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II. Deusche Zusammenfassung

Massive Blaualgen (Cyanobakterien)-blüten werden weltweit und zunehmend in

Oberflächengewässern registriert. Diese Cyanobacterienblüten sind vielfach toxisch aufgrund der

Präsenz von hepato- und neurotoxinen. Mehrere Vergiftungsfälle mit Menschen und Nutztieren aber

auch Wildtieren sind auf diese toxischen Cyanobakterienblüten zurückzuführen. Entsprechend

müssen Oberflächengewässer routinemässig auf das Vorkommen von Cyanobakterienblüten und

möglicher Toxien untersucht werden.

Im ersten Teil dieser Doktorarbeit wurden LC-MS Methoden zur Identifizierung und Quantifizierung

von Cyanobakterientoxinen im Lago di Garda etabliert und optimiert. Anatoxin-a (ATX) und

Microcystine (MCs) konnten im Lago di Garda regelmässig nachgewiesen werden, jedoch zu

unterschiedlichen Jahreszeiten. ATX dominierte primär im Frühsommer während MCs

typischerweise erst im Spätsommer/Spätherbst in höheren Konzentrationen nachzuweisen war.

Obwohl 5 verschiedene MCs nachgewiesen werden konnten, dominierte das MC-RRdm Kongener

in allen analysierten Proben.

In einem weiteren Kapitel dieser Doktorarbeit wurden die kinetischen Aspekte des trophischen

Transfers von MC in Planktothrix rubescens zum Wasserfloh Daphnia magna untersucht.

Modelierungen der MC Akkumulation in der Wasserfloh Daphnia magna untersucht zeigetn, dass

die MC Akkumulation prinzipiell von der ursprünglichen MC Konzentration und der

Expositionsdauer der Daphnien abhängt. Innerhalb der ersten 24 h der Exposition ist die MC

Akkumulation in der Wasserfloh, Daphnia magna, nahezu linear, unabhängig davon wie hoch die

Dichte der Planktothrix rubescens und die MC Konzentration war. Nach 48h Exposition, verlief die

MC Akkumulation in der Wasserfloh Daphnia magna exponentiell.

Im letzten Teil dieser Doktorarbeit wurde ein polyphasischer Ansatz gewählt um die Oscillatoriales

zu identifizieren, welche für die Synthese von ATX im Lago di Garda verantwortlich ist. Dieser

Ansatz beinhaltete mikroskopische, molkelar-biologische und analytische Methoden. Aufgrund

dieser Analysen konnte Tychonema bourrellyi als neuer ATX Produzent und auch die entsprechenden

Synthesegene identifiziert werden.
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III. Summary

Massive proliferations of cyanobacteria (bloom) are common in aquatic environments worldwide.

These blooms are often toxic due to the presence of hepatotoxins or neurotoxins and have become a

worldwide environmental problem. Various incidents of animal and human poisonings have been

attributed to these toxins. Therefore, monitoring of potentially toxic cyanobacteria and the associated

toxins need to be investigated routinely in each water body.

In the first part of present study, LC-MS methods were applied for identifying and quantifying

cyanotoxins diversity in Lake Garda. Anatoxin-a (ATX) and microcystins (MC) were always present

in this lake with a different seasonal pattern. ATX represented an early summer peak, while MC

showed a typical late summer-early autumn peak.The results of toxin analysis also revealed the

presence of 5 variants of MC in this lake, but the variants MC-RRdm was always dominant over the

others.

In another chapter of this thesis the kinetic aspects of MC transfer from Planktothrix rubescens to

Daphnia magna was investigated. Models of MC accumulation obtained from this part of study

differed largely as a result of the duration of exposure and initial MC concentrations used. Within the

first 24 h of exposure, MC accumulation in D. magna was linear, irrespective of the initial densities

of toxic P. rubescens and MC concentrations. After 48h of exposure, MC accumulation in D. magna

showed an exponential pattern.

In the last part of this study, the taxonomic identification of new Oscillatoriales was carried out

adopting a polyphasic approach and new potential ATX producers were screened through chemical

characterization and identification of specific toxins encoding genes. The analyses were made on

several strains isolated from environmental samples collected in Lake Garda.

The results allowed identifying a new ATX producer, Tychonema bourrellyi. This is the first

discovery of a planktonic genus belonging to the Oscillatoriales able to produce ATX.
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Chapter 1

1. INTRODUCTION

1.1 Cyanobacteria

Cyanobacteria or blue green algae are considered as the oldest organisms on Earth with the fossil

dating back to 3.5 billion years ago.They are believed as the earliest form of life and responsible for

creating oxygenic atmosphere when the planet was without oxygen and void of life (Schopf, 2000).

Cyanobacteria can thrive in wide variety of habitats both terrestrial and aquatic. They can grow as

the dominant phytoplankton in freshwater, brackish and marine ecosystems (Chorus and Bartram,

1999; Mur et al., 1999).Moreover, they have also been reported from extreme ecosystems such as

deserts (Friedmann and Ocampo-Friedmann, 1984), tropical acidic soils (Lukešová, 2001), Antarctic

lakes (Taton et al., 2003) and thermal springs (Sompong et al., 2005).

Their ability to grow in such a diverse range of habitats can be explained because cyanobacteria have

high adaptive capacity. Some of their abilities include: tolerance to a wide range of temperatures;

different strategies to optimize light harvesting; buoyancy; ability to fix atmospheric-N; high

tolerance to salinity,pH and UV; the capacity to form akinetes as dormant stage under harsh

conditions (Carey et al., 2012).

The traditional classification system of cyanobacteria was mainly based on morphology and type of

division. According to Anagnostidis and Komárek (1999), the polarity of cells, the position of cells

in a colony and the structure of a colony were also important markers.Therefore, cyanobacteria were

classified in two groups; non-filamentous (Chroococcales, Pleurocapsales) and filamentous

(Oscillatoriales, Nostocales and Stigonematales).
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Since phenotype and morphology of cyanobacteria can change under different environmental or

culture conditions, the morphology analysis alone can lead to misidentification (Lyra et al., 2001).

The further adoption of different and complementary criteria to classify cyanobacteria allowed to

deeply revise the taxonomic classification of cyanobacteria. At present, the use of the classical

morphological criteria, coupled with the genetic and autecological characterization of species,

strongly increased the accuracy in the identification and classification of cyanobacteria. The

frequently used approach for the phylogenetic classification of cyanobacteria has been the analysis of

genes encoding the small subunit ribosomal RNA, the 16S rRNA, because culture or growth

conditions do not have any effect on the sequence of this gene. Moreover, this gene is universal and

conserved and this makes it suitable for many phylogenetic studies (Nübel et al., 1997).
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1.2 Cyanobacterial harmful blooms (CyanoHABs)

Toxic blooms of cyanobacteria are a growing problem throughout the world and frequent episodes

have been reported very frequently from many aquatic ecosystems in all continents (Fig. 1). Most

planktonic cyanobacteria contain gas vesicles which enable them to regulate their buoyancy, so

during the summer months, in warm, slow moving and nutrient rich water bodies, they can proliferate

at surface water and form a scum which is defined “bloom”.

Figure1. Examples of water bodies around the world that have experienced cyanobacterial harmful algal bloom. Up left:
Baltic Sea-Gulf of Finland. Up middle: Chaohu Lake in east China. Up right: Lake Erie near Toledo, Ohio, US. Bottom
left: Umgeni River, South Africa. Bottom middle: Northern end of Lake Albert, New South Wales, Australia. Bottom
right:Matilda Bay, Swan-Canning Estuary, Western Australia (See chapter 7, Section 7.3. Figure captions).

Bloom forming cyanobacteria are divided in 3 categories, I) those capable for N2 fixation and

buoyancy (e.g, Nostocales), II) those capable of buoyancy but lacking the ability for N2 fixation (e.g,

Chroococcales), III) those not able of neither buoyancy nor N2 fixation (e.g, many Oscillatoriales)

(Anagnostidis and Komárek, 1985). Figure 2 reports a few examples among the most frequent

cyanobacterial bloom forming genera throughout the world.
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According to Mur et al. (1999) the most common bloom forming genera such as Microcystis,

Anabaena (Dolichospermum) and Aphanizomenon form blooms in the epilimnion of eutrophic lakes.

However, some genera, such as Planktothrix, require low irradiance and temperature to grow, and

thus they can bloom in the metalimnetic zone. Moreover, at this layer there is limited competition for

available nutrient with other photosynthetic organisms (Feuillade et al., 1992).

The blooms of cyanobacteria are also defined “harmful” because, apart from their negative effect on

water quality by producing taste-and-odor compounds, they are able to produce toxins, posing a

serious risk for human health and also for aquatic organisms leading to diversity losses in aquatic

food webs (Graham et al., 2010).

Figure2. Major bloom forming cyanobacteria genera. Top: freshwater: (1) Dolichospermum, (2) Microcystis (3)
Cylindrospermopsis); Middle: estuarine: (4) Nodularia (5) Aphanizomenon; Bottom: marine environments: (6) Lyngbya
(7) Trichodesmium and (8) Synechococcus. (Revised form O’Neil et al., 2012; See chapter 7, Section 7.3. Figure
captions).

1.3 Role of eutrophication and climate change in CyanoHAB

CyanoHAB are not caused by a single environmental factor, but there is consensus that a complex of

factors occurring simultaneously triggers the proliferation of cyanobacteria (Heisler et al., 2008).

Among all environmental drivers responsible for harmful algal bloom, nutrient pollution and

eutrophication have received more attention. By increasing human population and anthropogenic
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activities, the water bodies have loaded by nutrients, especially nitrogen and phosphorous, which can

shift the phytoplankton community towards dominance by cyanobacteria (Paerl and Huisman, 2009).

Moreover, the increase in surface water temperatures due to climate change has been also mentioned

as an important factor in the global expansion of harmful algal bloom worldwide (Paul, 2008). By

rising temperature and exceeding 20°C, the growth rate of many freshwater eukaryotic phytoplankton

decreases while many cyanobacteria keep growing and this is regarded as a competitive advantage

for them (Peperzak, 2003).

However, in a recent study by Lürling et al. (2013), cyanobacteria and chlorophytes showed a similar

mean optimum growth temperature (around 29.2 °C). They concluded that if global warming will

probably lead to mass occurrence and intensification of cyanobacterial blooms, it can not be due to a

higher growth rate of cyanobacteria compared with their chlorophyte competitors. What gives

cyanobacteria a competitive advantage over chlorophytes is their ability to migrate through water

coloumn and prevent their sedimentation in warm and stratified water.

Beside the direct effects of temperature on cyanobacterial growth rates, under the effect of climate

change many of the physical characteristics of aquatic environments will also change favouring the

cyanobacteria dominance. The increase of thermal stratification and the consequent reduction of the

vertical turbulent mixing and the widening of the stratification period strengthen and extend the

period of optimal growth of many cyanobacterial species. Moreover, higher temperatures will lead to

decline in viscosity with promotion of the sedimentation of larger, non motile phytoplankton with

weak regulation mechanisms (such as diatoms), giving further advantage to cyanobacteria with the

ability to regulate the buoyancy (Wagner and Adrian, 2009).

In stratified ecosystems, less nutrients are available at the surface and since cyanobacteria are able to

regulate their buoyancy, they will obtain nutrients from deeper layers of water (Paerl and Huisman,

2009).

1.4 Cyanobacterial toxins

Many cyanobacteria are able to produce a wide range of secondary metabolites, most with unclear or

unknown physiological functions and ecological role. Some of these compounds have proven to be

toxic for mammals and have been found responsible in many human or animal poisoning episodes.

They are called cyanotoxins (van Apeldoorn, 2007).
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Cyanotoxins are categorized in different groups based on their “target organ” including: hepatotoxins

(e.g. microcystins, nodularins), neurotoxins (e.g. anatoxin-a, homoanatoxin-a, anatoxin-a(s),

BMAA), cytotoxins (e.g. cylindrospermopsins), dermatotoxins (e.g. lipopolysaccharides,

lyngbyatoxin-a, and aplysiatoxins), and irritant toxins (e.g. lipopolysaccharides) (Wiegand and

Pflugmacher, 2005). Each bloom may contain either one dominant species, or several genera of

cyanobacteria. In both cases, the existence of more than one type of cyanotoxin is possible (Oehrle,

2010) (Table 1).

Table1. Cyanobacteria known to produce the major classes of cyanotoxins (Revised and updated from Metcalf and Codd,
2012)

Toxin Producers
Microcystins Chroococcales: Microcystis spp., M. aeruginosa, M. viridis

Oscillatoriales: Planktothrix agardhii, Leptolyngbya boryana ,
Phormidium corium, Phormidium splendidum, Arthrospira
fusiformis
Nostocales: Anabaena sp., Dolichospermum flosaquae,
A. cylindrica, Trichormus variabilis,
Nostoc sp., Nostoc carneum.
Anabaenopsis sp., Gloeotrichia echinulata,
Rivularia biasolettiana, R. haematites.
Tolypothrix distorta
Stigonematales: Hapalosiphon sp.

Nodularins Nostocales: Nodularia spumigena

Anatoxin-a and
homoanatoxin-a

Oscillatoriales: Arthrospira fusiformis, Phormidium formosum,
Phormidium sp., Oscillatoria sp.
Nostocales: Anabaena spp., Aphanizomenon sp.,
Dolichospermum flosaquae, Anabaena planctonica,
Cylindrospermum sp.,
Raphidiopsis mediterranea

Anatoxin-a(S) Nostocales: Dolichospermum flosaquae, Dolichospermum
lemmermannii

Saxitoxins Oscillatoriales: Lyngbya wollei, Planktothrix sp.
Nostocales: Aphanizomenon flosaquae,
Dolichospermum sigmoideum,
Cylindrospermopsis raciborskii

Cylindrospermopsins Nostocales: Cylindrospermopsis raciborskii,
Chrysosporum ovalisporum, Anabaena sp.,
Anabaena lapponica, Raphidiopsis curvata
Stigonematales, Umezakia natans
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The major routes of exposure to these toxins in humans are represented by the ingestion of

contaminated drinking water or contaminated sea food (such as fish and shellfish) and by dermal

contact when doing recreational activities (e.g, swimming, bathing, wind and jet skiing) in

contaminated water (Drobac et al., 2013).

Besides the sanitary consequences, CyanoHAB are also considered a major threat for freshwater

ecosystems health. The presence of high biomass and toxins can both have an adverse effect on

aquatic organisms. This can cause a considerable change in food web and consequently changes in

ecosystem function. For instance, it can lead to modifications of trophic links among organisms,

changing the biodiversity, causing oxygen depletion and decreasing the light penetration especially

during the bloom episodes (Christoffersen, 1996; Bláha, 2009).

Among different kind of cyanotoxins, microcystins and anatoxins are generally the most frequent

toxins identified as responsible of many human and animal casualties caused by cyanoHABs.
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1.4.1 Microcystin (MC) - Structure and properties

Microcystins are cyclic heptapeptides. The structure is very variable, as structural variations have

been reported in all seven amino acids, although the most frequent variations involve amino acids at

position 2 and 4. For instance, in figure 3, a list of MC differing for the nature of the amino acid in

position 2 is reported: microcystins-LR (MC-LR) contains Leucine (L), MC-RR contains Arginine

(R), MC-YR contains Tyrosine (Y) in position 2 (Fig.3) (Chorus and Bartram, 1999; Van Apeldoorn,

2007). So far, more than  110  different  variants of MC  have  been  reported  (Dietrich  and  Hoeger,

2005).

Figure3. Structural variants of Microcystin.

Microcystins were first isolated from the cyanobacterium Microcystis aeruginosa (Carmichael,

1988) but many other genera of cyanobacteria were reported as MC producers, e.g, Anabaena,

Nostoc, Planktothrix, Anabaenopsis and Hapalosiphon (Sivonen and Jones, 1999).  The most toxic

microcystin variants, microcystin-LR, has an intraperitoneal (i.p.) LD50 value of 50 µg kg-1 body

weight in mice (Dow and Swoboda, 2000). The World Health Organization (WHO) has established

a guideline of 1 μg/l as a maximum concentration of microcystin-LR in drinking water (WHO, 2003).

Microcystins are water soluble, therefore they cannot penetrate lipid membranes of humans, animals

and plants, but can be actively transported through the bile acid-type transporters and then

concentrated in liver due to active uptake by hepatocystes (Gorham and Carmichael, 1988). By

inhibiting protein phosphatases 1 (PP1) and 2A (PP2A), two important enzymes involved in tumor

suppression, MC can cause severe liver damage and promote liver cancer (Ito et al., 1997; Zurawell
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et al., 2005). Microcystin poisoning is usually characterized by symptom such as anorexia, respiratory

problems, vomiting, diarrhoea (Codd, 2000). Depending on the species, it can also follow by liver

necrosis, hemorrhagic shock and death after some hours or days (Gorham and Carmichael, 1988).

1.4.1.1 Negative effects of MCs on aquatic organisms

MC is a very stable toxin and its toxicity and negative effect on aquatic organism have been shown

by many studies. The motile green alga Chlamydomonas reinhardtii, was paralyzed at presence of

MC-LR and this led to its settlement and creating a lake zone free of competitors for microcystin-

producing cyanobacteria (Kearns and Hunter, 2001). The sensitivity of brine shrimp, Artemia salina,

to MC-LR was also demonstrated by Delaney and Wilkins (1995). Acute exposure to toxic

cyanobacterial cells containing microcystins caused oxidative stress in tilapia fish (Oreochromis

niloticus) (Prieto et al., 2007). MC causes other negative effects such as mortality and delayed

hatching in fish embryos of carp (Cyprinus carpio) and affecting feeding behaviour (Malbrouck and

Kestemont, 2006; Palíková et al., 2007). In some laboratory studies, the negative effect of MC on

survival, growth and reproduction rates of zooplankton have been demonstrated (DeMott et al. 1991;

Ferrão-Filho et al., 2000; Ghadouani et al., 2004). In a recent study by Dao et al. (2010), the direct

negative effect of microcystin on zooplankton was also demonstrated when the growth and

reproduction of parent daphnids were slightly affected by microcystin-LR (see references in the paper

presented in CHAPTER 2 for more studies about the negative effect of MC on aquatic organisms).

1.4.1.2 Accumulation of MC in zooplankton

There  has  been  a great  attention  towards  the  effects  of  MC on  zooplankton  and specially on

the larger cladocerans such as Daphnia because these organisms play an important role in the aquatic

food web (Benndorf et al., 2002; Reichwaldt et al., 2013). They feed on primary producers and are

regarded as major food source for juvenile fish; consequently, they can act as important vectors to

transfer cyanobacterial toxins to higher consumers such as fish along the food web (Rohrlack et al.,

2005). Unlike copepods, which are able to differentiate between toxic and non-toxic cells (DeMott

and Moxter, 1991), daphnids are regarded as non-selective filter feeders and are not able to

discriminate food particles with different quality (DeMott, 1986).

Ferrão-Filho et al. (2002) demonstrated that zooplankton are an efficient accumulator of

microcystins. They showed that microcystins accumulated in zooplankton individuals ranged from

0.3 to 16.4 µg/g DW, while in phytoplankton MC were around 0.3-3.9 µg/g DW.
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Most of the field studies have indicated the potential of MC accumulation in the entire zooplankton

community (Table 2), even if with different accumulation pattern among different species (see

CHAPTER 4).

The main route of MC accumulation is through ingestion of cell-bound MC. This route of ingestion

has been recently investigated by Shams et al. (2014) (see CHAPTER 4).

