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This study investigates the potential of the Sentinel-2 satellite for monitoring the seasonal changes in grassland total canopy
chlorophyll content (CCC), fraction of photosynthetically active radiation absorbed by the vegetation canopy (FAPAR), and fraction
of photosynthetically active radiation absorbed only by its photosynthesizing components (GFAPAR). Reflectance observations
were collected on a continuous basis during growing seasons by means of a newly developed ASD-WhiteRef system. Two models
using Sentinel-2 simulated data (linear regression-vegetation indices (VIs) approach and multiple regression (MR) reflectance
approach) were tested to estimate vegetation biophysical parameters. To assess whether the use of full solar spectrum reflectance
data is able to provide an added value in CCC and GFAPAR estimation accuracy, a third model based on partial least squares
regression (PLSR) and the ASD-WhiteRef reflectance data was tested.The results showed that FAPAR remained quite stable during
the reproduction and senescence stages, and no significant relationships between FAPAR and VIs were found. On the other hand,
GFAPAR showed clearer seasonal trends.The comparison of the threemodels revealed no significant differences in the accuracies of
CCC and GFAPAR predictions and demonstrated a strong contribution of SWIR bands to the explained variability of investigated
parameters.The promising results highlight the potential of the Sentinel-2 satellite for retrieving biophysical parameters from space.

1. Introduction

Spatial and temporal monitoring of biophysical parameters
of vegetation canopies provides important information on
their status and responses to changing environmental con-
ditions [1]. Canopy chlorophyll content (CCC) and fraction
of absorbed photosynthetically active radiation (FAPAR)
are widely applied in environmental studies concerning
growth monitoring, stress detection, and yield estimation
[2]. Also, these variables are very important inputs for
models of gas exchange between terrestrial ecosystems and
the atmosphere and for models of vegetation productivity
[3], which links atmospheric composition and vegetation
processes [4]. One of the most widely used approaches for
gross ecosystem production (GEP) modelling using remote
or proximal sensing data is based on the light use efficiency
(LUE) concept developed by Monteith [5, 6], according to

which GEP is directly related to absorbed photosynthetically
active radiation (APAR, 𝜇molm−2 s−1) and photosynthetic
radiation use efficiency expressing the carbon sequestration
efficiency per amount of the absorbed solar energy (𝜀, 𝜇mol
CO
2

𝜇mol−1 APAR):

GEP = 𝜀 ⋅ APAR = 𝜀 ⋅ FAPAR ⋅ PAR, (1)

where PAR is the incident photosynthetically active radiation
(𝜇molm−2 s−1) and FAPAR is the fraction of PAR absorbed
by the vegetation canopy (—).

From this general concept, APAR relates to vegetation
structure and pigment pools, while 𝜀 is linked to physiology
through processes that influence the energy distribution
within the photosynthetic system. However, the absorption
and efficiency terms are linked in several ways, for example,
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through the chlorophyll and carotenoids or nitrogen content
[7].

It is important to take into account the fact that both
leaves and vegetation canopies include in their composition
also nonphotosynthetic components (such as veins and walls
present even in the green leaves or senescent leaves, branches,
and stems at the canopy level) which will significantly affect
the canopy FAPAR values [4]. Therefore, partitioning of
FAPAR into the fraction related only to photosynthesizing
components (“green” FAPAR, GFAPAR) and estimating GEP
with GFAPAR will most likely result in significant estimation
improvement due to its higher consistency with the photo-
synthesis process [3, 8]. In fact, in the recent years, many
studies tend to account for GFAPAR rather than FAPAR
[1, 9, 10].

Furthermore, when no significant physiological stress is
occurring, in ecosystems characterized by strong seasonal
dynamics of green biomass such as croplands, grasslands,
and deciduous forests [11–15], additional estimation of 𝜀may
not be necessary due to its relation with the chlorophyll
content. Also, whenGEP is integrated over longer time scales,
the importance of acquiring spectral data as a proxy of 𝜀 is
decreasing [16].

Numerous in situ studies have highlighted that optical
data are a nondirect measure of canopy greenness which is
a complex parameter integrating a whole range of properties
such as FAPAR and GFAPAR [1, 17], CCC [10, 18–20], leaf
area index (LAI), and green LAI (GLAI) [10, 20, 21], as well
as green herbage ratio [22].

Due to spatial discontinuity of in situ measurements,
effective monitoring of terrestrial biogeochemical cycles
components at the global scale can be achieved only by
satellite observations. However, ground-truth measurements
are critical for calibrating and validating satellite data and
atmospheric correction algorithms [31] and to ensure a clear
and quantitative understanding of the satellite data [32, 33].

Despite the importance of ground-truthing satellite
observations, high spectral resolution measurements using
standalone instruments are carried out only in a limited
number of sites. The recent work within the COST Actions
ES0903 “EUROSPEC” and ES1304 “OPTIMISE” highlighted
the importance of enlarging the ground-truthing spectral
networks and standardizing the observations, which have
been so far carried out using system prototypes and nonstan-
dardized setups and protocols [31, 34].

ESA’s recently launched (June 2015) Sentinel-2 satel-
lite has begun to provide images of high spatial, spectral,
and temporal resolution, offering high potential datasets
for vegetation productivity and biophysical characteristics
temporal and spatial monitoring which need to be vali-
dated at the eddy covariance (EC) towers. In particular,
the MultiSpectral Instrument (MSI) of Sentinel-2 has made
available a set of 13 spectral bands ranging from visible
(VIS) and near infrared (NIR) to shortwave infrared (SWIR),
featuring four bands at 10m, six bands at 20m, and three
bands at 60m spatial resolution (Table 1). In the full
operational phase, a pair of twin Sentinel-2 satellites will
deliver imagery every five days under cloud-free conditions
(https://sentinel.esa.int/web/sentinel/missions/sentinel-2).

