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Abstract (English)

Single Nucleotide Polymorphisms (SNPs) represent the most abundant type of genetic

variation and they are a valuable tool for several biological applications like linkage map-

ping, integration of genetic and physical maps, population genetics as well as evolutionary

and protein structure-function studies. SNP genotyping by mapping DNA reads produced

via Next generation sequencing (NGS) technologies on a reference genome is a very com-

mon and convenient approach in our days, but still prone to a significant error rate. The

need of defining in silico true genetic variants in genomic and transcriptomic sequences

is prompted by the high costs of the experimental validation through re-sequencing or SNP

arrays, not only in terms of money but also time and sample availability. Several open-

source tools have been recently developed to identify small variants in whole-genome data,

but still the candidate variants, provided in the VCF output format, present a high false

positive calling rate.

Goal of this thesis work is the development of a bioinformatic method that classifies vari-

ant calling outputs in order to reduce the number of false positive calls. With the aim to

dissect the molecular bases of grape acidity (Vitis vinifera L.), this tool has been then used

to select SNPs in two grapevine varieties, which show very different content of organic

acids in the berry. The VCF parameters have been used to train a Support Vector Machine

(SVM) that classifies the VCF records in true and false positive variants, cleaning the out-

put from the most likely false positive results. The SVM approach has been implemented in

a new software, called VerySNP, and applied to model and non-model organisms. In both

cases, the machine learning method efficiently recognized true positive from false positive

variants in both genomic and transcriptomic sequences.

In the second part of the thesis, VerySNP was applied to identify true SNPs in RNA-seq

data of the grapevine variety Gora Chirine, characterized by low acidity, and Sultanine,

a normal acidity variety closely related to Gora. The comparative transcriptomic analysis

crossed with the SNP information lead to discover non-synonymous polymorphisms inside

coding regions and, thus, provided a list of candidate genes potentially affecting acidity in

grapevine.





Abstract (French)

Les polymorphismes d’un seul nucleotide (SNPs) sont le plus fréquent type de varia-

tion génétique. Ce sont des outils précieux pour divers domaines de la biologie, comme

la cartographie de liaison, l’intégration des cartes physiques et génétique, la génétique

des populations ainsi que les études sur l’évolution et les relations structure-fonction des

protéines. De nos jours, l’identification des SNPs par alignement des données issues de

Séquençage de Nouvelle Génération (NGS) sur un génome de référence constitue une ap-

proche commune et pratique, cependant elle reste sujette à un fort taux d’erreurs. Le

coût élevé, en termes financier, de durée et de disponibilité des échantillons, d’une valida-

tion expérimentale par re-séquençage ou hybridation sur puce à SNP renforce la nécessité

d’identifier correctement les variants génétiques in silico, dans les séquences génomiques

comme les transcrits. Plusieurs logiciels open-source ont été récemment développés afin

d’identifier les petits variants dans les données génomiques, mais l’on trouve encore un

taux élevé de faux positifs parmi les candidats extraits des fichiers de sortie au format

VCF.

L’objectif de ce travail de thése est de développer une méthode bioinformatique de tri pour

réduire ce nombre de faux positifs. Cet outil a ensuite permis de détecter les SNPs dans

deux cultivars de vigne (Vitis vinifera L.) aux contenus très différents en acides organiques

des baies, afin d’appréhender les bases moléculaires de l’acidité du raisin. Les paramètres

VCF ont été utilisés pour entrainer un Séparateur à Vaste Marge (ou Machine à Vecteur

de Support, SVM) au tri des faux et vrai positifs, afin d’éliminer les faux positifs les plus

probables des sorties VCF. L’approche SVM a été implémentée sous forme d’un nouveau

programme, VerySNP, et appliquée à différentes espèces modèles et non modèles. Dans

tous les cas, la méthode d’apprentissage automatique a permis de distinguer efficacement

les vrais des faux positifs, dans les données génomiques comme transcriptomiques.

Dans la seconde partie de la thèse, VerySNP a permis d’identifier les vrais SNP à partir

de données RNA-seq obtenues sur la variété Gora Chirine, qui se caractérise par une

acidité insignifiante, et sur la Sultanine, une variété très proche du Gora mais d’acidité

usuelle. L’analyse comparative transcriptomique croisée avec l’information SNP a per-

mis de découvrir des polymorphismes non-synonymes au sein des régions codantes et

ainsi d’établir une liste de gènes candidats potentiellement impliqués dans le contrôle de

l’acidité chez la Vigne.
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Aim

First aim of this thesis work is the development of a bioinformatic method that clas-

sifies variant calling outputs obtained by mapping DNA reads on a reference sequence,

to reduce the number of false positive calls. The possibility to limit the number of false

positive variants returned by the most used variant calling methods is indeed of great in-

terest due to the high costs of experimental validation through re-sequencing or SNP-chip

array. This issue is of particular relevance in the field of crop genetics, where usually only

one reference genome sequence is available and the genetic diversity within the species

is far from being completely known. The approach is based on a Support Vector Ma-

chine (SVM), which requires a known set of validated variants in order to train the SVM

classifier, and it has been implemented in a new software called VerySNP. VerySNP was

applied on genomic data of model (yeast) and non-model organisms (grapevine) and, in

the second part of the thesis, also on transcriptomic data obtained from the RNA-seq ex-

periments of two related grapevine varieties showing different acidity levels (Gora Chirine

and Sultanine).

Second aim of this thesis work is the selection of candidate genes whose mutation is

responsible for the low acidity phenotype observed in Gora berries. The approach has

been a combination of RNA-seq data analysis, gene ontology annotation and single nu-

cleotide polymorphism (SNP) detection to reduce the number of gene candidates from

thousands to a few, which would be better candidates than the other and, thus, numeri-

cally assessable by experimental validation.





Structure of the thesis

The thesis is composed of three main chapters.

Chapter 1 provides the essential background on single nucleotide polymorphisms (SNPs)

and on the different techniques available to detect them. Special attention is given to the

different sequencing methodologies and to their evolution in the last years. The last part

of the chapter describes the analysis of RNA-seq data from a bioinformatics point of view.

The chapter does not contain any original result of the thesis.

Chapter 2 and 3 are organized in the form of scientific papers and they report the

results of the thesis as self-contained documents. Chapter 2 describes the results of the

development of a bioinformatics method based on a Support Vector Machine (SVM) to

classify variant calling outputs. After a brief introduction on SVM and variant calling

methods, it illustrates VerySNP, the method developed within the thesis and the results

of its application on genomic sequencing data of model and non-model organisms.

Chapter 3 deals with the biological issue of the thesis work, namely the genetic bases

of grapevine berry acidity. It starts with an introduction on the acidity metabolism and

on theVitis varieties under study (Gora and Sultanine). The following section is about the

methods and is divided in four parts: (i) the grape berry sampling and their acid/sugar

content analyses (ii) the preparation of the RNA samples and library construction for NGS

sequencing, (iii) the pipeline used for transcript reconstruction and their annotation, (iiii)

the application of VerySNP to accurately identify genetic variants in the transcriptomes of

Gora and Sultanine. The final part of the chapter reports results and relative discussion.



6



Chapter 1

Background

Biotechnology and bioinformatics are often both involved in modern science breakthroughs.

While biotechnologies are enhancing the speed in high-throughput results, bioinformat-

ics is able to process the massive amount of data by both standardizing computational

pipelines and developing data-specific tools. The advance of new technologies is pushing

both genomics and transcriptomics further into the digital age.

1.1 Single Nucleotide Polymorphisms

Genetic information can be stored in a specific nucleic acid, the DNA, as a sort of hard

copy of a code composed of four different nucleotide bases (A, T, C, G) in a linear, which

makes it a long and stable molecule. The DNA molecule is the subject of many reac-

tion into the cellular environment, and one of those is the DNA replication, occurring

every time the cell duplicated itself. Errors happening in the DNA replication naturally

increase the biodiversity and guarantee the species evolution process, by generating mu-

tations that are either silent or favorable to the individual and his heir. When a single

nucleotide changes with an allelic frequency bigger than 1% within a population, it is

known as polymorphism. Single nucleotide polymorphisms (SNPs) are the most common

polymorphisms in eukaryotic genomes and are more stably inherited than other molecular

markers (Brookes, 1999). The polymorphism can be of two kind: transition, when the

nucleotide changes in another of the same class (C to T and A to G); or transversion,

when the base is substituted by one belonging to a different class (C to A, C to G, T to

A and T to G).

As SNPs are highly conserved throughout evolution and within a population, the

map of SNPs serves as an excellent genotypic marker for research. Indeed, SNPs have

been used in genome-wide association studies (GWAS), e.g. as high-resolution markers

7



1.2. SNP IDENTIFICATION CHAPTER 1. BACKGROUND

in gene mapping related to diseases or normal traits. SNP application in crops range

from linkage disequilibrium-based association mapping and genetic diagnostics, to genetic

diversity analysis, cultivar identification, phylogenetic analysis and characterization of

genetic resources (Rafalski, 2002). Anyway, the use of SNP will become more widespread

with the increasing availability of crop genome sequence, the reduction in cost, and the

increased throughput of SNP assay. In humans, the knowledge of SNPs will help in

understanding how drugs act in individuals with different genetic variants, in identifying

human diseases resulting from SNP mutation and as markers for genetic diseases that have

complex traits. SNPs can also be used in cancer diagnostic, to study genetic abnormalities

in cancer and to identify patterns of allelic imbalance (Mei et al., 2000), which are all

studies with potential prognostic and diagnostic uses. These studies may provide insights

into how certain diseases develop, as well as information about how to create therapies

for them.

1.2 SNP identification

A number of experimental methods for SNP discovery and genotyping have been devel-

oped since the early days, although all are not equally useful and it is unclear which

are the most suitable and most efficient (Gupta et al., 2001). Methods such as re-

sequencing (Snager et al., 1977), denaturing gradient gel electrophoresis (DGGE; My-

ers et al., 1986), single strand conformational polymorphism analysis (SSCP; Orita et

al., 1989), minisequencing (Syvänen et al., 1990), heteroduplex analysis (HA; White et

al., 1992), derived/cleaved amplified polymorphic sequences (dCAPs/CAPs; Konieczny

and Ausubel,1993), dHPLC WAVE (Oefner and Underhill, 1995), pyrosequencing (Ron-

aghi et al., 1998), TaqMan assay (Lee et al., 1999), targeting induced local lesions in

genomes (TILLING; McCallum et al., 2000), and temperature gradient capillary elec-

trophoresis (TGCE; Hsia et al., 2005) have all been used with success. Significant

efforts towards large-scale characterization of SNPs have been attempted with high-

throughput techniques, such as DNA chips and microarrays (Gunderson et al., 2005)

and the SNPlexTM genotyping system (Applied Biosystems; De la Vega et al., 2005).

However, these platforms are expensive and not flexible since in order to be economically

efficient consider only a fixed pool of genetic loci. Moreover, they are not practical for

small to medium size laboratories and thus alternative techniques must be employed.

Troggio et al. (2008) have compared three of the mentioned methods for SNP as-

say known to affordable, moderately high-throughput, and multi-purpose: SSCP on both

non-denaturant gel electrophoresis and fluorescence-based capillary electrophoresis, and
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minisequencing. They concluded that results with SSCP fluorescence-based capillary elec-

trophoresis were consistent with sequencing data and can be considered an efficient, accu-

rate and reliable alternative to SSCP. However, SSCP analysis has the relevant drawback

that it does not allow multiplexing, at least at the PCR level (Table 1.1).

Table 1.1: Features of SNP genotyping methods (Troggio et al., 2008).

Methods Most significant advantage Disadvantage

SSCP-gel

Low-cost genotyping Not suitable for high throughput

Inexpensive labelling method Limited genotype discrimination

No expensive equipment required

SSCP-capillary

Automated electrophoresis Difficult to multiplex

Accurate genotyping Expensive primer labelling

Reproducibility

Rapid separation

Minisequencing

Accurate genotyping One SNP per reaction

Simplicity of assay High cost

Multiplexing capacity Post-PCR purification

Easy data interpretation Prior sequence information

Mid-throughput necessary

The evolution of SNP detection technology is characterized by the clever adoption

of new biological methods, fluorescent and other reporters, computational algorithms,

and highly sensitive analytical instruments. Although the ideal SNP detection method

does not exist, the field has come a long way from the early days and the technologies

are sufficiently robust that it is now possible to conduct large-scale genetic studies. As

the cost of SNP detection continue to drop and throughput to increase, even the most

ambitious studies will become economically feasible.

1.3 DNA sequencing technologies

1.3.1 Sanger Eve

The DNA sequencing through automated Sanger method is based on the selective incorpo-

ration of chain-terminating dideoxy-nucleotides by DNA polymerase during in vitro DNA

9
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replication (Sanger and Coulson, 1975). The four dideoxy-nucleotides (dATP, dGTP,

dCTP and dTTP) are differently labeled, radioactively or fluorescently, enabling the iden-

tification of the unknown nucleotide sequence.

Developed by Frederick Sanger and colleagues in 1977 (Sanger et al., 1977), it was

the most widely used sequencing method for approximately 25 years and led to a number

of monumental accomplishments, including the completion of the only finished-grade hu-

man genome sequence. Common challenges of DNA sequencing with the Sanger method

include poor quality in the first 15-40 bases of the sequence due to primer binding and

deteriorating quality of sequencing traces after 700-900 bases. Moreover, in cases where

DNA fragments are cloned before sequencing, the resulting sequence may contain parts

of the cloning vector. Such limitations showed a need for new and improved technologies,

especially for large-scale, automated genome analyses.

Indeed, recently, Sanger sequencing has been supplanted by Next Generation Sequenc-

ing (NGS) methods, leaving to the automated Sanger method the title of ‘first-generation’

technology. However, the Sanger method remains in wide use, primarily for smaller-scale

projects and for obtaining especially long contiguous DNA sequence reads (more than

500 nucleotides). The ultimate goal of high-throughput sequencing is to develop systems

that are low-cost, and extremely efficient at obtaining extended read lengths. Longer read

lengths of each single electrophoretic separation, substantially reduces the cost associated

with de novo DNA sequencing and the number of templates needed to sequence DNA

contigs at a given redundancy.