MC uptake from aqueous extracts is considered as another route of exposure. MC uptake from

aqueous extracts obtained from a natural bloom sample has been investigated very recently by Ferrão-

Filho et al. (2014) in 3 different cladocerans. They demonstrated that Moina micrura and Daphnia

laevis presented the highest MC concentrations in their tissues, while Daphnia similis showed the

lowest.

Table 2. Microcystin accumulation in zooplankton by different studies (Revised from Ferrão-Filho et al., 2002).

Zooplankton Habitat MC-LR eq. units
(µgg−1DW or WW)

Detection Reference

Entire community Freshwater (Kasumigaura,
Lake, Japan)

75.0-1387 (DW) I-EC Watanabe et al.
(1992)

Entire community Freshwater (four lakes
Central Alberta, Canada)

Up to 67.0 (WW) HPLC PPase Kotak et al. (1996)

Daphnia magna Freshwater Up to 24.5 ELISA Thostrup and
Christoffersen
(1999)

Entire community Brackish (Jacarepagua,
Lagoon)

0.3-16.4 (DW) ELISA Ferrão-Filho et al.,
(2002)

MCYST-LR Eq. Units, microcystin-LR equivalent units; I-EC, Ion-Exchange Chromatography; Ppase, protein
phosphatase bioassay; ELISA, Enzyme-linked immunosorbent assay. DW, Dry Weight; WW, Wet Weight.

Grazing behavior of Cladocerans can be affected by the size and shape of cyanobacteria (Lampert

1987). For instance, the mechanical interference of feeding activity in Daphnia grazing on

filamentous cyanobacteria have been reported by Infante and Abella (1985) and Burns et al. (1968),
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while some other studies showed that even high densities of filaments did not inhibit the grazing and

consumption of cyanobacteria (Holm et al., 1983).

Kurmayer (2001) reported that mechanical interference was not important when Daphnia galeata

was ingesting the filamentous cyanobacterium Aphanizomenon flexuosum. Finally, Oberhaus et al.,

(2007) reported that D. pulicaria could efficiently control Planktothrix blooms in their early stages

by grazing on short filaments of P.rubescens and P.agardhii.

The contradictory results reported in different investigations suggest that the ingestion of filamentous

cyanobacteria by Daphnia is highly dependent on both grazer and cyanobacterial species.

In spite of the widespread occurrence of toxic filamentous cyanobacterium Planktothrix in  European

lakes (Salmaso et  al., 2003; Ernst et al., 2009), Daphnia grazing over Planktothrix has been

investigated by only a limited number of studies (see e.g. Kurmayer and Jüttner, 1999; Oberhaus et

al., 2007; Pires et al., 2007; Reichwaldt and Abrusan, 2007).The accumulation kinetics of MC in

large cladocerans such as Daphnia has been poorly investigated so far and more studies are needed

to fill this gap of knowledge. (The paper presented in CHAPTER 4 was prepared based on a laboratory

experiment to further elucidate this aspect).

1.4.1.3 Microcystin Biosynthesis and Genetic

Microcystin is synthesized non-ribosomally by enzyme complex which encoded by the 55kb

microcystin synthetase gene cluster. It includes genes for nonribosomal peptide synthetase (NRPS),

polyketide synthase (PKS) and tailorig enzymes (Tillett et al., 2000).

The gene clusters encoding microcystin synthetase were sequenced and characterized from Anabaena

(Rouhiainen et al., 2004), the unicellular Microcystis aeruginosa (Tillett et al., 2000; Nishizawa et

al., 2000) and from the filamentous Planktothrix agardhii (Christiansen et al., 2003). The comparison

of the gene cluster of these species from 3 genera indicated that the genes mcyA, mcyB, mcyC, mcyD,

mcyE, mcyG, and mcyJ that are involved in MC synthesis are always present (Tillett et al, 2000,

Rouhiainen et al., 2004) (Fig.4).
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Both toxic and nontoxic strains occur in the same species. The difference between microcystin-

producing (toxic) and nonproducing (nontoxic) strains of cyanobacteria is primarily due to the

presence or absence of microcystin synthetase gene cluster or inactivation of single genes

(Christiansen et al., 2008; Ostermaier et al., 2012).

Figure4. Comparison of microcystin gene clusters in three microcystin-producing species; Microcystis (up),
and Planktothrix (middle), Anabaena (bottom). Genes encoding polyketide synthases (red), non-ribosomal peptide
synthetases (yellow), tailoring enzymes (green) and ABC transporters (blue) (Pearson and Neilan, 2008).

1.4.1.4 Regulation of microcystin synthetase gene expression

It have been shown that different physical and environmental variables, including nitrogen,

phosphorous, temperature, light, pH and trace metals can affect the MC production in cyanobacteria

(Song et al.,1998; Neilan et al., 2013).

Description and sequencing the MC gene cluster by Tillett and colleagues (2000) revealed that there

is a bidirectional promoter between mcyA and mcyD which is responsible for the transcription of

mcy genes in M. aeruginosa. In this central regulatory part of the mcy cluster there are sequence

motifs for Fur (ferric uptake regulator) and NtcA (global nitrogen regulator) DNA binding proteins.

These finding could demonstrate the role of iron and nitrogen in controlling microcystin biosynthesis.

Many studies have investigated the effect of iron as one of the most frequently studied metal stressor

on cyanotoxin production. For instance, iron deprivation, in Microcystis spp. has been shown to be

responsible for both increase and decrease of microcystin production (Li et al., 2009; Neilan et al.,

2013).
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In a study by Tonk et al. (2005), an increase in mcy gene transcription and toxin production rates in

Planktothrix agardhii cultures was observed under high light conditions up to 60 mmol photons m-2

s-1). Interestingly, as a response to the differing light intensities, the produced microcystin variants

(dmMC-LR and dmMC-RR) varied while the cellular microcystin content remained constant.

Kaebernick et al. (2000) also showed that maximum microcystin transcription rates were observed at

high light intensities and under red light. In contrast, the blue light decreased the transcription rate.

Temperature has also shown to influence the type of toxin. In selected strains (Anabaena 90 and

Anabaena 202A1), high temperature (>25°C) was shown to enhance MC-RR production, while MC-

LR correlated with temperatures below 25°C (Rapala and Sivonen, 1998).

Many laboratory studies have shown the effect of environmental conditions on cyanotoxin

production, but it is still not clear how these affects can be regulated at molecular level and how this

can translate to actual responses in the environment. Therefore, more studies are needed to investigate

more in detail the promoters and transcription factor binding sites of the toxin biosynthesis clusters

in order to fill these knowledge gaps (Neilan et al., 2013).

1.4.2 Anatoxin-a (ATX) - Structure and properties

Anatoxin-a (ATX) is an alkaloid neurotoxin with a semi-rigid bicyclic secondary amine structure and

a molecular weight of 165 Dalton (Devlin et al., 1977) (Fig.5). It is produced by different genera of

Nostocales (Anabaena, Aphanizomenon, Cylindrospermum) and benthic Oscillatoriales (Phormidium

and Oscillatoria) (Sivonen et al.,1989, Bumke-Vogt et al.,1999; Namikoshi et al., 2003; Ballot et al.,

2005; Gugger et al., 2005; Aráoz et al., 2005). Recently, ATX production in pelagic Oscillatoriales

was demonstrated by (Shams et al., 2015; CHAPTER 5).

Figure5. Chemical Structure of Anatoxin-a.

ATX can lead to death by respiratory arrest through binding irreversibly to nicotinic acetylcholine

receptors and trigger the receptor's channel to stay excited (Devlin et al., 1977). It has been also
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shown that ATX can negatively affect the heart rate, gas exchange and cause hypoxia and respiratory

arrest and led to animal death (Adeymo and Siren, 1992). After 2 min with intraperitoneal (i.p.) LD50

value of 375 µg/kg -1 in mice, or after 10 min with intraperitoneal (i.p.) LD50 value of 250µg/kg-1 in

mice, death can occur because of muscle spasm, respiratory arrest and paralysis (Rogers et al., 2005).

Many cases of fatal intoxications of dogs and livestock due to ATX have been reported from different

countries, e.g. Canada (Carmichael and Gorham, 1978), Scotland (Edwards et al., 1992), Japan (Park

et al., 1993) Kenya (Krienitz et al., 2003; Ballot et al., 2005), France (Cadel-Six et al., 2007),

Netherland (Faassen et al., 2012).

1.4.2.1 Effect/ accumulation on aquatic organisms

ATX is not a stable toxin and can be degraded easily into non-toxic derivatives such as

dehydroanatoxin-a and epoxyanatoxin-a. Under strong sunlight and high pH, it has a half-life of

several hours or days (Smith and Sutton., 1993). Due to its low persistency in aquatic ecosystem, it

has attracted little scientific attention so far to investigate the fate and impact of this toxin in aquatic

ecosystems.

Only few studies as Osswald et al. (2007, 2008) have investigated the negative effect of ATX in

aquatic organisms such as fish and mussels. For instance, it was shown that all the juvenile fishes

Cyprinus carpio died between 26-29h after exposure to higher cell density of toxic strain of the

cyanobacterium Anabaena sp. (Osswald et al., 2007).

Moreover, in a very recent study by Ha et al. (2014) oxidative stress in aquatic plant Ceratophyllum

demersum was induced following ATX uptake. A rapid toxin uptake was observed during the 24h,

afterward it was followed by a constant accumulation.

Thus, considering the accelerated eutrophication and climate change which can facilitate massive

proliferation of cyanobacteria and can be followed by increased amount of cyanotoxins, more studies

needed to elucidate the ATX uptake and  metabolism in different aquatic organisms (e.g. zooplankton,

fishes and molluscs) (Carmichael, 2008).
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1.4.2.2 Anatoxin-a Biosynthesis and Genetic

According to study by Cadel-Six et al. (2009), the polyketide synthase (PKS) which is specific for

anatoxin-a, or homoanatoxin-a producing strains was identified in benthic Oscillatoria strain PCC

6506. Only recently, by partial genome sequencing of this strain the identification of the putative

gene cluster responsible for anatoxin-a and homoanatoxin-a production was revealed (Méjean et al.,

2009; 2010). These findings opened the way to design a genetic marker for the detection of gene

coding for anatoxin-a in other genera, such as Oscillatoria, Phormidium, Aphanizomenon and

Anabaena (Cadel-Six et al., 2009; Ballot et al., 2010; Wood et al., 2010; Rantala-Ylinen et al., 2011).

On the basis of comparison of the anatoxin-a biosynthesis gene of Oscillatoria sp. PCC 6506,

Rantala-Ylinen et al. (2011) could identify the Anatoxin-a synthetase gene cluster for the strain

Anabaena flos-aquae 37. The anatoxin genes of Anabaena flos-aquae 37 are very similar with those

of Oscillatoria sp. PCC 6506 but the cluster is slightly rearranged (Fig. 6). In Anabaena flos-aquae

37, the three genes anaI, anaJ, and anaA are downstream of the anaG gene. There are several genes

between anaG and anaI that are very likely not involved in the biosynthesis of anatoxin-a (Rantala-

Ylinen et al., 2011). The sequences of the ana genes in these strains are very similar (at least 70%

identity in nucleotide sequence), and according to Méjean et al. (2014) these clusters might have

evolved from a common ancestor. As seen in Figure 6, there are transposase genes shown in hatched

and these genes might have responsible for putative horizontal transfer of these clusters within

cyanobacteria.

Figure6. Anatoxin-a biosynthetic gene clusters in (up) Oscillatoria sp. strain PCC 6506, (bottom) Anabaena flos-aquae
strain 37. The clusters starting from anaB (yellow), Transposase genes (hatched), genes that have no function in the
biosynthesis of anatoxins in Anabaena flos-aquae 37(white) (Méjean et al., 2014).
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1.4.2.3 Regulation of anatoxin-a synthetase gene expression

It has been shown that metal stressors can affect the cyanobacterial growth and cyanotoxin production

(Neilan et al., 2013). Maldonado et al. (2002) demonstrated that increasing in copper or reduction in

iron can activate the neurotoxic domoic acid production in the diatom Pseudo-nitzschia spp. Harland

et al. (2013) investigated the effect of iron and copper on the growth and anatoxin-a production by

the benthic mat-forming species Phormidium autumnale. They showed within the first two weeks of

growth, ATX concentrations varied between 0.49 and 0.55 pg cell−1 and growth rates were

significantly affected by copper and iron.

The role of other environmental factor on regulating ATX production is not still clear and more

studies are needed to elucidate this issue as it can provide useful information for predicting periods

when anatoxin-a producers proliferate and the highest health risk is inevitable.

1.5 Monitoring of cyanobacteria and cyanotoxin

Considering the negative effects and threats posed by cyanobacterial toxins to water supplies, animals

and human health, efficent monitoring programs play a fundamental role for predicting bloom event

and for water management.

1.5.1 Chemical analysis of cyanobacterial toxins

As stated earlier, a huge chemical variability exists among cyanotoxins. Different chemical structure

means different physical and chemical properties and, importantly, different toxicity. The toxicity of

a given bloom is rarely determined by a single toxin; more often a mixture of toxins is present.

Therefore, the full knowledge of the chemical diversity in a sample is mandatory for a complete and

robust investigation. Many analytical methods are available for the characterization of toxins. They

differ for sensitivity (measured as LOQ, limit of quantitation), selectivity (low in case of methods

which give the total amount of toxins; high in case of methods that quantify the single congeners),

and resources needed (costs of equipment and training).

ELISA (enzyme-linked immunosorbent assay) is widely used for the analysis of hepatotoxins (MC

and NOD) and saxitoxins; PPIA (protein phosphatase inhibition assay) is sometimes used for

hepatotoxins. However, these techniques have very low selectivity, as they are not able to distinguish

among the different toxin variants. The techniques based upon High Performance Liquid



INTRODUCTION

34

chromatography combined with Mass Spectrometry (LC-MS) represent the best performing

techniques in terms of sensitivity and selectivity. They allow rapid, sensitive and reliable

identification and quantification of different toxin variants.

1.5.2 Microscopic analysis of cyanobacteria

Microscopic identification and cell counting have traditionally been used as basic methods for

monitoring cyanobacteria. However, it is very time-consuming, and it requires a skilled person for

species identification. Moreover, identification and quantification of cyanobacteria based on

microscopic approach do not provide information regarding the potentially toxin producers because

even though different strains from same species present similar morphologies, they could possess

different toxigenicity (Sivonen and Jones, 1999).

1.5.3 Genetic analysis of cyanobacteria

Chemical analysis of cyanobacterial toxins does not indicate which cyanobacteria produce the toxins,

since different genera of cyanobacteria may produce similar toxins. Moreover, the classical

morphological taxonomy was not able to differentiate the toxin and nontoxic cyanobacterial strains.

Therefore, researchers were driven for a complementary method which, along with chemical and

taxonomical analysis, could solve the above drawbacks.

Polymerase chain reaction (PCR), quantitative real-time PCR (qPCR) are now widely used as a

routine in many laboratories and are considered as very rapid and sensitive tools for detecting the

potentially toxic cyanobacteria in water supplies even when the quantities of toxic genes are low

(Sivonen, 2008).

Nübel et al. (1997) designed three 16S rRNA cyanobacterial specific primers: CYA359F (forward),

CYA781R (a) and CYA781R (b) (reverse) which can amplify ca. 420 bp 16S rRNA gene sequence.

CYA781R (a) primer targets filamentous cyanobacteria whereas the CYA781R (b) targets unicellular

cyanobacteria. An equimolar mixture of these three primers allows an optimum investigation of the

diversity of the cyanobacterial community.

Larger fragments of 16S rRNA gene (1432–1439 bp) can be also analysed by applying primers such

as pA and B23S (Rajaniemi et al., 2005). Amplification of the rRNA operon containing the ITS region

(internal transcribed spacer region) has been also used to study the cyanobacterial diversity of

environmental samples (Taton et al., 2003; Iteman et al., 2000).
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Primers targeting housekeeping genes (e.g. rbcLX and rpoC1 genes) along with 16S rRNA and ITS

region are also regarded as very useful molecular markers to analyse the genetic diversity of

cyanobacteria and to discriminate between cyanobacterial species and strains.

Discovering the gene cluster of cyanotoxin synthesis in some cyanobacteria has resulted in an

explosion of molecular detection methods. Designing general and/or genus-specific primers and

probes to detect and characterize the toxin producing cyanobacteria in environmental samples have

made these molecular methods as early warning tools in monitoring systems and protecting water

bodies.

To detect and differentiate the potential microcystin-producing species in natural bloom communities

in Finland the general forward primer, mcyE-F2, was applied in combination with genus-specific

reverse primers, mcyE-plaR3, mcyE-12R and mcyE-R8, to detect hepatotoxic Planktothrix,

Anabaena and Microcystis species, respectively (Vaitomaa et al., 2003; Rantala et al., 2006). To

discover the potential anatoxin producers, general and genus-specific primers were designed to

amplify regions of the anatoxin-a synthetase gene in two different genus (e.g, Anabaena and

Oscillatoria) (Rantala-Ylinen et al., 2011).However, more research is needed to discover the gene

cluster of other cyanobacteria and also the genes responsible for cyanotoxin synthesis which can lead

to designing more genus specific primers targeting specific toxic genes and will provide very fast and

valuable information for monitoring a water body.

Quantitative PCR (qPCR or real-time PCR) has been widely used to quantify gene copy numbers

present in environmental samples and this is regarded as its advantages over traditional PCR which

can only detect the presence of a specific gene without reflecting its actual abundance. Therefore, it

is a robust and highly sensitive method to quantify genes and to monitor their temporal and spatial

dynamic.

The quantitative data generated by qPCR can be used to relate variation in gene copy number and

toxic concentration or to find out the relation between environmental factors and gene abundance to

elucidate for instance under which environmental condition the highest gene copy number will be

observed. Thus, this method can be used as very useful tools to predict toxic cyanobacterial blooms.

In qPCR, the amplicon numbers are measured in real-time during the PCR through detection of a

fluorescent reporter which indicates accumulation of amplicon in each cycle. Two different reporter

systems are commonly used: SYBR green assay and the TaqMan probe system. SYBR green is easy

to use and least costly approach than TaqMan probe. It is nonspecific and binds to all double-stranded
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DNA. After binding to DNA, a fluorescent signal is released following light excitation. Since SYBER

green binds to all dsDNA, it is important to use specific primer pairs which target specific genes to

avoid producing the nonspecific products that can result in overestimation of the target.
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1.6 Aim of the study

It is nowadays well recognized that cyanobacteria may produce wide range of toxins with harmful

effects on humans and animals. Furthermore, they are regarded as an increasing public concern in

freshwater ecosystems. Many investigations have been conducted so far, however, further research

in this area is still needed to obtain up-to-date information on cyanobacteria and the associated toxins,

and to forecast cyanobacterial bloom occurrence, reducing the risks to human and aquatic ecosystems.

This PhD project was structured into 3 research lines focused on toxic cyanobacteria and cyanotoxins

in a freshwater ecosystem in Italy, Lake Garda. This lake is the largest Italian lake and, since the

1960s, it has become a well-known mass tourist destination, with a yearly visitor presence

approaching 20 million during the last years. It was also included in the LTER (Long-Term Ecological

Research) network since 2006.

The main objectives addressed by the PhD thesis were:

1) To elucidate the nature, quantity and seasonality of toxins produced by cyanobacteria in Lake

Garda (CHAPTER 3).

2) To investigate the potential accumulation of toxins produced by the dominant cyanobacterial

species of Lake Garda (Planktothrix rubescens) in the main zooplankton grazers (Daphnia). As

mentioned earlier (section 1.4.1.2), zooplankton are considered as an important vectors for

cyanotoxins transfer to higher trophic level and still little is known for accumulation kinetics of  MC

in  large  cladocerans such as Daphnia when grazing on a most widespread MC-producing

filamentous cyanobacteria, Planktothrix rubescens (CHAPTER 4).

