Martin Abadi
Philippa Gardner
Andrew D. Gordon
Radu Mardare (Eds.)

Essays for the Luca Cardelli Fest
September 8-9, 2014

Microsoft Research Cambridge
Technical Report MSR-TR-2014-104

Preface

Luca Cardelli has made exceptional contributions to the field of programming
languages and beyond. Throughout his career, he has re-invented himself every
decade or so, while continuing to make true innovations. His achievements span
many areas: software; language design, including experimental languages; pro-
gramming language foundations; and the interaction of programming languages
and biology. These achievements form the basis of his lasting scientific leadership
and his wide impact.

Luca was born in Montecatini Terme, Italy, studied at the University of Pisa
until 1978, and received a Ph.D. in computer science from the University of
Edinburgh, supervised by Gordon Plotkin. He held research positions at Bell
Labs, Murray Hill (1982-1985), and at Digital’s Systems Research Center, Palo
Alto (1985-1997). He joined Microsoft Research in Cambridge in 1997, where
for many years he managed the Programming Principles and Tools group. Since
2013, he holds a Royal Society Research Professorship at the University of Oxford,
alongside his position as Principal Researcher at Microsoft Research.

Luca Cardelli is a Fellow of the Royal Society, an ACM Fellow, an Elected
Member of the Academia Europaea, an Elected Member of AITO (International
Association for Object Technologies), and a member of EATCS (European As-
sociation for Theoretical Computer Science) and ISCB (International Society for
Computational Biology).

A scientific event in honour of Luca Cardelli has been organized in Cambridge
(UK) on September 8-9, 2014. This celebration will gather many of Luca’s col-
leagues and friends. It will include talks on a wide variety of topics, correspond-
ing to many of the areas in which Luca has worked. Its program is available at
http://research.microsoft.com/lucacardellifest/.

Complementing these talks, and as a more lasting reflection of the event,
many of Luca’s colleagues and friends wrote the short papers included in this
informal volume. Luca is always asking “what is new”, and is always looking to
the future. Therefore, we have asked authors to produce short pieces that would
indicate where they are today and where they are going. Some of the resulting
pieces are short scientific papers, or abridged versions of longer papers; others are
less technical, with thoughts on the past and ideas for the future. We hope that
they will all interest Luca.

We thank all the contributors for their work, and Andrew Phillips for his

editorial help.
Martin Abadi

Philippa Gardner
Andrew D. Gordon
Radu Mardare

Table of Contents

Naiad Models and Languagesc.ooiiiiiiiiii i 7
Martin Abadi

The Behavior of Probabilistic Systems: From Equivalences to Behavioural
DIsStanCes it 15
Giorgio Bacci, Giovanni Baci Bacci, Kim G. Larsen and Radu Mardare

The Challenges of Attaining Grace (in a Language Definition) 27
Andrew Black, Kim Bruce, Michael Homer and James Noble

The Gene Gate Model: Some Afterthoughts 41
Ralf Blossey

Multilinear Programming with Big Data 51

Mihai Budiu and Gordon Plotkin

Types and Logic, Concurrency and Non-Determinism 69
Luis Caires

What Makes a Biological Clock Efficient? 85
Attila Csikdsz-Nagy and Neil Dalchau

Two Possibly Alternative Approaches to the Semantics of Stochastic Process
Calcull .. 95
Rocco De Nicola, Diego Latella, Michele Loreti and Mieke Massink

Refining Objects 109
Robert Harper and Rowan Davies

A Theory of Model Equivalence 141
Ozan Kahramanogullari and James F. Lynch

Challenges in Automated Verification and Synthesis for Molecular
Programming 155
Marta Kwiatkowska

Temporal Logic: The Lesser of Three Evils 171
Leslie Lamport

Simple Proofs of Simple Programs in Why3 177
Jean-Jacques Lévy

Introduction to New Perspectives in Biology 187
Giuseppe Longo and Mael Montévil

Luca Cardelli and the Early Evolution of ML 201
David MacQueen

Tiny Bang: Type Inference and Pattern Matching on Steroids 215
Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn and
Scott Smith

The Spider Calculus: Computing in Active Graphs 227
Benjamin C. Pierce, Alessandro Romanel and Daniel Wagner

From Amber to Coercion Constraintsueeeeee .. 243
Didier Rémy and Julien Cretin

Classical T ... 257
Steffen van Bakel and Maria Grazia Vigliotti

Naiad Models and Languages

Martin Abadi

Microsoft Research

Abstract

Naiad is a recent distributed system for data-parallel computation. The
goal of this note is to review Naiad and the computing model that underlies
it, and to suggest opportunities for explaining them and extending them
through programming languages, calculi, and semantics.

1 Prologue

Luca Cardelli’s research often demonstrates the great value of programming nota-
tions and their semantics in understanding and improving a wide variety of com-
putational concepts and phenomena. Some of these concepts and phenomena—
for example, linking—are close to programming languages, though often hidden
inside implementations. Others, like ambients and chemical reactions, may seem
more surprising. Finding and developing an appropriate programming-language
perspective on such subjects requires insight and elegance, but it can be quite
fruitful, as Luca’s work illustrates superbly.

On the occasion of a celebration of Luca’s research, his friends and colleagues
were invited to write short pieces that would summarize where they are and
where they are going. At present I am engaged in several disparate activities
in computer security and in programming languages and systems. So, in this
note, I chose to focus on one particular project, namely the development of the
Naiad system and of the corresponding theory. This subject is related to people
and topics that I encountered while working with Luca, such as Kahn networks
and the integration of database constructs into programming languages. More
importantly, perhaps, it is a subject in which Luca’s perspective and approach
may prove crucial in the future. (Lately, I sometimes ask myself “What would
Luca do?”) The subject does not have obvious connections to the many topics on
which Luca and I worked together (type systems, objects, explicit substitutions,
and more), nor does it have the breadth of Luca’s current research interests—but
that may all come in due course.

The next section is a brief description of Naiad; further details and references
can be found in recent papers (Murray et al. 2013; Abadi et al. 2013; McSherry
et al. 2013). The following section outlines some areas of current and future
research (joint work with many colleagues, listed below).

2 Naiad in a nutshell

Naiad is a distributed system for data-parallel computation. It aims to offer
high throughput and low latency, and to support a range of tasks that includes
traditional batch and stream processing and also iterative and incremental com-
putations. For example, a Naiad application may process a stream of events such
as tweets (Murray et al. 2013); as they arrive, the events may feed into an incre-
mental connected-components computation and other analyses, which may, for
instance, identify the most popular topics in each community of users. Naiad thus
aspires to serve as a general, coherent platform for data-parallel applications. In
this respect, Naiad contrasts with other systems for data-parallel computation
that focus on narrower domains (e.g., graph problems) or on particular styles of
programs (e.g., with restrictions on loops).

2.1 Timely dataflow

At the core of Naiad is a model for parallel computing that we call timely dataflow.
This model extends dataflow computation with a notion of virtual time. As in
Jefferson’s Time Warp mechanism (Jefferson 1985), virtual time serves to differ-
entiate between data at different phases of a computation. Unlike in the Time
Warp mechanism, however, virtual time is partially ordered (rather than linearly
ordered, since a linear order may impose false dependencies).

In Naiad, each communication event is associated with a virtual time. This as-
sociation enables the runtime system to overlap—but still distinguish—work that
corresponds to multiple logical stages in a computation: different input epochs,
iterations, workflow steps, and perhaps speculative executions. It also enables the
runtime system to notify nodes when they have received their last message for a
given virtual time. This combination of asynchronous scheduling and completion
notification implies that, within a single application, some components can func-
tion in batch mode (queuing inputs and delaying processing until an appropriate
notification) and others in streaming mode (processing inputs as they arrive).

As is typical in dataflow models, we specify computations as directed graphs,
with distinguished input nodes and output nodes. The graphs may contain loops,
even nested loops. Therefore, at each location in a graph, we can define times-
tamps of the form (input epoch, loop counters), where there is one loop counter

for each enclosing loop context at that location. Each loop must contain a feed-
back node whose function is to increment a timestamp counter. Nodes for loop
ingress and egress introduce and remove time coordinates, respectively.

During execution, stateful nodes send and receive timestamped messages, and
in addition may request and receive notification that they have received all mes-
sages with a certain timestamp. So the runtime system must be able to reason
about the possibility or impossibility of such future messages. This reasoning re-
lies on the “could-result-in” relation, which intuitively captures whether an event
at graph location [; and virtual time ¢; could result in an event at graph location
Iy and virtual time t5. The reasoning combines a simple static analysis of the
graph with a distributed algorithm for tracking progress.

2.2 Higher layers

Building on the timely dataflow substrate, Naiad offers several higher-level pro-
gramming models. To date, we have the most experience with a model based
on language-integrated queries, specifically on a dialect of LINQ. This dialect
includes batch-oriented operators that process entire data collections at once, in
the spirit of DryadLINQ (Yu et al. 2008) and Spark (Zaharia et al. 2012), in-
cremental operators that accumulate state between invocations, and differential
operators that compute in terms of additions and deletions of data records. We
have also explored other programming idioms and interfaces, such as Pregel-style
Bulk Synchronous Parallel computation (Malewicz et al. 2010) and BLOOM-style
asynchronous iteration (Conway et al. 2012).

3 Further work

The remainder of this note outlines a few directions of current and future work
(though not a comprehensive list), roughly in top-down order. Some of this work
is well underway; other suggestions are more tentative and speculative.

3.1 Other front-end models and languages

As mentioned above, our work to date relies primarily on language-integrated
queries, but Naiad can support other models of iterative computation. It may
be worthwhile to investigate those in more detail. Going beyond these models,
however, we may wish to support recursive dataflow computations, in addition
to iterative ones.

Recursion in dataflow is not entirely new (Blelloch 1996), but supporting
it in Naiad gives rise to theoretical and practical difficulties, at various levels.

In particular, Naiad’s current concrete embodiment of virtual time is based on
simple iteration counters. With recursion, stacks would probably have to play a
role, and the treatment of the could-result-in relation would need to be revisited.
One possible approach might go as follows. For simplicity, let us consider a
dataflow graph that includes distinguished nodes that represent recursive calls to
the entire computation, an input node in, an output node out, and some ordinary
nodes (for instance, for selects and joins). We split each recursive-call node ¢ into
a call part call-c and a return part ret-c, with an edge between them. A stack
is then a finite sequence of recursive-call nodes, and a “pointstamp” a pair of
a stack and a node. Finally, the could-result-in relation is the least reflexive,
transitive relation on these pointstamps such that: (1) (s,call-c) could result
in (s.c,in); (2) symmetrically, (s.c,out) could result in (s, ret-c); and (3) if v is
not call-c and v’ is not ret-c for any c, and there is an edge from v to v/, then
(s,v) could result in (s,v’). This definition looks principled but too complex to be
useful at run-time. Fortunately, it is equivalent to a simpler criterion that requires
only finding the first call in which two stacks differ and performing an easy check
based on that difference.! Special cases might allow further simplifications.

3.2 Differential computation

One of Naiad’s distinctive characteristics is its support for differential computa-
tion. In computing over collections of data, nodes can transmit deltas, rather
than entire collections. Current work aims to generalize differential computation
and to put it on a proper semantic foundation.

Differential computation makes sense over any abelian group G (and not just
over collections of data). It also makes sense relative to many partial orders T,
but some hypotheses on 7' are necessary or at least convenient. Specifically, the
differential version 0f : T — G of a function f : T" — G should be such that
f(t) =Xp<(0f)(t'). If, for each t there are only finitely many ¢ such that ¢’ < t,
the M&bius inversion theorem (Rota 1964), from combinatorics, implies that ¢ f
exists and is unique.? If there are infinitely many ¢’ below ¢, on the other hand, the
sum may not be meaningful. Alas, Naiad has sometimes relied on lexicographic
orders for which the finiteness condition does not immediately hold; one of our

'Without loss of generality, suppose that s is of the form s;.s9 and s’ is of the form s.s},
where so and s, start with call nodes call-c and call-c’ respectively if they are not empty.
We assume that call-c and call-c’ are distinct if so and s}, are both non-empty (so, s; is
maximal). Let [be ret-c if s, is non-empty, and be v if it is empty. Let I’ be call-c’ if s} is
non-empty, and be v’ if it is empty. We can then prove that (s,v) could result in (s',v’) if and
only if there is a path from [to I’.

2 Alternatively, one may assume only that there are finitely many elements in each interval,
but require that f be 0 below a certain element.

goals is to make sense of this situation.

In programming-language terms, an abelian group of collections may be seen
as a base type. Going further, a language with support for differential com-
putation would include type operations to form other abelian groups. Some of
these operations may be standard constructions such as products. Others would
be more specific to iterative, differential computation. In particular, for each
type o, we may define a type o that intuitively represents functions from N
to o, that is, ¢ indexed by an additional natural-number time coordinate, as
required for iteration.

At the level of terms, the language would include common constructs such as
let expressions and iteration, and perhaps also differentiation and integration as
first-class values. Since some of these constructs do not guarantee termination
in general, the language semantics may need to allow partial functions, to which
the classic inversion theorem does not immediately apply.

3.3 The essence of timely dataflow

Some of the ideas in timely dataflow seem viable independently of other aspects
of Naiad, so we may try to recast and understand them in the general setting of
a programming language or calculus. These often include facilities for commu-
nication via messages, but unfortunately not completion notifications, which are
essential to Naiad. We may however be able to explain completion notifications
using extant concepts.

For instance, it may be possible to capture the semantics of completion noti-
fications in terms of the notion of priorities, which has sometimes been studied
in process calculi (e.g., Versari et al. (2009); John et al. (2010)). For each virtual
time ¢, we may regard the messages for time ¢ as having higher priority than a
notification that time ¢ is complete, so this notification cannot be delivered before
the messages.

An important caveat is that this notification should not be delivered before
all the messages for time ¢, even ones not immediately available for transmission.
This difficulty may be addressed by imposing, perhaps via the could-result-in
relation, that any such future messages for time ¢ be caused by present messages
with higher priority than the notification.

3.4 Systems work

Although Naiad is by now a fairly mature prototype, further systems work would
be useful. Some of it is pure engineering; some requires new research.

In particular, Naiad’s fault-tolerance remains rudimentary. In the last few
months, we have been designing more flexible fault-tolerance mechanisms. Rea-

soning about their correctness is tricky, and might perhaps benefit from work
in concurrency theory, more specifically on models of causality and reversibility
(e.g., Phillips and Ulidowski (2013)). So far, however, we have been able to make
good progress with a straightforward linear-time semantics. We have been writing
proofs with prophecy variables—pleasantly reminiscent of DEC SRC, if nothing
else. In general, prophecy variables are unusual auxiliary variables for which
present values are defined in terms of future values (Abadi and Lamport 1991).
In this particular case, the prophecy variables predict which nondeterministic
choices will persist despite rollbacks.

4 Conclusion

Naiad remains a work in progress, as this note indicates. This note is based
on research with Paul Barham, Rebecca Isaacs, Michael Isard, Frank McSherry,
Derek Murray, Gordon Plotkin, Tom Rodeheffer, Nikhil Swamy, and Dimitrios
Vytiniotis. I am grateful to them for our collaboration. I am also grateful to Luca
Cardelli, who is partly responsible for my interest and research in programming
languages and systems.

References

M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, 1991.

M. Abadi, F. McSherry, D. G. Murray, and T. L. Rodeheffer. Formal analysis
of a distributed algorithm for tracking progress. In D. Beyer and M. Boreale,
editors, Formal Techniques for Distributed Systems - Joint IFIP WG 6.1 Inter-
national Conference, FMOODS/FORTE 2013, volume 7892 of Lecture Notes
i Computer Science, pages 5—19. Springer, 2013.

G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85-97, Mar. 1996.

N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic
and lattices for distributed programming. In Proceedings of the Third ACM
Symposium on Cloud Computing, pages 1:1-1:14, 2012.

D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and Systems, 7(3):404-425, July 1985.

M. John, C. Lhoussaine, J. Niehren, and A. M. Uhrmacher. The attributed pi-
calculus with priorities. Transactions on Computational Systems Biology, 12:
13-76, 2010.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of
Data, pages 135-146, 2010.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In
CIDR 2013, Sizth Biennial Conference on Innovative Data Systems Research,
2013.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
a timely dataflow system. In ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, pages 439455, 2013.

I. Phillips and I. Ulidowski. Reversibility and asymmetric conflict in event struc-
tures. In P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013 -
Concurrency Theory - 24th International Conference, volume 8052 of Lecture
Notes in Computer Science, pages 303-318. Springer, 2013.

G.-C. Rota. On the foundations of combinatorial theory I. Theory of Mobius
functions. Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2
(4):340-368, 1964.

C. Versari, N. Busi, and R. Gorrieri. An expressiveness study of priority in process
calculi. Mathematical Structures in Computer Science, 19(6):1161-1189, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In §th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008, pages 1-14, 2008.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, pages 1528,
2012.

The Behavior of Probabilistic Systems:
From Equivalences to Behavioral Distances

Giorgio Bacci Giovanni Bacci Kim G. Larsen Radu Mardare

Department of Computer Science, Aalborg University, Denmark

Abstract

In this paper we synthesize our recent work on behavioral distances
for probabilistic systems and present an overview of the current state of
the art in the field. We mainly focus on behavioral distances for Markov
chains, Markov decision processes, and Segala systems. We illustrate three
different methods used for the definition of such metrics: logical, order
theoretic, and measure-testing; and we discuss the relationships between
them and provide the main arguments in support of each of them.

We also overview the problem of computing such distances, both from
a theoretical and a practical view point, including the exact and the ap-
proximated methods.

1 Introduction

Probabilistic bisimulation of Larsen and Skou (1989) and probabilistic trace
equivalence are acknowledged to be the basic equivalences for equating proba-
bilistic systems from the point of view of their behaviors.

An example of probabilistic system is the labelled Markov chain depicted in
Figure 1 (left). Here states s; and sy goes to state s, with probability 2 and
%, respectively. Although they move with different probabilities to s4, states
s; and s9 are bisimilar because they reach any bisimilarity class with the same
probability (clearly, also s, and s5 are bisimilar).

When the probabilistic models are obtained as approximations of others, e.g.,
as simplified model abstractions or inferred from empirical data, then an equiva-
lence is too strong a concept. This issue is illustrated in Figure 1 (right), where
the states t; and ¢y (i.e., the counterpart of s; and so, respectively, after a pertur-
bation of the transition probabilities) are not bisimilar. This motivated the quest
for a robust notion of behavioral equivalence and the development of a theory of
behavioral “nearness”.

S1 S2 t

ta

Wl
l’
™
Y
y e
Wl

[SU =N
wlno
™
[SUI=Y

(9N)

X AT
[\ [\
(] (]
Lt Lt)
\\777/,/ \\ /,/

- -~

Figure 1: A labelled Markov chain (on the left) and an e-perturbation of it (on
the right), for some 0 < € < % Labels are represented by different colors.

To this end, Giacalone et al. (1990) proposed to use pseudometrics in place
of equivalences aiming at measuring the behavioral similarities between states.
Differently from an ordinary metric, a pseudometric allows different states to
have distance zero, hence it can be thought of as a quantitative generalization
of the notion of equivalence. In this respect, a pseudometric is said behavioral if
states are at distance zero if and only if they are equivalent w.r.t. some behavioral
semantics (e.g., bisimilarity, trace equivalence, etc.).

Behavioral distances do not come only as a robust notion of semantical equiv-
alence, but they can also be used to address some important problems that are
challenging computer science nowadays. One of these comes from systems biol-
ogy and consists in providing analytical tools to help biologists understand the
general mechanisms that characterize biological systems.

A considerable step forward in this direction is due to Luca Cardelli with his
work on process algebra (Regev et al. 2004; Cardelli 2005, 2013) and on stochas-
tic/ODE semantics (Cardelli 2008; Cardelli and Mardare 2010, 2013; Mardare
et al. 2012), etc. Recently, Cardelli and Csikdsz-Nagy (2012) pointed out how
the Cell Cycle switch (CC) —a fundamental biomolecular network that regulates
the mitosis in eukaryotes— is surprisingly related, both in the structure and in
the dynamics, to the Approzimate Majority (AM) algorithm from distributed
computing. The AM algorithm decides which of two populations is in majority
by switching the majority into the totality, and it does so in a way that is fast,
reliable, robust, and asymptotically optimal in the number of reactions required
to obtain the result. The comparison between AM and CC is carried out by suc-
cessive transformations that turn the network structure of the former into that
of the latter. The difference is dictated by biological constraints, that are grad-
ually introduced in the structure of AM during its transformation into CC while
preserving both the computational and the dynamical properties.

Due to these observations, one may argue that CC, even though constrained

by biological limitations, tends to behave as similar as possible to AM, the theo-
retical “optimal” one. In this respect, behavioral distances seem the appropriate
analytical tool to measure the quality of a candidate network model for CC: the
closer the network model is to AM the better it is.

In this paper we overview our recent work on behavioral distances in com-
parison with the current state of the art in the field, focusing on four types
of probabilistic systems: discrete-time Markov Chains (MCs), Markov Decision
Processes with rewards (MDPs), continuous-time Markov Chains (CTMC), and
Segala Systems (SS). We examine the main techniques that have been used in the
literature to characterize behavioral distances for probabilistic systems, namely,
logical, fixed point, and coupling characterizations. For each technique, we show
how they have been applied on the different types of probabilistic systems we are
considering, we point out their differences and similarities, and provide practical
and theoretical arguments supporting each one.

Finally, we consider the problem of computing such distances, including both
the exact and the approximated methods, for which we overview the most recent
theoretical complexity results that are known in the literature.

2 Preliminaries

A probability distribution over a finite set S is a function p: S — [0, 1] such that
Y scs (s) = 1. We denote by D(S) the set of probability distributions over S.

Let S and L be nonempty finite sets of states and labels, respectively. A
discrete-time Markov chain (MC) is a tuple M = (S, L, 7,{) where 7: S — D(S)
is a transition probability function, and ¢: S — L a labeling function. Intuitively,
labels represent properties that hold at a given state, 7(s)(s’) is the probability
to move from state s to a successor state s'. A continuous-time Markov Chain
(CTMC) M = (S, L, 7, p,{) extends an MC with a rate function p: S — R, asso-
ciating with each state s the rate of an exponential distribution representing the
residence-time distribution at s. A Segala system (SS) extends an MC by adding
nondeterminism: is a tuple M = (S, L, 6,) where : S — 2P() assigns with each
state a set of possible probabilistic outcomes. Finally, a Markov decision process
with rewards (MDP) is a tuple M = (S, A, 9, r) consisting a finite nonempty set
A of action labels, a labeled transition probability function ¥: S x A — D(S), and
a reward function p: S x A — R, assigning to each state the reward associated
with the chosen action.