1.3.2 Next Generation Sequencing

Next Generation Sequencing (NGS) instruments, such as Illumina/Solexa, AB/SOLiD

and Roche/454 (Mardis, 2008), have revolutionized genome analysis performing high-

throughput sequencing able to produce thousands or millions of sequences in parallel

(Figure 1.1). From gene discovery to regulatory elements associated with diseases or any

other trait of interest, high-throughput sequencing rapidly increased the research pace.

The fast and low-cost production of enormous volumes of data is the primary advantage

over conventional methods, i.e automated Sanger sequencing, allowing an entire genome

to be sequenced with a run time ranging from minutes to weeks.
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Figure 1.1: Basic principles of NGS techniques. (a) pyrosequencing: the incorporation of a new nucleotide
generates detectable light. (b) 454 sequencing: nucleotide incorporation is associated with the release of
pyrophosphate resulting in a light signal. (c) Solexa: DNA fragments build double-stranded bridges and
after the addition of the labeled terminators the sequencing cycle starts. (d) SOLiD: if the adapters are
bound, emulsion PCR is carried out to generate so-called bead clones (Mutz et al., 2013).

The innovation of NGS technologies is the sequencing by synthesis (SBS) technol-

ogy, also called pyrosequencing. In contrast to the Sanger method, the incorporation of

nucleotides during DNA sequencing is monitored by luminescence. Therefore, a multi-

enzyme system composed of DNA polymerase, ATP sulfurylase, luciferase and apyrase

is responsible for the amplification reaction and generates a lightning after nucleotide

binding. The four different nucleotides are added sequentially and only incorporated

nucleotides cause a signal.

The variety of NGS technology features supports the coexistence of multiple platforms

in the marketplace, with some having clear advantages for particular applications over oth-

ers. Six sequencing platforms are currently available (454, Illumina, SOLiD, Helicos, Ion

Torrent, PacBio) and a couple (StarLight and Nanopore) are in advanced development.
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Most platforms require short DNA templates (200-1000 bp), containing forward and re-

verse primer binding sites, the reason why a library of templates is needed. Libraries can

be constructed in many different ways, which are related to the cost per sample. The

most salient features of the platforms are described in the next section.

• 454 was the first commercial NGS platform. 454 was acquired by Roche, but is still

known as by the 454. 454 uses beads that start with a single template molecule,

which is amplified via emPCR (emulsion PCR). Millions of beads are loaded onto

a picotitre plate designed so that each well can hold only a single bead. All beads

are then sequenced in parallel by flowing pyrosequencing reagents across the plate

(http://www.454.com).

• Illumina developed the second commercial NGS platform. Solexa was subsequently

acquired by Illumina and is now known by the name Illumina. Illumina uses a solid

glass surface to capture individual molecules and bridge PCR to amplify DNA into

small clusters of identical molecules. These clusters are then sequenced with a strat-

egy similar to Sanger sequencing, except only dye-labelled terminators are added,

the sequence at that position is determined for all clusters, then the dye is cleaved

and another round of dye-labelled terminators is added (http://www.illumina.com).

• SOLiD was the third commercial NGS platform. Invitrogen acquired Applied

Biosystems, becoming Life Technologies, but the name SOLiD has been kept. SOLiD

uses ligation to determine sequences and until the most recent of Illumina’s soft-

ware and reagents, SOLiD has always had more reads (at lower cost) than Illumina

(http://www.appliedbiosystems.com).

• Helicos developed the HeliScope, which was the first commercial single-molecule

sequencer. Unfortunately, the high cost of the instruments and short read lengths

limited adoption of this platform. Helicos no longer sells instruments, but conducts

sequencing via a service centre model (http://www.helicosbio.com).

• Ion Torrent uses a sequencing strategy similar to the 454, except that (i) instead

of a pyrophosphatase cascade, hydrogen ions (H+) are detected, which means no

lasers, cameras or fluorescent dyes are needed. Furthermore, (ii) the sequencing

chips used are conform to common design and manufacturing standards, reducing

the manufacturing cost. In 2010, the first early access instruments were deployed

and Ion Torrent was purchased by Life Technologies, but it is still known as Ion

Torrent (http://iontorrent.com).
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• PacBio has developed an instrument that sequences individual DNA molecules in

real time. Individual DNA polymoerases are attached to the surface of microscope

slides. The sequence of individual DNA strands can be determined because each

dNTP has unique fluorescent label, immediately detected prior to being cleaved off

during synthesis. Low cost per experiment, fast run times and cool factor generated

much enthusiasm for this platform, which first early instruments were deployed in

2010 (http://www.pacificbioscience.com).

Next-generation sequencing technologies have broad applicability in many fields of

research. They offer new high-throughput sequencing techniques that prove to be useful

for many applications, including genomic (Zhou et al., 2010), transcriptomic (Marguerat

et al., 2008), epigenomic (Cullum et al., 2011), regulomic (Park, 2008), metagenomic

(Voelkerding et al., 2009), and diagnostic research (Jia and Zhao, 2012) at a a resolution

that would have been inconceivable some years ago.

Although NGS technologies totally revolutionized the way to do genetics, some consid-

erations need to be made. Depending on the sequencing technology used, the nucleotide

reading includes mistakes at different frequencies. Incorrect base calling is commonly

happening close to the 3’-end of the sequence as the raw data quality is lowering. The

most common sequencing technologies provide short sequence reads (100 bp each), which

need to be cleaned and trimmed for poor base quality, decreasing their already short

length. The averagely short read length may decrease the accuracy of the mapping on the

reference genome. Other errors rise in the generation of the reverse-DNA transcription

and the following PCR steps required to build cDNA libraries (Reumers et al., 2012),

leading to discrepancies into the sample population.

1.3.3 Who’s next?

StarLight and Nanopore are the upcoming sequencing technologies aiming to longer read

length and reduced cost per sample. A brief anticipation about how those technologies

would work has been described in the following section.

• StarLight, or more extensively Life Technologies Single Molecule Real-Team Se-

quencing Technology, uses quantum dots to achieve single-molecule sequencing.

DNA is attached to the surface of a microscope slide where sequencing occurs in

a manner similar to PacBio. A major advantage of StarLight relative to PacBio

is that the DNA polymerase can be replaced after it has lost activity. Thus, se-

quencing can continue along the entire length of a template. The peculiar inno-

vation is the ability to perform 3-Dimensional DNA sequencing of ultra-long DNA
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fragments, wherein DNA-sequence vs time vs imaging-reagent-space are simultane-

ously collected. This additional information provides the ability to simultaneously

measure how sequencing correlates with any factor on DNA that can be spatially

imaged (e.g., methylation, restriction sites, promoter sites, etc.). In addition, com-

pletely phased and ordered reads are simultaneously obtained, and the effective

”mate-pairs” for each DNA fragment increase combinatorially with the number of

sequencers on each individual DNA fragment. This type of 3-D sequencing infor-

mation is ideal for quantitating genomic structural variation and for generating de

novo scaffolds for shorter read-length sequencing data. Many characteristics of the

Starlight technology are known (Karrow, 2010), but timing of a commercial launch,

target costs and other details are unknown (http://www.lifetechnologies.com).

• Nanopore is an under development method performing ‘strand sequencing’, a tech-

nique where intact DNA polymers pass through a nanopore, being sequenced in real

time as the DNA translocates the pore. The theory behind nanopore sequencing is

that when a nanopore is immersed in a conducting fluid and a potential (voltage) is

applied across it, an electric current due to conduction of ions through the nanopore

can be observed. The amount of current is very sensitive to the size and shape of

the nanopore. If single nucleotides (bases), strands of DNA or other molecules

pass through or near the nanopore, this can create a characteristic change in the

magnitude of the current through the nanopore. DNA could be passed through

the nanopore for various reasons. For example, electrophoresis might attract the

DNA towards the nanopore, and it might eventually pass through it. Alternatively,

enzymes attached to the nanopore might guide DNA towards the nanopore. The po-

tential is that a single molecule of DNA can be sequenced directly using a nanopore,

without the need for an intervening PCR amplification step or a chemical labelling

step or the need for optical instrumentation to identify the chemical label. Nanopore

technologies promise no read length associated limitation and the possibility to se-

quence at 25X depth of coverage the human genome in minutes at a cost of 100

dollars (https://nanoporetech.com/).

1.4 Gene expression by RNA-seq

The short-read massively parallel sequencing of RNA, better known as RNA-seq, is a

technology that uses the capabilities of next-generation sequencing to reveal a snapshot

of RNA presence and quantity from a genome at a given moment in time. In this direction,
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Table 1.2: Utility of DNA sequencing platforms for RNA-seq experiment of different templates. The
letters indicate the the review’s (Glenn, 2011) opinion of the overall utility (grade) for a platform. Utility
grades combine data characteristics (amount, quality, length), cost of data, and ease of assembling the
data into the final desired product. Major considerations for utility grades are noted in the third column.

Platform Opinion Transcritpome

454 - GS Jr. C Need multiple runs, expensive

454 - FLX+ A/B Good but expensive, not best for short RNAs

MiSeq B/A May need multiple runs, assembly more challeng-

ing than 454, longer reads may make it the best

HiSeq 2000 A/B Good, assembly more challenging than 454 but

much more data available for analyses

HiSeq 2500 - rapid run A Good, assembly more challenging than 454 but

much more data available for analyses

Ion Torrent - 314 C Good, but reads are shorter than Illumina, as ex-

pensive as 454

Ion Torrent - 318 B/C Good, data more challenging to assemble than 454

to Illumina

Ion Torrent Proton B/A Assembly more challenging than 454, longer reads

could make it best

SOLID - 5500 C/D Short reads make assembly challenging or impos-

sible

PacBio - RS B Expensive, short RNA will be challenging

NGS has been successfully applied to gene expression profiling, it has emerged as the major

quantitative transcriptome profiling system and provides nearly unlimited possibilities

in modern bioanalysis. For years mRNA expression has been measured by microarray

techniques or real-time PCR techniques. However, microarray technology’s sensitivity

is limited towards the amount of RNA, the quantification of transcript levels and the

sequence information; on the other hand, real-time PCR has high sensitivity but it is a

quite expensive technique and not convenient for a genome-wide survey of gene expression

(Mardis, 2008). RNA-seq has become a strong alternative to microarrays and real-time

PCR, because it provides all the essential information about the transcriptome without
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requiring any previous knowledge about the genetic sequence of the organism under study,

but the reference sequence. In Table 1.2 are summarized the principal advantages and

disadvantages of NGS platforms to perform RNA-seq that a scientist needs to know in

order to fairly consider which technology fits better with the purpose of his experiment.

Regardless from which technology was used to obtain the data, RNA-seq data could be

used by means two main approaches: ab-initio or mapping strategy. Ab-initio or de-novo

approach consists on the assembly of the individual raw data into the putative transcripts,

which is mandatory when the reference genome sequence for the organism under study is

not available. The technical limitations imposed by short-read sequencing lead to a num-

ber of computational challenges with the consequent explosion of the number of software

trying to answer to that problem. Nevertheless, even the most recent automated methods

failed to identify all constituent exons and, in cases in which all exons were reported, the

protocols tested often failed to assemble the exons into complete isoforms (Steijger et al.,

2013). On the contrary, when a genome sequence is available, the transcript reconstruc-

tion and quantification can be performed exploiting the alignment. RNA-seq analysis by

mapping implements a two-step approach in which initial read alignments are analyzed

to discover exon junctions; these junctions are then used to guide the final alignment.

Several programs can also use existing gene annotation to inform spliced-read placement

(Engström et al., 2013). Theoretically speaking de novo approaches should be preferred,

because they would give the comprehensive picture of the transcriptome, but current per-

formances of such methods impose severe limitations in their applications (Steijger et al.,

2013).

The RNA-seq analysis requires four main steps for each one several algorithms have

been developed over the past years and afterwards adapted to specific applications. As a

result, a variety of bioinformatic tools to obtain an appropriate analysis system optimized

to fulfill any study requirements is currently available (Pagani et al., 2011). The stan-

dard four steps to analyze RNA-seq can be summarized as following and schematically

presented in Figure 1.2.

1. The raw image data are converted in short reads sequences. The conversion into

base sequences is performed by platform specific base calling-algorithms provided

by the manufacturer, along with a quality score calculated for each base, indicating

the reliability of each base call. The nucleotide sequence and their quality score are

compressed information stored into a format called FASTQ.

2. Align the short reads to a reference sequence, either genomic or transcriptomic. If

available, the reference sequence in FASTA format can be downloaded by the ap-
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propriated organism database. Mapping algorithms use indexing strategies, which

enable them to align millions of short reads in a reasonable time, if compared to

conventional alignment algorithms. Hash look up tables and Burrow Wheeler trans-

formations are the two most popular indexing methods, of which the first shows

high sensitivity while the second is much faster. Accordingly, read mapping tools

have to balance between speed and sensitivity depending on the algorithm they are

based on. The most fitting mapping software for each specific application case is

determined by the reads length, which is sequencing technology related, and af-

fects the calculation of allowed mismatches in the read alignment, which need to be

tolerate because of the occurrence of sequencing errors, single nucleotide polymor-

phisms or mutations (Cullum et al., 2011). RNA-seq reads are often aligned to the

genomic reference sequence, instead of transcriptomic, because the latter is rarely

available. This requires spliced read mapping software, which considers the genomic

intron-exon structure by splitting unmapped reads and aligning the read fragments

independently (Pagani et al., 2011).

3. Calculate the expression level using peak calling algorithms. Aligned RNA-seq reads

are quantified along the whole sequence generating en expression profile, delivered as

a score, which needs to be normalized because of inherent bias in read quantification.

Normalization of read counts enables the comparison of expression level between

different genes as well as different experiments, which are affected by both the read

sequencing depth and the number of reads mapped on genes of any length (Park,

2009).

