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Abstract
In this paper four different delineation methods based on airborne laser scanning (ALS) 
and hyperspectral data are compared over a forest area in the Italian Alps. The comparison 
was carried out in terms of detected trees, while the ALS based methods are compared also 
in terms of attributes estimated (e.g. height). From the experimental results emerged that 
ALS methods outperformed hyperspectral one in terms of tree detection rate in two of three 
cases. The best results were achieved with a method based on region growing on an ALS 
image, and by one based on clustering of raw ALS point cloud. Regarding the estimates 
of the tree attributes all the ALS methods provided good results with very high accuracies 
when considering only big trees.
Keywords: Individual tree crowns delineation, biomass estimation, airborne laser scanning 
data, hyperspectral data.

Introduction
Forest ecosystems cover about 30% of our planet, account for 75% of the gross primary 
productivity of the Earth’s biosphere, and contain 80% of the Earth’s plant biomass [Pan 
et al., 2013]. Thus, they are very important for several reasons, both economical and 
environmental. Economically, forests are valuable as wood is a resource used in many 
fields, from buildings construction to energy generation. Environmentally, forests are very 
important as they preserve a great ecological diversity, for their protective role against 
natural hazards, and moreover as they represent a huge carbon sink, containing the majority 
of the carbon stored in terrestrial ecosystems [IPCC, 2000]. Indeed world’s forests account 
for 50% of the annual carbon flux between the atmosphere and the Earth’s land surface 
[Beer et al., 2010], and they capture and conserve more carbon than all other terrestrial 
ecosystems. The carbon is stored both in the form of biomass (trunks, branches, foliage, 
roots, etc.) and in the form of organic carbon in the soil [Carvalhais et al., 2014].
Regarding the carbon stored in form of biomass, a way to estimate it is through forest 
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inventories [Coomes et al., 2002]. Forest inventories can be carried out in several ways and 
there is not a standardized procedure used in all countries and regions. Forest inventories 
are usually based on the measurement of some field plots (e.g. one plot per hectare of 
forest) either of fixed size or using the angle count sampling technique [Gasparini and Di 
Cosmo, 2015; Piqué et al., 2011], and to average the values measured over stands having 
uniform structural characteristics [Gregoire and Valentine, 2008]. As usual for the surveys 
based on statistical sampling, which are preferred for large scale inventories to reduce the 
fieldwork, the spatial detail is not preserved, which can be problematic especially in forests 
managed with selective lodging, and characterized by the presence of mixed tree species.
In this context, remote sensing data are used in order to have more precise forest inventories 
without increasing the costs [Grafström and Ringvall, 2013]. Indeed remote sensing devices 
can provide objective information over large areas and, thanks to the most recent sensors, 
also a very high level of spatial detail of the estimated information. Almost all the remote 
sensing data available on the market can be used for the estimation of forest biomass and 
attributes [Anderson et al., 2008; Mette et al., 2002; Muukkonen and Heiskanen, 2005; 
Næsset, 2011]. Among all of them in the recent years great attention have been devoted to 
the use of airborne laser scanning (ALS) data for the estimation of structural properties of 
forests (e.g. above ground biomass) [Maltamo et al., 2014], while for qualitative parameters 
(e.g. tree species) hyperspectral data showed to be very effective [Dalponte et al., 2009a]. 
In particular, ALS data provide detailed information of the forest structure allowing to have 
precise estimations of biomass and volume [Bouvier et al., 2015]; hyperspectral data, with 
a dense sampling of the land covers spectral signatures, allow the detection of spectrally 
similar land covers (e.g. different tree species) [Dalponte et al., 2012; Tochon et al., 2015].
A forest inventory based on remote sensing data can be usually carried out at two spatial 
levels (area and individual tree crown level), depending on the available data and on the 
spatial detail requested by the final user [Vastaranta et al., 2009; Yu et al., 2010]. Forest 
inventories at coarser scales estimate the attributes of interest for areas of a certain size (e.g. 
400 m2, area-based approach, ABA), while in individual tree crowns (ITC) level inventories 
the attributes (including AGB) are estimated for each single tree detected in the study area. 
Obviously, the level of detail of the ITC level inventories is much higher, but obtained 
results are strongly dependent on the method used for the ITC delineation.
Many algorithms exist, each one with different characteristics and based on different input 
data. In the past the attention was mainly devoted to methods having raster images as 
input [Hyyppä et al., 2001; Popescu et al., 2003], mainly high resolution aerial images or 
canopy height models derived from ALS data [Ferraz et al., 2012]. Most recently, studies 
are focusing more and more on the use of the ALS point cloud in order to have a 3D 
representation of single trees, and to detect also suppressed trees and understory [Kandare 
et al., 2014]. Considering the effectiveness of different ITCs delineation methods, some 
comparative studies were recently published showing that, depending on the forest type, 
one method can be better than another [Eysn et al., 2015; Vauhkonen et al., 2012].
In this paper, a comparison of four ITC delineation methods, based on different data inputs 
and different algorithms, is presented. In particular the comparison aims at:

i. understanding which is the best delineation method to apply in a temperate forest, 
both in terms of delineation results and real applicability (e.g. computing time);

ii. understanding which is the best method in terms of tree attributes estimation for the 
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delineated ITCs (i.e. height, diameter at breast height, and above ground biomass);
iii. understanding if hyperspectral data can be used as replacement of ALS data for ITC 

delineation.

Data set description
Study area
The study area is a temperate forest located in the Italian Alps, in the municipality of 
Lavarone (Province of Trento, Italy), at an altitude of about 1350 m above sea level. The 
dominant tree species are Norway spruce (Picea abies (L.) Karst.), Silver fir (Abies alba 
Mill.) and European beech (Fagus sylvatica L.), with a tree volume composition of 64%, 
34% and 2%, respectively. The area is of an uneven aged forest, with the oldest trees of 
about 130 years, as the management is not based on a real rotation plan but on partial 
cuttings of groups of about 10 tall trees, approximately every 10 years (Fig. 1). Average 
canopy height is 28 m, mean diameter at breast height (DBH) is 36 cm, and stem density is 
401 trees/ha (DBH > 17.5 cm) and 1000 trees/ha (DBH in the range 7.5 - 17.5 cm), with a 
leaf area index (LAI) of 8.1 m2 m-2.

Figure 1 - Aerial image of the study area.
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Remote sensing data description and preprocessing
ALS data were acquired on 8th of July 2011 with an Optech ALTM 3100EA sensor, with a 
mean point density of 8.6 points/m2 for the first return (laser pulse wavelength 1064 nm, 
laser repetition rate 100 kHz) and with up to four recorded returns for each laser pulse. The 
data vendor generated a digital terrain model (DTM) starting from the acquired ALS data. 
The spatial resolution of the DTM was of 1 m.
Airborne hyperspectral data were acquired simultaneously to the ALS data with an AISA 
Eagle II sensor. 130 spectral bands equally spaced between 400 nm and 990 nm characterize 
the acquired image. The spatial resolution of the image is of 0.9 m.
The DTM value was subtracted from each ALS point, obtaining a normalized point 
cloud. The DTM was provided by the data vendor. A raster canopy height model 
(CHM) with 0.5 m spatial resolution was created from the ALS data. The CHM was 
obtained using the 99th percentile of the normalized Z values inside each pixel, and 
using a nearest neighbor interpolation. The hyperspectral images were resampled at 
0.5 m spatial resolution in order to have the same resolution of the CHM used as input 
to delineation methods 1 and 2. The resampling was carried out with the commercial 
software ENVI (© 2015 Exelis Visual Information Solutions).