A (1-bounded) pseudometric on a set S is a map d: S x S — [0, 1] such that
for all s,t,u € S, d(s,s) =0, d(s,t) = d(t,s) and d(s,u) < d(s,t)+d(t,u). For a
set S, the indiscrete pseudometric is defined as Zg(s, s') = 1 if s # &', otherwise 0.

For a pseudometric d: S x S — [0,1] on S, we recall two pseudometrics on D(S)

| —v|lov = suppcg |u(E) — v(E)], (Total Variation)
K(d)(p,v) =sup {| [fdp— [fdv[||f(z) = f(y)| < d(z,y)} , (Kantorovich)

and one pseudometric on 2% defined, for A, B C 9, as follows
H(d)(A, B) = max{sup,¢ 4 infpep d(a,b), sup,cginfaea d(a,b)} . (Hausdorff)

The set of 1-bounded pseudometrics on .S, endowed with the pointwise pre-order

dy T dy iff di(s,s) < da(s,s') for all s,s" € S, forms a complete lattice, with

bottom the constant 0 pseudometrics and top the indiscrete pseudometric Zg.
Let A € [0,1] and a,b € R, a®,b denotes the convex combination Aa+(1—\)b.

3 Behavioral Distances

We overview the three main techniques that have been used in the literature for
the characterization of behavioral pseudometrics over probabilistic systems.

3.1 Logical Characterizations

Real-valued logics. The first authentic behavioral pseudometric on proba-
bilistic systems, due to Desharnais et al. (2004), is defined in terms of a family of
functional expressions to be interpreted as real-valued modal formulas. Given a
probabilistic model M over the set of states S, a functional f € F is interpreted
as a function fr: S — [0,1], and the pseudometric *: S x S — [0, 1] assigns a
distance to any given pair of states of M according to the following definition:

5M(57 s') = SUp ¢c F |fm(s) — fam(s')]

Their work builds on an idea of Kozen (1985) to generalize logic to handle
probabilistic phenomena, and was first developed on MCs. Later, this approach
has been adapted to MDPs, by de Alfaro et al. (2007) and Ferns et al. (2014), and
extended to Segala systems by Mio (2013). Figure 2 shows the set of functional
expressions for the case of MCs. One can think of those as logical formulas: a
represents an atomic proposition, 1 — f negation, min(fi, f2) conjunction, < f the
modal operator, and f © ¢ the “greater then ¢” test. The key result for such a
metric is that two states are at distance 0 iff they are probabilistic bisimilar.

F>fu=a apm(s) :IL(£(s))
| 1-f (1= Flm(s) =1 = fml(s)
| min(f, f) (min(f1, f2)) p1(5) Zmln{(fl) (s), (f2) pm(s)}
| feq (f6Q)M(S)=maX{fm(s) —¢,0}
| Of (O p(s) = [famdr(s

Figure 2: Real-valued logic: syntax (on the left) and interpretation (on the right),
where M = (S, L, 7,¢) is an MC, a € L a label, and ¢ € Q N[0, 1].

Linear time logics. If the models can be observed by only testing single execu-
tion runs, then bisimulation is to stringent as an equivalence and trace equivalence
is preferred instead. Similar arguments justify the introduction of behavioral dis-
tances that focus on linear time properties only.

In (Bacci et al. 2014) we compared CTMCs against linear real-time specifica-
tions expressed as Metric Temporal Logic (MTL) formulas (Alur and Henzinger
1993). MTL is a continuous-time extension of LTL, where the nest and until
operators are annotated with a closed time interval I = [¢,#/], for £, € Q.

pu=p|lLlp—=o|[Xp|leU o,

The satisfiability relation 7 |= ¢ is defined over timed paths m = sq, tg, s1,%1 - - -,
where ¢; € R, represents the residence time in s; before moving to s;,;. Modali-
ties are interpreted as in LTL, with the additional requirement that in the next
operator the step is taken at a time ¢ € I, and the until is satisfied with total
accumulated time in I. We denote by [¢] the set of timed paths that satisfy (.

The quantitative model checking of an CTMC M against an MTL formula ¢
consists in computing the probability P ([¢]) that M, starting from the state
s, generates a timed path that satisfies ¢. Then, the following pseudometric

Oirre (s, 8") = supeny, [PL([e]) — PE([¢])] (1)

guarantees that any result obtained by testing one state against an MTL formula
can be reflected to the other with absolute error bounded by their distance!.
Interestingly, we proved that the measurable sets generated by MTL formulas
coincide with those generated by Deterministic Timed Automata (DTAs) specifi-
cations. Moreover, we singled out a dense subclass of specifications, namely that
of resetting single-clock DTAs (1-RDTA), which implies that (i) the probability
of satisfying any real-time specification can be approximated arbitrarily close by

!Clearly, the discrete-time case can be treated analogously by considering LTL formulas.

an 1-RDTA; (ii) the pseudometric (1) can be alternatively characterized letting
range the supremum over 1-RDTA specifications only. This has practical appli-
cations in the quantitative model checking of CTMCs, since this allows one to
exploit algorithms designed by Chen et al. (2011) for single-clock DTAs.

3.2 Fixed Point Characterizations

Often, behavioral distances are defined as fixed points of functional operators
on pseudometrics. The first to use this technique were van Breugel and Worrell
(2001), who showed the pseudometric of Desharnais et al. (2004) (see §3.1) can be
defined as the least fixed point of an operator based on the Kantorovich metric.

This technique is very flexible and adapts easily in different contexts. The key
observation is that functional operators can be composed to capture the different
characteristics of the system. Next we show some examples from the literature.

Markov Chains. Let M = (S,L,7,¢) be an MC. The functional operator
defined by van Breugel and Worrell (2001) is as follows:

Fiic(d)(s,s") = max {Zp(((s), ((s")), K(d)(7(s), 7(s")) } - (2)

Intuitively, Z; handles the difference in the labels, whereas the Kantorovich dis-
tance KC(d) deals with the probabilistic choices by lifting the underlying pseudo-
metric d over states to distributions over states. The two are combined by taking
the maximum between them.

Markov Decision Processes. Let M = (S, A,9,r) be an MDP. Ferns et al.
(2004) defined a pseudometric using the following operator, for A € (0,1):

Fiibp(d)(s, 8') = maxeea {|r(s,a) = r(s', a)| &x K(d)(V(s,a),9(s',a) } . (3)

The functional mixes in a convex combination the maximal differences w.r.t. the
rewards associated with the choice of an action label in the current state and the
difference in the probabilities of the succeeding transitions.

Segala Systems. Let M = (S,L,0,¢) be an SS. van Breugel and Worrell
(2014) extended the pseudometric on MCs using the following operator:

Fg (d) (s, 8) = max {Z1(((s), ((s)), H(K(d))(0(s),0(s)) } - (4)

This functional extends (2) by handling the additional nonderminism with the
Hausdorff metric on sets. In de Alfaro et al. (2007); Mio (2013) a different func-
tional operator is considered; this is obtained from (4) by replacing the sets 6(s)
and 6(s") with their convex closures.

Continuous-time Markov Chains. Let M = (S,L,1,p,f) be a CTMC. In
Bacci et al. (2014), we proposed the following operator:

Fetuc(d)(s, s') = max {Zp(((s), (s"), 1 & K(d)(7(s),7(s) } , ()

20

where a = ||Exp(p(s)) — Exzp(p(s’))||+v is the total variation distance between the
exponential residence time distributions associated with the current states. Note
that a equals the probability that the residence time in the two states differs.
Therefore, the operator above can be seen as an extension of (2) that takes into
consideration both the probability that the steps occur at different time moments
or that the distinction can be seen later on in the probabilistic choices.

3.3 Coupling Characterizations

Given two probability distrubutions u, v € D(X), a coupling for (u,v) is a joint
probability distribution w € D(X x X) s.t. for all E C X, w(F x X) = pu(F) and
w(X x E) =v(F). Hereafter, Q(u,) will denote the set of couplings for (u,).

Couplings have come to be used primarily for estimating the total variation
distances between measures, since the following equality holds

lp = Ve = inf {w(#) [w € Qp,)}, (6)

but they also work well for comparing probability distributions in general. An-
other notable equality is the following, a.k.a. Kantorovich duality

K(d)(p,v) =inf{[ddw | w € Q(u,v)}. (7)
Based on these equalities, behavioral pseudometrics have been given alterna-

tive characterizations in terms of couplings.

Couplings & linear time logics. In (Bacci et al. 2014), we provided an al-
ternative characterization of (1) that works as follows

(51\/>I/ITL (s,8) = SUPEes(MTL) UP)?/[(E) -]P’é‘,/’(E)] (8)
= inf {w(Zwr) | w € QB PY) T (9)

where o(MTL) denotes the o-algebra generated by the sets [¢], for ¢ € MTL, and
=urL i the logical equivalence on timed paths. Equation (8) follows by showing
that the generator is dense in o(MTL), whereas (9) is proven generalizing (6).

Couplings & fixed points. Due to the Kantorovich duality, to the behavioral
distances seen in §3.2 it can be given an alternative characterization based on a
notion of coupling structure (varying w.r.t. the model) as the following minimum

min {7° | C coupling structure for M} . (10)

where 7¢ is the least fixed point of certain operators I'C, that we describe below.
A coupling structure C is said optimal if it achieves the minimum in (10).

21

Markov Chains. A coupling structure for an MC M = (S, L, 7,¢) is a tuple
C = (7¢,) where 7¢: (S xS) — D(S x.S) is a probability transition function over
pair of states such that, for all s,s" € S, 7¢(s,s") € Q(7(s),7(s")), to be though
of as a probabilistic pairing of two copies of 7.

Chen et al. (2012) showed that the distance of Desharnais et al. (2004) can
be described as in (10) by means of the following operator

e (d)(s,s) = max {Zp(€(s), €(s")), £°(d)(s,5') } (11)

where k¢(d)(s, ') = >, ,es d(u,v) - 7e(s, s')(u,v). From (7), one may think of ¢
as the specialization of K on a fixed coupling structure C.

Markov Decision Processes. A coupling structure for an MDP M = (S, A, 9,)
is a tuple C = (¥¢,r) where J¢: (A X S x.S) — D(S x S) is a labelled probability
transition function over pair of states such that, for all @ € A and s,s € S,
Ve(a, s, s') € Q(Y(a,s),d(a,s")). In Bacci et al. (2013a) we showed that the dis-
tance of Desharnais et al. (2004), can be described as in (10) using the following
operator

I$ipp(d)(s, s') = maxeea {|7(s,a) — r(s',a)| @ £5(d) (s, ') } - (12)
where k¢(d)(s,s') = > uwes Au,v) - dela, s,8)(u,v). Once again, (12) may be

seen the specialization of (3) w.r.t the coupling structure C.

Continuous-time Markov Chains. In Bacci et al. (2014) we extended the case
of MCs in a continuous-time setting, by considering also the couplings over resi-
dence time distributions. A coupling structure for an CTMC M = (S, L, T, p, /) is
a tuple C = (7¢, pc, £) where 7¢ is defined as above, and pe: S xS — D(Ry xR,)
is such that pe(s, s’) € Q(Ezp(p(s)), Exp(p(s’))), for all s, 5" € S.

In this case the functional operator is defined as follows
Perne(d)(s,s') = max {Zp(€(s), €(s'), 1 @5 £(d) (s, 5) } (13)

where x€ is defined as above and 3 = pc(s, 8')(#). Equation (6) justifies the value
chosen for 5, making (13) a specialization of (5) w.r.t. a coupling structure C.

Notably, due to the characterization above and (9), in Bacci et al. (2014) we
have been able to prove that the behavioral distance defined as the least fixed
point of F&4 ¢ is an upper bound of &Ly in §3.1(1). In fact, this generalizes
from a quantitative point of view the inclusion of probabilistic trace equivalence
into probabilistic bisimilarity.

4 Computational Aspects

Historically, behavioral distances have been defined in logical terms, but effective
methods for computing distances arose only after the introduction of fixed point

22

characterizations. Indeed, one can easily approzimate the distance from below by
iteratively applying the fixed point operator, and improving the accuracy with the
increased number of iterations. To this end, the operator needs to be computed
efficiently. For instance, this is the case when the fixed point operator is based on
the Kantorovich metric (see §3.2). Indeed, for p, v € D(S) and S finite, the value
K(d)(p, v) is achieved by the optimal solution of the following linear program
(a.k.a. transportation problem)

TP(d) (/L? V) = arg minweQ(u,u) Zu,vES w<u7 U) ’ d(uv U) (14)

where Q(u,v) describes a transportation polytope. The above problem is in P
and comes with efficient algorithms (Dantzig 1951; Ford and Fulkerson 1956).

In Bacci et al. (2013b), we proposed an alternative ezact method that com-
putes the distance of Desharnais et al. (2004) over MCs efficiently, that adopts
an on-the-fly strategy to avoid an exhaustive exploration of the state space. Our
technique is based on the coupling characterization seen in §3.3. Given an MC
M and an initial coupling structure Cy for it, we adopt a greedy search strategy
that moves toward an optimal coupling by updating the current one, say C;, as
Cit1 = Ci[(s,s")/w] by locally replacing, at some pair of states (s, s’), a coupling,
which is not optimal, with the optimal solution w = TP(7%)(7(s),7(s')). Each
update strictly improves the current coupling (i.e., 7%+t C 7%) and ensures a fast
convergence to an optimal one.

The method is sound independently from the initial starting coupling. More-
over, since the update is local, when the goal is to compute the distance only
between certain pairs, the construction of the coupling structures can be done on-
the-fly, delimiting the exploration only on those states that are demanded during
the computation. Experimental results show that our method outperforms the
iterative one by orders of magnitude even when one computes the distance on all
pairs of states.

In Bacci et al. (2013a) we further improved this technique in the case the
input model is given as a composition of others. In summary, we identified a
well behaved class of operators, called safe, for which is it possible to exploit
the compositional structure of the system to obtain a heuristic for constructing
a good initial coupling to start with the on-the-fly algorithm described above. It
is worth noting that this is the first method that exploits the compositionality of
the system to compute behavioral distances.

Complexity Results. Most of the theoretical complexity results about the
problem of computing behavioral distances relies on fixed point characterizations.

Based on the fixed point characterization of van Breugel and Worrell (2001)
(see §3.2(2)), Chen et al. (2012) showed that the bisimilarity distance of Deshar-
nais et al. (2004) over MCs can be computed in polynomial time as the solution of

23

a linear program that can be solved using the ellipsoid method (Schrijver 1986);
this result has been later extended in Bacci et al. (2014) to CTMCs (see §3.2(5)).

Not surprisingly, the integration of non determinism on top of the proba-
bilistic behavior, as in MDPs and Segala systems, has consequences also from a
complexity perspective. Fu (2012) proved that the fixed point characterization
of the bisimilarity pseudometric of de Alfaro et al. (2007) is in NP N co-NP.
This is done by showing that the problem of deciding if a (rational) fixed point
is the least one is in P, then he provided a nondeterministic procedure to guess
(rational) fixed points. Recently, van Breugel and Worrell (2014) proved that the
problem of computing the distance on Segala systems (see §3.2(4)) belongs to
PPAD? by using a result by Etessami and Yannakakis (2010) that states that
computing fixed points of polynomial piecewise linear functionals is in PPAD.

In the case of linear (real-)time behavioral distances (see §3.1(1)), the de-
cidability problem is still open. However, in a recent work, we showed that the
MTL (resp. LTL) distance on CTMCs (resp. MCs) is NP-hard to compute (Bacci
et al. 2014, Corollary 23). We proved this result following arguments from Lyngso
and Pedersen (2002), who proved the NP-hardness of comparing hidden Markov
models with respect to the L; norm.

References

R. Alur and T. A. Henzinger. Real-Time Logics: Complexity and Expressiveness.
Information and Computation, 104(1):35-77, 1993.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Computing Behavioral Dis-
tances, Compositionally. In MFCS, volume 8087 of Lecture Notes in Computer
Science, pages 74-85, 2013a.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. On-the-Fly Exact Compu-
tation of Bisimilarity Distances. In TACAS, volume 7795 of Lecture Notes in
Computer Science, pages 1-15, 2013b.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Topologies of Stochastic
Markov Models: Computational Aspects. ArXiv e-prints, Mar. 2014.

L. Cardelli. Brane Calculi. In CMSB, volume 3082 of LNCS, pages 257-278.
Springer, 2005. ISBN 978-3-540-25375-4.

2The complexity class PPAD, which stands for polynomial parity argument in a directed
graph, was introduced by Papadimitriou (1994) and it has received increased attention after it
has been shown that finding Nash equilibria of two player games is a PPAD-complete problem.

24

L. Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):
190-215, 2008. ISSN 0304-3975.

L. Cardelli. Two-domain DNA strand displacement. MSCS, 23:247-271, 4 2013.
ISSN 1469-8072.

L. Cardelli and A. Csikasz-Nagy. The Cell Cycle Switch Computes Approximate
Majority. Scientific Reports, 2, 2012. doi: 10.1038/srep00656.

L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. In
QEST, pages 171-180, 2010.

L. Cardelli and R. Mardare. Stochastic Pi-calculus Revisited. In ICTAC, volume
8049 of LNCS, pages 1-21. Springer, 2013. ISBN 978-3-642-39717-2.

D. Chen, F. van Breugel, and J. Worrell. On the Complexity of Computing Prob-
abilistic Bisimilarity. In FoSSaCS, volume 7213 of Lecture Notes in Computer
Science, pages 437-451. Springer, 2012.

T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Model Checking of Continuous-
Time Markov Chains Against Timed Automata Specifications. Logical Methods
in Computer Science, 7(1), 2011.

G. B. Dantzig. Application of the Simplex method to a transportation problem.
In Activity analysis of production and allocation, pages 359-373. Wiley, 1951.

L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game Relations and
Metrics. In LICS, pages 99-108, July 2007.

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323-354, 2004.

K. Etessami and M. Yannakakis. On the Complexity of Nash Equilibria and
Other Fixed Points. SIAM Journal on Computing, 39(6):2531-2597, 2010.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov Decision
Processes. In UAI pages 162-169. AUAI Press, 2004. ISBN 0-9749039-0-6.

N. Ferns, D. Precup, and S. Knight. Bisimulation for Markov Decision Processes
through Families of Functional Expressions. In Horizons of the Mind. A Tribute
to Prakash Panangaden, volume 8464 of LNCS, pages 319-342, 2014.

L. R. Ford and D. R. Fulkerson. Solving the Transportation Problem. Manage-
ment Science, 3(1):24-32, 1956.

25

H. Fu. Computing Game Metrics on Markov Decision Processes. In A. Czumayj,
K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages,
and Programming, volume 7392 of Lecture Notes in Computer Science, pages
227-238. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31584-8.

A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic Reasoning for Probabilistic
Concurrent Games. In IFIP WG 2.2/2.3, pages 443-458, 1990.

D. Kozen. A Probabilistic PDL. J. Comput. Syst. Sci., 30(2):162-178, 1985.

K. G. Larsen and A. Skou. Bisimulation Through Probabilistic Testing. In POPL,
pages 344-352, 1989.

R. B. Lyngsg and C. N. Pedersen. The consensus string problem and the com-
plexity of comparing hidden Markov models. Journal of Computer and System
Sciences, 65(3):545-569, 2002.

R. Mardare, L. Cardelli, and K. G. Larsen. Continuous Markovian Logics -
axiomatization and quantified metatheory. LMCS, 8(19):247-271, 2012.

M. Mio. Upper-Expectation Bisimilarity and Real-valued Modal Logics. CoRR,
abs/1310.0768, 2013.

C. H. Papadimitriou. On the Complexity of the Parity Argument and Other
Inefficient Proofs of Existence. J. Comput. Syst. Sci., 48(3):498-532, 1994.

A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAmbients:
an abstraction for biological compartments. TCS, 325(1):141-167, 2004.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986. ISBN 0-471-90854-1.

F. van Breugel and J. Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. In ICALP, volume 2076 of LNCS, pages 421-432, 2001.

F. van Breugel and J. Worrell. The Complexity of Computing a Bisimilarity
Pseudometric on Probabilistic Automata. In Horizons of the Mind. A Tribute
to Prakash Panangaden, volume 8464 of LNCS, pages 191-213, 2014.

26

The Challenges of Attaining Grace
(in a Language Definition)

Andrew Black Kim Bruce
Portland State University Pomona College

Michael Homer James Noble
Victoria University of Wellington

Abstract

Grace is a new object-oriented language, designed for teaching object-oriented
programming to novices. Grace is based on a small number of syntactically and
semantically simple constructs that collaborate to provide a flexible and expres-
sive language. Core features include nested scope, generative object constructors,
and first-class anonymous functions; classes and most control structures are syn-
tactic sugar. On this core we have been able to build pattern matching, a simple
but effective module system, and the infrastructure for supporting pedagogical
dialects.

Grace features a structural type system that clearly separates interface from
implementation. The type system is also gradual, allowing programmers to mix
static and dynamic typing. These features, which we were able to integrate into
the language fairly easily, allow instructors to introduce types as early or late as
they see fit.

Surprisingly to us, the more challenging parts of the language design turned
out to be those related to inheritance from objects, and object initialization in the
presence of inheritance. The challenge was to use generative object constructors
to support Java-like class-based inheritance semantics. We thought that these
semantics were desirable because students who learn Grace as their first language
are likely to transition to Java.

Abadi and Cardelli’s foundational book A Theory of Objects (1996) sets out
the theoretical underpinnings for object-oriented languages, with special empha-
sis on object-based languages. In their model, as in ours, objects are primitive,
and classes are derived from objects. This note discusses the challenges in defin-
ing object inheritance and initialization so that the semantics of inheritance and
initialization are similar to Java’s. We discuss how our work extends that of Abadi
and Cardelli.

27

1 Introduction

Grace is a programming language targeted at novice programmers, and embraces the
following high-level goals (Black et al. 2013):

* to integrate proven new ideas in programming languages into a simple object-
oriented language;

* to represent the key concepts underlying object-oriented programming grace-
fully—in a way that can be easily explained; and

¢ to allow students to focus on the essential, rather than the accidental, difficulties
of programming, problem solving and system modeling.