4. Determine the differential gene expression. Genes, which are differentially expressed

under different conditions, are detected by computational tools using normalized

gene expression scores and statistical tests. These tools are classified as parametric

or non-parametric algorithms. Parametric algorithms use common probability dis-

tributions such as Binomial or Poisson (Li and Tibshirani, 2011). Non-parametric

ones model the noise distribution based on actual data. It was demonstrated that

non-parametric algorithms show a lower dependency on sequencing depth and con-

sequently achieve more robust results (Tarazona et al., 2011).
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Figure 1.2: Bioinformatics pipeline showing typical tasks involved in RNA-seq analysis. Additional steps
required for de novo transcriptome assembly are shown in box at top right (McGettigan, 2013).
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Chapter 2

VerySNP

2.1 Abstract

Several open-source tools have been recently developed to identify small variants in whole-

genome data, the most popular being SAMtools and GATK. Commonly, variant calling

provides a VCF file as output, which contains a list of candidates and additional infor-

mation such as the variant call quality and its depth of coverage. Still the variant list

presents an unsatisfactory accuracy due to high false positive calling rate. VCF param-

eters have been used to train a Support Vector Machine (SVM) that classifies the VCF

records in true and false positive variants, cleaning the output from the most likely false

positive results. We implemented the SVM approach in a new software, called VerySNP,

and applied it to model and non-model organisms proving, in both cases, that this ma-

chine learning method efficiently recognizes true positive from false positive variants. The

software is available at https://github.com/leonardelli/VerySNP.

2.2 Introduction

2.2.1 Support Vector Machines

Support vector machines (SVM) are a group of supervised learning methods that can

be applied to classification or regression. Support vector machines represent an exten-

sion to non-linear models of the generalized portrait algorithm developed by Vladimir

Vapnik. The SVM algorithm is based on the statistical learning theory and the Vapnik-

Chervonenkis (VC) dimension introduced by Vladimir Vapnik and Alexey Chervonenkis

(Vapnik et al., 1998). The SVM is an efficient and reliable machine learning method to

distinguish categorical data based on the contraction of a maximal margin hyperplane,
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Figure 2.1: Calculating a list of feature for each point, the SVM spots the data in a higher space, called
feature space, where the two clusters separation may be easier.

also referred to as the decision boundary, and the use of a kernel function to transform

the data sets from the original input space into a high dimensional feature space (Figure

2.1). In the feature space, defined as a space for all possible combinations of predictive

variables, highly non-linear relationships between the factors or attributes are qualified

and examined using the margin maximization principle. The margin maximization prin-

ciple has been proven mathematically to deliver robust and predictable performance on

unseen data. The maximal margin hyperplane is defined as the hyperplane located at the

largest distance to the nearest training data point of any class (Figure 2.2). In order to

calculate it, the SVM selects two hyperplanes separating the two data sets with no points

in between, and then tries to maximize their distance.
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Figure 2.2: A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating
hyperplane. The points touching the lateral hyperplanes, called support vectors, confine the maximum
margin, which is built drawing between the two clusters two parallel hyperplanes as far as possible from
each other. The hyperplane drawn right in the middle of them represent the optimal separation between
the two training sets (positive and negative) and it is the algorithm output to categorize new examples.

SVM represent the latest advancement in machine learning theory and delivers state of

the art performance in numerous high value applications, which involved several types of

biological data, including SNP identification in human sequencing data (Kong et al., 2007).

Kong et al. (2007) calculated the training features on the thermodynamic properties of

nucleotides flanking the SNP site and they used the SVM model to recognize potential

polymorphic sites, introducing a new feature, the SNP distribution score, which let them

reach higher prediction rate (around 77%). While, another study exploiting flanking

region thermodynamic properties to train RBF Networks, evaluated the SNP occurrence

possibility in Brassica napus, as example of species lacking of a whole reference sequence

(Hu et al., 2011). SVM provided very efficient results in finding polymorphisms even

when combined to other statistical approaches, such as the Fischer exact test in a hybrid

method applied to Brassica oilseed rape genomic data (Xiong et al., 2010).

Recently, the 1000 Genome Project Consortium built an integrated map of genetic

variation from 1,092 human genomes and they generated the consensus exome SNP call

set using an SVM approach (McVean et al., 2012). For each candidate variant site they
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calculated features related to the aligned sequence reads, such as allele balance, strand

bias, cycle bias, average depth and inbreeding coefficient statistics. Each feature was

considered separately and classified as ‘pass’ or ‘fail’ based to a determined threshold.

After multiple filter criteria they apply the SVM model assigning a score to each variant

and variant with positive SVM score were considered as consensus SNP.

2.2.2 Variant calling methods

The variation of DNA sequence is at the same time the power and the subject of evolu-

tion; through genetic mutation organisms could gain new functions, after selection those

functions could be inherited and the mutation would be fixed in the population. Once

the DNA has changed, the genetic variation in the mutant organism can be identified

in the DNA sequence if compared to a wild-type individual. When a single nucleotide

changes with an allelic frequency bigger than 1% within a population, it is known as

polymorphism.

Single Nucleotide Polymorphisms (SNPs) represent the most abundant type of genetic

variations and are more stably inherited than other molecular markers (Brookes, 1999).

They represent a valuable tool for several biological applications like linkage mapping,

integration of genetic and physical maps, population genetics as well as evolutionary and

protein structure-function relationship studies (Syvänen, 2001). The great interest in

variant detection has been reflected in the development of a wide range of SNP geno-

typing methods (Mammadov et al., 2012). Furthermore, the importance of finding only

true variants is evident, considering the high cost of experimental validation through re-

sequencing or SNP-chip (Ganal et al., 2012), not only in terms of money, but also of time

and samples.

The advent of next generation sequencing (NGS) technologies affects variant detection

both directly and indirectly. Directly, because such techniques allow the production of a

large amount of sequences cheaply and, indirectly, by increasing the number of available

genome sequences. As a consequence, the most effective way to predict variants is based

on mapping the DNA reads against a reference genome. Although NGS technologies are

increasing the amount of genomic information at unprecedented pace, they are prone to

an error rate of about one in one hundred base pairs (Loman et al., 2012). These errors

prevent reaching very high accuracy by means of in silico variant calling and, in general,

by any data filtering procedure aimed at automatically identifying biologically relevant

variants (Nakamura et al., 2011; Taub et al., 2010). Incorrect base calling is one of the

most common sequencing errors especially near the 3’ end of the sequence as the quality of
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raw data declines (Minoche et al., 2011). Poor base quality along with short average read

length may generate inaccurate data mapping on reference genomes. Further errors come

from distortions with respect to the sample population, due to biases from the chosen

sequence technology or from the reverse-DNA transcription and PCR steps required to

generate cDNA libraries (Reumers et al., 2012). Effective approaches are thus needed to

distinguish real variants from the numerous sequencing artefacts.

Variant calling methods on data generated by Sanger sequencing were based on the

analysis of trace files with a Bayesian statistics (Marth et al., 1999). To handle NGS

data such a kind of approach was, firstly, paired to the Artificial Neural Network (ANN)

(Unne-berg et al., 2005) and afterwards to other machine learning methods (Matuku-

malli et al., 2006; Wegrzyn et al., 2009) providing higher accuracy in variant identifica-

tion. Until now several software have been developed, the most popular tools to process

large-scale datasets are the functions mpileup in SAMtools package (Li et al., 2009) and

UnifiedGenotyper in GATK (Genome Analysis ToolKit; McKenna et al., 2010), which are

both binomial-based methods. GATK includes the Variant Quality Score Recalibration

tool (VQSR; DePristo et al., 2011), which identifies putative nucleotide variations using

a multidimensional Gaussian distribution fitted to known true variant sites. Even though

these tools accurately discover true variable sites, they still show high false positive rates,

which is currently handled by using different empirically-derived filtering criteria (Koboldt

et al., 2012) on the several values showed in the VCF output.

Many factors contribute to defining a variant from mapped reads: the number of

reads mapped on a region (read depth), the quality of the mapping, the distribution of

nucleotides at the position, the distance of a potential polymorphic site from another, to

cite some. Multiple factors may take part at the same time in defining a specific feature, for

instance sequencing biases can affect both the read depth and the nucleotide frequencies

(Nielsen et al., 2011). Likewise, the genome nucleotide composition has effects on the

overall nucleotide distribution, while other genetic parameters of the organism affect other

features; e.g. the extent of Linkage Disequilibrium can affect the average distances among

variants. Having such a complicate framework, the application of thresholds to rule out

the most likely false positive predicitons is risky. Features are inter-dependent and should

be considered together rather that one by one.

The Support Vector Machine (SVM) approach (Vapnik et al., 1998) has gained increas-

ing attention because of its successful application to many biological problems, including

variant calling (Kong et al., 2007, O’Fallon et al., 2013). SVM-based methods are trained

on a collection of known real and false variants, calculating some features for each of

them. The software combines all features’ values instead of using fixed thresholds. Here,
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we propose VerySNP, a SVM-based tool that classifies variant calling outputs to reduce

false positive variants in downstream applications.

2.3 Methods

2.3.1 VerySNP: the tool

In this work, we used the freely available SVM package LIBSVM library (v 3.12; Chang

and Lin, 2011). Once LIBSVM library is installed, a Support Vector Machine (Vapnik

et al., 1998) needs to be trained on true and false examples of what it is supposed to

classify. Known true and false genetic variants have been used as positive and negative

sets, respectively, to train VerySNP. The training dataset is balanced and contains the

same number of positive and negative entries.

During the training, the SVM classifier learns how to discriminate true and false

examples calculating for each one a specific list of features, which are known to affect the

classification. The list of features involved in VerySNP training includes every parameter

shown in ‘Quality’, ‘Info’ and ‘Format’ fields of a VCF file. A detailed description of

VCF features can be found at SAMtools GitHub web page (http://samtools.github.io/hts-

specs/VCFv4.2.pdf), while a complete summary is reported in Table 2.1. A binary SVM

discriminates between two classes yi, with yi ∈ {+1,−1}. The discrimination between the

two classes yi can be made either through linear kernel function or Radial Basis Function

(RBF) kernel. A 10-fold cross-validation evaluates the performance of the SVM on the

training data. A grid search finds the best parameters (linear kernel: C; RBF-kernel: C

and gamma) on the training folds. The parameter combination with the highest Matthews

Correlation Coefficient (MCC) is finally chosen for testing. The test set is any candidate

variant provided as output by GATK/SAMtools variant calling. Performing the test,

VerySNP can predict if the candidate variant belongs either to the positive (+1) or the

negative (-1) class.

In particular, VerySNP is composed of two main scripts written in Python (version

2.7.5) that implement the two steps of SVM approach: training and test. ‘VerySNP train-

ing. py’ needs the training set as input to build a prediction model, while ‘VerySNP test.py’

classifies new unknown data either as positive or negative variants. More details about

VerySNP usage are provided with the software package (readme. txt) available at https://

github.com/leonardell/VerySNP.

VerySNP classification performance was evaluated by calculating accuracy, specificity,

sensitivity and precision (Loong et al., 2003). Furthermore, Receiver Operating Char-
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Table 2.1: Some of the parameters reported into VCF files by GATK and SAMtools, respectively, and
used as VerySNP training features.

VCF name Description GATK SAMtools

QUAL SNP call quality Yes Yes
AC Allele count in genotype, for each ALT allele Yes Yes
AF Allele Frequency, for each ALT allele Yes Yes
GQ Genotype Quality Yes Yes
PL Normalized, Phred-scaled likelihoods for genotypes as de-

fined in the VCF specification
Yes Yes

MQ Mapping Quality Yes Yes
GT Genotype Yes Yes
DP Approximate read depth Yes Yes
FQ Phred probability of all samples being the same - Yes
VDB Variant Distance Bias - Yes
DP4 High-quality ref-forward bases, ref-reverse, alt-forward and

alt-reverse bases
- Yes

PV4 P-value for strand bias, baseQ bias, mapQ bias and tail
distance bias

- Yes

AN Total number of alleles in called genotypes Yes -
BaseQRankSum Z-score from Wilcoxon rank sum test of Alt Vs. Ref base

qualities
Yes -

Dels Fraction of Reads Containing Spanning Deletions Yes -
FS Phred-scaled p-value using Fisher’s exact test to detect

strand bias
Yes -

HaplotypeScore Consistency of the site with at most two segregating hap-
lotypes

Yes -

MLEAC Maximum likelihood expectation (MLE) for the allele
counts, for each ALT allele

Yes -

MLEAF Maximum likelihood expectation (MLE) for the allele fre-
quency, for each ALT allele

Yes -

MQ0 Total Mapping Quality Zero Reads Yes -
MQRankSum Z-score From Wilcoxon rank sum test of Alt vs. Ref read

mapping qualities
Yes -

QD Variant Confidence/Quality by Depth Yes -
ReadPosRankSum Z-score from Wilcoxon rank sum test of Alt vs. Ref read

position bias
Yes -

AD Allelic depths for the ref and alt alleles Yes -

acteristic (ROC) curve and precision-recall curve have been drawn in order to compare

VerySNP performance with the state of the art (SNPSVM and VQSR). The ROC curve
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is generated by plotting the fraction of false positives out of the total actual negatives

(FPR, False Positive Rate) as a function of the fraction of true positives out of the total

actual positives (TPR, True Positive Rate), while varying the discrimination threshold

between the two classes yi of a binary classifier.

2.3.2 Benchmarking

VerySNP was tested on three datasets originated from the genome sequencing of different

organisms. Firstly, on yeast (Saccharomyces cerevisiae, strain EM93), a model organism

with a rather small genome (12.1 Mb; Mewes et al., 1997), easily manageable for bioinfor-

matic analysis. Subsequently, the method was applied on two cultivated grapevine (Vitis

vinifera L.) varieties, Pinot Noir (clone ENTAV 115) and Gewürztraminer (clone SMA

918), to test the tool’s performance on a non-model organism with a rather large (504.6

Mb) and highly heterozygous genome (Velasco et al., 2007). Pinot Noir is a black-berried

internationally-grown variety and is a parent of the PN40024 near-homozygous line chosen

as reference genome (Jaillon et al., 2007). Gewürztraminer, belonging to the Savagnin or

Traminer family, is a white-berried variety genetically distant from Pinot (Bowers et al.,

1996; Lacombe et al., 2012). All the samples were sequenced through Illumina technology,

but with different depth of coverage (yeast 125X, Pinot Noir 107X and Gewürztraminer

20X).

