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Abstract

Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to sup-

port a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence

for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to

determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays

and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metab-

olites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that

no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may

have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring

SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness

of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to

use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics

and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for

data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments

to provide a more accurate picture of their nutrikinetics are needed.
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Introduction

For a long time, the colon was considered as an organ

that merely absorbs water and electrolytes and converts

undigested food residues to drive their excretion without

having important physiological functions. Nowadays, it

has been generally recognised that the microbial ecosys-

tem inhabiting the gut profoundly affects human

physiology and health. The gut bacteria can be considered

as a highly active metabolic organ that provides metabolic

traits that complement those encoded within our own
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genome. For instance, degradation of several structural

polysaccharides in plant cell walls requires enzymes that

are not encoded by the host but are available in specific

bacteria(1). The collective genetic information encoded in

the intestinal micro-organisms is truly impressive and has

been referred to as ‘our other genome’(2).

The metabolites produced by the gut bacteria are

accessible to the host’s cells and in this way influence

physiological processes both locally in the intestine and

systemically. They contribute to the metabolic phenotype

of the host and hence may influence the risk of disease(3).

Undigested carbohydrate and protein constitute the major

substrates at the disposal of the microbiota for fer-

mentation and result in the production of a range of

well-established metabolites including SCFA, branched-

chain fatty acids (BCFA), ammonia, amines, phenolic

compounds and gases including hydrogen, methane and

hydrogen sulfide. Other metabolic activities include the

activation or inactivation of bioactive food components

like isoflavanoids, flavanoids and plant lignans, the conver-

sion of pro-drugs to drugs, the production of vitamins and

the transformation of bile acids and xenobiotics(4,5).

Although the fermentative and metabolic activity in the

human intestine has been studied for many decades, it

remains difficult to evaluate bacterial metabolism in the

colon in vivo. Most studies have relied on analysis of the

composition of faeces, in vitro incubation studies using

faecal inocula or experimental animal models.

An imbalance in the composition of the microbiota has

been increasingly associated with the occurrence of

chronic or lifestyle-related diseases such as inflammatory

bowel disease (IBD), obesity and type 2 diabetes as well

as with certain autoimmune diseases such as type 1 dia-

betes, coeliac disease or allergic asthma(6). Therefore,

manipulation of the microbiota has become a promising

target for the improvement of host health. As diet is a

major factor driving the composition and metabolism of

the colonic microbiota, dietary interventions that modulate

the supply of macronutrients (carbohydrates, proteins, fat)

to the colon have been extensively investigated for this

purpose. In particular prebiotics, defined as ‘selectively fer-

mented food ingredients that allow specific changes in

composition and/or activity of the microbiota that confer

benefits upon host well-being and health’(7), have been

used in an attempt to improve gut health and by extension

systemic health (http://www.worldgastroenterology.org/

probiotics-prebiotics). Previously, the effect of prebiotic

supplementation has been measured using the relative

increase in Bifidobacterium and Lactobacillus species as

markers(8). However, increasing knowledge on the intesti-

nal microbiota has shown that other genera or species may

also confer health benefits, expanding the potential role of

prebiotics. Emerging genera that may play a role in the

maintenance of intestinal homeostasis and health include

Eubacterium, Faecalibacterium, Roseburia and some

species of Clostridia (7). Since the microbiota is characterised

by a significant degree of functional redundancy(9), meaning

that different bacteria are able to perform similar functions,

metabolise the same substrates and produce similar metab-

olites, analysing the activity of the microbiota rather than

its composition and structure may be more relevant to

assess the impact of prebiotic interventions.

In the present review, we have re-evaluated our current

understanding of the role of bacterial metabolites in pro-

moting or reducing health to estimate the potential applica-

bility of those metabolites as markers of improved/reduced

gut health. Moreover, we recognise that the contribution of

the microbiota to the overall mammalian biochemistry may

play distinctive roles at different developmental stages of

the host. We have identified the limitations associated

with analysis of single metabolites and have evaluated

the usefulness of more holistic approaches including func-

tional analysis of faecal water, metabolomics and metagen-

ome analysis. The ultimate goal is to move towards

a definition of ‘healthy metabolic signatures’ that might

comprise integrated measures of metabolite patterns in

different matrices.

Metabolites produced by microbial fermentation

The complex microbial ecosystem inhabiting the human

intestinal tract produces a wide range of metabolites that

interact with the host’s cells and in this way influence the

physiological processes in the colon. In addition, the

metabolites may be absorbed and influence the overall

mammalian biochemistry, thereby eliciting systemic effects.

Table 1 provides an overview of the major bacterial com-

pounds that can be found in the intestine.

From this list of compounds, we selected a subset of

metabolites that were considered relevant to improved or

decreased health. Most of those metabolites are so-called

primary metabolites which comprise products of

metabolism that are essential for growth or that are the

by-products of energy-yielding metabolism. Secondary

metabolites (products which do not have an obvious role

in cell metabolism such as vitamins) were not included

for further analysis. The metabolites reviewed here include

products of carbohydrate fermentation (acetic, propionic

and butyric acid as well as lactic acid and succinic acid)

and products of protein metabolism (ammonia, BCFA,

phenol, amines, p-cresol, indole and hydrogen sulfide).

In addition, metabolites of plant polyphenols have been

included because of their putative health benefits and

their bidirectional interaction with the intestinal

microbiota.

Beneficial and harmful effects of relevant metabolites

Products of carbohydrate fermentation

SCFA. SCFA are mainly produced in the colon by bac-

terial fermentation of carbohydrates that escaped digestion
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in the small intestine. They are saturated aliphatic organic

acids consisting of one to six carbons of which acetate

(C2), propionate (C3) and butyrate (C4) are the most abun-

dant ($95 %)(10,11). SCFA production mainly occurs in the

proximal part of the colon where the availability of

substrates is most abundant. The majority of SCFA (up to

95 %) are rapidly absorbed by the colonocytes resulting

in decreasing concentrations from the proximal to distal

colon. Only a minor fraction of SCFA (about 5 %) is

excreted in faeces(12).

Due to the inaccessibility of the human proximal colon

for direct investigation and the rapid absorption of SCFA

from the colonic lumen, it is extremely difficult to quantify

SCFA production rates. Consequently, no systematic evalu-

ation of normal ‘healthy’ production of SCFA is available.

Assuming that 50–60 g carbohydrates reach the colon

per d, the production of SCFA was estimated at 400–600

mmol/d(10). Most studies measure faecal SCFA which are

the resultant of their production and absorption. Therefore,

faecal SCFA rather indicate losses and do not adequately

reflect in situ production rates. Table 2 provides an over-

view of reported values in the literature for total and indi-

vidual faecal SCFA in adults. Faecal excretion of total SCFA

ranges from 60 to 90 mmol/g and might be slightly higher

in obese subjects (80–100 mmol/g). SCFA are also detect-

able in urine, but are the remnant of gut, liver and systemic

metabolism and do not reflect colonic generation either. In

addition, acetate not only originates from the gut but also

from endogenous metabolism, in particular fatty acid oxi-

dation and glucose and/or amino acid metabolism(13,14).

Measurement of SCFA in plasma is similarly confounded.

Stable isotope studies are required to reliably quantify

colonic SCFA production as well as their metabolic fate

in the host organism.

The pattern and amounts of faecal SCFA change through

the different stages in life. In early infancy, the predomi-

nant SCFA are acetate and lactate in breast-fed infants

and acetate and propionate in (unsupplemented) for-

mula-fed infants(15). In infants fed a formula supplemented

with a mixture of galacto-oligosaccharides and fructo-

oligosaccharides (9:1 ratio), faecal SCFA patterns were

dominated by acetate, similarly as in breast-fed infants,

with lower proportions of propionate and butyrate com-

pared with the unsupplemented formula(16). The levels of

propionate have been reported to increase in the months

before weaning. Butyrate production increases in the

Table 1. List of bacterial metabolites that may be found in the intestine

Type of metabolite Metabolites

Metabolites derived from bacterial energy metabolism ‘Terminal’ metabolites from carbohydrate fermentation
SCFA: formate, acetate, propionate, butyrate,

longer-chain fatty acids
Branched-chain fatty acids

‘Intermediate’ metabolites from carbohydrate fermentation
Partially degraded oligomeric carbohydrates (disaccharides,

oligosaccharides, complex proteoglycans from mucins, etc.)
Alcohols: methanol, ethanol, etc.

Gaseous metabolites
Fermentation gases: hydrogen, methane, carbon dioxide
Highly volatile compounds: hydrogen sulfide

Metabolites of fatty acid and lipid bioconversion
Long-chain aldehydes
Fatty acids

Metabolites from protein fermentation
Branched-chain fatty acids
Ammonia and amines
Aromatic derivatives of amino acids: phenols, cresols, indoles, etc.