Grace is still under development; we plan to begin testing Grace in teaching in the fall
of 2014.

The Grace language, which is described in Section 2, is object-based (everything is
an object) and supports nested scopes and anonymous first-class functions (which are,
consequently, objects). Classes are definable from these more primitive concepts; as
discussed in Section refClasses, we include syntactic sugar for classes to make Grace
more like other object-oriented languages, and to reduce the syntactic overhead of
nesting.

This design makes it remarkably simple to add pattern matching (Homer et al.
2012), a simple module system (Homer et al. 2013), and a system for building peda-
gogical dialects (Homer et al. 2014), similar to “language levels” in DrScheme (Findler
et al. 2002).

Grace includes a structural type system, like Modula-3 (Cardelli et al. 1995) and
OCAML (Rémy 2002), rather than a nominal type system, like Java and C#. Type
annotations on declarations are optional; we call this gradual typing. Gradual typing
allows programmers to combine statically and dynamically typed code in a single pro-
gram. This has pedagogical advantages, because instructors can start teaching using
Grace with dynamic typing, and then gradually move students into a statically typed
dialect of Grace as the deficiencies of dynamic typing become apparent. This limits
the number of new ideas that students must master as they write their first programs.

We have found that these features fit together nicely, and that the resulting language
is both simple and pleasant to use. A prototype implementation, minigrace, is written
in Grace and currently generates either C or JavaScript'.

In spite of these successes, we did run into some difficulties in the Grace design —
difficulties that showed up in sometimes-unexpected places. The core of this paper,
found in Section 4, is a discussion of the difficulties related to inheritance from objects,

ISee http://gracelang.org/applications/minigrace/ for information on how to install and use the
compiler. The JavaScript version runs on the web, avoiding the need to download and install any soft-
ware.

28

and object initialization. Initialization is routine when inheriting from classes, but as
we will see, it is tricky when inheriting objects. We discuss the goals that led to these
difficulties, alternative designs, and the present resolution.

2 A Brief Introduction to Grace

This section provides a synopsis of the elements of Grace that are most relevant to the
issues addressed in this paper. A more complete description of Grace as a teaching
language is available in a paper presented at SIGCSE (Black et al. 2013).

2.1 Objects

A Grace object is self-contained, with a unique identity and its own methods and
fields — both constants (defs) and variables (vars). The outside world (other objects)
can interact with an object only through method requests (our term for “message sends”
or “method calls”).

From the beginning, we envisaged that Grace objects would be created by gen-
erative object constructors: expressions that constructs new objects, whose methods
and fields are given in body of the constructor. Emerald’s object constructors are gen-
erative (Raj et al. 1991), as are OCAML objects (Rémy 2002) and JavaScript object
literals. In Grace we can write:

object {
var size =1
def threshold = curThreshold
method grow(n) {
sSize :=size + n
}

print "a new object has been created"
}

Evaluating the same generative object constructor multiple times generates mul-
tiple new objects, with separate identities but the same structure, and potentially dif-
ferent field values. In the above example, the per-instance constant threshold will be
defined as the current value of curThreshold, which is presumably defined in an outer
scope. This generative property differentiates Grace’s object constructors from the
static object literals of languages like Scala (Odersky 2011) and Self (Ungar and Smith
1991), which are evaluated only once and so create only one object.

Note that Grace object constructors can contain executable code, which may in
general have effects. In this example, print has an obvious effect, but curThreshold
might also have an effect, if curThreshold is a method. Object constructors are expres-
sions, and may be nested inside other expressions, and thus inside methods.

29

2.2 Method Requests

Method requests, which we often refer to simply as requests, are the basic compu-
tational mechanism in Grace. As in Smalltalk, control structures, function applica-
tion, field access, and primitive operations are all invoked using requests. Method
requests are written using the “dot notation” 0.m(...), as in many other object-oriented
languages. However, method requests can also be written without an explicit receiver,
as m(...) (or just m if there are no parameters). The object receiving such a request is
determined by the lexical scope. If a method with the same name is available in the
most closely enclosing object, then the receiver is self. Otherwise, the receiver will
be found by inserting a sequence of outers to access a method with a matching name
in some surrounding object.

2.3 Classes

Classes are useful when one wishes to define multiple objects with the same structure.
Grace’s class syntax combines an object constructor with a method definition:
class pointAtx(x")y(y'") {
def x = X'
defy=y'
method distanceFromOrigin { ((x*2) + (y*2)).sqrt }
}

This defines a method, which can be used to create an object using a method request:
pointAtx(5)y(10). We will discuss the meaning of classes in more detail in Section 3.

2.4 Other features

Other components of Grace that are less important to the topic of this paper, but which
provide significant expressive power, include the following.

1. A block represents an anonymous function, also known as a A-expression. For
example, {x —> x 41} represents the successor function. Blocks can be used to
define control structures like for...do that can be used just like built-in con-
structs.

2. Methods can have multi-part names, where the parts as separated by parameter
lists. We have already seen this in the definition of the class pointAtx()y(). Simi-
larly, the method that updates an element in a list has the name at()put(), and is
defined like this:

method at(n)put(x) {
boundsCheck(n)
inner.at(n—1)put(x)

30

self

}

3. Gradual typing: Grace can be used as a statically or dynamically typed language,
or with a mix. Type annotations that the programmer chooses to insert will
be checked, either at compile time or at run time. All actual type errors are
caught by the run-time system, whether or not type information is provided by
the programmer.

4. Pattern matching is supported by match()case()...case() statements. Matches
can be based on the identity, type (that is, interface), or other features of the
match argument. Basic pattern matching is built into the language, but refined
matching criteria can be defined by programmers.

3 Objects or Classes: which should be Primitive?

While one could design a language in which both objects and classes are primitive, the
strong connection between the two suggests that only one is necessary. Which should
one choose?

3.1 Modeling Object Constructors with Classes

It is quite possible to have syntax for both objects and classes, but to define objects in
terms of classes. Java, for example, does not have generative object constructors, and
insists that every object is created from a class. However, its anonymous classes can
be used to achieve the same effect as object constructors:
new Object() {
finalintx = _x;
finalinty = _y;
float distanceFromOrigin { return sqgrt((x"2) + (y*2)) };
}

This expression creates a new object with the given fields and method, which inherits
from class Object; it assumes that _x and _y are defined in an outer scope. Ruby calls
this the “eigenclass” model (Perrotta 2010).

3.2 Modeling Classes with Methods

From a pedagogical point of view, it seems strange to make class the primitive: since
classes are used to produce objects, shouldn’t objects come first? In particular, it is
often the case that in the first few weeks of a course for novices, most classes are used
to generate only a single object. It would be simpler to first define objects, and then

31

introduce classes later as a way to generate multiple objects with similar structure. This
reasoning led us to ask how we could model class-based systems using objects.

We have explored two ways of representing classes in Grace. Originally, we repre-
sented classes as objects; more recently we have moved toward a simpler representa-
tion of classes as methods, as we now explain.

The definition of class pointAtx(x')y(y') in Section 2.3 is equivalent to:

method pointAtx(x")y(y') {

object {
def x = X'
defy=y'

method distanceFromOrigin { ((x*2) + (y*2)).sqrt }

}
}

This definition lets us construct a new point at (5, 10) by writing pointAtx(5)y(10).
Because classes define methods, it is easy to build factory objects that provide
multiple ways of constructing objects. For example, if a programmer wanted to be
able to create points by giving either cartesian or polar coordinates, they could define:
def point = object {
class x(x")y(y") {
method x { X' }
method y {y'}
method distanceFromOrigin { ((x2) + (y"2)).sqrt }

}
method r(r)theta(theta) {

X (r = cos(theta)) y (r = sin(theta))
}
}

They could then create point objects using requests like point.x(3)y(4) or point.r(5)theta
(w/6), which both generate objects with similar (cartesian) representations.

3.3 What about other Roles of Classes?

Class-based inheritance and object-based delegation are often considered roughly equiv-
alent in power (Lieberman et al. 1987). Classes can model object constructors, al-
though not necessarily other features of prototype-based languages, such as delega-
tion (Ungar and Smith 1991). And we have just seen how, by repeatedly executing an
object constructor, objects and methods can subsume the object-generation aspect of a
class.

However, in many languages classes do not just create new objects: they play other
roles as well. For example, Borning (1986) lists seven additional roles for classes in
Smalltalk, and in languages like Java and C++, classes also function as types. The

32

design of Grace does not conflate classes and types: types in Grace are like Java inter-
faces rather than classes. Hence, we don’t have to worry about supporting this aspect
of classes from traditional object-oriented languages.

A key role for classes, however, is as “a means for implementing differential pro-
gramming (this new object is like some other one, with the following differences. ..)”
(Borning 1986). In particular, we wanted to be able to support a notion of inheri-
tance for classes. So we were forced to ask ourselves how we could model class-based
inheritance with the sharing mechanisms of object-based languages.

3.3.1 The Traditional Semantics of Objects and Classes

Semanticists have traditionally modeled objects as fixed points and classes as the gen-
erators of fixed points (Cook 1989; Bruce 2002). The intuition as follows. In an object,
the meaning of self is the object that contains it: an object is a fixed point in which
“the knot has been tied” and self refers to the object itself. A class, in contrast, has
an implicit self parameter (it is explicit in the semantics, but not in the syntax): “the
knot has not yet been tied”. This allows the class to be used both to generate multiple
objects, each with its own self, and in inheritance, because self in the superclass can
later be given the correct meaning, which is the final (extended) object.

Abadi and Cardelli (1996) illustrate this by defining a class as an object containing
a collection of pre-methods — methods where self has been abstracted out as a param-
eter. Essentially, objects are constructed by taking a fixed point with respect to self.
Because classes contain the pre-methods, when a subclass is defined the pre-methods
can be altered by adding new methods or overriding existing ones. When new objects
are defined from the new subclass, the fixed point is taken with respect to the new or
overridden features. As a result, the meaning of self, even in inherited methods, is the
new object, which includes the new and overriding methods introduced in the subclass.

3.3.2 Inheritance from Objects

So how can we inherit from an object? If the object has only the methods obtained
after taking the fixed point, then we cannot get the behavior we want, because self
refers to the wrong object. Thus, it seems that objects will have to contain the pre-
methods. It is still straightforward to execute methods — just pass in the object to be
bound to the self parameter as an extra argument before executing the code. This is,
of course, exactly what most implementations of object-oriented languages do: they
share the pre-methods given in the class definition amongst all of the instances of the
class, and bind self to the receiver when a method request is executed.

So much for methods. But what about an object’s fields —its constants and vari-
ables? These must be initialized. And there lies the difficulty.

33

4 Initializing Objects

Initializing objects is more complex than one might expect. Key issues involve the
order of initialization and the meaning of self during initialization. In Grace, initial-
ization entails executing the code in the body of the object constructor; there is nothing
analogous to Java’s “constructor” (which behaves like an initialization method).

Rather than being absolutely precise in our definitions below, we provide sufficient
intuition behind the operations to illustrate the issues involved. We start by temporarily
ignoring inheritance and looking just at the effect of evaluating an object constructor?.

When an object constructor is evaluated, the first thing that happens is that space
is allocated for all definitions and fields, and their values are set to the special value
uninitialized. Second, the closures for methods are made available to the object: be-
cause methods are closures, references to definitions or variables in methods are not
evaluated at this time.

4.1 A Brief Detour: Representing Methods

While there are many ways in which we might make methods available to an object,
we will pick a particular representation here that will allow us to make our discussion
more concrete. Rather than having a separate slot in the object for each method, we
will choose to represent all the methods together as closures in another structure. Thus,
each object o will maintain a reference to a structure M, that contains all of the closures
corresponding to its methods. Moreover, each closure will not only have a parameter
for each of the explicit parameters in the method, but will also have a self parameter.

We will not here assume that the method closures are shared between objects.
While a reasonable implementation might well share the code of the methods, that
is beyond the scope of the present discussion, in which we focus on an explanation of
the semantics of inheritance.

When a method request of the form obj.m(e) is evaluated, the system will obtain
the closure corresponding to m from Mobj~ It will then provide the arguments obj and
e to the closure, and evaluate the closure.

4.2 Back to Initializing Objects

After the space for the object has been allocated and the methods installed, the identi-
fier self is set to refer to this new object. Finally, all the code in the object constructor
is evaluated, from top to bottom. By “all the code” we mean statements at the top-level
of the object constructor, and initialization expressions for fields. If, during this eval-
uation — or indeed at any time during the execution of the program — an uninitialized

’In Grace, everything inherits at least from the top-level Object; we return to this later.

34

field is requested, the program will raise a runtime error. Thus, it is the programmer’s
responsibility to ensure that the code is arranged so that no field is dereferenced before
it is initialized.

There are no restrictions on the kind of code that can be executed during initializa-
tion: the code may comprise arbitrary method requests, including requests on self that
access fields that may not yet be initialized. Rather than complicating the core seman-
tics to manage these “self-inflicted” methods, the semantics of Grace simply raises an
exception, although dialects may include more restrictive static checks. In contrast,
OCAML bans self-inflicted methods altogether during initialization and executes ini-
tializers in the scope surrounding the object constructor.

Once completed, the result of evaluating the object constructor is a reference to the
newly created object. However, notice that the initialization code might also expose
a reference to self before initialization is complete. For example, the initialization
could involve a method request in which self is passed as an argument— what Gil
and Shragai (2009) call “immodesty”. This possibility leads to difficulties because of
interactions between inheritance and initialization.

4.3 Inheritance from Classes

Let us turn our attention to inheritance from classes; we defer to Section 4.4 the trickier
case of inheriting from objects. Consider the class declaration

class d(...) {
inherits c(...)

}

What happens when we create a new object by evaluating the expression d(...)?

First, as before, space for the new object dobj is allocated. This will include slots
for all of the fields, both those inherited from ¢ and those newly defined in d. As before,
all these fields are initialised to undefined.

The second step, installing the methods, is more complicated because of inheri-
tance and super. The structure containing the closures that represent the methods of
dobj is prepared as follows:?

1. Allocate the method structure M,,; with slots for both inherited and newly de-
fined methods. As before, all the methods have an explicit self parameter.

2. Let M. refer to the method structure of c. Copy the methods from M., to the
corresponding method slots in Mg,,;. Next, create and install the closures corre-
sponding to the methods defined in d. Newly introduced methods go into empty
slots, while overriding methods replace those from M..

3We are being very prescriptive of how methods are represented here. Actual implementations will
likely differ from this description, though the semantics should be the same.

35

3. When creating the closures for the methods in d, if a method includes a request
of the form super.q(...), it is compiled into a statically bound call to the closure
corresponding to q in M. In addition to the explicit arguments of g, a reference
to dobj is passed as the self argument in this call.

As before, the final steps of object construction are to install a reference to Mgy, in
the newly allocated object dobj, and set self to refer to dobj.

To initialize the definitions and variables in the new object, first run the initializa-
tion code from c (recursively executing its superclasses’ code). In executing this code,
the meaning of self is the new object dobj. Finally, run the initialization code in the
object d.

Given the above description, we can see that if the initialization code in ¢ makes
a self-request for a method that was overridden by d, the overriding method will be
executed. In a similar situation in C++, the initialization code from a superclass would
always run the method in the superclass. In other words, in C++ the initialization code
is run in the original object. Java, in contrast, has a semantics more like that described
above, and executes the overriding method.

Why the difference? Meyers (2005) explains that the semantics chosen by C++ will
avoid accidental references to uninitialized variables that would occur if overriding
code were to refer to the fields of the new object, which have not yet been initialized
(though Gil and Shragai (2009) discuss issues with this semantics). Unfortunately,
using the (overridden) superclass method also means that any new actions taken by the
overriding method will not occur during initialization. For example, if the overriding
method logs updates and then requests the super-method, then actions taken during
initialization will not be logged.

As discussed in Section 4.2, “immodest” initialization code can expose a reference
to the new object. For example, a graphic object may register itself with a display man-
ager so that it can be redrawn as necessary. If this initialization is inherited by a button
object, the display manager might request a method on the button (e.g., requesting that
it draw itself), before the button is fully initialized.

Because of such problems, researchers and practitioners (Gil and Shragai 2009)
have argued for “safe object construction” techniques that restrict or ban both self-
infliction and immodesty, especially in the presence of concurrency (Goetz 2002). Qi
and Myers (2009) have proposed using type-state to solve object initialization prob-
lems in Java.

What is the “right” solution for Grace? After weighing the alternatives, we decided
to follow Java, and allow overriding of methods requested during initialization. In part,
this is because students need to learn about the dangers of such code, and having them
fall into this hole is a good way to create a “teachable moment”. But we also realized
that Grace is safe here in a way Java isn’t. While a Java program can observe a final
field going from null (a legal value) to another legal value, a Grace program attempt-

36

ing to access an uninitialized field immediately raises an exception. Moreover, Grace
dialects can be used to restrict the Grace language; a dialect could implement a check
that allows known safe immodest initialization schemes, while forbidding potentially
dangerous ones. This would not be possible if immodesty were banned in the base
language.

While we have framed this discussion to explain initialization of objects created
using the class syntax, this is unimportant. The description works for all objects that
inherit from a class, whether or not the new object is created using a class or using an
object constructor. The tricky case, discussed below, is when the new object inherits
from an object rather than from a class.

4.4 Inheriting from an Object

While Abadi and Cardelli (1996) extensively discuss inheritance from objects in chap-
ter 4, their formal model of inheritance is limited to pre-method reuse, illustrated
through their modeling of classes as collections of pre-methods, along with a new
method to generate new objects. They then discuss how inheritance of classes can be
modeled in their object calculus with this design. In the informal discussion of object
inheritance and delegation, they mention that it is important that parent objects and
classes be statically visible (pp. 40—41), a restriction that we adopt. However, detailed
formal models of object inheritance are not provided.

We considered adopting Abadi and Cardelli’s approach of defining inheritance only
from classes (as does OCAML), but this seemed overly restrictive, and made objects
into second-class citizens. In this section, we explore why inheritance from objects
can be tricky, and present our solution.

The difficulty with inheriting from existing objects (as opposed to constructor ex-
pressions that create new objects) is that there is no initialization code to run. While
methods are not a problem, how should we initialize the fields of the new object? Our
initial thought was to copy the values of the fields of the superobject. But how do we
copy them? While a shallow copy can sometimes be the correct solution, too often it is
not. For example, suppose an object has a reference to a log object that collects infor-
mation about its activity. If an inheriting object were simply given a reference to the
same log, then activities by the subobject and the superobject would both update the
same log, which is probably not the desired behavior. Constructing a new log object
requires access to the code that initialized the superobject.

One possible solution is to turn the initialization code for every object into a clo-
sure, and have the object carry it around for its whole lifetime, just in case that object is
inherited. This seems unattractive, and might have surprising implications for memory
usage. Languages like Smalltalk separate object construction from initialization, and
make initialization a real method, but that does not work for Grace because defs must
be given their values when they are declared, not later.

37

The lack of an obviously good answer to the initialization question led us to restrict
the use of inheritance to fresh objects: those returned from object constructors and
classes. Also permitted are invocations of clone methods, as well as invocations of
more general methods that do some work and then return a fresh object.

These restrictions on inheritance are intended to ensure that the initialization code
for the superobject is always accessible at the place where it is inherited. They have
the side-effect of ensuring that the structure of the object being inherited is statically
known. This turns out to be quite useful. Suppose, for example, that a class ¢ has a
confidential field f. (Confidential fields are accessible to an object and its subobjects,
but are not visible outside.) Then, if d is a subclass of ¢, the methods defined in
d may access f. If we did not have full information about ¢’s structure — including
those components that are not externally visible — we might not know how to interpret
references to f. One of the consequences of this is that if method m has a parameter
p with a method new that creates a new object, then inside m we may construct new
objects by requesting p.new, but we may not construct objects that inherit from p.new.

4.5 Evaluation

For the most part we are satisfied with our solution to the difficulties involved in in-
heriting from objects. However, there is one annoying case that is not covered by our
current solution, which we would like to fix.

There are many situations where objects are immutable and independent of the sur-
rounding scope. For example, an object may be composed only of methods, or it may
contain methods and definitions, but the values of those definitions may also be im-
mutable. Under these circumstances, it is annoying to have to create a (parameterless)
class, all of whose instances will be (and will always remain) identical, just so that one
can inherit from the class rather than from the immutable object itself.

5 Summary

Grace is an object-oriented language designed for teaching that provides generative
object constructors, classes, and first-class functions. Grace makes object construc-
tors, not classes, primary, because they are simpler and more concrete, and so (we
hope) easier for novices to understand. While classes as object factories were eas-
ily definable from object constructors, it was more challenging to define inheritance
from objects, because of the need to initialize the subobject’s fields based on the su-
perobject. To avoid initializing those fields via a default clone operation that would
frequently provide the wrong result, we instead restrict inheritance to freshly created
objects.

38

References

M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996. ISBN 978-
0387947754.

A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and R. Yannow. Seeking
Grace: A new object-oriented language for novices. In Proc. 44th ACM Technical
Symp. on Computer Science Education, SIGCSE *13, pages 129-134, 2013.

A. Borning. Classes versus prototypes in object-oriented languages. In ACM/IEE Fall
Joint Computer Conf., pages 3640, 1986.

K. B. Bruce. Foundations of Object-oriented Languages: Types and Semantics. MIT
Press, Cambridge, MA, USA, 2002. ISBN 0-262-02523-X.

L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3
reference manual. Research Report 53, DEC Systems Research Center, 1995.

W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
Providence, RI, USA, 1989.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: a programming environment for Scheme. J. Funct. Pro-
gram., 12(2):159-182, 2002.

J. Y. Gil and T. Shragai. Are we ready for a safer construction environment? In
Proceedings of the 23rd European Conference on ECOOP 2009 — Object-Oriented
Programming, number 5653 in LNCS, pages 495-519, Berlin, Heidelberg, 2009.
Springer-Verlag. URL http://dx.doi.org/10.1007/978-3-642-03013-0_23.

B. Goetz. Java theory and practice: Safe construction techniques. IBM develop-
erWorks, June 2002. URL https://www.ibm.com/developerworks/java/library/
j-jtp0618/.

M. Homer, J. Noble, K. B. Bruce, A. P. Black, and D. J. Pearce. Patterns as objects
in Grace. In Proceedings of the 8th Symposium on Dynamic Languages, DLS *12,
pages 17-28, New York, NY, USA, 2012. ACM.