Yeast and Gewürztraminer reads have been publicly released (for yeast EM93 at

DDBJ database, http://trace.ddbj.nig.ac .jp, with accession number ERP002541; for

Gewürztraminer, EBI-ENA database project ID: PRJEB6378), while for Pinot Noir we

exploited in-house data (Fondazione Edmund Mach). All data were aligned against the

proper reference genome using Bowtie2 software (version 2.1.0; Langmead et al., 2012)

with standard options and VCF files were predicted by applying mpileup of SAMtools

(version 0.1.18) and UnifiedGenotyper of GATK (version 2.3-9 with java version 1.7.0 17)

with default options too. Among the predictions made by the two softwares we selected

positions of true and false variants in different ways for the three organisms.

The sequence of 2,965 probes identifying validated variants in yeast EM93 were taken

from Esberg et al. (2011) and were used to select true variants from SAMtools prediction,

where 2,989 variants were called in correspondence of the 25 bp probes, and from GATK,

where 3,419 variants were found into the probes regions (Gresham et al., 2006). Original

data of Esberg et al. are available at the EBI-EMBL database with the ArrayExpress

accession number E-MEXP-3246. Since no monomorphic sites were available for yeast

from public sources, we decided to collect false variants realigning simulated reads from
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the reference genome against itself. An appropriate tool for this scope is ArtificialFastq-

Generator (Frampton et al., 2012), which generates artificial paired-end reads, randomly

derived from the reference genome sequence, to provide a gold-standard for reads align-

ment and variant calling. Artificial reads were generated by the software complying with

the nucleotide quality scores of the original reads and including the error model of Illu-

mina technology. We run the simulation several times generating an average depth of

coverage of 120X for each simulation. The variant calling provided 2,366 false variants

with SAMtools and 2,161 with GATK. These sets were highly redundant in genomic po-

sitions and, counting only unique coordinates, we got 433 unique false variant positions

for SAMtools and 412 for GATK.

True and false variants for Pinot and Gewürtztraminer were obtained from the analysis

of SNP-chip array experiments. Grapevine genomic DNA samples were hybridized on Vi-

tis17KSNP chip (GrapeReSeq Consortium https://urgi.versailles.inra.fr/Projects/Grape

ReSeq) and data were analyzed with GenomeStudio Data Analysis Software. Based on

signal clustering, Genome Studio identified the high quality hybridization sites either as

heterozygous or homozygous giving a score for the cluster called GenTrain value. Clus-

ters automatic evaluation for GenTrain values lower than 0.7 might be incorrect and so

we performed a manual evaluation for all the ambiguous cases. In total we got 5,161

heterozygous sites in Pinot Noir and 4,958 in Gewürztraminer, while the other 12,495

homozygous sites in Pinot Noir and 12,640 in Gewürztraminer. When confirmed het-

erozygous sites were called as homozygous by the variant caller were considered those

sites as false variants, on the contrary the true variants included all the confirmed correct

calls.

We compared VerySNP performance against SNPSVM (O’Fallon et al., 2013), another

software exploiting SVM approach, and VQSR, which includes the complete pipeline of

GATK best practice guidelines to predict polymorphisms (https://www.broadinstitute.org

/gatk/guide/best-practices) learning from true variant examples only.

All tested softwares require a training step using a VCF file. VCF files were next

produced out of each sample by applying SAMtools and GATK, which predicted the

largest number of variants presented in our benchmarking sets (Tables 2.2 and 2.3). The

number of true and false sites used as training for each sample is summarized in Table

2.2. The overlap between the predicted variants and the benchmarking sets represents

all known variants available for training the models, from which we built the actual

training sets balancing the number of known true variants to the number of known false

ones. The variant fraction not considered for training was exploited to evaluate the tools’

performance.
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Table 2.2: The whole variant call provided by mpileup of SAMtools and UnifiedGenotyper of GATK,
respectively (Tot predicted variants) and the number of known true and false variants in three different
samples (Yeast EM93, Pinot Noir ENTAV 115 and Gewürztraminer SMA 918). The predicted true/false
variants come from overlapping the total amount of predicted variants and the known true/false variants.

Tot Predicted
variants

Known
True set

Predicted
True set

Known
False set

Predicted
False set

Yeast SAMtools 42,766 2,965 2,989 2,339 11
Yeast GATK 48,122 2,965 3,419 2,114 24

Pinot Noir SAMtools 3,097,569 5,161 4,617 12,495 1,541
Pinot Noir GATK 4,597,394 5,161 4,948 12,495 1,651

Gewürztraminer SAM 2,696,200 4,958 4,043 12,640 2,177
Gewürztraminer GATK 3,036,621 4,958 4,435 12,640 2,228
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Table 2.3: Performance comparison among three variant calling (VerySNP, SNPSVM and VQSR) in three
different samples: Yeast EM93; Pinot Noir ENTAV 115 and Gewürztraminer SMA 918. The predicted
true/false sets come from overlapping the total amount of predicted variants and the evaluation sets
(known true and known false variants left out of the training on purpose to evaluate the tool performance).

Yeast EM93
Tot Predicted

variants
Evaluation
True set

Predicted
True set

Evaluation
False set

Predicted
False set

VQSR 47,451 824 820 412 19

SNPSVM
SAM 49,381 2,567 2,514 11 10

GATK 50,081 3,007 2,960 24 13

VerySNP
SAM

Linear 42,714 2,567 2,560 11 5
RBF 42,714 2,567 2,562 11 6

GATK
Linear 48,036 3,007 2,974 24 17
RBF 48,036 3,007 2,983 24 14

Pinot Noir ENTAV 115
Tot Predicted

variants
Evaluation
True set

Predicted
True set

Evaluation
False set

Predicted
False set

VQSR 3,792,196 3,429 3,358 132 129

SNPSVM
SAM 5,239,730 3,200 3,173 124 15

GATK 14,832,057 3,429 3,388 132 13

VerySNP
SAM

Linear 3,082,834 3,200 3,171 124 110
RBF 3,082,834 3,200 3,161 124 111

GATK
Linear 4,588,257 3,429 3,366 132 120
RBF 4,588,257 3,429 3,306 132 123

Gewürztraminer SMA 918
Tot Predicted

variants
Evaluation
True set

Predicted
True set

Evaluation
False set

Predicted
False set

VQSR 2,564,249 2,385 2,086 178 175

SNPSVM
SAM 14,111,458 2,040 2,036 174 174

GATK 10,526,342 2,385 2,346 178 8

VerySNP
SAM

Linear 2,683,903 2,040 1,999 174 167
RBF 2,683,903 2,040 2,000 174 166

GATK
Linear 3,032,207 2,385 2,350 178 170
RBF 3,032,207 2,385 2,350 178 170
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Equation 2.1 shows how to calculate VerySNP sensitivity or its True Positive Rate

(TPR) knowing the number of Positive (P), True Positive (TP) and False Negative (FN).

Equation 2.2 executes the specificity or True Negative Rate, knowing the number of Neg-

ative (N), True Negative (TN) and False Positive (FP). Equation 2.3 is the precision or

Positive Predictive Value of the software. Equation 2.4 provides the fall-out or False Pos-

itive Rate and it represents the specificity complementary. Equation 2.5 calculates the

accuracy of a binary classifier performance. Equation 2.6 is the Matthews Correlation

Coefficient.

TPR = TP/P = TP/(TP + FN) (2.1)

SPC = TN/N = TN/(FP + TN) (2.2)

PPV = TP/(TP + FP ) (2.3)

FPR = FP/N = FP/(FP + TN) = 1− SPC (2.4)

ACC = (TP + TN)/(P +N) (2.5)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.6)

2.3.3 Performance evaluation

To estimate VerySNP performances, we calculated ROC and precision-recall curves on

the evaluation sets composed of known true and false variants intentionally left out from

the training set. Specifically, each evaluation set was composed of the 8% of the initial

negative variants and the unused true variants remaining after balancing the true and

false entries of the training sets (for detailed description see Table 2.4). The varied value

used to draw the curves was different for each software: the probability to be a true

variant from the output of VerySNP, the quality value from the output of SNPSVM and

the VQSLOD parameter reported by VQSR VCF output file.

2.3.4 Feature selection

To better understand the role of each VCF value into the classification process we exploited

the Recursive Feature Elimination (RFE) and cross-validation, as described in Abeel et
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Table 2.4: Number of known true and false variants included in the training sets and in the evaluation
sets. For each sample, SAM means the variant positions were retrieved applying SAMtools mpileup, while
GATK denotes variant calls performed by UnifiedGenotyper.

Tool Sample
Training set Evaluation set

True False True False

SAM

Yeast 422 422 2567 11

Pinot Noir 1,417 1,417 3,200 124

Gewürztraminer 2,003 2,003 2,040 174

GATK

Yeast 388 388 3,031 24

Pinot Noir 1,519 1,519 3,429 132

Gewürztraminer 2,050 2,050 2,385 178

al. (2010) already used. The feature set under analysis includes 23 features adopted when

the variant calling was made through UnifiedGenotyper (GATK) and 20 features when

performed by mpileup (SAMtools) (Table 2.1).

Starting with the whole feature set, a linear SVM classifies the training sets and the

RFE iteratively removes the least important feature in terms of weight in the SVM hyper-

plane. At each step, a linear SVM is re-estimated on the same training sets calculating

the remaining features only, until all features are eliminated. We used the scikit-learn

package for the RFE (Guyon et al., 2002).

2.4 Results

A very early result of our work was the production of true and false variant sets useful

to train or to validate new methods for variant calling. For each sample (yeast, Pinot

Noir and Gewürztraminer) we provide the variant coordinates on the available genome

sequence (see the VCF files provided in the GitHub repository along with the software).
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Figure 2.3: The ROC curves obtained plotting the True Positive Rate (TPR or sensitivity) vs. the
False Positive Rate (FPR or fall-out) for three variant callers (VerySNP, SNPSVM and VQSR) in three
different samples: a) yeast; b) Pinot Noir and c) Gewürztraminer.
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Table 2.5: Area under the ROC curves resulted applying VerySNP, SNPSVM and VQSR to yeast, Pinot
Noir and Gewürztraminer.

Tools Yeast Pinot Noir Gewürztraminer

VerySNP 0.988 0.986 0.910

SNPSVM 0.914 0.864 0.871

VQSR 0.891 0.896 0.887

Figure 2.4: Venn diagram showing the number of true (T) and false (F) variants in the evaluation set
and in the prediction of VerySNP, SNPSVM and VQSR applied to yeast dataset (TPs = True Positives;
FPs = False Positives): a) Number of true positives (Ps) in the evaluation set (green circle) overlapped
to all VerySNP (blue circle) and SNPSVM (purple circle) predictions (TOT variants); b) Number of
true variants of the evaluation set called by VQSR (green circle), VerySNP (blue circle) and SNPSVM
(purple circle) (TPs); c) Number of false variants in the evaluation set predicted by VQSR (green circle),
VerySNP (orange circle) and SNPSVM (red circle) (FPs).

Figure 2.3 shows the performance of VerySNP when trained on GATK variant calling

and RBF kernel. The best model is finally used for the evaluation set. Very similar results

were obtained using GATK and linear kernel, while using SAMtools variant calling along

with its training sets has given slightly worse performances (see Table 2.2). Considering

the area under the ROC curves (Table 2.5) we can conclude that VerySNP showed the

largest areas with regard to SNPSVM and VQSR for all tested samples (average value
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0.961) and it proved to be a very good tool to accurately identify positive variants and

correctly recognize false ones.

In our study SNPSVM and VQSR showed fairly overlapping ROC curves and the aver-

age values of the area under the curve were 0.883 and 0.858, respectively. In yeast (Figure

2.3 [a]), SNPSVM outperforms VQSR after a level of specificity equal to 0.08. Looking

at grapevine samples, although Pinot Noir curves (Figure 2.3 [b]) were rather similar,

the SNPSVM curve was lower than VQSR for specificity higher than 0.12. Similarly, in

Gewürztraminer (Figure 2.3 [c]) SNPSVM showed lower sensitivity than VQSR whereas

specificity was higher than 0.26.

The effectiveness of VerySNP and SNPSVM as binary classifiers in reducing the false

positives rate can be easily pointed out considering the results presented in Figures 2.4

(yeast), 2.5 (Pinot Noir) and 2.6 (Gewürztraminer). In particular, figure 2.6 [a] and 2.6

[b] show that out of 178 false positive variants available as evaluation set, VQSR wrongly

predicted 175 as true variants, while the two SVM methods failed in 8 cases only (Figure

2.6 [c]). Similar results were obtained for yeast (Figure 2.4) and Pinot Noir (Figure 2.5). It

is worth mentioning that, although SNPSVM and VerySNP are both based on SVM, they

are trained on different features, directly calculated from the aligned reads by SNPSVM,

while already calculated through Bayesian methods from the aligned reads in VerySNP.

The variant calling goal is to detect true variants avoiding false positives and not

missing any true variant. Tool’s performance can be measured in those terms by using

the precision-recall curve, where precision (or positive predictive value) is the fraction of

retrieved instances that are relevant, while recall (also known as sensitivity) is the fraction

of relevant instances that are retrieved. Drawing the precision-recall curves for each

software applied to one sample at the time (Figure 2.7) reveals three similar behaviors,

showing just a small range of differences in the AUC. While the areas under the precision-

recall curves in yeast showed no differences (AUC was 1.000 for all three software), in Pinot

Noir the AUC went from 1.000 of VerySNP to 0.996 of VQSR and in Gewürztraminer the

range was slightly larger, going from 1.000 of VerySNP to 0.991 of VQSR.