Table 1: Specification of the MultiSpectral Instrument (MSI) of the
Sentinel-2 satellite system.The twelve bands simulated in this study
are shown in bold.

Band
number

Central
wavelength

(nm)

Bandwidth
(nm)

Spatial resolution
(m)

B1 443 20 60
B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10
B8a 865 20 20
B9 945 20 60
B10 1380 30 60
B11 1610 90 20
B12 2190 180 20

Previous studies on evaluating the potential of the
Sentinel-2 satellite for estimating vegetation biophysical vari-
ables relate mainly to agricultural ecosystems [35–40], with
scarce examples of studies on forest [41] or grassland [38, 42]
ecosystems. Although further validation over crop ecosys-
tems is yet required to reinforce the previous findings [36],
extending the investigations to other ecosystem types (such
as forests, grasslands, and peatlands) is a priority matter.

In this study, two years of CCC (2013 and 2014), FAPAR
and GFAPAR (2014 and 2015), and simultaneous hyper-
spectral data acquired with an ASD-WhiteRef system [43]
deployed on the EC tower of the FLUXNET grassland site IT-
MBo (Viote del Monte Bondone, Trento, Italy) are presented
and analyzed.

In particular, the objectives of this paper are the following:

(i) To evaluate the potential of the Sentinel-2 satellite (by
simulating its spectral bands) formonitoring seasonal
changes in grassland CCC, FAPAR, and GFAPAR.

(ii) To compare different approaches (correlation analysis
and multiple regression) using Sentinel-2 simulated
spectral vegetation indices (VIs) and reflectance data,
respectively, to estimate CCC and GFAPAR.

(iii) To assess whether the use of full solar spectrum
reflectance data provides an added value in CCC
and GFAPAR estimation accuracy by means of par-
tial least squares regression (PLSR) and the ASD-
WhiteRef reflectance data.

2. Material and Methods

2.1. Experimental Site. The study was conducted in a perma-
nent alpine meadow located at 1550m a.s.l. on the Viote del
Monte Bondone plateau (46∘00N, 11∘02E, Italian Alps).
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The vegetation of the investigated area is dominated by
Festuca rubra (L.) (covering 25% of the area), Nardus stricta
(L.) (13%), and Trifolium sp. (L.) (14.5%) and represents
a typical low productive meadow of the Alps. The site is
managed extensively by low mineral fertilization (applied in
autumn) and one cut per year, occurring usually aroundmid-
July [44]. The maximum canopy height and the maximum
plant area index (PAI) at the peak of the growth season (mid-
June to early July) can reach approximately 30 cm [45] and
3m2m−2, respectively [43].

The climate of this area is classified as subcontinental
and is characterized by warm and wet summers, with mean
annual temperature of 5.5∘C (monthly averages ranging from
−3.1∘C inFebruary to 14.3∘C in July).The annualmean rainfall
is 1244mm, with maximum values in May (138mm) and
October (162mm).The snow-free period lasts generally from
early May to late October [46].

2.2. Hyperspectral RadiometricMeasurements. Hyperspectral
reflectance datawere acquired on a continuous basis during
the growing seasons from 2013 to 2015 by means of the ASD-
WhiteRef system designed for continuous and unattended
acquisition of canopy reflectance data [31, 43].

The core of the single-beam WhiteRef system is a com-
mercially available ASD FieldSpec Pro spectroradiometer
(Analytical Spectral Devices, Inc., Boulder, Colorado, USA;
wavelength range between 350 and 2500 nm; spectral resolu-
tion, FWHM of a single emission line, approximately 3 nm
around 700 nm; sampling interval 1.4 nm : 350–1000 nm,
2 nm : 1000–2500 nm; a cubic spline interpolation function
is used to calculate spectra at 1 nm intervals), which was
upgraded for standalone operations. The spectroradiometer
consists of an array of 3 spectroradiometers.The first (VNIR)
covers the 350–1050 nm range, while SWIR1 and SWIR2
ranges are 900–1850 and 1700–2500 nm, respectively. The
splice between the VNIR and the SWIR1 spectrometers is at
964/965 nm, where the response of the SWIR1 spectrometer
is superior to that of the VNIR photodiode array. The splice
between SWIR1 and SWIR2 occurs at 1769/1770 nm [43].

The ASD-WhiteRef system was installed in May 2013
at the FLUXNET Monte Bondone site (IT-MBo). The ASD
spectroradiometer equipped with the fiber optic with a field
of view of 25∘ was kept in a waterproof ventilated box
mounted on the EC tower. The reference target radiance was
measured by automatically sliding a white reference panel
(WR) under the fiber optic.The fiber optic installation height
(6m) resulted in an optical canopy footprint diameter of
about 2.7m. In order to protect theWR from adverse weather
conditions, as well as from light, dust, and insects, it was
housed inside a waterproof box and ejected only during the
measurements. Each acquisition was preceded by a reading
of a dedicated wetness sensor signal, and in case of rainfall
or dew the measurements were not conducted. Additionally,
during each ejection and insertion phase, theWRwas sprayed
with compressed air in order to remove eventual dust/insects
from its surface [31, 43].

The incident solar radiance and reflected radiance (aver-
age of 25 scans) were collected every 5minutes with dedicated

LabVIEW software. Vegetation target measurements were
sandwiched between two WR measurements conducted on
average 30 seconds apart and the radiance of theWR panel at
the time of the target measurements was estimated by linear
interpolation.