3) To identify the main producers of ATX in Lake Garda. Cyanotoxins analyses (confirmed in

CHAPTER 3) showed a significant production of ATX in Lake Garda, with concentrations higher

than MC. Until a short time ago, the producers were unknown, and their clear identification was not

possible, because biological analyses on isolated strains were not available. This discrepancy has

found solution during the completion of this PhD thesis, through the discovery of a pelagic

Oscillatoriales able to synthetise ATX (i.e. Tychonema bourrellyi). The discovery was possible by

applying a polyphasic approach based on morphology, genetics and chemistry analysis carried out on

cultures of strains isolated from environmental samples (CHAPTER 5).
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Chapter 2

2. SAMPLING AND METHODOLOGY

2.1 Lake Garda – Study site

Lake Garda is one of the largest freshwater bodies in Europe and the most important freshwater

resource in Italy. Waters supplied by this lake are intensively used in agriculture and industry,

becoming a life-sustaining element for the economy of the most densely populated and productive

area in Italy. In addition, these water bodies are one of the key elements for the tourist economy of

the Alpine region (Salmaso and Mosello, 2010). Lake Garda is located at the southern border of the

north eastern Italian Alps, at 65 m a.s.l; it has a volume of more than 49×109 m3, a maximum depth

of 350 m and a surface of 368 km2. The lake was originally oligotrophic (average values of total

phosphorus <10 µg l−1 on the whole water column). Lake

Garda was included in the LTER (Long-Term Ecological

Research) network since 2006. Lake Garda hosts two

main potential toxic cyanobacterial species: Planktothrix

rubescens and Dolichospermum lemmermannii. The first

species is known to produce MC and the latter is known

to produce both MC and ATX (Sivonen et al., 1992;

Landsberg, 2002) (Fig. 1).

Figure1. Lake Garda, Italy (top), two toxic cyanobacteria species in

this lake (bottom).
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2.2 Collection of water samples

Since April 2010, a monitoring campaign was conducted to assess the presence of cyanotoxins in

Lake Garda. The chemical diversity and the abundance of cyanotoxins were investigated by advanced

analytical techniques (LC-MS) with a monthly frequency.

Along the chemical analyses, samples were also collected for genetic analysis since January 2013

form Lake Garda. Moreover, samples for preparing isolated cultures were taken since February 2014.

Water samples for chemical and genetic analyses were taken from 4 depths (0, 10, 20 and 60m),

brought to laboratory and filtered on GF/C filters (Whatman - GE Healthcare Life Sciences). The

filters were frozen and stored at -20°C until further processing (See fig. 2). For filament isolation,

phytoplanktons were collected by single vertical tows from the depth 10-15 m to the surface using a

80 µm mesh (25 cm diameter).
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Figure2. Schematic representing the sampling collection form Lake Garda and preparing samples for different analysis.
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2.3 Methodology

2.3.1 Part I - Chemical analysis of cyanobacterial toxins

Objectives and experimental set up

In the first part of this PhD study we investigated in depth the cyanobacterial toxin diversity in Lake

Garda. Specific objectives included:

I) Temporal dynamic of MC variants

II) Temporal dynamic of total MC and ATX

Toxin extraction

For chemical analysis, water samples taken from 4 different depths were filtered on GF/C filters (Fig.

2). The filters were processed for toxin extraction by adding 7 ml of extraction solvent (70% methanol

containing 0.1% formic acid) and homogenizing for 5 min. After centrifugation (10000 rpm, 10 min;

9850 G), the supernatant was transferred and the pellet was extracted again with 7 ml of extraction

solvent. The two supernatants were finally put together. A 2 ml aliquot of the extract was filtered on

Phenex-RC syringe filter (0.2 µm pore size, Phenomenex) and used for the determination of the MC

content. The remaining solution was concentrated under vacuum to get rid of the organic solvent. The

resulting water solution was filtered on RC syringe filter and used for the determination of alkaloids

(ATX, CYN) using the LC-MS instrument.

LC-MS analysis

LC-MS analyses were carried out on a Waters Acquity UPLC system directly coupled to an AB

SCIEX 4000 QTRAP mass spectrometer equipped with a turbo ion spray interface. Standard injection

volume was 2µL. For more detailed information on LC-MS analysis (see Shams et al., 2015).

Microcystins (RR, [D-Asp3]-RR, YR, LR, WR, LA, LY, LW, LF), NOD-R and CYN analytical

standards were purchased fromVinci Biochem, and ATX from Tocris Cookson Ltd. All solvents and

reagents used in this procedure were LC-MS grade. The limits of quantitation (LOQ) were between

30 and 500 ng L-1(different MCs congeners), 140 ng L-1 (NOD-R), 30 ng L-1(ATX), and 8 ng L-

1(CYN).

See CHAPTER 3 for the results obtained after analysing samples.
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2.3.2 Part II- Cyanotoxin transfer through foodweb

Objectives and experimental set up

For the second part of this PhD study, we were interested to investigate the transfer of one of the most

common cyanotoxins, microcystin, through the food web.

We wanted to elucidate better the microcystin accumulation patterns in D. magna after exposure to

populations of P. rubescens and to clarify the following objectives:

I) To verify if D. magna can take up the filaments of MC-producing Planktothrix rubescens (the

dominant cyanobacterium in Lake Garda) and to investigate whether the density of filaments will

decrease over time.

II) Assuming that MC accumulation occurs in D.magna, which accumulation pattern are expected

(linear or exponential) to explain the relationships between MC accumulation in Daphnia, ambient

MC concentrations, and both initial MC exposure and time after initial exposure.

To fulfill the objectives, a short-term laboratory experiment was conducted. Four different MC

exposure (A, B, C and D) glass beakers (1L) filled with P.rubescens cultures were considered for this

experiment (Fig.3). In order to achieve the different MC concentrations, different proportions of toxic

and non-toxic strains of P. rubescens were mixed and diluted with BG11 medium to 1L. A control

group was used containing a comparable density of the chlorophyte Scenedesmus sp.

All the analyses (MC content and algal densities) were made on three independent replicates. The

experiments were started after adding 100 adults of D.magna in each 1L glass beakers.The chemical

and biological analyses were carried out on samples collected after a time exposure of 0, 6, 24, 48,

72, and 144 h Fig. 4).

See CHAPTER4 for the results obtained after analysing samples.
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Figure3. Experimental set up to investigate the toxin transfer through food web. (a) Different exposures and the control
group that was used in this experiment. (b) Adding daphnids to each exposure and starting the experiment.

Figure4. Sample collected at certain time exposure for different analysis
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2.3.3 Part III- Genetic analysis

Objectives and Experimental set up

For the last part of this study, we were interested to investigate the presence of different cyanotoxins

producing genotypes in Lake Garda. Specific objectives included:

I) To check the presence and seasonality of the two main potential toxic cyanobacteria analysed in

environmental samples collected in Lake Garda (Planktothrix rubescens and Dolichospermum

lemmermannii), by applying genus specific primers targeting house keeping genes.

II) To screen the environmental samples for seasonal dynamic of cyanotoxin producing genotypes,

specifically MC and ATX genes, by using general/specific primers.

III) Chemical (toxins) and genetic (taxonomic and toxins encoding genes) characterization of cultures

of cyanobacterial strains isolated from environmental samples

IV) Investigating temporal dynamic of ATX copy numbers by appling qPCR to see if there is any

correlation between ATX concentration and ATX copy numbers.

Cyanobacteria isolation, culture conditions and microscopy analysis

After diluting the net-phytoplankton samples, single filaments of cyanobacteria were isolated under

a stereomicroscope using a glass micropipette. The single filaments were washed 3 times in Z8

medium to get rid of other algae, and then placed in microwell plates containing 3 ml Z8 medium.

After 1-2 week when they grew enough, the cultures were checked for the presence of other

contaminating algae, if they did not contain any contaminants then the first subset culture obtained

from a single filaments were inoculated to 30ml flask containing Z8 medium, and after around 10

days when they grew enough they were transferred to 150 ml flask with Z8 medium. All the flasks

were maintained at 20 °C under continuous light conditions (25 µmol m-2 s-1).

At the end of the exponential growth stage, after careful homogenization each single culture went

through 3 different analyses: 15 ml were preserved with Lugol’s solution for phytoplankton analysis,

whereas 250 ml were filtered through 0.45 µm GF/C filters (Whatman – GE Healthcare Life Sciences)

for both cyanotoxins and genetic analyses.

Morphological features were analyzed using an inverted microscope (Zeiss Axiovert 135). Single

specimens were identified following morphometric and morphological criteria described in Komárek

and Albertano (1994) and Komárek and Anagnostidis (2007).
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DNA extraction, PCR amplification

DNA was extracted from all the filters, environmental samples and isolate cultures, using the Mo Bio

PowerWater® DNA Isolation Kit (Mo Bio Laboratories, Inc., CA, USA) following manufacturer's

instructions. The quantity and quality of DNA was measured by spectrophotometry with a NanoDrop

ND-8000 (Thermo Fisher Scientific Inc., MA, USA).

The DNA extracts were then examined for different cyanotoxin producing genotypes using general

or genus-specific primers which were classified in different categories as follows (see also CHAPTER

5, Section 5.9. Supplementary Tables, for the complete list of primers used in this study):

Category I- Primers specific for cyanobacteria and house keeping genes

16S rRNA: Samples were checked for amplification of a short fragment (ca. 420 bp) of the 16S

rRNA gene specific for cyanobacteria to confirm the presence of cyanobacterial DNA using the

forward primer CYA359F and an equimolar mixture of the reverse primers CYA781Ra and

CYA781Rb (Nübel et al., 1997).

House-keeping genes (rbcLX and rpoC1 genes) specific in Planktothrix
To confirm the presence of P. rubesens in environmental samples collected in 2013 and in isolated

strains, two sets of primers were used: (rbcLX- Prbc, F/R) and (rpoC1-RPO, F/R); the former primer

pair amplifies a 824-bp rbcLX gene, while the latter amplifies a 608-bp rpoC1 gene in Planktothrix

(Lin et al., 2010).

House-keeping genes (rpoB genes) specific in Dolichospermum
The presence of Dolichospermum lemmermannii in environmental samples of 2013 was checked

using a house keeping gens specific for genus Anabaena (revised to Dolichospermum) (rpoBana-F/R)

(Rajaniemi et al., 2005).

Category II- Primers targeting the mcy genes

The production of microcystin by P.rubescens and D.lemmermannii in environmental samples of

2013 and isolated strains in 2014 were checked with genus-specific primers to target mcyE genes in

Planktothrix and Dolichospermum. Moreover, another primer pair was also used to target the mcyB

gene in Planktothrix).

Planktothrix agardhii strain 126/3 and Anabaena 90 were used as a positive control (Pla 126/3;
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UHCC), (Ana-90; UHCC).

 mcyE gene in Planktothrix
The mcyE-F2/ mcyE-plaR3 primer pair was used to amplify a 249-bp mcyE gene specific for

Planktothrix (Rantala et al., 2006).

 mcyE gene in Anabaena (revised to Dolichospermum)
The mcyE-F2/ AnamcyE-12R primer pair was used to amplify a 247-bp mcyE gene specific for

Anabaena (Vaitomaa et al., 2003).

mcyB in Planktothrix
The (mcyBA1tot R/F) primer pair was used to amplify a 1692-bp fragment of the mcyB gene in

Planktothrix (Kurmayer et al., 2005).

Category III- Primers targeting the ATX gene

The presence of anatoxin gene in samples was checked first with general primer (anaC-gen) which

amplifies a 366-bp anaC gene in anatoxin producers (Rantala-Ylinen et al., 2011). Moreover, samples

were further analysed using genus-specific primers to target anaC gene in Oscillatoria and

Dolichospermum. Oscillatoria 193 (Osc-193, UHCC) and Anabaena 37 (Ana-37, UHCC) were used

as positive controls.

anaC gene in Anabaena(revised to Dolichospermum)
The primer pair (anaC-anab F/R) was applied to amplify a 263-bp anaC gene specific for genus

Dolichospermum (Rantala-Ylinen et al., 2011).

anaC gene in Planktothrix
Since still there is no primer to target anaC gene in Planktothrix, therefore, to investigate the possible

presence of this gene, samples were checked with primer pair (anaC-oscF/ R) which is a gene-specific

primer for Oscillatoria and amplifies a 216-bp fragment of anaC gene in Oscillatoria (Rantala-Ylinen

et al., 2011).

All PCR protocols and thermal cycling for each primer can be found on (CHAPTER 5- Section 5.9.

Supplementary Tables). Thermal cycling was carried out using an Eppendorf Mastercycler ep

(Eppendorf AG, Hamburg, Germany).

A volume of 10-15μl of PCR product was run on a 1.5% agarose gel. The gels were stained with

ethidium bromide and photographed under UV transillumination.
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After analysing the isolated strains for cyanotoxin producing genotypes, particularly ATX and MC,

the approach led to the discovery and characterization of a new unexpected filamentous

cyanobacterial producer of ATX (see CHAPTER 5).

Quantitative PCR (qPCR) analysis

Environmental samples collected in 2013 were quantified using qPCR to determine the abundance of

cells carrying anaC-osc genes using a genomic DNA standard (Osc-193 UHCC).

Standard curves were set up using the genomic DNA of anatoxin producing Oscillatoria Osc-193

(UHCC) with 6 serial dilutions. The first dilution was made from DNA of Oscillatoria Osc-193 which

was aslready diluted to 1:10. Afterward, other five dilutions were made consecutively (Fig. 5).

For each standard, the concentration (number of copies) of diluted DNA was plotted against the mean

Cp (crossing point, determined in triplicate) value (Rodríguez-Lázaro and Hernández, 2013), and the

slope of the standard curve was calculated by performing a linear regression analysis following

instrument protocols (Roche Diagnostics GmbH, 2008).

Figure5. Preparing serial dilution for standard curve.

The extracted DNA from environmental samples of 2013 and positive control were diluted with

distilled water at a ratio of 1:100. All the reactions were prepared with 30µl volumes in 96-well qPCR

plates. The reaction mix contained 12.5 µl iTaq SYBR Green super mix (BIO RAD), 1.25µl of primer
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anaC-osc -F/R, 10 µl of distilled water, and 5µl of the DNA template. Besides environmental samples,

analyses were made also on negative controls without DNA, and positive controls comprising the

genomic DNA of the strain Oscillatoria 193 (Osc-193, UHCC). Each sample was prepared in

triplicate. Table1 shows the thermal cycle used for qPCR analysis in this study.

The results of qPCR analysis are reported in Chapter 5- Section 5.10.3. Additional data.

Table1. qPCR protocol and thermal cycle applied in this study.

Step Program Name Temp. Time Cycle Ram rate
(°C/s)

Acquisitions
(per °C)

1 Activation 95 °C 3 min 1 4.4 ------

2 qPCR
95 °C 15 Sec

35
4.4 ------

60°C 45 Sec 2.2 ------

3 HRM

95°C 15 Sec

1

4.4 ------

40°C 1 min 2.2 ------

58°C 1 Sec 1.1 ------

95°C ------ 0.02 ------

4 Cooling 37°C 00:00:00 1 25
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ABSTRACT

Cyanobacteria have the ability to produce an extraordinary variety of secondary metabolites, some of which
are toxic for humans. Massive developments (blooms) of these microorganisms represent a major concern in
many natural and artificial water bodies, because of the high levels of toxins which can be potentially released
in the water and eventually uptaken by humans (mainly by ingestion). Microcystins, potent hepatotoxins,
represent the most frequent toxins produced by cyanobacteria. They show a big variability in chemical
structure and, in fact, more than 90 variants have been reported. The chemical diversity has an impact on the
toxicity, which differs substantially from variant to variant. The factors triggering the toxin production in
cyanobacteria as well as the reasons of the wide chemical variability are still matter of debate. In order to
elucidate the dynamics of toxin production inside a population of cyanobacteria, we have investigated the
temporal and spatial variability of the microcystin diversity in the cyanobacterial populations of Lake Garda.
The lake, which represents the biggest water basin in Italy, was sampled on a monthly basis from 2008 till
2013. Toxin analysis, based on LC-MS/MS technique, was performed on phytoplankton samples taken at
discrete depths in the trophogenic layer. The investigation showed a seasonal pattern of toxin production (with
typical late summer-early autumn peaks) and a relatively constant toxin diversity (with five variants accounting
for almost the totality of the microcystin content) with one variant (MC-RRdm) always dominating over the
others.

Keywords

Lake Garda, Cyanobacteria, Microcystins
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3.1. Introduction

Toxic cyanobacteria blooms represent a serious threat for freshwater environments. Cyanobacteria

prefer stable and stratified freshwaters, where they grow in higher abundances. Factors that favor

their growth are nutrient availability and warm water. Eutrophication and global warming are

therefore the stressors that can trigger cyanobacteria blooms (Paerl and Huisman, 2009).

Besides the ecological problems related to the development of massive biomasses, cyanobacteria

blooms have sanitary implications; some species, in fact, have the ability to produce toxic substances

(cyanotoxins) which can poison animals and humans. Cyanobacteria produce a wide range of toxic

compounds: peptides (microcystins, microginines, microviridines, etc.), alkaloids

(cylindrospermopsins, anatoxins, saxitoxins). Microcystins are the most frequent compounds, more

than 110 variants have been described so far (Dietrich and  Hoeger, 2005).

MCs have been subject to toxicological studies which have demonstrated that they can have serious

acute and also chronic effects; they have been classified by IARC as potential carcinogenic for

humans. It is worthy underlying that most of the toxicological studies have been performed on the

most common MC-LR variant, but few studies demonstrated that a huge variability exists among

variants.

Microcystins are cyclic eptapetides synthetized by cellular non ribosomal protein synthetase (NRPS)

system. In Fig. 1 the chemical structure of MC-RR is reported, having two Arginine (R) residues in

the variable positions 2 and 4. The same picture shows also other sites of common modifications, i.e.

aminoacids 3 and 7. The brief table (Table 1) reports the MC analogs with variations on these two

aminoacids. Although more than 110 MC variants have been described, it is no point out that

cyanobacteria usually produce one or few variants in high amounts, and others at trace levels. From

the available literature we have found that the dominant MC variants in the environment are LR, RR,

YR, and their respective closest demethylated derivatives. Since in water samples complex mixture

of MC variants may occur, to provide an accurate measure of the toxin concentration, the toxicity

equivalent factor (TEF) is used (van Apeldoorn et al. 2007) and the TEF for microcystin-LR was set

as 1.0 as the most toxic MC variant (see Table 3).

In the present paper, we report the results of a 5 years investigation carried out in Lake Garda aimed

at describing the toxin dynamics in a oligo-mesotrophic lake hosting a population of Planktothrix

rubescens. The toxin analysis was performed with the same protocol thus providing a reliable and
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intravalidated database. We set up an analytical protocol for the detection of 40 MC analogs starting

from 8 commercial standards and enlarging the panel to their close related demethylated and bis

demetylated analogs. As illustrated in Fig. 1, where the case of MC-RR is shown, for each reference

toxin we added three demethylated (dm) analogs, and one bisdemethylated (ddm) analog.