The comparison between precision-recall and ROC curves highlights that the main

difference among the three tools is the ability to distinguish false positives rather than

recover the whole amount of true positives. Indeed, the larger difference between the

areas under the ROC curves of the three software applied to Gewürztraminer is 0.039,

almost ten times bigger than between the areas under the precision-recall curves (0.004).
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Figure 2.5: Venn diagram showing the number of true (T) and false (F) variants in the evaluation set and
in the prediction of VerySNP, SNPSVM and VQSR applied to Pinot Noir dataset (TPs = True Positives;
FPs = False Positives): a) Number of true positives (Ps) in the evaluation set (green circle) overlapped
to all VerySNP (blue circle) and SNPSVM (purple circle) predictions (TOT variants); b) Number of
true variants of the evaluation set called by VQSR (green circle), VerySNP (blue circle) and SNPSVM
(purple circle) (TPs); c) Number of false variants in the evaluation set predicted by VQSR (green circle),
VerySNP (orange circle) and SNPSVM (red circle) (FPs).

The whole variants profile of the three studied samples is unknown, making hard to

estimate the missing true variants, except for the evaluation set. The high number of

variants predicted by SNPSVM (10,526,342) in Gewürztraminer is quite impressive when

compared to VQSR and VerySNP (1,657,491), raising the question of which tool is the

closest to the real picture.

RFE and cross-validation analysis shown a quite high optimal number of VCF features

required for best performances. Among the 23 values of GATK VCF outputs, the best

classifications are reached with 12 for Pinot Noir, 13 and 21 for yeast and Gewürtztraminer

(Table 2.6), respectively. Among the top ranking features of all samples there are features

linked to the alignment quality, as the combine depth of aligned reads (DP) and the

Mapping Quality (MQ), and values referred to features of the hypothetical variant, like

the number of alleles (AC) and their frequency (AF).
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Figure 2.6: Venn diagram showing the number of true (T) and false (F) variants in the evaluation set
and in the prediction of VerySNP, SNPSVM and VQSR applied to Gewürztraminer dataset (TPs = True
Positives; FPs = False Positives). a) Number of true positives (T) in the evaluation set (green circle)
overlapped to all VerySNP (blue circle) and SNPSVM (purple circle) predictions (P); b) Number of true
variants (TPs) of the evaluation set called by VQSR (green circle), VerySNP (blue circle) and SNPSVM
(purple circle); c) Number of false variants (FPs) in the evaluation set predicted by VQSR (green circle),
VerySNP (orange circle) and SNPSVM (red circle) (FPs).

2.5 Discussion

Machine Learning techniques, and in particular SVMs, have often been applied to solve

biological problems because of their high accuracy and efficiency, which are indispensable

properties to detect variant as well. Since the most popular variant calling, GATK and

SAMtools, usually call a set of variants large enough to include almost all possible true

variants, here we propose to enhance the accuracy by reducing the false positive variant

prediction rate with a SVM-based approach. VerySNP was designed to classify GATK

and SAMtools calls in true and false variants taking into consideration all VCF features

concerning reads alignment and nucleotide quality at the variant site.
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Table 2.6: Cross validation of feature subsets and Recursive Feature Elimination (RFE) analysis. The
cross validation of feature subsets evaluates the optimal number of informative features and we observed
a minimum of 13, 12 and 21 features to reach the best classification, respectively for yeast, Pinot Noir
and Gewürztraminer. The RFE ranks the features as reported in the table. Some features have been
repeated multiple times depending on how many values they include.

GATK Features Yeast Pinot Noir Gewürztraminer

1 Quality 9 8 1

2 AC 1 1 1

3 AF 1 1 1

4 AN 11 13 3

5 BaseQRankSum 1 3 1

6 DP 2 1 1

7 FS 5 2 1

8 HaplotypeScore 7 4 1

9 MLEAC 1 1 1

10 MLEAF 1 1 1

11 MQ 1 1 1

12 MQ0 1 5 1

13 MQRankSum 4 1 1

14 QD 1 1 1

15 ReadPosRankSum 1 1 1

16 AD 3 10 1

17 AD 1 6 1

18 DP 6 1 1

19 GQ 1 11 1

20 GF 1 1 1

21 PL 8 9 1

22 PL 1 7 1

23 PL 10 12 2
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Figure 2.7: Precision-recall curves of SNPSVM, VerySNP and VQSR applied to yeast (a), Pinot Noir
(b) and Gewürztraminer (c). While the areas under the curves (AUCs) was 1.000 for all three software
in yeast, in Pinot Noir the AUC measured 1.000 using VerySNP, 0.999 using SNPSVM and 0.996 using
VQSR. In Gewürztraminer the range was slightly larger, going from 1.000 using either VerySNP or
SNPSVM to 0.991 using VQSR.
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VerySNP was tested on a model organism (yeast) and two cultivated varieties of a non-

model plant organism (grapevine). Grapevine represents a typical non-model organism

for its size, its long life cycle and its difficult genetic manipulation. Nonetheless, due

to its economic importance there is much interest in studying its genetic variations and

associate them to the plant phenotype. For these reasons we have developed a tool flexible

enough to work both on model and non-model organisms.

Having Pinot and Traminer different geographical origins and being genetically well

distinct (Lacombe et al., 2012), we expected to observe significant differences in reads

alignment against the reference genome and consequently in variant calling. This was

not the case when looking at the ROC curves. Indeed, VerySNP learnt quite well from

the VCF features and in both cases it very accurately recognized false variants from true

ones. The choice of testing VerySNP on yeast also came from the need to apply the

tool on publicly available data, in order to let the scientific community test our results.

Moreover, yeast is commonly used to test bioinformatic tools because of its relatively

small genome. We used in-house produced sequencing reads in order to be sure that the

strain was exactly the same as the one described in the literature reporting the variant

validation.

While VQSR requires tens of thousands of true examples to precisely fit its Gaussian

distributions, SVM-based approaches, like SNPSVM and VerySNP, can make accurate

calls, by learning from few hundreds of true and false variants, allowing precise variant

calling in non-model organisms, such as grapevine, where a limited set of validated vari-

ants is available (e.g. Lijavetzky et al., 2007; Pindo et al., 2008; Vezzulli et al., 2008).

Finally, it can be foreseen that as more accurate training sets are developed, the prediction

faithfulness of these tools will significantly increase.

2.6 Conclusion

Variant calling is a challenging process especially in non-model organisms due to the lack

of largely validated variant sets and the high complexity of their genome sequence. The

SVM tools have been proved to outperform other approaches in reducing false positive

rate. Therefore, we provide a software that helps to tackle this problem exploiting the

SVM ability to learn which variant has features closely related to known true, rather than

false, variants. Valuable information is taken from the VCF files and used to detect the

most likely candidate variants by applying the SVM model on the variant calling outputs.
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Chapter 3

Grapevine acidity

3.1 Abstract

Grapevine berry acidity at harvest plays a key role in wine fermentation, affecting the final

quality of the product and, thus, its economical return. For this reason, the knowledge

of the molecular bases of berry acidity is of great importance. The discovery of a stable

natural grapevine lacking in acid content, Gora Chirine, gives the perfect opportunity to

study a highly complex trait like acidity. In particular, Gora berry transcriptome has been

compared with the one of Sultanine, which is a normal acidity variety, genetically close to

Gora. Their transcripts have been reconstructed using the Pinot Noir genome sequence as

reference, identifying 29,903 and 31,503 transcripts in Gora and in Sultanine, respectively.

Those transcripts that found a correlation in the Cribi V2 reference annotation have been

classified with gene ontology terms, allowing to detect the most likely involved into the

acid transport and compartmentalization. The RNAs alignments to the reference genome

also enabled the call of genetic variants, of which 225,864 SNPs in Gora and 188,781 SNPs

in Sultanine were assessed as true variants by VerySNP. The overlap of those two SNP

groups highlighted the differences between Gora and Sultanine: 84,359 in Gora and 47,276

in Sultanine were recognized as unique SNPs of each particular genotype. Considering

the transcripts found in GO categories of interest for the acidity trait and the transcripts

showing at least one SNP specific of Gora genotype, we calculated the number of those

SNPs generating a non-synonymous mutation as 81. This set represents a valuable list of

candidate transcritps potentially related to grapevine berry acidity.
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3.2 Introduction

3.2.1 Organic acids in fruit-crops

Organic acids support numerous and varied aspects of cellular metabolism in all plants.

They are among the main determinants of the organoleptic quality of fleshy fruits and their

products, but the type of organic acid found, and the levels to which they accumulate are

extremely variable between species, developmental stages and tissue types. Currently, an

insufficient understanding of the heterogeneous and complex pathways through which the

principal organic acids are synthesized, degraded and regulated, prevents targeted genetic

manipulation aimed at modifying fruit acid metabolism in response to environmental

conditions (Boudehri et al., 2009). Acidity is of great interest in agriculture due to its

strong influence to the harvested date in crops, primarily in those fruits requiring further

processing, like wine grapes fermentation. The balance of acids in wine grape must

(juice) is central for supporting desirable growth (and preventing undesirable growth) of

microorganisms responsible for wine fermentation. Acids concentration can also affect

final wine characteristics through involvement in secondary processes such as carbonic

maceration and malolactic fermentation, and can even alter the growth capabilities of

malolactic bacteria (Kunkee, 1991).

In both climacteric and a non-climateric fruits malate is one of the most prevalent

acids, followed by citric and tartaric acid, which contribute to the total cell acidity. Malate

is an important participant in numerous cellular functions, from controlling stomatal

aperture, improving plant nutrition, and increasing resistance to heavy metal toxicity

(Fernie and Martinoia, 2009; Schulze et al., 2002), to other processes more intricately

linked with metabolic pathways. The non-climacteric fruits of Vitis vinifera (grape) do

not contain large amounts of citrate, and the large quantity of tartrate presents in the fruit

is not used in primary metabolic pathways. Therefore malate is the only high-proportion

organic acid that is actively metabolized throughout ripening of grapes (Sweetman et al.,

2009).

Malate is thought to be synthesized during the green stage of fruit growth, through the

metabolism of assimilates translocated from leaf tissues, as well as photosynthetic activity

within the fruit itself. Just before veraison, or at the inception of fruit ripening, malate

accumulation switches to malate degradation and the sugar synthesis begins (Ruffner and

Hawker, 1977). In post-veraison fruit, malate is liberated from the vacuole and becomes

available for catabolism through various avenues, including the TCA cycle and respiration,

gluconeogenesis, amino acid interconversions, ethanol fermentation, and the production of
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complex secondary compounds such as anthocyanins and flavonols (Famiani et al., 2000;

Farineau and Laval-Martin, 1977; Ruffner, 1982; Ruffner and Kliewer, 1975). With the ac-

cumulation of sugars and inhibition of glycolysis in ripening grapes (Ruffner and Hawker,

1977), malate is likely a vital source of carbon for these pathways. Once grapes reach

veraison, sugar metabolism begins to support hexose accumulation and synthesis rather

than catabolism, through regulation of key enzymes of the glycolytic and gluconeogenic

pathways (Ruffner and Hawker, 1977). Therefore, at this stage, sugars relinquish the role

of major carbon source for energy metabolism and biosynthesis. Malate released from the

vacuole during ripening has the potential to fulfill this function, and can do so through

involvement in gluconeogenesis, respiration (aerobic and anaerobic), and biosynthesis of

secondary compounds.

Vacuolar transporters play a critical role in the switch from malate accumulation to

degradation in grape berries, as the acid must be released from the vacuole before it can

be metabolized. This involves activities of anion transporters that allow passage of malate

through the tonoplast, as well as proton pumps that use the hydrolysis of high energy

molecules (ATP and PPi) to drive the import of protons into the vacuole. The latter create

an proton gradient that enables malate to be transported into the vacuole against its own

concentration (Luttge and Ratajczak, 1997). Several vacuolar dicarboxylate channels

have been identified in plants (Emmerlich et al., 2003; Hafke et al., 2003; Kovermann et

al., 2007). However the regulation of vacuolar pH does not only relies on primary pumps

and anion transporters. By example, H+/K+ exchangers convert the proton gradient in

a potassium gradient. A complete description of membrane transport is largely beyond

the scope of this thesis, but its must be understood that all process affecting the energy

balance of the cell, the primary pumps, the secondary transport of most solutes at the

tonoplast, will finally affect the vacuolar pH and the concentration of all solutes inside

the vacuole.

More recently, Aprile et al. (2011), pointed out the knock-out of the Arabidopsis H+-

ATPase proton pump AHA10 citrus homolog and the Petunia H+-ATPase proton pump

PhPH5 citrus homolog, both targeted to the vacuolar membrane (Verweij et al., 2008),

as responsible for the sweet mutation in Faris lemon variety.

In some fruits, particularly grape, the exposure of the ripening fruit to warmer climatic

conditions leads to lower levels of malate at harvest (Lakso and Kliewer, 1978; Ruffner et

al., 1976). The temperature-sensitivity of fruit malate degradation may be influenced by

activities of enzymes involved in pathways such as the TCA cycle and respiration, ethanol

fermentation and gluconeogenesis (Hawker, 1969; Lakso and Kliewer, 1975; Romieu et al.,

1992; Taureilles-Saurel et al., 1995).
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Most data available on the inheritance of organic acids on fruit trees deals with ripe

stage as a major target for breeding. Like grapevine, Apple acidity is at first determined

by malic acid. Kenis et al. (2008), detected a major year-stable QTL accounting for

20-34% of the total variance on LG16, on Telamon and Braeburn, consistent with that

observed on Fiesta (Leibhard et al., 2003).

In peaches (Prunus persica), the low acidity phenotype depends on a dominant D al-

lele, localized at the proximal end of LG 5, based on segregation studies of 1,718 individu-

als resulting from a F2 progeny (Boudehri et al., 2009). Putative transcripts in this small

region can also be browsed at http://www.rosaceae.org/gb/gbrowse/malus x domestica/

and would noticeably include a putative K+/H+ symporter as the most probable target

for mutation.

3.2.2 Gora and Sultanine

We compared two grapevine varieties, Gora Chirine and Sultanine. These two varieties

present a really similar genetic background, but Gora shows an exceptionally low acidity

content, while Sultanine has standard acidity. They have also other differences, such as

berry size (larger berries in Gora), presence of seeds (two-three seeds per berry in Gora

and no seed in Sultanine) and flowering activity. Gora and Sultanine are genetically very

close (as demonstrated by AFLP analysis and SSR profiles), which should exclude sexual

recombination events between their two genotypes.

