annual Review of Plant Biology 

27, 507-28. 

Coombe, B., Dry, PR., 1992. Viticulture Volume 2 Practices, Adelaide. Wine titles 376 pp. 

Coombe, B. G., 1995. Growth stages of the grapevine: adoption of a system for identifying 

grapevine growth stages. Australian Journal of Grape and Wine Research 1, 100-110. 

Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., Grando, M. S., 2008. Berry and 

phenology-related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to 

underlying genes. BMC Plant Biology 8, 38. 

Costenaro-da-Silva, D., Passaiab, G., Henriquesa, J. A. P., Margisa, R., Pasqualia, G., 

Reversb, L. F., 2010. Identification and expression analysis of genes associated with the 

early berry development in the seedless grapevine (Vitis vinifera L.) cultivar Sultanine. 

Plant Science 179, 510–519. 

Dean, G., Cao, Y., Xiang, D., Provart, N. J., Ramsay, L., Ahad, A., White, R., Selvaraj, G., 

Datla, R., Haughn, G., 2011. Analysis of gene expression patterns during seed coat 

development in Arabidopsis. Molecular Plant 4, 1074-1091. 

Delmas, F., Sankaranarayanan, S., Deb, S., Widdup, E., Bournonville, C., Bollier, N., 

Northey, J. G., McCourt, P., Samuel, M. A., 2013. ABI3 controls embryo degreening 

through Mendel's I locus. Proceedings of the National Academy of Sciences 110, E3888-

3894. 

Deng, W., Chen, G., Peng, F., Truksa, M., Snyder, C. L., Weselake, R. J., 2012. 

Transparent Testa16 plays multiple roles in plant development and is involved in lipid 

synthesis and embryo development in canola. plant physiology 160, 978-989. 

Devic, M., 2008. The importance of being essential: EMBRYO-DEFECTIVE genes in 

 
 

84 
 

Arabidopsis. Comptes Rendus Biologies 331, 726-736. 

Dokoozlian, N. K., 2000. Grape Berry Growth and Development. in: Raisin Production 

Manual. University of California, Agricultural and Natural Resources Publication, Oakland, 

CA. 3393, 30-37.  

Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S., Meredith, P., Edwards, J., 

This, P., 2002. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of 

QTLs for seedlessness and berry weight. Theoretical Applied Genetics 105, (5):780-795. 

Doligez, A., Bertrand, Y., Farnos, M., Grolier, M., Romieu, C., Esnault, F., Dias, S., 

Berger, G., François, P., Pons, T., Ortigosa, P., Roux, C., Houel, C., Laucou, V., Bacilieri, 

R., Péros, J. P., This, P., 2013. New stable QTLs for berry weight do not colocalize with 

QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biology 13, 217. 

Du, Z., Zhou, X., Ling, Y., Zhang,  Z., Su,  Z., 2010. AgriGO: a GO analysis toolkit for the 

agricultural community. Nucleic Acids Res 38, (Web Server issue):W64-W70. 

Dreni, L., Pilatone,  A., Yun, D., Erreni, S., Pajoro, A., Caporali, E., Zhang, D., Kater, M. 

M., 2011. Functional analysis of all AGAMOUS subfamily members in rice reveals their 

roles in reproductive organ identity determination and meristem determinacy. Plant Cell 

23, 2850-2863. 

Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., 

Perez, P., Smyth, D. R., 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis 

with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155-168. 

Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., 

Myles, S., Martinez-Zapater, J. M., Zyprian, E., Moreira, F. M., Grando, M. S., 2013. 

Genetic diversity and population structure assessed by SSR and SNP markers in a large 

germplasm collection of grape. BMC Plant Biology 13, 39. 

Escobar-Restrepo, J. M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W. 

C., Grossniklaus, U., 2007. The FERONIA receptor-like kinase mediates male-female 

interactions during pollen tube reception. Science 317, 656-660. 

Evans, M. M. S., 2007. The indeterminate gametophyte1 gene of maize encodes a LOB 

domain protein required for embryo sac and leaf development. Plant Cell 19, 46-62. 

Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., Grando, M. S., 2005. QTL analysis 

for fruit yield components in table grapes (Vitis vinifera). Theoretical and Applied Genetics 

111, 658-664. 



 
 

85 
 

Fasoli, M., Dal-Santo, S., Zenoni, S., Tornielli, G. B., Farina, L., Zamboni,  A., Porceddu,  

A., Venturini, L., Bicego, M., Murino, V., Ferrarini, A., Delledonne, M., Pezzotti, M., 2012. 

The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant 

into a maturation program. Plant Cell 24, 3489-3505. 

Favaro, R., Pinyopich,  A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M. F., 

Kater, M. M., Colombo, L., 2003. MADS-box protein complexes control carpel and ovule 

development in Arabidopsis. Plant Cell 15, 2603-2611. 

Food and agricultural organization statistics  2012. http://faostat3.fao.org/browse/Q/QC/E 

Gasparro, M., Caputo, A. R., Bergamini, C., Crupi, P., Cardone, M. F., Perniola, R., 

Antonacci, D., 2013. Sangiovese and its offspring in southern Italy. Molecular 

Biotechnology 54, 581-9. 

Gaubier, P., Raynal, M., Hull, G., Huestis, G. M., Grellet, F., Arenas, C., Pages, M., 

Delseny,  M., 1993. Two different Em-like genes are expressed in Arabidopsis thaliana 

seeds during maturation. Molecular Genetics and Genomics 238, 409-418. 

Grimplet, J., Van Hemert, J., Carbonell-Bejerano, P., Díaz-Riquelme, J., Dickerson, J., 

Fennell, A., Pezzotti, M., Martínez-Zapater, J. M., 2012. Comparative analysis of 

grapevine whole-genome gene predictions, functional annotation, categorization and 

integration of the predicted gene sequences. BMC Research Notes 5, 213. 

Hanania, U., Velcheva, M., Or, E., Flaishman, M., Sahar, N., Perl, A., 2007. Silencing of 

chaperonin 21, that  was differentially expressed in inflorescence of seedless and seeded 

grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Res16, 515-525. 

Hanania, U., Velcheva, M., Sahar, N., Flaishman, M., Or, E., Degani, O., Perl, A., 2009. 

The ubiquitin extension  protein S27a is differentially expressed in developing flower 

organs of Thompson seedless versus Thompson seeded grape isogenic clones. Plant Cell 

Report 28, 1033-1042. 

Ito, T.,  Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H., Shinozaki, K., 2007. 

Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates 

pollen and tapetum development. Plant Cell 19, 3549-3562. 