Field data
630 trees were inventoried in a plot of 4800 m2, of which 58% Silver fir (basal area: 37 
m2/ha), 23% European beech (basal area: 2 m2/ha), 19% Norway Spruce (basal area: 22 
m2/ha). For each tree with DBH higher than 1 cm in the study area DBH, position and 
species were recorded (Tab. 1). The position was defined respect to a based station using a 
Criterion Laser 400. The base station coordinates were collected using a differential GPS. 
The height and the above ground biomass (AGB) were estimated using the equations of 
Scrinzi et al. [2010].
Field data were matched with the delineated ITC according to the following procedure: 
if only one field measured tree was included inside an ITC then that tree was 
associated to that ITC. In the case of more than one field-measured tree was included 
in a segmented ITC, the field measured tree with the closer height to the ITC height 
was chosen.

Table 1 - Summary of the field measured trees.

DBH class (cm)
Number of trees

Total Picea abies (L.) Karst. Abies alba Mill. Fagus sylvatica L.

< 7.5 236 14 105 117

7.5 - 17.5 136 29 88 19

17.5 - 27.5 79 15 57 7

27.5 - 47.5 126 35 89 2

> 47.5 53 24 27 2
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Methods
ITC delineation methods
Method 1
Method 1 is based on the algorithm of Ene et al. [2012] and exploits both a CHM in raster 
format and the ALS point cloud with normalized z. The ITCs are firstly defined on the 
raster CHM using a watershed method and then they are reshaped using the normalized 
point cloud. In greater detail the steps of the method are the following:

1. a low-pass filter (LPF) is applied to the raster image of the CHM;
2. a watershed segmentation is applied to the filtered image, obtaining the image L of the 

segmented regions;
3. from each region in L the first return ALS points are extracted, and the Otsu thresholding 

method [Otsu, 1979] is applied to their normalized heights;
4. the first return ALS points higher than the Otsu threshold are extracted and a 2D 

convex hull is applied to these points;
5. the resulting polygons are the final ITCs.

In the results showed in this paper we used a LPF of 5x5 pixels size.

Method 2
Method 2 is based on the algorithm of Hyyppä et al. [2001] and exploits both a CHM in 
raster format and the ALS point cloud with normalized z. The ITCs are firstly defined 
on the raster CHM using a region growing method and then they are reshaped using the 
normalized point cloud. In greater detail the steps of the method are the following:

1. a LPF is applied to the raster image of the CHM;
2. seeds points S s sN= ¼{ }1 , ,  are defined using a moving window. A CHM pixel 

CHM(x, y) is a seed point if:

CHM x y S if
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,
,
,

( )Î
( )= ( )
( )>

ì
í
ïï

îïï

max
1[[ ]

where hTH  is a minimum height threshold fixed by the user;
3. initial regions are defined starting from the seed points. A label map L is defined:
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4.starting from the seed points regions grow according to the following procedure:
a. consider a label map point Li j, ¹ 0  and take its neighbor pixels (NP) in the 

CHM:

NP CHM i j i j i j i j= -( ) -( ) +( ) +( ){ } [ ], , ; , ,1 1 1 1 3;CHM CHM ;CHM

b. a neighbor pixel NP i j' ',( )  is added to the region n if:
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where PercThreshÎ( )0 1; , DistMax> 0 , and sn is the seed point of the region n. 
If these conditions are satisfied the value in the label map L corresponding to the 
pixel NP i j' ',( )  is set to n: L ni j' ', = .

c. the steps a) and b) are iterated over all the pixels that have Li j, ¹ 0 , and it is 
repeated until no pixels are added to any region;

5. from each region in L the first return ALS points are extracted and Otsu thresholding 
is applied [Otsu, 1979] to their normalized heights;

6. the first return ALS points higher than the Otsu threshold are extracted and a 2D 
convex hull is applied to these points;

7. the resulting polygons are the final ITCs.
In the results showed in this paper we used a LPF of 5x5 pixels size, a value of PercThresh 
of 0.7, and of DistMax of 10 pixels.