Further details regarding the ASD-WhiteRef system
setup, hardware, software, data acquisition, and quality con-
trols can be found in Sakowska et al. [43].

In order to limit the signal noise (“sawtooth behavior”)
in the SWIR2 region caused by low and/or variable light
levels, only reflectance data acquired during clear and stable
sky conditions were included in the analysis. Stable sky
conditions were defined as those when the change of the
illumination conditions (the change between the WR1 and
WR2 radiance measurements) was not higher than 10%.
Incoming radiation quality was assessed by computation of
Diffusion Index (DI, the ratio between diffuse and total
incident PAR, measured with BF3H Sunshine Sensor, Delta
T Devices Ltd., Cambridge, UK, and recorded at 1min
intervals by CR3000 data logger, Campbell Scientific Inc.,
Logan, Utah, USA). DI of 0.25 was adopted as the clear sky
conditions threshold. Furthermore, reflectance data in the
water absorption bands (1350–1460 nm and 1790–1960 nm)
[47] and wavelengths above 2300 nm affected by noise due
to low solar irradiance [48] were removed from the dataset,
which resulted in 1668 available bands.

In addition, data were excluded (i) when the site was
covered by snow, (ii) when precipitation was recorded 2 h
prior to the measurements, and (iii) during the annual hay
cutting and drying operations, which can take a few days,
especially when the rainyweather conditions are not allowing
for the immediate removal of the dried cut hay from the
footprint of the ASD-WhiteRef system (and the EC tower)
after the cut event.

The ASD FieldSpec Pro hyperspectral spectroradiometer
spectral resolution is much higher than the one of the MSI
of Sentinel-2. To match the spectral response of the two
instruments, the ASD signal was resampled to new band
positions using Gaussian models defined by the MSI full-
width half-maximum (FWHM) values. The simulation was
done by means of the resample2 function of the prospect R
package [49, 50]. The twelve Sentinel-2 bands simulated in
this study are presented in Table 1.

Finally, both the ASD-WhiteRef narrow band and
Sentinel-2 simulated reflectance spectra were averaged over
2 h close to the solar noon (11:00 a.m.–1:00 p.m. of local solar
time) to minimize solar angle effects and then used for com-
puting the VIs. Although many different VIs were investi-
gated, only themost commonly used and the best performing
in CCC, FAPAR, and GFAPAR estimation are presented in
this study. The list of the nine presented VIs is reported in
Table 2, and charts (Figure A) displaying the seasonal trends
of these VIs were included in the Supplementary Materials
available online at http://dx.doi.org/10.1155/2016/4612809.

The schematic view of the ASD-WhiteRef hyperspectral
data preprocessing flow is shown in Figure 1.
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Table 2: Spectral vegetation indices presented in this study: normalized difference vegetation index (NDVI), green normalized difference
vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), MERRIS terrestrial chlorophyll index (MTCI), red-
edge chlorophyll index (RECI), green chlorophyll index (GCI), wide dynamic range vegetation index (WDRVI), enhanced vegetation index
(EVI), and normalized difference water index (NDWI). 𝑅 refers to reflectance at a specific Sentinel-2 simulated band (nm).

Index Formulation Reference
NDVI (𝑅865 − 𝑅665)/(𝑅865 + 𝑅665) [23]
GNDVI (𝑅865 − 𝑅560)/(𝑅865 + 𝑅560) [24]
RENDVI (𝑅865 − 𝑅705)/(𝑅865 + 𝑅705) [25]
MTCI (𝑅865 − 𝑅705)/(𝑅705 − 𝑅665) [26]
RECI (𝑅865/𝑅705) − 1 [27]
GCI (𝑅865/𝑅560) − 1 [27]
WDRVI (0.1 ∗ 𝑅865 − 𝑅665)/(0.1 ∗ 𝑅865 + 𝑅665) [28]
EVI 2.5 ∗ (𝑅865 − 𝑅665)/(1 + 𝑅865 + 6 ∗ 𝑅665 − 7.5 ∗ 𝑅490) [29]
NDWI (𝑅865 − 1610)/(𝑅865 + 𝑅1610) [30]

ASD-WhiteRef system
hyperspectral radiance data
preprocessing

Calculating reflectance (vegetation
target measurements sandwiched
between two white reference
target measurements)

Selection of reflectance data
acquired during clear and stable
sky conditions

Removal of reflectance data 
acquired in unfavorable conditions: 

(i) When the site was covered by snow.

prior to the measurements.
(iii) During the annual hay cutting and 

drying operations.

Spectral resampling of the ASD
signal to Sentinel-2 bands
positions

Averaging the ASD-WhiteRef and
Sentinel-2 simulated reflectance

local solar time)
noon (11:00 a.m.–1:00 p.m. of
data over 2h close to the solar

(ii) When precipitation was recorded 2h

Removal of reflectance data in the
water absorption bands (1350–

affected by noise due to low solar
irradiance

wavelengths above 2300nm
1460nm and 1790–1960nm) and

Figure 1: Schematic view of the ASD-WhiteRef hyperspectral data preprocessing flow.
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2.3. Biophysical Field Data

