

The 1st Isotope Ratio MS DAY

May 9-11, 2016
Fondazione Edmund Mach

S. Michele all'Adige (Trento, Italy)

BOOK OF ABSTRACTS

PROCEEDINGS OF THE 1st ISOTOPE RATIO MS DAY

May 9-11, 2016 Fondazione Edmund Mach

Federica Camin Editor

Edited by
Research and Innovation Centre
Fondazione Edmund Mach
Via Mach 1
38010 San Michele a/Adige - Italy
phone +39 0461615427 - fax +39 0461650872
www.fmach.it

ISBN 978-88-7843-046-4

OR16 - Belowground carbon allocation patterns as determined by the in-growth. Soil core 13C technique across different ecosystem types

Cristina Martinez^{1,2}, Giorgio Alberti^{3,4}, M. Francesca Cotrufo⁵, Federico Magnani⁶, Damiano Zanotelli⁷, Federica Camin⁸, Damiano Gianelle^{1,9}, Alessandro Cescatti¹⁰, <u>Mirco Rodeghiero⁹</u>

¹FoxLab, IASMA Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige 38010 (TN), Italy.

²Italian National Research Council, IBIMET, CNR Institute of Biometeorology, Firenze, Italy.

³Department of Agriculture and Environmental Sciences, University of Udine, Udine, Italy.

⁴MOUNTFOR Project Centre, European Forest Institute, IASMA Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige 38010 (TN), Italy.

⁵Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA. ⁶Silviculture and Forest Ecology Group, Department of Agricultural Sciences, University of Bologna, I-40127 Bologna, Italy.

⁷Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy.
 ⁸Stable Isotope and Traceability Platform, IASMA Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige 38010 (TN), Italy.

⁹Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige 38010 (TN), Italy.

¹⁰European Commission-DG Joint Research Centre, Institute for Environment and Sustainability, Climate Risk Management Unit, TP290 Ispra (VA), Italy

mirco.rodeghiero@fmach.it

Belowground carbon inputs, in particular rhizodeposition, are a key component of the global carbon cycle and yet their accurate quantification remains a major challenge. In the present paper, the in-growth soil cores-13Cmethod was used to quantify net root carbon input (rootderived C). Four different ecosystem types (forest, alpine grassland, apple orchard and vineyard) in northern Italy, characterized by C3 vegetation with a broad range of aboveground net primary production (ANPP; 155–770 gC m⁻² y⁻¹) were investigated. Cores, filled with soil of a known C4 isotopic signature were inserted at each site for twelve months. After extraction, root-derived C was quantified by applying a mass balance equation. Gross primary production (GPP) was determined by eddy covariance whereas ANPP was quantified using a biometric approach. NPP partitioning among sites differed, with fruit production dominating at agricultural sites. At these sites, belowground C inputs were dominated by rhizodeposits, likely due to relatively high root turnover. In natural ecosystems (forest and grassland) fine root production dominated belowground net primary production (BNPP) likely due to higher root growth determined by low phosphorus availability. Root derived C represented a significant contribution to BNPP varying from 40 to 60%. Our results underline the fact that failure to account for rhizodeposits may lead to a significant underestimation of BNPP.

References:

Martinez C., Alberti G., Cotrufo M.F., Magnani F., Zanotelli D., Camin F., Gianelle D., Cescatti A., Rodeghiero M. (2016) *Geoderma*, 263: 140–150.