Method 3
Method 3 is the method presented in Kandare et al. [2014]. The input of this method is a 
normalized ALS point cloud, defined with X, Y and Z coordinates. This method is based on 
clustering of the ALS point cloud. The main steps of the method are detailed below:

1. the normalized point cloud is divided into vertical layers along the Z axis, considering 
only points above 1.5 m to remove effects of terrain objects, shrubs and herbaceous 
vegetation. The vertical layers have a distance fixed by the user;

2. 3D K-means clustering is applied to the normalized points of the point cloud in each 
layer and barycenters (BCs) are calculated for each 3D K-means cluster;

3. starting from the BCs, the 3D K-means clusters are aggregated. A 3D ellipsoid is 
created from the top BC (located in the North Pole of the ellipsoid). Then, all the 
clusters that have a corresponding BC inside the ellipsoid are aggregated. The size of 
the ellipsoid (minor and major axis) is tuned on the basis of the Z coordinate of the BC 
(higher Z values lead to bigger ellipsoids);

4. a Kernel density function is applied to the 3D clusters in order to estimate the 
distribution of the normalized ALS point cloud points along X and Y axes. Uneven 
distributed points are separated into two new 3D clusters depending on the presence 
of a gap bigger than a predefined threshold (computed as a mean distances between X 
and Y values of the ALS points) between the points;

5. 3D clusters with the same index within different layers are merged along the vertical 
direction. The merging procedure is carried out defining 2D polygons along the 
horizontal direction of the 3D clusters. Polygons with the same index are sorted by 
height in descending order. Starting from the top polygon, clusters with overlapping 
polygons for more than 10% are merged. If not, the cluster is reindexed;



371

European Journal of Remote Sensing - 2015, 48: 365-382

6. a Kernel density function is applied to the unique 3D clusters along the Z direction. 
Uneven distributed points inside the clusters are separated into two 3D clusters if there 
is a gap between points bigger than a given threshold;

7. unique 3D clusters are merged together along the vertical direction. The merging 
criteria used in this step is the same as in step 5;

8. in order to refine the preliminary result, some small remaining clusters need to be 
merged to a bigger cluster or deleted. These “outlaying” clusters are selected if they 
deviate from the average mean crown area, number of points within the cluster, 
cluster height or height range of the ALS points inside the cluster. The selected 
outlaying clusters are merged to a bigger cluster if the following condition is fulfilled. 
The merging procedure is carried out defining 2D polygons (see part 5) which are 
merged them along the vertical direction. Starting from the top polygon, the clusters 
are compared to the outlaying ones and reshaped if their polygons overlap for 10%. 
Outlaying clusters that were not merged are removed if their cluster’s projected area 
on the horizontal plane is smaller than minimal crown area threshold (obtained from 
the field data). Finally, the small clusters are merged to bigger clusters and grouped 
into final 3D clusters representing the ITCs;

9. 2D polygons are generated for each clusters using the convex hull method.
In the results showed in this study the number of layers of step 1 was fixed to 10 with the 
same amount of points within each layer, and the threshold of step 6 was fixed at 4 m.

Method 4
Method 4 is based on the use of hyperspectral data and it was developed ad hoc for this 
study following the structure of Method 2. In greater detail the steps of the method are the 
following:

1. a LPF is applied to one raster band selected among the bands of the hyperspectral 
image;

2. seeds points S s sN= ¼{ }1 , ,  are defined using a moving window. An image pixel 
H(x,y) is a seed point if:

H x y S if H x y moving window, ,( )Î ( )= ( ) [ ]max 5

3. initial regions are defined starting from the seed points. A label map L is defined:

L k if H i j S
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4. starting from the seed points regions grow according to the following procedure:
a. consider a label map point  and take its neighbor pixels (NP) in the image:

NP H i j i j i j i j= -( ) -( ) +( ) +( ){ } [ ], , , ,1 1 1 1 7;H ;H ;H
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b. a neighbor pixel NP i j' ',( )  is added to the region n if:

dist NP i j s DistMax

NP i j s PercThresh

L

n

n

i j

' '

' ' *

' '

, ,

,

,

( )( )<
( )>( )
¹ 00

8

ì

í

ïïïïïï

î

ïïïïïï

[ ]

where PercThreshÎ( )0 1; , DistMax> 0 , and sn is the seed point of the region n. If 
these conditions are satisfied the value in the label map L corresponding to the pixel 
NP i j' ',( )  is set to n: L ni j' ', = .

c. the steps a) and b) are iterated over all the pixels that have Li j, ¹ 0 , and it is 
repeated until no pixels are added to any region;

5. from each region in L the central coordinates of each pixel are extracted, and a 2D 
convex hull is applied to these points;

6. the resulting polygons are the final ITCs.
The raster image used in this paper was the image from the band at 810 nm, already used in 
previous studies for this purpose [Clark et al., 2005; Dalponte et al., 2014]. The LPF filter 
used had a dimension of 3x3 pixels, the moving window a size of 5x5 pixels, the value of 
PercThresh was of 0.7, and of DistMax of 10.

Estimation of ITC attributes
The height, DBH and AGB of each ITC, delineated using ALS data, were estimated using 
some variables extracted from ALS data as in Dalponte et al [2009b; 2011]. Among them, 
only the ones that showed to be significant predictors in a generalized linear regression 
model for the estimations of height, DBH and AGB were selected by means of the stepAIC 
function of the R [R Development Core Team, 2008] package MASS. The analysis of the 
results was done considering two DBH classes: i) DBH < 17.5 cm; and ii) DBH ≥ 17.5 
cm. We chose 17.5 cm as a threshold as it is the normal threshold used in the Province of 
Trento to separate inventory and pre-inventory trees in a forest inventory. The results of the 
estimations over the commonly matched trees were compared using the Mann-Whitney-
Wilcoxon test.

Results
ITC delineation
In Table 2 the quantitative results of the ITC delineation with the four methods considered 
is showed. Method 2 provided the highest detection rate (DET) for both DBH classes. 
Considering all the trees, the detection rate is quite low as only about one fourth of the 
trees were detected. However, when only trees with DBH higher than 17.5 cm were 
considered (the standard threshold used in Italy for the stem volume estimation), DET 
increased to 61%.
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Figure 2 - Delineation results. The colored crowns are the ones inside the study area. The blue 
ones are the one matched with a field measurement, while the green ones are cases of commission 
errors.

Analyzing the other accuracy parameters it is possible to note that other methods reach 
better performances. Method 3 performs better when considering the accuracy index (AI). 
This index considers both omission (OE) and commission (CE) errors and, in fact, Method 
3 obtained a very low CE. Differently, considering only the OE, Method 2 had the best 
results. Looking at the three tree species present in the area, it can be seen that for Norway 
spruce the best performances are reached with Method 2, for Silver fir with Method 2 and 
3, while for European beech with method 2, 3, and 4.

Table 2 - Quantitative results of the ITC delineation for the four delineation methods considered. 
The best results are highlighted in bold.

Method DBH
(cm)

Number of 
field measured 

trees

Number of
ITC

matched

DET (%)
AI

(%)
OE
(%)