Robinson, J., Harding,  J., Vouillamoz, J., 2012. A complete guide to 1,368 vine varieties, 

including their origins and flavours. In Wine and grapes, London Penguin Group 

Publishers. 

Jenik, P. D., Gillmor, C. S., Lukowitz, W., 2007. Embryonic patterning in Arabidopsis 

 
 

86 
 

thaliana. Annual Review of Cell and Developmental Biology 23, 207-236.  

Jensen, P. J., Fazio, G., Altman, N., Praul, C., McNellis, T. W., 2014. Mapping in an apple 

(Malus x domestica) F1 segregating population based on physical clustering of 

differentially expressed genes. BMC Genomics 15, 261. 

Kagawa, H., Yamauchi, F., Hirano, H., 1987. Soybean basic 7S globulin represents a 

protein widely distributed in legume species. FEBS Letters 226, 145-149. 

Kaur, J., Sebastian, J., Siddiqi, I., 2006. The Arabidopsis-mei2-lLike genes play a role in 

meiosis and vegetative growth in Arabidopsis. Plant Cell18, 545-559. 

Koltunow, A., Bicknell,  R . A., Chaudhury, A. M., 1995. Apomixis: Molecular strategies for 

the generation of genetically identical seeds without fertilization. Plant Physiology 108, 

1345-1352.  

Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for Molecular 

Evolutionary Genetics Analysis and sequence alignment. Brief Bioinformatics 5, 150-63. 

Lahogue, F., This, P., Bouquet, A., 1998. Identification of a co-dominant scar marker 

linked to the seedlessness character in grapevine. Theoretical Applied Genetics 97, 950-

959. 

Le, B. H, Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., Kwong, L., 

Belmonte, M., Kirkbride, R., Horvath, S., Drews, G. N., Fischer, R. L., Okamuro, J. K., 

Harada, J. J., Goldberg, R. B., 2010. Global analysis of gene activity during Arabidopsis 

seed development and identification of seed-specific transcription factors. PNAS, 

Proceedings of the National Academy of Sciences 107, 8063-8070. 

Ledbetter, C. A., Ramming, D. W., 1989. Seedlessness in grapes. Horticultural Reviews 

11, 159- 184. 

Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler 

Transform. Bioinformatics 26, 589-595. 

Li, XC., Zhu, J., Yang, J., Zhang, G. R., Xing, W. F., Zhang, S., Yang, Z. N., 2012. 

Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in 

Arabidopsis and plays multiple roles in plant fertility. Molecular Plant 5, 131-142. 

Libault, M., Wan, J., Czechowski, T., Udvardi, M., Stacey, G., 2007. Identification of 118 

Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-

defense elicitor. Molecular Plant-Microbe Interactions 20, 900-911. 

Lin, W. C., Shuai, B., Springer, P. S., 2003. The Arabidopsis LATERAL ORGAN 



 
 

87 
 

BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of 

KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15, 2241-2252. 

Liu, X., Huang, J., Parameswaran, S., Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, 

Owen HA, Zhao D. 2009. The SPOROCYTELESS/NOZZLE gene is involved in controlling 

stamen identity in Arabidopsis. Plant Physiology 151, 1401-1411. 

Liu J., Chen N., Chen, F., Cai, B., Dal., Santo, S., Tornielli, G. B., Pezzotti, M., Cheng, Z. 

M., 2014. Genome-wide analysis and expression profile of the bZIP transcription factor 

gene family in grapevine (Vitis vinifera). BMC Genomics 15, 281. 

Maul, E., Sudharma, K.N., Kecke, S., Marx, G., Müller, C., Audeguin, L., Boselli, M., 

Boursiquot, J.M., Bucchetti, B., Cabello, F., Carraro, F., Crespan, M., De Andrés, M.T., 

Dias, J.E., Ekhvaia, J., Gaforio, L., Gardiman, M., Grando, M.S., Gyropoulos, D., 

Jandurova, O., Kiss, E.; Kontic, J., Kozma, P., Lacombe, T., Laucou, V., Legrand, D., 

Maghradze, D., Marinoni, D., Maletic, E., Moreira Maia, F., Muñoz, G., Nakhutsrishvili, G., 

Pijic, I., Peterlunger, E., Pitsoli, D., Pospisilova, D., Preiner, D., Raimondi, S., Regner, F., 

Savin, G., Savvides, S., Schneider, A., Sereno, C., Simon, S., Staraz, M., Zulini, L., 

Bacilieri, R., This, P. (2012). The European Vitis Database (www.eu-vitis.de): a technical 

innovation through an online uploading and interactive modification system. Vitis, 51 (2): 

79-85.  

Mejía, N., Gebauer, M., Muñoz, L., Hewstone, N., Muñoz, C., Hinrichsen, P., 2007. 

Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × 

seedless progeny. American Journal of Enology and Viticulture 58, 499-507. 

Mejía, N., Soto, B., Guerrero, M., Casanueva, X., Houel, C., Miccono, M. A., Ramos, R., 

Le Cunff, L., Boursiquot, J. M., Hinrichsen, P., Adam-Blondon, A. F., 2011. Molecular, 

genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic 

seedlessness in grapevine. BMC Plant Biology 11, 57. 

Miculan, M., 2014. Detection of somatic variants from next-generation sequencing data in 

grapevine bud sports. Ph.D. Thesis. University of Udine. 

Mizzotti, C., Mendes, M. A., Caporali, E., Schnittger, A., Kater, M. M., Battaglia, R., 

Colombo, L., 2012. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a 

maternal role in fertilization and seed development. The Plant Journal 70, 409-420. 

Mullins, M. G., Bouquet, A., Williams, L. E., 1992. Biology of the grapevine. In Biology of 

horticultural crops. Edited by Mullins MG, Cambridge: Cambridge University Press. 

 
 

88 
 

Myles, S., Chia, J. M., Hurwitz, B., Simon, C., Zhong, G. Y., Buckler, E., Ware, D., 2010. 

Rapid genomic characterization of the genus Vitis. PLoS One 5, e8219. 

Nwafor, C. C., Gribaudo, I., Schneider, A., Wehrens, R., Grando, M. S., Costantini, L., 

2014. Transcriptome analysis during berry development provides insights into co-

regulated and altered gene expression between a seeded wine grape variety and its 

seedless somatic variant. BMC Genomics 15, 1030. 

Nesi, N., Debeaujon, I., Jond, C., Stewart, A. J., Jenkins, G. I,, Caboche,  M., Lepiniec, L., 

2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS 

domain protein and is required for proper development and pigmentation of the seed coat. 

Plant Cell 14, 2463-2479. 

