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Abstract

Background: Invasive alien species represent a growing threat for natural systems, economy and human health.
Active surveillance and responses that readily suppress newly established colonies are effective actions to mitigate
the noxious consequences of biological invasions. However, when an exotic species establishes a viable population
in a new area, predicting its potential spread is the most effective way to implement adequate control actions.
Emerging invasive species, despite monitoring efforts, are poorly known in terms of behaviour and capacity to
adapt to the new invaded range. Therefore, tools that provide information on their spread by maximising the
available data, are critical.

Methods: We apply three different approaches to model the potential distribution of an emerging invasive
mosquito, Aedes koreicus, in Northeast Italy: 1) an automatic statistical approach based on information theory,
2) a statistical approach integrated with prior knowledge, and 3) a GIS physiology-based approach. Each approach
possessed benefits and limitations, and the required ecological information increases on a scale from 1 to 3. We
validated the model outputs using the only other known invaded area in Europe. Finally, we applied a road
network analysis to the suitability surface with the highest prediction power to highlight those areas with the
highest likelihood of invasion.

Results: The GIS physiological-based model had the highest prediction power. It showed that localities currently
occupied by Aedes koreicus represent only a small fraction of the potentially suitable area. Furthermore, the
modelled niche included areas as high as 1500 m a.s.l., only partially overlapping with Aedes albopictus distribution.

Conclusions: The simulated spread indicated that all of the suitable portion of the study area is at risk of invasion
in a relatively short period of time if no control policies are implemented. Stochastic events may further boost the
invasion process, whereas competition with Aedes albopictus may limit it. According to our analysis, some of the
major cities in the study area may have already been invaded. Further monitoring is needed to confirm this finding.
The developed models and maps represent valuable tools to inform policies aimed at eradicating or mitigating
Aedes koreicus invasion in Northeast Italy and Central Europe.
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Background
An increasing number of species is rapidly spreading out-
side of their original distributional range and invading new
territories, gaining the name of invasive species. The factors
underpinning invasion processes are numerous and include
socio-economical determinants linked to the intensified
speed and density of transcontinental commercial and tour-
ist fluxes [1, 2]. Among abiotic factors, anomalous climatic
fluctuations [3] and landscape perturbations [4], mainly due
to human exploitation of the environment, modify eco-
logical conditions. These altered conditions trigger or facili-
tate species mixing at various spatial scales, at times
resulting in novel ecosystems which are constituted by per-
sistent assemblages of exotic and indigenous species [5, 6].
Among the risks arising from the increased or shifted
geographical distribution of species as well as from
novel ecosystems [2, 7, 8], the spread rate of infectious
diseases is the most pressing for human health [9]. In-
deed, many vertebrate and invertebrate species are com-
petent hosts for one or multiple zoonoses –infectious
and parasitic diseases transmissible from animals to
humans, whose distribution strictly follow the geo-
graphical range of their host species [10].
Bloodsucking arthropods, such as mosquitoes, represent

the majority of the organisms able to transmit agents of
infectious diseases to humans [11]. Indeed they constitute
a system able to overpass the skin barrier and deliver the
agent of the disease directly into the blood vessels. They
use host blood not only as a food source but also to regu-
late metabolic processes that cause dramatic and key
changes in their physiology [12]. Among them, mosqui-
toes have been the most successful invasive disease-vector
group in the 20th century, and are bridge-vectors of infec-
tious pathogens (e.g., arboviruses) which have caused dev-
astating anthropozoonosis. Some arboviruses, such as
dengue fever, Rift Valley fever, yellow fever and chikun-
gunya are transmitted by Aedes species. These are highly
invasive container-breeding mosquitoes, with a native geo-
graphical distribution barycentre located in tropical and
subtropical regions [13].
During the last thirty years, Aedes have spread worldwide,

recently becoming pests in several non-tropical countries
[14]. In Europe, Italy is the most heavily infested country
[14]. Here, the tiger mosquito Aedes albopictus (Skuse,
1894) has been recorded for the first time in 1990 [15] and
is now well established [16, 17]. This species has been indi-
cated as the primary vector for the first endemic outbreak
of Chikungunya in Europe [18]. Furthermore, in France
and Croatia Ae. albopictus has been blamed for the trans-
mission of the first autochthonous dengue cases reported
in Europe (in 2010 and 2013) in the last 80 years [19, 20].
However, in temperate countries, the distribution of Aedes
species is limited by winter temperature [21, 22], and in
Italy, Ae. albopictus is mainly present in areas below 600–

800 m a.s.l. [23, 24]. In 2011, Aedes koreicus (Edwards,
1917), was found in Italy [25]. This species is native of
South Korea, Japan, parts of China and ex-USSR countries
[26] and was recorded in 2008 in Belgium for the first time
outside its native range [27]. Aedes koreicus forms a mono-
phyletic taxon with Aedes japonicus (Theobald, 1901),
which is another emerging invasive mosquito in USA and
Europe. Given its ecological plasticity, Ae. koreicus has
been proposed as the next global invasive mosquito spe-
cies [27, 28], with potential impact on human and animal
health as the vector of Dirofilaria immitis, a heartworm,
endemic in Northern Italy and the Japanese Encephalitis
virus, mostly prevalent in Asia [26, 29–31].
According to the few data available about its native