MC producing cyanobacteria in Lake Garda are represented mainly by P. rubescens, with sporadic

and limited (in time and space) presence of D. lemmermannii. Conversely, populations of Tychonema

bourrellyi, which were recently discovered in Lake Garda, did not show any MC production (Shams

et al., 2015). Therefore Lake Garda represents a good study site where investigate the dynamics of

MC production by P. rubescens in natural conditions, thus offering the possibility of spotting changes

in toxin profile. Importantly, Lake Garda is an LTER site where a detailed measure of physical,

chemical and biological variables are measured, thus providing the opportunity of linking the eventual

variation in toxic profile to specific environmental drivers.

Figure1. Chemical structure of MC-RR showing variability positions at aminoacids 3 and 7.

Table1. MC analogs with variations on aminoacids 3 and 7.

Toxin analog abbreviation Molecular weight R3 R7a R7b

MC-RR 1037 CH3 CH3 H

[D-Asp3] MC-RR RRdm 1023 H CH3 H

[Dha7] MC-RR RRdm 1023 CH3 H H

[DAsp3, Dhb7] MC-RR RRdm 1023 H H CH3

[D-Asp3, Dha7] MC-RR RRddm 1009 H H H
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3.2. Methods

3.2.1 Study site and sample collection

Lake Garda is the largest Italian lake. It is located at the southern border of the north eastern Italian

Alps. Sampling was conducted in the LTER station (Brenzone) which is located in the deepest part

of the lake (45.69 N, 10.72 E). Sampling was conducted with a monthly frequency from October 2008

till October 2013. Water sample (2 liters) for chemical analysis was collected at 4 dephts: 0, 10, 20

and 60 m. The water was filtered on a 0.45 µm GF/C filter to collect the phytoplankton. The filter

was stored at -20°C until toxin extraction.

3.2.2 Cyanotoxins analyses

3.2.2.1 Toxin extraction

Extraction was performed as follows: each freeze-thawed filter was homogenated for 5 minutes with

8 ml of extracting solvent (water: methanol 30:70, 0.1% formic acid). The suspension was centrifuged

at 10000g for 5 minutes; the supernatant was transferred and the pellet was re-extracted with 8 ml of

the extraction solvent. The two supernatants were combined. A 2 ml aliquot of the extract was filtered

on Phenex-RC syringe filter (0.2 μm pore size, Phenomenex) and analyzed by LC-MS

3.2.2.2 LC-MS analysis

The LC-MS analyses was carried out on a Waters Acquity UPLC system directly coupled to an AB

SCIEX 4000 QTRAP mass spectrometer equipped with a turbo ion spray interface. Standard injection

volume was 2 μL. MC analysis was carried out using a Phenomenex Kinetex XB-C18 column (1.7

μm particle size, 2.1 × 50 mm) at 40 °C. The mobile phase consisted of water (A) and acetonitrile

(B), both containing 0.1% formic acid. A linear gradient scheme was employed: the starting eluent

was 80% A, decreased to 30% A at 4.5 min, and finally restored at 80% A at 6.5 min (hold 0.5 min).

The total run time was 7 min with a flow rate of 0.25 ml min-1. The mass detector was operated in

positive Electro Spray mode (ESI+) using the Multiple Reaction Monitoring (MRM) scanning mode.

General settings were as follows: ion spray voltage 5000 V, entrance potential 10 V, cell exit potential

10 V, interface heater temperature 300 °C. For each target compound, two transitions were monitored.

The quantification of the toxins was performed with the external standard procedure, in which, for

each compound, a calibration curve was obtained using the most intense transitions. For demethylated

(dm) and bisdemethylated (ddm) variants, quantification was carried out using the calibration curve
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of the parent methylated variant, assuming a similar instrumental response factor. Compound-specific

settings of the mass detector and performance data of the methods are listed in Table 2. In the same

table, a full list of monitored variants is reported. Microcystins analytical standards (RR, YR, LR,

WR, LA, LY, LW, LF) were purchased from Vinci Biochem. All solvents and reagents used in this

procedure were LC-MS grade. The limits of quantitation (LOQ) were between 30 and 500 ng L-1

(different MC congeners).

Table2. Compound-specific parameters in LC-MS analysis of toxins. Only data for the eight standards are shown. For
the demethylated (dm) and bis demethylated (ddm) variants the MRM transitions are modified according to their
molecular weights. All other parameters are kept constant.

RT = chromatographic retention time; DP = declustering potential; CE = collision energy.

Toxin variant RT (min) MRM transitions (m/z) DP (V) CE (V)
RR 1.43 520.1/135 85 44

520.1/213 85 50
YR 2.63 523.6/135 45 20

523.6/911 45 20
LR 2.78 498.6/135 40 19

498.6/213 40 43
WR 3.06 535.0/135 40 18

535.0/213 40 42
LA 4.30 911.6/135 85 90

911.6/213 85 65
LY 4.40 1002.6/135 106 96

1002.6/213 106 75
LW 4.80 1025.6/135 111 100

1025.6/213 111 80
LF 4.93 986.6/135 96 95

986.6/213 96 73
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3.2.2.3 Estimation of cyanotoxins diversity

The diversity of cyanotoxins was estimated by applying two diversity indices of general use, i.e. the
inverse of the Simpson index, 1/D,




n

i
ip

1

2=D

and the Shannon index, H’,




n

i
ii pp

1
ln-=H'

where pi is the proportional abundance of the congener i.

3.3. Results and discussion

Monthly data about the toxin profile of Lake Garda have been collected from September 2008 to

October 2013 with few exceptions (Dec 2008, Dec 2009, Dec 2011, Apr and Aug 2012, Jan 2013),

and a total of nearly 230 samples have been analyzed. In Fig. 2, the total MC content (sum of the

different variants) measured in the five years survey is shown. There is a clear seasonality in the

MCtot, with lower values in winter and spring seasons and higher in summer and autumn. In

particular, values were below 40 ng l-1 from November to June in all years. From July to October,

values were higher. A great variability is present from year to year: the summer peak showed a

progressive increase from 2009 until 2011 (95 ngl-1 in 2009, around 200 ng l-1 in 2010 and 2011) and

afterwards a progressive decrease (73 ngl-1 in 2012 and 33 ngl-1 in 2013). In the graph, we can also

note that the summer peak occurred in Aug-Sept period with the only exception for 2009 when the

peak occurred one month later (Sept-Oct).
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Figure2. Montly 0-20 m mean values of MC tot plotted per year.

In Fig. 3 the statistical distribution of the MCtot among the four considered depths is shown. It is

evident that MC is basically distributed in the 0 – 20 m water layer with very similar concentrations.

The median values were 7.5, 8.2, 12.4 ngl-1 (at 0, 10 and 20 m, respectively). The MC present at 60

m are much lower (median =3.8 ngl-1).The boxplot in Fig. 3 also shows that the highest concentrations

of toxins (in coincidence of the MC summer peaks) occur at 20 m depth, where 5-95th percentile bars

are about threefold higher than 0 and 10 m. The highest value found in the survey was recorded at 20

m depth (540 ngl-1), while highest values at 10 and 0 m were, respectively, 290 and 260 ngl-1.
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Figure3. Distribution of the MC content among layers.
Legend: ● = max, ♦ = mean, bars = 5 – 95th percentile, box = 25 – 75th percentile with median.

As far as the MC diversity is concerned, we could detect five different variants out of the 40 (Table

3).Two demethylated variants (RRdm and LRdm) represented almost the totality of the MC pool,

with the former being the dominant one. The other MC variants were MC YR, LR and RR. In Table

3 a synoptic view of the MC diversity and distribution in the four depths is reported. The MC diversity

is very constant in the water column, with RRdm around 93% on average, LRdm around 4%, YR

around 1.7%, LR around 0.4% and finally RR around 0.6%.

Table3. Relative contribution of different MC congeners at different depths. Mean % values and (in brackets) the min and
max values are reported. Relative toxicity values (compared to MC-LR=1) indicate that MC-RRdm (the dominant
congener) has a toxicity four times lower than MC-LR.

In order to better follow the temporal dynamics of the MC diversity, in Fig. 4 we reported the temporal

behavior of the five variants. It is evident a certain degree of fluctuation in the MC composition. In
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10 m 93.0 (70.1 - 100.0) 3.7 (0 - 22.2) 1.7 (0 – 12.6) 0.4 (0 - 4.5) 1.2 (0 - 23.9)
20 m 92.0 (70 - 100.0) 4.4 (0 - 21.3) 2.3 (0 – 19.2) 0.7 (0 – 14.2) 0.5 (0 - 10.4)
60 m 94.5 (80.1 - 100.0) 4.0 (0 - 18.2) 1.2 (0 - 14.1) 0.02 (0 - 1.1) 0.3 (0 - 4.5)

Relative toxicity 0.23 0.33 0.29 1 0.1
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particular, considering the two major variants (MC RRdm and LR dm), reported in panel b of figure

4, they seem to be inversely correlated: when MC RRdm declines, LRdm grows, and vice-versa.

RRdm showed an increasing trend from Oct 2008, when it was approx. 80%, to Oct 2010, when it

reached 100%; then a steady state followed (4-5 months long), before a decreasing trend started

lasting approximately one year in which the RRdm dropped down to 78% (May 2012). Afterwards,

RRdm againg went gradually up againg to 100% (Nov 2012), when a new steady state occurred (3-4

months), before a new decreasing trend took place in the last 6 months of observations. All these

changes in the RRdm relative abundance were paralleled by a counter-changes in the LR dm

abundances (Fig. 4b), which reached highest value (ca. 21%) in May 2102. The other 3 MC variants

(YR, RR and LR) also showed a fluctuation (Fig.4c). More appropriately, for these variants an annual

oscillation can be detected. In fact, for MC YR and LR the highest percentages were registered during

the summer-autumn time of each year (in coincidence with the maxima in MC concentrations). MC

RR showed a similar pattern in 2011 and 2012; but showed a different pattern in the other years, when

this toxin exhibited annual oscillations with maxima a couple of months ahead of the MC peak: in

May 2009, June 2010, and June 2013.
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Figure4. Temporal behavior of the five MCvariants; mean values are considered. (a) Temporal dynamic of total MC, (b)
Temporal dynamic of two major variants (MC RRdm and LR dm), (c) Temporal dynamic of other 3 MC variants (YR,
RR and LR).

To check whether the observed MC diversity could be influenced by the MC concentration, as the

higher the concentration the better the resolution in the LC-MS experiments and in turn the better the

quantification of minority variants, we performed a series of statistical calculations (Fig. 5) which

demonstrated that actually the concentration did not influence the diversity data, thus valorizing what

we argumented before.
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Figure5. Statistical approach for correlating MC diversity and abundances.

We applied a PCA study on our data (fig. 6) which clearly showed a seasonality pattern in MC

production: between July and October all five variants increased, with LR showing a typical

preference for later periods. The figure also shows the annual cycle in MC production. Another

information that can be obtained by the PCA analysis is the relationship between variants. Together

with correlation chart (Table 4) they show that four MC variants are highly correlated, which means

they form a “cluster” and they are produced at the same time. On the contrary, MC-LR does not

belong to that cluster but appears to be produced independently.



CHAPTER 3

72

Figure6. PCA showing the seasonality in MC production and inter-variant correlations.

Table4. Correlations among MC variants. Correlations with MC-LR (which appears to be produced independently from
the other congeners) are highlighted in yellow.

Implications for water management. As reported in table 3, the toxicities of the five variants are very

different. In the case of Lake Garda, the health risks are basically due to the presence of the MCRRdm

variant, which represent typically more than 90 % of the total. This variant is less toxic than the

reference LR variant (by a factor of 4). This toxic profile is quite constant in the lake also in the

summer season when higher cyanobacteria biomasses develop. Guidelines referring to MC content

based on the MC-LR will therefore greatly overestimate the risks.

NOTE: The manuscript is in preparation, other parts will be completed as future work.
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3.4. ADDITIONAL DATA

Beside the above mentioned results which are going to be included in manuscript 1 presented in

CHAPTER 3, some results on ATX concentration have been also obtained which may use for future

publications.

3.4.1 Temporal dynamic of ATX

Chemical analyses of samples taken from Lake Garda on 2010 till 2013, demonstrated that ATX is

always present thtoughout a year with the maximum value recorded for the summer month; June and

July (Fig. 7)

Figure7. ATX concentrations from Oct 2010 till Oct 2013 (0 – 20 m mean values).

3.4.2 Temporal dynamic of ATX and total MC

As shown in (Fig. 8), the ATX value has been always higher than MCtot value. The investigation

showed a seasonal pattern for ATX production with early summer peak specially on June-July and

for MCtot with typical late summer-early autumn peaks.
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Figure8. Temporal dynamic of ATX and MCtot in Lake Garda from 2011 till 2013.
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ABSTRACT

In this study, we investigated the kinetic aspects of the microcystin (MC) transfer from Planktothrix
rubescens to Daphnia magna by carrying out exposure experiments in small simple mesocosms. We
hypothesized that higher fractions of toxic cyanobacteria in the diet of grazers would shift the balance
towards a greater than linear, i.e. non-linear accumulation of MC in D. magna. This hypothesis was
tested by exposing D. magna to varying initial densities of MC-producing P. rubescens. The evolving
models of MC accumulation differed largely as a result of the duration of exposure and initial MC
concentrations used. Within the first 24 h of exposure, MC accumulation in D. magna was linear,
irrespective of the initial densities of toxic P. rubescens and thus MC concentrations. After 48h of
exposure, MC accumulation in D. magna showed an exponential pattern, possibly due to a delayed
digestion of P. rubescens and/or decreased MC detoxification capabilities when compared with
higher ambient concentrations of MC.After 72h toxin concentrations in Daphnia drop in all
experiments as a consequence of the reduced cyanobacterial cells in the medium and the
detoxification of MC within Daphnia. The results obtained suggest that in lakes with higher MC
content and longer cyanobacterial bloom period MC accumulation in D. magna should be more
pronounced than in mesotrophic lakes with lower MC content. The latter interpretation, however,
should be verified investigating accumulation of MC both in larger mesocosms and in situ, in lakes
of different trophic status.

Keywords

Planktothrix rubescens; Cyanobacteria; Daphnia magna; Microcystins; Bioaccumulation; Lake
Garda
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4.1. Introduction

Cyanobacterial blooms have become a growing global concern due to their increased occurrence as

well as to the massive increase of freshwater utilization throughout the world (Paerl et al., 2011).

Many cyanobacterial species are able to produce a wide range of toxins (Sivonen and Jones, 1999;

Sivonen and Börner, 2008). One of the more intensely studied toxin groups is represented by

microcystins (MCs) (Metcalf and Codd, 2012). So far, more than 110 different variants of MCs have

been reported (Dietrich and Hoeger, 2005; Spoof, 2005; Puddick, 2013), primarily produced by

freshwater cyanobacteria, e.g. Microcystis, Planktothrix, Anabaena, and occasionally Nostoc

(Sivonen and Jones, 1999; Salmaso et al., 2013).MCs are cyclic heptapeptides that consist of 5 D-

and 2 variable L- amino acids. They are characterized by high chemical stability. The degradation of

MCs in water occurs very slowly, and is primarily the result of microbial breakdown and to a lesser

extent the result of photolytic and hydrolytic processes (Tsuji et al., 1994). Due to their stability, MCs

have the capability of being accumulated in a variety of aquatic organisms including bivalves,

crustaceans, zooplankton and fish (Ferrão-Filho et al., 2002; Zhang et al., 2009; Ernst et al.,2007,

2009; Lemaire et al., 2012; Wojtal-Frankiewicz et al., 2013).There has been growing attention

towards the effects of MCs on zooplankton and especially on the larger cladoceran Daphnia because

of the key role that these organisms have in the aquatic food web (Elser, 1999; Benndorf et al., 2002;

Reichwaldt et al.,2013). They feed on primary producers and represent a major source of food for

juvenile fish, consequently they can act as transfer vectors of toxins to higher trophic levels (Rohrlack

et al., 2005) Unlike copepods, which appear to be able to discriminate between toxic and non-toxic

cells (DeMott and Moxter, 1991), daphnids are non-selective filter feeders and are a priori not able

to select food particles that differ in quality (DeMott, 1986). However, Daphnia pulicaria was

demonstrated to be able to discriminate between toxic and non toxic Microcystis aeruginosa cells,

whereby MC content was obviously not the determining factor for reducing filter feeding when D.

pulicaria was confronted with toxic M. aeruginosa (Jungmann et al., 1991; Jungmann, 1995). Several

investigations have shown that filamentous cyanobacteria have a negative effect on Daphnia because

of the interference of filaments with grazing on other available food sources (Porter and McDonugh,

1984; Hawkins and Lampert, 1989; Kurmayer and Jüttner, 1999). Kurmayer (2001) reported that

Daphnia galeata was able to ingest the filamentous cyanobacterium Aphanizomenon flexuosum and

that mechanical interference was not important. Nadin-Hurley and Duncan (1976) have argued that

the width of filaments is more important than length in limiting ingestion by daphnids, while DeMott

(1995) suggested that filament size together with filament hardness are important for Daphnia

feeding on large particles. Oberhaus et al. (2007) finally reported that D. pulicaria preferred to
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graze on short filaments of Planktothrix rubescens and P. agardhii and could efficiently control

Planktothrix blooms in their early stages. Above results highlight the complexity of feeding

mechanisms underlying grazing of filamentous cyanobacteria by Daphnia, whereby the specific

feeding preferences appear to be largely dependent on the Daphnia and cyanobacteria species

involved (Hulot et al., 2012). Nevertheless, in spite of the widespread occurrence of toxic

Planktothrix in European lakes (Davis et al., 2003; Salmaso et al., 2003; Ernst et al., 2009),

Daphnia grazing on filamentous cyanobacteria has been investigated so far by only a limited

number of studies (see e.g.Kurmayer and Jüttner, 1999; Oberhaus et al., 2007; Pires et al., 2007;

Reichwaldt and Abrusan, 2007).

Adverse effects of MC on Daphnia have been reported by many studies, e.g. laboratory experiments

by DeMott (1999) investigated the effects of M. aeruginosa on five different Daphnia species. Out

of the five species tested, D. pulicaria showed the lowest growth inhibition and D. pulex the highest.

D. galeata, instead, exhibited symptoms of exhaustion that finally led to death (Rohrlack et al., 2005).

Recently, Dao et al. (2010) provided evidence that offspring produced by Daphnia magna pre-

exposed to MC-LR or cyanobacteria crude extract, not only showed delayed maturation but also

increased mortalities.

A few other studies explored the accumulation of MCs in large cladocerans. Thostrup and

Christoffersen (1999) in a laboratory experiment documented that D.magna grazing on M. aeruginosa

could lead to an accumulation of MCs up to 24.5 µg g −1dry weight. Similarly, Oberhaus et al.

(2007) demonstrated that D. pulicaria was able to accumulate MCs up to 1099 µg g −1dry weight

when grazing on filaments of Planktothrix. Nevertheless, the accumulation kinetics of MC in large

cladocerans was poorly investigated. At the same time, no information was available regarding the

type of relationships governing MC accumulation as a function of exposure time and ambient

MC concentrations.

Following the observed feeding behaviours of D. pulicaria towards toxic and non-toxic small-celled

M. aeruginosa, the question was raised whether feeding on different proportions of toxic and

non-toxic filaments would result in different MC accumulation patterns in exposed daphnids.

On the basis of above considerations we decided to investigate the MC accumulation patterns in D.

magna after exposure to populations of Planktothrix rubescens with different proportions of toxic

and non toxic strains. Assuming that accumulation occurs when a positive net balance exists between

MC uptake and concomitant MC loss resulting from excretion and detoxification (e.g. oxidation
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and/or conjugation), we hypothesized that higher concentrations of toxic filaments would result in a

proportionally higher and non-linear accumulation of MC in Daphnia. More specifically, we

analyzed the suitability of linear and exponential models for explaining the relationships between

MC accumulation in Daphnia, ambient MC concentrations, and both initial MC exposure and time

after initial exposure.The results will be discussed also taking into considerations the implications

for water management in lakes of different trophic status and abundance of Planktothrix.