M. Homer, K. B. Bruce, J. Noble, and A. P. Black. Modules as gradually-typed ob-
jects. In Proceedings of the 7th Workshop on Dynamic Languages and Applications,
DYLA ’13, pages 1:1-1:8. ACM, 2013.

M. Homer, J. Noble, K. B. Bruce, and A. P. Black. Graceful dialects. In R. Jones, ed-
itor, ECOOP 2014 — Object-Oriented Programming, 28th European Conference,

39

volume 8586 of LNCS, pages 131-156, Uppsala, Sweden, July 2014. Springer-
Verlag. URL http://link.springer.com/chapter/10.1007/978-3-662-44202-9_6.

H. Lieberman, L. Stein, and D. Ungar. Treaty of Orlando. SIGPLAN Not., 23(5):
43-44, Jan. 1987.

S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs
(3rd Edition). Addison-Wesley Professional, 2005. ISBN 0321334876.

M. Odersky. The Scala language specification. Technical report, Programming Meth-
ods Laboratory, EPFL, 2011.

P. Perrotta. Metaprogramming Ruby. Pragmatic Bookshelf, 2010.

X. Qi and A. C. Myers. Masked types for sound object initialization. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 09, pages 53-65, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-379-2. doi: 10.1145/1480881.1480890. URL http://doi.acm.org/10.
1145/1480881.1480890.

R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul.
Emerald: A general purpose programming language. SP&E, 21(1):91-118, 1991.

D. Rémy. Using, Understanding, and Unraveling the OCaml Language. In
G. Barthe, editor, Applied Semantics. Advanced Lectures. LNCS 2395., pages 413—
537. Springer Verlag, 2002.

D. Ungar and R. B. Smith. SELF: the Power of Simplicity. Lisp and Symbolic Com-
putation, 4(3), June 1991.

40

The gene gate model: some afterthoughts

Ralf Blossey
Interdisciplinary Research Institute USR3078 CNRS

Parc de la Haute Borne, 50 Avenue Halley
59658 Villeneuve d’Ascq, France

Abstract

In 2006, Cardelli, Blossey and Phillips proposed a simple computational
model for the dynamics of transcriptional regulation using stochastic n-
calculus. Here I show that, to some extent, our path of understanding the
properties of this model has run backwards... a recently obtained exact
solution of the gene gate model for a self-regulatory gene allows to elucidate
some very basic properties which would have been nice to know already
in 2006. In this paper I explain the properties of the gene gate model
of the self-regulatory gene in the context of the existing literature. Our
current understanding of this model - which by all means appears to be
the simplest way to model feedback interactions - helps to gain insight into
what a computational theory of gene regulation should be able to provide.

The gene gate model. In 2006, Luca Cardelli together with Andrew Phillips
and Ralf Blossey proposed a simple model of transcriptional regulation, imple-
mented in stochastic m-calculus (Blossey R, Cardelli L, Phillips A (2006)), with
the ambition to be able to compute the dynamic behaviour of ‘small’ gene net-
works. The main idea for the description of a gene is to represent it by two states
G and G’, whereby the gene in state G transcribes protein constitutively at a
rate €,

G—.G+A. (1)

It enters into the state G’ through the interaction with a transcription factor,
for simplicity in this example let us take its own product (this construct then
corresponds to an autoregulated gene):

G+A—,.G + A (2)

41

Protein A interacts with G and is released after the transition from G to G'. In
state G’, the gene can now either be repressed, and hence not transcribing at all
after which the gene relaxes from state G’ back to the active state G via

G =y G, (3)

or G’ can be understood as an activated state, and hence transcribing at a higher
rate,
G —,G+ A (4)

with 7 > ¢, and at the same time the gene relaxes back from the highly active
state G’ to the constitutively active state G. (This is the most concise and simple
version, one can separate it in two steps, G — G’ + A and G’ — G, but at
the cost of adding another parameter to the model.) It is of course noteworthy
that within this model we entirely neglected the level of mRNA. This biologically
crucial process can, however, be added when needed, so that this omission is not
a critical factor.

This model, which the authors called the ‘gene gate model’, has some pecu-
liarities when compared to other models. First of all, it is regulated, in contrast to
probably its major known forefather, the Markov model by Peccoud and Ycart,
published a long time ago already in the journal Theoretical Population Biology
(Peccoud J, Ycart B (1995)). Like the gene gate model, the Peccoud-Ycart model
consists of a gene which can be in either of two states, G and G’ (we thus inherited
this gene), but the PY-gene is not regulated: a change in its state from active to
non-active occurs purely at random, without the intervention of a protein A, as
in equation (2) above.

The second peculiarity of the gene gate model is that the model is consti-
tutively active, hence it transcribes without the interaction with a transcription
factor. And, ultimately, the final peculiarity is that there is no transcription
factor-DNA complex in the model, see again reaction (2). This feature has met
with some criticism by readers and referees, who sometimes considered this step
‘unphysical’. In our view, this is in fact not the only unphysical feature... (see
the neglect of mRNA) and the critique is not pertinent. The gene gate model
is obviously a caricature of the real process, which involves numerous complex
molecules, of which only some are represented explicitly in the model, while oth-
ers reside somehow in the reaction rates. Just take the RNA polymerase: where
is it? It hides in the rate €, and in 7 in the activated case. Our motivation
for this model was to build something which was a ‘minimal’ model, which can,
however, allow to build complex networks - as those illustrated in Figure 1, some-
thing which the Peccoud-Ycart model obviously does not allow. We believed we
pushed this modeling to the extreme, while still being rather faithful to reality in
this sketchy sense.

42

1 1 [r 1 1 [

Figure 1: The two main classes of simple gene circuits: Circular (1) and linear
(2). Shown are only the repressive circuits; activatory circuits and mixtures of
both types can be built in a similar fashion. Circuits shown in (1): The self-
repressed circuit, a bistable switch, the repressilator. Circuits shown in (2): A
linear array and a linear array with a head feedback, hence a mixture of a circular
and a linear circuit. Reprinted with permission from (Blossey R, Giuraniuc V C
(2008)). Copyright by the American Physical Society.

The repressilator. In order to build complex networks with this model, we
employed stochastic m-calculus, and studied numerous simple networks composed
of one, two and three genes (Blossey R, Cardelli L, Phillips A (2006, 2007); Blossey
R, Giuraniuc V C (2008)). Within stochastic m-calculus, each gene is represented
by a process; as we have two types of genes, there are generically two of them: the
repressed gene with process neg(-,-), and the activated gene with process pos(-,-).
I do not repeat the definition of these processes here, and refer the interested
reader to our papers (Blossey R, Cardelli L, Phillips A (2006, 2007)). A peculiar
circuit we studied is the repressilator (Elowitz M B, Leibler S (2000)), a three-
gene circuit in which in genes repress each other cyclically, using L as the sign of
repression (see Figure 1 for the circuit topology)

clalble (5)

hence it is given, within stochastic m-calculus, by the beautiful ‘compositional’
process

neg(a,b) | neg(b,c) | neg(c, a) (6)

The repressilator circuit oscillates, see Figure 2. We were quite happy with
this result, as the stochastic repressilator computed with the Gillespie algorithm
does exactly what the deterministic version does - and, of course, the real one

43

$=0.0001, n=0.0001, r=10.0

1200
s (YT e
600 [1 T 1 I [1] I : ;
o
o INNWNNNNN NN NN time (M)
0 0.5 1 15 2

Figure 2: Repressilator oscillations. Shown are protein numbers as a function of
time, for a specific choice of parameters, as indicated in the text. Note that o
is the degradation rate of the proteins, corresponding to the reaction A —s 0.
Reprinted with permission from (Blossey R, Cardelli L, Phillips A (2007)).

built in F. coli bacteria by Elowitz and Leibler.
Only that it is not at all clear, why.

When we did our work, we were not aware of this problem. Only later did it
turn up for us that there is indeed a real issue here. Here it is.

In the deterministic setting, the interaction between the transcription factor
proteins and the DNA must be cooperative, hence described by a Hill coefficient
h > 1. In our deterministic version of the repressilator, it actually depends on
the model details we include: if we keep the gene states of the three genes as
variables, we find a condition h > 4/3, while when we ignore the gene states
and keep on the gene products, the proteins, we need to have h > 2 (Blossey R,
Giuraniuc V C (2008)). These values of h are not easily interpreted in physical
terms, but one can think of a reaction like

A+ A+ A, A3 (7)

i.e., the formation of a trimer to be on the safe side. Our stochastic m-calculus
gene gate repressilator however oscillates with only a monomer protein. *

IThere is also the subtle issue of the interpretation of the number of genes as a continuous
variable in our model, see (Blossey R, Cardelli L, Phillips A (2007)). The simplest rationaliza-
tion is to assume that, when talking about the continuous model, one thinks of its application
to an ensemble of synchronized cells which however is not so easy to realize experimentally.

44

Shortly after our work, Biham et al. showed that the stochastic bistable
two-gene circuit, in our notation

neg(a,b) | neg(b, a) (8)

switches stochastically between two states without cooperative effects (Lipshtat
A, Loinger A, Balaban N Q, Biham O (2006)); they then also showed oscillations
it for the repressilator, however for a more complex model (Loinger A, Biham O
(2007)).

Here is why the minimal ‘gene gate’ model is perfectly sufficient to produce
oscillations in the stochastic setting. We only understood it recently from an ex-
act solution of the auto-regulated gene, when represented by its Master equations
for the gene states G and G’, much in the same way as Peccoud and Ycart did
it for their model; in fact, the solution is only moderately more complicated to
obtain, but physically totally different (Vandecan Y, Blossey R (2012)).

Figure 3 shows the probability distribution of protein A of the auto-regulated
gene for a specific range of parameters. As one can see, the distribution is ‘bi-
modal’; actually, we called its shape as being a ‘boundary bimodal’ since one of
the peaks is always located at the number of zero proteins. If one wants to have
a maximum at a finite small number of proteins, then one is required to take into
account the transcription-factor-DNA complex as a state in the model. (That is
all it needs, in fact.)

Why would the presence of the bimodality allow for oscillations? It is exactly
this property which is needed, as the gene regulatory circuit must be capable of
switching between a low-number and a nigh-number state. In the deterministic
version of the circuit, the low-number state is simply absent, if the cooperativity
(the Hill coefficient) is too low. In this sense we can now precisely state the
conditions for oscillations required in the modeling:

e in the deterministic setting, a sufficiently strong cooperatively (Hill coeffi-
cient);

e in the stochastic setting, a model allowing for a bimodal (minimally: a
boundary bimodal) in the protein distribution (Vandecan Y, Blossey R
(2012)).

Figure 4 shows the dynamics of both the stochastic and deterministic versions,
here plotted in ‘phase space’, i.e., the concentration of proteins a,b and c.

45

0 10 n 20 30

Figure 3: Probability distribution of the produced protein as a function of pro-
tein number (not of time, as in Figure 1), for a generic parameter choice. The
(boundary) bimodality of the distribution is clearly seen: one maximum lies at
n = 0 and another one at n = 9. Reprinted with permission from (Vandecan Y,
Blossey R (2012)). Copyright by the American Physical Society.

46

Figure 4: Top: The limit cycle of the stochastic repressilator. Bottom: The
deterministic version for comparison. Reprinted with permission from (Blossey
R, Giuraniuc V C (2008)). Copyright by the American Physical Society.

47

A closing remark on a model random path in Science. I feel that
the above short story gives a nice illustration of a fairly generic path in Science;
we built something whose properties we did not quite understand, and we found
something whose importance we didn’t immediately understand. As we were be-
ginners in the field, ignorance on some matters may be taken as granted, but in
the end one can understand why our model actually does what it did! At the
time of our collaboration, we were also probably too much involved with bridg-
ing language gaps between computer science and physics, as we tried to apply
ideas from both to a biological problem. In fact, we had a hard time to get our
second paper published in a physics journal, just because of the language barrier
between computer science and physics. My physics colleagues did mostly react
quite strongly (in a strictly negative sense) when exposed to the philosophy of
stochastic m-calculus, but there also are exceptions, like Joachim Radler from
Ludwig-Maximilians University in Munich, who actually also implemented some
of these ideas with his students.

Looking back, I still cherish my discussions with Luca and Andrew and keep
them in my memory as a model collaboration on interdisciplinary endeavors,
during which we shared our knowledge and tried to overcome our ignorance at the
same time. I also wish to thank my two postdoctoral fellows, Claudiu Giuraniuc
and Yves Vandecan, for their work on the gene gate model.

References

Blossey R, Cardelli L, Phillips A. A compositional approach to the stochastic
dynamics of gene networks. Transactions in Computer Science, 2006.

Blossey R, Cardelli L, Phillips A. Compositionality, stochasticity and coopera-
tivity in dynamic models of gene regulation. HFSP Journal, 2:17-28, 2007.

Blossey R, Giuraniuc V C. Mean-field vs stochastic models for transcriptional
regulation. Physical Review FE, 78:031909, 2008.

Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regu-
lators. Nature, 403, 2000.

Lipshtat A, Loinger A, Balaban N Q, Biham O. Genetic toggle switch without
cooperative binding. Physical Review Letters, 96:188101, 2006.

Loinger A, Biham O. Stochastic simulations of the repressilator circuit. Physical
Review FE, 76:051917, 2007.

48

Peccoud J, Ycart B. Markovian modelling of gene product synthesis. Theoretical
Population Biology, 48:222-234, 1995.

Vandecan Y, Blossey R. Self-regulatory gene: An exact solution for the gene gate
model. Physical Review E, 87:042705, 2012.

49

50

Multilinear Programming with Big Data

Mihai Budiu Gordon D. Plotkin

Microsoft Research

Abstract

Systems such as MapReduce have become enormously popular for pro-
cessing massive data sets since they substantially simplify the task of writ-
ing many naturally parallelizable parallel programs. In this paper we iden-
tify the computations carried out by such programs as linear transforma-
tions on distributed collections. To this end we model collections as multi-
sets with a union operation, giving rise to a commutative monoid structure.
The results of the computations (e.g., filtering, reduction) also lie in such
monoids, (e.g., multisets with union, or the natural numbers with addi-
tion). The computations are then modelled as linear (i.e., homomorphic)
transformations between the commutative monoids. Binary computations
such as join are modelled in this framework by multilinear transformations,
i.e., functions of several variables, linear in each argument.

We present a typed higher-order language for writing multilinear trans-
formations; the intention is that all computations written in such a pro-
gramming language are naturally parallelizable. The language provides a
rich assortment of collection types, including collections whose elements
are negatively or fractionally present (in general it permits modules over
any given semiring). The type system segregates computations into linear
and nonlinear phases, thereby enabling them to “switch” between different
commutative monoids over the same underlying set (for example between
addition and multiplication on real numbers). We use our language to de-
rive linear versions of standard computations on collections; we also give
several examples, including a linear version of MapReduce.

1 Introduction

As has been famously demonstrated by MapReduce, Dean and Ghemawat (2004),
and followed up by related systems, such as DryadLINQ, Yu et al. (2008), big data
computations can be accelerated by using massive parallelism. Parallelization is
justified for simple mathematical reasons: big data has a natural commutative

51

monoid structure with respect to which the transformations carried out by com-
putations are linear (i.e., homomorphic). We present a programming language
which seeks to expose this linearity; we intend thereby to lay the foundations for
(multi)linear programming with big data.

Our language manipulates two kinds of types: ordinary and linear. In our
setting linear types are commutative monoids (i.e., sets with a commutative as-
sociative operation with a zero). A typical example of such a monoid is provided
by the positive reals R* with addition.

Big data is usually manipulated as collections; these are unordered bags, or
multisets, of values (sometimes represented as lists); we write X* for the type of
collections of elements of a set X. While the elements of a collection may be from
an ordinary type, the collection type itself is a commutative monoid if endowed
with multiset union (indeed X* is the free commutative monoid over X).

Turning to transformations, given a function f : X — Y between ordinary
types the Map operator yields a transformation Map(f) : X* — Y* mapping
X-collections to Y-collections. Again, given g : Y — R™, the Reduce operator
yields a transformation Reduce(g) : Y* — R mapping Y-collections to RT.
Both of these are linear, preserving the monoid structures, i.e., we have:

Map(f)(#) = 0 Map(f)(cuc) = Map(f)(c) UMap(f)(c)
Reduce(g)(#) = 0 Reduce(g)(cUc) = Reduce(g)(c) + Reduce(g)(c)

(In fact, since X* is the free commutative monoid over X, these are the unique
such maps extending f and g, respectively.)

These equations justify the use of parallelism. For example, the linearity of
Map implies that one can split a collection into two parts, map them in parallel,
and combine the results to obtain the correct result.

As another example, suppose we have a binary tree of processors, and a col-
lection ¢ partitioned across the leaves of the tree. We map and then reduce at
the leaves, and then reduce the results at the internal nodes. The final result is
Reduce(g)(Map(f)(c)) irrespective of the data distribution at leaves, and of the
shape of the tree. This fact depends on both the associativity and commutativity
of the monoid operations and the linearity of the transformations; in practice this
translates into the ability to do arbitrary load balancing of computations.

Our language is typed and higher-order. The language accommodates binary
functions, such as joins, which have multilinear types (they are linear in each
of their arguments). The language provides rich collection type constructors:
in particular, for any linear types A and (certain) ordinary types X, we can
construct the linear type A[X] whose elements can be thought of variously as
A-ary X -collections, or as key-value dictionaries, with X as the type of keys (or
indices) and A as the type of values.

52

For example, by taking A to be the integers, we obtain multisets with el-
ements having positive and negative counts; these are useful in modelling dif-
ferential dataflow computations, see McSherry et al. (2013). Taking A to be
the nonnegative reals, we obtain weighted collections, which are useful for mod-
elling differential privacy, see Prospero et al. (2014). Dictionaries enable one
to express GroupBy computations. The language further provides a mechanism
for programming computations with both linear and nonlinear phases, possibly
switching between different commutative monoids over the same carrier.

In the rest of this paper, after some remarks on commutative monoids, we
present the syntax and denotational semantics of our language. We then ar-
gue practicality by modelling MapReduce and LINQ distributed computations
through a series of examples (see Meijer et al. (2006) for an account of LINQ).

2 Remarks on commutative monoids

We work with commutative monoids M = (|M], +,0) and linear (i.e., homomor-
phic functions) between them. We write U(M) for |M|, the carrier of M (i.e.,
its underlying set). For any n € N and m € M we write nm for the sum of m
with itself n times.

The product of two commutative monoids is another, with addition and zero
defined coordinatewise. Various sets of functions with range a commutative
monoid M also form commutative monoids, with addition and zero defined point-
wise. Examples include: M[X] the monoid of all functions from a given set X
to M which are zero except, possibly, at finitely many arguments; X — M, the
monoid of all functions from a given set X to M; and My,..., M, — M the

monoid of all multilinear functions from given commutative monoids My, ..., M,
to M. We write a typical element of A[X]| with value 0 except possibly at n
arguments oy, ..., T, as {T1 = ay,..., T, — an}.

Categorically, U is (the object part of) the forgetful functor to the category
of sets. The product of two commutative monoids is also their sum, and so we
employ the biproduct notation M; @& M,. The commutative monoid M[X] is
the categorical sum) _ M and can also be viewed as the tensor X ® M (the
corresponding cotensor is X — M).

53

X=Y
Y=X

X=Y X =Y A=B X=X Y=Y
XxX =YxY UA=UB X->Y=X Y
(

X=U(4) Y=URB X=X Y=U4)
XxY=UA®B) X—=-Y=UX —A)

Figure 1: Definitional equality rules for ordinary types.

A=A B=PF A=A X=X
ApB=Aao B AlX] = A'[X]

X=X A=A A=A B=p
X5 A=X — A A-oB=A —B

Figure 2: Definitional equality rules for linear types.

3 The language

Types

The language has two kinds of type expressions: ordinary and linear, ranged over
by X,Y,... and A, B, ..., respectively. They are given by:

X o= b|XxY|UA|X>Y
A u= c|A®B|AX]|X > B|A,...,Ap— B

where b and ¢ range over given basic ordinary and linear types, respectively. The
basic ordinary types always contain bool and nat. The basic linear types always
contain nat,; other possibilities are nat.x and real,. In A[X] we restrict X to
be an equality type, meaning one not containing any function types.

We also assume given a syntactic carrier function | - |, mapping basic linear
types ¢ to basic ordinary types |c|. For example |naty| = |naty.c| = nat. This
is used to obtain a notion of definitional equality of types which will enable
computations to move between different linear structures on the same carrier;
the rules for definitional equality are given in Figures 1 and 2; note the use there
of vector notation for sequences of linear types.

54

Semantics of Types

Ordinary types X denote sets | X| and linear types A denote commutative mon-
oids |A[. The denotations of basic type expressions are assumed to be given. For
example, bool and nat would denote, respectively, the booleans and the natural
numbers; nat,, would denote the natural numbers with addition; and natp,.y
and real, would denote the natural numbers with maximum, and the reals with
addition. We assume, for any basic linear type ¢ that ||c|| is U(]c]) the carrier
of |c|.

The other type expressions have evident denotations. For example | X — Y|
is the set of all functions from | X| to [Y[; [U(A)] is U(JA]); |A[X]] is [A][| X]];
JA1, ..., A, — BJ is JAi],...,,|An] — [B]; and so on. One can check that
definitionally equal types have equal denotations.

Terms
The language has ordinary terms ranged over by t,u, ... and multilinear terms
ranged over by M, N, They are given by:
t o= x| dx(M)]| f(tr,.. . tn) |
(t,u) | fst(t) | snd(?) |
Ar o Xt | t(u)
M == al|ua(t) | g(My,...,M,) |

04| M+ N | MN |

if ¢ then M else N | matchz : X,y :Yastin M |
(M,N) | fst(M) | snd(M) |
M-t|suma:Ax:Xin M.N |

Ax: X M| M(t) |

Aay Ay, ooy an s A M| M(Ny, ..o Ny)

In the above we use the letters z,y,...,a,b... to range over variables. In
the “match” construction x,y have scope extending over M; and in the “sum”
construction a, z have scope extending over N. We assume given two signatures:
one of ordinary basic functions f : by,...,b, — b and the other of linear basic
functions ¢ : ¢q,...,¢, — c.

We introduce three “let” constructions as standard syntactic sugar:

let z: X betinu =def Az X.u)(t)
letx: X betin M =4 (Ax:X. M)(t)
let @: Abe Min N =4 (MA@ :A.N)(M)

55

Instead of suma : A,z : X in M. N : B we may write in a more “mathemati-

cal” way:
2 N
a-xeEM

Finally we may write unary function applications M (/N) in an “argument-first”
manner, as N.M, associating such applications to the left.