distribution, Ae. koreicus may be able to tolerate lower
winter temperatures than Ae. albopictus. It is also better
adapted to urban environments than the forest dwelling
species Ae. japonicus [26, 27]. An exploratory analysis
performed using nine data points where Ae. koreicus was
sampled in its native range (Korea [32, 33]) revealed that
its native habitat has a yearly average temperature of
11.5 (sd 0.8) with the minimum average temperature of
the coldest month of −9 (sd 1.7; Matteo Marcantonio,
personal communication). With the highly competitive
species Ae. albopictus well established in Italy, Ae. korei-
cus may presumably be outcompeted by Ae. albopictus
in many areas with mild climate conditions (e.g.,
through larvae interspecific competition; [34]), but new
populations of Ae. koreicus might establish in areas too
cold for Ae. albopictus. Following this scenario, a wider
geographical range could be colonized by Aedes mosqui-
toes, potentially widening the spatial distribution of Ae-
des-borne diseases. Therefore, describing Ae. koreicus
potential distribution is critical for proacting ecological
management able to promptly respond to the threat
posed by this emerging invasive species [35].
The potential distribution of invasive species in a new

geographical area can be assessed through mechanistic or
correlative algorithms, generally referred to as invasive Spe-
cies Distribution Models (iSDMs) [36–39]. The main chal-
lenge with correlative iSDM is that, while many spatial
modelling techniques require species to be at equilibrium
with their environment, emerging invasive species are by
definition in a dynamic transition state in the invaded range
[9]. The equilibrium assumption may mislead predictions
over broad areas since species’ capacities to colonize previ-
ously unoccupied areas may affect reliability of model pre-
diction [40]. Therefore, the reliability of some ecological
modelling techniques is disputed in the scientific literature,
with hybrid (mechanistic together with correlative ap-
proach) and adaptive frameworks being more and more ex-
plored [39, 41–43]. However, choosing methods is often
dictated by more practical reasons such as availability of
field and laboratory data, knowledge of species biology,
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project deadlines and statistical or mathematical expertise.
Purely automatic statistical approaches require minimal
knowledge about the species’ life history, ecology and physi-
ology, making predictions easy to achieve. By contrast,
other approaches make use of such knowledge to select pa-
rameters appropriate to model the physiological require-
ment of the investigated species or build mathematical
representations of ecological processes. Such iSDMs require
more effort but are more accurate when detailed physio-
logical information are available or in circumstances that
require in-depth understanding of survival and spread
framework [41, 42].
As part of the LExEM (Laboratory of Excellence for Epi-

demiology and Modeling, www.lexem.eu) project, we set a
network of traps supported by larval searches in northern
Italy. Using the collected data, we estimated the potential
distribution of Ae. koreicus in Northeast Italy with three dif-
ferent iSDM approaches. First, we applied an automatic
statistical approach, represented by the Maximum Entropy
(MaxEnt) modelling [44]. Second, we implemented a logis-
tic regression model with Bayesian framework informed by
using prior knowledge retrieved from literature on the eco-
logically similar and better studied species Ae. albopictus.
The information derived from field data is therefore
mediated by a-priori ecological information [45, 46]. Third,
we applied a Geographic Information System (GIS)
physiology-based iSDM, solely relying on known environ-
mental constraints of the species (e.g., the species cannot
survive cold winter temperatures, etc.). Beyond describing

species distributions, iSDMs have become an important
and widely used decision making tool for a variety of appli-
cations, such as mapping risk of VBDs as well as their host
spread, and determining locations that are potentially sus-
ceptible to invasion. Here, making use of multiple iSDMs,
we aim to reliably estimate Ae. koreicus potential distribu-
tion in Northeast Italy, gathering insights into which iSDM
should be preferred on the others. Our final goal was to in-
vestigate the future expansion of Ae. koreicus in the study
area combining the developed habitat suitability map with
available information about transportation networks and
the observed species dispersal rate. Integrating the current
and potential distribution of emerging invasive species with
their preferred spread pathways is pivotal in identifying the
most appropriate strategy to mitigate and control their in-
vasion. In this paper, we hope to provide useful and vali-
dated spatial information about Ae. koreicus spread to
decision makers in order to support control strategies and
develop proactive public health policies.

Study area
The study area is located in Northeast Italy (Fig. 1; latitude
N46.75, S45.59, longitude W10.38, E12.82; Datum
WGS84). We investigated the presence of Ae. koreicus in
two administrative units, Trentino and Veneto regions
(EU NUTS2 code: ITD2 and ITD3). The area comprises
the Eastern section of the Alps and the Northeastern part
of the Po Valley. The altitude ranges from 0 to
3,900 m a.s.l. The climate ranges from subartic climate

Fig. 1 Study areas: Right side: European map with the two red rectangles showing Ae. koreicus positive areas for Ae. koreicus in Italy (big
rectangle) and in Belgium (small rectangle). For the statistical analysis, the Italian study area was used as the training area while the Belgian one
as the test area. Left side: Zoom of the Italian study area showing trap locations and major cities, with the shaded digital elevation model
as background
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(Köppen climate classification: Dwc) in the Northern-
most mountainous part to oceanic climate (Cfc) in the
central and southern low altitude and flat part of the study
area. The annual average temperature ranges from −6.8 to
15.3, the cumulative annual precipitation ranges from 439
to 1660 mm/year, while the total population count was
around 1.7 million with a very variable density, spanning
from 0 to 1100 people/km2 [47]. The study area includes
one of the most developed agricultural, industrial and
commercial areas of Italy [25] with dense connections be-
tween central and northern European commercial hubs.
The area has already been invaded by Ae. albopictus which
was first detected in 1991 to then gradually colonize all
the suitable habitats.

Methods
Ethical approval?
Data collection
Sampling design We sampled a total of 394 locations
from April to November in 2013 and 2014 using various
collection methods such as larval searches, ovitraps, CDC-
light traps and BG-sentinel traps (Biogents AG, Regenburg,
Germany). We derived part of the data from entomological
surveillance supported by Veneto Region. The sampling
was implemented in order to acquire data on the current
distribution of Ae. koreicus inside and at the boundary of its
known invaded range. The sampled locations were checked
every 2 weeks, except for larval search. Eggs collected
from ovitraps were maintained in water for hatching, and
larvae were reared until the fourth instar for identification
[48, 49]. Adults caught in CDC-light traps and BG-sentinel
traps were identified and stored at −80 for molecular ana-
lysis. Expert entomologists identified each sample at
species-level and organized data in a geodatabase. A collec-
tion was considered positive (presence) if at least one indi-
vidual was sampled during the sampling period. The
presence/absence dataset was spatially aggregated in a
250 m × 250 m grid aligned to the EuroLST grid [50]. The
grid cells containing both positive and negative locations
were considered as positive. As a result, a total of 306 grid
cells, of which 53 positive and 253 negative, were used in
the following statistical analysis.