4.2. Materials and methods

4.2.1. Chemicals and analytical equipment

Solvents and reagents used for toxin extraction and analysis were LC-MS purity grade. MC

(including [d-Asp3] MC-RR) analytical standards were purchased from Sigma–Aldrich.The

ultrasonic homogenizer was an Omni Sonic Ruptor 4000 equipped with a processing tip of 4

mm in diameter. The LC–MS system consisted of a Waters Acquity UPLC® directly coupled

to an AB Sciex 4000 QTRAP hybrid triple quadrupole-linear ion trap mass spectrometer (Cerasino

and Salmaso, 2012).

4.2.2. P. rubescens and D. magna cultures

Single filaments of toxic and non-toxic P. rubescens were isolated at the Long Term Ecological

Research (LTER) station of Lake Garda (Lat 45 °41"N, Long 10°43' 15") and cultured in flasks

containing BG11 medium in a temperature-controlled chamber at 15 ◦C with 8:12 h light:dark cycle

and a light intensity of 30 mmol photon m−2s−1. Cultures were periodically analysed for density

and MC content. Toxic cultures contained only one toxin, namely [dAsp 3] MC-RR.

D.magna batches were provided by Eschematteo srl, Italy. Daphnia were cultured in a glass

aquarium filled with dechlorinated tap water in a temperature-controlled chamber at 15◦C with

8:12 h light:dark cycle and a light intensity of 30 µmol photon m−2s−1. Daphnia were fed with

cultures of green algae (Scenedesmus sp.) and baking yeast (Saccharomyces cerevisiae). The yeast

was resuspended in water before feeding.
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4.2.3. Experimental setup

To investigate MC accumulation, 100 adult D. magna were put into 1 L glass beakers filled with P.

rubescens cultures with MC concentrations of 9.0, 3.8, 2.4 and 0.6 µg l −1, hereafter referred

as exposures A, B, Cand D. In order to achieve the different MC concentrations, different proportions

of toxic and non-toxic strains of P. rubescens were mixed and diluted with BG11 medium to 1L. A

control group was used containing a comparable density of the chlorophyte Scenedesmus sp.

Exposures B–D contained the same density of P.rubescens (approx. 54,000 cells ml−1), while

exposure A contained approx.22,000 cells ml−1. All beakers were placed in a temperature

controlled climatic chamber at 15◦C with 8:12 h light: dark cycle and a light intensity of 30

µmol photons m−2s−1.Neither exposure medium (BG11) nor P.rubescens (exposures)and

Scenedesmus (controls) were exchanged or replenished during the exposures. P.rubescens and

Scenedesmus density as well as total MC concentrations in the exposure medium and in

exposed and control daphnids were determined at 0, 6, 24, 48, 72, and 144 h of exposure.

The fate of different densities of P. rubescens over time without concurrent grazing pressure was

examined in parallel experiments in which P. rubescens cultures were diluted at the required

densities with the same BG11 medium and kept in the same conditions of the Daphnia-containing

treatments. All the analyses (MC content and algal densities) were made on three independent

replicates, with the exclusion of the densities of Planktothrix in the experiments with Daphnia

(cf. Fig. 1).

4.2.4. Algal density estimation

Densities of P. rubescens were determined by counting of Lugol’s fixed water sub-samples (1–

2 ml) taken from each exposure at the sampling times described above. After dilution, Lugol’s

fixed samples were counted using the standard inverted microscopic method using 10 ml, 2.5

mm-diameter sedimentation chambers (Lawton et al., 1999). Planktothrix densities were estimated

by determining the length of filaments in 5 equidistant transects at 200× (width of the optical

field, 1mm) located on the bottom of the sedimentation chamber, and then dividing the total

length of filaments by the length of one cell (5 µm). The procedure and the reliability of this type

of density estimation for filamentous species were previously reported by Rott et al. (2007).
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Figure1.Decrease of P. rubescens over time in experiments with and without D.magna at two different P. rubescens
densities. (Starting densities) (a): 71,025 cells ml−1 without Daphnia and 53,630 cells ml−1with Daphnia present;
(b): 24,771 cells ml−1 without Daphnia and 22,280 cells ml−1with Daphnia present.) Values “without Daphnia”
are mean ± SEM (standard errors of the means) of n =3 replicate experiments. Note the different scales of the y-
axis in (a) and (b).

4.2.5. Toxin extraction and analysis

The content of MC in both D. magna and water was analysed via LC-MS/MS. For MC extraction

from D. magna, 15 Daphnia were randomly collected from the exposure beakers using a pipette with

a large tip, gently rinsed twice with distilled water to remove any algae attached to the daphnids,

transferred to Eppendorf-tubes with 1ml of water and then subjected to freeze-thawing. For MC

extraction from water, 1ml water sample taken from each exposure was freeze-thawed. MC-extracts

of Daphnia and water samples were prepared by adding 1ml methanol to 1ml sample volume.

This mix was probe-sonicated for 8 min at 120 W in pulsed mode and then filtered through

0.2 µm filter.The filtrate was analysed via LC-MS within 24h of preparation. A more detailed

description of the analytical procedures is provided in Guzzella et al. (2010) and Cerasino and

Salmaso (2012). This method should allow estimation of the overall MC content within Daphnia,

i.e. including both the metabolized fraction and the fraction contained inside the filaments trapped

in the carapace and phyllopods. For experiment A, MC concentrations at time = 0 were not

measured, therefore initial MC concentrations for this experiment were inferred from a model

relating MC measured after 0 and 6 h in experiments B and C (r 2 = 0.93).
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4.2.6. Data analysis

The comparison of the decrease of the densities of Planktothrix in the experiments with and

without Daphnia was evaluated computing paired t-tests on the original data (Sokal and Rohlf,

1995). The linear rate of decrease of the densities of Planktothrix in the exposures A–D was

evaluated using linear regression analysis. Since the decrease of Planktothrix densities reflected

an exponential pattern the data were log transformed before statistical analyses. The slopes of

the regression lines were compared by an analysis of covariance (ANCOVA), with the 4

exposures representing the levels.

The increase of MC in Daphnia as a function of initial MC concentrations was evaluated

computing both a linear (1) and exponential (2) model,

MCD = a + b × MCi (1)

MCD = a × exp (b × MCi) (2)

where MCi and MCD are the MC concentrations in the exposures A–D at the beginning of the

experiment and inside Daphnia individuals at a given exposure time, respectively.The models

were computed and tested for 3 exposure times, i.e. 24, 48 and 72 h (see also Fig. 2). In the above

analyses, ANCOVA and regression models were compared based on the Akaike information

criterion (AIC) and ANOVA tests. Statistical analyses were calculated in R 3.0.0 (R Core Team,

2013).

4.3. Results

4.3.1. Density of P. rubescens

The density of P. rubescens in both experimental groups, with and without Daphnia, showed an

exponential decrease over time. Fig. 1 shows the decrease of P. rubescens in two experiments with

different cell densities. In experiments with a high cell density (Fig. 1a) and presence of Daphnia

the average densities decreased considerably, from 53,630 to 5590 cells ml−1 , already after 6

h, while in Daphnia-free experiments, the decrease was less steep, i.e. From 71,025 cells ml−1

to 50,230 cells ml−1 (Fig. 1a). In experiments with low cell densities, the densities decreased

less dramatically at the 6 h time-point, from 22,280 cells ml−1 to 12,365 cells ml−1 in presence
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of Daphnia. In Daphnia-free experiments Planktothrix showed a slight increase within the first

6 h (from 24,771 cells ml−1 to 29,289 cells ml−1 ), showing thereafter a gradual decrease (Fig.

1b). In experiments lasting ≥24 h, filaments started to break to smaller sizes. In both cases,

the decrease of Planktothrix in the grazing experiments with Daphnia was significantly larger

compared with the experiments without Daphnia (paired t-test, as for Fig. 1a and b, p = 0.01

and p < 0.05, respectively). In all of the 6-days grazing experiments with Daphnia (cf. Fig.

2; Section 3.3), the densities of Planktothrix decreased at the same rate, i.e. following similar

patterns of an exponential decrease in the 4 experiments A–D (ANCOVA, p = 0.53). This

demonstrated a comparable grazing effect of Daphnia on P. rubescens, apparently irrespective of the

MCs concentrations/densities of MC containing P. rubescens used in the 4 experiments.

Figure2. MC accumulation in individuals of D.magna grazing on Planktothrix rubescens in four different exposures
of decreasing toxic P. rubescens densities and consequently MC concentrations (a = approx. 9, b = 3.8, c = 2.4 and
d = 0.6 µg l −1 ) over 6 days of exposure time. Values are mean + SEM (standard errors of the means) of n
= 3 replicate experiments. Note the different scales of the y-axis in (a)–(d).

4.3.2. Total MC concentration

Total MC content (in filaments and water) in all beakers slightly decreased in the first 6 h but

then remained approximately stable until 72h, with averages (mean ± SD) of 8.2 ±
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0.54, 3.4 ± 0.27, 2.4 ± 0.21 and 0.52 ± 0.07 µg l−1 for experiments A, B, C, and D, respectively

(data not shown).The dissolved: cell bound toxin ratio increased with time as P.rubescens population

decreased and cell lysis induced liberation of internal MC added to the MC concentration in the

ambient water.

4.3.3. MC accumulation in Daphnia

MC was detected in D. magna in all experiments containing toxic P. rubescens (Fig. 2).The highest

MC concentrations in individual Daphnia were observed in experiment A (Fig. 2a), and the lowest

in experiment D (Fig. 2d) and thus in accordance with the corresponding MC concentrations initially

used in the experiments. In experiment A, the highest content of MC in Daphnia was reported

at 48 h (about 11 ng ind−1), while for experiments B, C and D it was observed at 24 h (about 2.5,

1.2, and 0.1 ng ind−1, respectively). After these concentration peaks, the MC content in the body

of Daphnia declined, and after 6 days (144 h), MC concentrations were very low: 0.07, 0.03, 0.07,

and 0.02 ng ind −1 in experiments A, B, C, and D, respectively.

4.3.4. Modelling the accumulation of MC in Daphnia

Models of toxin accumulation demonstrated that during the first 24 h, the toxin accumulation

was linear, irrespective of the initial concentrations of MC in the experiments (Fig. 3a). However,

after an additional 24h toxin accumulation presented an exponential pattern (Fig. 3b), albeit with a

considerable drop in the MC accumulation. This pattern was also clearly apparent at 72h (Fig. 3c).
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Both the linear (Fig. 3a) and the exponential (Fig. 3b and c) models of MC accumulation were highly

significant (Table 1). Owing to the almost constant content of MC in the experiments (Section 4.3.2),

very similar results were obtained when comparing the MC accumulation in Daphnia with the actual

concentrations of MC measured at 24 h, 48 h and 72 h. Despite numerical comparability in the

results, we did not continue with modelling of the MC concentrations in the Daphnia via ambient

MC concentrations, as the internalized MC concentration within the Daphnia is the result of MC

accumulation, metabolism and excretion and is not governed by a mere concentration diffusion

model. The latter considerations are supported by the observed continuous accumulation of MCs

in Daphnia and the increase in the dissolved:cell bound toxin ratio during the exposure experiments

(Section 4.3.2).

Table1. Parameter estimates of the models fitted to the data in Fig. 3a and b. a and b are the parameters in Eq.
(1) or (2). RSE, residual standard error (root mean square error, RMSE) on 10 degrees of freedom.



CHAPTER 4

86

Figure3. Accumulation of MC in D. magna as a function of different initial concentrations of toxins, and after (a)
24 h, (b) 48 h and (c) 72h. Data of three independent replicates per initial MC concentrations (MC containing
Planktothrix rubescens densities) are shown. Note the different scales of the y-axis in (a)–(c).
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4.4. Discussion

This study demonstrated the effective and significant grazing of D. magna over P. rubescens under

controlled conditions in a microcosm experiment. In both experimental groups, with and without

grazers, Planktothrix filaments declined over time, but a more remarkable decrease was observed in

the presence of grazers. The disappearance of filaments from water in the experiments without

Daphnia can be explained by disintegration of filaments and bacterial degradation and/or parasitic

infection. In contrast, the decrease of filaments in experiments with Daphnia appears to result from

the specific grazing activity of Daphnia, whereby the ingestion of shorter filaments that are more

easily ingested could be favoured, as observed to occur after 24 h. Parasitic chytrid fungi can cause

mortality on most cyanobacteria. Nevertheless, Rohrlack et al. (2013) demonstrated that the

production of microcystins, microviridins and anabaenopeptins, as the most common oligopeptides

produced by most cyanobacteria, can reduce the virulence of chytrids to Planktothrix, thereby

increasing the host’s chance of survival. Therefore, the decrease of filaments in grazing experiments,

as observed in the experiments presented here, is most likely the result of a combination of three

factors, presence of grazers, disintegration of filaments and bacterial degradation, and/or possible

interaction with parasitic chytrid fungi.

No mortality of Daphnia was observed during this study. However, the adverse effects of MCs on

Daphnia such as reduced growth, survival and reproduction, have been investigated in many studies

(DeMott and Moxter, 1991; Rohrlack et al., 2005; Trubetskova and Haney, 2006; Dao et al., 2010).

Therefore, we cannot exclude toxic effects of MCs on the physiology of Daphnia during our

experiments. However, the exponential MC accumulation due to active feeding in Daphnia after 48

h can be interpreted as an indirect indication of viability of daphnids in this experiment.

Accumulation of MCs in Daphnia was observed in all experiments containing toxic P. rubescens.

However, in experiment A, with the highest MC concentration at the beginning of the experiment (9

µg l −1), the maximum peak of MC accumulation in Daphnia was reached later (48 h) compared with

experiments B–D, which had lower initial MC concentrations. Indeed, in experiments B–D the peak

for MC content was recorded already at 24 h.

The MC content in Daphnia decreased after 72 h in all of the experiments, most likely due to reduced

uptake resulting from the degradation of P.rubescens filaments as well as due to increased metabolism

and excretion of internalized MC. Indeed the number of P.rubescens filaments was decisively reduced

after 72 h. In conjunction with lowered MC uptake via filament ingestion, the rate of metabolism, e.g.
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conjugation to more hydrophilic moieties, and concomitant excretion would, in the sum of the uptake,

metabolism and excretion kinetics, decrease the overall MC concentration within Daphnia. In view

of the potentially higher dissolved MC concentrations in the ambient water post 72h, this also

suggests that dissolved MCs in the ambient water are most likely not readily taken up by Daphnia.

To characterize the kinetics of MC accumulation in D. magna, we used models to estimate how much

of the available MC in different diets (here P. rubescens filaments) would accumulate in the body of

Daphnia over time.We found that the degree and pattern of MC accumulation in D. magna was

directly related to the initial MC and to the exposure time. Within the first 24 h of exposure, a linear

relationship was observed between initial ambient MC concentrations in the food and the MC

concentrations detected per individual daphnid (Fig.3a). Subsequent to the first 24 h the toxin

accumulation followed an exponential pattern, with proportionally higher MC concentrations at

higher initial ambient MC concentrations in the food. The exponential pattern at 48 h (Fig. 3b)

resulted not only from the larger accumulation of MC at higher initial ambient MC concentrations in

the food, but also from concomitantly decreasing MC containing food in the experiments with lower

initial MC concentrations (see Fig. 2). As accumulation kinetics were evaluated considering the initial

MC concentrations in the food, the actual accumulation kinetics may have been underestimated, thus

suggesting that MC retained within Daphnia could be not only dependent on MC availability in food

and on the corresponding grazing activity. Indeed, partial or full inhibition of digestion and

detoxification pathways, resulting from high internalized MC concentrations could have evolved.

Rohrlack et al. (2001) previously suggested that MC detoxification pathways in cladocerans could be

more efficient at low MC concentrations. Correspondingly, Chen et al. (2005) showed that while low

concentrations of dissolved MC-LR had no harmful consequences for D. magna, high concentrations

and long-term exposure resulted in a reduction of antioxidant enzyme activities, most likely resulting

from an overburdening of the detoxification system by MC metabolism. Indeed, at low MC

concentrations the crucial protein phosphatases were not entirely inhibited, thereby allowing at least

partial functioning of signal transduction, i.e. enzyme activation/deactivation control pathways.

Overall, the latter observations fit with the hypothesis that higher proportions of toxic filaments are

able to shift the balance between accumulation and excretion/detoxification towards a greater

accumulation of MC in grazers, with a corresponding exponential increase of MCD as a function of

MCi.

The models that we elucidated with these experiments could have important implications for the

transfer of toxins along the trophic webs. Nevertheless, our study showed that with the existence of



CHAPTER 4

89

non-linear patterns of MC accumulation, trophic transfer of MC to higher trophic levels would be

strongly dependent on the trophic status of water bodies and the degree of toxicity of cyanobacterial

strains characterized by different toxin per cell quota. The presence of MC at different trophic levels

has been reported by many studies (Ibelings et al., 2005; Lehman et al., 2010). Sotton et al. (2014)

analyzed the accumulation of MC in the whitefish (Coregonus), which is one of the most important

commercial fish in the peri-alpine region. The whitefish was found below the thermocline, where

metalimnetic blooms of P. rubescens also occurred. Though an unintentional ingestion of filaments

was expected from earlier experiments by Ernst et al. (2007, 2009), after analysing the whitefish gut

only a few or no filaments were observed. Instead, zooplanktonic herbivores were clearly

demonstrated as the vectors of MCs to whitefish by encapsulating grazed cyanobacteria through their

diel vertical migration. Actually, 75% and 21% of the total MCs in the white fish came from

Chaoborus larvae and Daphnia, respectively.

The results obtained in this study require to be interpreted with care. The statistical parameters

representing the bioaccumulation models are valid only in this particular experimental system and

with the cyanobacterial cell density curves reported. However, the experiments showed quite clearly

how the relationship between the accumulation of MC in Daphnia and the initial concentrations of

toxic cyanobacteria and toxins (i.e. the variables mostly related to eutrophication) can be described

with general linear and exponential models, depending on the exposure time. Needless to state that in

order to decisively improve the bioaccumulation model, the corresponding kinetic parameters for MC

metabolism and excretion in Daphnia would be required. The latter kinetic parameters would also

allow elucidation of whether at higher internal MC concentrations, metabolism and excretion of MCs

can be overwhelmed or even inhibited, thus resulting in the observed overall accumulation of MCs.