Environments

The language has ordinary environments ranged over by I' and multilinear en-
vironments ranged over by A. These environments are sequences of variable
bindings of respective forms:

Fi=x1: Xq,...,20: X, Ac=ay: A, ..., a,: A,

where the x; are all different, as are the a;. Below we write A||A’ for the set of
all merges (interleavings) of the two sequences of variable bindings A and A'.
Typing Rules

We have two kinds of judgements, ordinary and multilinear
FHt: X and FfAFM:A

where, in the latter, I' and A have no variables in common. The rules are either
structural, casting, ordinary, or multilinear, and are as follows:

Structural
Nrz: XT'Fz: X F'la:AFa: A
Casting
I'|FM:A4 UA=X Trt:X X=U(A)
TFdx(M): X T [Fua(t): A
Ordinary
BRI
' f(t):b

I'Ft: X Thru:Y I'Ft: X xY I'Ft: X xY
PE{(t,u): X xY E fst(t): X 't snd(t): Y

56

Iz: XFt:Y 'ct: X—-Y T'Ftu:X
Fr'FXxx: Xt: X—>Y Fkit(u):Y

Linear

Cetrern = ¢ A € A]]...[|An
T |AFg(M,....M,):c (g:ci e = e, A€ AL [[An)

T'|AFM:A T|AFN:A
T|[AFM+N:A

F'|AFO04: A

'|A'FM:naty, T|A"FN:A

/ "
T|AFMN:A (A € ATIAT)

'kt:bool T|AFM:A T|AFN:A FHt: XxY Tio: X,y:Y|AFM: A
' Atif tthen Melse N: A ' AFmatcha: X,y:Yastin M: A

I'|AFM:A T|AFN:B T|A+-M:A&B T'|A-M:A®B
T'|A+(M,N):A® B T|AF fst(M): A T |AF snd(M):B

FNAFM:A TFHt: X DIA'"FM:AX] Tya: X |A",a: AFN:B

li 1
F'NAFM-t: A[X] F|Atsuma:A,x: XinM.N:B (& e ATlaT)

Nz:X|A+-M:B FAFM:X—>B TTkHt:X
A M:XM:X—>B P|AFM(t): B

F‘A/FMA1,7AH—OB F‘All_NzAl (7,21,7’2,)
L'|AFM(Ny,...,N,):B

(A € A[Aq]]-- [|An)

The use of the merge operator || on linear environments ensures that derivable
typing judgments are closed under permutation of linear environments; as may be
expected, they are not closed under weakening or duplication. Typing is unique
in that for any I';, A and M there is at most one A such that T'| A+ M : A and
similarly for judgments I' - ¢ : X. There is also a natural top-down type-checking
algorithm.

We sketch the denotational semantics of terms below, but their intended mean-
ing should be clear from the previous section. For example, the term M N with

57

M : nat, indicates the addition of N with itself M times. The terms dx (M) and
ua(t) should be read as “down” and “up” casts, which convert back and forth
between a linear type A and an ordinary type X definitionally equal to U(A).
Using terms of the forms dx (M), ua(t) one can construct conversions between
any two definitionally equal types.

Some constructions that may seem missing from the biproduct are in fact
definable. The first injection inl(M) can be defined by (M, 0), similarly for the
second, and we can define a cases construction by:

cases K fsta: A. M, sndb: BN =4 letc: A® Bbe K in
(let @ : A be fst(c) in M)
+ (let b: B be snd(c) in N)

So given “product” and “plus” we get “sum”; in fact, given any two of “prod-
uct”, “sum”, and “plus” one can define the third.

Semantics of terms

For the basic functions, f, g, one assumes available given functions [f[, [g] of
suitable types.

For environments I' = z1 : X4,..., 2, : X;p and A =aq : Ay,...,a, : A, we
write [I'] for the set [X:]x...x[X,,[, and [A] for the carrier of [A;] x...x[A,],
respectively. Then, much as usual, the denotational semantics assigns to each
typing judgement I' ¢ : Y a function

ITHt:Y]:T] — [Y]
and to each typing judgement I' | A+ M : B a function
IT|AFM:B|:|T] x[|A] — |B]

linear in each of the A coordinates (this is why A is called a “multilinear environ-
ment”). The definition is by structural definition on the terms; we just illustrate
a few cases.

The type conversions are modelled by the identity function, for example:

I |Fdx(M): X|(V,@) =T+ M: A|(T)

As one might expect the syntactic monoid operations are modelled by the seman-
tic ones, for example:

IT| Ak M+N:B|(T,8) =T |ArM:B|(T,a)+p [T | AF N : B|(T, &)

58

For the collection syntax we have first that:
IT|AFM-t: AX]|(V,Q)={[T+t: X[(V)—= [T |AFM: A|(V,a)}

Next if ' | AFsuma: A,z : X in M. N : X holds then there are, necessarily
unique, A", A” such that I' | A+ M : A[X]and Iz : X | A”Ja: AF N: B
and A € A/||A” all hold. We use the fact that A € A’||A” to obtain canonical
projections 7’ : [A] — [A'] and 7" : |A] — [A"].

Suppose that

IT| A" - M:AX]|(T,7(@)) = {vy = a1, ...,0, = an}

Then

[T |Fsuma:Az: Xin M. Nt : X|(V,Q) =
Yiciallz: X[A" a: AN BI((V, 0:), (7" (), a:))

The semantics of the other terms pose no surprises; in cases where linear envi-
ronments A are split up, one again makes use of canonically available projections.

Implementation considerations

It very much remains to be seen how useful our ideas prove. In the meantime,
it seems worthwhile saying a little about possible implementation datatypes.
One could use lists, possibly spread among different processors, to represent
collections. Representations would be recursively defined: if R represented X,
and S represented the carrier of A then (R x S)* could represent A[X], with
(r1,81) ... (rn, S,) representing Zi:m{xi — a;} if r;, s; represented z;, a;, for all
ie{l,...,n}.

Such representations have a natural normal form: assuming the r; and s;
are already in normal form, one adds the s; together (using a representation of
addition on A) to produce a list (1, s}),. .., (ry,, s;,) with the r} all different, and
then orders the list using a total ordering of .S, itself recursively defined.

When evaluating ua(¢) one needs to have the value of ¢ in normal form, as
otherwise the addition implied by the representation relation is that of A, which
may not generally be correct (for example, ¢ may itself be dy(M) where the
(linear) type of M has a different addition from that of A). So when evaluating
dx (M), one should put the value of M into normal form as the correct addition
is then known from the linear type of M.

59

4 Operators

As stated above, the type A[X] can be regarded variously as that of A-valued
X-collections or of key-value dictionaries over A and indexed by X. In particular,
taking A to be nat, we get the usual unordered collections, i.e., finite multisets
of elements of X; we write this type as X*. We now look at linear versions
of standard operators such as Map, Fold, Reduce, GroupBy, and Join. As our
notion of collection is more general than that used in traditional programming
languages we obtain corresponding generalisations of these operators.

Map

We can define a family of Map operators which operate on both the elements of
a collection and their coefficients. Associating function type arrows to the right,
they have type

(A —o B) —o (X — Y) — (A[X] —o B[Y])
and are given by:

Mapyy a5 =det Mf 1 (A—0 B).Ag: (X = Y). Ae: AX]. > f(a) - g(x)

a-rec

where we are making use of the summation notation introduced above. Note that
here, and below, operators are often linear in their function arguments.

Specialising to the case where B = A and f : A — B is the identity id4 (i.e.,
Aa : A.a), we obtain a family of operators

Mapyy 4 : (X =V) = (A[X] — A[Y])

where we are overloading notation. When A = nat, these are the usual Map
operators, but with their linearity made explicit in their type:

(X =Y)—= (X" =YY

Actions and their extensions

We define an action (term) of a linear type A on another B to be a term of
type A, B — B. Such an action always exists when A = nat,, viz., the term
An : naty,b: B.nb. In general, we may only be given “multiplication” terms
my @ A, A — A providing an action of A on itself; we may then, as we will see
below, use the given multiplication to obtain actions on other linear types.

60

For example in the case of real,, the multiplication term would denote the
usual multiplication on the positive reals. When we have a multiplication term
on a linear type A we may also have a “unit” term 14 : A (e.g., a term denoting
the usual unit in the case of the positive reals). The unit provides a generalisation
of the multiset singleton map {—} : X — X* namely Az : X. 142 : X — A[X].!

Given an action of A on B we can obtain an action of A on B[X] using a
family of Extend operators. They have type

(A, B — B) — (A, B[X] — B[X])
and are given by:

Extendx ap =det Af : (A, B — B).Xa: A, c: B[X]. Z fla,b) - x

b-xec

Actions can be extended to other types. In the case of biproducts, given an
action of A on both B and C, then there is an action of A on B @ C; in the case
of fugction types, given an action of A on C| there are actions of A on X — C
and B — (. We leave their definition as an exercise for the reader. Combining
such extensions, one can build up actions on complex datatypes.

Folding
We define a family of Fold operators with type

(A,B — B),(X — B) — (A[X] — B)
They are given by:

Foldx a5 =det Am : (A, B — B), f: X — B.\c: A[X]. Z m(a, f(x))

a-rec

Note that the fold operator needs an action of of A on B.

SelectMany Using Fold we can define a family of SelectMany operators that
generalise those of LINQ analogously to the above Map operators. They have

type
(A — B), (X — B[X]) — (A[X] — B[X])

'We would expect such a multiplication and unit to make A a semiring (i.e., to provide a
bilinear associative multiplication operation with a unit) and we would expect the actions of
A on other linear types to make them A-modules. If such algebraic assumptions are fulfilled,
some natural program equivalences hold.

61

and are given by:

SelectManyy 4 p = Af:A— B,g: X — B[X]. Xc: A[X].
let e : A, B[X]| — B[X] be
Extend(Aa : A,b: B.mg(f(a),b))
in c.Fold(e, g)

where we have made use of the reverse application notation introduced above,
and have also assumed available a multiplication term mpg : B, B — B.

Taking B = A and specialising f : A — B to the identity, we obtain a family
of operators of types

SelectMany y 4 : (X — A[X]) — (A[X] — A[X])
again overloading notation. When A = nat, these have type
(X = X™) —o (X" —0 X7)

and are the usual LINQ SelectMany operators (these are the same as MapRe-
duce’s improperly-named Map operators).

Reduction For general A-valued collections, we may already regard Fold as a
reduction (or aggregation) operator. We can obtain analogues of the more usual
reductions by taking both A and B to be basic linear types where there is an
action of A on B; an example would be to take them both to be real, and the
action to be Myeal, .

We can specialise the first argument of Fold to the action of nat, on linear
type’s B and obtain a family of operators

Reducey g : (X — B) — (X* — B)

In this generality, these include SelectMany, if we take B to be Y*. Taking B to
be a basic linear type such as real, we obtain more usual reductions.

Note that in all the cases considered above, the reduction operations are fixed
to be the sum operations of the target linear types.

GroupBy

As already indicated, one can regard elements of the linear type A[X] as key-value
dictionaries of elements of A, indexed by elements of X. In particular, given a

62

type of keys K, we can regard A[X]|[K]| as the type of K-indexed A-valued X-
collections. With this understanding, we have a family of GroupBy operators
using of key function X — K. These have type

(X = K) — (A[X] — A[X][K])
and are given by:
GroupBy s x 4 = M 1 (X — K). Ac: A[X]. Y (ax) - k(x)
a-rec
Lookup

Lookup functions extract the element with a given key from a K-indexed dictio-
nary. They have type
K — (AIK] — A)

and are given by:
Lookupg x 4 =daet A7 : K. Ac: A[K]. Z if 2’ = x then a else 0
a-x’'Ec

where we have assumed available an equality function on K.

Join

We first define cartesian product operations on collections; they require actions
of linear types on themselves in order to combine values with the same index. We
have a family of operations of type

(A A~ A), ALX], AY] = A[X x Y]
given by:
CartPrody 4 =get Am : A, A — A c: A[X], ¢+ A[X]. Z Z m(a,a’) - (x,y)
a-x€ca’-yec

We further have a family of Join operations which operate on pre-grouped-
by collections, with a type of keys K for which an equality function is assumed
available. They have type

(A, A — A), AIX][K], AlY][K] — A[X x Y][K]
and are given by:

JOiHX7Y7K7A —def Am (A,A —o A),d . A[X][K],dl : A[YHK}
Y erealet ¢ A[Y] be Lookup(k)(d') in CartProd(m,c,c’) - k

63

Zip
Our final example is another family of binary functions on key-value dictionaries,
which model the LINQ Zip operation:

Zipx ap : A[X] © B[X] — (A® B)[X]

They take two X-indexed dictionaries and pair entries with the same index. They
are given by:

Zipx ap =ar Ad:A[X]® BX].
Map(inl)(idx)(fst(d)) +aes Map(inr)(idx)(snd(d))

equivalently:

Zibx ap =det Ad:A[X]© B[X]. cases d fst a : A[X]. Map(inl)(idx)(a),
snd b : B[X]. Map(inr)(idx)(b)

5 Some Example Programs

In this section we give some example programs. The first two compute non-
linear functions. However they are composed from linear subcomputations, and
these are exposed as linear subterms. The last example is a linear version of

MapReduce.

5.1 Counting

Our first example illustrates the utility of being able to move non-linearly between
different monoids with the same carrier. Given a collection, we can count its
elements, taking account of their multiplicity, using County : X* —o nat,, given
by:

Ac @ X*. Reducex nat, (Az 1 X. upat, (1))(c)
However, if we instead want to count ignoring multiplicity (i.e., to find the number

of distinct elements), the computation proceeds in two linear phases separated
by a non-linear one, as follows:

e the input collection, read as a nat,-collection by a type conversion from an
ordinary to a linear type, is mapped to a nat,..-collection ¢’ to record only
the presence or absence of an item (by a 1 or a 0),

e (is then transformed nonlinearly to a nat,-collection ¢”, using the type
conversions, and, only then,

64

e the Count function is applied to ¢”.
To do this we use a term SetCountx : U(X*) — nat,, namely

Az U(X™).
let ¢ : natyax[X] be ux«(x).Map(Conv)(idy) in
let ¢ : X* be ux+(dy(x+)(c)) in ¢’.Count

where Conv : nat, —o nat,,., is a linear term converting between nat and nat,.,
namely An : naty.n(upat,.. (1)) (it sends 0 to 0 and all other natural numbers to
1), and where we have dropped operator indices.

5.2 Histograms

Our second example is a simple histogram computation. Suppose we have a
collection ¢ of natural numbers and wish to plot a histogram of them spanning
the range 0 to m, the maximum element in the collection (which we assume to be
> (). The histogram is to have k£ > 0 buckets, starting at 0, so each bucket will
have width m/k. We model histograms by multisets of natural numbers, where
each element corresponds to a bucket, and has multiplicity corresponding to the
number of values in that bucket.

The following function Hist® : nat — (nat* —o nat*) is provided the maxi-

mum element value and computes the histogram linearly over c:
Am : nat. Ac : nat*. ¢.SelectMany(An : nat. {|kn/m|})
The maximum element can be found linearly from ¢ using a reduction:
c.Reduce(An : nat. uyat,,,. (1))

Putting these two together, we obtain a function Hist¥ : nat* — nat* comput-
ing the required histogram:

Ac : U(nat*).
let m : nat be dpat (Unae- (¢).Reduce(An : nat. uya, . (1)) in
Upag+ (). Hist® (m)

max

Note the double occurrence of ¢, signalling nonlinearity.

5.3 A linear MapReduce

We present a linear version of MapReduce. It models the distributed nature of the
data by using a dictionary indexed by machine names to model partitioned collec-
tions. The MapReduce computation begins with the initial collection distributed

65

over the machines, carries out a computation in parallel on each machine, redis-
tributes the data between the machines by a shuffle operation, and then performs
a final reduction.

We begin with the computation carried out on each machine. This applies to
a collection ¢, and consists of a SelectMany, then a GroupBy using a basic type
K of keys, and then a Reduce at each key. It is given by the following term MR:

Ac: X*. c.SelectMany(m).GroupBy(k).Map(Reduce(r))(idk)
which has typing:
E:Y -K|m: X—=>Y"r:Y—AFMR: X* — AK]

We next need to model data of any given type B spread across machines. To
do this we assume available a basic type M of machine names and model such
data by an M-indexed dictionary of type B[M]. With this in mind the parallel
computation is given by the following term PMR:

Map(MR)(idyr)
which maps MR across the machines and which has typing
E:Y -K|m: X —=>Y*"r:Y—AFPMR: X*[M] — A[K]M]

The shuffle operation employs a key-to-machine function, h : K — M, and is
given by the following term SH:

Ae : A[K][M].
sum d : A[K],m : M in e.
suma: A k:Kind. ({a}-k) - h(k)
which has typing:
h:K— M| FSH: AK|[M] — A*[K][M]

The final reduction is carried out in parallel on each machine and is given by
the following term FR:

Map(Map(Reduce(id4))(idk)) (idn)
which maps the reduction at each key across the machines and which has typing

- FR : A*[K][M] —o A[K][M]

66

Putting everything together we obtain the entire MapReduce computation.
It is given by the following term MapReduce:

Ab: X*[M].b.PMR.SH.FR

which has typing:

E:Y -Kh:K—>M|f: X —=>Y*r:Y — AF MapReduce : X*[M] — A[K][M]

One could evidently abstract on the various functions, or choose specific ones.

6 Discussion

One can imagine a number of extensions and developments. Most immediately,
as well as rules for type-checking, one would like an equational system, as is usual
in type theories. This would open up the possibility of proving programs such
as MapReduce correct. Regarding the language design, the reduction facilities
depend on the built-in monoid structures. However in, e.g., LINQ, programmers
can choose their own. In order to continue exposing linearity, it would be natural
to introduce linear types of the form (X, z,m) where z : X and m : X? — X are
intended to provide X with a commutative monoid structure.

The mathematics suggests further possibilities. For example when working
with A-valued collections (but not dictionaries) it is natural to suppose one has
a semiring structure on A. Perhaps it would be worthwhile to add a kind of
semirings (possibly even programmable) and to have separate linear types of
collections and dictionaries.

Again, commutative monoids have a tensor product A® B classifying bilinear
functions. One wonders if this would provide a useful datatype for big data pro-
gramming. The tensor product enjoys various natural isomorphisms, for example:
AX]®@ B[Y] = (A® B)[X x Y], in particular X* @ Y* = (X x Y)*.

The mathematics suffers if one were to drop commutativity, and just work
with monoids, as in Nesl — see Blelloch (2011). One no longer has linear function
spaces or tensor products. However it is not clear that one would not thereby
enjoy benefits for programming with big data.

There are yet other possibilities for further development. It would be useful
to add probabilistic choices to the language, however the interaction between
probability and linearity is hardly clear. It would be interesting to consider
differential aspects, as in McSherry et al. (2013). This would involve passing from
monoids and semirings to abelian groups and rings. Compilers might well benefit
from language facilities to indicate intended parallelism; an example is the use of

67

machine-indexed collections used above to model MapReduce. One could imagine
a programmer-specified machine architecture, with machine-located datatypes

AQm, see Jia and Walker (2004) and Murphy VII (2008).

References

G. E. Blelloch. Nesl. In D. A. Padua, editor, Encyclopedia of Parallel Computing,
pages 1278-1283. Springer, 2011. ISBN 978-0-387-09765-7.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. 6th OSDI, pages 137-150. ACM, 2004. URL
http://labs.google.com/papers/mapreduce.html.

L. Jia and D. Walker. Modal proofs as distributed programs (extended abstract).
In ESOP, pages 219-233, 2004.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In
CIDR. www.cidrdb.org, 2013.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling ob-
ject, relations and XML in the .NET framework. In Proc. SIG-
MOD Int. Conf. on Manage. Data, page 706. ACM, 2006. ISBN 1-
59593-434-0. doi: http://doi.acm.org/10.1145/1142473.1142552. URL
http://doi.acm.org/10.1145/1142473.1142552.

T. Murphy VII. Modal types for mobile code. PhD thesis, CMU, 2008.

D. Prospero, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in
private data analysis, a platform for differentially-private analysis of weighted
datasets. To appear in VLDB14, 2014.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, K. Pradeep, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-parallel
computing using a high-level language. In Proc. 8th OSDI, pages 1-14. ACM,
2008.

68

Types and Logic,
Concurrency and Non-Determinism

Luis Caires
NOVA LINCS/CITT and Departamento de Informatica, FCT UNL

Abstract

Behavioural types are becoming an increasingly useful instrument to reason
about the behaviour of complex concurrent and interactive computing systems.
While type systems for traditional programming models have been for long rooted
on pure logical principles, the connections between interactive and concurrent
programming models and their logically motivated type disciplines started to be
better understood only recently. In this note, we motivate an approach to accom-
modate internal non-determinism, a phenomenon pervasively present both in the
behaviour of artificial and natural computing systems but which seems to have
escaped logical analysis, in a type system for session-based communication that
preserves logical compatibility by supporting a Curry-Howard correspondence.
“Each time a man is confronted with several alternatives, he chooses one and eliminates
the others; in the fiction of Tsui Pin, he chooses simultaneously all of them. He creates,
in this way, diverse futures, diverse times which themselves also proliferate and fork.”
(in The Garden of Forking Paths, Jorge Luis Borges)

Dedicated to Luca Cardelli on the occasion of his 60th birthday.

1 Introduction

Type systems for programming languages have its foundational roots in logic, as re-
called in the famous Typeful Programming paper by Luca Cardelli (1991): “... one
can say that typeful programming is just a special case of program specification, and
one can read type as a synonym for specification, and typechecking as a synonym
for verification [...]. This view fits well with the types as propositions paradigm of
axiomatic semantics, and the propositions as types paradigm of intuitionistic logic.”.
Nevertheless, while type systems for traditional programming models are known to be
rooted in pure logical principles, the connections between interactive and concurrent
programming models and their logically motivated type disciplines started to be bet-
ter understood only recently, building on several relationships between substructural
logics and process calculi (e.g., Abramsky (1993); Caires and Cardelli (2004)). This

69

expected development can be seen also as yet another realisation of the fact that “one
can also extrapolate this correspondence and turn it into a predictive tool: if a concept
is present in type theory but absent in programming, or vice versa, it can be very fruit-
ful to both areas to investigate and see what the corresponding concept might be in the
other context.” (Cardelli 1991). In this note, we motivate an approach to accommodate
the concept of internal non-determinism, a phenomenon pervasively present both in
artificial and natural computing systems, and in particular in stochastic models of bi-
ological systems (Cardelli 2008). Quite interestingly, internal non-determinism seems
to keep escaping for some time a reasonable logical analysis, due to the apparent in-
compatibility between the confluence property of cut-elimination and the collapsing
effect inherent of internal non-determinism.