Metabolites derived from bioconversion of
plant secondary compounds

Products of lignin/polyphenols bioconversion: equol, enterolactone, etc.

Metabolites from bacterial cytosolic compartment or
secondary metabolism (spilled over by
excess production, efflux or upon cell lysis)

Vitamins and cofactors (often in very small concentrations)
Peptides (quorum-sensing signals of Gram-positive bacteria)
Homoserine lactone (quorum-sensing signals

of Gram-negative bacteria)
Nucleic acids (free DNA, microRNA, etc.)
Bacteriocins

Metabolites of the enterohepatic circulation Bile acids
Cholesterol, coprostanol
Hormones and derivatives
Glucuronide conjugates

Enzymes Reductases
Glucuronidases
Glycohydrolases

Bacterial cell wall components |(of which several are immunoactive) Lipopolysaccharide Polysaccharide A
Peptidoglycan-derived structures
Capsular polysaccharides (glycocalix)
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Table 2. Faecal concentration of individual SCFA

Subjects
(n); age

Reported
measure Acetic acid Propionic acid Butyric acid Total SCFA Unit Reference

Healthy
subjects

10; 21–34 years Mean (SD) 218 (99) 72 (37) 58·7 (54·5) 378 (188) mmol/g dry weight Whelan (2005)(236)

20; 20–40 years Mean (SEM) 320·3 (24·9) 97·3 (10·5) 93·8 (9·13) 511·4 (41·9) mmol/g dry weight Boler (2011)(111)

13; 23–58 years Median (IQR) 52·2 23·2 (13·6–37·3) 36·8 (5–128) 119·3 (64·5–197·0) mmol/g wet weight Lewis (1997)(237)

60; 18–24 years Mean (SEM) 198·4 (14·2) 55·2 (4·7) 50·5 (4·9) 304·1 mmol/g dry weight Lecerf (2012)(109)

27; 18–55 years Mean (SEM) 35·8 (2·4) 11·4 (1·2) 10·0 (1·1) 61·1 (4·4) mmol/g Reimer (2012)(238)

12; 18–65 years 48 13·98 13·31 80·91 mmol/g Fernando (2010)(239)

46; 31–66 years Mean (95 %CI) 44·7 (39·7,
50·3) females

58·6 (49·8,
69·0) males

12·3 (10·7, 14·0)
females

16·1 (13·4, 19·5)
males

11·7 (9·8, 14·0)
females

15·4 (12·1, 19·6)
males

69·5 (61·3, 78·7)
females

90·5 (76·3, 108)
males

mmol/g McOrist (2011)(240)

36 Median (IQR) 43·7 (34·0–52·2) 13·1 (9·2–18·5) 8·8 (5·2–11·5) 91·8 (73·1–107·5) mmol/g Nemoto (2012)(241)

20; 22–55 years Mean (SEM) 42·13 (3·84) 11·5 (1·19) 11·28 (1·42) 67·3 (6·22) mmol/g Tiihonen (2010)(67)

8; 31–59 years Mean (SD) NR NR NR 92·7 (33·9) mmol/g McOrist (2008)(242)

20; 23–28 years Mean (SEM) NR NR NR 78·5 (6·4) mmol/g Hylla (1998)(243)

30 Mean (SD) 50·5 (12·6) 13·6 (5·2) 14·1 (7·6) 84·6 (22·9) mmol/l Schwiertz (2010)(64)

Obese
subjects

20; 22–55 years Mean (SEM) 47·15 (3·80) 13·64 (1·34) 14·73 (1·47) 78·79 (6·19) mmol/g Tiihonen (2010)(67)

91 Mean (SD) 58·5 (19·1) 17·6 (7·6) 18·3 (9·7) 102 (33·5) mmol/l Brinkworth (2009)(63)

32; 20–65 years Mean (SEM) NR NR NR 34 (6) mmol/24 h Benassi Evans (2010)(244)

35 overweight
33 obese

Mean (SD) 56·0 (18·2)
59·8 (18·3)

18·3 (7·9)
19·3 (8·7)

18·5 (10·1)
18·1 (10·0)

98·7 (33·9)
103·9 (34·3)

mmol/l Schwiertz (2010)(64)

IQR, interquartile range; NR, not reported.
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second part of the first year of life when faecal lactate

levels fall to negligible values (CA Edwards, unpublished

results). By the age of 2 years the pattern becomes more

similar to that observed in adults(17). Fig. 1 depicts

the changes in SCFA from birth up to adulthood. In the

elderly, the microbiota changes, with higher levels of

Bacteroidetes(18), which is likely to affect SCFA production.

Nevertheless, no differences were detected in SCFA levels

in a group of French 68- to 89-year-olds compared with

a group of 30- to 46-year-olds(19). In contrast, among par-

ticipants in the pan-European project on the elderly gut

microbiota (CROWNALIFE), elderly Europeans (76 ^ 7·5

years; n 55) had lower concentrations of propionate, acet-

ate and butyrate (by 30, 35 and 21 %, respectively) com-

pared with younger adults (40 ^ 9·7 years; n 53)(20). With

these apparently contradicting results obtained in different

studies, it remains to be established what the normal

patterns of SCFA in faecal material are during different

stages of life.

After uptake in the colonocytes, a considerable part of

the SCFA is used as an energy source and is oxidised to

carbon dioxide and ketone bodies(21). The fraction that is

not consumed by the colonocytes is transported across

the basolateral membrane and reaches the liver via the

portal bloodstream. Acetate is used by the liver as a

precursor for the synthesis of cholesterol and long-chain

fatty acids(22). However, in individuals following a

Western-type diet, high in refined carbohydrates, sugars

and fatty acids and low in fibre, colonic acetate is likely

to contribute only little to hepatic lipogenesis. A recent

study in obese individuals even showed an inverse associ-

ation between serum acetate levels and visceral adipose

tissue(23). In mice, it was shown that acetate derived from

colonic fermentation of fermentable carbohydrates crosses

the blood–brain barrier and directly suppresses appetite

through central hypothalamic mechanisms(24). Propionic

acid is often the second most predominant SCFA and has

received much attention for its potential roles in the

reduction of lipogenesis, cholesterol synthesis inhibition,

and more recently for its activation of G protein-coupled

receptors (GPR) 41 and GPR43, release of satiety hormones

and other metabolic and anti-inflammatory effects(25–27).

Butyric acid has been studied for its ability to promote

colonic healing in colitis(28) and its potential anti-cancer

effects(29), including apoptosis stimulation(30), in part by

inhibiting histone de-acetylase(31). It has also been shown

to inhibit oxidative damage in cultured cancer cells(32)

and it may improve gut barrier function(33). Recent studies

in mice have shown that oral administration of propionate

and butyrate, but not acetate, facilitates the extra-thymic de

novo generation of anti-inflammatory regulatory T (Treg)

cells. In contrast, rectal administration of acetate and pro-

pionate, but not butyrate, promoted accumulation of Treg

cells, suggesting that butyrate promotes de novo generation

but not colonic accumulation of Treg cells, whereas acetate

has an opposite activity and propionate is capable of

both(34). Furthermore, propionate and butyrate were

shown to activate intestinal gluconeogenesis (IGN),

which has beneficial effects on glucose and energy homeo-

stasis, via complementary mechanisms. Whereas butyrate

directly activates the IGN genes, propionate-mediated

induction of IGN depends on a gut–brain communication

axis involving the fatty acid receptor GPR41(35). Those ben-

eficial activities of SCFA produced in the intestine have

been shown in different animal species including labora-

tory animals and production/farm animals(36–38). However,

in human subjects the relevant body of evidence is limited

mainly because SCFA are traditionally only measured in

faeces or fasting blood samples.

In vitro fermentation studies with prebiotics or dietary

fibre have consistently resulted in increased levels of

SCFA. In contrast, several human prebiotic intervention

studies failed to demonstrate increased faecal SCFA, most

likely due to the rapid colonic absorption of the SCFA, pre-

venting them from being excreted in faeces(39–44). The

relative proportions of the SCFA vary between individuals

and are particularly sensitive to the type of carbohydrate

being fermented(45,46). For example, the proportion of pro-

pionic acid production is increased during fermentation of
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Fig. 1. Evolution of faecal SCFA as a function of age: acetic acid (a); propio-

nic acid (b); butyric acid (c). The arrows roughly indicate the change from

breast-feeding to solid food with concurrent successional development of the

gut microbiota away from one dominated by the bifidobacteria, which pro-

duce acetate and lactate during carbohydrate fermentation, to a more com-

plex microbiota with higher relative abundance of Firmicutes, which produce

acetate, propionate and butyrate as major SCFA endproducts of carbo-

hydrate fermentation. The figures summarises the data reported in several

studies(15,17,71,84,126,228–235). A colour version of this figure can be found

online at http://www.journals.cambridge.org/nrr

K. A. Verbeke et al.46

N
ut

ri
tio

n 
R

es
ea

rc
h 

R
ev

ie
w

s



guar gum, long-chain arabinoxylans, oats and oat fractions

(oat bran and b-glucan), pectin, pulses, wheat dextrin and

pyrodextrins(47–56) whereas oligofructose predominantly

yields acetate(57). In contrast, the proportion of butyrate

production increases with fermentation of starch and

inulin-type fructans and often results from secondary

fermentation of lactate and acetate, so-called cross-feeding

between bacteria(58). Indeed, this type of microbial cross-

feeding could be viewed as an important physiological

function supporting microbiota homeostasis and species

richness, which have both been associated with gut

health. In view of the different effects of acetic, propionic

and butyric acids, the relative proportions of the acids

produced are probably as relevant as their total levels.