Passarinho, P.A., Van Hengel, A. J., Fransz, P. F., de Vries, S. C., 2001. Expression 

pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212, 556-

567. 

Pastuglia, M., Swarup, R., Rocher, A., Saindrenan, P., Roby, D., Dumas C, Cock J. M., 

2002. Comparison of the expression patterns of two small gene families of S gene family 

receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis 

thaliana. Gene 282, 215-225. 

Pearson, H. M., 1933. Parthenocarpy and seed abortion in Vitis vinifera L. Proceedings of 

the American Society for Horticultural Science 34, 402-404. 

Pellerone, F.I., Edwards, K. J., Thomas, M. R., 2001. Grapevine microsatellite repeats: 

Isolation, characterisation and genotyping of grape germplasm from Southern Italy. Vitis - 

Journal of Grapevine Research 40, 179-186. 

Pérez-Castro, R., Kasai, K., Gainza-Cortés, F., Ruiz-Lara, S., Casaretto, J. A., Peña-

Cortés, H., Tapia, J., Fujiwara, T., González, E., 2012. VvBOR1, the grapevine ortholog of 

AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout 

reproductive development of Vitis vinifera L. Plant Cell Physiology 53, 485-494. 

Pfaffl, M. W., Horgan, G. W., Dempfle, L., 2002. Relative Expression Software Tool 

(REST©) for group-wise comparison and statistical analysis of relative expression results 

in real-time PCR. Nucleic Acids Res 30, e36. 

Poupin, M. J., Matus, J. T., Leiva-Ampuero,  A., Arce-Johnson, P., 2011. Flower 

development in grapevine: A tale of two seasons. In book: The Flowering Process and its 

Control in Plants: Gene Expression and Hormone Interaction, First Edition: Research 



 
 

89 
 

Signpost, Editors: M. Yaish 173-198. 

Raimondi, S., Torello Marinoni, D., Schneider, A., 2006. Caratterizzazione Ampelografica 

E Genetica Di Vitigni Minori Del Basso Piemonte Oggetto Di Valorizzazione: Nuove 

Proposte Per I Viticoltori. Italus Hortus 32,154-157. 

Rhee, S.Y., Somerville, C. R., 1998. Tetrad pollen formation in quartet mutants of 

Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen 

mother cell wall. The Plant Journal 15, 79-88. 

Riechmann, J. L., Meyerowitz, E. M., 1998. The AP2/EREBP family of plant transcription 

factors. The Journal of Biological Chemistry 379, 633-646. 

Rowland, O., Ludwig, A. A., Merrick, C. J., Baillieul, F., Tracy, F. E., Durrant, W. E., Fritz-

Laylin,  L., Nekrasov, V., Sjölander, K., Yoshioka, H., Jones, J. D., 2005. Functional 

analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is 

essential for full Cf-9-dependent disease  resistance in tomato. Plant Cell 17, 295-310. 

Rozen, S., Skaletsky, H., 2000. Primer3 on the WWW for general users and for biologist 

programmers. Methods in Molecular Biology 132, 365–386.  

Ruan, Y. L., Patrick, J. W., Bouzayen,  M., Osorio, S., Fernie, A. R., 2012.  Molecular 

regulation of seed and fruit set. Trends in Plant Science 17, 1360-1385. 

Sampson, B., Noffsinger, S., Gupton, C., Magee, J., 2001. Pollination Biology of the 

Muscadine Grape. Horticultural Science 36:120–124. 

Sanders, P. M., Anhthu, Q. B., Weterings, K., McIntire, K. N., Hsu, Y., Lee, P. Y., Troung, 

M. T., Beals, T. P., Goldberg, R. B., 1999. Anther developmental defects in Arabidopsis 

thaliana male-sterile mutants. Sex Plant Reproduction 11, 297-322. 

Schlotterer, C., 2004. The evolution of molecular markers—just a matter of fashion? 

Nature Reviews Genetics 5, 63–69. 

Schneider, A., Carra, A., Akkak, A., This, P., 2001. Verifying synonymies between grape 

cultivars from France and Northwestern Italy using molecular markers. Vitis - Journal of 

Grapevine Research 40, 197-203. 

Schneider,  A., Raimondi, S., Moreira, F. M., De Santis, D., Zappia, R., Marinoni, D., 

Librandi, N., Grando, M. S., 2009. Contribution to the identification of the main varieties of 

Calabria. Frutticoltura 71, 46-55. 

Seed development flow-chart in grape berries 

[http://michaelstriem.com/files/Seed_Development_Flow-Chart_in_Grape_Berries.pdf]. 

 
 

90 
 

Shimada, T. L., Shimada, T., Takahashi, H., Fukao, Y., Hara-Nishimura, I., 2008.  A novel 

role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant Journal  

55, 798-809. 

Skinner, D. J., Hill,  T. A., Gasser, C. S., 2004. Regulation of ovule development. Plant 

Cell 16, S32-S45. 

Spillane,  C, A., Steimer, A., Grossniklaus, U., 2001. Apomixis in agriculture: the quest for 

clonal seeds. Sex Plant Reproduction. 14: 179-187.  

Srinivasan, C., Mullins, M. G., 1981. Physiology of flowering in the grapevine. A review. 

American Journal of Enology and Viticulture 32, 47-63. 

Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., 

Gassmann, W., Blevins, D.G., Stacey, G., 2008. The Arabidopsis AtOPT3 protein 

functions in metal homeostasis and movement of iron to developing seeds. Plant 

Physiology 146, 589-601. 

Striem, M. J., Spiegel-Roy, P., Baron, I., Sahar, N., 1992. The degrees of development of 

the seed-coat and endosperm as separate subtraits of stenospermocarpic seedlessness 

in grapes. Vitis - Journal of Grapevine Research 31, 149-155. 

Su, H., Zhu, J., Cai, C., Pei, W., Wang, J., Dong, H., Ren, H., 2012. FIMBRIN1 is involved 

in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24, 4539-4554. 

Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., 2011. REVIGO summarizes and visualizes 

long lists of Gene Ontology terms. PloS ONE 6, e21800.  

Sweetman, C., Wong, D. C., Ford, C. M., Drew, D. P., 2012. Transcriptome analysis at 

four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into 

regulated and coordinated gene expression. BMC Genomics 13, 691. 

The Arabidopsis Information Resource (TAIR) [http://www.arabidopsis.org/]. 