Environmental data sources and model predictors To
model the habitat suitability of Ae. koreicus, we used a set
of environmental predictors based on a 10-years long aver-
age (2003–2012) derived from remote sensing (satellite)
data at a spatial resolution of 250 m. Temperature variables
have been derived from the EuroLST bioclim dataset, freely
available at the EuroLST website (gis.cri.fmach.it/
eurolst-bioclim/). Those bioclim variables which inte-
grate temperature together with precipitation were cal-
culated by merging the EuroLST [50] dataset with
precipitation data from the Climate Prediction Center

(CPC) Morphing algorithm (CMORPH) Version 1.0 [51]
which we calibrated against data from the Global Precipi-
tation Climatology Project (GPCP) Version 2.2 [52].
Moreover, two additional temperature predictors were de-
rived; average temperature of the coldest month
(TavgCM) and average temperature of mosquito growing
season (TavgGS). The two latter variables were considered
in order to match the biology of Aedes spp. with
temperature variables. Indeed, in the study area, the time
period from April to September represents the most
favourable conditions for Aedes population growth. Fur-
thermore, cold temperatures under 0 are a limiting factor
for diapausing egg survival. On the one hand, in the litera-
ture it is reported that Aedes cold-acclimated and diapaus-
ing eggs can survive very low temperature (−10/-12) for a
brief to moderate period of time [53, 54]. On the other
hand, long periods of average cold weather represent a
chronic stress which may more strongly limit the fitness
(e.g., hatching) of diapausing eggs. Therefore, the average
temperature of the coldest month may be more effective
to limit mosquitoes potential distribution than the average
minimum temperature of the coldest month.
We obtained data on the vegetation biomass from the
MODIS Normalized Difference Vegetation Index (NDVI;
MOD13Q1) product [55]. Vegetation indices, as NDVI,
have been extensively used to describe disease risk and habi-
tat suitability for different species of mosquitoes [56–58].
Given that the ecosystem water content might also limit

mosquitoes habitat suitability, as water is a key compo-
nent of their ecological niche, we calculated the Normal-
ized Difference Water Index (NDWI; [59]), derived from
the MODIS surface reflectance product (MOD09A1).
NDWI and NDVI embed different wavelengths, and so
they should be considered as complementary [59]. We
averaged NDVI and NDWI values pixel-wise in four sea-
sonal groups over a three month period each (January-
March, April-June, July-September, October-December),
in order to have a representation of the vegetation cover-
age and ecosystem water for each of the four seasons.
The initial set of 29 environmental predictors (19

EuroLST/CMORPH bioclim, 2 further temperature-based
variables, 4 seasonal NDVI and 4 seasonal NDWI; Table 1)
was used in different combinations as input for the model-
ling approaches described in detail in the next section. All

Table 1 Description of the predictor variables. We reported
source and spatial resolution of each group of predictor variables

N Variable Source Spatial resolution

19 Bioclim 1–19* MODIS LST/CMORPH 250 m

1 Avg. T growing season MODIS LST 250 m

1 Avg. T coldest month MODIS LST 250 m

4 seasonal NDWI MODIS LST 250 m

4 seasonal NDVI MODIS LST 250 m

* http://www.worldclim.org/bioclim
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the considered environmental parameters have already
been shown as relevant for mosquito iSDMs [60].

Modelling framework
SDM are a set of algorithms which quantitatively describe
areas that support the presence of a given species, based on
experimental data, known presence/absence data and the
associated environmental conditions. These models seek,
despite some limitations, the species ecological niche in the
Hutchinsonian sense [61]. We made use of three different
modelling approaches to estimate Ae. koreicus potential dis-
tribution in Northeast Italy. These three techniques rely on
automatic statistical methods or on physiological know-
ledge of the species life history cycle. The target output of
all these three modelling techniques was an environmental
suitability indicator, expressed as a continuous value from 0
(no suitability) to 1 (complete suitability). We associated
each suitability value to its respective EuroLST grid cell, at
a resolution of 250 m. Therefore, we visualized the pre-
dicted environmental suitability (habitat suitability) in po-
tential distribution maps.

Maximum Entropy (MaxEnt) approach to species
distribution modelling
MaxEnt is a common modelling framework used in spe-
cies distribution modelling [44, 62]. MaxEnt minimizes
the relative entropy between the probability density of
the predictors estimated from the presence data and the
probability density of the predictors estimated from the
region of interest (background information). This means
that the geographic extent and the number of back-
ground samples influence the results. For each predictor,
response curves can be generated describing how pre-
dictor values are related to the estimated suitability.
After having tested different buffer sizes, we have

placed a buffer of 5 km around the presence data, repre-
sentative of locations accessible for Ae. koreicus via dis-
persal and which approximate the overall study area
environmental conditions [63, 64]. The resultant region
has been used as input for MaxEnt modelling. We used
MaxEnt as machine learning algorithm, letting it decide
which predictors were important through regularization
[65]. Therefore, we ran the MaxEnt model without any
previous biologically-based selection of the predictor
variables. However, since several predictors were highly
correlated among them, we performed a correlation ana-
lysis in order to limit multicollinearity issues. We ex-
cluded all those predictors showing a correlation higher
than 0.50 (Pearson’s r). The predictors exclusion was
performed selecting the most correlated couple, followed
by a random draw to decide what to exclude of the two
predictors. We carried out all the analysis in R [66],
using dismo [67] package.