Several animal and human studies have recently demon-

strated an association between the gut microbiota compo-

sition and obesity. Initial studies found with a higher

Firmicutes:Bacteroidetes ratio in the obese(59,60). A greater

fermentation capacity in both obese animals and human

subjects compared with normal-weight subjects was

suggested(61–63) as well as increased concentrations of

caecal or faecal SCFA. It was therefore hypothesised that

the efficiency of the energy harvest from food was

increased in obesity. However, later studies demonstrated

that in human subjects, the relationship between the Firmi-

cutes:Bacteroidetes ratio and obesity is less clear and

human obesity may be associated with more subtle

changes in the microbiota composition(64,65). In a recent

metagenomic study the typical ecological entity of micro-

biota ‘richness’ was highlighted as a strong determinant

in body-weight control rather than its composition per

se (66). Reported levels of faecal SCFA in obese subjects

were higher than in normal-weight subjects (Table 2),

although this has not been confirmed in all studies to

date(67,68). In addition, increased faecal SCFA levels do

not necessarily indicate higher absorption rates and

increased energy harvest by the host. Indeed, uptake of

SCFA in colonocytes via the monocarboxylate transporter

1 (MCT-1) receptor is induced by fibre feeding (pectin)

and butyrate, and moreover, inhibited by bile acids. There-

fore, SCFA absorption might be reduced in the obese(69,70).

Fermentation capacity can be evaluated as in vitro pro-

duction of SCFA from carbohydrates using faeces from

healthy individuals and patients(71). In pH-controlled

faecal batch cultures, similar levels of SCFA were produced

from a-gluco-oligosaccharides by microbiota from obese

and lean subjects(72). Overall, the relationships between

the microbiota composition, intestinal SCFA levels and

obesity are far from being elucidated. In a nice series of

experiments in animals and human subjects, Cani and col-

leagues demonstrated how modulation of the microbiota

by prebiotics controls endogenous glucagon-like peptide

2 production and the endocannabinoid system and con-

tributes to the improvement in gut barrier function

during obesity(73–75). The direct involvement of specific

gut bacteria and/or metabolites needs to be further

investigated.

In recent studies, the intestinal bacteria have been

implicated in the development of IBD and autoimmune

diseases such as type 1 diabetes and coeliac disease.

These conditions have been consistently characterised by

a low abundance of butyrate-producing bacteria(76–80).

Functional analysis of the microbiota revealed remarkably

lower levels of faecal SCFA in IBD(81–83) whereas total

SCFA and in particular acetate were found increased in

coeliac disease(84–86). Allergic children had lower faecal

levels of propionate and butyrate than non-allergic chil-

dren(87). It remains to be explored to what extent these

aberrant SCFA patterns are causative to the disease or can

serve as markers of disease.

Lactate and succinate. Lactate and succinate are inter-

mediates in the fermentation process of carbohydrates. In

healthy conditions, they are further metabolised to acetate

or butyrate and propionate, respectively, by cross-feeding

species and do not substantially accumulate in the colonic

lumen(88). Recent evidence suggests that succinate acts as a

signal for inflammation(89). It stabilises the transcription

factor hypoxia-inducible factor-1a (HIF-1a) in activated

macrophages. When stabilised, HIF-1a up-regulates sev-

eral genes including the inflammatory cytokine IL-1b,

resulting in exacerbation of inflammation(90). In addition,

succinate acts as a ligand for GPR91, renamed SUNCR1.

In the kidney, succinate-induced activation of GPR91 is

reported to regulate the renin–angiotensin system and in

dendritic cells, succinate signalling is required for

enhanced antigen-presenting function. Increased levels of

succinate have been linked to IBD as mice undergoing

dextran sulfate sodium-induced colitis were shown to

have more succinate in their caecum and faeces(91)

whereas in colonic tissue from dextran sulfate sodium-

induced mice, succinate levels were lower than in control

mice(92). Therefore, succinate may be an ulcerogenic

agent in the gut lumen, leading to mucosal damage and

lower succinate levels in colonic tissues.

Lactate has two optical isomers, which are L-lactate and

D-lactate. L-Lactate is produced from pyruvate by the

enzyme lactate dehydrogenase during normal anaerobic

metabolism whereas D-lactate is produced by many com-

mensal bacteria in the colon. Increased levels of D-lactate

in plasma and urine have been demonstrated in

IBD(81,93), intestinal ischaemia(94), short bowel(95) and

appendicitis(96) and are considered as a marker of dysbiosis

and/or increased intestinal permeability. In faecal

samples of IBD patients, mainly L-lactate levels are

increased(80,97,98), suggesting a mucosal origin of lactate(99).

As lactate is a potentially important co-substrate for many

sulfate-reducing bacteria, increased colonic lactate levels

may promote sulfide generation(100) which is suspected

of inhibiting the b-oxidation of butyrate in the colonocytes

(see below).
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Products of protein metabolism

Microbial products from protein metabolism include

BCFA, ammonia, phenol, p-cresol, indole and hydrogen

sulfide(101). The toxic potential of these compounds is

mainly derived from in vitro experiments, in which iso-

lated cells or tissues are directly incubated with individual

compounds, or from animal studies. The present review

also encompasses the results of oral toxicity tests as a

reasonable surrogate for assessing potential systemic

effects. Minimally irritating concentrations were assessed

as a marker of local effects and exceeded 1 % for all com-

pounds, which is well above the concentrations occurring

in the colon. In human studies, there is little evidence for

adverse effects of protein fermentation metabolites(102).

In a recent study in healthy subjects, modulation of the

degree of protein fermentation by changing dietary

intake did not affect faecal water toxicity(103).

An important determinant of the degree of proteolytic

v. saccharolytic fermentation is the nutrient availability

and in particular the ratio of available carbohydrate to

nitrogen(104,105). Therefore, the production of protein

degradation products can generally be reduced by increas-

ing the amount of fermentable carbohydrate reaching the

colon in the form of resistant starch(104) or prebiotic oligo-

saccharides(106–112). In contrast, faecal ammonia, phenol

and p-cresol were not affected after 4 weeks consumption

of the polyol isomalt (30 g/d)(113).

Phenol, p-cresol and indole. The phenolic compounds

phenol, p-cresol and indole are the major metabolites of

bacterial fermentation of the aromatic amino acids tyrosine,

phenylalanine and tryptophan. These metabolites are lar-

gely and rapidly absorbed by the colonic mucosa cells

and are excreted in urine after sulfate or glucuronide con-

jugation in the mucosa or the liver(114). In healthy subjects,

these compounds do not accumulate in the body. There-

fore, their urinary elimination is often considered as a

reliable estimate of their production in the colon(105).

Many studies have reported significant interindividual

variation in the urinary excretion of p-cresol and phenol

in healthy adults. Data on ranges in other age groups

(children, elderly) are scarce. Reported mean or median

values vary between 10 and 55 mg/d for p-cresol (Table 3)

and between 4 and 7·5 mg/d for phenol (Table 4). In

obese individuals, urinary p-cresol and phenol levels at

baseline were considerably higher than those reported in

normal-weight adults (94·9 mg/d and 15·0 g/d for p-cresol

and phenol, respectively) and decreased upon weight

loss(63). The levels of urinary p-cresol may increase in the

very old(115).

Most studies on the urinary excretion of the indole

metabolite indoxyl sulfate, also called indican, report

values below 50 mg/d in healthy adults. In patients with

liver cirrhosis(116) and patients with diabetes(117), excretion

of indoxyl sulfate is higher (98·2 mg/d in cirrhosis, 65·7

mg/d in diabetics without neuropathy and 114·0 mg/d in

diabetics with neuropathy) and correlates with steator-

rhoea. In a study in patients with bladder cancer there

was no evidence that phenolic microbial metabolites had

promoting or co-carcinogenic activity for the human

urinary bladder, as the urinary excretion of p-cresol,

phenol and indoxyl sulfate was not different in the patients

as compared with controls(118).