This, P., Jung,  A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., Crespan, M., Dangl, 

G. S., Eisenheld, C., Ferreira-Monteiro, F., Grando, S., Ibáñez, J-, Lacombe, T., Laucou, 

V., Magalhães, R., Meredith, C. P., Milani, N., Peterlunger, E., Regner, F., Zulini, L., Maul, 

E., 2004. Development of a standard set of microsatellite reference alleles for identification 

of grape cultivars. Theoretical and Applied Genetics 109, 1448–1458. 

Torregrosa, L., Fernandez, L., Bouquet,  A., Boursiquot, J. M., Pelsy, F., Martínez-

Zapater, J. M., 2011. Origins and consequences of somatic variation in grapevine. In 

Genetics, genomics, and breeding of grapes. Edited by Zapater JM, Blondon AM, Kole C. 



 
 

91 
 

New Hampshire: Science Publishers,68-92. 

Uniprot [http://www.uniprot.org/]. 

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., 

Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by 

geometric averaging of multiple internal control genes. Genome Biology 3, 7 

Vargas, A. M., Dolores Vélez,  M., Teresa de Andrés,  M., Laucou,  V.,  Lacombe, T., 

Boursiquot, J. M., Borrego, J., Ibáñez, J., 2007. Corinto bianco: a seedless mutant of 

Pedro Ximenes. American Journal of Enology and Viticulture 58, 540-543. 

Varoquaux, F., Blanvillain, R., Delseny, M., Gallois, P., 2000. Less is better: new 

approaches for seedless fruit production. Trends Biotechnology 18, 233-242. 

Venturini, L., Ferrarini, A., Zenoni, S., Tornielli, G. B., Fasoli, M., Dal Santo, S., Minio, 

 A., Buson, G., Tononi, P., Zago, E. D., Zamperin, G., Bellin, D., Pezzotti, M., 

Delledonne, M., 2013. De novo transcriptome characterization of Vitis vinifera cv. Corvina 

unveils varietal diversity. BMC Genomics 14,41. 

Vielle-Calzada, J. P., Crane, C. F., and Stelly, D. M., 1996. Apomixis: the asexual 

revolution. Science 274, 1322-1323.  

Vitulo, N., Forcato, C., Carpinelli, E. C., Telatin, A., Campagna, D., D'Angelo, M., Zimbello, 

R., Corso, M., Vannozzi, A., Bonghi, C., Lucchin, M., Valle, G., 2014. A deep survey of 

alternative splicing in grape reveals changes in the splicing machinery related to tissue, 

stress condition and genotype. BMC Plant Biolotechnology 14, 99. 

Vivancos, J., Spinner, L., Mazubert, C., Charlot, F., Paquet, N., Thareau, V., Dron, M., 

Nogué, F., Charon, C., 2012. The function of the RNA-binding protein TEL1 in moss 

reveals ancient regulatory mechanisms of shoot development. Plant Molecular Biology 8, 

323-336. 

Wang, H., Tang, W., Zhu, C., Perry, S. E., 2002. A chromatin immunoprecipitation (ChIP) 

approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially 

accumulates in embryos. Plant Journal 32, 831-843. 

Wang,  Z., Gerstein, M., Snyder, M., 2009. RNA-Seq: a revolutionary tool for 

transcriptomics. Nature Reviews Genetics10, 57-63. 

Williams, L. E., 2000. Bud Development and Fruitfulness of Grapevines.  in: Raisin 

Production Manual. University of California, Agricultural and Natural Resources 

Publication. Oakland, CA.3393,24-29.  

 
 

92 
 

Wing, R. A., Yamaguchi, J., Larabell, S. K., Ursin, V. M., McCormick, S., 1990. Molecular 

and genetic characterization of two pollen-expressed genes that have sequence similarity 

to pectate lyases   of the plant pathogen Erwinia. Plant Molecular Biology 14, 17-28. 

Wold, B., Myers, R. M., 2008. Sequence census methods for functional genomics. Nature 

Methods 5, 19-21. 

Wu, Y., Yan, J., Zhang, R., Qu, X., Ren, S., Chen, N., Huang, S., 2010. Arabidopsis 

FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube 

growth. Plant Cell 22, 3745-3763. 

Wudick, M. M., Luu, D. T., Tournaire-Roux, C., Sakamoto, W., Maurel, C., Vegetative and 

sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen 

and contribute to plant reproduction. Plant Physiology 164, 1697-1706. 

Yang, C., Vizcay-Barrena, G., Conner, K., Wilson, Z., 2007. MALE STERILITY1 is 

required for tapetal development and pollen wall biosynthesis. Plant Cell 19, 3530-3548. 

Yang, C., Xu, Z., Song, J., Conner, K., Vizcay Barrena, G., Wilson,  Z. A., 2007. 

Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the 

endothecium and is essential for anther dehiscence. Plant Cell 19, 534-548. 

Yang, W. C., Ye, D., Xu, J., Sundaresan, V., 1999. The SPOROCYTELESS gene of 

Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. 

Genes and Development 13, 2108-2117. 

Yin, T., Pan, G., Liu, H., Wu, J., Li, Y., Zhao,  Z., Fu, T., Zhou, Y., 2012. The chloroplast 

ribosomal protein L21 gene is essential for plastid development and embryogenesis in 

Arabidopsis. Planta 235, 907-921. 

Yuan, M., Wang, S., 2013. Rice MtN3/saliva/SWEET family genes and their homologs in 

cellular organisms. Molecular Plant-  Oxford Journal 6, 665-674. 

Zenoni, S., Ferrarini, A., Giacomelli, E., Xumerle, L., Fasoli, M., Malerba, G., Bellin, D., 

Pezzotti, M., Delledonne, M., 2010. Characterization of transcriptional complexity during 

berry development  in Vitis vinifera Using RNA-Seq. Plant Physiology 152, 1787-1795. 

Zeng, Y., Zhao, T., Kermode, A. R., 2013. A conifer ABI3-interacting protein plays 

important roles during key transitions of the plant life cycle. Plant Physiology 161, 179-

195. 

Zhang, Q., Li,  Z., Yang, J., Li, S., Yang, D., Zhu, Y., 2012.  A calmodulin-binding protein 

from rice is essential to pollen development. Journal of Plant Biology 1, 8-14. 



 
 

93 
 

Kanneganti, V., Gupta, A. K., 2008. Wall associated kinases from plants - an overview. 

Physiology and Molecular Biology of Plants 14, 109-118. 

Zou, Y., Aggarwal, M., Zheng, W. G., Wu, H. M., Cheung, A. Y., 2011. Receptor-like 

kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction 

with the pistil. AoB Plants. plr017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

94 
 

 

 

8. Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

95 
 

 

 
APPENDIX 1 

Table 1:  Genotypic characterization of wild-type and mutant. 