2.3.1. Canopy Chlorophyll Content. At the Monte Bondone
site, vegetation sampling was undertaken at different veg-
etation development stages in two campaigns carried out
during the growing seasons of 2013 and 2014, with a total
of 12 observation dates in 2013 and 20 observation dates
in 2014. During each date, three 10m long and 0.1m wide
stripes (representing 1m2) were cut within the footprint of
the EC tower (and nearby the footprint of the automatic ASD-
WhiteRef hyperspectral system) in order to collect phytomass
samples (50 g per each stripe). Collected phytomass was
stored in sealed plastic bags and kept fresh in an ice chest
while being transported to the laboratory, where it was
divided manually into biomass and necromass. Both biomass
andnecromasswere then dried at 80∘C for 48 hours and green
herbage ratio (GR = biomass/(biomass + necromass)) was
calculated. Furthermore, randomly chosen additional green
leaf samples (>30 g) were used for chlorophyll measurement
and characterization by UV-VIS spectroscopy. In the first
step, the green tissue samples were ground in the presence
of liquid nitrogen. Next, 15 randomly chosen subsamples
were immersed in 80% acetone (0.1 g per 10mL), shaken for
10min in an automatic shaker at 250 rpm (Universal Table
Shaker 709, ASAL S.r.l., Milan, Italy), and centrifuged at
4000 rpm for 10min (Eppendorf 5810 R, Eppendorf S.r.l.,
Milano, Italy) in order to remove particles from the solution.
The absorbance of extracted solutions was measured at
470, 646.8, and 663.2 nm by UV-VIS Shimadzu UV-1601
spectrophotometer (Shimadzu Italia S.r.l., Milano, Italy), and
the concentrations of chlorophyll 𝑎(𝐶

𝑎

), chlorophyll 𝑏(𝐶
𝑏

),
and carotenoids (𝐶

𝑥+𝑐

) were calculated with the following
equations given for 80% acetone solvent (where pigment
concentrations are given in 𝜇g⋅mL−1) [51]:

𝐶
𝑎

= 12.25 ⋅ 𝐴
663.2

− 2.79 ⋅ 𝐴
646.8

,

𝐶
𝑏

= 21.50 ⋅ 𝐴
646.8

− 5.10 ⋅ 𝐴
663.2

,

𝐶
𝑥+𝑐

= (1000 ⋅ 𝐴
470.0

− 1.82 ⋅ 𝐶
𝑎

− 85.02 ⋅ 𝐶
𝑏

) ⋅ 198
−1

.

(2)

The weight of sampled sediment was used to calculate the
pigments concentrations per unit leaf mass (mg⋅g−1) and the
weight of biomass perm−2 was used to obtain the total canopy
chlorophyll content (CCC, mg⋅m−2).

2.3.2. FAPAR andGFAPAR. TheFAPARwas computed using
continuous measurements carried out with three Li-COR
PAR sensors (Li-COR Inc., Lincoln, Nebraska, USA) and
conducted in the growing seasons of 2014 and 2015. Two Li-
190 Quantum sensors were installed 2m above the canopy
level, measuring both incoming and reflected PAR, while the
third sensor (Li-191 Line Quantum) was placed at the ground
level, measuring PAR transmitted through the vegetation
covering the ASD-WhiteRef system footprint. All the PAR
data were recorded by a CR3000 data logger (Campbell
Scientific Inc., Logan, Utah, USA) at 1min intervals and
averaged over solar noon (11:00 a.m.–1 p.m. of local solar

time) in order to match the time period used for vegetation
spectral properties calculations. FAPAR was computed as

FAPAR = (PARi − PARr − PARt) × PARi−1, (3)

where PARi, PARr, and PARt are incident, reflected, and
transmitted PAR, respectively.

In the studied grassland, the nonphotosynthetic compo-
nent represents a considerable fraction of the aboveground
phytomass during a substantial part of the growing sea-
son, and furthermore its contribution increases significantly
towards the end of the growing season [1, 10]. Therefore, in
order to estimate the fraction of PAR absorbed only by living
and photosynthesizing components of the canopy (“green”
FAPAR, GFAPAR), FAPAR was multiplied by a normalized
(by scaling between 0 and 1) greenness index (GI, calculated
as a ratio between the digital number values of green and the
sum of red, green, and blue digital number values) derived
from the analysis of time series of Phenocam (NetCam SC
H.264, StarDot Technologies, Buena Park, CA, US) digital
images acquired two times per day around solar noon, using
the Phenopix R package [52].

2.4. Models for Vegetation Biophysical Parameters Estimation.
In this study, three groups of models were tested to estimate
grassland biophysical parameters: (i) linear regression (model
1), (ii) multiple regression (MR, model 2), and (iii) partial
least squares regression (PLSR, model 3). The first two
approaches utilized Sentinel-2 simulated data, while the third
model was making use of the full set of hyperspectral ASD-
WhiteRef spectra. The first model assumed direct linear
relationship between CCC, FAPAR, GFAPAR, and VIs. In
the second approach, the interaction effects between different
variables were explored by running a stepwise bidirectional
multiple regression model, in which CCC or GFAPAR were
set as dependent variables and reflectance values at twelve
Sentinel-2 simulated bands as explanatory variables. In the
third approach, the full set of ASD-WhiteRef spectra (1668
bands between 350 and 2300 nm) was used simultaneously
to predict CCC and GFAPAR. The PLSR method iteratively
transforms predictor (the ASD-WhiteRef reflectance data)
and response (either CCC or GFAPAR) variables into latent
vectors and generates band-wise calibration factors used to
create a predictive linearmodel. PLSR aims atmaximizing the
covariance between independent and dependent variables,
maintaining at the same time orthogonality in the factors
derived from spectra [53].

The abovementioned models were tested for all the
available years together (CCC: 2013 and 2014, 32 observations;
GFAPAR and FAPAR: 2014 and 2015, 94 observations) in
order to obtain general models for estimation of vegetation
biophysical parameters.

2.5. Statistical Analysis. Pearson’s correlation analysis was
used to test the significance of the relationships between VIs
and biophysical data (CCC, FAPAR, and GFAPAR).