Faecal excretion of phenolic compounds is not often

reported, but in available studies amounts of 5–8 mg/d

for p-cresol and 0·25–0·66 mg/d for phenol have been

found. Interestingly, faecal excretion of p-cresol was

4-fold higher in a group of hyperactive children as

compared with control children(119).

The effects of phenolic compounds on intestinal cells

have been determined mainly in in vitro incubation

studies. Viability of colonic epithelial cells isolated from

human biopsies was decreased after exposure to 1·25

mM-phenol, a physiologically relevant concentration,

whereas higher phenol concentrations (20 mM) were

required to reduce viability of HT-29 cells(120). Notably,

cell cultures from ulcerative colitis (UC) patients showed

similar sensitivity to phenol exposure as cell cultures

from control subjects at all concentrations tested.

Several papers have reported a concentration-dependent

increase in paracellular permeability and reduced epithelial

barrier function after incubation with phenol (1 mM to

21 mM) of Caco-2-monolayers or SK-CO15 intestinal

cells(121,122). Enhanced permeability was already apparent

at concentrations of phenol that did not cause cell death.

Similarly, p-cresol altered endothelial barrier function in

human umbilical vein endothelial cells. In chronic kidney

disease patients, p-cresol is considered a uraemic toxin.

It accumulates in serum and might participate in the endo-

thelial dysfunction that is observed in such patients(123).

The European Food Safety Authority recently evaluated

the toxicity of phenol following oral administration

(http://www.efsa.europa.eu/en/efsajournal/doc/3189.pdf)

and established a tolerable daily intake (TDI) of 0·5 mg/kg

body weight per d. For a 75 kg individual, the TDI amounts

to 37·5 mg/d, which is about 5-fold higher than the

amount of phenol generated in the colon (7·5 mg/d)

(assuming that urinary excretion rates reflect colonic

generation rates). On repeat-dose administration to non-

pregnant rats and mice, no consistent effects were seen

at doses $ 250 mg/kg body weight per d.

The Joint FAO/WHO Expert Committee on Food Addi-

tives (JECFA) reviewed the oral toxicity of p-cresol in 2011.

The systemic toxicity of p-cresol was evaluated in a 2-year

study in rats following dietary administration as a 60:40 mix-

ture of m-/p-cresol. (http://www.inchem.org/documents/

jecfa/jecmono/v64je01.pdf). A no observed adverse effect

level of 230 mg/kg body weight per d was identified,

based on increased incidence of renal tubule adenomas in

male rats at 720 mg/kg body weight per d. Effects seen in

other studies (nasal sinuses, forestomach) were attributed

to the local irritancy of p-cresol and did not reflect its
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Table 3. Reported excretion of p-cresol in urine and faeces

Biofluid Subjects (n); age
Reported
measure p-Cresol excretion Unit Reference

Healthy subjects Urine 11; 35 ^ 10 years Mean (SEM) 454 (92)* mmol/d Birkett (1996)(104)

27; median 25 (IQR 23–29) years Median (IQR) 168 (93·3–304) and 208 (114–288) mmol/d Damen (2012)(107)

9; range 19–69 years Mean (SEM) 408·3 (271·3) mmol/d Ling (1992)(245)

11; 39 ^ 11 years Median (IQR) 532 (250–659)† p-cresyl sulfate mmol £ 1·73 m2 Patel (2012)(246)

32; range 47–95 years Mean (SD) 510 (358)* mmol/d Renwick (1988)(118)

10; range 22–45 years
9; range 22–45 years

Mean (SD) 248 (99)*
315 (206)*

mmol/d De Preter (2004)(247)

15; 23 ^ 1 years
15; 22 ^ 1 years
15; 23 ^ 1 years

Mean (SD) 164 (101)*
186 (119)*
187 (96)*

mmol/d De Preter (2007)(248)

10; 21 ^ 1 years
9

Median (IQR) 196 (168–322)*
226 (141–368)*

mmol/d De Preter (2007)(249)

20; median 23 (IQR 21–24) years Median (IQR) 297 (194–437) mmol/d Cloetens (2010)(108)

12; median 24 (IQR 21–28) years Median (IQR) 214 (107–315) mmol/d Cloetens (2008)(250)

20; range 19–41 years Median (IQR) 297 (239–349) mmol/d Windey (2012)(103)

19; range 21–53 years Mean (SEM) 218 (58) mmol/d Gostner (2006)(113)

Faeces 11; range 3–11 years Mean (SEM) 0·54 (0·29) mmol/g faeces Adams (1985)(119)

11; 35 ^ 10 years Mean (SEM) 0·60 (0·07)* mmol/g faeces Birkett (1996)(104)

112; range 0–1 years Mean (SD) 0·14 (0·14) mmol/g faeces Heavey (2003)(251)

15; 23 ^ 1 years
15; 22 ^ 1 years
15; 23 ^ 1 years

Mean (SD) 124 (38)*
161 (53)*
101 (43)*

mmol/72 h De Preter (2007)(248)

16; range 23–66 years Mean (SEM) 58·86 (7·3) mmol/g faeces Clarke (2011)(252)

20; range 18–24 years Mean (SEM) 0·52 (0·05)* mmol/g dry weight Lecerf (2012)(109)

19; range 21–53 years Mean (SEM) 0·36 (0·04)* mmol/g faeces Gostner (2006)(113)

21; range 21–28 years Mean (SEM) 1·5 (0·20) mmol/g dry weight Boler (2011)(111)

Obese Urine 91, range 24–64 years Mean (SD) 879 (00) and 524 (259)* mmol/d Brinkworth (2009)(63)

Faeces 33, range 20–65 years 0·54* mmol/g faeces Benassi-Evans (2010)(244)

IQR, interquartile range.
* Calculated from reported values in mg/d using a molecular mass value for p-cresol of 108.
† Calculated from reported values in mg/d using a molecular mass value for p-cresyl sulfate of 188.
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systemic toxicity. Effects observed in a 13-week repeated

exposure study in rats by oral administration were probably

secondary to the local irritancy of p-cresol.

Data on the toxicity of indole are very limited. JECFA

reviewed the effects after oral exposure to indole in 2006

(http://www.inchem.org/documents/jecfa/jecmono/v54je01.

pdf). Following exposure of rats to indole at a dose of 100

mg/kg body weight per d in the diet for 460 d, signs of

moderate reversible anaemia were apparent. No other

adverse effects were observed. Rats fed a low-protein

diet supplemented with indole (0·25–2 %) showed overall

weight loss and growth retardation as well as haemolytic

anaemia(124).

Ammonia. Due to bacterial degradation of unabsorbed

and endogenous nitrogenous compounds and endogenous

nitrogen recycling, the colonic epithelium is constantly

exposed to ammonia in millimolar concentrations(125).

Faecal ammonia excretion is comparable in overweight

adults and normal-weight adults but is clearly lower in

infants (Table 5). A recent study reported significantly

higher faecal ammonia concentrations in children with

autism spectrum disorders (ASD) (42·7 (SE 3·3) mmol/g

faeces) compared with control children (32·3 (SE 1·9)

mmol/g faeces)(126). As elevated plasma ammonia concen-

trations have also been described in ASD, the authors

suggested that higher faecal concentrations might translate

into higher plasma ammonia concentrations.

As early as the 1970s, reports on the effects of ammonia

on epithelial cells have appeared. Visek (in 1978)(127) was

the first to report that ammonia alters nucleic acid

synthesis, changes the morphology and intermediary

metabolism of intestinal cells and reduces the lifespan of

cells. After this initial report, several studies evaluated the

impact of physiological concentrations of ammonia using

isolated colonocytes, cell lines or animal colon tissue

(for reviews, see Windey et al.(102) and Blachier et al.(128)).

The European Food Safety Authority reviewed the

effects of dietary administration of ammonia (as

ammonium chloride) to rats for up to 30 months (http://

www.efsa.europa.eu/en/efsajournal/doc/1925.pdf). It was

not possible to identity a no observed adverse effect

level from any of the studies, which in general used high

doses to study the effects of metabolic acidosis, rather

than the compound itself. Although a number of effects

were observed, these were considered adaptive, and no

adverse effects were observed at doses of 1100 mg/kg

body weight per d for 30 months.

Hydrogen sulfide. Sulfate-reducing bacteria scavenge

hydrogen as an electron donor and use sulfate as an

oxidising agent for the dissimilation of organic matter.