In this note, we investigate a session-based type system for interactive processes
that preserves compatibility of internal non-determinism with logic in the sense of
a Curry-Howard correspondence. The approach involves two key ingredients, both
clearly related to familiar concepts in concurrency and programming languages. The
first one, involves admitting processes denoting alternative potential behaviours among
the various process forms under consideration: these processes are subject to behaviour
preserving reduction rules, but are compatible with cut-elimination, and support com-
positional reasoning about process behavior. The second ingredient involves capturing
non-determinism in the type structure, thus cleanly separating, as a proper conservative
extension of the basic type system, non-deterministic behaviour from the basic deter-
ministic behaviors. To achieve this, we encapsulate non-determinism inside a monadic
presentation supported by two type operators & A and G A, related by duality.

2 Session Types and Linear Logic

The session discipline (Honda 1993; Honda et al. 1998) applies to distributed pro-
cesses which communicate through point-to-point private channels (e.g., such as TCP
sockets). In such a practically relevant setting communications must always occur in
matching pairs: when one partner sends, the other receives; when one partner offers a
selection, the other chooses; when a partner closes the session, no further interactions
may be initiated from either side in the same channel. Sessions are initiated when a
participant invokes a server. A server acts as a shared service provider, with the ca-
pability of unboundedly spawning fresh sessions between the invoking client and a
newly created service instance process. A service name may be publicly shared by any
clients in the environment. In general, a session based system exhibits concurrency
and parallelism in the sense that many sessions may be executing simultaneously and
independently. Both session and server names may be passed around in communica-
tions. Although no races in communications within a session or even between different
sessions can occur; processes may also concurrently invoke shared servers. It is easily
understood that session channels are subject to a linear usage discipline, conforming

70

to a specific state dependent protocol, while server channels can be freely shared, and
invoked according to a simple new session creation protocol.

Caires and Pfenning (2010) introduced a type system for m-calculus processes that
exactly corresponds to a linear logic proof system, revealing the first Curry-Howard
interpretation of session types as linear logic propositions, a line of research further
developed by Toninho, Perez and others. Unlike with traditional session type systems,
the logical interpretation ensures unrestricted progress, meaning that well-typed pro-
cesses never get stuck, as well as livelock freedom. The interpretation can be developed
within either intuitionistic or classical linear logic, with certain subtle differences in ex-
pressiveness (Caires et al. 2012; Wadler 2012). We base the developments in this paper
on the classical interpretation, as it represents rather directly the symmetries present
both at the level of types and process interactions, given the presence of negation. The
presented system thus establishes a Curry-Howard interpretation with classical linear
logic, via the presentation >, of Andreoli (1992) extended with mix principles, which
we also explore here for the first time. The structure is given by the types

AB w= 1 | 1 | 1A | ?A | A®B | A9B | Ae#B | A&B

For each type A we define the dual A corresponding to the negation operator of linear
logic (+)*, following basic de Morgan laws. Intuitively, the type of a session end-point
is the dual of the type of the opposite session end-point.

1=1 1=1 1A ="A 7A =14
A9 B=A9B AB=A®B A®B=A&B A&B=A®B

Session Termination 1 and 1 type terminated sessions, seen from each end-point
partner. No well-typed partner will make further use of a terminated session. Both
types are represented in traditional session type systems by a single type end. In the
presence of mix principles, as we do here, we have | —o 1and 1 — L, so we also
consider 1 = 1, and write e for either one, hence ® = o (recall A — B £ A9 B).
We have the rules

PHA;©

O z:0;0 (Th) Praxe A;O (D

The associated principal cut reduction corresponds to the structural congruence law
0 | P = P rather than to a reduction step expressed by process synchronisation (struc-
tural congruence = is the basic identity on processes).

Send and Receive A ® B is the type of a session that starts by sending a session of
type A and then continues as a session of type B. It thus corresponds to the session
type Al.B (Honda 1993). Notice that A ® B is essentially a pair of non-interfering
types, which is what is essentially put to use in our session model. A *® B is the type

71

of a session that starts by receiving a session of type A and then continues as a session
of type B. It corresponds to the session type A?.B (so A?.B corresponds to A —o B).

Session send and receive are respectively represented by m-calculus input and out-
put guarded processes. An input process has the form x(y).R, representing a process
that receives on session z a session n, passed in parameter y, and then proceeds as
specified by R. The continuation R will use both the received session and other open
sessions (including). An output process has the form Z(y).M, where y is a freshly
created name (this corresponds, without loss of expressiveness, to the output mecha-
nism of the m-calculus with internal mobility). The behaviour of such a process is to
send session y on x and then proceed as defined by M. In our typed language, M al-
ways has the form P | @ (thatis M = P | Q where P defines the behaviour of session
y being sent, and () the behaviour of the continuation session on x). This separation is
key to ensure lock freedom, and does not limit expressiveness. Notice that y is bound
both in Z(y).M and in z(y).R. We then have the following typing rules.

PFAyA0 QFA" 2:B;0 (T®) RET,y:C x:D;0
Z(y).(P| Q) F A A, 2:A® B; © z(y).R+T,2:C® D;©

(T®)

The associated principal cut reduction corresponds to the expected (session passing)
process synchronisation. If we consider C' = A and D = B we obtain

T(y).(P|Q)FAAN 2:A® B;© 2(y).R+- A, 2:A® B;©

Teut
wn)@W)-(P Q) [#(y).R) - A, A T;© (Teut)
which reduces to
PFA y:A;©0 RFT,y:A 2:B;0
PIRFAT.BO O OFA =56
) .05 ETZI

(vz)((wy)(P| R) | Q) - A,ALT; O

This corresponds to the standard input/output synchronisation in the (internal) 7-calculus,
expressing communication reduction (recall that M = P | Q).

(va)(@(y)-M | x(y).R) — (va)(vy)(M | R)

Offer and Choice A @ B types a session that first chooses (from the partner menu
offer) either “left” or “right”, and then continues as a session of type respectively either
A or B. It thus corresponds to a pure, binary version, of the (choice) session type
@icr{l; : A;}. A&B types a session that first offers (for partner to choose) both“left”
or “right” menu options and then continues as a session of type respectively A or B,
depending on the choice made. It corresponds to a pure, binary version, of the (offer)
session type &;er{l; : A;}. The offer and choice primitives are typed by the additive

72

connectives & and &, namely linear conjunction and linear disjunction.

REA x:A;0 Ta) REA x:B;© (T
r.inl; REA,2:A® B;© rinr; RE A 2:A® B;©
PHA A0 QF A x:B;0
x.case(P,Q)F A, 2:A & B;©
The associated principal cut reductions corresponds to the session offer and choice
process synchronization, as expressed by the reductions:

(vx)(z.case(P,Q) | x.inl; R) — (vx)(P | R)
(vz)(z.case(P,Q) | z.inr; R) — (vx)(Q | R)

In general, we may consider instead n-ary labeled sums, which are closer to the offer
and choice constructs found in more traditional session types.

REA x:A;0 PEAxA;0 (all i€l)
vl REA 2 @ier {1 1 A;};0 x.caseier(1i.P) F Az &ier {1 1 Ai};©
In this case, the principal cut reduction corresponds to the process reduction

(vx)(x.caseier(1;.P) | z.1; R) — (va)(P; | R)

(T&)

Shared Service Definition and Invocation Shared service definition and invocation
are typed by the linear logic exponentials ! and 7. !A types any shared channel that
persistently publishes a replicated service which whenever invoked spawns a fresh
session of type A (from the server behaviour perspective). Dually, type 7 A types any
shared channel on which requests to a persistently replicated service of type A can be
unboundedly issued, from the client’s perspective. We consider the rules:

PHAyAuwA © PHA;x:A0© QFyA 0
?
u(y).P+ A;uA,© (Teopy) ("

T!
PHAz:7A;0 lz(y).Q F x:!A; © ™
The associated principal cut reduction corresponds to shared service invocation

(va)(@(y).P [12(y).Q) — (va)((wy)(P | Q) ['z(y).Q)

Notice that rule T? is silent on the process, as it essentially corresponds to a book-
keeping principle, moving the shared session channel to the exponential context, not
corresponding to an actual reduction step in the process language.

Composition Rules Typed process composition principles are presented in our sys-
tem by a set of orthogonal typing rules, which correspond to cut and mix principles.
PEFA;0 QF A0
0H0 P|lQFAA;O
PFA A0 QF A, 1:A;0 (Teut) PFyA:0 QF A;uA 0
cu
(vz)(P | Q) F A A%© (vu)(fuly).P | Q) F A;©

(T-) (T

(Tcut?)

73

The mix rules (T-) and (T |) express independent composition principles (grouping
non-interfering sub-systems). The cut rules correspond to dependent composition prin-
ciples (connecting subsystems through a selected communication channel). The cut
principle appears in two forms, one for plugging a linear (session) channel (Tcut),
other for plugging with a exponential (shared) channel (Tcut”). For typing “source
code” only the linear cut is required, but the exponential cut is required for the full sys-
tem to enjoy cut-elimination (it thus corresponds to a “run-time” typing rule, in terms
of operational semantics jargon). Notice that session type systems not based on log-
ical principles (Honda et al. 1998; Gay and Hole 2005) usually embody composition
principles quite differently, and fail to ensure a general progress property.

Forwarding We conveniently interpret the identity axiom by a primitive forwarder
process [z <> y|, with several advantages (Caires et al. 2012), particularly when con-
sidering polymorphism (Caires et al. 2013). The forwarder at type A is typed by

[z <>y Fa:A y:A; ©

The associated cut reduction (vx)(P | [z <> y]) — P{y/x} corresponds to explicit
substitution application (y is not free in P). We assume [z < y| = [y <> z] as
a structural congruence axiom. We may represent m-calculus “free” output Ty.P by
Z(2).([ly <> 2] | P) (cf. the internal mobility translation of Boreale (1998)).

Process reduction semantics The operational semantics of our typed session cal-
culus exhibits a precise correspondence with cut elimination at the logic level. It is
defined by a relation of reduction (P — ()) expressing dynamic evolution, and a rela-
tion of structural congruence, which equates processes with the same spatial (or static)
structure. While most cut-reduction steps directly correspond to process reductions,
other cut-reduction steps are better expressed in the process world as structural con-
gruence principles or behavioural equivalence principles, the same remark also applies
to the so-called commuting conversions (which typically express typed behavioural
equivalences (Pérez et al. 2012)). Behavioural equivalence equates processes present-
ing the same behaviour under all contexts (even if they differ in spatial structure).

Examples We consider a toy scenario involving a movie server and some clients.
The first example models a single session (on channel s) implemented by a client
Alice(s) and a server instance SBody(s). The server instance offers two options, a
“buy movie” option (inl), and a “preview trailer” option (inr). Alice selects the
“preview trailer” option from the server menu.

SBody(s) = s.case(s(title).s(card).s{movie).0, s(title).s(trailer).0)
Alice(s) £ s.inr; s(“solaris™).s(preview).0
System = (vs)(SBody(s) | Alice(s))

Assuming some given types for movie titles (7), credit card data (C') and movie files
M, types and type assignments for the various components are given by

74

SBT£(T —-C—-oM®1) & (T - M®1)
SBody(s) s : SBT Alice(s) = s: SBT System F -

We may also consider a shared movie server and two concurrent clients. Now Alice
still selects the “preview trailer” option, but Bob selects the “buy movie” option.

MOVIES (srv) £ !srv(s).SBody(s)

Alice(srv) = 570(s).s.inr; s(“solaris”).s(preview).0

Bob(srv) £ 570(s).5.in1; s(“inception”).s(bobscard).s(moviefile).0
System = (vsrv)(MOVIES (srv) | Alice(srv) | Bob(srv))

The following types and type assignments are now derivable

MOVIES (srv) & srv - 1SBT; Alice(srv) b srv : SBT — Bob(srv) b srv 2 SBT
Alice(srv) | Bob(srv) & srv :?SBT System -

We leave to the reader the fun exercise of reconstructing the various typing derivations.

3 Non-Determinism

The main obstacle to the conciliation of “internal” non-determinism within a logically
motivated system interpreting proofs as processes is related to the fact that even if re-
duction steps at the programming language level may directly map into cut-elimination
steps at the level of proofs, such cut-elimination steps express, in the first place, proof
simplification or explicitation identities, towards a normal form. For example, in tra-
ditional functional interpretations, proofs are expressed in some A-calculus. Then cut-
elimination or proof reduction maps directly into some form of -reduction, a com-
putationally oriented version of some form of -conversion, which is, in turn, a be-
havioural equivalence relation. Thus, a Curry-Howard correspondence directly relates
proof reduction with program reduction, since both notions are coherent with conver-
sion, which denotes proof equality. In general, we may understand every proof in the
given logical system as a process or program satisfying the property denoted by the
proposition it is a proof of, and proof reduction / cut-elimination, as the process that
brings up explicitly the single underlying object of behaviour (the “normal form”).

It is remarkable that the Curry-Howard interpretations of session types in linear
logic (Caires and Pfenning 2010; Wadler 2012; Caires et al. 2012) follow these gen-
eral principles, even if now the language is concurrent and expresses message passing
distributed systems, and not functional computation (but see Toninho et al. (2012)). In
fact, due to typing, reduction on session typed processes preserves observational equiv-
alence, given their deterministic and deadlock free nature. It is important to highlight
that the fact that reduction preserves observational equivalence not only already holds
for traditional session type systems, but also for other typed fragments of w-calculi,
where (at least certain sequences of) internal reduction steps preserve observational

75

equivalence, e.g., if P — (then P =~ (@ (cf. 7-inertness of Groote and Sellink
(1996)). In the world of deterministic session typed processes internal reduction does
not change its future, externally observable behaviour, which by type safety must con-
form with the prescribed session types of its free session channels. In particular, in
the absence of additives (offer and choice), it is clear that the behaviour of a process
is fully determined by its type. Even in the presence of additives, languages for pure
session types (e.g. Honda et al. (1998)) forbid the possibility of truly non-deterministic
session behaviour. Consider the process S = x.case(P, Q) so that Sk-zr:e & e, y:e D e;
where P £ 1.inl;0 and Q = y.inr;0. S can “non-deterministically” choose be-
tween inl or inr on session y. But, in fact, such choice is determined by the selection
made by the environment on z, guarded by the x.case(P, Q) construct, excluding the
possibility of “internal” choice. So, although the typing rule for offer
PHEA:A;0 QF A 2:A;0 T
r.case(P,Q)F A, x:A& A; 0 (T&)
can express the alternative between processes P and (), possibly of the same type as
in S above (where A = o, P - 1:0,y:¢ @ @ and) - z:e y:@ @ @) it cannot ex-
press real non-determinism: for any well-typed process communicating on x process
S will always get a deterministic behaviour on y. A conceivable way to express “true”
non-determinism at the logical level would be through a typed construct denoting (un-
guarded) internal choice. A possible rendering would be:
PHA A0 QF A 1:A;0
PoQ@QrFAx:A;0
where P @& () would denote internal choice between behaviours P and (). Intuitively,
this typing (or proof) rule would express superposition of behaviours P and () in the
space of possibilities, as (T&) does, but replacing explicit external selection by inter-
nally decided non-deterministic choice. The question then arises about what should
be the computational behaviour of P & (), usually defined by rules expressing the
non-deterministic collapse of the space of possibilities into one singled out choice.
P®»@Q— P PoQ—Q
It is clear that reduction principles such as these cannot be accepted as adequate proof
reduction principles, as one would loose preservation of observational equivalence un-
der cut-elimination of the proof objects (processes in our case), crucial to obtain a
sound and fully compositional logical interpretation of process behaviour. The coun-
terpart of the two reduction principles depicted above as cut-elimination steps would
be non-deterministic proof reductions

PHAx:A; QF A x:A;
PoQt x:A A; RE AN x:A;

/ FA. A0 REA . z:A:
vr) (P& Q| R) - A, A QF A x4 i
ol Y T T @B F AN,

PFA z:A; RF A, z:A;
(vz)(P | R)F A, A

76

But, course there is no room for obviously unsound behavioural equivalences such as
(vz)(P | Q) =~ (vz)(P | R) when @ % R, which excludes this naive approach. The
fact that non-determinism may induce degeneracy in the computational interpretation
is well known, and usually considered a serious, if not unsurmountable, obstacle to
a Curry-Howard interpretation of non-determinism and concurrency. In this note we
develop a seemingly unexplored avenue to frame this challenge, in the context of our
session types interpretation of linear logic. The main idea involves two key ingredients,
clearly related to familiar concepts in concurrency and programming languages.

The first ingredient, involves admitting processes denoting alternative potential
behaviours among the various process forms under consideration. These processes
are subject to behaviour preserving reduction rules, which are compatible with cut-
elimination, and support compositional reasoning about process behavior. A typed
process then represents a possibly non-deterministic behaviour, denoting all the possi-
ble alternatives, necessary for compositionally and compatibility with equational rea-
soning. Such alternatives “overlap” in the sense that they share linear resources - this
sharing is not unsound since only some alternatives will be “actual”, cf. the rules for
the additive A & B. We should then interpret an “actual” execution step as a choice
among the possible paths in the non-deterministic space of possibilities, a concrete
observation that eliminates other competing alternatives. Such a non-deterministic ex-
ecution step should not however be regarded at the same level as the laws that govern
the global description of the non-deterministic system, which are essentially captured
by rules compatible with cut-elimination, but instead as something that falls outside
the logical explanation. By analogy, we recall the mathematical structure of models
of non-determinism, e.g., the power domain or power set constructions in denotational
(compositional) accounts of non-deterministic computation (Plotkin 1976), or even the
wave function model of quantum systems, which does not attempt to explain the (non-
deterministic) collapse that occurs at the concrete observation step. As in such settings,
we should nevertheless be obliged to formally relate the concrete non-deterministic be-
haviour, each possible observed behaviour, within the intended general model, without
confusing the role of both.

The second ingredient, involves capturing non-determinism in the type structure,
thus clearly and cleanly separating, as a proper conservative extension of the basic
system, non-deterministic behaviour from the basic deterministic one. To achieve this,
we encapsulate non-determinism within a monadic presentation supported by the type
operators &A and @A, naturally related by duality (& A = @A). The basic intuition
is that & A represents the type of a session that may non-deterministically choose to
produce some behaviour conforming to type A. On the other hand, & A represents the
type of a session that may safely interact with (or consume, say) any non-deterministic
behaviour of type A. Non-determinism is thus encapsulated inside the & A monad. In
particular, any process typed in the basic (deterministic) fragment will be subject to

77

the usual discipline of (deterministic) session typed processes discussed above, in a
precise sense. We present the typing rules for these new logical / type operators.

PHA x:A;0 P &A;0 QFA; 0 PF&A 1:A;0

T T T
PI—A,x:&A;G(&) PasQF&A;0 (T&2) PI—&A,JE:EBA;G(®)

The T&; rule expresses that any (possibly linear) session can be coerced to a non-
deterministic one, corresponding to the monadic unit A — &A. The rule is silent on
the typed process P, it just acts at the level of types: although it would be possible to
formulate a non-silent interpretation of our non-deterministic types, we prefer not to
do so in this note, as that may seem a bit artificial when viewed from the process model
perspective, and of doubtful pedagogical utility. The crucial mechanism allowing true
non-determinism in the system is encapsulated in the T&, typing rule, which also
allows the internal choice operator to be introduced at the level of processes. The
T&4 rule requires all linear sessions to be assigned a (producing) non-deterministic
type &A; this seems essential for cut-elimination (and type preservation) and overall
soundness of our interpretation. We will get back to this point below. An informal
explanation of the T&® typing rule can be given in fairly intuitive terms: to soundly
accept a non-deterministic behaviour at session xz, process P must be already willing
to offer non-deterministic behaviour at every other open session.

The cut elimination step for the &; /@ redex essentially advances the session type
of x from the non-deterministic view (of type &A) to the deterministic view (of type
A). As a design option, we interpret this reduction silently at the level of processes.

PF&A 24,0 QF A, 1:4;0
PF&A,z:3A:0 QF A, 1:&A;0
(v2)(P | Q) F &A, A O
The cut reduction step involving the &5 /@® pair is far more interesting. We thus have

QF &A, 1:8A4;0 REF &N 1:&A;0

PF&A, 4,0 QF A, 2:4;0
(vz)(P | Q) F &A, A O

PF&A, z:HA; 0 QD RF&A 1:&A4;0
(vz)(P | (Q @ R)) - &A,&A;©
%
PF&&Az:®A0 QF &N 1:84;0 P &A, 2:0A;0 RE &N 1:8A;0
(vz)(P | Q) F &A, &A';© (vz)(P | R) F &A, &A';©

(vz)(P|Q)® (vz)(P| R)F &A,&A; 0

In our correspondence between proofs and processes, this cut reduction step gives
rise to a structural congruence principle rather than to a dynamic reduction step: it
clearly expresses a behavioural equivalence law (distribution of parallel composition
over choice), not explicitly involving any process interaction.

78

(vz)(P [(Q& R)) = (ve)(P | Q) @ (vr)(P | R)

This principle resembles the expansion law of CCS equational theory, which also dis-
tributes parallel compositions over choices. The structural congruence 0 @ 0 = 0
also follows from the expected proof reduction; remarkably, from other available com-
muting conversions (Caires and Pfenning 2010; Pérez et al. 2012) we may derive the
equation P @& P ~ P, for any well-typed P (idempotence of choice).