Bayesian logistic regression (logBAY) with Markov Chain
Monte Carlo simulation
Logit-link Generalized Linear Models (GLMs) are stand-
ard regression methods to model habitat suitability in
ecology [68]. The presence or absence of a species is
transformed in a probability function, real number in the
range [0, 1], through a logistic transformation of the pres-
ence/absence odds (log(1/1 − p)). We wrapped the logis-
tic regression in a Bayesian framework using Just Another
Gibbs Sampler (JAGS) [69] in combination with rjags [70]
and coda [71] R packages. We used presence or absence
data as response variable, while as predictor variables we
chose those environmental variables with the strongest
credibility in shaping Aedes ecological niche, as follows: i)
average temperature of mosquito growing season TavgGS,
ii) average annual temperature (TavgY), iii) average of the
minimum temperature (TavgM); iv)TavgCM; v) cumula-
tive annual precipitation (PcumY) and vi) spring NDWI
(NDWIavgS) [14, 21, 22, 27, 28, 49, 54, 72–77]. All predic-
tors were scaled using their mean and standard deviation
as follows: (x − mean(x))/sd(x), where x is the predictor
variable. Even though the role of precipitation as limiting
factor for container-breeding mosquitoes is controversial
[73], we included it among predictors since water avail-
ability affects the aquatic stages of the mosquito life cycle
[74]. Moreover a preliminary exploratory analysis showed
a high correlation between precipitation and Ae. koreicus
presence/absence for our dataset. Nevertheless, the ob-
served correlation may be a spurious pattern linked with a
different detectability probability in different parts of the
precipitation range [78].
We used Gaussian distributed informed priors derived

from [22] for the temperature based variables, whereas
non-informative priors (normal distribution with mean = 0;
precision = 10E − 12) for all the other variables (Table 2).
To select the combination of variables carrying the most in-
formation on mosquito distribution, we run all the models
possible combining the six aforementioned predictor vari-
ables (including models with interactions between TavgGS
or TavgY and PcumY and models with TavgY second order
polynomial function). Each model was initialized using
maximum likelihood estimates for each coefficient and
10000 burn-in Markov Chain Monte Carlo (MCMC) itera-
tions to find a good starting point to sample a representa-
tive Posterior Probability Distributions (PPD). The models

Table 2 Average and precision for informed and non informed
priors. The precision of a distribution is the inverse of its
standard deviation

Predictor Average Precision

TavgGSa 2.580 0.835

TavgCMa 1.9623 0.654

Others 0 10e–12
aValues from [22]
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were therefore ranked using the Deviance Information
Criterion (DIC) with 1,000 MCMC iterations and thinning
set of 5. The most informative model (lowest DIC) was
used to sample 10,000 times with thinning set of 50 the
PPD of model parameters and of Ae. koreicus occurrence
in each pixel of the study area. The convergence of
MCMC chains was monitored using Gelman and Rubin’s
convergence diagnostic between two MCMCs [79]. The
PPD Highest Density Interval (HDI) was calculated using
the function proposed in [80]. The average value of PPD
was assigned to the correspondent pixel, resulting in the
habitat suitability map for Ae. koreicus. Furthermore, the
uncertainty linked to the average pixel prediction was
assessed (and mapped; not reported) deriving the 95 %
Bayesian confidence interval of the PPD of each pixel. We
reported all the steps to reproduce the logBAY model as
an R function in the Additional file 1.

GIS physiology-based (PHY) suitability modelling
This iSDM approach considers environmental parame-
ters corresponding to physiological constraints of Ae.
koreicus. The exact physiological constraints for this
species are currently unknown. We used a conservative
and parsimonious approach by assuming that the same
environmental parameters which represent limiting fac-
tors for Ae. albopictus can be applied, most importantly:
the average temperature of the coldest month (TavgCM)
and the average temperature of the hottest quarter of
the year (TavgHQY). The temperature of the coldest
month determines overwintering suitability: if the cold-
est month is under a certain threshold, diapausing eggs
will not survive and a persistent population can not be
established. If the temperature of the hottest quarter of
the year does not reach a certain value, larvae can not
develop and adults can not reproduce. Additionally,
precipitation can determine habitat suitability, but
needs to be treated with caution because irrigation and
small anthropogenic water reservoirs can compensate
for low precipitation. Other environmental parameters
of potential importance are the average temperature of
the mosquito growing season (TavgGS) and annual
average temperature (TavgY). TavgY has previously been
used to model habitat suitability for Ae. albopictus, but
can not be linked to a particular physiological con-
straint. Suitable summer temperatures might be aver-
aged out by cold winter temperatures, and equally cold
winter temperatures might be averaged out by hot sum-
mer temperatures. The specific threshold for the three
environmental parameters (average temperature of the
coldest month, average temperature of the hottest quar-
ter of the year and annual precipitation) was estimated
from the values observed at sampling locations with
presence of Ae. koreicus. We used the lower bound of
the 99 % confidence interval as the low threshold for

environmental parameters (Table 3). The estimated
thresholds were used for habitat suitability modelling
resulting in suitability maps. All temperature thresholds
were transformed with a sigmoid function such that
zero means not suitable, 0.5 corresponds to the actual
threshold and 1 means highly suitable (Appendix C). A
margin of 4 was applied to the sigmoid function for
temperature. Moreover, for annual precipitation (PcumY),
a margin of 200 mm/year was applied. Compared to
MaxEnt, we defined a priori response curve for relevant
environmental parameters, whereas such response
curves are a diagnostic result of MaxEnt. The separate
suitability indicators were multiplied in order to obtain
a single general suitability index where 0 means that any
single parameter was 0 (not suitable) and 1 represents
that all single parameters were 1 (highly suitable).