In the multiple stepwise bidirectional linear regression
model, the set of Sentinel-2 simulated reflectance data that
best fits the CCC and GFAPAR was chosen according to
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Akaike’s information criterion (AIC) [54]. In the following
step, the variance inflation factor (VIF) [55] was computed
to measure the degree of (multi)collinearity of the 𝑖th inde-
pendent variable with the other independent variables in the
regressionmodel.WhenVIF for any of the predictors reached
the threshold value of 10, the (multi)collinearity was reduced
by eliminating one independent variable (the last one selected
by the automatic stepwise bidirectional regression) from the
analysis [20, 56]. The procedure was repeated until none of
the VIF factors exceeded an acceptable threshold value; thus
the subset of explanatory variables was free of significant
(multi)collinearity issues. The final subset of the predictor
variables was selected by testing whether the increase of the
adjusted 𝑅2 (Adj. 𝑅2)—after adding a subsequent predictor
variable to the multiple regression model—was significantly
different from zero (at significance level 𝛼 = 0.001) by means
of the Fisher test [57].

The PLSR analyses were carried out by means of the PLS
package of R software environment [58]. The predictor PLSR
matrix consisted of 1668 spectra and 32 and 94 observations
for CCC and GFAPAR estimates, respectively. The optimal
number of components in the PLSR analysis was determined
by minimizing the leave-one-out cross-validated root mean
square error of predictions (RMSEPCV) [59]. The variable
importance projection (VIP) statistic was computed in order
to evaluate the relative importance of reflectance at different
wavelengths in the PLSRmodel [60]. VIP values >1 indicated
high importance to the PLSR model [61].

Each of the three model’s coefficients was obtained by
fitting each model against the measured variables (CCC,
FAPAR, and GFAPAR). The main goodness-of-fit statis-
tics (adjusted coefficient of determination—Adj.𝑅2, root
mean square error—RMSE, RMSE normalized to the range
of data—NRMSE, and probability value—𝑝) and cross-
validated statistics (Adj. 𝑅2CV, RMSECV, and NRMSECV)
obtained with leave-one-out procedure were computed to
compare the performance of the different models.

All the statistical analyses were performed by means of
the R software (version 3.0.3, https://www.r-project.org/).

3. Results and Discussion

3.1. Results

3.1.1. Seasonal Variation of Vegetation Biophysical Parameters.
Seasonal patterns of vegetation biophysical parameters were
driven by both environmental variables (such as air tem-
perature and precipitation) and grassland management. The
grassland cut (occurring on 18 July (DOY 199), 25 July (DOY
206), and 7 July (DOY 188) in 2013, 2014, and 2015, resp.) split
the growing seasons into two subperiods.

Figure 2 presents the variations of CCC (mgm−2) mea-
sured in the growing seasons of 2013 and 2014. The first
sampling took place in the second half of May (DOY 143
and DOY 142 in 2013 and 2014, resp.) when the CCC was
still very low, and the grassland had just begun to green
up. CCC peaked around DOY 182 in 2013 and after that it
started to decrease until the grassland was cut. In 2014, the
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Figure 2: Seasonal courses of total canopy chlorophyll content
(CCC, mgm−2) in the growing seasons of 2013 and 2014.

highest value of CCC also occurred in the first part of July
(DOY 192), but, in this case, the following gradual decline
was not observed. After the cut event, the Monte Bondone
canopy regrowth usually reaches the peak in the first part of
September [57], and so it was in 2014. However, year 2013 was
characterized by very low productivity of the second part of
the growing season, caused by unusual drought affecting the
grass growth after the cut event, which can be considered as
an exception in this regard. The precipitation to temperature
ratio for a 2-week period after the cut was 4 times smaller in
2013 compared to 2014. Moreover, the precipitation amount
recorded during the entire month of July was equal to 53mm,
while the precipitation sum for the same month in 2014 was
6 times higher.

The seasonal variations of FAPAR and GFAPAR showed
different dynamics in 2014 and 2015 (Figure 3). The second
investigated year was characterized by earlier snowmelt; thus,
new green plant shoots appeared approximately one month
earlier than in 2014. In both measurement years, FAPAR
showed a gradual increase during the vegetative state reach-
ing the maximum around DOY 194 and DOY 165 in 2014 and
2015, respectively, and then remained practically invariant
until the grassland cut event. The FAPAR dynamics showed
the same pattern also in the second part of the growing
seasons: after a progressive increase related to the canopy
regrowth, this parameter reached the maximum (around
DOY 258 and DOY 250 in 2014 and 2015, resp.) and generally
remained at a constant level. On the contrary, the GFAPAR
(characterized by lower absolute values) showed a decreasing
course during both ripening stage (at the beginning of July in
2014 and in the second part of June in 2015) and senescence
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Figure 3: Seasonal courses of fraction of photosynthetically active
radiation absorbed by vegetation canopy (FAPAR, —) and fraction
of PAR absorbed only by photosynthesizing components of the
vegetation canopy (GFAPAR,—) in the growing seasons of 2014 and
2015.

stage (starting inmid-September in 2014 and at the beginning
of September in 2015).

3.1.2. Retrieval of Vegetation Biophysical Parameters with
Remotely Sensed Data. The linear regression analysis (model
1, Table 3) showed that the presented VIs explained at least
69% (Adj. 𝑅2CV) of the variability of CCC in the growing
seasons of 2013 and 2014 considered simultaneously.

On the other hand, very low accuracy of the same
model was reported for FAPAR estimates when the whole
growing seasons of 2014 and 2015 were considered together
(max. Adj. 𝑅2CV = 0.15, Table 4).