Fifty eight SSR (simple sequence repeats) markers, spread across the nineteen chromosomes of 

grapevine genome, were used to genotype the wild-type and the mutant. Marker details and PCR 

conditions are described in methods. Symbols: * SSR markers commonly used to discriminate 

grapevine varieties, - indicates homozygous allele. 

SSR Marker Multiplex 

panel 

Dye Labeled primer 

concentration 

(µM) 

Wild-type 

& Mutant  

 Allele 1 

Wild-type 

& Mutant 

 Allele 2 

Chromosome 

Location 

VVS2* 1 6-FAM 0,2 130 - Chr11 

VVMD32* 1 6-FAM 0,6 253 257 Chr4 

VVMD28* 1 NED 0,3 236 246 Chr3 

VMC1B11 2 NED 0,3 167 - Chr8 

VVMD27* 2 HEX 0,6 167 183 Chr5 

VVMD7* 2 6-FAM 0,2 240 263 Chr7 

VrZAG62* 3 HEX 0,6 193 195 Chr7 

VrZAG79* 3 6-FAM 0,3 243 259 Chr5 

VVMD25* 4 6-FAM 0,3 243 251 Chr11 

VVMD5* 4 HEX 0,6 225 236 Chr16 

VVIQ52 5 NED 0,2 77 84 Chr9 

VVMD24 5 6-FAM 0,2 207 213 Chr14 

VVIN16 5 6-FAM 0,2 150 - Chr18 

VVIV37 6 NED 0,4 160 176 Chr10 

VVIH54 6 6-FAM 0,2 166 174 Chr13 

VMC4F8 7 6-FAM 0,2 112 124 Chr1 

VVMD21 7 NED 0,4 244 250 Chr6 

VVIN73 7 6-FAM 0,2 265 - Chr17 

VVIP31 8 NED 0,3 191 195 Chr19 

VVIB01 8 6-FAM 0,3 289 291 Chr2 

VMC7H3 9 HEX 0,08 120 130 Chr4 

VVIN56 9 6-FAM 0,1 161 - Chr7 
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VVIP77 10 NED 0,2 175 183 Chr4 

VMC6D12 10 HEX 0,2 179 - Chr9 

VrZAG67 10 6-FAM 0,1 129 152 Chr10 

VMC3E11.2 10 NED 0,4 89 97 Chr10 

VVIB09 10 6-FAM 0,1 271 277 Chr17 

VrZAG21 11 6-FAM 0,1 201 203 Chr4 

VMC5G1.1 11 NED 0,2 123 - Chr6 

VMCNG1F1.1 12 HEX 0,2 148 158 Chr4 

VVIP72 12 HEX 0,4 43 54 Chr6 

VVIQ22 12 NED 0,2 94 - Chr17 

VrZAG83 13 6-FAM 0,4 190 194 Chr4 

VMC3B7.2 18 HEX 0,4 102 104 Chr19 

VMC8G6 13 HEX 0,2 158 - Chr12 

VMC5C5 14 NED 0,1 115 - Chr6 

VMC3D7 14 HEX 0,1 164 - Chr10 

VMC6C10 14 6-FAM 0,25 127 - Chr14 

VMC16F3 15 HEX 0,4 176 178 Chr7 

VMC1A12 15 6-FAM 0,4 121 - Chr7 

VMC2H5 15 HEX 0,1 96 108 Chr14 

VMC3B8 16 HEX 0,2 134 - Chr12 

VMC5A1 16 NED 0,1 167 169 Chr16 

VMC4D9.2 17 6-FAM 0,2 227 229 Chr15 

VMC7G5 17 6-FAM 0,1 166 184 Chr1 

VMC5E9 18 NED 0,5 192 198 Chr19 

VVIB63 18 6-FAM 0,1 142 - Chr15 

VVIM43 19 HEX 0,2 75 83 Chr6 

VVIV16 19 HEX 0,1 104 - Chr18 

VVIB23 single 

panel 

6-FAM 0,4 285 - Chr2 

VMC7F2 single 

panel 

HEX 0,2 201 - Chr18 

VMC5G7 single 

panel 

NED 0,1 200 216 Chr2 
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VVP18B19 single 

panel 

6-FAM 0,4 140 147 Chr18 

VVP18B32 single 

panel 

HEX 0,2 266 276 Chr18 

P3_VVAGL11 single 

panel 

6-FAM 0,4 91 99 Chr18 

VVP18B35 single 

panel 

6-FAM 0,4 231 245 Chr18 

VVP18B40 single 

panel 

HEX 0,2 135 151 Chr18 

VVP18B20 single 

panel 

HEX 0,2 248 252 Chr18 
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APPENDIX 2 

Phenotypic characterization of wild type and mutant  

Comparison of experimental group: WT_SP vs MT_SP 

A. Bunch length (BHL) 

Anova summary 

 Df Sum Sq Mean Sq F value Pr(>F) 

Variety 1 3.02 3.025 0.281 0.61 

Residuals 8 86.14 10.768   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.2727, df = 1, p-value = 0.6015 

 

Experimental group Wild-type Mutant 

Mean value 18.06 16.96 

 

B. Bunch weight (BHW)  

Anova summary  

 Df Sum sq  Mean Sq   F value Pr(>F) 

Variety 1 243048 243048 19.01 0.00241 

Residuals 8 102290 12786   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.8182, df = 1, p-value = 0.009023 

Experimental group Wild-type Mutant 

Mean value 409 97 
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C. Berry weight (BW) 

 

Anova summary 

 Df Sum Sq Mean Sq F value Pr(>F) 

Variety 1 10407 10407 231.6 3.45e-07 

Residuals 8 360 45   

 

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.8598, df = 1, p-value = 0.008816 

 

 

Experimental group Wild-type Mutant 

Mean value 87.5 23 

 

 

 

D. Mean berry weight (MBW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.62039 1 64.867 0.03828 

Residuals 0.66948 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 3.8723, df = 1, p-value = 0.04909 

 

Experimental group Wild-type Mutant 
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Mean value 3.5 0.9 

 

E. Mean berry diameter (MBD) 

Anova summary 

 Df Sum Sq Mean Sq F value Pr(>F) 

Variety 1 2.500 2.500 192.3 7.07e-07 

Residuals 8 0.104 0.013   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.9018, df = 1, p-value = 0.008611 

 

Experimental group Wild-type Mutant 

Mean value 1.54 0,54 

 

 

 

F. Seed number (SN) 

 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 7236.1 3.512.670 6,78E-05 

Residuals 8 164.8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 7.2581, df = 1, p-value = 0.007058 