Model performance accuracy
Model performance accuracy was measured assessing the
error rate as a percentage (i.e. error rate (%) equals the
number of incorrect cases divided by the total number of
cases tested), as well as Cohen’s kappa coefficient (k),
which is a measure of agreement that takes into account
chance effects [81] and True Skill Statistics (TSS; [82]), an
accuracy index not sensitive to prevalence. The optimal
thresholds to discriminate the continuous model outputs
in the presence or absence category were estimated by
maximising sensitivity together with specificity.
We performed a further qualitative validation of the

models sensitivity predicting Ae. koreicus overall average
suitability and standard deviation in the only other known
invaded area in Europe, the Maasmechelen municipality
in Eastern Belgium (Fig. 1). In this locality, a viable hiber-
nating Ae. koreicus population persists in a homogeneous
6 km2 industrial area since its first detection in 2008 [27].
When dealing with emerging invasive arthropods, absence
points have a high likelihood to represent areas where the
trap failed to catch entities of the species despite presence
in the area, or areas that are inside the species ecological
niche, but which have not yet been invaded (i.e., dispersal
limitation). Therefore, we emphasized model sensitivity
on specificity since it should be considered more effective
to assess iSDM predictive power [83–85].

Table 3 Predictor variables used in the GIS physiology-based
suitability model. The descriptive statistics refers to the location
of all the positive traps in the study area

Parameter Average Standard deviation Lower bound -
99 % CI

TavgHQY (°C) 21.41 10.76 18.63

TavgCM (°C) 0.38 1.33 −3.06

PcumY (mm/year) 1182 105 912
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Aedes koreicus spread analysis
To estimate the Ae. koreicus spread rate since introduc-
tion in the study area, we used information about its
presence since 2011, when it was recorded for the first
time in a small village near Belluno (Sospirolo village,
latitude N46.14; longitude E12.07, datum: WGS84) [25].
In absence of information about the presence of the spe-
cies before 2011, we assumed this geographical location
as the centre of gravity for the introduction point(s).
In addition, we calculated the centre of gravity for the co-

ordinates of positive traps for 2013 and 2014 respectively.
We assumed that the range expansion has been constant
through time, therefore we divided the Euclidean distance
between 2011, 2013, 2014 centres of gravity by 4, represent-
ing the years since the introduction, deriving an approximate
spreading rate, defined as spread distance in kilometres per
year. Afterwards, we built a road network, weighted by the
travelling distance between each road segment and the
introduction point (root of the network, assumed to be the
village Sospirolo). The road network was acquired from the
OpenStreetMap project (openstreetmap.org), cleaned from
tertiary roads, tracks and pathways which were assumed to
be of low importance for mosquito dispersal. All the uncon-
nected (not connected to the root of the network) road seg-
ments were also removed from the network.
The following step was to intersect the weighted road

network with the habitat suitability map, to derive a
distance-suitability weighted cost network. For the refer-
ence suitability map, we chose the one derived by the iSDM
with the best predictive performance. This step was carried
out to increase the cost for those locations that, despite be-
ing spatially close to the introduction location, were eco-
logically distant from Ae. koreicus ecological niche. We
assumed that, for high suitability values (defined using the
suitability threshold at which sensitivity plus specificity
were maximized), the cost for the spread of the mosquito
was the distance from the introduction point divided by the
suitability value, while for suitability values below the
threshold, the new weighted distance from the introduction
location was the original distance from the introduction lo-
cation divided by the suitability values raised to the power
of 1.5 (penalty derived from empirical observations of the
invasion process).
Eventually, we split the distance-suitability weighted

road network into invasion cost isolines according to the
observed Ae. koreicus dispersal rate. This step was per-
formed in order to estimate areas with the same probabil-
ity to be invaded in a defined temporal span (in years).
All the spatial analysis were performed using GRASS

GIS 7 [86] modules (particularly v.net tool set).

Results
The potential distribution maps for Ae. koreicus derived
from the three models are reported in Fig. 2.

MaxEnt modelling results
The output of the correlation analysis, which was a
matrix with 9 predictors (Appendix A), was used as an
input in the MaxEnt model.
Variable importance can be estimated by different

means: percent contribution, permutation importance,
and jacknife gain. These three measurements provide dif-
ferent rankings and are reported in Appendix A. Accord-
ing to the rank sum of the three different criteria, the two
most important variables for the MaxEnt model were
temperature seasonality (bio4) and maximum temperature
of the warmest month (bio05). The response curve of
bio4 suggests that Ae. koreicus presence probability is rela-
tively constant until it drops suddenly in the localities
where seasonality becomes extreme. Bio5 response curve
implies a monotonic increase of presence probability in a
temperature range between 22 and 28 °C, after which it
assumes an asymptotic trend (Appendix A).
The Ae. koreicus potential distribution map derived

from the MaxEnt model showed values ranging from 0
to 0.94, with an average suitability of 0.11 (Fig. 2a). Ac-
cording to the MaxEnt model, suitable areas are concen-
trated along the main Alpine valleys.

Bayesian logistic regression modelling results
The best logBAY model (lowest DIC; Table 4) comprised
the average temperature of the growing season (April to
September; TavgGS), the minimum temperature of the
coldest month (TavgDEC) and the cumulative annual pre-
cipitation (PcumY). All the predictors were positively cor-
related with the presence of Ae. koreicus. The PPD of the
model coefficients with their mean and 95 % HDI is
showed for the best model in Appendix B. The 95 % HDI
of TavgGS and PcumY did not include 0, meaning that the
credible values of these model parameters are different
than 0 (Appendix B).
The logBAY suitability map, built using the average of

the PPD, showed values ranging from 0 to 0.83, with an
average suitability of 0.14 (Fig. 2b). The suitability pre-
dicted by logBAY model cut the study area in two dis-
tinct sections: high suitability in the southern part, low
suitability in the northern mountainous area. The high-
est suitability was indicated for Pordenone, Treviso prov-
inces and on the surroundings of lake Garda.