The conditions enforced by our typing rules for the non-deterministic fragment
seem difficult to relax. For example, let B = o & o (cf., a type of “booleans”), and
consider the following typing

x.inl;y.inr;0 + 2:B,y:B x.inl;y.inl; 0+ 2:B, y:B

r.inl;y.inr;0 - 2:&B,y:&B z.inl;y.inl;0 F 2:&B, y:&B

: : : : (T&s2)
2x.inl;y.inr;0 @ x.inl;y.inl; 0 - 2:&B, y:&B

The behaviour on session ¥ is clearly non-deterministic, it can “collapse” on either
y.inl or y.inr: one may think of &B as a type of (linear) non-deterministic booleans.
Although the behaviour on session x is deterministic, the composition rule requires all
sessions to be conservatively typed as non-deterministic, so that the whole process is
assigned type x:&B, y:&B. For the sake of argument, suppose the conditions on our
typing rules where relaxed, allowing non-deterministic typing of single sessions

z.inl;y.inr;0 - 2:B, y:B 2.inl;y.inl;0 - 2:B,y:B

x.inl;y.inr;0 F 2:B,y:&B x.inl;y.inl;0 - 2:B, y:&B

. . . . (T&2)
x.inl;y.inr;0 @ x.inl;y.inl; 0 F 2:B, y:&B

Then, in general we would also need to accept the typing

x.inl;y.inr;0 + 2:B, y:B x.inl;y.inl; 0+ z:B,y:B

r.inr;y.inr;0 - 2:B,y:&B x.inr;y.inl;0 - 2:B, y:&B

; ; ; ; (T&2)
x.inl;y.inr; 0 & x.inr;y.inl;0 - 2:B, y:&B

After composition with a process of type 1:®B, say Q = y.case(0, 0), we would ob-
tain (vy)(z.inl;y.inr; 0 G z.inr;y.inl; 0 | Q) F 2:B. This typing would be invalid,
since we would be giving a non-deterministic process a deterministic type (outside the
monad &—). A similar reasoning justifies the form of typing rule (T&). Notice how-
ever that one may also express the intended x-deterministic / y-non-deterministic type
anyway, but using a different process, as follows:

y.inr;0 F y:&B 9.inl;0 - y:&B

(T&2)
(TL)
(Tey)

y.inr;0 & y.inl; 0 - y:&B

y.inr;0 & y.inl; 0 - x:e, y:&B

x.inl; (y.inr; 0 @ y.inl;0) - =:B, y:&B

79

Moreover, in some cases it is possible to assign a purely deterministic type to a process
with actual, but hidden, non-deterministic computations: of course, soundness of our
interpretation ensures that no non-deterministic behaviour can be externally observable
on such a process. This fine grained compositional control of non-determinism is a
natural consequence of our monadic interpretation. Consider some basic laws enjoyed
by the non-deterministic type constructs, given by the following derivable typings

[z <y F 2:00A y:&A4; (cf. &&A —o &A)

[z < y] -2 A y:&A,; (cf. A — &A)
[z <y Fy:&A, x: A (cf. A — A)
[z <y F 2:DA y:&A; (cf. &A —o &A)
[z < y] F 2:&A, y:®A; (cf. DA — BA)
0 z:de, y:e; (cf. %o — o)

Notice that although we have &e — e and ¢ — e, we cannot in general (that is,
for any type A) derive a typing of the form R - 2:&A —o A, as that would signal a
“leak” in the non-deterministic monad. The special case of the unit e is sound since
no behaviour apart from the trivial one is involved. This relates to the absence of
information flow at the unit type in the context of information flow type systems (e.g,
Crary et al. (2005)), where a high security value of unit type can be safely declassified
to low security, since no interference may arise at that particular type. In our setting,
there is also no real non-deterministic behaviour of e type (since there is no observable
behaviour of e type at all). The fact that several of the laws above are realised by a
simple forwarder [z <> y| should not come as a surprise, given the silent interpretation
(at the level of the processes) of our non-deterministic (monadic) type operators.

It is interesting to note the (at least superficial) similarity between the rules for A
and &A and those for the exponentials ! A and 7 A respectively. A key difference is vis-
ible in the “contraction principle” expressed by T&», which works along the space of
possible alternatives (in terms of grouping overlapping states, possibly sharing linear
resources), instead of along the space of shared usages (in terms of fusing replicated
behaviours, not depending on linear resources). This fact also fundamentally sepa-
rates our approach from the differential linear logic of Ehrhard and Regnier (2006),
which may also support a logical interpretation of non-determinism by interpreting all
proofs as sets (more precisely as linear combinations) of “simple” proofs. Our logic
is based on quite different principles, as we encapsulate internal non-determinism in
new connectives related to the additives of linear logic, while differential linear logic
modifies the interpretation of the exponentials, namely ! A, by adding the rule of co-
contraction. That suggests a computational model in which non-determinism only ap-
plies to replicated servers, thus quite different from ours. In our model, co-contraction
may conceivably be represented in a finer grained way by deriving &' A via T&s.

Examples We get back to our movie server scenario, and illustrate how to model a
system with a client Randy(s) that non-deterministically decides between either actu-

80

ally buying a movie or just seing its trailer. Essentially, we have
Randy(s) = Alice(s) @ Bob(s) USystem = (vs)(SBody(s) | Randy(s))
where the suitable types and type assignments are now given by

SBT £ (T —C—-oM®1) & (T — M®1)
SBody(s) s : ®SBT Randy(s) F s : &SBT USystem + -

Consider now a variant server that logs requests on a log service [of type B. We then
obtain the following typings, where of course the visible behaviour at the log channel
[must be given the non-deterministic type &B.

SBodyL(s) £ s.case(s(title).s(card).s(movie).l.inl; 0, s(title).s(trailer).l.inr; 0)
SBodyL(s) - s:SBT,1:B ~ SBodyL(s) - s: ® SBT,l: & B USystem - 1: & B
It would be easy to extend this system to a shared setting, to illustrate other interesting
non-deterministic behaviours. For example, we could consider a shared movie server
that non-deterministically offers to the client a (possibly) randomly chosen trailer of

the movie title asked for. Such a shared movie server would then be given type

SRBT 2T —C — M ®1) & (T — (&M) ®1)

In our next example, we illustrate in a very simple setting how some systems encapsu-
lating non-deterministic behaviour can nevertheless be given a globally deterministic
type, thus showing that the given internal non-determinism is not observable at public
channels. Consider the following processes and typings:

Some(y) £ 3.in1;0 @ y.inr; 0 Some(y) Fy: &B

Prod = T(y).(Some(y) | b{(“done”).0) Prod -z : (&B) ® ,b: String @ e
Cons = r.case(0,0) Cons - z:(pB) 2 e

Plug £ (vx)(Prod | Cons) Plug =0 : String ® e

Notice that the although the producer Prod sends (on x) a non-deterministic boolean
Some(y) (on) to the consumer Cons, the type of system Plug is b : String ® e, a de-
terministic type. In fact, we may easily verify that Plug always reduces to b(“done”).0.
In Fig. 1 we summarise our process language, reduction, and structural congruence.

4 Main Results

We collect in this section a preliminary analysis of our non-deterministic linear logic-
based type system for session process behaviour. First, our system enjoys the cut-
elimination property, which we may express in our setting as follows, given a suitable
defined observational congruence =, on processes which includes reduction, structural
congruence, and some necessary commuting conversions (along the lines of Caires and
Pfenning (2010); Pérez et al. (2012); Caires et al. (2012)).

81

(Processes)

P o= [z ey [PlQ] (wy)P | T(y).P | z(y).P | z(y).P
| z.case(P,Q) | x.inr; P | z.inl; P | P& Q|0
(Reduction)
T(y).Q | z(y).P — (vy)(Q| P) Z(y).Q|'z(y).P — (vy)(Q | P) | lx(y).P
(vz)([z eyl | P) = P{y/z} QoQ=P[Q—>P|Q
P— Q= (vy)P — (vy)Q P=P. P —-Q,.0=Q=P—Q

x.inr; P | z.case(Q,R) - P| R x.inl; P |z.case(Q,R) — P | Q
(Structural Congruence)
Plo=P P=,Q=P=Q (n)0=0 P|Q=Q|P
PIQIR=(PIQIR a¢f(P)=P|(z)Q=(vz)(P|Q)

oyl =lyea (va)(vy)P = (vy)(ve) P
000=0 (v2)(P|(Q®R)) = (va)(P|Q)& (ve)(P| R)

Figure 1: The Process Language.

THEOREM 1. If P = A; © then there is a process Q such that P =, Q and Q - A; ©
is derivable without using the rules (Tcut) and (Tcut”).

Then, we state type safety, which is witnessed by theorems of preservation and
progress (for closed systems).

THEOREM 2 (PRESERVATION). If P+ A;© and P — () then Q - A; ©.

We say that process P is live, noted live(P) if and only if P = (vn)(7.Q | R)
for some 7.Q), R, where 7.() is a non-replicated action prefixed process (e.g, 7 is a
simple session input, output, offer, or choice prefix). We then have

THEOREM 3 (PROGRESS). If P I- ; © and live(P) then there is () such that P — Q).

The following results clarify some key features of the our type system. We say
that a process P is prime if it is not structurally congruent to a process of the form
() @ R with non-trivial (e.g, equivalent to 0) () and R. We also denote by P = () the
reflexive-transitive closure of P — (). We can prove the following property:

PROPOSITION 4. Let P + A;© where types in A are deterministic (do not contain
&A or G A types at the top level, and let P = () /. Then () is prime.

Being based on a logical system in which reduction is deeply related with cut-
elimination, it turns out that typed processes enjoy the confluence property, and in
fact also strong normalisation. The proof of these results can be established using for
instance logical relations, along the lines of Pérez et al. (2012).

82

Confluence holds because, as discussed above, non-determinism is captured with-
out losing information, by means of delaying choice in processes of the form P & (@),
which express alternative (overlapping in time) states. It is nevertheless interesting to
relate our system with extensions of it with reduction rules explicitly collapsing non-
deterministic states in prime states. For that purpose, we consider the extension of
the basic reduction relation defined in Figure 1 with standard rules for internal choice,
namely P& — P and P& Q) — (). We denote by P —. () the extended reduc-
tion relation, which still satisfies preservation and progress in the sense of Theorems
2 and 3. We may then show the following result, expressing postponing of internal
non-deterministic collapse of non-deterministic states into prime states.

THEOREM 5 (POSTPONING). Let P+ A;©. We have
1.LIt P= P &...® P, /4 with P, prime for all i, then P =, P, forall0 < i < n.
2. LetC ={P, | P=. P, /. and P, is prime }. Then C is finite up to =, with
#C =n,andforall0 <i<n,P= P, &...® P, —. P,

We can therefore tightly relate the system based on pure logically motivated re-
duction with the system extended with the standard (non-logical, non-confluent) re-
duction rules for internal choice, in the sense that the former precisely captures the
set of observable alternatives defined by the latter, while preserving compositional and
equational reasoning about the system behavior.

S Concluding Remarks

We have sketched an approach to accommodate internal non-determinism in a logi-
cally motivated behavioural type system for concurrent processes, in the setting of a
Curry-Howard correspondence of session types and linear logic. Distinguishing as-
pects of our contribution is the embedding of non-determinism inside a logical system
by the introduction of superposed states motivated by the additive rules of linear logic,
disciplined by specific type operators &A and G A. Apart from the foundational con-
tribution, we should also mention that our approach also adds to the flexibility of the
standard session paradigm, in which deterministic and (externally determined) non de-
terministic phases are sharply distinguished. Our system allows lock-free, confluent
programs with richer combinations of determinism and non determinism, preserving
compatibility with observable collapsing non-determinism (in the sense of Theorem
5). We expect our development to raise many other interesting questions, not only
about expressiveness, but also about induced observational equivalences, its combina-
tion with recursion, and its compatibility with stochastic models of non-determinism.
Acks. Thanks to M. Abadi, P. Gardner, A. Gordon, and R. Mardare for inviting this
contribution, and to Pfenning, Toninho, and Perez for many related discussions.

83

References

S. Abramsky. Computational Interpretations of Linear Logic. Theoret. Comput. Sci.,
111(1-2):3-57, 1993.

J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. J. Log.
Comput., 2(3):297-347, 1992.

M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi.
Theor. Comput. Sci., 195(2):205-226, 1998.

L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I1). Theor. Comput.
Sci., 3(322):517-565, 2004.

L. Caires and F. Pfenning. Session Types as Intuitionistic Linear Propositions. In
CONCUR’10, number 6269 in LNCS, pages 222-236, 2010.

L. Caires, F. Pfenning, and B. Toninho. Linear Logic Propositions as Session Types.
Math. Struct. in Comp. Sci., 2012. to appear.

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Behavioral Polymorphism and
Parametricity in Session-Based Communication. In ESOP’I3, number 7792 in
LNCS, 2013.

L. Cardelli. Typeful Programming. IFIP State-of-the-Art Reports: Formal Description
of Programming Concepts, pages 431-507, 1991.

L. Cardelli. On Process Rate Semantics. Theor. Comput. Sci., 391(3):190-215, 2008.

K. Crary, A. Kliger, and F. Pfenning. A Monadic Analysis of Information Flow Secu-
rity with Mutable State. J. Funct. Program., 15(2):249-291, 2005.

T. Ehrhard and L. Regnier. Differential Interaction Nets. Theor. Comput. Sci., 364(2):
166-195, 2006.

S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus. Acta Informatica,
42(2-3):191-225, 2005.

J. F. Groote and M. P. A. Sellink. Confluence for Process Verification. Theor. Comput.
Sci., 170(1-2):47-81, 1996.

K. Honda. Types for Dyadic Interaction. In CONCUR’93, number 715 in LNCS, pages
509-523, 1993.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline
for Structured Communication-Based Programming. In ESOP’98, number 1381 in
LNCS, 1998.

J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear Logical Relations for
Session-Based Concurrency. In ESOP’12, number 7211 in LNCS, 2012.

G. D. Plotkin. A Powerdomain Construction. SIAM J. Comput., 5(3):452-487, 1976.

B. Toninho, L. Caires, and F. Pfenning. Functions as Session-Typed Processes. In
FoSSaCS’12, number 7213 in LNCS, 2012.

P. Wadler. Propositions as Sessions. In ICFP’12, ACM, pages 273-286, 2012.

84

What makes a biological clock efficient?

Attila Csikasz-Nag¥, Neil Dalchad

! Randall Division of Cell and Molecular Biophysics and Institute for Mathematical
and Molecular Biomedicine, King's College London, London SE1 1UL, United
Kingdom

? Department of Computational Biology, Research and Innovation Center,
Fondazione Edmund Mach, San Michele all'Adige 38010, Italy

% Microsoft Research, Cambridge CB1 2FB, United Kingdom
Abstract

Biological clocks regulate the proper periodicity of several processes at the cellular
and organismal level. The cell cycle and circadian rhythm are the best characterized
among these but several other biological clocks function in cells at widely variable
periodicity. The underlying molecular networks are controlled by delayed negative
feedbacks, but the role of positive feedbacks and substrate-depletion has been also
proposed to play crucial roles in the regulation of these processes. Here we will
investigate which features of biological clocks might be important for their efficient
timekeeping.

Evolution of biological clocks

The ability of organisms to temporally co-ordinate their physiology is evolutionarily
advantageous, and is therefore ubiquitous in nature. Organisms have evolved
numerous so-called biological clocks to optimise their fitness, by co-ordinating their
physiology with the availability of resources. Simple experiments monitoring the
growth of bacteria against varying nutrient availability illustrate an enormous
flexibility in deciding how frequently cells choose to divide. Yet, the developmental
programs that lead to the replication of entire organisms (mammals) are relatively
inflexible. The cell cycle, which culminates in cell division, is controlled by
regulatory networks that have numerous conserved features and components across
the eukaryotic kingdom (Harashinsgal ., 2013).

Circadian clocks allow organisms to co-ordinate their physiology with the external
time of day, enabling anticipation of changes in temperature, light availability,
predator activity, etc. In contrast to the cell cycle, circadian clocks have evolved
multiple times and have many different features (though some shared components)
across the eukaryotic kingdom (Dalchau and Webb, 2011). The overall structure of
circadian networks involves input pathways, a core oscillator, and output pathways
(Dunlap, 1999). The core oscillator comprises multiple feedback loops that sustain
circadian rhythms with a period of approximately 24 h. Input pathways enable the

85

oscillator to maintain synchrony with external time, while output pathways provide
the biochemical means of the oscillator to regulate downstream physiology,
including gene expression, metabolism and signalling.

Synthesizing biological clocks

In recent years, there has been a large rise in the number of attempts to engineer
biological systems. The field afnthetic biology seeks to improve understanding of
biological functions by attempting to re-create specific systems and their behaviours,
using existing cells and their housekeeping components (RNA polymerase,
ribosomes, proteasomes, etc.) as a chassis. The creatlmolagfical devices is
beginning to open new opportunities in industry, for example using bacteria to
produce biofuels and medicines. A seminal work in this field was the construction of
a biological clock, termed thepressilator, in which three transcriptional repressors
were taken from non-oscillatory networks and inserted kstherichia coli on a
plasmid, but arranged as a cycle of repression (Elowitz and Leibler, 2000). Briefly,
TetR was placed under the control of a Lacl-repressible promoter, Lacl was placed
under the control of a Cl-repressible promoter, and Cl under the control of a TetR-
repressible promoter. It was demonstrated that oscillations in the abundance of the
constituent proteins could be generated when the strengths of the interactions
between the repressor proteins and their cognate DNA-binding domains were tuned
to appropriate levels.

Protein copy number
Protein copy number
Protein copy number

0 20 40 60 80 100
Time (min) Time (min) Time (min)

Figure 1. Deterministic simulation of ring oscillators. Sequential inhibition of
transcriptional repressors around a single feedback loop produces oscilkatinsulation

of the repressilator (3-component ring oscillator) model in Elowitz & Leibler Extending

the model to 5 and 11 components also yields oscillations in protein copy number. Protein 1
is plotted with a thickened black line to emphasize differences in oscillation waveform
between different degree ring oscillators.

The repressilator network is an example of a 3-staggoscillator. Ring oscillators

are often used in electrical engineering for generating oscillations. However, only
rings with an odd number of components can give oscillatory dynamics ((Sprinzak
and Elowitz, 2005); examples in Figure 1). This is because each regulator inverts the
gradient of the following regulator, which for an even number of components would
result in an equilibrium ON-OFF-ON-OFF-...-ON-OFF. Using an odd number of

86

components breaks this pattern, and can yield oscillations. Increasing the length of
the feedback loop with additional components leads to more square-like waveforms
(Figure 1). It has recently been established that a repressilator motif also exists in
nature, lying at the heart of the circadian clock in plants (Pokhilko et al., 2012) and
in the core of transcriptional regulation of the cell cycle (Srieaah., 2007).

Oscillators have also been created in mammals (Tiggak, 2009) as well as in
cell-free conditions, mixing chemical compounds in such a way as to recapitulate
interaction networks that can exhibit oscillatory behaviour, for instance using
negative feedback. In various works dating back to the 1950s, the famous Belousov-
Zhabotinsky reaction was shown to both oscillate in time and propagate over
excitable media (Field et al., 1972). More recently, the construction of chemical
oscillators made from DNA has been demonstrated, inspired by predator-prey (PP)
cycles (Fujii and Rondelez, 2012). A system of 3 reactions is sufficient to generate
PP cycles: i. an autocatalytic growth of the prey species, ii. an autocatalytic predation
of the prey, and iii. decay of the predator species. The DNA-based PP network relies
on DNA polymerization-depolymerization reactions to recapitulate these reactions,
and is capable of sustaining many (>20) cycles before eventual depletion of
necessary cofactors.

Mathematical analysis of biological clock architectures

There is a long history on the mathematical analysis of biological clocks (Goldbeter,
1997, 2002), still it is not fully understood what makes such a periodic system
efficient. Biological clocks can run with a period of seconds (neural, cardiac, calcium
rhythms) to months and years (ovarian, annual and ecological rhythms) and are
regulated by delayed negative feedback loops that cause oscillations in the activities
of system components (Goldbeter, 2008). Direct negative feedback loops lead to
stabilization of steady states but delay in the loop and non-linearity in the interactions
can induce oscillations (Goodwin, 1965; Griffith, 1968). This generic rule that
delayed negative feedback loops form the basis of biological oscillations is now very
well established for many biological clocks (Fig. 2A). The daily rhythms of the
circadian clock might be the best example, where it was established that the
existence of a direct time delay caused by a transcriptional-translational loop is
driving the periodic appearance of a transcriptional repressor (Dunlap, 1999).
Interestingly it was recently revealed that even in the absence of the delay caused by
transcription-translation the circadian clock is robustly ticking (Nakajenal.,

2005; O'Neillet al., 2011). Later it was proposed that a positive feedback loop might
play a crucial role in the control of this reduced system (Mehra et al., 2006). Indeed
the importance of positive feedback loops in the robustness of circadian clock
regulation was proposed at other places as well (Tyson et al., 1999; Becker-
Weimann et al., 2004; Hong et al., 2009). These led to the conclusion that the
circadian clock is controlled by interactions of positive and negative feedback loops.

87

Another highly investigated biological clock is driven by the cell cycle regulatory
network. The controlled timing of DNA replication and cell division is determined

by this clock and again earliest models considered a delayed negative feedback loop
to drive this system (Goldbeter, 1991) and later results revealed the importance of
positive feedback loops as well (Pomererehgl., 2005; Tsakt al., 2014). Thus it is

a reoccurring pattern that crucial biological clocks are regulated by interlinked
positive and negative feedback loops (Tetal., 2008; Ferrell Jr et al., 2011).

X
N iy
v
)]
-
v
0.
v

Figure 2. Feedback loops leading to oscillations. A, negative feedback loop, where protein
X activates Y, which activates Z which is eventually inducing the degradation Bf X.
Substrate-depletion, where a substrate S is produced and piling up in this form until the
product P cannot turn on its autocatalytic loop converting most S into P. As P is less stable
than S, the system runs out of both S and P, thus S will pile up again and oscillations emerge.

In the case of glycolytic oscillations of the metabolic system it was proposed very
early that a positive feedback loop has a crucial role in controlling this biological
clock and the oscillations appear as a result of the depletion of the substrate of an
autocatalytic process (Higgins, 1964; Sel'kov, 1968). In this system a stable substrate
Is produced and converted into an unstable product in an autocatalytic manner (Fig.
2B) leading to oscillations where S is slowly increasing until P reaches a threshold
and quickly converts all S into P (Fig. 3). The requirements for this system to
oscillate are: i, non-linear autocatalysis on theFStransition, ii, a background=8°
conversion independent of P to allow P reaching the threshold and iii, removal rate of
P has to be much higher than that of S. Note that this system shows high resemblance
to the above mentioned predator-prey cycles. In both cases the pile up of one species
is followed by the conversion of this species to another species by an autocatalytic
step and eventual removal of the second species.