Goras phenotype has been studied by Diakou et al. (1997 and 2000) and they proved

Gora has lower levels of all organic acids (malic, tartaric and citric acid), as shown in Fig-

ure 3.1. They also investigate the ability to synthesize and degrade malic acid in Gora,

discovering that malic acid is synthesized in Gora cytosol and quickly degraded. Further-

more, the enzyme PEPC, a key enzyme in malate synthesis seems not to be responsible

for the low acidity level in Gora since its activity was found to be higher than in normal

acidity berries (Diakou et al., 2000). Interestingly, the same authors were able to show

that the vacuolar pH of the low acidity and normal acidity varieties was similar (between

2.7 to 3.0) unlike the juice pH (vacuolar + cytosolic) which was much higher in Gora

(around 4.3 instead of 3.0). Gora presents an higher glucose level already at berry green

stage (Figure 3.1), suggesting some aspects of ripening stage are already active in green

stage for sugar-acid metabolism, but not for cell wall and other metabolisms.
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Figure 3.1: Titratable acidity (A) and pH (B) of grape berries of cvs Cabernet Sauvignon (white squares)
and Gora Chirine (black circles) sampled from before veraison to harvest. Concentration of glucose (C)
and fructose (D) in the juice of grape berries of cvs Cabernet Sauvignon (white squares) and Gora Chirine
(black circles) sampled from before veraison to harvest (Diakou et al., 1997).

All these observations move the attention to the vacuolar storage of protons and acids.

Hence, the best candidate genes for the acidless mutation are transporter proteins located

into the tonoplast membrane, such as H+-ATPase (both vacuolar and plasmic forms),

malate transporters (ALMT9, TDT), sugar transporters (Glucose/H+ antiporter) and

H+/K+ antiporter. As a matter of fact, all transport impacting the osmotic or electric

components of the pmf (proton motive force) would possibly impact vacuolar pH. As

reported by Aprile et al. (2011) an H+-ATPase proton pump is responsible for acidless

mutant in lemon. On the other hand, Bai et al. (2012) found an aluminium-activated

malate transporter-like that determine low acidity trait in apple. Shimada et al. (2006)

investigated the induction of a citrate/H+ symporter expression when oranges loose acidity

along ripening. In sweet melon, Cohen et al. (2014) discovered a 12-bp insertion into the

PH gene sequence, coding for a H+ transporter of the endoplasmic reticulum, which
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affects the protein structure by extending or shifting one of the transmembrane domains

to include the duplicated amino acids. The malfunctioning of the mutated transporter is

the reason of low-acid melon (Cucumis melo) phenotype.

3.3 Methods

3.3.1 Samples and acid/sugar content analyses

Gora and Sultanine triplicates were sampled on 4th July 2012 in the experimental vineyard

of INRA-Supagro in Montpellier at 0h, 6h, 12h, and 18h, in order to address all genes

expressed within one nycthemeral sample (Rienth et al., 2014). Berries were separated

from the cluster, cutted in halves with a scalpel and eventually deseeded (Gora) before

freezing in liquid nitrogen. The process was conducted sequentially on individual fruits in

order that fixation occurred less than one minute following separation from the cluster.

Berries were then reduced to a fine powder in liquid nitrogen. Aliquots of the powder

were either analyzed for sugar and acids, or mixed before RNA extraction. The similar

berry weight between Gora berries and Sultanine berries warrants that RNA-seq results

will not be affected by different skin to flesh ratios (Table 3.1).

Table 3.1: Gora and Sultanine berries have been sampled and their acid/sugar content analyzed. The
following table report differences and analogies in berry composition calculated on 12 samples per cultivar.
In the last raw we refer to the total content of all the previous mentioned compounds: glucose (G), fructose
(F), malate (M) and tartrate (T).

Gora Sultanine

Flesh and skin FW (g) 0.50 ± 0.12 0.44 ± 0.07

pH 4.17 2.58

Malate (mM) 7 ± 2 148 ± 10

Tartrate (mM) 31 ± 2 109 ± 05

Glucose (mM) 233 ± 20 69 ± 8

Fructose (mM) 47 ± 08 23 ± 2

G+F+M+T (mM) 317 ± 27 348 ± 20
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3.3.2 Preparation of RNA samples and extraction

RNA-seq data were produced via an external service (Genopole, Toulouse) following the

the protocols reported below. Samples were grinded in liquid nitrogen and the total

cellular RNA was extracted using a Spectrum Plant Total RNA kit (Sigma, Inc., USA)

with a DNAse treatment. RNA concentration was first measured using a NanoDrop

ND-1000 Spectrophotometer then with the Quant-iTTMRiboGreen R©(Invitrogen, USA)

protocol on a Tecan Genius spectrofluorimeter. RNA quality was assessed by running 1 µL

of each RNA sample on RNA 6000 Pico chip on a Bioanalyzer 2100 (Agilent Technologies,

Inc., USA). Samples with an RNA Integrity Number (RIN) value greater than eight were

deemed acceptable according to the Illumina TruSeq RNA protocol.

The TruSeq RNA sample Preparation v2 kit (Illumina Inc., USA) was used according

to the manufacturer’s protocol with the following modifications. In brief, poly-A con-

taining mRNA molecules were purified from 2 µg total RNA using poly-T oligo attached

magnetic beads. The purified mRNA was fragmented by addition of the fragmentation

buffer and was heated at 94◦C in a thermocycler for 4 min. The fragmentation time

of 4 min was used to yield library fragments of 250-500 bp. First strand cDNA was

synthesized using random primers to eliminate the general bias towards 3’ end of the

transcript. Second strand cDNA synthesis, end repair, A-tailing, and adapter ligation

was done in accordance with the manufacturer supplied protocols. Purified cDNA tem-

plates were enriched by 15 cycles of PCR for 10 s at 98◦C, 30 s at 65◦C, and 30 s at

72◦C using PE1.0 and PE2.0 primers and with Phusion DNA polymerase (NEB, USA).

Each indexed cDNA library was verified and quantified using a DNA 100 Chip on a

Bioanalyzer 2100 then equally mixed by ten (from different samples). The final library

was then quantified by real time PCR with the KAPA Library Quantification Kit for

Illumina Sequencing Platforms (Kapa Biosystems Ltd, SA) adjusted to 10 nM in water

and provided to the Get-PlaGe core facility (GenoToul platform, INRA Toulouse, France

http://www.genotoul.fr) for sequencing.

Final mixed cDNA library was sequenced using the Illumina mRNA-Seq, paired-end

protocol on a HiSeq2000 sequencer, for 2 × 100 cycles. Library was diluted to 2 nM

with NaOH and 2.5 µL transferred into 497.5 µL HT1 to give a final concentration of

10 pM. 120 µL was then transferred into a 200 µL strip tube and placed on ice before

loading onto the cBot, mixed library, from 10 individual indexed libraries, being run on

a single lane. Flow cell was clustered using TruSeq PE Cluster Kit v3, following the

Illumina PE Amp Lin Block V8.0 recipe. Following the clustering procedure, the flow

cell was loaded onto the Illumina HiSeq 2000 instrument following the manufacturer’s
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instructions. The sequencing chemistry used was v3 (FC-401-3001, TruSeq SBS Kit)

with the 2 × 100 cycles, paired-end, indexed protocol. Image analyses and base calling

were performed using the HiSeq Control Software (HCS 1.5.15) and Real-Time Analysis

component (RTA 1.13.48). Demultiplexing was performed using CASAVA 1.8.1 (Illumina)

to produce paired sequence files containing reads for each sample in Illumina FASTQ

format.

3.3.3 Transcript reconstruction and GO annotation

Gora and Sultanine have been sampled just before the veraison, the stage at which green

berries start to become colored. The RNA as been extracted from a pool of berries

sampled over a week before veraison and then sequenced. Transcriptomic reads quality

was manually inspected using FastQC software (v0.11.2; written in java and available at

http://www.bioinformatics.babraham.ac.uk/ projects/fastqc), which showed a quite high

level of duplication and a bias at the 5’-end, the latter due to the preferential amplification

of GC-rich regions, normally happening when the random priming technique has been

used on the samples to reverse transcribe the RNA samples (Benjamini and Speed, 2012).

The GC-bias mostly affects the gene expression calculation, which was not the objective

of our experiment, and thereby there was no need to fix it. Afterwards, the reads have

been cleaned and trimmed using Prinseqlite (http://prinseq.sourceforge.net) as proven in

Figure 3.2, which shows the per base quality of both Gora and Sultanine right and left

reads after the cleaning and trimming. Gora and Sultanine good quality reads have been

aligned to the Pinot Noir reference genome (Jaillon et al., 2007) with TopHat (v2.0.11;

Kim et al., 2013) setting the standard deviation for the distribution on inner distances

between mate pairs to 100 bp and decreasing the default minimum intron length to 25 bp.

The alignment successfully showed a percentage of reads mapped in proper pairs equal to

78% for Gora and 79.86% for Sultanine.

The transcript reconstruction into Gora and Sultanine RNA-seq alignments have been

performed by Cufflinks (v2.2.1; Trapnell et al., 2012) and their predicted transcripts have

been labeled either as overlapping between the two grape varieties or as uniquely present

in one of them; even though, in this preliminary study, we will always consider all Gora

transcripts. In order to avoid false positive transcripts and to properly consider only

the regions that are actually transcribed, we analyzed the total depth of the RNA reads

coverage distribution along the reference and established a minimum value above which

a certain transcript can be considered as expressed. The exact value was calculated with

a parametric method, the negative binomial distribution, which provides the maximum
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number of reads that do not make a certain region transcribed by measuring the number

of negative attempts to have a transcript expressed while adding reads. The negative

binomial distribution is often used when the variance is much higher than the average,

which is a common case in RNA-seq reads alignments. We applied the probability to have

reads by chance aligned under a certain transcript as less than or equal to 5%. Given

this assumption we took into account only the putative transcripts with average depth of

coverage higher than 27 for Gora and higher than 31 for Sultanine (Anders and Huber,

2010).

Figure 3.2: The FastQC software per base sequence quality: the already cleaned and trimmed Gora left
(a) and right (b) reads of the RNA-seq paired ends; the already cleaned and trimmed Sultanine left (c)
and right (d) reads of RNA-seq paired ends.
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In addition, Gora putative transcripts profiles have been compared to the Pinot Noir

reference Cribi V2 gene prediction (http://genomes.cribi.unipd.it/DATA/V2) to better

identify which V2 genes belonged to Gora and Sultanine transcriptome and to compare

them in terms of functional annotation. Indeed, Gora’s veraison transcripts which have

found a correspondence in the V2 reference gene prediction, have been classified in the

general categories provided by the Gene Ontology (GO), which help to understand the

biological role played by the expressed transcripts (Table 3.5, 3.6 and 3.7). We used

the Plant GO slim; GO slims are shorter versions of GO ontologies, containing only a

particular subset of the terms in the whole GO and they may be build around particular

areas of ontologies or specific to species, like plants.

3.3.4 VerySNP application

While the GATK variant calling (UnifiedGenotyper) was performed on the berry RNA-

seq reads alignment of both Gora and Sultanine, the DNA of the two grape varieties

were extracted from their leaf, respectively, and both hybridized on Vitis17KSNP chip

(GrapeReSeq Consortium https://urgi.versailles.inra.fr/Projects/Grape ReSeq). The Vi-

tis17KSNP chip data analyzed with GenomeStudio Data Analysis Software (Illumina

Corp.) have been used as true and false variants to train VerySNP. Out of the 1,994

SNPs called by GATK and confirmed by the SNP-chip in Gora, we could count 1,877 as

true and 117 as false SNPs. At the same way, in Sultanine we got 2,136 SNPs called by

GATK and addressed by the SNP-chip, of which 1,999 resulted as true and 137 as false

calls. Known true and false SNPs were balanced to the least numerous class (always the

false set in our case) and used to train VerySNP (see Chapter 2 for more details). After

the training, the 10-fold validation showed an accuracy average equal to 81.9% in Gora

and to 71.3% in Sultanine, while the average precision was 81.8% and 78.4%, respectively.

Among the 10 models proposed by the 10-fold validation, VerySNP defined the best one

to set apart true and false SNPs in each cultivar by calculating the Matthew Correlation

Coefficient (MCC), which resulted of 0.91 in Gora’s and 0.70 in Sultanine’s training set

validation. That SVM model was applied to the whole GATK variant call to recognize

which SNPs were actually true in Gora as well as in Sultanine, respectively.

Finally, we used the Bedtools function intersect (Quinlan and Hall, 2010) to cross the

SNP profiles with the transcripts prediction and be able to see the SNP distribution in

the transcriptome. Thanks to a short python script we edited, each SNP caught in the

cross was characterized either as missense, nonsense or synonymous, knowing the reference

sequence and the alternative allele showed in Gora/Sultanine reads.
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Figure 3.3: The comparative analysis between Gora and Sultanine started with the RNA-seq raw reads
and followed all the steps to the alignment for both cultivars. Afterwords, the alignment was the input for
two different analysis: the transcript reconstruction through Cuffilinks, which was then crossed with the
reference Cribi V2 annotation, and the variant calling through GATK UnifiedGenotyper, which produced
a list of putative SNPs classified in true and false calls by VerySNP. At this point, all Gora transcript
and Gora specific SNPs (black sections of the two overlapped circles) were considered in the transcripts
GO classification and in the SNP characterization.

59



3.4. RESULTS CHAPTER 3. GRAPEVINE ACIDITY

The whole procedure applied to the comparative analysis of Gora and Sultanine, in-

cluding transcriptome, SNP data and gene ontology, is summarized in Figure 3.3.