 

 

Experimental group Wild-type Mutant 

Mean value 54 0,2 
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G. Mean seed number per berry (MSN) 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 96.040 72.319 2,81E-02 

Residuals 8 10.624   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 7.2581, df = 1, p-value = 0.007058 

 

Experimental group Wild-type Mutant 

Mean value 2.16 0.2 

 

 

 

H. Total seed fresh weight (TSFW) 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 110.460 1.722.978 1,08E-03 

Residuals 8 0.5129   

 

 

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 7.3052, df = 1, p-value = 0.006876 

 

 

Experimental group Wild-type Mutant 
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Mean value 2.240 0.138          

 

 

I. Mean seed fresh weight (MSFW) 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 0.0013094 15.832 0.2438 

Residuals 8 0.0066167   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 2.6129, df = 1, p-value = 0.106 

 

Experimental group Wild-type Mutant 

Mean value 2.16 0.2 

 

 

 

J. Number of berries with seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 1537.6 1 15376 2,00E-14 

Residuals 0.8 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 8.3333, df = 1, p-value = 0.003892 

 

 

Experimental group Wild-type Mutant 
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Mean value 25 0,2 

 

 

K. Number of berries without seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 1537.6 1 1,54E+04 2,00E-11 

Residuals 0.8 8   

 

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 8.3333, df = 1, p-value = 0.003892 

 

 

 

Experimental group Wild-type Mutant 

Mean value 0 24.8 
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APPENDIX 3 

Investigation of physiological process: a compariso n of quantitative traits between 

wild-type and mutant experimental group one.  

WT_EMS+ST vs MT_EMS+ST 

A. Bunch length (BHL) 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 0.23 0.0662 0.8055 

Residuals 6 21.21   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.0222, df = 1, p-value = 0.8815 

 

Variety  WT_EMS+ST MT_EMS+ST 

Mean value 11.1 11.4 

 

 

B. Bunch weight (BHW)  

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 2072.39 1 142.264 0.009269 

Residuals 874.03 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 5.3333, df = 1, p-value = 0.02092 
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Variety  WT_EMS+ST MT_EMS+ST 

Mean value 42 13 

C. Berry weight (BW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 297.68 1 13.653 0.01015 

Residuals 130.82 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 5.3976, df = 1, p-value = 0.02016 

 

 

Variety  WT_EMS+ST MT_EMS+ST 

Mean value 20.0 10.2 

 

 

D. Mean berry weight (MBW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.32962 1 65.417 0.04304 

Residuals 0.30233 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 3.0361, df = 1, p-value = 0.08143 

 

 

Variety  WT_EMS+ST MT_EMS+ST 

Mean value 20.0 10.2 
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E. Mean berry diameter (MBD) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.08533 1 0.4764 0.5158 

Residuals 107.467 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.0267, df = 1, p-value = 0.8703 

 

 

Experimental group WT_EMS+ST MT_EMS+ST 

Mean value .07 0.5 

 

 

F. Seed number (SN) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 5.339 1 0.9953 0.3517 

Residuals 37.550 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.1125, df = 1, p-value = 0.7373 

 

 

Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 1.75 0.3 
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G. Mean seed number per berry (MSN) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.05 1 0.1542 0.7063 

Residuals 2.27    

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.1125, df = 1, p-value = 0.7373 

 

 

Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 0.35 0.33 

 

 

 

H. Total seed fresh weight (TSFW) 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 0.03844 22.612 0.1711 

Residuals 8 0.13600   

 

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.8092, df = 1, p-value = 0.3684 
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Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 0.1 0.006 

 

 

I. Mean seed fresh weight (MSFW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.0002351 1 0.5943 0.4660 

Residuals 0.0027690 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.1125, df = 1, p-value = 0.7373 

 

 

Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 0.014 0.010 

 

 

 

J. Number of berries with seeds 

 

Anova summary 

 Df Sum Sq F value Pr(>F) 

Variety 1 3.6 1.44 0.2645 

Residuals 8 20.0   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.8092, df = 1, p-value = 0.3684 
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Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 1.25 0.03 

 

K. Number of berries without seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 2471.6 1 123.057 0.009887 

Residuals 1406.0 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 3.2311, df = 1, p-value = 0.07225 

 

 

Experimental group WT_EMS+ST MT_EMS+ST 

Mean value 46 21 
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APPENDIX 4 

Investigation of physiological process: a compariso n of quantitative traits between 

wild-type experimental groups one and two.  

 WT_SP vs WT_EMS+ST  

A. Bunch length (BHL) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 85.70 1 79.791 0.0255988 

Residuals 75.18 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6, df = 1, p-value = 0.01431 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 18.6 11.9 

 

 

B. Bunch weight (BHW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 299064 1 221.825 0.002183 

Residuals 94374 7   

 

Kruskal-Wallis rank sum test 
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Kruskal-Wallis chi-squared = 6, df = 1, p-value = 0.01431 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 409 42 

C. Berry weight (BW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 10149 1 546.284 6,66E-05 

Residuals 130 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.0504, df = 1, p-value = 0.0139 

 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 87.48 19.9 

 

 

D. Mean berry weight (MBW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 162.384 1 546.284 6,66E-05 

Residuals 0.2081 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.0504, df = 1, p-value = 0.0139 

 

 

Experimental group WT_SP WT_EMS+ST 
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Mean value 3.5 0.8 

 

 

 

E. Mean berry diameter (MBD) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 26.402 1 298.090 5,37E-04 

Residuals 0.0620    

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.1538, df = 1, p-value = 0.01311 

 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 1.54 0.45 

 

 

F. Seed number (SN) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 6066.8 1 2.115.449 1,73E-03 

Residuals 200.8 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.2069, df = 1, p-value = 0.01273 

 

 

Experimental group WT_SP WT_EMS+ST 
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Mean value 54 1.75 

 

 

 

G. Mean seed number per berry (MSN) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 72.802 1 294.167 0.0009832 

Residuals 17.324    

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.2069, df = 1, p-value = 0.01273 

 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 2.16 0.35 

 

 

H. Total seed fresh weight (TSFW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 96.142 1 4.005.926 1,95E-04 

Residuals 0.1680 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 6.4286, df = 1, p-value = 0.01123 

 

 

Experimental group WT_SP WT_EMS+ST 
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Mean value 2.18 0.4 

 

 

 

I. Mean seed fresh weight (MSFW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.00157241 1 42.569 0.07799 

Residuals 0.00258564 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 1.5517, df = 1, p-value = 0.2129 

 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 0.040 0.014 

 

 

J. Number of berries with seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 1253.47 1 4.679.630 1,14E-04 

Residuals 18.75 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 7.5, df = 1, p-value = 0.00617 

 

 

Experimental group WT_SP WT_EMS+ST 
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Mean value 25 1.25 

 

 

 

K. Number of berries without seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 4651.2 1 44.434 0.0002863 

Residuals 732.8 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 7.2, df = 1, p-value = 0.00729 

 

Experimental group WT_SP WT_EMS+ST 

Mean value 0 46 
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APPENDIX 5 

Investigation of physiological process: a compariso n of quantitative traits between 

mutant experimental group one and two.  