The experimental setup we used does not adequately represent the natural environment. Indeed, the

grazing activity by Daphnia was influenced by the availability of shorter filaments in the algal

cultures. Moreover, the experiments could be biased by the tendency of Planktothrix to degrade

(microbially) in these small mesocosms. However, considering that the rate of decrease (and therefore

food consumption) in the abundances of P. rubescens was similar in the 4 (A–D) grazing experiments,

the results seems to further confirm that a proportionally larger accumulation of MC can be observed

in presence of more toxic variants of cyanobacteria. Considering the above weaknesses in the

experimental setup, the results should be verified in larger mesocosms, with durable and long-living

populations of Planktothrix.
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The possibility to further generalize the results of these experiments should also take into

consideration the characteristics of D. magna. This species in one of the large grazers, i.e. individuals

used in this work were around 3 mm, and thus much larger than other common Daphnia inhabiting

lentic waters. For example, in Lake Garda, and in many other large subalpine lakes, waters are

populated by smaller individuals of Daphnia hyalina/galeata, several of them with dimensions of 1

mm and therefore with a smaller ability to graze on long filamentous algae (Salmaso and Naselli

Flores, 1999). Moreover, differences in hydrophobicity among MC variants must also be taken into

account to interpret the bioaccumulation patterns (Ward and Codd, 1999). In this experiment [d-Asp3]

MCRR produced by Planktothrix is more hydrophilic than MC-LR, the experimentally most

employed variant of MC. In the presence of more hydrophobic MC, e.g. MC-LA, -LF or -LW, even

lower depuration rates and thus higher accumulation rates would be expected in daphnids, thus

emphasizing that not only the cyanobacterial species and their anatomical descriptors, but also the

specific MC produced may be key factors governing the accumulation, depuration and thus residual

time of MC within daphnids. The latter will be key determinants for the potential trophic transfer of

MC within a given surface water system.
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ABSTRACT

In order to identify the cyanobacterial species responsible of anatoxin-a (ATX) production in Lake
Garda (Northern Italy), an intensive isolation and culturing of filamentous cyanobacteria were
established since 2014 from environmental samples. In this work, we report a detailed account of the
strategy adopted, which led to the discovery of a new unexpected producer of ATX, Tychonema
bourrellyi. So far, this species is the first documented example of cultured Oscillatoriales able to
produce ATX isolated from pelagic freshwater ecosystems. The isolated filaments were identified
adopting a polyphasic approach, which included microscopic species identification, genetic
characterisation and phylogenetic analyses based on 16S rRNA genes. The taxonomic identification
was further confirmed by the high (>99%) rbcLX sequence similarities of the T. bourrellyi strains of
Lake Garda with those deposited in DNA sequence databases. More than half of the isolates were
shown to produce a significant amount of ATX, with cell quota ranging between 0.1 and 2.6 µg mm3,
and 0.01 and 0.35 pg cell-1. The toxic isolates were tested positive for anaC of the anatoxin-a
synthetase (ana) gene cluster. These findings were confirmed with the discovery of one ATX
producing T. bourrellyi strain isolated in Norway. This strain and a further non-ATX producing
Norwegian T. bornetii strain tested positive for the presence of the anaF gene of the ana gene cluster.
Conversely, none of the Italian and Norwegian Tychonema strains were positive for microcystins
(MCs), which was also confirmed by the absence of mcyE PCR products in all the samples analysed.
This work suggests that the only reliable strategy to identify cyanotoxins producers should be based
on the isolation of strains and their identification with a polyphasic approach associated to a
concurrent metabolomic profiling.

Keywords

anatoxin-a; Tychonema; cell quota; polyphasic approach; phylogenetic analysis; European
waterbodies
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5.1. Introduction

The  long  evolutionary  history  is  the  basis  of  the  high  competitive  ability  that  characterizes

cyanobacteria.  They  are  distributed  in  most  aquatic  and  terrestrial  habitats,  including  extreme

environments (Paerl et al., 2003;  Boyer and Zimba, 2007;  Kleinteich et al., 2012).  In water bodies

characterized  by  high  concentrations  of  nutrients,  limited  water  exchange  and  high  temperatures

and thermal stability, cyanobacteria can develop with high biomasses, giving rise to the formation of

blooms  at  the  surface,  euphotic  zone  or  in  the  metalimnic  layers,  largely  depending  on  the

respective  species  (Paerl  and  Paul,  2012). Cyanobacteria represent one of the major causes of

ecosystem degradation and impairment of the economical value of freshwater resources. Specific

strains  produce  a  wide  range  of  powerful  toxins,  with  important  implications  for  health  risks

associated with the human exploitation of recreational and drinking waters (Meriluoto and Codd,

2005;  Mankiewicz-Boczek et al., 2011;  Zamyadi et al., 2012). The principal classes of cyanotoxins

are microcystins, nodularins, anatoxin-a and homoanatoxin-a, anatoxin-a(S), saxitoxins and

cylindrospermopsins (Metcalf and Codd, 2012; Méjean et al., 2014).Compared with microcystin

(MC) producers, only a few anatoxin-a (ATX) producing taxa have been distinctly isolated and

characterized (Table 1). Other reports, based on analyses carried out on  bulk environmental  samples,

suggest  the  existence  of  a  wide  spectrum  of  potential  cyanobacterial  taxa  able  to  produce

ATX  (see,  among  the  others,  Carrasco et  al.,  2007;  van  Apeldoorn et al.,  2007;  Aráoz et al.,

2010;  Metcalf  and  Codd,  2012;  Quiblier et al.,  2013). Many reports, however, were not confirmed

by analyses made on isolated strains. Toxic species can be  detected using direct analytical chemical

approaches (Meriluoto and Codd, 2005;  Humpage et al.,  2012;  Metcalf et  al.,  2012)  as  well  as

molecular  methods  able  to  detect  the  presence  of  toxin  biosynthetic  genes  (Pearson  and  Neilan,

2008;  Sivonen,  2008;  Rantala-Ylinen et  al.,  2011a).  Nevertheless, until a few years ago, a genetic

molecular approach  to identify ATX encoding genes  was  not  feasible  because  of  the  unknown

biosynthetic  pathway  leading  to  the  production  of  anatoxin.  Biosynthetic  genes  coding  for

ATX  have  been  characterized  only  recently  in  a  benthic  Oscillatoria PCC 6506 (Méjean et al.,

2009; 2010) and planktonic Anabaena sp. strain 37 (Rantala- Ylinen et al., 2011b),  opening the way

to the design  and use of primers for the detection of genes coding ATX  in Oscillatoria, Phormidium,

Aphanizomenon and Anabaena strains (Cadel-Six et al., 2009; Ballot et al., 2010; Wood et al.,

2010; Rantala-Ylinen et al., 2011b).  In a recent work, Cerasino and Salmaso (2012) documented a

widespread presence of ATX in the Lake District south of the Alps. Based on analyses carried out on

environmental samples  collected during the warmer months, detectable concentrations of  ATX

ranging between 0.1 and 0.6  µg L-1were found in the lakes Garda, Iseo, Como and Maggiore, i.e. the
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largest lakes that experienced a recent colonization and summer surface blooms of Dolichospermum

lemmermannii (Salmaso et al., 2012). However, a clear identification of producers in the different

seasons was not possible because biological analyses on isolated strains were not available.  Based

on the hypothesis that filamentous cyanobacteria could possibly be amongst the ATX producers,

cultures of Oscillatoriales were established from environmental samples collected since 2014 in Lake

Garda with the aim to isolate potential new producers. Owing to the very low abundance of

cyanobacteria usually recorded in the winter months (Salmaso, 2011), samples were collected using

plankton nets and initial cultures established. The isolated cyanobacteria were then examined and

identified following a polyphasic approach (Vandamme et al., 1996; Lee et al., 2014), which included

microscopic species identification, genetic and phylogenetic analyses. Culture strains were further

screened for cyanotoxins, particularly ATX and MCs, and tested for the presence of ATX and MCs

biosynthesis encoding genes. Above approach led to the discovery and characterization of a new

unexpected filamentous cyanobacterial producer of ATX.

Table1. Cyanobacterial anatoxin‐a producers. The list, at the genus level, includes only the results obtained from
analyses carried out on isolated strains in culture conditions.
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5.2. Methods

5.2.1. Study site

Lake Garda is located at the southern border of the north eastern Italian Alps, at 65 m a.s.l.. With a

volume of more than 49×109m3, a maximum depth of 350 m and a surface of 368 km2, Lake Garda

is one of the largest freshwater bodies in Europe. From the 1970s to the 1990s the average

concentrations of total  phosphorus  in the whole water column  doubled, from  10 to 20 µg L-1and

beyond.  Present concentrations are decreasing and stabilising around 18 µg L−1.  Information on the

lake and previous investigations were reported in Salmaso and Mosello (2010).

5.2.2. Collection of samples and environmental variables

The sampling station was located at the deepest point of the lake (350 m), between the villages of

Brenzone and Gargnano (45.69 N, 10.72 E). Field measurements and collection of samples were

made between February and April 2014 (Table 2).

Table2. Chemical and physical characteristics at the surface and around the upper boundary of the euphotic layer (Zeu,
20 m) in the three sampling dates. DIN, dissolved inorganic nitrogen; SRP, soluble reactive phosphorus; TP, total
phosphorus; Kd, vertical light attenuation coefficient.

Owing to the very low abundance, in February and March 2014 phytoplankton was collected by single

vertical tows from 10-15 m to the surface with a 25 cm diameter 80 µm mesh plankton net, which

resulted in 0.5-0.7 m3 of filtered water. In April 2014, filamentous cyanobacteria were collected with

plankton nets and  Niskin  bottles. Vertical  profiles  of  water  temperature were carried  out  with  a

multi-parameter  probe  (Idronaut  Ocean Seven 316). Secchi disk readings were carried out with the

aid of a bathyscope, while light  attenuation  coefficients  (Kd) were measured with  a  submersible

irradiance  sensor,  LiCor  192SA.
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The euphotic depth was computed as Zeu= ln (100)×Kd-1(Kirk, 1994). Concentrations of dissolved

inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and total phosphorus (TP) were carried

out using standard methods (APHA et al., 2000; Cerasino and Salmaso, 2012).

5.2.3. Isolation of strains, culture conditions and morphological characterization

Single  filaments  of  cyanobacteria  were  isolated  from  diluted  net-phytoplankton  samples under

a  stereomicroscope  (Leica M125) and  a macroscope (WILD M420) using a micropipette. The  single

filaments were washed 3 times and placed in microwell plates  containing  3 mL  Z8 medium (Kotai,

1972). After initial growth, as assessed by visual inspection and the macroscope, single strains were

first  transferred  to  30  mL  Z8  medium  and,  upon  successful  growth,  to 150 mL  medium  Z8

CELLSTAR (Greiner  Bio-One  GmbH)  cell culture  flasks. The  flasks were  maintained  at 20 °C

under continuous light conditions (25µmol m-2s-1).From each algae culture, after careful

homogenization, 15mL were preserved with Lugol’s solution for biovolume determinations, whereas

250 mL were filtered with a 0.45 µm GF/C filter (Whatman – GE Healthcare Life Sciences) for

subsequent cyanotoxin and genetic analyses.Depending on abundances, cell densities and biovolumes

were estimated by measuring cell sizes and length of filaments from 1 to 3 transects at 200

magnification in10 mL sedimentation chambers of 25 mm diameter. Morphological features were

analysed using an inverted microscope (Zeiss Axiovert 135).Single specimens were identified

following morphometric and morphological criteria described in Komárek and Albertano (1994) and

Komárek and Anagnostidis (2007).  Over  65 single filament cultures were analysed microscopically,

while 24  randomly selected cultures were analysed for the presence of cyanotoxins and for

preliminary  sequencing  of  16S  rRNA genes  with  reverse  primer . Complete  analyses  of toxins,

cyanotoxins encoding genes, and sequencing of 16S rRNA and rbcLX genes (with forward and

reverse primers) were carried out in 4 single filament cultures selected randomly from each of the 3

sampling time points (12 isolates).

5.2.4 Cyanotoxins analyses

5.2.4.1 Toxin extraction

To  measure  intracellular  concentrations  of  toxins,  250 mL of  cyanobacterial cultures  were filtered

with  a  0.45 µm GF/C filter. The filter was frozen and stored at -20 °C until further processing (within

one week of filtration). For toxin extraction, the filter was homogenized for 5 min after addition of 7

mL of extraction solvent (70% methanol containing 0.1% formic acid) in a homogenization tube.

After centrifugation (9850 G), the supernatant was transferred and the pellet was re-extracted again
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with an additional 7mL of extraction solvent. The evolving supernatants were combined. A 2 mL

aliquot of the filter-extract was filtered on Phenex-RC syringe filter (0.2 µm pore size, Phenomenex)

and used for the determination of MCs and nodularin (NOD- R) content via liquid chromatography–

mass spectrometry (LC-MS). The remaining filter-extract was reduced under vacuum and filtered

with a 0.2 µm pore size RC syringe filter and the filtrate subjected to alkaloid (ATX, and

cylindrospermopsin, CYN) LC-MS analytics.

5.2.4.2 LC-MS analysis

LC-MS  analyses  were  carried  out  on  a  Waters  Acquity  UPLC  system directly coupled to an

AB SCIEX 4000 QTRAP mass spectrometer equipped with a turbo ion spray  interface. Standard

injection volume was 2 µL. The analysis of MC and nodularin-R was carried out using a Phenomenex

Kinetex XB-C18 column (1.7 μm particle size, 2.1 × 50 mm) at 40°C. The mobile phase consisted of

water (A) and acetonitrile (B), both containing 0.1% formic acid. A linear gradient scheme was

employed: the starting eluent was 80% A, decreased to 30% A at 4.5 min, and finally restored at 80%

A at 6.5 min (hold 0.5 min). The total run time was 7 min with a flow rate of 0.25 mL min-1. The

analysis of CYN and ATX was carried out using a Phenomenex Kinetex HILIC column (1.7 μm

particle size, 2.1 × 50 mm) at 30°C. The mobile phase consisted of water with 1%  acetonitrile (A),

containing ammonium acetate (10 mM) and acetic acid (10 mM), and acetonitrile (B). A linear

gradient scheme was employed: the starting eluent was 10% A (hold 0.5 min), raised to 25% A at 1

min (hold 1 min), raised to 60% A at 3.5 min (hold 2 min),  and finally  returned to 10% A at 8 min

(hold 2 min). The total run time was 10 min with a flow rate of 0.25 mL min-1. The mass detector

was operated in positive Electro Spray mode (ESI+) using the Multiple Reaction Monitoring (MRM)

scanning mode. General settings were as follows: ion spray voltage 5000 V, entrance potential 10 V,

cell exit potential 10V, interface heater temperature 300°C. For each target compound, two transitions

were monitored.  Toxin  identification  was  achieved  by comparing  the  chromatographic  retention

time  and  relative  intensity  of  the  two  transitions  with those of the commercial standards. Toxin

quantification was performed with the external standard procedure, in which, for each compound, a

calibration curve was obtained using the most intense transitions. Compound-specific settings of the

mass detector and performance data of the methods are listed in Table 3.
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Table3. Compound-specific parameters in LC-MS analysis of toxins. All toxins are reported in the same table for clarity,
but MC/NOD and CYN/ATX are analysed in different chromatographic conditions. RT = chromatographic retention
time; DP = declustering potential; CE = collision energy.

Homoanatoxin-a and other degradation products e.g. dihydro- and epoxy-homoanatoxin-a were not

quantified because analytical protocols were still under evaluation. Microcystins (RR,  [D-Asp3]-RR,

YR,  LR,  WR,  LA,  LY,  LW,  LF),  NOD-R  and  CYN  analytical  standards  were purchased  from

Vinci Biochem, ATX from Tocris Cookson Ltd. All solvents and reagents used in this procedure were

LC-MS grade. The limits of quantitation (LOQ) were between 30 and 500 ng L-1(different MCs

congeners), 140 ng L-1(NOD-R), 30 ng L-1(ATX), and 8 ng L-1(CYN).
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5.2.5 DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted from the filters using the Mo Bio PowerWater® DNA Isolation

Kit (Mo Bio Laboratories, Inc., CA, USA) following manufacturer's instructions. The quantity and

quality of DNA was measured by spectrophotometry with a NanoDrop ND-8000 (Thermo Fisher

Scientific Inc., MA,USA).Taxonomic identification and phylogenetic analyses of filamentous

cyanobacteria were carried out by the amplification of a short fragment (ca. 420 bp) of the 16S rRNA

gene using the forward primer CYA359F and an equimolar mixture of the reverse primers

CYA781Ra and CYA781Rb (Nübel et al., 1997) synthesized commercially (Sigma-Aldrich Co.

LLC). The PCRs were carried out on an Eppendorf Mastercycler ep (Eppendorf AG, Hamburg,

Germany). The  reaction mix, with a final volume of 25 µl, contained 1X Optimized DyNAzyme

PCR Buffer  (Thermo Scientific), 0.2 mM dNTPs mix (Thermo Scientific), 0.1 µM forward primer,

0.05 µM  200 each of the two reverse primers, 1U of DyNAzyme II DNA Polymerase (Thermo

Scientific), and 1 µl of DNA templates. Genomic DNA concentrations were in the range 4.9–20.3 ng

µL-1. The cycling protocol consisted of a first denaturation step at 94°C for 3 minutes followed by

35 cycles of DNA denaturation at 94° C for 30 s, primer annealing at 53° C for 30 s, strand elongation

at 72° C for 1 minute, and a final elongation step at 72° C for 5 min. PCR products were checked and

separated by 1.5% agarose gel electrophoresis stained with ethidium bromide. Sizing of DNA

fragments were first evaluated with a commercial DNA ladder (GeneRuler Express, Fermentas).

Besides 16S rRNA phylogenetic analyses, taxonomic identification of isolates presented in Table 4

was further checked using the rbcLX gene region. rbcLX products (878 bp) were amplified  using

the primers CW and CX, following the protocols in  Rudi et al. (1998), with the exception of the

number of cycles in the second cycle step (35 instead of 38).

PCR  products  (16S  rRNA  and  rbcLX  genes)  were  cleaned  with  Exonuclease  plus  Shrimp

Alcaline Phosphatase (ExoSAP). The same primers as in the PCR (CYA359F and CYA781Ra for

16S  rRNA) were used with the  BigDye Terminator Cycle Sequencing technology (Applied

Biosystems), according to the manufacturers’ protocols. After purification in automation using the

Agencourt CleanSEQ® Kit (Beckman), products were run on an Automated Capillary Electrophoresis

Sequencer 3730XL DNA Analyzer (Applied Biosystems).  In order to trim the low  quality  ends,

sequences  were  checked  with  Chromatogram  Explorer  3.3.0  (Heracle  Biosoft).  Forward and

reverse chromatograms were further evaluated and assembled using the BioEdit 7.2.5 sequence

alignment editor (Hall, 1999). Sequences were deposited to the European Nucleotide Archive (ENA)

and analysed with Megablast (NCBI) against 16S rRNA and rbcLX gene sequences.
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In  addition  to  the toxins  analyses  (section  2.4), the isolated  strains were analysed for  the  presence

of MCs and ATX encoding genes. The presence of mcyE genes was evaluated according to the PCR

protocols of Rantala et al. (2006) using general primers (mcyE-F2/R4) and Anabaena 90 as a positive

control (Ana-90; UHCC). The presence of anatoxin-a synthetase gene (anaC) was determined using

the primer pairs anaC-osc, Osc-193 (UHCC) as positive control, and the methods described in

Rantala-Ylinen et al. (2011b).

Table4. (a) Codes of Tychonema bourrellyi strains isolated in Lake Garda (Northern Italy) between February and April
2014, and corresponding ENA accession numbers of 16S rRNA and rbcLXgenes.(b) Polymerase chain reaction
amplification of ATX and MCs biosynthesis encoding genes (anaC and mcyE), and concentrations of anatoxin-a (ATX)
and total microcystins (MCs); “+” and “-“indicate the presence and absence of expected amplicons using agarose gel
electrophoresis. “nd”, not detectable.
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5.2.6 Comparison with Norwegian Tychonema strains

Eight Tychonema bornetii and Tychonema bourrellyi strains isolated in Norway between 1976 and

1982 from phytoplankton samples collected in the River Glåma and Lake Mjøsa were included in the

study. The eight Norwegian Tychonema strains are cultivated in the culture collection of algae of the

Norwegian Institute for Water Research (NIVA-cca). DNA extraction was conducted according to

Ballot et al.  (2014),  PCR  and  sequencing  of  the  16S  rRNA  gene  was  conducted  u sing  the

methods described in Ballot et al. (2008). The Norwegian Tychonema sp. strains were investigated

for the production of MC and ATX using the Abraxis Microcystins/Nodularins (ADDA), ELISA Kit

and the Abraxis Anatoxin-a Receptor-Binding Assay (Biosense, Bergen, Norway) respectively. The

same strains were tested for the anaF encoding gene using the primers atxoaf and atxoar and the

protocol according to Ballot et al. (2010) and Ballot et al. (2014). The presence of  mcyE genes was

evaluated  according  to  the  PCR  protocols  of  Rantala et  al.  (2006)  using general primers (mcyE-

F2/R4). Sequences were submitted to ENA.