3.4 Results

A preliminary observation of acid and glucose contents analyses suggests that Gora is

primary unable to withstand a proton gradient and its pH is not below the pK of malate

and tartrate. Gora’s acids, which can obviously be synthesized (presence of tartrate,

Diakou et al. (2000) labelled malate and PEPC kinase activity with 14CO2), can not

be accumulated by protonation (see Martinoia et al. (2007) for better explanation of

organic acid trapping mechanism). The storage of both acids is affected, not only the

one of malate. The loss in osmotic pressure is compensated mostly by glucose. Very

rapidly, when the fruit starts to ripen, the glucose to fructose ratio reaches 1 in Gora and

Sultanine as well (not shown). Then, the strong glucose to fructose ratio in Gora confirms

the fruit is at green stage, together with the green color and the hard texture of the fruit,

in spite of an acid composition even lower than never observed in ripe berries (0.5 M

glucose, 0.5 M fructose, more than 50 mM tartrate and malate possibly lower, depending

on environmental conditions). By many aspects, Gora looks like a ripe vacuole, in a green

cytoplasm.

The whole set of Gora and Sultanine RNA-seq reads have been separately aligned to

the Pinot Noir reference genome and their total percentage of alignment was equal to

78.00% in Gora and to 84.04% in Sultanine. Paired-end reads alignment is performed

by placing the right read at a known distance from its left read, but reasons like the

large genetic distance between the reference sequence and the mapped individual, or the

advent of large insertions and deletion, may prevent the read mapping in proper pair.

Although Pinot Noir is not genetically very close to Gora and Sultanine, the percentage

of reads mapped in proper pair was calculated to be 72.59% in Gora and 79.86% in

Sultanine; in both cases not far from the whole amount of mapped reads. Around 5% of

the mapped reads do not match in proper pairs in both Gora and Sultanine alignments.

This may be indicative of noticeable structural variations (i.e. large INDELs) between

reference genome Pinot Noir 40024 and Sultanine related cultivars (Di Genova et al.,

2014). The unmapped reads, likely matching regions specific of Gora and Sultanine

genomes, concerned the 15.96% and the 22% of Gora and Sultanine total raw reads set,

respectively (Table 3.2).
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Table 3.2: Of the whole set of RNA-seq reads (1) the number of total mapped reads was found to be the
78% in Gora and the 84.04% in Sultanine (2), while counting the reads mapped in a proper pair only,
the rates go to 72.59% in Gora and to 79.86% in Sultanine (3). The remaining reads fraction amounted
to 15.96% in Gora and 22% in Sultanine and is considered as unmapped (4). The Cufflinks software
predicted a total number of transcripts (5) that was then analyzed. The minimum value in depth of
reads coverage for which a certain transcript was considered as expressed was calculated (6).

Number of Gora Sultanine

1 Total raw paired-ends 40,339,336 43,733,962

2 Total mapped reads 31,677,180 36,752,428

3 Properly mapped reads 29,284,248 34,925,020

4 Unmapped reads 8,662,156 6,981,534

5 Cufflinks transcripts 29,903 31,503

6 Minimum coverage considered 27 31

The transcripts reconstructed by Cufflinks from the RNA-seq reads alignment on Pinot

Noir were about 29,903 in Gora and 31,503 in Sultanine, of which we considered only the

ones with a average depth of coverage of 27 in Gora and 31 in Sultanine (Table 3.2).

We mapped those transcripts on the Cribi V2 annotation of Pinot Noir reference and

detected which Pinot Noir mRNA sequences corresponded to Gora and Sultanine tran-

scripts. We have found a significant match of the Gora transcripts with 12,811 Cribi V2

coding sequences. The considerable differences between the transcripts showing a corre-

spondence in the Cribi V2 annotation and the original number of transcripts reconstructed

by Cufflinks can be explained mainly as inaccuracy of Cufflinks working without the ref-

erence annotation and partially as due to the genetic distance between Gora/Sultanine

and Pinot Noir. In the V2 mapped Gora transcripts we could find 7,238 true and unique

SNPs. Indeed, the alignment of Gora and Sultanine RNA-seq reads to the reference

genome was also required to call the genetic variations occurring in such sequences. At

this aim we used UnifiedGenotyper, the variant calling function of the Genome Analysis

Toolkit (GATK), which is a software package developed at the Broad Institute to analyze

high-throughput sequencing data. This software provided 317,990 variants in Gora and

357,186 in Sultanine transcriptome, but only 225,864 and 188,781 were classified as true

variants by VerySNP in Gora and Sultanine, respectively. Comparing Gora and Sultanine

true variant sets we gathered the SNPs shown uniquely by one variety or the other, which
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amounted to 84,359 in Gora and 47,276 in Sultanine (Table 3.3). The number of poly-

morphisms which are divergent between Gora and Sultanine is lower than the number

of SNPs retrieved as different from Pinot Noir, but obviously excludes that Gora and

Sultanine can be considered as clones. This result does not meet our expectations.

Table 3.3: Gora and Sultanine RNA-seq reads have been aligned to Pinot Noir 40024 reference genome to
generate the variant calling through GATK UnifiedGenotyper, which provided hundreds of thousands of
variants (1). Only a fraction of variants have been classified by VerySNP as true variants (2). Looking for
differences between the two cultivars, the study was focused on the investigation of the variants uniquely
showed either by Gora or Sultanine (3). After mapping the transcripts into the reference gene prediction,
the coding sequences (CDSs) where the variants fell were retrieved (4) and characterized by the kind of
mutation they may originate: missense (5), synonymous (6) and nonsense (7).

Number of Gora Sultanine

1 GATK variant calls 317,990 357,186

2 True variants by VerySNP 225,864 188,781

3 Unique variants 84,359 47,276

4 Unique Variants in CDSs 12,811 6,082

5 Missense variants in CDSs 6,701 3,295

6 Synonymous variants in CDSs 6,034 2,736

7 Nonsense variants in CDSs 75 50

Out of the 84,359 Gora true SNPs solely present in all Gora’s transcripts, 41,440 were

found in introns, 18,126 in UTRs, 17,555 fell outside gene predictions and 7,238 in CDSs

(coding sequences). The SNPs retrieved in CDSs are 7,238 and they are found in 12,811

Gora transcripts, since more than one transcripts can cover the same SNP position. Each

transcript carries at least one SNP and each SNP can cause different mutation depending

on the transcript frame which is considered. In total, we identified 12,811 putative single

nucleotide mutations and, tracking their position into the codons, we characterized the

kind of mutation they may originate at the protein level. Equally, the number of Sultanine

true SNPs uniquely present in all Sultanine transcripts were 47,276; of which the majority

was found in introns, amounting to 28,556 SNPs, while 7,378 were mapped in UTRs, 7,902

fell outside gene predictions and only 3,440 in CDSs.
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Figure 3.4: All Gora transcripts crossed with Gora unique SNPs occurring in CDSs have been classified
in the three main GO-slim categories: biological process (66,731 transcripts), cellular component (50,706
transcripts) and molecule function (43,717 transcripts). Each category includes other more specific clas-
sifications, of which we graphically illustrated the widest top-ten.
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As already mentioned for Gora, the number of SNPs retrieved in Sultanine is repeated

for each transcript covering such position in the genome and for this reason 3,440 SNPs

found in CDSs have been counted as 6,082 (Table 3.3).

We compared the amino acid coded by the Pinot Noir reference with the alternative

amino acid coded by Gora and Sultanine and, whether the amino acid was found identical,

we defined the SNP mutation as synonymous, otherwise as missense mutation, when the

reference codon and the alternative codon generated two different amino acids. SNPs

resulting in a premature stop codon into the protein sequence, by replacing the original

amino acid with a ”stop” codon, also referred as nonsense mutation, occur at extremely

low frequency. In particular, out of 12,811 Gora’s variants in CDSs: 6,701 would cause a

missense mutation; 6,034 a synonymous one and only 75 a nonsense mutation. Likewise,

out of 6,082 Sultanine’s variants in CDSs: 3,295 would cause a missense mutation; 2,736 a

synonymous one and only 50 a nonsense mutation. The observed SNP frequency and the

type of caused mutation appears in line with several previous reports, where synonymous

mutations are quite ordinary and nonsense mutation are rare. The number of missense

mutation is, however, elevated but we can not be able to tell whether they change the

cell biology or not, until we verify each of them with biological experiments. A further

approach would be to check which SNP changes the general properties of amino acids,

i.e. the presence of proline stiffens the protein backbone; in other cases it could switch

the amino acid polarity or modify their charge, from neutral to positive and negative and

viceversa, causing a different protein 3D folding.

Thanks to the match with the Pinot Noir reference, we were able to classify Gora

transcripts according to the Gene Ontology vocabulary, which highlighted many signifi-

cant information. The GO is the only annotation system able to cluster gene functions

into more general categories and manage to keep the classification objective, indepen-

dent from the gene names or the pathways they are involved into. Studying an unknown

phenomenon, such as the identification of what caused the low acidity content in Gora,

the GO classification is an appropriate way to have a straight view of the results. On

the GO slim we re-mapped the Cribi V2 transcripts ID names corresponding to all Gora

transcripts predicted by Cufflinks. Figure 3.4 graphically illustrates the widest GO slim

categories in which Gora transcripts have been classified, while a full list of GO slim

classes ranked by the number of transcripts per class is reported in Tables 3.5, 3.6 and

3.7. Among the several classes found, as suggested by previous literature on acidless

mutants, we focussed our attention on the transport class within the biological process

category (Table 3.5), which counts up to 1,819 Gora transcripts. Likewise, considering
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the cellular component category (Table 3.6), the vacuole term seems to be the most in-

teresting to examine, also because it includes a more limited number of Gora transcripts

(592). Similarly, the transporter activity mentioned in the molecular function category

(Table 3.7) is definitively worth to look into, representing 783 Gora transcripts. Focus-

ing on these selected transcripts we mapped which SNPs were present in those Gora’s

sequences only and characterized the kind of mutation they may originate. Table 3.4

shows the amount of synonymous, missense and nonsense SNPs found into the transcript

sequences classified as involved in the transport process, in the vacuole compartment

and in transporter activities. The SNPs causing missense and nonsense mutations into

transcripts encoding for transporter proteins as well as located into the vacuole, are the

most promising candidates as determinants of the berry acidity content (last row of Table

3.4). The functional validation of the role played by these proteins will need, however, an

experimental validation.

Table 3.4: Gora transcripts corresponding to the GO terms most likely involved into the crop acidless
mutation have been selected and the Gora specific SNPs shown into those sequences were characterized
either as synonymmous, missense or nonsense, depending on which kind of mutation they originate.

GO category GO term Go ID Synonymous Missense Nonsense

Biological process Transport GO:0006810 879 928 12

Cellular component Vacuole GO:0005773 304 280 6

Molecular function
Transporter

activity
GO:0005215 391 386 6

SNPs represented by all classes 77 79 2

To complete Gora and Sultanine comparison we characterized the SNPs commonly

showed by both cultivars, which means that observing both alignments of Gora and

Sultanine to the reference Pinot Noir, there are polymorphism showed in the same chro-

mosome and relative position in both cultivars. Common SNPs amounted to 141,505 and

only 91 of those showed a different alternative allele between Gora and Sultanine. When

the alternative allele is identical between two varieties, we suppose the event of differ-

entiation of the varieties occurred after those mutation events happened and, thus, they
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have inherited exactly the same mutations. On the contrary, when mutations happen

independently in two separate organisms, it is quite rare that the two individual present

the same identical event.

3.5 Discussion

The use of genetic mutants is a very valuable methodology to dissect the genetic deter-

minants of a specific phenotype. The scope of this approach is to associate the mutant

phenotype to a definite genotype. The outcome of this genetic analysis is the identifi-

cation of one or more chromosomal regions responsible for the trait of interest. Further

experiments are then needed to pinpoint the single gene, within that region, associated

to the mutant phenotype.

In this study we took advantage of the availability of a grapevine cultivar named Gora

Chirine showing a mutated phenotype for the pH, sugar, malate and tartrate concentra-

tions in the berry, when compared to the very close relative cultivar Sultanine. Aim of

the project was the identification of a small number of single nucleotide polymorphisms

in the transcriptome of the two cultivars, potentially linked to the difference in berry

acidity. The approach has been a combination of RNA-seq data analysis, gene ontology

annotation and SNP detection with the objective to reduce the number of gene candidates

from thousands to few dozens. A number amenable to experimental validation.

The first step was the reconstruction of the berry transcripts of Gora and Sultanine

starting from RNA-seq data originated from a pool of berries harvested at the peak of

acid content, few days before veraison. In order to avoid possible interference with the

nycthemeral cycle (Rienth et al., 2014), four triplicate samples were harvested at six

hours interval and pooled, before RNA extraction. It was confirmed that both tartaric

and malic acids were dramatically reduced in Gora, in green and hard berries, before the

onset of ripening. Moreover, the loss of 0.2 M tartrate plus malate was compensated by

the accumulation of 0.2 M glucose, thus the osmotic pressure was kept constant.

Around 78% and 84% of Gora and Sultanine reads, respectively, were mapped to the

Pinot Noir reference genome. This value is a little bit smaller than the 89% reported

previously for Corvina (Venturini et al., 2013) and it might be due to technical reasons as

well as to the genetic distance to the reference genome. By using the RNA-seq analysis

software Cufflinks, the aligned reads were assembled into 29,904 and 31,503 transcripts in

Gora and Sultanine, respectively. A similar transcripts reconstruction based on RNA-seq

data was already performed in two other V. vinifera cultivars: the Uruguayan Tannat and

the Italian Corvina. In the first case a total of 34,680 genes were predicted in RNA isolated
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from berry skin and seeds harvested at 3 pre-veraison stages (Da Silva et al., 2013), while

in the second case a much larger number of genes (40,610) was identified, probably since

45 different samples from different organs and tissues were considered (Venturini et al.,

2013).

The observation that a fraction of reads did not map to the reference genome was

not unexpected: this accounted for 16% of total reads in Gora and 22% in Sultanine.

Unmapped reads correspond to sequences with a number of mismatches to the reference

above the fixed threshold calculated by the aligner and, apart from cases of sequenc-

ing errors, likely represent transcripts not shared with Pinot Noir nuclear genome, but

they could be either part of the chloroplast and mitochondrial genome, or viral RNA,

either potentially variety-specific regions of the nuclear DNA. In the case of Tannat 1,873

genes fell in this class (Da Silva et al., 2013), while a smaller number was found in the

transcriptome of Corvina (180 private genes) (Venturini et al., 2013). In this study we

concentrated our attention on the reads mapping on the Pinot Noir reference genome

because this would have helped the comparative analysis of Gora versus Sultanine and

would have made gene prediction and annotation more straightforward. Moreover, acidity

is a common trait all over Vitis cultivars and more likely controlled by conservative genes

than by variety-specific sequences.