MT_SP vs MT_EMS+ST 

A. Bunch length (BHL) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 57.27 1 16.912 0.00627 

Residuals 20.32 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 5, df = 1, p-value = 0.02535 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 17 11.4 

 

 

B. Bunch weight (BHW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 13246.8 1 91.692 0.02316 

Residuals 8668.2 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 5, df = 1, p-value = 0.02535 
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Experimental group MT_SP MT_EMS+ST 

Mean value 96.8 12.8 

 

C. Berry weight (BW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 302.10 1 64.451 0.04416 

Residuals 281.24 6   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 3.8008, df = 1, p-value = 0.05123 

 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 23 10.3 

 

 

 

D. Mean berry weight (MBW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.62039 1 64.867 0.03828 

Residuals 0.66948 7   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 3.8723, df = 1, p-value = 0.04909 
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Experimental group MT_SP MT_EMS+ST 

Mean value 0.92 0.4 

 

 

 

E. Mean berry diameter (MBD) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.01008 1 10.312 0.3490517 

Residuals 0.05867 6   

 

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.9205, df = 1, p-value = 0.3373 

 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 0.54 0.46 

 

 

 

F. Seed number (SN) 

 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.0 1 0 1.00 

Residuals 1.6 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0, df = 1, p-value = 1 
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Experimental group MT_SP MT_EMS+ST 

Mean value 0.2 0.2 

 

 

G. Mean seed number per berry (MSN) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.0 1 0 1.00 

Residuals 1.6 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0, df = 1, p-value = 1 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 0.25 0.25 

 

 

H. Total seed weight (TSW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.04489 1 0.9421 0.3602 

Residuals 0.38120 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.0222, df = 1, p-value = 0.8815 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 0.018 0.004 
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I. Mean seed fresh weight (MSFW) 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.00049 1 0.5765 0.4695 

Residuals 0.00680 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0.0222, df = 1, p-value = 0.8815 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 0.018 0.004 

 

 

J. No. Of berries with seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 0.0 1 0 1 

Residuals 1.6 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 0, df = 1, p-value = 1 

 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 0.2 0.2 
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K. No. Of berries without seeds 

Anova summary 

 Sum Sq Df F value Pr(>F) 

Variety 384.4 1 45.626 0.06518 

Residuals 674.0 8   

 

Kruskal-Wallis rank sum test 

 

Kruskal-Wallis chi-squared = 2.6299, df = 1, p-value = 0.1049 

 

Experimental group MT_SP MT_EMS+ST 

Mean value 24.8 12.4 
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APPENDIX 6 

 

Figure 1.  Sliced berries of all experimental groups. Yellow arrows indicates the presence of seeds, 

Red arrows indicate berries with seed traces, Green arrows indicates berries without seed trace. (A) 

Wild-type self-pollinated group. (B) Wild-type EMS+ST group, (C) Mutant self-pollinated group, (D) 

Mutant EMS+ST group. 
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Figure 2.  Diagram showing the major events that occur during seed development in grapevine. It was 

used as a guide for collecting RNA samples for RNA-Seq experiment (by matching sampling to days 

from bloom). 

 

Figure 3. Picture of the materials collected from the two lines at each sampling date. 
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In 2009 anthesis was recorded for both lines between the last week of May and the first 

week of June (personal communication). With this prior knowledge of expected date of 

anthesis, RNA-Seq sampling for 2010 season was planned such that the initial sample 

collection will fall between 0 and 30 days before bloom in order to create an inventory of 

gene expression before fertilization (or flowering). For successive inventories of gene 

expression after fertilization, samplings were planned to take place between 0 and 15 

days post anthesis and subsequently at harvest to cover the whole ripening process. 

Using the E-L system as a guide (see Schneider et al 2009), the first sampling was done 

on 12th May 2010 when 8 leaves were physically observed to be clearly separated and 

single flowers were in compact groups (corresponding to the stage E-L 15), and fell 

between 15 and 20 days from the expected date of full bloom. The same was done for the 

stage E-L 27, when the date of sampling (10th June 2010) was discounted from the actual 

date anthesis commenced, and it fell between 0 and 10 days post anthesis. The last 

sampling date (16th September 2010) corresponded to the stage E-L 38 (harvest), which 

was more than 40 days post anthesis. Note: anthesis in 2010 was observed between 31th 

May and 3rd June. 
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Appendix 7 

Table 1. List of the genes analyzed in real-time PCR and primers used for their amplification. 

The table reports the gene IDs, gene annotations and sequences of the primer sets used to analyze the transcriptional profile of 14 

genes including the two constitutive genes used as reference for normalization. 

Gene ID (CRIBI)  Gene annotation  Forward primer 5' -> 3' Reverse primer 5' -> 3' 

VIT_01s0011g01560 Transparent testa 16 GTGATGGAGCAGTTCCCATT TACTGGAGGGTGAGGTCCTG 

VIT_01s0011g06390 MS1 (male sterility 1) GGCAGCAAGGGTGATTGTTG AGCTGCGTCGAACCAAGTAA 

VIT_01s0026g01680 Pectate lyase CAATACGAGCCCACATTGCG TTCAGGTTCCTTCTCGTGCC 

VIT_03s0038g04340 Feronia receptor-like kinase TCTCCCATGGAAGGTCTGTC AAGATCATCGACCCCCTTCT 

VIT_04s0008g01800 Myb domain protein 7 TGCCGCTTTGGATCTTGACT GCACGAGGACGTTTATAATGGA 

VIT_06s0004g02820 Sand (reference gene) CAATGTCGTCCGATTCGAGC GATCTTGAAGGGAGTCGAGGG 

VIT_09s0002g01670 Myb domain protein 26 ATTGAAACCAAGCCCATCAA TGAGAGCCTGATGGGAGACT 

VIT_09s0002g02210 Adhesion of calyx edges (ACE) AGAGGGAGCCACATAGGGTT TGCACTGAGCCACAGAAGAG 

VIT_11s0016g03020 Pectinesterase family ATTGGCACCTTCAATTCTGC ATTCTAAATGCCACCGCTTG 