The major endproduct from this reaction is hydrogen sul-

fide. Luminal concentrations of sulfide are in the range of

1·0–2·4 mmol/l(129) whereas faecal concentrations vary

from 0·17 to 3·38 mmol/kg faeces(130,131). It is probable

that a large fraction of sulfide is bound to luminal

compounds within the intestine.T
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The toxic potential of hydrogen sulfide on colonic cells

has been extensively investigated. Sulfide influences oxi-

dative metabolism of colonic epithelial cells by inhibiting

cytochrome oxidase activity which catalyses the reduction

of oxygen to water(132,133). Several lines of evidence also

suggest a role of hydrogen sulfide in the aetiology and/

or risk of relapse of UC. In experimental animal models,

a pathological condition similar to UC can be induced

using undigestible sulfates in the form of dextran sulfate

sodium or the sulfate-containing carrageenan. Whilst

some studies found elevated faecal sulfide levels in

patients with UC(134,135), others did not(136). However,

detoxification of sulfide by the mucosal thiosulfate sulfur-

transferase enzyme to the less toxic thiocyanate is impaired

in UC patients(137). In addition, a diet characterised by high

meat intake as well as a high sulfur or sulfate intake was

associated with increased likelihood of relapse in UC

patients(138). Exposure of non-transformed rat intestinal

crypt cells (IEC-18 cells) to sodium hydrogen sulfide (50

mM) caused acute hypoxia and promoted early cell-cycle

entry with an associated up-regulation of genes coding

for proteins related to proliferative activity(139). A series

of in vitro experiments by Attene-Ramos et al.(140) revealed

that hydrogen sulfide provokes genomic DNA damage in

colonic cancer cells (HT-29 cells) at concentrations of 250

mM. No cellular metabolism was required for sulfide to

induce genotoxicity and co-incubation with a radical

scavenger reduced DNA damage induced by hydrogen

sulfide, suggesting a radical-mediated mechanism(141). In

non-transformed human intestinal epithelial cells, the

expression of genes involved in cell-cycle progression,

inflammation and DNA repair response was modulated

by sulfide. In particular, expression of the cyclo-oxygenase

(COX)-2 gene, which is elevated in most human colorectal

cancers (CRC), was significantly up-regulated(142). Overex-

pression of COX-2 may play a decisive role in promoting

CRC initiation or progression through the stimulation of

angiogenesis, inhibition of apoptosis and increasing the

proliferation in intestinal epithelial cells(143).

In contrast to those reports on harmful effects, hydrogen

sulfide is now also known to be a systemic signalling

molecule. It is endogenously produced in micromolar

concentrations from cysteine by the action of cystathionine

g-lyase and cystathionine b-synthase. At these low concen-

trations, it has been proposed that hydrogen sulfide is

involved in neuromodulation of chloride secretion, in con-

trolling ileum contractility and in nociception from the

large intestine(144). Blachier et al. proposed as a working

hypothesis that any imbalance between levels of free sulfide

in the large intestine and the capacity of epithelial cells to

metabolise it will result in a loss of normal oxidative cell

capacity(144).

Information on the effects of oral exposure to hydrogen

sulfide is very limited. The US Environmental Protection

Agency (EPA) established a reference dose on the basis

of effects observed in pigs, but subsequently withdrew

this as it was concluded that the effect was irreproducible

(http://www.epa.gov/iris/subst/0061.htm). Although the

US EPA has established an inhalation reference concen-

tration for hydrogen sulfide, this is based on local effects

and hence is not suitable for assessing the systemic toxicity

of the compound.

Branched-chain fatty acids. The BCFA isobutyrate,

2-methylbutyrate and isovalerate are produced by bacterial

fermentation of valine, isoleucine and leucine, respect-

ively. These BCFA constitute approximately 5–10 % of

the total SCFA(145). Similar to other protein fermentation

metabolites, faecal BCFA concentrations are reduced

after prebiotic intake(106,146,147). In an in vitro incubation

experiment with five different epithelial cell lines; minimal

concentrations of isovalerate to induce cytotoxicity were

lower than the concentrations produced by intestinal bac-

teria and both isovalerate and isobutyrate were able to

induce apoptosis(148). Several in vitro studies indicate that

BCFA affect the exchange of ions in the colon and may

act as a regulator of colonic Naþ absorption(128) but

little information is available regarding other effects of

BCFA on colonic epithelial cells. Therefore, faecal

Table 5. Reported excretion of ammonia in faeces

Population Subjects (n); age Reported measure Ammonia excretion Unit Reference

Healthy subjects 11; 35 ^ 10 years Mean (SEM) 23·3 (1·5) mmol/g faeces Birkett (1996)(104)

112; range 0–1 years Mean (SD) 7·7 (7·1) mmol/g faeces Heavey (2003)(251)

16; range 23–66 years Mean (SEM) 14·1 (1·7) mmol/g faeces Clarke (2011)(252)

12; range 27–49 years Mean (SD) 5·1 (2·5) mmol/g faeces Slavin (2011)(41)

9; 59 ^ 3 years Mean (SD) 2·9 (0·5) mmol/g faeces Bianchi (2010)(253)

46; 31–66 years Mean (95 % CI) 14·6 (12·6, 16·7) mmol/kg faeces McOrist (2011)(240)

20; range 20–55 years Mean (SEM) 22·6 (1·6) mmol/g faeces Tiihonen (2010)(67)

8; range 21–60 years Mean (SD) 35·2 (7·9)* mmol/g faeces Shinohara (2010)(110)

21; range 21–28 years Mean (SEM) 137·5 (7·82) mmol/g dry weight Boler (2011)(111)

36; range 22–67 years Median (IQR) 24·6 (16·5–30·0) mmol/g faeces Nemoto (2012)(241)

Obese 19; range 20–55 years Mean (SEM) 26·6 (2·2) mmol/g faeces Tiihonen (2010)(67)

121; 24–64 years Mean (SD) 26·5 (9·2) mmol/g faeces Brinkworth (2009)(63)

IQR, interquartile range.
* Calculated from reported values in mg/d using a molecular mass value for ammonia of 17.
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concentrations of BCFA are considered only as markers

for bacterial protein fermentation rather than markers of

colonic health(149).

Plant polyphenolic compounds/catabolites

While the physiological relevance of polyphenol catabo-

lites derived from the gut microbiota is currently understu-

died, it is recognised that the majority of plant bioactive

compounds must first be rendered biologically available,

often through deglycation and hydrolysis by the gut

microbiota before being absorbed by the host, and that

microbial metabolic transformation can make an impact

on polyphenol biological activity. While certain classes

of phytochemical are broken down to unique catabolites,

many different classes of polyphenol give rise to common

small phenolic compounds. However, we currently do not

know the physiological relevance of many of these com-

pounds, or even the habitual or ‘normal’ concentration

ranges of these phenolic acids, or how they respond to

diet. For a few of these compounds, for example, the

phyto-oestrogens equol, enterolactone and enterodiol,

and the urolithins, specific health effects have been

suggested(150). Table 6 provides an overview of the

microbial catabolites of common plant polyphenols and

their putative health effects. For an up-to-date review on

plant polyphenols catabolites and their putative health

effects, see Del Rio et al.(150) and Dall’Asta et al.(151).

Furthermore, the interaction between polyphenols and

the microbiota is bi-directional. Recent evidence has

shown that a number of polyphenols and their metab-

olites cause a selective stress or stimulus to some

micro-organisms and influence other metabolic pathways

like the production of SCFA(152,153). In addition, in vitro

incubation of faecal samples with quercetin-3-O-ruteno-

side (rutin) in the present of glucose as a carbon source

showed a significant increase in deglycosylation of rutin

and catabolism of quercetin, suggesting that prebiotic

intervention might modify the bacterial metabolism of

plant polyphenols(154).

In metabolomic studies (see below) many of the

compounds encountered relate to microbial catabolites

of polyphenols that escape absorption in the small

intestine(155,156). These may become key markers of

colonic bacterial activity.

Emerging metabolites

A range of amino acids and related molecules, including

tryptophan, g-aminobutyric acid, g-hydroxybutyric acid,

or biogenic amines and also host–microbiota co-meta-

bolic metabolites including catecholamines like dopa-

mine and noradrenaline, and bile acids have the

potential to make an impact both in a beneficial or

harmful way with the host depending on concentration

and chemical profile(157). Recent scientific interest has

been focused on microbiota production of cell-signalling

molecules and neurotransmitters which through the gut–

liver–brain axis appear to regulate a number of diverse

physiological functions including energy intake and

expenditure, brain development and cognitive function

and mood(158,159). However, by and large, human data

are scarce and it needs to be evaluated whether prebiotic

intervention might affect these signalling pathways.

Factors that influence fermentation

The mechanisms controlling the metabolic activities of the

colonic microbiota are only partly understood.

First of all, the type and quantity of dietary carbohydrate

entering the colon have a dramatic impact on SCFA pro-

duction. Many factors make an impact on the digestibility

of carbohydrate in foods, not least their intrinsic chemical

structure or biological availability in low-processed plant-

derived foods. However, other food macromolecules

ingested at the same meal, for example, red wine polyphe-

nols or fat, and the load of complex carbohydrates like

starch, can also determine the amount that reaches the

colon(160,161). Similarly, the extent of carbohydrate fermen-

tation by the gut microbiota may be affected by other food

components, for example, complex polyphenols, which

may have antibacterial activity(162).