CE
(%)Total Picea

abies
Abies
alba

Fagus
sylvatica

1
all 630 102 16.2 20.5 19.4 4.8 11.5 83.8 4.7

>17.5 258 100 38.8 32.4 41.0 45.5 32.3 61.2 6.5

2
all 630 175 27.8 43.6 29.5 10.9 7.0 72.2 20.8

>17.5 258 157 60.9 64.9 57.8 81.8 31.8 39.2 29.0

3
all 630 155 24.6 28.2 28.1 12.9 24.0 75.4 0.6

>17.5 258 140 54.3 40.5 58.4 81.8 44.0 45.7 10.3

4
all 630 157 24.9 18.8 23.5 33.3 8.4 75.1 16.5

>17.5 258 127 49.2 33.8 53.8 81.8 16.7 50.8 32.5

Making a visual analysis of the ITCs (Fig. 2), it is clear that the ITCs of Method 3 covered 
all the area with a high degree of overlapping among polygons. Conversely, Method 1 and 2 
left large spaces between the ITCs. Method 1 produced few ITCs, with gaps between them, 
thus increasing the omission error. In Method 4 shape and size of detected ITCs are clearly 
affected by the pixel size of the starting raster image.

ITC attributes estimation
Considering all the three estimated parameters (height, DBH and AGB), the best results 
were shown by Method 1 (Figs. 3, 4 and 5).
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Figure 3 - Height estimation results with the three methods based on ALS data, considering 
two DBH classes.

Figure 4 - DBH estimation results with the three methods based on ALS data, considering 
two DBH classes.
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In each plot, the mean Adjusted-R2 and the mean RMSE of the leave-one-out estimation 
are showed. These reached an Adjusted-R2 of 0.64 and a RMSE of 1.86 m in the estimation 
of the tree heights, for the trees with DBH higher than 17.5 cm. All the methods largely 
overestimated the heights of the small trees. This is probably due to a matching problem 
among the field measured trees and the delineated ITCs. Method 3 provided the largest 
estimation errors. Comparing the height of the trees detected by all the three ALS based 
methods (49 trees), it can be seen that the estimates obtained by Method 1 and 2 have the 
highest correlation (R2 = 0.57) while Methods 1 and 3 are the least correlated (R2 = 0.29) 
(Tab. 3). In all the pairs (i.e. Method 1 vs Method 2, Method 1 vs. Method 3, and Method 2 
vs. Method 3) it emerged that the estimates were statistically different at 0.05 significance 
level (Tab. 3).

Table 3 - Comparison among the estimation results of height, 
DBH, and AGB obtained from the ITCs delineated with the three 
delineation methods based on ALS. The p-value is obtained with the 
Mann-Whitney-Wilcoxon test.

Attribute Comparison R2 RMSE p-value

Height

Method 1 vs Method 2 0.57 2.54 0.018

Method 1 vs Method 3 0.29 4.45 0.000

Method 2 vs Method 3 0.32 3.55 0.002

DBH

Method 1 vs Method 2 0.74 4.06 0.291

Method 1 vs Method 3 0.37 8.87 0.000

Method 2 vs Method 3 0.36 7.53 0.000

AGB

Method 1 vs Method 2 0.70 232.3 0.961

Method 1 vs Method 3 0.48 307.4 0.687

Method 2 vs Method 3 0.53 224.2 0.676

The DBH was estimated with an RMSE lower than 10 cm, with the best result (6.29 cm) 
obtained by Method 2 and trees with DBH larger than 17.5 cm. Conversely, Method 3 
provided the largest estimation errors (RMSE from 8.87 to 10.81). Adjusted-R2s were quite 
low for all methods, with the highest values around 0.55, and the lowest around 0.28. 
In particular, the estimation of DBH was systematically overestimated by all the three 
methods. From Table 3 it can be seen that the DBHs estimated by Method 1 and 2 have the 
highest correlation (R2 = 0.74) while Methods 2 and 3 are the least correlated (R2 = 0.36). 
The DBHs estimated with Method 1 and Method 2 resulted not statistically different at 
0.05 significance level, while the other pairs (i.e. Method 1 vs. Method 3, and Method 2 vs. 
Method 3) resulted to be statistically different at 0.05 significance level (Tab. 3).



Dalponte et al.  Individual tree crowns delineation: a comparison study

376

Figure 5 - AGB estimation results with the three methods based on ALS data, considering two 
DBH classes.