5.2.7 Phylogenetic analysis

The 16S rRNA genes of the 20 Tychonema strains listed in tables 4 and 5 were analysed using

molecular sequence assembly software Seqassem version 04/2008 (SequentiX-Digital DNA

processing, Klein Raden, Germany).The Align(version 03/2007) MS Windows-based manual

sequence alignment editor (SequentiX -Digital DNA processing, Klein Raden, Germany) was used

to obtain DNA sequence alignments, which were then corrected manually. Segments with highly

variable and ambiguous regions and gaps making proper alignment impossible were excluded from

the analyses. A 16S rRNA gene set containing 405 bp was used. Gloeobacter violaceus (AF132790)

was employed as outgroup in the 16S rRNA tree. Thirty-three additional Oscillatoriales from

GenBank were included in the 16S rRNA gene sequence analysis.

A phylogenetic tree for 16S rRNA gene sequences was constructed using the maximum likelihood

(ML) algorithm with 1000 bootstrap replicates. In the ML analysis, evolutionary substitution model

was evaluated in MEGA version 6 (Tamura et al., 2013) and K2+G+I was found to be the best-fitting

evolutionary model for the 16S rRNA gene.
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Table5. (a) Codes of Tychonema bourrellyi strains isolated in Lake Mjøsa and River Glåma (Norway), and corresponding
ENA accession numbers of 16S rRNA genes. (b) Polymerase chain reaction amplification of anaF and mcyE genes, and
positive or negative detection of anatoxin-a (ATX) and total microcystins (MCs) measured using ELISA Kit and
Anatoxin-a ReceptorBinding Assay. “+” and “-“indicate the presence and absence of expected amplicons using agarose
gel electrophoresis (anaF and mcyE), and the presence and absence of corresponding toxins (ATX, MCs), respectively.

5.3. Results

5.3.1. Environmental samples

In the first 20 m, water temperatures in the three sampling dates ranged between 9.1 and 12.4°C

(Table 2). An incipient stratification was apparent beginning in April. DIN and TP concentrations

were in the range 232-342 µg N L-1and 10-16 µg P L-1. The euphotic depth was between 22 and 27m.

5.3.2. Microscopic examinations

Over 65 cultures were obtained from the isolation of single filaments collected in February, March

and April. In the original samples, the filaments were solitary and free floating, pale red, sometimes

longer than 2 mm. All the specimens looked quite different from the filaments of Planktothrix

rubescens,the predominant cyanobacterium in Lake Garda, and more similar to other Phormidioideae,

namely Tychonema spp. (Komárek and Albertan, 1994; Kotare and Anagnostidis, 2007). A first

preliminary round of PCR and sequencing with the reverse primer CYA781Ra on 24 cultures matched

well to various Tychonema species (similarity between 99% and 100%), as well as to sheathed

Oscillatoriales (Phormidium, Microcoleus) (see section 5.3.3).
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In the algal cultures, filaments were colourless or pale purplish/brown, rarely green, unbranched and

without apparent firm sheaths. Cells usually were more or less isodiametric, with widths between 4.5

and 7 µm (Fig. 1). In some cultures, cells looked shorter (< 5 µm) than wide (e.g. Fig. 1d-e). Filaments

looked immotile or slightly trembling, with rounded apical cells, without calyptra and with no or very

slight attenuation at the ends. In some specimens, the width changed slightly along the filaments (e.g.,

Fig. 1a, c, d). Sometimes, the cells had clearly visible large holes, similar to “vacuoles” (quite

apparent in Fig.  1a, c), which, actually, are widened thylakoids (Komárek and Albertano, 1994). The

centripetal formation of the cross walls was often easily detectable (e.g., arrows in Fig. 1b).These

characteristics were consistent with the diacritical features described forT.bourrellyi. However,

taking into account that planktonic populations of Tychonema tenue could possibly be identical to T.

bourrellyi (Komárek and Anagnostidis, 2007), the microscopic discrimination of these two species

in pelagic environments is not straightforward.

Figure1. Micrographs of Tychonema isolated from samples collected in Lake Garda in (a) February, (b, c) March and (d,
e) April. Scale bars = 10 µm. From (a) to (e), filaments are 5.7, 5.8, 5.2, 5.3 and 6.8 µm wide, respectively. The arrows
in (b) indicate the centripetal formation of the cross wall. Observations made at 400× and phase contrast.
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5.3.3. Sequences and phylogenetic analyses

The morphological determination of the isolated strains was supported by phylogenetic analyses

based on 16S rRNA performed on the 12 selected strains in Table 4. Phylogenetic relationships of

the investigated strains are presented in the ML tree of the 16S rRNA region of Oscillatoriales strains

(Fig. 2). All 16S rRNA sequences from the Italian and Norwegian Tychonema strains (Tables 4 and

5) were grouped in a distinct cluster together with Tychonema sequences derived from GenBank. The

Tychonema cluster was very closely related to a Phormidium autumnale and a Microcoleus

antarcticus strain (Fig. 2). The whole cluster was supported by a bootstrap value of 96%.

These findings were further confirmed by a BLAST (NCBI) homology search. Results showed that

the rbcLX gene regions sequenced in the 12 selected strains (Table 4) were >99% similar to T.

bourrellyi (7 strains) and T. bornetii (1 strain).
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Figure2. Maximum likelihood tree determined on the basis of partial 16S rRNA gene sequences of 53 Oscillatoriales
strains. Outgroup=Gloeobacter violaceaus (AF132790). Strains from this study are marked in bold. Bootstrap values
above 50 are included. The scale bar indicates 2% sequence divergence.
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5.3.4. Toxicity of the single strains

Of the 24 strains of Tychonema isolated from Lake Garda and submitted to LC-MS analyses, 14

produced ATX, although in some cases, at very low concentrations (3 isolates with  ATX < 0.1 µg L-

1). A typical LC-MS chromatogram, showing the analyses of standards (ATX and CYN) and of a

representative sample is reported in Fig. 3. The molecular analyses allowed amplifying the anaC

encoding gene fragment of the anatoxin-a synthetase (ana) gene cluster. In the same group of 24

isolates, PCR products were identified in 11 strains. No anaC PCR products were identified in all the

non-ATX producing strains, and in the 3 culture samples with very low concentrations of ATX (< 0.1

µg L-1).

A representative picture of the anaC products amplified with anaC-osc primers in the 12 selected

strains subjected to phylogenetic analysis and included in Table 4 is reported in Fig. 4. In  these 12

selected strains, the cell quota of  ATX on a biovolume basis were between 1.3 and 2.6 µg  mm-3in

ebruary, 0.1 and 0.3 µg mm-3 in March, and 0.2 and 1.8 µg mm-3April. On a cell basis, corresponding

values were in the range .18-0.35 pg cell-1(February), 0.01-0.04 pg cell-1(March) and 0.02-0.20 pg

cell-1(April).

As for the strains isolated in the Norwegian freshwaters (Table 5), Tychonema bourrellyi strain

NIVA-CYA 96/3 was confirmed as ATX producer using the Abraxis Anatoxin-a Receptor- Binding

Assay, while the other seven strains from NIVAcca tested negative for ATX. Tychonema bourrellyi

strain NIVA-CYA 96/3 and T. bornetii strain NIVA-CYA 60 tested positive for anaF of the ATX

synthetase (ana) gene cluster (accession numbers LM651418 and LN555581, respectively).

None of the Italian and Norwegian Tychonema strains were positive for MC, which was also

confirmed by the absence of mcyE PCR products in all the samples analysed (Tables 4 and 5).
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Figure3. Liquid chromatography–mass spectrometry chromatograms resulting from the injections of a mixture of pure
standards of cylindrospermopsin (50 ng/mL) and anatoxin-a (165 ng mL-1) (panel a) and of an extract of a Tychonema
culture (panel b). For each toxin, the traces of the two monitored MRM transitions are shown (solid and dashed lines).

Figure4. PCR products amplified with anaC-osc primers (Rantala-Ylinen et al., 2011b). Samples from 1 to 12 are coded
as in Table 4. “+” positive (Osc-193 UHCC strain) and “–“negative controls. Size of the ladder (in base pairs): 100, 300,
500, 750, 1000, 1500, 2000, 3000, 5000. The amplicon products are located between the bands 100-300 bp.
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5.4. Discussion

After establishing several cultures of potentially toxic filamentous Cyanobacteria collected in Lake

Garda, we discovered that Tychonema is able to produce ATX.This is the first discovery of a

planktonic genus belonging to the Oscillatoriales able to produce ATX.These findings were

confirmed with the discovery of ATX producing Tychonema strains isolated in Norway.

The discovery of Tychonema in Lake Garda was quite unexpected. The predominant Oscillatoriales

in this lake and in the other large lakes south of the Alps (Iseo, Como, Lugano and Maggiore) is P.

rubescens (Salmaso et al., 2012). Nevertheless, the high number of isolates of P. rubescens analysed

so far by molecular methods (16S rRNA, rpoC1, rbcLX genes) in these lakes referred to samples

mostly collected during the late spring and summer months, i.e. when the biomass development of

this species was at its seasonal maximum (P. rubescens accession numbers are reported in D’Alelio

et al., 2012; 2013). During winter, the abundances of P. rubescens and of the other Oscillatoriales

(Limnothrix sp., Planktolyngbya limnetica) in Lake Garda are very low (Salmaso, 2011). In the work

presented here, the isolation of filaments of Tychonema was possible on samples collected by means

of plankton nets, and filtering 0.5-1 m3 of lake water. Filaments in the samples collected with the

Niskin bottles were rare and difficult to isolate. The presence of Tychonema appeared almost

exclusive, because only a few filaments of P. rubescens were isolated from the net samples. On the

other hand, the concurrent presence of P. rubescens was confirmed by molecular analysis carried out

by checking the presence of rbcLX PCR products (see D’Alelio et al. 2013) on the environmental

samples collected from February and April between the surface and 60 m (data not shown).

Tychonema is considered a cold-stenotherm genus of northern temperate regions (Komárek et al.,

2003). Abundant populations of T. bourrellyi were documented particularly in northern Europe and

Canada (Lund, 1955; Skulberg and Skulberg, 1985; Rudi et al., 1998; Komárek et al., 2003). In Lake

Garda, the presence of this species in the colder months is consistent with these features. On the other

side, the absence of gas vesicles, and therefore the inability to control buoyancy and vertical position,

can represent a negative selective characteristic in deep and large lakes during the stratification

months. The ecological role of the large “vacuoles”, which are particularly apparent in the older cells,

is still unclear.The large intracellular “holes” are due to the widened thylacoid membranes enveloping

the enlarged intrathylacoidal spaces. Electron microscopy showed that these spaces were filled with

electron dense fibrillar structures or globules similar to polyphosphate bodies (Komárek and

Albertano, 1994). It is interesting to observe that another species – T. sequanum – was identified by

microscopic methods in Lake Maggiore (Kamenir and Morabito, 2009). This taxon, however, has
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smaller dimensions (2.5-5 µm width) compared to T. bourrellyi. Recently, T. bourrellyi was recorded

also in Lake Erhai, in China. Comparative analyses of the 16S rDNA gene sequences determined

from filaments isolated in this lake confirmed that the Chinese strains were grouped with T.

bourrellyi/T. tenue (Wei et al., 2012).

The number of genera known to produce ATX is quite limited, especially when the list of producers

is restricted to the only cases determined on species isolated and analysed in culture (Table 1). In

Italy, reports of ATX are quite rare, referring exclusively to environmental samples (e.g., Cerasino

and Salmaso, 2012). The production of ATX was associated with blooms or higher development of

Anabaena planctonica (Dolichospermum planctonicum) (Bruno et al., 1994), Anabaena crassa (D.

crassum) (Messineo et al., 2009) and “a peculiar P.rubescens population” (Viaggiu et al., 2004;

Messineo et al., 2009). However, the ability of isolated populations of these species to produce ATX

in culture conditions was not confirmed.

So far, the only Oscillatoriales proven to produce ATX in isolated populations belonged to the genera

Oscillatoria and Phormidium (Table 1). These taxa are mostly detected in benthic or periphytic

substrates. In contrast, Tychonema bourrellyi is known to develop pelagic populations (as in our

study), opening new perspectives about the ability of pelagic Oscillatoriales to produce ATX. Taking

into consideration the positive amplification of anaF genes in the strains of T. bourrellyi and T.

bornetii isolated in Norway, the ability to produce ATX does not seem to be restricted to specific

climatic regions or isolated populations. On the other hand, the high variability of the ATX quota in

the isolates of T. bourrellyi grown under standard conditions suggests the existence of differences in

the ability to produce ATX in strains isolated in different months. Overall, differences in the cell

quota in the isolates of Lake Garda were between 0.01 and 0.35 pg cell-1, i.e. within more than 1 order

of magnitude, but well within the range estimated in cultures of Phormidium autumnale grown under

different iron and copper stress conditions (between ca. 0 and 1.2 pg cell-1; Harland et al., 2013), and

within the variations observed in natural benthic Phormidium mats (100 fold differences in ATX

quota; Wood et al., 2012).

The primer anaC-osc were specifically designed to amplify the anaC gene in the Oscillatoria genus

(Rantala-Ylinen et al., 2011b). These primers proved to be useful also in the amplification of the

anaC genes in Tychonema, suggesting the potential for a wider application of these specific protocols

also to other Oscillatoriales. Similar considerations apply to the atxoaf-r primers, which were

originally designed to detect Aphanizomenon species and other cyanobacteria (Ballot et al., 2010;

2014). In perspective, the comparison of the ana gene cluster encoding ATX in Tychonema and in the
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other cyanobacteria will provide further insight for the design of protocols tailored for the detection

of pelagic ATX producers (cf. Méjean et al., 2014).

Overall, our findings open new perspectives in the study of the ecology of phytoplankton and

cyanotoxins producers in Lake Garda and in the deep alpine and subalpine lakes. The new discovery

of Tychonema in Lake Garda will require to be studied in detail by evaluating the seasonal and spatial

dynamics, distribution and diversity, as well as toxic potential assessed both in environmental and

isolated strains. An open question that needs to be dealt with is the significance of this appearance

and its potential evolution particularly in relation with the very recent oligotrophication of the lake

and the decrease of P. rubescens populations (Salmaso and Cerasino, 2012).

5.5. Conclusions

In the work presented here, we identified a new pelagic cyanobacterium belonging to the

Oscillatoriales able to synthesize ATX. This species –Tychonema bourrellyi – was isolated for the

first time in the largest Italian lake (Lake Garda) during the winter and spring months.

 The identification of the species was carried out using a polyphasic approach, based on the

microscopic identification of diacritical characters, molecular methods (16S rRNA and rbcLX genes)

and phylogenetic analyses.

 Isolates of Tychonema were able to produce consistent amounts of ATX. The identification of this

new ATX producer was also verified by the amplification of the anaC genes involved in the

biosynthesis of ATX. These new findings were confirmed by the concurrent analyses of Tychonema

strains isolated in Norway.

 The significance and impact of Tychonema producing ATX will require additional evaluation by

studying the seasonal dynamics and toxic potential of populations in relation to the development of

other toxic cyanobacteria as well as in a wider geographical context.

 This study further highlights how the number of cyanotoxins producers in the freshwater

environments is possibly still underestimated. On the other hand, the way in which these results

originated, suggests that the only reliable strategy to identify cyanotoxins producers should be based

on the isolation of strains and their identification with a polyphasic approach associated to a

concurrent metabolomic profiling performed with advanced analytical techniques.
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5.9. Supplementary Tables:

Table1: List of primers used in this study

NOTE. Detailed information about each primer and references used in the table can be found on Chapter 2, Part III- Genetic analysis.

Target gene Primer names Amplicon
length (bp) Primer sequence (5'–3') References

16S rRNA Cyanobacteria CYA359F ~ 422 GGG GAA TYT TCC GCA ATG GG Nübel etal., 1997
16S rRNA Cyanobacteria CYA781R(a) ~ 422 GAC TAC TGG GGT ATC TAA TCC CAT T Nübel etal., 1997
16S rRNA Cyanobacteria CYA781R(b) ~ 422 GAC TAC AGG GGT ATC TAA TCC CTT T Nübel etal., 1997

Housekeeping gene for Planktothrix rbcLX-PrbcF 824 GGACATCCCTGGGGTAAT Lin etal., 2010
Housekeeping gene for Planktothrix rbcLX-PrbcR 824 TTGGACTTGCTTGACGAT Lin etal., 2010
Housekeeping gene for Planktothrix rpoC1-RPOF 608 TGGTCAAGTGGTTGGAGA Lin etal., 2010
Housekeeping gene for Planktothrix rpoC1-RPOR 608 GCCGTAAATCGGGAGGAA Lin etal., 2010

Housekeeping gene for Dolichospermum rpoBanaF 520-635 AGCMACMGGTGACGTTCC Rajaniemi etal.,2005
Housekeeping gene for Dolichospermum rpoBanaR 520-636 CNTCCCARGGCATATAGGC Rajaniemi etal.,2005

mcyE in Planktothrix mcyE-F2 249 GAA ATT TGT GTA GAA GGT GC Vaitomaa etal., 2003
mcyE in Planktothrix mcyE-plaR3 249 CTCAATCTGAGGATAACGAT Rantala etal., 2006
mcyB in Planktothrix mcyBA1tot 1692 CACCTAGTTGAAGAACAAGTTCT Kurmayer etal., 2005
mcyB in Planktothrix mcyBA1tot 1692 AGACTTGTTTAATAGCAAAGGC Kurmayer etal., 2005

mcyE in Dolichospermum mcyE-F2 247 GAA ATT TGT GTA GAA GGT GC Vaitomaa etal., 2003
mcyE in Dolichospermum AnamcyE-12R 247 CAA TCT CGG TAT AGC GGC Vaitomaa etal., 2003

anaC anaC-gen 366 TCTGGTATTCAGTCCCCTCTAT Rantala etal., 2011
anaC anaC-gen 366 CCCAATAGCCTGTCATCAA Rantala etal., 2011

anaC gene in Dolichospermum anaC-anab 263 GCCCGATATTGAAACAAGT Rantala etal., 2011
anaC gene in Dolichospermum anaC-anab 263 CACCCTCTGGAGATTGTTTA Rantala etal., 2011

anaC gene in Oscillatoria anaC-osc 216 CTCTATTCTCACAAGTTTGGTCT Rantala etal., 2011
anaC gene in Oscillatoria anaC-osc 216 GTTAGTTCAATATCAAGTGGTGGA Rantala etal., 2011
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Table2. All the PCR protocols and thermal cycles applied in this study.

16SrRNA gene in Cyanobacteria.

House-keeping gene in Planktothrix (rbcLX).

House-keeping gene in Planktothrix (rpoC1).