Indeed, we took advantage of a very recent annotation with Gene Ontology terms of

the Pinot Noir gene predictions and based on a massive sequencing of RNAs derived from

many different tissues, stress conditions and Vitis genotypes (CRIBI V2, Vitulo et al.,

2014). In this particular case of interest, the classification of the transcripts into GO

categories guided the research towards the putative responsible of the acidless phenotype

in Gora, rather than to highlight differences or enrichments of GO classes of the Gora

berry transcriptome when compared to normal acidity Vitis varieties.

In parallel, the comparative study between Gora and Sultanine focused on the char-

acterization of the single nucleotide polymorphisms in their transcriptome. The working

hypothesis was, indeed, that a point mutation in the coding sequence of a gene involved

in berry acidity was possibly the cause of the acidless phenotype.

SNP calling performed with the variant calling function of the Genome Analysis

Toolkit (GATK) recognized more than 300,000 SNPs in both cultivars, when compared

to the Pinot Noir reference genome. These figures were largely diminished following the

application of VerySNP to select true SNPs: 225,864 (71% of the total GATK calling)

and 188,781 SNPs (53% of the total GATK calling) were considered as true SNPs in Gora

and Sultanine, respectively. These results have been a convincing prove of the efficacy of

applying VerySNP to transcriptomic data to classify as true and false the SNPs outputted
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by variant caller algorithms.

Since the comparison of these numbers with those reported in other studies is very

difficult, being affected by several parameters (e.g. reads coverage, gene predictions, SNP

calling, SNP selection, etc.) and requiring the different samples to be processed and

analyzed in parallel within the same experiment, we can only discuss that a high number

of single nucleotide polymorphisms was expected due to the high genetic variability within

the Vitis vinifera species and to the known genetic distance between Pinot Noir (West

European group) and Sultanine or Gora (East group) (Bacilieri et al., 2013).

Of the 225,864 and 188,781 SNPs, a fraction of 37% and 25% corresponded to single

nucleotide variants was found exclusively in Gora and Sultanine and therefore named

unique variants. Such an elevated proportion of specific SNPs in Gora and Sultanine

was a complete surprise, as it exceeds the expectations for clonal variation (Cabezas et

al., 2011). The unique variants have been, then, classified according to the gene location

they were found (UTRs, introns and CDSs). Among them, the most relevant are likely

those positioned in the CDSs because they can directly affect the final protein product.

The analysis showed that 12,811 transcripts in Gora and 6,082 transcripts in Sultanine

presented unique variants in the coding regions. Not all the unique mutations might have,

however, similar effect on the encoded product.

Missense and nonsense mutations lead either to a change of amino acid or to a pre-

mature stop in translation, and those can be very interesting candidates for causing the

acidless phenotype. This case is supported by the recent finding in a low acid apple,

showing a recessive gene with a premature stop codon in an aluminum activated malate

transporter as responsible for the low acidic content (Bai et al., 2012; Khan et al., 2013).

Nonsense mutations are clearly the most severe, causing the formation of a truncated

product that, in most cases, will not be functional. Instead, the effect on the function

of the protein product of missense mutations will be case-specific, being linked to the

physico-chemical properties of the changed amino acid and to its role and position into

the protein chain, which might affect the enzymatic activity or the three-dimensional

structure. Since the analysis of this group of mutations would have required very long

time due to its particularities and to the high number (6,701 in Gora and 3,295 in Sulta-

nine), we focused our attention on the transcripts containing premature stops (nonsense

mutations), namely 75 in Gora and 50 in Sultanine. To further narrow down the number

of candidates, the analysis of the premature stops has been combined to the information

arising from the GO annotation of the transcripts where they occurred. The knowledge

available for Gora suggested, indeed, that a defect in the vacuolar transport might be

the reason of the low acidity of the berry juice. By crossing the transcripts of Gora
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belonging to the three selected GO classes (GO:0006810, GO:0005773 and GO:0005215)

with the presence of at least one nonsense mutation in the CDS, we counted a total of 22

transcripts.

As previously said, the power of this kind of analysis is also the possibility to reduce

thousands transcripts involved in the Gora berry maturation, to few tens transcripts with

a putative role in the acidless phenotype. Another example, beyond the vacuolar trans-

porters, could be the restriction to candidate genes with a role in ‘regulation of gene

expression, epigenetic (GO:0040029 in Table 3.5) starting from the 29,903 transcripts

found in Gora by Cufflinks, of which 2,409 are Gora transcripts mapping in Cribi V2

annotation, showing only 441 transcripts annotated with the ‘regulation of gene expres-

sion, epigenetic function and including in their sequence at least one SNP not shared with

Sultanine; among them only 204 transcripts carried a SNP originating a non-synonymous

mutation.

However, our analysis has some limits. The study we carried out to identify candidate

mutations responsible for the acidless phenotype makes sense only if we assume that a

point mutation is causing the loss of acidity. Although SNPs are very common genetic

variants, they are not the only ones, and it might be a small or large insertion/deletion

(INDELs) responsible for the observed phenotype in Gora, instead. In the case of sweet

melon it has been discovered, indeed, that a small 12-bp insertion in the PH gene, cod-

ing for a H+ transporter of the endoplasmic reticulum, was responsible for the acidless

phenotype. Another limitation of our analysis resides in the fact that it was restricted

to the encoding fraction of the genome (transcriptome). There are several examples in

the literature showing that mutations in intergenic regions, including promoters and other

regulatory regions, often have strong phenotypic effects. Interestingly, one of the most well

known examples is the grapes color, determined by two Myb transcription factor genes,

VvMybA1 and VvMybA2 regulating anthocyanin biosynthesis. Inactivation of these two

functional genes, through the insertion of the Gret1 retrotransposon in the VvMybA1

promoter and through a non-synonymous single nucleotide polymorphism present in the

VvMybA2 coding region, gives rise to a white berry phenotype (Kobayashi et al., 2004,

2005; Walker et al., 2007).

Having the genome sequences of Gora and Sultanine will permit to widen the exami-

nation for candidate mutations not only because it will largely increase the sequence range

of the analysis, but also because the detection of INDELs in transcripts is very difficult

due to splicing and alternative splicing events. A de novo assembly of the Sultanine draft

genome sequence has been recently published (Di Genova et al., 2014), however at this

stage, its quality is far from being comparable to the one of Pinot Noir and its gene an-
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notation is still missing. For these reasons in this thesis we decided to use the Pinot Noir

genome as reference sequence. Undoubtedly, it would be worth to align the fraction of un-

mapped reads we obtained, against the Sultanine genome, to confirm if such reads belong

to variety-specific sequences or are still unmapped, maybe because falling into hardly

accessible part of the chromosome (centromeres and telomeres). Anyway, if the high

fragmentation of the Sultanine de novo assembly genome in several contigs prevents the

possibility of a successful alignment of genomic reads, the alignment of RNA-seq reads

and, the subsequent splicing prediction, are even more sensible to such fragmentation,

dropping any chance of success.

3.6 Conclusion

The procedure of combining transcriptome analysis and annotation together with single

nucleotide polymorphisms in related grapevine genotypes, as described here, has shown to

be quite effective in reducing the number of potential candidates for the trait of interest.

In this study starting from more than 80,000 unique single nucleotide polymorphisms of

Gora, we have found 75 located in coding regions and causing non-sense mutations. Gene

ontology annotation of the transcripts carrying these mutations, has allowed to identify

in this group, those most likely linked to the acid metabolism. Of particular interest,

appear 22 transcripts located in the vacuole or assigned a transport activity. Although

biological validation of the results will confirm the role of these transcripts in determining

berry acidity, we can foresee that the approach we have used can be successfully applied

to several other studies.
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Table 3.5: All Gora transcripts crossed with Gora unique SNPs occurring in CDSs have been classified in
GO-slim categories, which labeled 66,731 transcripts as part of the biological process. The following table
reports the GO ID and the number of transcripts classified in each GO term involved into the biological
process category.

GO ID GO term name Count

GO:0009987 cellular process 7,935

GO:0008152 metabolic process 7,827

GO:0009058 biosynthetic process 4,041

GO:0006139 nucleobase-containing compound metabolic process 3,365

GO:0019538 protein metabolic process 2,941

GO:0006950 response to stress 2,553

GO:0006464 cellular protein modification process 2,025

GO:0007275 multicellular organismal development 2,006

GO:0016043 cellular component organization 1,939

GO:0006810 transport 1,819

GO:0009628 response to abiotic stimulus 1,537

GO:0009056 catabolic process 1,501

GO:0007154 cell communication 1,358

GO:0009791 post-embryonic development 1,333

GO:0005975 carbohydrate metabolic process 1,304

GO:0009605 response to external stimulus 1,161

GO:0006629 lipid metabolic process 1,087

GO:0007165 signal transduction 1,062

GO:0006259 DNA metabolic process 996

GO:0009653 anatomical structure morphogenesis 970

GO:0009719 response to endogenous stimulus 879

GO:0009607 response to biotic stimulus 876

GO:0007049 cell cycle 736

GO:0030154 cell differentiation 590

GO:0009908 flower development 581

GO:0040007 growth 462

GO:0040029 regulation of gene expression, epigenetic 441

GO:0000003 reproduction 431

GO:0009790 embryo development 401
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GO:0006091 generation of precursor metabolites and energy 359

GO:0016049 cell growth 340

GO:0006412 translation 340

GO:0019748 secondary metabolic process 299

GO:0009856 pollination 250

GO:0008219 cell death 239

GO:0016265 death 239

GO:0009991 response to extracellular stimulus 172

GO:0019725 cellular homeostasis 169

GO:0015979 photosynthesis 162

GO:0009606 tropism 121

GO:0009875 pollen-pistil interaction 119

GO:0007267 cell-cell signaling 87

GO:0009838 abscission 14

GO:0009835 fruit ripening 9

GO:0007610 behavior 8

Table 3.6: All Gora transcripts crossed with Gora unique SNPs occurring in CDSs have been classified
in GO-slim categories, which labeled 50,706 transcripts as involved in some cellular components. The
following table reports the GO ID and the number of transcripts classified in each GO term of the cellular
component category.

GO ID GO term name Count

GO:0005623 cell 8,983

GO:0005622 intracellular 8,282

GO:0005737 cytoplasm 6,128

GO:0016020 membrane 3,452

GO:0005634 nucleus 2,724

GO:0009536 plastid 2,598

GO:0005886 plasma membrane 1,966

GO:0005739 mitochondrion 1,783

GO:0005829 cytosol 874

GO:0005576 extracellular region 630

GO:0005773 vacuole 592
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GO:0005794 Golgi apparatus 490

GO:0005783 endoplasmic reticulum 438

GO:0030312 external encapsulating structure 374

GO:0005618 cell wall 365

GO:0005856 cytoskeleton 270

GO:0005840 ribosome 261

GO:0009579 thylakoid 249

GO:0005730 nucleolus 233

GO:0005768 endosome 197

GO:0005777 peroxisome 163

GO:0005654 nucleoplasm 142

GO:0005635 nuclear envelope 64

GO:0005615 extracellular space 13

GO:0005578 proteinaceous extracellular matrix 7

GO:0005764 lysosome 2

Table 3.7: All Gora transcripts crossed with Gora unique SNPs occurring in CDSs have been classified
in GO-slim categories, which labeled 43,717 transcripts as having a specific molecular function. The
following table reports the GO ID and the number of transcripts classified in each GO term called into
the molecular function category.

GO ID GO term name Count

GO:0005488 binding 7,582

GO:0003824 catalytic activity 6,483

GO:0005515 protein binding 3,098

GO:0000166 nucleotide binding 3,027

GO:0016740 transferase activity 2,905

GO:0016787 hydrolase activity 2,557

GO:0003676 nucleic acid binding 2,219

GO:0016301 kinase activity 1,190

GO:0003677 DNA binding 1,104

GO:0005215 transporter activity 783

GO:0003723 RNA binding 763

GO:0003700 sequence-specific DNA binding transcription factor activity 329
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GO:0004871 signal transducer activity 280

GO:0004518 nuclease activity 248

GO:0003682 chromatin binding 202

GO:0030246 carbohydrate binding 197

GO:0005198 structural molecule activity 154

GO:0008289 lipid binding 124

GO:0008135 translation factor activity, nucleic acid binding 107

GO:0030234 enzyme regulator activity 99

GO:0003774 motor activity 98

GO:0004872 receptor activity 86

GO:0019825 oxygen binding 48

GO:0005102 receptor binding 14

GO:0030528 transcription regulator activity 0

GO:0045182 translation regulator activity 0
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P., Travisany, D., Moraga, C., et al, Maass, A. (2014). Whole genome comparison

between table and wine grapes reveals a comprehensive catalog of structural variants.

BMC Plant Biology, 14, 7.

[Diakou et al., (1997)] Diakou, P., Moing, A., Svanella, L., Ollat, N., Rolin, D. B.,

Gaudillere, M., Gaudillere, J. P. (1997). Biochemical comparison of two grape vari-

eties differing in juice acidity. Australian Journal of Grape and Wine Research, 3, 1-10.

[Diakou et al., (2000)] Diakou, P., Svanella, L., Raymond, P., Gaudillre, J.-P., Moing,

A. (2000). Phosphoenolpyruvate carboxylase during grape berry development: protein

level, enzyme activity and regulation. Australian Journal of Plant Physiology, 27, 221-

229.

[Emmerlich et al., 2003] Emmerlich, V., Linka, N., Reinhold, T., Hurth, M. A., Traub,

M., Martinoia, E., Neuhaus, H. E. (2003). The plant homolog to the human

sodium/dicarboxylic contransporter is the vacuolar malate carrier. Proceedings of the

National Academy of Sciences, USA, 100, 11122-11126.

[Famiani et al., (2000)] Famiani, F., Walker, R. P., Técsi, L., Chen, Z., Proietti, P.,
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