Converting FAPAR into GFAPAR resulted in a significant
improvement of the general model 1 performance (Table 4).
Adj. 𝑅2CV was on average 94% higher and NRMSECV 22%
lower for GFAPAR than FAPAR estimates. For example,
Adj. 𝑅2CV ofmodel 1 fedwith RECI increased from0.02 to 0.77
(—) and NRMSECV decreased from 0.24 to 0.12 (—).

Taking into account the poor results obtained in the
FAPAR estimations (discussed in Section 3.2) considering
the general model 1, this variable was omitted from further
analysis presented in this study.

The most commonly used VI, NDVI, was never included
among the best predictors of both CCC and GAPAR. On
the contrary, RECI and WDRVI turned out to be very good
candidates for the estimation of both parameters, considering
the two available years of observations together (2013 and
2014 for CCC, 2014 and 2015 for GFAPAR). The estimation
accuracy obtained when the general model 1 was fed with
these Sentinel-2 simulated VIs resulted in Adj. 𝑅2CV = 0.85
and 0.85 (—), RMSECV of 185.42 and 184.29 (mgm−2), and
NRMSECV of 0.12 and 0.12 (—) for CCC and Adj. 𝑅2CV = 0.77
and 0.73 (—), RMSECV of 0.09 and 0.10 (—), and NRMSECV
of 0.12 and 0.13 (—) for GFAPAR (Tables 3 and 4). The
other VIs included in the group of the three best-fitting
models for CCC and GFAPAR predictions were NDWI and
MTCI, respectively (Adj. 𝑅2CV = 0.88 (—), RMSECV of 163.42
(mgm−2), and NRMSECV of 0.10 (—) for CCC; Adj. 𝑅2CV =
0.76 (—), RMSECV = 0.09 (—), and NRMSECV = 0.12 (—) for
GFAPAR) (Tables 3 and 4).

The stepwise bidirectional procedure (MR, model 2)
selected Sentinel-2 simulated reflectance (𝑅) at 1610 and
945 nm as significant drivers of CCC and 𝑅865, 𝑅705, and
𝑅1610 for GFAPAR (Table 5). It is interesting to note that
NIR and SWIR1 bands were included as important predictors
of both CCC and GFAPAR. However, MR did not yield
any improvement in the explained variance of GFAPAR
(Adj. 𝑅2CV = 0.78, RMSECV = 0.09, and NRMSECV = 0.12
for model 2; Table 5). Also, MR resulted only in a very slight
improvement in the accuracy of CCC estimation compared
to the best linear regression model based on VI. Adj. 𝑅2CV
increased from 0.88 (NDWI model) to 0.90, while RMSECV
decreased from 163.42 to 147.95mgm−2 (Tables 3 and 5).

PLSR modelling indicated that 89% of the variation in
CCC and 82% of the variation in GFAPAR were explained by
algorithms derived from reflectance at 1668 ASD-WhiteRef
narrow bands (Adj. 𝑅2CV, Table 6). RMSECV of the PLSR
models was equal to 148.10mgm−2 for CCC and 0.08 (—)
for GFAPAR (Table 6), requiring 3 and 5 latent components,
respectively, to achieve this predictive capacity (Figure 4).
The VIP values displayed fairly consistent patterns across the
spectrum, as well as similar ranges for both models (varying
from 0.18 to 1.88 for CCC PLSR model and from 0.11 to 1.86
for GFAPAR model) (Figure 5). For example, wavelengths in
the region between 735 and 1130 nm were almost uniformly
distributed and particularly important for both variables.
A close agreement was found also for the SWIR region
from 1590 to 1780 nm; however, the VIP threshold of 1 was
exceeded only for the GFAPAR model. A key difference
was observed solely in the first section of the red-edge
region (690–735 nm), which appeared to be important only
in the GFAPAR model with a local VIP peak occurring at
around 710 nm. In the CCC model, this peak occurred at
a slightly shorter red-edge wavelength (∼700 nm) and was
characterized by 2-fold lower absolute value.

Scatter plots of observed versus predicted CCC and
GFAPAR using Sentinel-2 simulated (model 2) and full ASD-
WhiteRef (model 3) spectra are presented in Figure 6.
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Table 3: Summary of the statistics (𝑛: number of observations; Adj. 𝑅2: adjusted coefficient of determination; Adj. 𝑅2CV: cross-validated Adj.
𝑅
2; RMSE: root mean square error; RMSECV: cross-validated RMSE; NMRSE: normalized RMSE; NRMSECV: cross-validated NRMSE) of the

linear regression (model 1) between measured canopy chlorophyll content (CCC, mgm−2) and spectral vegetation indices (VIs) considering
both years of observation together (2013 and 2014).The three best-fittingmodels are printed in bold.The best performingmodel is additionally
highlighted in italic. All the regressions were statistically significant (𝑝 < 0.001).

Model VI
CCC estimation statistical summary

𝑛 Adj. 𝑅2 Adj. 𝑅2CV RMSE RMSECV NRMSE NRMSECV

— — — mgm−2 mgm−2 — —

1

NDVI

32

0.75 0.69 235.49 261.77 0.15 0.16
GNDVI 0.77 0.73 224.44 243.51 0.14 0.15
RENDVI 0.81 0.77 207.08 224.73 0.13 0.14
MTCI 0.76 0.73 230.08 245.05 0.14 0.15
RECI 0.86 0.85 174.01 185.42 0.11 0.12
GCI 0.85 0.83 180.40 191.87 0.11 0.12

WDRWI 0.87 0.85 171.51 184.29 0.11 0.12
EVI 0.79 0.75 218.14 235.34 0.14 0.15

NDWI 0.89 0.88 154.04 163.42 0.10 0.10

Table 4: Summary of the statistics (𝑛: number of observations; Adj. 𝑅2: adjusted coefficient of determination; Adj. 𝑅2CV: cross-validated Adj.
𝑅
2; RMSE: root mean square error; RMSECV: cross-validated RMSE; NMRSE: normalized RMSE; NRMSECV: cross-validated NRMSE) of

the linear regression (model 1) between both fraction of photosynthetically active radiation absorbed by vegetation canopy (FAPAR) and
fraction of photosynthetically active radiation absorbed only by photosynthesizing canopy components (GFAPAR) and spectral vegetation
indices (VIs) considering both years of observation (2014 and 2015). The three best-fitting models in each group are printed in bold. The best
performing model is additionally highlighted in italic. Asterisk indicates significance of correlation: ∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05; n.s.:
not significant (Pearson’s correlation test).