Besides the diet, the specific phylogenetic and functional

composition of the gut microbiota is influenced by a range

of factors including host genetics, immunological factors

and environmental factors including use of drugs such as

antibiotics(1,163). The large-intestinal microbiota has a

strongly individual composition in human subjects and

exhibits a remarkable compositional stability over

time(164), but is also amenable to dietary modulation(165).

Whereas some bacterial species are able to degrade a

wide variety of substrates, other bacteria are nutritionally

highly specialised(1).

In addition, key geographic differences exist in bacteria

and metabolites in different populations in different

countries and regions, for example, in North and South

China(166), different countries in Europe(163) and different

populations (Afro-, Caucasian and Native-Americans) in

the USA(167). Some of these differences may be due to

diet and lifestyle but genetic background may also be

involved. These differences are important to take into

account when investigating the relationship between bac-

terial metabolism and disease.

Finally, fermentation patterns are also determined by

colonic transit times(168). In a study by Cummings et al. a

significant correlation was observed between colonic tran-

sit times and urinary excretion rates of phenols(169). With

shorter transit times, turnover rate is faster and microbial

growth is more efficient, resulting in a greater mass of bac-

teria(170). Similarly, in in vitro fermentation experiments

with faecal inocula from volunteers with pharmacologically

modified transit times, reduction of transit time was
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Table 6. List of microbial catabolites of common plant polyphenols and their putative health effects(155)

Plant polyphenol Microbial catabolite Possible health effects References

(–)-Epicatechin 4-Hydroxyphenylacetic acid Antimicrobial/antimycotic activity in vitro Alakomi (2007)(254)

Ko (2009)(255)

Roowi (2010)(256)

3-(3-Hydroxyphenyl)propionic acid Antimicrobial activity against Gram-negative enterobacteria via outer membrane
destabilisation

5-(3,4-Dihydroxyphenyl)-g-valeric acid ?
(-)-5-(30,40-Dihydroxyphenyl)-g-valerolactone ?

(–)-Epigallocatechin 4-Hydroxyphenylacetic acid Antimicrobial/antimycotic activity in vitro Roowi (2010)(256)

(-)-5-(30,40-Dihydroxyphenyl)-g-valerolactone
(–)-Epigallocatechin-3-O-

gallate
Pyrocatechol Ko (2009)(255)

Roowi (2010)(256)

Okello (2012)(257)

Ni (2008)(258)

Taguri (2006)(259)

Pyrogallol Antibacterial activity (especially against Gram-negative enterobacteria)
An acetylcholinesterase inhibition greater than gallic acid parent
Inhibition of Vibrio spp. quorum sensing

4-Hydroxyphenylacetic acid Antimicrobial/antimycotic activity in vitro
(-)-5-(30,40-Dihydroxyphenyl)-g-valerolactone ?

Daidzein Equol Phyto-oeotrogen important for heart and bone health, and possible colon cancer
protectants

Jackman (2007)(260)

Ishimi (2009)(261)

Davis (2009)(262)

Selma (2009)(263)

Daidzein O-demethylangolensin Oestrogenic and/or anti-oestrogenic activity Larrosa (2006)(264)

Selma (2009)(263)

Quercetin 2-(3,4-Dihydroxyphenyl)acetic acid Selma (2009)(263)

2-3-(3-Hydroxyphenyl)acetic acid
3,4-Dihydroxybenzoic acid
Phloroglucinol
3-(3,4-Dihydroxyphenyl)propionic acid
3-(3-Hydroxyphenyl)propionic acid

Kaempferol 2-(4-Hydroxyphenyl)acetic acid Selma (2009)(263)

Naringenin 3-(4-Hydroxyphenyl)propionic acid Antimicrobial activity against Gram-negative enterobacteria via outer membrane
destabilisation

Selma (2009)(263)

Phloroglucinol
Isoxanthohumol 8-Prenylnaringenin ? Selma (2009)(263)

Catechin and epicatechin 3-(3-Hydroxyphenyl)propionic acid Alakomi (2007)(254)

Selma (2009)(263)

5-(30,40-Dihydroxyphenyl)-g-valerolactone
5-(30-Hydroxyphenyl)-g-valerolactone
3-Hydroxyhippuric acid pyrogallol
5-(3,4-Dihydroxyphenyl)valeric acid
5-(3-Hydroxyohenyl)valeric acid
3-(3,4-Dihydroxyphenyl)propionic acid Antimicrobial activity against Gram-negative enterobacteria via outer membrane

destabilisation
5-(3-Methoxyohenyl)valeric acid
3-(3,4-Dihydroxyphenyl)propionic acid
5-(3-Methoxyohenyl)valeric acid
2,3-Dihydroxyphenoxyl 3-(30,40-dihydroxyphenyl)

propionic acid
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associated with increased production of SCFA and increased

disappearance of substrate(171). Although fermentation of

carbohydrate occurs mainly in the proximal colon, a mixture

of fermentable and less fermentable carbohydrates in the

diet can push fermentation further around the colon and

thus increase SCFA also in the more distal parts of the

colon(172–175). The European Food Safety Authority has

recently approved two health claims for wheat bran in

relation to two beneficial physiological effects, namely an

increase in faecal bulk and a reduction of intestinal transit

time. Whether increased SCFA production is responsible

for the increased transit time in humans remains to be stu-

died. In animal models, SCFA inhibit peristaltic contractile

activity, however, only at concentrations above a physiologi-

cal threshold(176). In addition, the motor effects of SCFA

may differ between species as intracolonic infusion of a

100 mM-SCFA solution did not modify transit in two healthy

human subjects(177). In a recent study in ten volunteers,

infusion of a 100 mM-SCFA solution did not affect the

phasic or tonic motor activity of the colon or the number of

high-amplitude-propagated contractions(178).

Gaps and limitations

Where to measure: choice of the biomatrix

A major obstacle in the evaluation of intestinal bacterial

metabolism in vivo in human subjects is the inability to

directly sample at the site of production. Therefore,

much information has been obtained from analysis of

faecal samples and supportive data from in vitro and

experimental models. However, information on the activity

of the intestinal microbiota can be derived from analysis of

various biological samples including faecal samples, serum

or plasma and urine samples. Zhao et al.(174) nicely

showed that a modification of the intestinal microbiota in

mice resulted in altered metabolite patterns in faeces.

Administration of non-absorbable antibiotics resulted in

increased levels of Bacteroides and Enterococcus species

and was accompanied by a reduction in the overall fer-

mentation of indigestible carbohydrates with lower levels

of SCFA, lower levels of many amino acids and a disturb-

ance of bile acid metabolism(174). In contrast, the faecal

metabolome in horses was shown not to be representative

of the colonic metabolome(179), which reflects the different

patterns of bacterial metabolism and the absorption of pro-

ducts in different parts of the colon. Similarly, the impact of

microbiota activity is reflected in the levels of several

serum metabolites(180). Interestingly, the host responds to

many of those metabolites with phase II metabolism com-

parable with the response to drugs, as many metabolites

are sulfated, glycine conjugated or glucuronidated to facili-

tate urinary excretion.

In recent years, many research efforts have focused on

the mechanisms by which the SCFA acetate, propionate

and butyrate affect host physiology, Nevertheless, reliableT
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and quantifiable methodologies have rarely been

employed to measure the relative SCFA production for

different fibres in human subjects, or to quantify their rela-

tive contribution to circulating SCFA pools, for example,

using stable isotope tracking or pharmaco- or nutri-kinetic

approaches(181). In addition, very few studies have exam-

ined the time course of SCFA production, absorption and

utilisation after prebiotic intervention or examined the

impact of other food components, underlying host disease

or gut microbiota composition and genetic potential on

these processes. Therefore it has been difficult to convin-

cingly prove in human subjects a role for colonic SCFA pro-

duced from prebiotics in the key physiological processes

proven to be regulated by SCFA in animal models. There

is a critical need for multidisciplinary studies to address

these questions and take that final mechanistic step from

animal model to human physiology and health.

When to measure: snapshot analysis

Intestinal microbial fermentation is a dynamic process

influenced by a wide range of factors (see above). There-

fore, the nature and concentration of metabolites produced

by the microbiota is context-dependent and the levels of

each metabolite are a result of metabolic fluxes of highly

variable rates, which are not adequately represented in

steady-state metabolite profiles. The rapid uptake and con-

version of metabolic intermediates, as well as their removal

from the intestinal lumen through host absorption creates a

highly dynamic system, which is strongly discrepant with

the methodologies for analyses that can only provide a

single time point quantification or ‘snapshot’. At present,

very little is known about the short- or long-term variation

in metabolite concentrations produced by the gut bacteria.