Analyzing the AGB estimations (Fig. 5) it is clear that there is a problem in the estimation of 
the large values of AGB. In this case the best results in terms of RMSE were obtained with 
Method 1 while in terms of Adjusted-R2 by Method 2. Differently than from the height and 
DBHs, for AGB there is an underestimation of the largest values of AGB by all methods. 
From Table 3 it can be seen that the AGBs estimated by Method 1 and 2 have the highest 
correlation (R2 = 0.70) while Methods 1 and 3 are the least correlated (R2 = 0.48). In all the 
pairs (i.e. Method 1 vs. Method 2, Method 1 vs. Method 3, and Method 2 vs. Method 3) it 
emerged that the estimates were not statistically different at 0.05 significance level (Tab. 3).

Table 4 - Total AGB measured in the field and estimated by the 
three delineation methods based on ALS data.

DBH (cm)
Total AGB (kg)

Field Method 1 Method 2 Method 3
All 232226 103742 137051 78800

> 17.5 232106 103627 149725 82386

In Table 4 the total AGB of the study area measured in the field and estimated by the three 
Methods is showed. It can be seen that, at best, about 60% of the total AGB was estimated, 
while in the worst case only about 34%. It is worth noting also that trees with DBH smaller 
than 17.5 cm accounts for a very little amount of the total AGB.
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Discussion
The four delineation methods considered provided very different results and, depending 
on which accuracy statistic is considered, different methods are achieving the best 
performance. Looking only at the detection rate, Method 2 reached the best results while, 
considering the accuracy index (AI), Method 4 was the best one. This because Method 4 
had very low commission errors. These results showed that it is not univocal how to define 
if a method is good or not, as it depends on the needs of the final user. Among the four 
methods analyzed here, it is clear that Method 2 have the tendency to over-segment the 
image. This leads, on one hand, to have a high detection rate but, on the other hand, to have 
a high commission error. Moreover, the delineated trees are not always representing the real 
size of the forest trees. On the opposite side, Method 3 defines much bigger segments that 
reduce at minimum the commission error, at the cost of a lower detection rate. Similarly, 
method 1 gives segments bigger than in Method 2 and, consequently, a lower commission 
error. Indeed, Method 1 had the lowest detection rate, but a higher accuracy index compared 
to Method 2 (that had the highest detection rate).
Considering the processing time Method 3 is about 10 times slower than the other three, 
while Method 4 is the fastest. This affect the practical application of the delineation methods 
in forest inventories. Method 2 is probably the one to be suggested to be used in real cases 
as it provides a good compromise among processing time and results obtained in terms 
of detected trees and estimation of the tree attributes. Moreover if the interest is only in 
locating the tree positions and to estimate the tree heights, the computing time of Method 2 
can be reduced of about 10 times, making it usable also over large areas. In fact the crown 
delineation procedure is the most time consuming.
The results of this study are in line with the literature, especially considering only the 
inventory trees (DBH > 17.5 cm). Vauhkonen et al. [2012] in a comparative study of six 
delineation methods over different countries showed an average detection rate of 48% in 
coniferous and broadleaved forests (Germany), 42% and 60% in boreal forests of Norway 
and Sweden, respectively. Reitberger et al. [2009] in an alpine spruce forest, a mixed 
mountain forest and a spruce forest obtained a detection rate in a range from 48% to 60%. 
Regarding the height estimation, also in other studies emerged the fact that small heights 
are frequently overestimated [Hyyppä and Inkinen, 1999; Persson et al., 2002; Ferraz et al., 
2012]. This may be due to the fact that the treetop is not necessarily sampled by the laser 
scanner.
Only a few trees were detected by all the four methods (9 field measured trees), as by the 
ALS based methods alone (49 trees). Every method is detecting different trees. The two 
methods that appears to be more consistent among each other are method 1 and 2, and this 
is showed also by the estimated parameters. In particular these two methods had similar 
results in terms of estimated height, DBH and AGB on the 49 trees cited above.
In the considered study area almost half of the trees belong to suppressed or understory 
layers and this obviously decreases the detection rate. This explains why all the methods 