Model VI
FAPAR estimation statistical summary GFAPAR estimation statistical summary

𝑛 Adj. 𝑅2 Adj. 𝑅2CV RMSE RMSECV NRMSE NRMSECV 𝑛 Adj. 𝑅2 Adj. 𝑅2CV RMSE RMSECV NRMSE NRMSECV

— — — — — — — — — — — — — —

1

NDVI

94

0.07∗∗ 0.03 0.16 0.16 0.23 0.24

94

0.66∗∗∗ 0.64 0.11 0.12 0.15 0.15
GNDVI 0.18∗∗∗ 0.15 0.15 0.15 0.22 0.22 0.66∗∗∗ 0.65 0.11 0.11 0.15 0.15
RENDVI 0.04∗ 0.00 0.16 0.17 0.23 0.24 0.74∗∗∗ 0.72 0.10 0.10 0.13 0.13
MTCI 0.01n.s. 0.00 0.16 0.17 0.24 0.24 0.77∗∗∗ 0.76 0.09 0.09 0.12 0.12
RECI 0.05∗ 0.02 0.16 0.16 0.23 0.24 0.78∗∗∗ 0.77 0.09 0.09 0.12 0.12
GCI 0.18∗∗∗ 0.15 0.15 0.15 0.22 0.22 0.67∗∗∗ 0.65 0.11 0.11 0.15 0.15

WDRWI 0.08∗∗ 0.05 0.16 0.16 0.23 0.23 0.74∗∗∗ 0.73 0.10 0.10 0.13 0.13
EVI 0.02n.s. 0.00 0.16 0.17 0.24 0.24 0.72∗∗∗ 0.71 0.10 0.10 0.13 0.14

NDWI 0.03∗ 0.00 0.16 0.17 0.24 0.24 0.64∗∗∗ 0.62 0.12 0.12 0.15 0.16

3.2. Discussion. The ASD-WhiteRef was demonstrated to be
a reliable system for unattended, continuous, and long-term
hyperspectral reflectance measurements, as no significant
failures during the three years of observations (2013–2015)
were recorded. There are only few hyperspectral systems
available worldwide that succeeded in continuous proximal
sensing from EC towers (such as UNIEDI operating in
Hyytiälä, Finland [62]; Hyperspectral Irradiometer installed
in Torgnon, Italy [63]; tram system from Skye Oaks, USA
[64]; AMSPEC-MED operating at Las Majadas, Spain [65]).
Furthermore, to our knowledge, only one system for continu-
ous hyperspectral measurements including the SWIR region
(however not covering the SWIR bands above 1800 nm) was
tested before [66, 67]. For this reason, the ASD-WhiteRef
stands out for its suitability for in situ spectral validation

of various satellite products incorporating also SWIR bands,
such as, for example, Sentinel-2, Landsat 8, or WorldView-3.

From the presented data, it appeared to be clear that
FAPAR failed in capturing the vegetation greenness decrease
related to both ripening and senescence stages, as the
main driver of FAPAR is the total phytomass. During these
stages, the contribution of necromass increased significantly;
therefore, although the canopy was still intercepting PAR,
it was used for photosynthesis to a much lower extent. As
observed in other studies, no significant relationship was
observed between this parameter and VIs (Table 4) [1]. On
the contrary, GFAPAR showed to be able to represent well the
Monte Bondone grassland greenness seasonal trends.Model 1
showed high performance and good agreement for both CCC
and GFAPAR, which is a consequence of the strong linear
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Figure 4: Cross-validated root mean square error of predictions
(RMSEPCV) curves: RMSEPCV as a function of the number of
components in the partial least squares regression (PLSR) models
for total canopy chlorophyll content (CCC, mgm−2) and fraction
of photosynthetically active radiation absorbed by photosynthetic
vegetation components (GFAPAR, —).

relationship between these biophysical parameters (Figure 7).
In fact, according to Peng et al. [9], CCC is the main driver of
GFAPAR.

The results of model 1 confirmed the findings of previous
studies indicating that

(i) the most commonly used VI, NDVI, tends to saturate
under conditions of moderate-to-high aboveground
biomass due to the saturation of reflectance in the vis-
ible bands and due to the limitation of the normalized
difference approach [28, 68, 69];

(ii) linearizing the relationship between VIs and CCC
or GFAPAR can be obtained by parameterizing the
model either with VIs based on the red-edge part of
the spectrumorwithmodified variants ofNDVI, such
as, for example, WDRVI [1, 28, 70].