Physiology-based modelling results
The PHY suitability surface resembles the one of MaxEnt,
with the difference of a much higher absolute suitability
value. By definition, the PHY suitability value for most
known presence sites is one. The main difference between
the PHY, logBAY models and MaxEnt is due to the upper
threshold in the MaxEnt response curves, which are mainly
composed of parameters derived from temperature,
whereas the other two models have not imposed an upper
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Fig. 2 Ae. koreicus potential distribution maps: The values range from 0: no suitability; to 1: complete suitability. The green triangles represent the
centroids of the main cities in the area
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threshold on temperature (logBAY is a linear regression
model, while for PHY there is no physiological restriction
for maximum monthly temperature in the study area,
which rarely reaches more than 35 °C).
The suitability values predicted by PHY ranged from 0

to 1, with an average suitability of 0.32. PHY had the max-
imum average suitability value among the developed
models, with more than 65 % of the studied areas having
values higher than 0.50 (Fig. 2c). Very high suitability was
assigned to Po, Adige, Valsugana and Sarca valleys. Fur-
thermore Piave, Isarco as well as other minor valleys were
characterized by moderate to high suitability values.

Model validation
The suitability threshold at which sensitivity plus specificity
were maximized for each model is reported in Table 5 to-
gether with Kappa statistics, TSS and percent error rate.
The threshold at which sensitivity plus specificity were
maximized varies considerably between the three models.
After grouping the suitability values in suitable and not suit-
able classes using these thresholds, MaxEnt reported the

highest error rate. On the contrary, logBAY and PHY had
TSS and Kappa values indicating from substantial to almost
perfect agreement with observed data [87]. PHY showed
the highest sensitivity while logBAY the highest specificity.
Applying the discriminant thresholds listed in Table 5 to

the suitability maps, we found that 3 %, 26 % and 30 % of
the study area was reported as suitable by MaxEnt, logBay
and PHY models respectively.
The result of the cross-tabulation between elevation

and suitable area is reported in Fig. 3. All the models
agreed on the suitable area being concentrated at low alti-
tude (0–800 m). Half of the total area between 0 and
800 m was indicated as suitable according to logBAY and
PHY. It is interesting to note that all the profiles in Fig. 3
show a spike in suitability around 400–500 m. Moreover,
PHY model predicted as suitable a remarkable percentage
(16 %) in higher altitude area (above 800 m).
To further validate the model using an independent set of

data, we applied each model to the only other area invaded
by Ae. koreicus in Europe: Maasmechelen municipality in
Belgium (Fig. 1). We reported the descriptive statistics of the
predicted suitability distribution in Table 6. PHY model pre-
dicted high suitability, whereas logBAY very low suitability.

Aedes koreicus spread analysis
From 2011 to 2014, the average shift of the invaded area
centroid was approximately 8 km/year. The analysis per-
formed to predict the spread of Ae. koreicus showed that
the most likely dispersal direction was along Valsugana
Valley (Fig. 4). Furthermore, the mosquito may be already
present in the northern part of Verona province (south-east
of the study area; predicted to be invaded within 5–10 years
after introduction). According to our results the mosquito
spread might be rather fast in the southern part of the study
area due to both the dense road connection with the intro-
duction point and to the high habitat suitability. Even
though the dispersal along the highly populated Adige
Valley was found to be slower than in the southern part of
the study area, probably due to its more rough topography,
overall it will potentially be at high risk of invasion during
the forthcoming decades.

Discussion
Aedes koreicus is an emerging invasive species in Europe,
and is a nuisance and potential vector of infectious diseases
[26, 31]. In this study, we assessed its habitat suitability in
Northeast Italy, making use of iSDMs and a limited amount
of field data supported by prior knowledge from related
species. We also investigated the potential pathways and
timing of future spread through a road network analysis.
The main outcome was that the known distribution of Ae.
koreicus is only a fraction of the potentially suitable area.
However, we observed a rather variable characterization of
the suitable area, highly dependent on the considered

Table 4 Model specifications and DIC for the best 15 logBAY
models plus the full model

N Model terms DIC

1 TavgY 272.0

2 PcumY + NDWIs 264.0

3 TavgDEC + PcumY 222.0

4 TavgDEC + PcumY 222.0

5 TavgM + PcumY 220.2

6 TavgY + Tmin + PcumY 220.0

7 TavgGS + TavgY + TavgM + TavgDEC + PcumY + NDWIs (full) 218.2

8 Tmin + PcumY 217.0

9 TavgY + PcumY 215.4

10 TavgY + PcumY 215.0

11 TavgY + PcumY + NDWIs 215.0

12 TavgY + Tmin + PcumY + NDWIs 212.0

13 TavgGS + Tmin + PcumY + NDWIs 211.6

14 TavgGS + Tmin + PcumY 210.8

15 TavgGS + TavgM + PcumY 209.5

16 TavgGS + TavgDEC + PcumY 208.3

Table 5 Model performance accuracy. We reported the suitability
thresholds at which sensitivity plus specificity were maximized,
Kappa statistics, TSS and error rate for each of the model

Model Optimal
Threshold

Kappa TSS Predicted
high - Presence

Predicted
low - Absence

Error
rate (%)

MaxEnt 0.62 0.55 0.13 33/53 128/253 47.4

logBAY 0.14 0.84 0.69 50/53 189/253 21.9

PHY 0.71 0.70 0.45 50/53 129/253 41.5
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iSDM. MaxEnt predicted the smallest suitable area, while
PHY the largest. The observed differences are mainly due
to the lack of upper temperature threshold limits for log-
BAY and PHY (Appendix A, C), which allows high suitabil-
ity in the warmest section of the study area. Despite
potential limitations due to the approximation of biological
patterns with linear relations in ecological niche modelling,
the lack of upper thresholds for temperature should not to
be considered an artefact due to the studied species and the
climatic characteristic of the study area. Indeed, Ae. koreicu-
sis a temperate-continental taxon and the studied area is
characterized by monthly average temperatures rarely ex-
ceeding 30 °C (therefore well inside the temperature niche
of other Aedes species; [88]). However, high temperatures
might affect local abundance of Ae. koreicus (e.g., [89] ob-
served a decrease of Ae. japonicus larvae survivorship at
temperatures over 22 °C under laboratory conditions).