VIT_12s0028g03270 Ethylene-responsive transcription 

factor 9 

CAACGAAGTCCTCCCCTTCC CAGCAGCGGAATTCACAACG 

VIT_14s0006g02950 Lateral organ boundaries protein 41 AGCGGCTCTCTTTGGTTGAA GAAGACAGGGTCGGATGGTG 

VIT_15s0021g02700 Beta-expansin (EXPB4) AGTCTTGGGGTGCCGTTTGG GCCATCCCGCTGGAATGACA 

VIT_15s0048g00510 Pectinesterase family TCTCAAACATGGCTCAGCAC GTGTTGCTGATGAGCTTGGA 

VIT_17s0000g05400 Myb domain protein 35 GCCGAATGCAGATGGACAAC TTCCTCCAGAAGGCTAGGGA 

VIT_17s0000g10430 Glyceraldehyde 3-phosphate 

dehydrogenase (reference gene) 

TTCTCGTTGAGGGCTATTCCA CCACAGACTTCATCGGTGACA 

VIT_18s0041g01880 MADS-box protein SEEDSTICK AGGCTTCAGCAAGCAAACAT CATTAAGCCGAGATGGAGGA 
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Table 2 . Summary of read mapping to V1_mRNA version of 12X grapevine genome draft annotation. 

 Wild-type Mutant 

Developmental stage  E-L 15 E-L 27 E-L 38 E-L 15 E-L 27 E-L 38 

Total No. of reads 128865364 125786280 143403274 127176972 102166350 115678764 

No. of mapped reads 104054886 101638040 113217146 102918032 82120258 81346578 

No. of reads mapped to single 

position 

92582632 90292742 98800321 87999629 70331451 70888044 

No. of reads mapped to 

multiple positions 

11472254 11345298 14416825 14918403 11788807 10458534 

Unmapped reads 24810478 24148240 30186128 24258940 20046092 34332186 

       

Read coverage        

Percentage of total reads 

mapped 

80.7 80.8 79.0 80.9 80.4 70.3 

Percentage of total reads 

mapped to a single position 

71.8 71.8 68.9 69.2 68.8 61.3 

Percentage of mapped reads 

that align to a single position 

89.0 88.8 87.3 85.5 85.6 87.1 

Percentage of total reads 

mapped to multiple positions 

8.9 9.0 10.1 11.7 11.5 9.0 

Percentage of mapped reads 

that align to multiple positions 

11.0 11.2 12.7 14.5 14.4 12.9 

Percentage of total reads 

unmapped 

19.2 19.2 21.0 19.1 19.6 29.7 
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Table 3. Selected individual genotypes inferred from RNA-Seq that matched Sanger sequencing.  

 Reference  Alternate Predicted 

genotype 

Mutant 

Validated  

genotype 

Mutant 

Predicted 

genotype 

Wild-type 

Validated  

genotype 

Wild-type 

Annotation 

SNP A T G TG TG TT TT Non-synonymous 

SNP B C T CT CT CC CC Non-synonymous 

SNP C G T GT GT GG GG Non-synonymous 

SNP D A G AG AG AA AA Non-synonymous 

SNP E G T GG GG GT GT Non-synonymous 

SNP F A G AG AG AA AA Non-synonymous 

SNP G C A CA CA CC CC Non-synonymous 

 

 

 

 

 
 

 

Figure 1.  Selected putative SNPs confirmed through Sanger sequencing. Black circle indicates the base change.

 

 

Selected putative SNPs confirmed through Sanger sequencing. Black circle indicates the base change.
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Selected putative SNPs confirmed through Sanger sequencing. Black circle indicates the base change.Selected putative SNPs confirmed through Sanger sequencing. Black circle indicates the base change. 
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Table 4: Proportion of RNA-Seq-derived candidate genes in the physical proximity of seed-related QTLs. 

 Chr1  Chr2  Chr4  Chr5  Chr12  Chr14  Chr15  Chr18  

10-Mbp window (Mbp) 0-9.5 0-9 15-

25 

0-9.8 0.5-

10.5 

11.8-21.8 6.6-16.6 22.7-32.7 

No of candidate genes in the chromosome 75 63 84 86 97 86 72 143 

No of candidate genes within the 10-Mbp window 32 41 32 32 59 21 34 35 

Percentage of candidate genes in the 10-Mbp window 42,7 65,1 38,1 37,2 60,8 24,4 47,2 24,5 
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Appendix 8 

Description of the procedure adopted to rank the tr anscripts by order of magnitude  

P-values (or scores) were computed to reflect the significance of the difference between 2 

counts (n1 and n2 corresponds to any two library combination out of the six libraries, 

independently of the genotype) using a binominal model. The model is described below. The 

p-values were log-transformed in order to allow for greater numerical stability in comparing 

extreme values. The sign of the p-value reflects the direction of the comparison (whether n1 is 

greater or lesser than n2). The smaller is absolute p-value, the more significant is the 

difference between the counts. Next we considered all the p-values and the ratios of 

expression between the counts to compute a ranking value for each transcript. Afterwards the 

ranking values were used to sort the transcripts and show on top the biggest differences in 

expressions between two of the libraries. 

Model description  

Assuming we sequenced N1 reads in sample1 (resp N2 reads in sample2), and n1 of those 

reads (resp. n2) are mapping into a given region of interest in the genome, we are interested 

in determining whether the expression in sample1 is significantly different from the expression 

in sample2. If we assume the events have the same probability of been observed in the two 

samples, n1 and n2 should follow a binomial distribution with the same probability of event 

p=(n1/N1 + n2/N2)/2. We can then estimate the probability of observing a count less than n1 

or greater than n2 according to this model. Furthermore, we can put a sign on the probability 

to reflect the direction of the comparison. For example, a score of -0.9 may be interpreted as: 

«there is 90% chance that sample1 is under-expressed relatively to sample2»; and a score of 

+0.9 may be interpreted as «there is 90% chance that sample1 is over-expressed relatively to 

sample2». The picture below shows an overview of the score obtained when n1 and n2 are 

between 0 and 100, and N1, N2 are fixed to 1'000'000. We can for example see that under 

this model there is 95% probability that a count of n1=20 compared to a count of n2=40 is 

significantly different when there are 1'000'000 events in each sample. Note: We have 

observed that the model is not very well appropriate to compare large values. This issue may 

be related to a saturation effect. 
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Overview of the scores obtained with the binomial model when comparing two counts (n1, n2) 

between 0 and 100 with (N1,N2) fixed to 1'000'000. 
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