Regarding the highest accuracy of CCC estimation
obtained with NDWI, the good performance of VIs based
on NIR and SWIR bands might be attributed to the strong
sensitivity of reflectance at SWIR bands to the foliage
water content [71], which in turn correlates well with leaf
chlorophyll content [72]. Consequently, at full canopy cover,
SWIR-based VIs indirectly relate to the quantity of above-
ground biomass and other vegetation biophysical parameters.
Although incorporating SWIR bands into VIs formulation
was proposed already many years ago and good relationships
with biophysical variables were obtained [67, 73–77], the
potential of using these bands in both proximal and remote
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Figure 5: Variable importance projection (VIP) by wavelength
to predict the total canopy chlorophyll content (CCC, mgm−2)
and the fraction of absorbed photosynthetically active radiation
by photosynthetic vegetation components (GFAPAR, —). Gaps
indicate bands deleted from the analysis. Solid dark lines indicate
VIP values of themean cross-validatedmodel, while the lighter lines
of the same color indicate the VIP range obtained with the cross-
validation procedure. VIP values >1 (dashed horizontal black lines)
indicate high importance to the PLSR models.

sensing of vegetation is still not fully explored and strongly
underutilized. Further studies are needed to highlight the
potential of using SWIR bands for improving the estimation
of biophysical parameters and, in turn, GEP.

The Sentinel-2 simulated NIR and SWIR reflectance were
selected as the main drivers of both CCC and GFAPAR also
within the MR method (model 2).

UsingMR reflectance-based approach instead of the best-
performing VIs did not lead to significantly improved results
in investigated parameters estimation. In more detail, MR
resulted only in a 2% increase in explained variance of CCC
and no improvement in GFAPAR predictions, respectively
(Tables 3, 4, and 5). Despite the fact that the red-edge bands
were not included in the final MR CCC model (𝑅705 was
selected as the third predictor, and its partial 𝑅2 of 0.003 did
not result in statistically significant change in the cumulative
Adj. 𝑅2), the successful performance of VIs including𝑅705 in
their formulation confirms the important role of this part of
the spectrum in monitoring the dynamics of CCC.
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(model 2, multiple regression) and full set of the ASD-WhiteRef hyperspectral reflectance data (model 3, partial least squares regression).
Adj. 𝑅2CV: adjusted cross-validated coefficient of determination (—).

The VIP statistics associated with each wavelength were
analyzed in order to identify the wavelengths that contribute
the most to predicting the variable of interest (in this case,
either CCC or GFAPAR). These analyses revealed that CCC
and GFAPAR models did not utilize all regions of the
solar spectrum. Moreover, a high degree of coincidence was
observed between the PLSR selected narrow bands and both
Sentinel-2 simulated bands selectedwithin theMR and bands
used in the best-performing VIs models. This means that, in
general, the same spectral regions showed to be important in
all themethods. A clear example of this degree of coincidence
was CCC, where the best fit in model 1 was obtained using
NDWI based on bands centered at 865 and 1610 nm. Both
NIR and SWIR bands were chosen also within theMRmodel
and such wavelengths are included in the area where PLSR
VIP achieved values higher than 1. The reason why the rele-
vant bands for CCC estimation were located in the NIR and
SWIR regions is related to the fact that, in theMonte Bondone
grassland, most of the variation in CCC was driven by the
variation in biomass, as the seasonal changes of leaf chloro-
phyll content (data not shown) were too low to influence the
CCC significantly. This is in agreement with previous studies
demonstrating a strong contribution of SWIR bands to the
explained variability of vegetation biophysical parameters by
means of MR (CCC, LAI [20]) and PLSR models (nitrogen,
biomass, and canopy water content [78]).

It was observed that, for both investigated variables,
predictive models based on PLSR did not produce consid-
erably higher accuracies compared to VIs or MR models

based on Sentinel-2 bands (CCC Adj. 𝑅2CV = 0.88, 0.90,
and 0.89 for VIs-based, MR, and PLSR models, resp., and
GFAPAR Adj. 𝑅2CV = 0.77, 0.78, and 0.82 for VIs-based, MR,
and PLSR models, resp.). Although this is in contrast with
some other studies [79, 80], our results indicate that VIs or
few spectral bands alone are able to provide sufficient and
accurate information on vegetation biophysical parameters
seasonal changes in dynamic grassland ecosystems (Figure 6).

The promising results obtained with Sentinel-2 simulated
bands underline the potential of this satellite mission for
retrieving the investigated parameters from space. However,
it has to be stressed out that similar studies, conducted in
different types of ecosystems, and further testing of the above
models for GEP estimations are required in order to fully
evaluate the quality of Sentinel-2 future products.

4. Conclusions

This study aimed at assessing the performance of the newly
developed automatic ASD-WhiteRef system in acquiring
hyperspectral reflectance data on a continuous basis and in
using this ground-truth database to investigate the potential
of the Sentinel-2 satellite to monitor biophysical parameters
(such as CCC, FAPAR, andGFAPAR) in a dynamic subalpine
grassland ecosystem. For this purpose, the modelling results
obtained only on the basis of the Sentinel-2 simulated
data (correlation with VIs and multiple regression with
reflectance at 12 bands as predictor variables) were compared
with predictive fit achieved with the PLSR modelling using
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Figure 7: Relationship between the fraction of photosynthetically
active radiation absorbed by photosynthetic vegetation canopy
components (GFAPAR,—) and the total canopy chlorophyll content
(CCC, mgm−2) in the growing season of 2014. Adj. 𝑅2: adjusted
coefficient of determination (—).

narrow-band solar reflectance.The lack of failures during the
3-year observation period proved the ASD-WhiteRef system
reliability in continuous and long-term field spectroscopy
measurements. The use of full spectrum instead of Sentinel-
2 simulated data approach did not lead to considerably
improved results in CCC and GFAPAR estimation. Although
further research in other ecosystems is required, such results,
considering the high spatial resolution and short revisit time
of the Sentinel-2 satellite, indicate a strong potential of this
mission for retrieving vegetation biophysical parameters in
dynamic ecosystems, which needs to be confirmed by satellite
observations when appropriate time-series will be available.
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