All the models were mainly driven by temperature vari-
ables, confirming what has already been found in literature
for other Aedes species (e.g., [90]). The most important pre-
dictors for MaxEnt were bio4 and bio5, the best logBAY
model included two temperature variables TavgGS, Tavg-
DEC in addition to PcumY, while PHY was completely con-
strained by temperature (the included precipitation
threshold was always exceeded in the study area). Mosqui-
toes are small-bodied poikilotherms, meaning that ambient
temperature is the main abiotic factor limiting their eco-
logical niche and, therefore, their geographical distribution
[77, 91]. High temperature decreases embryonic (e.g., [92])
and larval (e.g., [93]) development time, and the size of
adults (e.g., [94]), while cold winter temperatures have a se-
vere impact on the survival of diapausing eggs [54]. The
lesser importance of environmental indicators other than
temperature can be explained by the considered spatial
scale (i.e., extension and grain), where vegetation variability
might be less important than climatic conditions [95], and
by the autoecology of Aedes mosquitoes, container-
breeding species, able to develop independently of the re-
gional precipitation trend and environmental variability. At
a finer spatial scale and in urban habitats, vegetation may
be more influential on Aedes life cycle. Indeed, in this set-
ting, even small pockets of vegetation favour habitat

Fig. 3 Altitude profile of suitable area: This figure depicts the percentage of suitable area over the total area for each altitude class for a) PHY;
b) logBAY and c) MaxEnt model. The black line represents the percentage of area in each corresponding altitude class

Table 6 Descriptive statistics for the distribution of suitability values
in Maasmechelen municipality, Belgium, for all three models

Model Avg suitability Min suitability Max suitability

MaxEnt 0.46 0.03 0.70

logBAY 0.10 0.07 0.14

PHY 0.61 0.38 0.78
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heterogeneity, allowing mosquitoes to regulate extreme
weather conditions [96].
We performed model validation with a two-step ana-

lysis, i.e. a classical accuracy assessment with a
dependent set of data and a qualitative sensitivity ana-
lysis using an independent set of data. The classical ac-
curacy analysis suggested logBAY as the best model.
However, PHY indicated a moderate-to-high agreement
with observed data, while MaxEnt performed poorly.
All the three models predicted presence locations with
high accuracy (high sensitivity). On the contrary, model
specificity was relatively low for all three models. As ex-
tensively reported in the literature, absence data is the
Achille’s heel of SDM due to the high uncertainty linked
to absence data veracity (see [97–99]). This is especially
true when dealing with emerging invasive arthropods,
whose true absence is hard to identify (see [84, 85]).
Therefore, to further assess the model accuracy, we decided
to perform a further sensitivity analysis. MaxEnt and log-
BAY predicted low suitability for Maasmechelen municipal-
ity, despite this, the area has hosted a viable Ae. koreicus
population at least since 2008 [27]. By contrast, PHY model
predicted a moderate to high average suitability. This
model, based on the construction of mechanistic overlay
functions for climatic constraints, is partially independent

from local datasets and thus tends to be more accurate for
prediction on an independent dataset.
The percentage of the study area predicted as suitable

varied from 3 to 30 %, encompassing different topographic
and environmental conditions. To better characterize the
predicted suitable area, we cross-tabulated it with a digital
elevation model. PHY and logBAY indicated most of the
low-altitude areas as highly suitable, while MaxEnt showed
a peak in suitability distributed around moderate altitude
(400 m). This outcome may be due to the buffer size
(5 km) chosen around the presence points to derive back-
ground data, which may over-represent hilly areas, influen-
cing the MaxEnt output. However, all three models showed
a peak in suitability around 400–500 m, which may indicate
optimal ecological conditions for Ae. koreicus. In support of
this hypothesis we noted that the trap with the highest Ae.
koreicus abundance was located at an altitude of 451 m. An-
other interesting outcome is that PHY predicted as suitable
areas between 600 and 1500 m. This altitudinal range rep-
resents a still empty niche for invasive Aedes, as 600 m is
the altitudinal limit for Ae. albopictus distribution [24] in
Northeast Italy. As a result, the area between 600 and
1500 m suitable for Ae. koreicus should be particularly moni-
tored as, here, the invasion would not be constrained by bi-
otic interactions with species with similar evolutionary traits.