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer 359 F 0.1 µM
Primer 781R a 0.05 µM
Primer 781R b 0.05 µM
Polymerase 1U
DNA Template = 1µl
Final Volume= 25µl

No Step Temp Time Cycle
1 Initial 94 °C 3 min 1x
2 Denaturation 94 °C 30 Sec

35x3 Annealing 53°C 30 Sec
4 Extension 72°C 1min

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10X  PCR Buffer 1x
dNTP 0.2 mM
Primer rbcLX-PrbcR 0.1 µM
Primer rbcLX-PrbcF 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 25µl

No Step Temp Time Cycle
1 Initial 94 °C 5 min 1x
2 Denaturation 94 °C 40 Sec

35x3 Annealing 58°C 1 min
4 Extension 72°C 2 min

GO TO STEP 2
5 Final extension 72°C 8 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10X  PCR Buffer 1x
dNTP 0.2 mM
Primer rpoC1-PROF 0.1 µM
Primer  rpoC1-PROF 0.1 µM
Polymerase 1U
DNA Template= 1µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 94 °C 5 min 1x
2 Denaturation 94 °C 40 Sec

40x3 Annealing 58°C 50 Sec
4 Extension 72°C 2 min

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00
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House-keeping gene in Dolichospermum (rpoB).

mcyE gene in Planktothrix.

mcyB gene in Planktothrix.

Component Concentration
dd H2O
10X  PCR Buffer 1x
dNTP 0.2 mM
Primer rpoBF 0.1 µM
Primer rpoBR 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 94 °C 5min 1x
2 Denaturation 94 °C 1min

30x3 Annealing 59°C 1min,30sec
4 Extension 68°C 2 min

GO TO STEP 2
5 Final extension 68°C 7 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer mcyE-PlaR3 0.1 µM
Primer mcyE-F2 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 95 °C 3 min 1x
2 Denaturation 94 °C 30 Sec

30x3 Annealing 56°C 30 Sec
4 Extension 75°C 30 Sec

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer mcyBA1totfwd 0.1 µM
Primer mcyBA1totrev 0.1 µM
Polymerase 1U
DNA Template= 1µl
Final Volume= 25µl

No Step Temp Time Cycle
1 Initial 94 °C 5 min 1x
2 Denaturation 94 °C 40 Sec

35x3 Annealing 58°C 1 min
4 Extension 72°C 2 min

GO TO STEP 2
5 Final extension 72°C 8 min 1x
6 Cooling 4°C 00:00:00
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mcyE gene in Dolichospermum.

anaC-gene (general primer).

anaC gene in Oscillatoria.

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer mcyE-F2 0.1 µM
Primer mcyE-12R 0.1 µM
Polymerase 1U
DNA Template= 1µl
Final Volume= 25µl

No Step Temp Time Cycle
1 Initial 95 °C 3 min 1x
2 Denaturation 95 °C 30 Sec

30x3 Annealing 54°C 30Sec
4 Extension 72°C 30 Sec

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer anaCf 0.1 µM
Primer anaCr 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 94 °C 2 min 1x
2 Denaturation 94 °C 30 Sec

29x3 Annealing 58°C 30 Sec
4 Extension 72°C 30 Sec

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00

Component Concentration
dd H2O
10XPCR Buffer 1x
dNTP 0.2 mM
Primer ana-oscR 0.1 µM
Primer ana-osc F 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 94 °C 2 min 1x
2 Denaturation 94 °C 30 Sec

29x3 Annealing 52°C 30 Sec
4 Extension 72°C 30 Sec

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00
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anaC gene in Dolichospermum.

Component Concentration
dd H2O
10X PCR Buffer 1x
dNTP 0.2 mM
Primer anaC-anabF 0.1 µM
Primer anaC-anabR 0.1 µM
Polymerase 1U
DNA Template= 2µl
Final Volume= 20µl

No Step Temp Time Cycle
1 Initial 94 °C 2 min 1x
2 Denaturation 94 °C 30 Sec

29x3 Annealing 52°C 30 Sec
4 Extension 72°C 30 Sec

GO TO STEP 2
5 Final extension 72°C 5 min 1x
6 Cooling 4°C 00:00:00
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5.10. ADDITIONAL DATA

Beside the results published in manuscripts 3, this section reports a few additional results obtained

with the genetic analysis of the environmental sample collected in 2013 with general and genus-

specific primers. These data are preliminary, and will be used in future publications.

5.10.1 PCR anaylsis

When using the primer pair for 16S rRNA, all the samples collected from Lake Garda from January

to December 2013, showed positive amplification which confirmed the presence of cyanobacterial

DNA in the samples. PCR products corresponding to house-keeping genes (rbcLX and rpoC1) in

Planktothrix rubescens showed strong amplification in the summer months and September, but faint

amplification during winter months (Fig. 1a, 1b). However, while using housekeeping genes specific

for Dolichospermum, strong products were observed in all the months, except January, February and

March (Fig. 1c).

Figure1. (a) PCR products using rpoC primer pair specific for Planktothrix.  (b) PCR products using rbcLX primer
pair specific for Planktothrix (C) PCR products using rpoB primer pair specific for Dolichospermum.



CHAPTER 5

127

The samples were also analysed for the presence of anaC gene (Fig. 2). When using the general

primer for anaC gene, strong PCR products were detected in May and during the summer months

(Fig. 2a). The same trend was observed when we used genus-specific primer to detect anaC gene

in Oscillatoria (Fig. 2b). Interestingly, against our assumption that Dolichospermum can be a

potential ATX producer, no PCR product was observed when using genus-specific primer to detect

anaC gene in Dolichospermum (Fig. 2c).

Figure2.(a) PCR products using general anaC primer pair to target anaC gene in all the possible ATX producers (b)
PCR products using anaC-osc primer pair to target anaC gene in Oscillatoria (c) PCR products using anaC-anab
primer pair to target anaC gene in Dolichospermum.

Eventually,  in order to check the capability of the two known toxic cyanobacterial species in Lake

Garda, Planktothrix rubescens and Dolichospermum lemmermannii, for producing MC,

environmental samples were analysed with primers targeting mcyE and mcyB genes. We assumed
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the both species are able to produce MC. No amplification was detected when using specific

primers to target Dolichospermum specific mcyE genes (Fig. 3a). However very clear and strong

PCR products were achieved during summer and early autumn when using specific primers to

target mcyB and mcyE genes in Planktothrix (Fig.3 b,c). These results, confirming the conclusions

in Shams et al. (2015), indicate that most (all) of the microcystins in the Lake are produced by

Planktothrix.

Figure3.(a) PCR products using mcyE-F2/ AnamcyE-12R primer pair to target mcyE gene in Dolichospermum (b)
PCR products using mcyBA1tot primer pair to target mcyB gene in Planktothrix (c) PCR products using mcyE-F2/
mcyE-plaR3 primer to target mcyE gene in Planktothrix.

NOTE 1: Detailed information about positive controls used in each PCR analysis in this section can

be found on (CHAPTER 2- Part III: Genetic analysis).

NOTE 2: All the gel pictures represent samples starting from June to December 2013 and from

January to May 2013 (left to right), except figure3-C, which represents the mcyE in Planktorhrix

from June to August, at 4 different depths (0-2, 9-11, 19-21 and 60 m, left to right).
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5.10.2 Phylogeny analysis

The taxonomic attribution of the Oscillatoriales identified in this research was confirmed adopting a

polyphasic approach. The strategy behind this approach has been described in chapter 5 (Shams et

al., 2015), which reports the description of the new Tychonema populations discovered in Lake

Garda. The same approach has been adopted for the confirmation of the taxonomic identification of

Planktothrix rubescens. The autecology and toxin production in this species have been widely

described in previous works (Salmaso et al., 2014). The taxonomic identification of P. rubescens

identified in the samples recorded in the summer 2013 (July-September) has been confirmed by

phylogenetic characterization in (Fig.4). The individuals collected in Lake Garda in 2013 form a tight

cluster along with other individuals collected in other European lakes (NIES, CCAP) or in previous

sampling campaigns in Lake Garda (FEM DD).

Figure4. Molecular phylogenetic characterization of P. rubescens (NJ, Tamura and Nei 1993 method, rooted) based on
rpoC1 DNA sequences (DNA-dependent RNA polymerase gene) (>450 bp). The figure is obtained computing a
Neighbour Joining tree after collapsing weak nodes (with bootstrapping values < 70%, based on 1000 replicates).
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5.10.3 qPCR anaylsis

5.10.3.1 Seasonal and spatial dynamic of anaC-osc copy numbers

From June to November 2013, environmentals samples taken from 3 different depth (0, 10, 20m)

were analysed with qPCR to quantify the ATX gene (anaC) copy numbers. The gene copies, which

were detected at all depths, were particularly abundant between 10 and 20 m).

As shown in figure 5, the anaC-osc copy numbers were more abundant during the summer months,

specifically on June and July, and the highest copy numbers were 38563 copies ml-1 recorded for the

month July at the depth of 20 m.

From August onward, the copy numbers declined dramatically to less than 5000 copies ml-1. The

lowest value was recorded during the November with 79 copies ml-1.

Figure5. Seasonal and spatial distribution of anaC-osc copy numbers during summer and autumn in

Lake Garda.

5.10.3.2 Correlation between ATX conentration and anaC-osc copy numbers

As demonstrated in figure 6, the same trend was observed for ATX concentration. The highest values

were recorded during summer specifically on June and July. However, towards the end of the summer
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and autumn months, the ATX concentration decreased significantly. A strong, positive linear

correlation between anaC copy numbers and ATX concentrations was found (Fig. 7).

Figure6.The development of anaC copy numbers (measured with qPCR) and ATX concentrations (determined by LC–

MS) in Lake Garda from June to November 2013.

Figure7. Modeling the anaC-osc copy number and ATX concentration
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6. Discussion

Planktonic cyanobacteria frequently form blooms which can pose a threat when water is used for

drinking or recreational activities. Many of bloom forming cyanobacteria are able to produce a variety

of toxins which are known as a global hazard to human and animal health. In this study, three aspects

were addressed:

 Cyanobacterial toxin diversity. Many studies have investigated cyanotoxins diversity through

different chemical analysis, among them ELISA it is a very popular screening tool. However, it

provides limited quantitative information for specific groups of cyanotoxins and lack the ability to

distinguish the different variants of microcystins. Therefore, in this study we applied the highly

sensitive LC/MS methods to identify and quantify cyanotoxins in Lake Garda.

 Toxin transfer through foodweb. The adverse effect of cyanotoxin on aquatic animals has been

documented by many papers. However, no investigations were madeon the cyanotoxin accumulation

pattern in zooplankton. This aspect plays an important role in the transfer of cyanotoxins to higher

trophic level. In this study, we studied accumulation pattern of MC in Daphnia magna while grazing

on Planktothrix rubescens. The models obtained from this stuty could illustrate better the toxin

accumulation pattern in the body of D. magna.

 Genetic analysis. Molecular detection methods have been reported as very fast and precise tools

to study cyanotoxin genes in freshwater ecosystems. In this study, we investigated the presence of

different toxin genotypes in environmental samples of Lake Garda and isolated strains by applying

different general/genus specific primers.

Detailed information for each topic can be found in the respective CHAPTERS (3-5). In the following
section, results of each part will be discussed:
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6.1 Cyanobacterial toxin diversity

Cyanotoxins produced by freshwater cyanobacteria have been responsible of many intoxications in

human and animals (Metcalf and Codd, 2012). Under certain circumstances, they can reach high

concentrations in waters and cause health and ecological risks. The role of climate change (increased

temperature, UV) has been discussed by many authors in connection with cyanobacterial growth and

elevated cyanotoxin production (O’Neila et al., 2012 and references therein).

Microsystins are the most common hepatotoxins involved in animal poisoning events, including death

of cattle, sheeps, dogs, horses (Briand et al., 2003). Their negative effect on aquatic biota

(zooplankton, crustaceans, molluscs and fish) has been also investigated by many studies (Zurawell

et al., 2005; Ferrão-Filho et al, 2002). Furthermore, several studies demonstrated that microcystins

were associated with tumour incidence (Humpage et al., 2000; Dietrich and Hoeger, 2005; Svircev

et al, 2009).

Anatoxin-a is a potent neurotoxin that has been responsible for fatal intoxications of dogs and

livestock reported from different countries including; France (Cadel-Six et al., 2007), Netherland

(Faassen et al., 2012), Scotland (Edwards et al., 1992), Japan (Park et al. 1993).

Thus, cyanotoxins are regarded as very important chemical compounds that can negatively affect

human, aquatic animals and ecosystem functioning. Regular monitoring and up-to-date information

regarding cyanotoxins in each water body play an important role for health authorities.

Cerasino and Salmaso (2012) reported data about the cyanobacterial toxin diversity in samples

collected on 2009 from nine lakes located in the Italian subalpine region. They detected MCs in all

lakes, and also ATX in four lakes (with concentrations varying from 45 to about 590 ng/l). They

found in Lake Garda, the microcystin RRdm was always the most dominant variant of MC with more

than 90% of the total MC with the highest concentration observed in late summer-early autumn. The

ATX was also observed in 4 lakes with the highest amount recorded for Lake Garda in July.

The first part of the present work aimed to continue analysing the toxin diversity in Lake Garda and

to elucidate the temporal and spatial distribution of MC variants and ATX in water sample collected

during the period of 2011-2013.

Water samples were analysed with LC-MS and the investigation showed ATX and MC have been

always present and it could better demonstrate that Lake Garda has a toxic potential. A seasonal

pattern for both MC and ATX was found. MC observed with typical late summer-early autumn peaks,
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however, ATX recorded with an early summer peak, specifically during June- July. Five different

MC variants were identified and quantified, and the variant MC-RRdm was always dominant over

the others. In CHAPTER 1, the temporal behavior of the five MC variants was furthermore

demonstrated. Four MC variants (RRdm, LRdm, YR,RR) are highly correlated, which means they

are produced at the same time. On the contrary, MC-LR appears to be produced independently.

6.2 Toxin transfer through food web

MC, the most common cyanotoxin, has been responsible of many negative effects in aquatic

organisms and food webs throughout the world. The filamentous cyanobacterium Planktothrix

rubescens, is the best known producer of MC. In spite of the widespread occurrence of toxic

Planktothrix in European lakes, Daphnia grazing on filamentous cyanobacteria has been investigated

so far by only a limited number of studies.Therefore, the second part of the study focused on the

accumulation of MC in Daphnia magna grazing on Planktothrix. We demonstrated that Planktothrix

filaments declined significantly over time in the presence of daphnia as a grazer.

This study was the first report demonstrating the kinetics of MC accumulation in D. magna, by

applying models describing accumulation of MC (stored in P. rubescens cells) in the body of Daphnia

over time. The experiments showed quite clearly how the relationship between the accumulation of

MC in Daphnia and the initial concentrations of toxic cyanobacteria and toxins can be described  with

general linear and  exponential models, depending on the exposure time.

The models obtained from this study could have important implications for the transfer of toxins

along the trophic webs. The non-linear patterns of MC accumulation which was shown in this study

could indicate that trophic transfer of MC to higher trophic levels would be strongly dependent on

the trophic status of water bodies and the degree of toxicity of cyanobacterial strains characterized by

different toxins cell quota.

6.3 Genetic analysis

In this study, the question about the potential ATX producer in Lake Garda was partially solved. After

checking the environmental samples of 2013 with specific primers for anaC gene in Dolichospermum,

a negative PCR amplification was observed, therefore our assumption for considering the

Dolichospermum as a potential ATX producer was not confirmed.

Considering a few recent papers describing the presence of ATX encoding genes in several

Oscillatoriales (Aráoz et al., 2005; Méjean et al., 2009), our first hypothesis was that production of



CHAPTER 6

137

ATX in Lake Garda could be ascribed to P. rubescens (an Oscillatoriales). Moreover, since there was

no specific primer to target anaC gene in Planktothrix, the environmental samples were further

checked with the anaC-osc primers, which target anaC gene in Oscillatoria. Interestingly, positive

amplification was observed throughout a whole year of observations, confirming the presence of ATX

genotypes in this lake. At this stage, however, the production could not be attributed to P. rubescens.

At the next step, cultures of single strains isolated from environmental samples were analysed

adopting a polyphasic approach, which included cyanotoxins analysis, microscopic species

identification, and genetic and phylogenetic analyses.

This approach led to the discovery of a new, unexpected Oscillatoriales producing ATX in Lake

Garda, namely Tychonema bourrellyi. This is the first discovery of a planktonic genus belonging to

the Oscillatoriales able to produce ATX.

The identification of this new ATX producer was also verified by the amplification of the anaC genes

involved in the biosynthesis of ATX. The results were confirmed by the concurrent analyses of

Tychonema strains isolated in Norway.

However, more study is needed to evaluate the seasonal and spatial dynamics of Tychonema in Lake

Garda, as well as toxic potential assessed both in environmental and isolated strains.

Nevertheless, other questions still remain to solve. In particular the ability of P.rubescens and D.

lemmermannii to produce ATX. Even thought environmental samples were negative for anaC gene

in Dolichospermum, this does not necessarily mean that D.lemmermannii lacks this gene; further, its

detection could be hampered by the low abundance of Dolichospermum and therefore lack of enough

biomass for DNA extraction. The only reliable way is through investigating the toxic genotypes in

isolated strains.
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6.4 Outlook

This PhD work provided valuable information about cyanotoxin diversity and their seasonal patterns

in Lake Garda. The accumulation of one of the most common cyanotoxins (MC) conveyed by P.

rubescens in the body of D.magna, allowed to better investigate the toxic potential of the most

abundant toxic cyanobacterium in Lake Garda. Finally, the discovery of a new ATX producer

demonstrated the urgency to monitor extensively cyanobacterial toxins diversity and toxin genotypes

in fresh water ecosystems. In fact, this new discovery further highlights how the number of

cyanotoxins producers in freshwater environments is possibly still underestimated. On the other hand,

the way in which these results originated in this study, suggests that the only reliable strategy to

identify cyanotoxins producers should be based on the isolation of strains and their identification with

a polyphasic approach associated to a concurrent metabolomic profiling performed with advanced

analytical techniques.
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7.3 Figure captions

Chapter 1-Introduction

Figure1: Examples of water bodies around the world that have experienced cyanobacterial
harmful algal bloom

Up left: courtesy of Finnish Border Guard and Institute of Marine Research, Helsinki, Finland,
http://www.bsh.de/en/Marine_data/Observations/MURSYS_reporting_system/mursys501.jsp

Up middle: http://english.anhuinews.com/system/2011/07/25/004277730_02.shtml

Up right: Photo by Peter Essick, National Geographic,
http://news.nationalgeographic.com/news/2014/08/140804-harmful-algal-bloom-lake-erie-climate-
change-science/

Bottom left: Photo from the South African River Health Program,
http://www.dwaf.gov.za/iwqs/rhp/state_of_rivers/state_of_umngeni_02/resource_units.html

Bottom middle: http://www.haloarchaea.com/resources/cyanobacterialBloom2013/

Bottom right: Photo by Tom Rose (WA Waters and Rivers Commission)
http://www.ozcoasts.gov.au/indicators/econ_cons_algal_blooms.jsp

Figure 3:(1) Dolichospermum (photo: IASMA-FEM);  (2) Microcystis (photo:  Glenn  MacGegor);
(3) Cylindrospermopsis (photo: Glenn MacGregor);  (B)  estuarine:  (4) Nodularia (photo:  Hans
Paerl);  (5) Aphanizomena (photo:  Christina  Esplund-Lindquist);  (C)  marine  enivronments:  (6)
Lynbya (photo:  Judy O’Neil);  (7) Trichodesmium (photo:  Judy  O’Neil);  and  (8) Synechococcus
(photo:  Florida  Fish  &  Wildlife  Institute-FWRI .
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