The dynamic analysis of metabolic conversions within the

microbiota may be further unravelled through the appli-

cation of stable isotope-labelled nutrients(182) that, in com-

bination with metabolic modelling (for example, including

the use of meta-transcriptome or meta-proteome datasets),

may enable the determination of metabolic fluxes in the

microbiota and the host mucosa.

More holistic approach

Functional analysis of faecal water

Prebiotics can affect the levels of many compounds in the

gastrointestinal tract. These may be constitutively produced

in the body, such as bile acids, or may be bacterial metab-

olites, such as SCFA. This complicates assessment of the

potential effects of prebiotics on human health based on

evaluation of individual substances. Hence, to supplement

such assessment, a more holistic approach to the effects of

prebiotics on the biological activity of the gastrointestinal

milieu is required. One approach that might be useful for

this purpose is the functional analysis of faecal water (for

a review, see Osswald et al.(183)). This should provide an

integrated measure of the overall contribution of the com-

pounds present to a defined biological endpoint, such as

genotoxicity.

Faecal water has a number of potential advantages in

such studies. It is non-invasive, it can reflect the effects

of diet directly, it samples the initial target compartment,

the gastrointestinal tract, it provides a measure of the

total activity of what was present in the distal colon,

it can provide repeated measurements over time, and

subjects can serve as their own controls. Disadvantages

include the practicalities of sample collection and the

reluctance of some subjects to provide samples, the com-

plexity of the biofluid may interfere in the assessment of

some endpoints and it may not always be truly representa-

tive of the biological compartment of interest, because of

modulation of intestinal contents before faecal excretion.

Perhaps the endpoint most widely assessed using faecal

water is genotoxicity. A number of assays have been used

for this purpose, including the Ames Salmonella test and

SOS Chromo test for bacterial mutagenicity(184–187). Over

the past 15 years, those bacterial mutagenicity assays

have been almost completely replaced by assays using

mammalian cells as targets(187). The Comet assay for DNA

strand breaks in enterocyte cells (Caco-2, HT-29 and Hep

G2 (liver derived)) has been commonly used to assess

the genotoxic potential of faecal water. The considerable

inter- and intra-individual variability between samples

and individuals, possibly reflecting the effects of dietary

variation, constitutes a major limitation. Use of a controlled

dietary regimen for 9 d was of insufficient length to reduce

interindividual variability, suggesting that changing the

genotoxic potential of the gut microbiota may require

much longer(188). There is no ready means for normalisa-

tion of sample activity, equivalent, for example, to creati-

nine in urine. Efforts to use wet or dry weight of the

stool have met with little success. However, the method

of preparation of faecal water has little effect on the bio-

logical measurement that facilitates comparison across

studies(103).

The toxicity of faecal water has been assessed using a

number of endpoints. Cytotoxicity has been measured by

colorimetric cell viability assays based on the cleavage of

a tetrazolium salt (for example, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) or water-sol-

uble tetrazolium salt 1 (WST-1)) in the mitochondria of

living cells to a coloured formazan derivative(189,190).

Changes in barrier function are assessed from impairment

of tight junctions using transepithelial resistance(191,192) or

phenol red leakage(193,194) in Caco-2 cells, and invasive

potential of HTC116 cells using fluorescence-activated

cell sorting (FACS) analysis(191). In addition, the lytic

activity of faecal water to erythrocytes has been quantified

as a parameter of cytotoxicity and was significantly corre-

lated to colonic cell proliferation(195). Finally, the effects

of faecal water on apoptosis rates in the human colon-

derived cell lines HT-29 and FHC (fetal human cells)
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have been evaluated(196). A number of apoptotic hallmarks

were measured: changes in cell morphology, DNA frag-

mentation, FACS analysis of DNA strand breaks assessed

using the terminal deoxynucleotidyl transferase dUTP

nick end labelling (TUNEL) assay, and poly(ADP-ribose)

polymerase cleavage.

In addition, several assays have been used to measure

the effects of faecal water on cell proliferation. Using two

human colon carcinoma cell lines, HT-29 and HCT 116,

faecal water or their lipid extracts were found to activate

activator protein-1 (AP-1), a transcription factor associated

with the promotion of neoplastic transformation(197), and to

induce COX-2 promotor activity, which has been impli-

cated in colon carcinogenesis(198). Faecal water also

inhibited cell cycle progression in HT-29 cells and down-

regulated the gene expression of proliferating cell nuclear

antigen, a protein essential for replication(199).

Results on the effects of oligofructose and/or inulin treat-

ment on the genotoxicity of faecal water in rats have been

equivocal(200). In a study in rats treated with azoxymethane,

DNA damage assessed using the Comet assay was reduced

with faecal samples obtained after 4 or more months of

prebiotic treatment. Evidence from this study suggested

that the antigenotoxic effects of prebiotics occur rapidly

and that azoxymethane-induced tumour development

increases the genotoxicity of faecal water(201).

Relatively few studies to date have evaluated the effects

of prebiotic administration on the biological effects of

faecal water samples from human subjects. Feeding male

smokers and non-smokers either plain sourdough bread,

bread supplemented with prebiotics (inulin, linseed and

soya flours) or bread additionally supplemented with anti-

oxidants resulted, in the non-smoker group, in about 50 %

reduction in DNA strand breaks induced by faecal water

with both the control and test breads(202). In smokers, the

control and test breads reduced faecal water genotoxicity

only in those with the glutathione S-transferase genotype

GSTM1*0. Administration of polydextrose (8 g/d for

3 weeks) reduced faecal water genotoxicity using the

Comet assay in thirty-three healthy subjects in a double-

blind placebo controlled cross-over study(44). Similarly,

supplementation of the diet with konjac glucomannan

(4·5 g/d) for 4 weeks in thirty healthy subjects significantly

reduced faecal water genotoxicity(203). In contrast, no

changes in faecal water genotoxicity were observed after

4 weeks treatment with galacto-oligosaccharides (4 g/d)

in a population above 50 years(204).

Measurement of biological activity of faecal water samples

is an attractive means of linking changes in the colonic con-

tents with health outcomes. However, there are a number of

potential limitations to this methodology. Standardisation

of the assay protocols in terms of target cells and sample

preparation is mandated to allow comparison of data

between studies. To date there have been few studies

using this approach in the evaluation of prebiotics.

Metabolomics

Metabolomics offers an alternative and holistic approach to

understanding the interaction between the human gut

microbiome and host metabolism as well as to identify

possible biomarkers of gut health. Metabolomic studies

allow simultaneous evaluation of a wide range of metab-

olites by a top-down approach bypassing the need for an

a priori hypothesis. Several analytical platforms allow

detection, identification and quantification of different

ranges of molecules, including 1H-NMR, LC-MSMS and

GC-MS(205,206). However, due to the chemical diversity

and different physico-chemical properties of the metab-

olites and the large dynamic range of metabolite concen-

trations in different biological samples, it is virtually

impossible to measure the complete metabolome. In

addition, the term ‘metabolome’ can refer to faeces(205),

urine or plasma(207). By selecting a specific analytical

platform and a biofluid in which metabolites will be

measured, the metabolome will be reduced to those

specific conditions. Metabolome approaches can be

non-targeted so that any compounds are considered in a

pattern, or targeted where more specific types of molecules

are identified and sometimes quantified. In general, how-

ever, the strategy is to discover patterns of metabolites

which are associated with disease states such as

cancer(208–210), the metabolic syndrome(211), obesity(212),

CVD, diabetes(213), gut disease such as UC(205), irritable

bowel syndrome(214), peptic ulcer(215) and the impact of

changes in body weight or diet(156,211,216,217).

Although broad-spectrum metabolomics is shedding

new light on the metabolites derived from the gut micro-

biota at an unprecedented resolution, compound quantifi-

cation has been found time-consuming and has not been a

priority in many metabolomics protocols. However, there

is still a place for accurate, reproducible and targeted ana-

lytical chemistry approaches to quantify selected panels of

health-relevant metabolites present in various body

biofluids including faeces. Accurate quantification is par-

ticularly important when determining subtle changes in

metabolite levels in response to dietary interventions

which rarely block or ‘turn-off’ pathways or metabolic

activities as drugs do but rather modulate the production

rate of metabolites. Advances in mass spectroscopy instru-

mentation and methodology have allowed the develop-

ment of ‘targeted metabolomics’ approaches where there

are panels of specific metabolites, often of related physio-

logical relevance, as an example metabolites related to

diabetes or dyslipidaemia, can be accurately and reprodu-

cibly quantified in blood and urine(218).