Fig. 4 Potential spread of Aedes koreicus predicted through road network analysis: Areas with the same cost of invasion are displayed using a
red-green-blue colour scale. The cost of invasion is expressed in years since the species’ introduction (2011). Cost of invasion is a function of the
travelling distance from the introduction point based on the observed rate of shift of the invaded range centroid and the predicted habitat
suitability. Major cities (green pushpins) and sampling locations (white circles) are also reported
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The accuracy assessment indicates PHY as the model with
the highest prediction power, being in moderate-to-high
agreement with observed data in the study area and predict-
ing high suitability in a positive location with a different en-
vironmental setting. Therefore, PHY model was chosen as
reference to investigate how Ae. koreicus may further spread
in Northeast Italy. The spread analysis was achieved consid-
ering the observed dispersal rate since introduction, the pre-
ferred dispersal pathways, study area connectivity and
habitat suitability. Aedes species have a short flight range,
with a flying dispersal capability of 200–300 m radius per
week around the hatching location [100, 101]. However, the
short active dispersal range is generally compensated for by
long distance used-tyres transportation and the plant nursery
trade (Dracaena sp.) in the form of drought resistant eggs
[102]. The local dispersal in new invaded areas is also
boosted by humans, through the movement of garden
waste, moist vegetation and water containers that can hold
eggs or larvae as well as dispersal in trucks transporting
used tyres or private vehicle [102, 103]. As a consequence,
it can be inferred that the local dispersal probability in a
newly invaded area is a function of the introduction point,
local transportation network as well as habitat suitability.
From these premises, we derived a distance-suitability
weighted road network to predict which areas in Northeast
Italy have the highest probability to be invaded. The results
revealed how the centroid of the invaded range has been
shifting approximately 8 km/year since 2011 (putative intro-
duction year). Assuming a constant invaded range shift and
driving it along the shortest road pathway (lowest cost from
the introduction point), weighted according to the suitabil-
ity of each road segment, we built a potential dispersal net-
work which represents a reliable dynamic description of the
invaded area evolution in the next decades. The simulated
spread predicted all the known presence locations (except
one) as invaded in a time frame of 5–10 years since its
introduction. Moreover, it showed how the species may
have already invaded the two major cities in the southern
part of the study area, Treviso and Pordenone. However, a
first investigation in July 2015 did not find positive locations
in these cities [104]. Furthermore, the simulated spread pre-
dicted the north part of Po Valley and the southern Adige
Valley as invaded in the next decade. A favourable topog-
raphy (continuous flat areas), mild climate and dense and
congested road network underlie the predicted rapid spread
in these parts of the study area. On the contrary, we noticed
no predicted spread in the north side of the study area,
apart from limited spots such as the southern Isarco and
northern Adige Valleys, where temperature hotspots due to
towns (Urban Heat Island) as well as high road connectivity
may favour Ae. koreicus spread over the next years.
The simulated spread is a reliable approximation of the fu-

ture expansion of Ae. koreicus distribution range since it inte-
grates a validated suitability surface as well as the most likely

dispersal pathways at local scale. A partial validation of the
adopted spread analysis comes from a similar study on Ae.
albopictus by [93]. The authors found that Ae. albopictus is
currently surfing a dispersal wave in Southern France, with
occasional “jumps” that did not result in new colonization
fronts. However, it should be remembered that the proposed
approach may underestimate the dispersal rate. This is due
to the choice to consider the centroids as indication of the
invaded area shift as well as the deterministic nature of our
approach which does not integrate stochastic events such
as occasional introductions in spatially distant but ecologic-
ally close locations. Stochasticity in species distribution
change underlies unpredictable events that sometimes
strongly boost species dispersal and colonization of new
areas. Besides, in the southern part of the study area, biotic
interactions and out-competition by Ae. albopictus, not
considered in this study, may slow down Ae. koreicus
spread [34], modifying the outcome of the invasion
process. Preliminary larval competition experiments sug-
gested that the larval development of Ae. koreicus might
be negatively affected by the presence of Ae. albopictus
(Frédéric Baldacchino, personal communication).

Conclusion
Despite the rising concern about biological invasions after
recent economic and human health issues due to invasive
species (e.g., Drosophila suzukii (Matsumura, 1931) and
Xylella fastidiosa (Wells et al. 1986) as crop pests and Ae.
albopictus as a vector of tropical pathogens; [18, 105, 106]),
at present there is no coordinated plan which aims to man-
age Ae. koreicus in the study area. Multiple control and
mitigation strategies are available to eradicate, mitigate or
control invasive species [107]. At the beginning of an inva-
sion, as is the case of Ae. koreicus, the most effective control
strategy is through inspections followed by destruction of
removable breeding sites (e.g., plastic drums) and treatment
with larvicidae of fixed sites (e.g., concrete bins). This strat-
egy is time consuming and might be improved in terms of
cost-effectiveness by targeting the most productive breeding
sites. However, there is often a limited understanding of the
biology of emerging invasive species and, consequently, of
the hazard they represent [108]. Delays in early mitigation
actions result in escalating costs of control, reduced eco-
nomic returns from management actions and decreased
feasibility of management [35, 109, 110]. iSDMs and spread
pathway analysis are powerful tools to shed light on the
present and future invader distribution and to inform on-
ground control of the invasions [111]. We suggest that
modelling and mapping the spatial distribution of invasive
mosquitoes, validated by entomological surveys, should
routinely support the implementation of control actions to
limit their expansion. We hope that the results in this study
serve as a foundation for design policies aiming to limit Ae.
koreicus invasion in Northeast Italy.
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Appendix A: Correlation matrix and MaxEnt
response curves

Fig. 5 Correlation Matrix: The correlation matrix for the predictors set, input of MaxEnt model

Marcantonio et al. Parasites & Vectors  (2016) 9:63 Page 13 of 19



Table 7 Ranking of the 5 most important variables for MaxEnt model. We assigned a score ranging from 5 to 1 to the first 5 predictors for
each of the three measurements of variable importance provided by MaxEnt. Afterwards, we summed the rank to provide an overall metric
for variable importance

PC Rank contribution Rank permutation Rank training gain Overall rank

bio4 5 5 4 14

bio5 4 2 5 11

bio16 3 4 3 10

NDWIs 2 3 1 6

NDWIw 1 − 2 3

Fig. 6 MaxEnt Response Curves: MaxEnt response curve for the two predictors with the highest overall ranking (as calculated in Table 7).
a) MaxEnt response curve for bio04. b) MaxEnt response curve for bio05
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Appendix B: Posterior Probability Distributions
(PPDs) for the best model

Fig. 7 Posterior Probability Distribution for the best model parameters: The red dashed lines represent the distribution of the priors while the
black horizontal line is the 95 % High Density Interval of the distribution. The distribution average, lower and upper bound of 95 % HDI were also
reported in the figure
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Appendix C: Sigmoid curves
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