achieved a very low detection rate considering all the trees, while the detection rate is much 
higher considering the big trees only. From a forestry viewpoint the big trees (DBH>17.5 
cm) are the most important, as these are the trees valuable for their wood. However, from an 
ecological point of view it is important to study also the understory layers. Thus, a method 
that can detect also small trees is preferable.
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Similar considerations can be made regarding the three tree species present in the area. 
The wood of Norway spruce and Silver fir is important from an economical viewpoint, as 
it is used for manufacturing purposes, while the wood of European beech is usually used 
for energy production (i.e. heating systems). Considering the carbon sinks, all species are 
important, and it is worth to have a good detection rate for all of them. From our results it 
is clear that all the species experienced similar detection results, even if there are slightly 
better results for the European beech.
The method based on hyperspectral data showed a good detection rate, similar to the one 
of ALS methods. This result is better than what was found in other studies in the literature 
[Dalponte et al., 2014]. One factor that may have influenced the results is the crown size 
of the trees. Comparing the average crown size of the trees in the dataset used in Dalponte 
et al. [2014] with the one of this study, it emerged that the trees in this study have larger 
crowns. In this regard Hengl [2006] suggested that having at least four pixels representing 
the smallest circular objects and at least two pixels representing the narrowest objects is 
crucial in order to detect an object in an image. Following this rule of thumb the spatial 
resolution of the imagery used for the delineation should match the expected minimum size 
of the tree crowns across the scene. Keeping constant the spatial resolution, if in a study 
area the trees are smaller than in another one, the detection rate will be lower. Consequently, 
ALS data result more flexible since their spatial resolution can be easily adjusted, while 
resolution in hyperspectral data is usually fixed at the time of the acquisition. Additionally, 
a main drawback in using hyperspectral data is that the estimation of height, DBH, and AGB 
is not straightforward as it is for ALS data. First of all there is a problem of saturation for the 
big trees, as the relationship among spectral variables and AGB saturates at a certain point 
[Lu, 2005]. Moreover, if a proper atmospheric correction is not carried out, the estimations 
will be strongly influenced by the conditions at the time of acquisition. In this regard, some 
studies exist that relates hyperspectral bands to these variables [Tonolli et al., 2011; Vaglio 
Laurin et al., 2014] but, as the data that we used were not atmospherically corrected, we 
preferred to not perform estimations for hyperspectral data. In any case the results achieved 
with these data are not comparable with ALS ones [Coops et al., 2004; Koch, 2010; Tonolli 
et al., 2011; Vaglio Laurin et al., 2014]. The delineation carried out with hyperspectral data 
can be very useful if the only objective is the classification of tree species. However, this 
is usually a rare task in forestry where the main interest is usually in quantitative variables 
(e.g., stem volume).

Conclusions
In this paper, four ITC delineation methods based on ALS and hyperspectral data have been 
compared. The results achieved showed that all the methods performed well and, according 
to the considered metric, the best results were achieved with a method based on region 
growing on a raster ALS image, and by a clustering method based on raw ALS point cloud. 
We suggest to use the method based on region growing in large areas inventories as it is about 
10 times faster than the one based on ALS point cloud clustering. The hyperspectral based 
method gave results comparable to some ALS methods, showing that also hyperspectral 
data at very high geometrical resolution can be a good information source to use for 
ITCs delineation. All the ALS methods showed to be effective in the estimations of trees 
attributes. One limitation common to all the methods is that the suppressed and understory 
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trees are rarely detected, and even if this influence very little the total AGB of a forest, it 
can be problematic when other parameters are needed, like the diameters distribution of 
trees in a forest.
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