Application of metabolomic analysis in the evaluation of

putative health benefits of prebiotics might provide

additional evidence or elucidate the molecular bases of

their actions. Martin et al. used a model of mice colonised

with a human baby’s microbiota to evaluate the impact of

prebiotic galactosyl-oligosaccharides on the metabolic
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changes in ten biofluids/compartments. Prebiotic adminis-

tration significantly reduced the lipids in the liver and kid-

neys and altered the transmethylation metabolic pathways

(homocysteine–betaine)(219). So far, only a few interven-

tion studies in human subjects applied metabolomics to

evaluate the impact of a synbiotic(220–222). Recently, a

metabolomic approach was applied in a placebo-con-

trolled trial in patients with Crohn’s disease who received

a dietary intervention with oligofructose-enriched inulin

(OF-IN) (2 £ 10 g/d) for 4 weeks(223). Faecal butyrate

levels were up-regulated to the levels found in faecal

samples of healthy controls after OF-IN intake. In view of

the immunomodulatory and anti-inflammatory properties

of butyrate, these observations might encourage follow-

up studies in Crohn’s disease with prebiotics.

Link to metagenome analysis

Meta-omics technologies enable the simultaneous, eco-

system-wide readout of phylogenetic composition and

function, providing a blueprint of the microbiota’s

functional potential. Metagenomics employs established

technologies that are fuelled by the continuous advances

made in sequencing technologies, allowing the cost- and

time-effective creation of functional catalogues of the

human intestinal microbiota in individuals(2), which have

confirmed a substantially distinct microbial community

composition in the large v. the small intestine(224). It is

far from trivial to translate the genetic repertoire or the

metagenome of the microbiota into its actual in situ

activity, and there is a strong requirement for the further

development of functional metagenomic approaches,

including metatranscriptomics and metaproteomics.

Finally, meta-metabolomics/metabonomics approaches

(on faecal water, blood or urine) allow monitoring the

pool of metabolites produced by the microbiota in the

intestinal lumen (faecal water metabolomes), and their

impact on the host’s systemic biochemistry (urine and

blood metabolomes).

A main bottleneck in these approaches is the biological

interpretation of these data and their integration to

decipher the underlying interactions. All the techniques

mentioned above yield massive datasets with large

proportions of unknown features (unannotated genes,

unidentified spectra, etc.). In addition, all data are fragmen-

ted and include the assignment of incomplete spectra to

fragmented gene sequences and partially sequenced

species, which is a challenging problem even for meta-

omics datasets that are generated from the same samples.

Also the integration of metabolomic profiles and intestinal

metagenome composition remains challenging, which is

also a consequence of the ‘snapshot characteristics’ of

the datasets generated.

Fig. 2 shows a schematic presentation of the future needs

to analyse the functional capacities of the microbiota.

Bioinformatic processing and interpretation of large-

scale metabolic datasets are hampered by the inherent

broad scope of the current metabolic databases

(for example, KEGG (Kyoto Encyclopedia of Genes and

Genomes), etc.). These generic metabolic maps contain

pathways that are not present in the gut ecosystem

(for example, reactions requiring molecular oxygen as a

substrate) and at the same time lack gut-specific pathways,

which leads to a loss of both sensitivity and specificity in

meta-omics data interpretation. This situation implies that

there is a great need for gut-specific, specialised and

curated databases, combined with dedicated software

and visualisation tools to facilitate the effective interpret-

ation of meta-omics datasets. These bioinformatic environ-

ments are under construction (J Raes, personal

communication) and will be of great value for the meta-

bolic deciphering of microbiota adaptations to dietary or

pre-/pro-/symbiotic interventions. The detailed inference

of metabolic potential and activity, when combined with

species-function mapping and reconstruction of metabolic

interactions between microbial groups, including the

reconstruction of syntrophic chains and metabolite

exchange(225), will open the way towards novel strategies

in mathematical modelling of the metabolic processes

taking place in the intestine.

The challenges of data integration become even more

pronounced when the intestine meta-omics data are to

be connected to parameters that relate to the host’s

physiology. Some of these host analyses can encompass

high-resolution measurements like blood or urine metab-

olite profiles, blood transcriptomes, or peripheral blood

analyte patterns (cytokines, chemokines, hormones, etc.).

Quantified microbiota species (OTU)
composition (16S rRNA based)

Quantified microbiota function profile
(metagenome)

Quantified microbiota gene
expression profile
(metatranscriptome)

Quantified microbiota protein
expression profile profile
(metaproteome)

Quantified microbiota metabolite
profiles (metametabolome)

an
pre
eta

ein

Availability of
methods

Emerging

Emerging

Fig. 2. Schematic presentation of the future needs for the functional analysis

of the microbiota. Metagenome mapping of metatranscriptome and metapro-

teome data can rely on established methodologies (darker arrows), but the

integration to these (functional) metagenome data with the meta-metabolome

is far from trivial and in need of methodology development (lighter arrows).

OTU, operational taxonomic units. A colour version of this figure can be

found online at http://www.journals.cambridge.org/nrr
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Connecting these host measurements to meta-omics data is

far from trivial, for example, because for many metabolites

detected in blood or urine it is uncertain whether they are

of intestinal origin. As a consequence, current studies

usually limit themselves to the descriptive analysis of

metabolic potential and/or activity across patient cohorts,

in which the integration is commonly limited to the detec-

tion of correlated entities within the datasets that can be

identified by multivariate statistics. Only in a few cases

were the identified correlations explained through biologi-

cal context and network biology reconstructions that

explain the molecular relationships between the observed

correlations. The latter process commonly requires a

time-consuming and largely manual sifting of results

combined with massive literature mining to decipher the

biological context of the observed correlations. Systems

biology mathematical frameworks that accelerate the con-

version of correlation-based mining to comprehensive,

hypothesis-generating biological interpretation, could

accelerate the progress of the meta-omics field and its rel-

evance in human health and disease. However, these com-

putational frameworks are still in their infancy, and will

require a substantial amount of validation before they

can reliably be applied to effectively mine the complex

multivariate datasets obtained through meta-omics and

high-resolution host analyses.

Conclusions

Currently, there is insufficient evidence to use changes in

levels of individual bacterial metabolites as markers in

the assessment of prebiotic effectivity. Several in vitro

and experimental animal studies indicate that protein

fermentation metabolites including ammonia, phenol,

p-cresol, indole or hydrogen sulfide intrinsically affect epi-

thelial cellular metabolism and barrier function. However,

there is no evidence from human studies that a reduction

in faecal excretion of those metabolites contributes to

health. Possibly, the impact of protein fermentation is over-

shadowed by other dietary or lifestyle factors. Although

SCFA are generally recognised as markers of carbohydrate

rather than protein fermentation in the colon and are there-

fore commonly considered as beneficial to health, a

number of critical questions need to be answered before

their concentrations can serve as biomarkers.

In particular, the lack of reliable concentration ranges

defining the ‘normal’ or healthy state for these different

metabolites in faeces and other biofluids, and the fact

that steady-state metabolite concentrations or profiles do

not take into account the rapid absorption and/or conver-

sion of the metabolites, hampers the routine application of

those techniques to human dietary interventions where

microbiota modulation is an objective. There is an urgent

need for dynamic, nutrikinetic-type studies, for example,

with stable isotopes, to determine and quantify the path-

way of microbial metabolites into the different body

compartments. Functional analysis of faecal water toxicity

has been proposed as a more holistic approach to link

changes in colonic content to health outcomes but suffers

from some practical considerations and the limited

validation of this biomarker towards the end point of color-

ectal cancer.

Despite the challenges encountered in the integration of

the different levels of quantitative analyses of the intestinal

system through meta-omics and the corresponding host-

specific parameters, the available meta-omics and other

high-resolution analytical methods enable the determination

of correlated multivariate signatures that can place poten-

tial metabolic or health markers in their context, thereby

enhancing their value as markers in health and disease or

in therapy efficacy evaluation. Of course, these meta-

omics must first consider the prevailing ‘meta-data’ which

govern nutrient concentrations within human biofluids,

not least dietary intake, a difficult parameter to measure

and control in free-living subjects. However, these devel-

opments may significantly refine our views of concepts

like ‘the bandwidth of health’(226) that postulate that

multiple molecular solutions for a healthy functioning

mucosa and/or microbiota exist. The multivariate signa-

tures mentioned may enable appropriate population strati-

fication for the more effective application of specific

nutritional interventions in subpopulations that are predic-

tably more responsive to a certain treatment. Meta-omic

stratification of the human population is illustrated by the

distinction of three ‘metagenomic enterotypes’ that are

characterised by elevated community sizes of the Bacteroi-

detes, Prevotella and ruminococci(227). Taken together, the

deciphering of detailed and specific mechanisms of inter-

action in the host–microbe-metabolic interplay are a chal-

lenge for the future, but hold great promise for rationalised

nutritional health improvement and/or even disease

therapy in stratified population cohorts.
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