Interestingly one of the earliest cell cycle models was also working as a substrate-
depletion oscillator (Tyson, 1991) and since then it was further established that the
kinetics of the substrate-depletion model resemble that of the negative feedback with
positive feedback model (Fadt al., 2002). Indeed one can see the delayed negative
feedback in the substrate-depletion model as P removes its activator S (by converting
it to P). Thus we could state again that interlocked positive and negative feedbacks
regulate glycolytic oscillations. It is also important to mention that the substrate-
depletion mechanism that leads to oscillations in time can drive spatial biological
clocks such as pattern formation and emergence of travelling waves (Meinhardt,
1982).

88

20

15 P

10

_ »)

0 20 40 60 80 100
time

Figure 3. Deterministic simulation of a substrate-depletion oscillator. The substrate S is
produced and first slowly converted into P. When P reaches a threshold it converts all S to P,
which gets quickly destroyed. Leading to a bursting-like pattern in P oscillations.

Efficiency of biological clocks

Going back to the original question in the title: what makes biological clocks
efficient? In fact, how to measure the efficiency of biological clocks? The robustness
of the periodicity of biological clocks were investigated in the context of the
circadian rhythm (Barkai and Leibler, 2000; Gonze et al., 2002) and the cell cycle
(Steuer, 2004; Mura and Csikasz-Nagy, 2008). Both were found to be quite robust to
parameter perturbations and also to intrinsic noise resulting from the low molecular
numbers present in the system. So far we have seen many parallels between the
circadian clock and cell cycle regulatory systems. There is one major point where
they differ. The period of the circadian clock is quite insensitive for temperature
changes whereas the cell cycle time can be greatly influenced by alterations in
temperature (Klevecz and King, 1982). This result might suggest that the circadian
rhythm regulatory network is a more efficient time keeper, while the cell cycle
regulatory systems is more efficient in adjusting its period to adapt to environmental
changes (Zamborszlg al., 2007; Honget al., 2014). Changes in temperature affect
chemical reactions exponentially, following the Arrhenius equation. How such
changes in reaction rates do not influence the period of the circadian clock is a
debated question (Tyson et al., 2008). Several models have been worked out to
understand what causes the temperature compensation in the circadian clock (Ruoff
and Rensing, 1996; Leloup and Goldbeter, 1997; Gould et al., 2006; Eoalg

2007; Francoiset al., 2012) and some more generic models of temperature
compensation in biochemical reaction networks have also been proposed Ruoff
al., 1997; Hatakeyama and Kaneko, 2012). Recently even a synthetic temperature
compensated oscillator was created (Hussain et al., 2014), interestingly containing
both a positive and a negative feedback loop. Furthermore non-biological ring
oscillators on semiconductors were also designed to be temperature compensated

89

(Hayashi and Kondoh, 1993). Despite all of these results and theoretical ideas we
still lack a coherent generic picture of what makes biological oscillators temperature
compensated and in general robust in proper periodicity.

Conclusions

Recently it was established by Cardelli and Csikasz-Nagy that a class of biological
switches follow the dynamical features of an efficient computational algorithm
(Cardelli and Csikdsz-Nagy, 2012). The Approximate Majority (AM) algorithm is
used in distributed computing as a population protocol computing the majority of
two finite populations by converting the minority population into the majority
population (Angluin et al., 2008). It was shown that AM can mimic the dynamics of
the cell cycle switch regulatory network that induces the transition between stable
cell cycle states. It was also postulated that the cell cycle switch efficiency is
maximal only when its dynamics fully captures that of the AM algorithm (Cardelli
and Csikasz-Nagy, 2012) and later this prediction was experimentally verified (Hara
et al., 2012). We have seen that it is very well established that reliable biological
time keeping mechanisms are regulated by the interconnection of such switch
generating positive feedback loops with oscillation inducing negative feedback
loops. The existence of negative feedback is essential and in almost all highly
investigated systems the role of the positive feedback is important for the robust
behaviour of the biological clock. It was established that the positive feedback
module of the cell cycle regulatory network behaves like an efficient algorithm
(Cardelli and Csikasz-Nagy, 2012). Later, Cardelli (2014) established a theory to
identify kinetically identically behaving regulatory networks. A future challenge will
be the elucidation of which aspects of real life biological oscillators are important for
their proper ticking and how far their kinetics could be associated to a minimalistic
oscillator model.

References

Angluin, D., Aspnes, J., and Eisenstat, D. (2008). A simple population protocol for
fast robust approximate majority. Distributed Computing 21, 87-102.

Barkai, N., and Leibler, S. (2000). Biological rhythms: Circadian clocks limited by
noise. Nature 403, 267-268.

Becker-Weimann, S., Wolf, J., Herzel, H., and Kramer, A. (2004). Modeling
Feedback Loops of the Mammalian Circadian Oscillator. Biophysical jo@mhal
3023-3034.

Cardelli, L. (2014). Morphisms of Reaction Networks that Couple Structure to
Function. BMC Systems Biology in press

Cardelli, L., and Csikasz-Nagy, A. (2012). The cell cycle switch computes
approximate majority. Scientific reports 2, 656.

90

Dalchau, N., and Webb, A.A. (2011). Dalchau, N., and Webb, A.A. (2011). Ticking
over. Circadian systems across the kingdoms of life. Biochédmstiary issue, 12-
15.

Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96, 271-290.

Elowitz, M.B., and Leibler, S. (2000). A synthetic oscillatory network of
transcriptional regulators. Nature 403, 335-338.

Fall, C.P., Marland, E.S., Wagner, J.M., and Tyson, J.J. (2002). Computational cell
biology, volume 20 of Interdisciplinary Applied Mathematics: Springer Verlag.

Ferrell Jr, J.E., Tsai, T.Y.-C., and Yang, Q. (2011). Modeling the cell cycle: why do
certain circuits oscillate? Cell 144, 874-885.

Field, R.J., Koros, E., and Noyes, R.M. (1972). Oscillations in chemical systems. IlI.
Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid
system. Journal of the American Chemical Soc94{y8649-8664.

Francois, P., Despierre, N., and Siggia, E.D. (2012). Adaptive Temperature
Compensation in Circadian Oscillations. PLoS Comput Biol 8, €1002585.

Fujii, T., and Rondelez, Y. (2012). Predator—prey molecular ecosystems. Acs Nano
7,27-34.

Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase. Proceedings of the National Academy of SciéB)ca@s07-

9111.

Goldbeter, A. (1997). Biochemical oscillations and cellular rhythms. Biochemical
Oscillations and Cellular Rhythms, by Albert Goldbeter, Foreword by MJ Berridge,
Cambridge, UK: Cambridge University Press, 1997 1.

Goldbeter, A. (2002). Computational approaches to cellular rhythms. N&2Qye
238-245.

Goldbeter, A. (2008). Biological rhythms: clocks for all times. Current biolk&)y
R751-R753.

Gonze, D., Halloy, J., and Goldbeter, A. (2002). Robustness of circadian rhythms
with respect to molecular noise. Proceedings of the National Academy of Sciences
99, 673-678.

Goodwin, B.C. (1965). Oscillatory behavior in enzymatic control processes.
Advances in enzyme regulation 3, 425-437.

Gould, P.D., Locke, J.C., Larue, C., Southern, M.M., Davis, S.J., Hanano, S., Moyle,
R., Milich, R., Putterill, J., and Millar, A.J. (2006). The molecular basis of
temperature compensation in the Arabidopsis circadian clock. The Plant Cell Online
18, 1177-1187.

Griffith, J. (1968). Mathematics of cellular control processes I. Negative feedback to
one gene. Journal of Theoretical Biology 20, 202-208.

Hara, M., Abe, Y., Tanaka, T., Yamamoto, T., Okumura, E., and Kishimoto, T.
(2012). Greatwall kinase and cyclin B-Cdkl are both critical constituents of M-
phase-promoting factor. Nature communications 3, 1059.

Harashima, H., Dissmeyer, N., and Schnittger, A. (2013). Cell cycle control across
the eukaryotic kingdom. Trends in cell biology, Z35-356.

91

Hatakeyama, T.S., and Kaneko, K. (2012). Generic temperature compensation of
biological clocks by autonomous regulation of catalyst concentration. Proceedings of
the National Academy of Sciences 109, 8109-8114.

Hayashi, I., and Kondoh, H. (1993). Temperature-compensated ring oscillator circuit
formed on a semiconductor substrate: US patent 5180995 A.

Higgins, J. (1964). A chemical mechanism for oscillation of glycolytic intermediates
in yeast cells. Proceedings of the National Academy of Sciences of the United States
of America 51, 989.

Hong, C.l., Conrad, E.D., and Tyson, J.J. (2007). A proposal for robust temperature
compensation of circadian rhythms. Proceedings of the National Academy of
Sciences 104, 1195-1200.

Hong, C.l., Zamborszky, J., Baek, M., Labiscsak, L., Ju, K., Lee, H., Larrondo, L.F.,
Goity, A., Chong, H.S., Belden, W.J., and Csikasz-Nagy, A. (2014). Circadian
rhythms synchronize mitosis in Neurospora crassa. Proceedings of the National
Academy of Sciences 111, 1397-1402.

Hong, C.l., Zamborszky, J., and Csikasz-Nagy, A. (2009). Minimum criteria for
DNA damage-induced phase advances in circadian rhythms. PLoS computational
biology 5, €1000384.

Hussain, F., Gupta, C., Hirning, A.J., Ott, W., Matthews, K.S.,¢Jd€i, and
Bennett, M.R. (2014). Engineered temperature compensation in a synthetic genetic
clock. Proceedings of the National Academy of Sciences 111, 972-977.

Klevecz, R.R., and King, G.A. (1982). Temperature compensation in the mammalian
cell cycle. Experimental cell research 140, 307-313.

Leloup, J.-C., and Goldbeter, A. (1997). Temperature compensation of circadian
rhythms: control of the period in a model for circadian oscillations of the PER
protein in Drosophila. Chronobiology international 14, 511-520.

Mehra, A., Hong, C.l., Shi, M., Loros, J.J., Dunlap, J.C., and Ruoff, P. (2006).
Circadian rhythmicity by autocatalysis. PLoS computational biology 2, e96.

Meinhardt, H. (1982). Models of biological pattern formation. Academic Press
London.

Mura, 1., and Csikasz-Nagy, A. (2008). Stochastic Petri Net extension of a yeast cell
cycle model. Journal of Theoretical Biology 254, 850-860.

Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., lwasaki, H., Oyama,
T., and Kondo, T. (2005). Reconstitution of circadian oscillation of cyanobacterial
KaiC phosphorylation in vitro. Science 308, 414-415.

O'Neill, J.S., Van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.-Y.,
Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription
in a eukaryote. Nature 469, 554-558.

Pokhilko, A., Fernandez, A.P., Edwards, K.D., Southern, M.M., Halliday, K.J., and
Millar, A.J. (2012). The clock gene circuit in Arabidopsis includes a repressilator
with additional feedback loops. Molecular systems biology 8.

Pomerening, J.R., Kim, S.Y., and Ferrell Jr, J.E. (2005). Systems-level dissection of
the cell-cycle oscillator: bypassing positive feedback produces damped oscillations.
Cell 122, 565-578.

92

Ruoff, P., and Rensing, L. (1996). The temperature-compensated Goodwin model
simulates many circadian clock properties. Journal of Theoretical Bidlt®yy275-
285.

Ruoff, P., Rensing, L., Kommedal, R., and Mohsenzadeh, S. (1997). Modeling
temperature compensation in chemical and biological oscillators. Chronobiology
international 14, 499-510.

Sel'kov, E. (1968). Self-Oscillations in Glycolysis. European Journal of
Biochemistry 4, 79-86.

Sprinzak, D., and Elowitz, M.B. (2005). Reconstruction of genetic circuits. Nature
438, 443-448.

Sriram, K., Bernot, G., and Kepes, F. (2007). A minimal mathematical model
combining several regulatory cycles from the budding yeast cell cycle. IET systems
biology 1, 326-341.

Steuer, R. (2004). Effects of stochasticity in models of the cell cycle: from quantized
cycle times to noise-induced oscillations. Journal of Theoretical Bi®2@8y 293-

301.

Tigges, M., Marquez-Lago, T.T., Stelling, J., and Fussenegger, M. (2009). A tunable
synthetic mammalian oscillator. Nature 457, 309-312.

Tsai, T.Y.-C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., and Ferrell, J.E.
(2008). Robust, tunable biological oscillations from interlinked positive and negative
feedback loops. Scien@21, 126-129.

Tsai, T.Y.C., Theriot, J.A., and Ferrell, J.E., Jr. (2014). Changes in Oscillatory
Dynamics in the Cell Cycle of Earl)Xenopus laevis Embryos. PLoS Bioll2,
e1001788.

Tyson, J.J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions.
Proceedings of the National Academy of Sciences 88, 7328-7332.

Tyson, J.J., Albert, R., Goldbeter, A., Ruoff, P., and Sible, J. (2008). Biological
switches and clocks. Journal of The Royal Society Interface 5, S1-S8.

Tyson, J.J., Hong, C.I., Dennis Thron, C., and Novak, B. (1999). A simple model of

circadian rhythms based on dimerization and proteolysis of PER and TIM.
Biophysical journal 77, 2411-2417.

Zamborszky, J., Hong, C.I., and Csikasz-Nagy, A. (2007). Computational analysis of
mammalian cell division gated by a circadian clock: quantized cell cycles and cell
size control. Journal of biological rhythms 22, 542-553.

93

94

Two possibly alternative approaches to the
semantics of stochastic process calculi”

Rocco De Nicola (IMT Lucca) Diego Latella (ISTI-CNR, Pisa)
Michele Loreti (Univ. Firenze) Mieke Massink (ISTI-CNR, Pisa)

Abstract

In a recent paper, published in ACM Computing Surveys, we introduced a
unifying framework to describe the semantics of process algebras, including their
variants useful for modeling quantitative aspects of behaviors. In parallel with
our work Luca Cardelli and Radu Mardare advocated a new approach to the se-
mantics of stochastic process algebras based on measure theory. In this note, we
briefly introduce the two approaches and contrast them by using both of them
to describe the semantics of PEPA, one of the most known and used stochastic
process algebra.

1 Introduction

Process Algebras have been successfully used over the last thirty years to model and
analyze the behavior of concurrent distributed systems. They are based on mathemati-
cally rigorous process description languages with well-defined semantics that provide
models of processes, regarded as agents that perform actions (act) and communicate
(interact) with similar agents and with their environment. Process behavior is modeled
by Labelled Transition Systems (LTSs) and these LTSs are then compared according to
behavioral relations, giving rise to so-called process calculi. In some cases, the behav-
ioral relations also have complete axiomatizations, in forms of equations, that exactly
capture the relevant equivalences induced by the abstract operational semantics; then
process calculi are also called process algebras. Nowadays, process algebras, process
calculi and process description languages are often used interchangeably.

*Research partially funded by projects EU ASCENS (nr. 257414), EU QUANTICOL (nr. 600708),
IT MIUR CINA and PAR FAS 2007-2013 Regione Toscana TRACE-IT.

95

Initially, process calculi were mainly designed to model functional (extensional)
system behavior. However, it was soon recognized that, in order to capture other im-
portant features of concurrent systems, variants were needed to take quantitative fea-
tures into account. This led to the development of timed process calculi, probabilistic
process calculi, and stochastic(-ally timed) process calculi. The latter have proven to
be particularly suitable for capturing important properties related to performance and
quality of service, and even for modeling biological systems.

Terms of stochastic process calculi have been used to model systems and then to
generate Continuous-Time Markov Chains (CTMCs) for performing systems analyses.
In CTMCs, delays are modelled as random variables with negative exponential distri-
butions; each of them is thus characterized by its unique parameter, the rate 4 > 0,
and has expected value 17!, CTMC-based process calculi associate time with actions,
annotating them with rates; by means of a rated action prefix (a, 1).P, with A being the
rate associated with a.

While the target domains of the semantics functions of stochastic process calculi
have in many cases been CTMCs, the same uniformity cannot be found in the source
PDLs and in the approach taken to associate CTMCs to terms.

Some differences are conceptual; for instance, multi-party process synchronization
is used in most SPCs, but there are notable examples of one-to-one process synchro-
nization use, like stochastic w-calculus of Priami (1995) and stochastic CCS of Klin
and Sassone (2008).

Other differences, instead, are purely fechnical, a prominent example of such a
technical difference is the modeling of the race condition principle and its relation-
ship to the issue of transition multiplicity. To take transition multiplicity into account
and guarantee that the behavior of terms like (a, 1).P + (a, 4).P is the same as that of
(a,2 - A).P, and not as (a, 1).P, several, significantly different, approaches have been
proposed. They range from the use of multi-relations (Hillston 1996; Hermanns 2002)
to proved transition systems (Priami 1995; Gotz et al. 1993) and from LTSs with num-
bered transitions (Hermanns et al. 2002) to unique rate names (De Nicola et al. 2007),
to mention just a few. The feature that unites them all is that they require two steps
to obtain the ‘right’ rate: first an enriched LTS is built and then it is manipulated to
properly combine (e.g. to add up) rates.

In order to provide a uniform account of the many stochastic calculi, in De Nicola
et al. (2009a,b) we proposed a variant of LTSs, namely Rate Transition Systems (RTSs).
In LTSs, a transition is a triple (P, a, P’) where P is the source state, « is the label of the
transition, and P’ is the target state reached from P via @. In RTSs a transition is a triple
of the form (P, @, &), whose first and second component are again the source state
and the transition label, but the third component & is the continuation function that
associates a real non-negative value with each state P’. A non-zero value represents the
rate of the exponential distribution characterizing the time needed for the execution of

96

the action represented by «, necessary to reach P’ from P via the transition. We have
that Z2(P’) = 0, indicates that P’ is not reachable from P via a. RTSs elegantly solve
the issue of transition multiplicity; the rates of equal transitions, among those derivable
from the semantics rules, are simply added via operations on continuation functions.
Furthermore, RTSs make it relatively easy to define associative parallel composition
operators for calculi adopting the one-to-one interaction paradigm.

In De Nicola et al. (2013), we introduced State to Function Labeled Transition
Systems, FUTSs for short, a generalization of RTSs based on the parameterization of
the co-domain of the continuation functions, which enables us to consider more mod-
els and to take non-deterministic systems into account. The co-domains of FuTSs are
generic commutative semi-rings, and not just the set of non-negative reals. Contin-
uation functions are equipped with a rich set of (generic) operations, making FuTSs
very well suited as a semantic domain for the compositional definition of the oper-
ational semantics of stochastic process calculi. Such operations induce an algebraic
structure on the set of continuation functions, which we systematically exploit for the
compositional definition of the FuTS semantics of PCs. In De Nicola et al. (2013)
we showed that FuTSs can be effectively used as a semantic domain for the composi-
tional definition of the operational semantics of a calculus with both non-deterministic
behavior and stochastic delays, and for an extension including probabilistic discrete
(sub-)distributions over processes. By defining appropriate operators on continuation
functions, we provided a compositional operational semantics of the key fragments
of major stochastic process calculi including TIPP, EMPA, PEPA, StoCCS, IML and
MAL, a language for Markov Automata. We thus provided a uniform, clean and
powerful framework which helps in identifying differences and similarities among the
many stochastic process calculi proposed in the literature.

Almost in the same period we were working on RTSs and FuTSs, Cardelli and Mar-
dare proposed another semantic framework that can be used to express structural oper-
ational semantics of stochastic process calculi in terms of measure theory, see Cardelli
and Mardare (2010, 2014). In their framework, a o-algebra generated by the syn-
tax of processes is used to organise processes as a measurable space. The structural
operational semantics associates to each process a set of measures over the space of
processes. The measures encode the rates of the transitions from a process to a mea-
surable set of processes.

In this note we give a light-weight presentation of the two frameworks presented
in De Nicola et al. (2013) and in Cardelli and Mardare (2014) together with an exam-
ple of their application for the definition of the formal semantics of a PEPA, a typical
stochastic process calculus. We conclude with a short discussion about the relation-
ships between the two approaches.

97

2 A simple stochastic Process Calculus: PEPA

In this section, we consider a stochastically timed variant of CSP called Performance
Evaluation Process Algebra (PEPA) introduced in Hillston (1996). In this calculus, ev-
ery action is equipped with a rate A € R, that uniquely characterizes the exponentially
distributed random variable quantifying the duration of the action itself (the expected
duration is 1/1). The choice among the actions that are enabled in each state is gov-
erned by the race policy: the action to execute is the one that samples the least duration.
As a consequence, (1) the sojourn time in each state is exponentially distributed with
rate given by the sum of the rates of the transitions departing from that state, (i1) the ex-
ecution probability of each transition is proportional to its rate, and (iii) the alternative
and parallel composition operators are implicitly probabilistic.

The set Ppepa of the PEPA terms we consider is defined by the grammar in Fig. 1,
where a is a generic element of Lprp4, a given action set, A is a positive real number,
L is finite subset of Lpgpsa. Moreover, a suitable equation X = P is assumed for each
process constant X.

P:=(@A).P | P+P | X | P>, P

Figure 1: PEPA Syntax

Term (a, 1).P denotes the process that performs action a and then evolves to P. The
duration of this activity is a random variable exponentially distributed with parameter
A. The choice P + Q describes a process that behaves like P or like Q, where the pos-
sible enabled actions are selected according to the race condition principle. Finally,
cooperation P>y Q is used to combine behaviours of two processes. In P, Q,
processes P and Q behave independently for actions not appearing in L while a syn-
chronization is needed to execute actions occurring in L. The principle regulating the
synchronization rate of PEPA processes is the so-called minimal rate, that assigns as
rate of an action resulting from the synchronization of two processes the miN of the
rates of the synchronizing actions. Whenever a component process may perform the
same action in several different ways, the cumulative, so-called apparent, rate has to
be considered. Given a PEPA process P and an action a, the apparent rate of « in P,
denoted by r,(P), is inductively defined as follows:

(BAP) = {g e

ra(P + Q) =def ra/(P) + ra(Q)

ro(PDr Q) =get

min(ro(P),r,(0Q))if @ € L
ro(P)+ 1y (0), ifa ¢ L

98

p .l R Q ,A 5 R P a,d 3 Q, X:=P

(@1).p =2 p P+ R P+Q %5 R X 5 0
P_(YJA_>P',(Y¢L QLA) 0, a¢l
P, Q =245 P Q P, 0 =25 P, @

a,dq

A
P =L po 25 0 acL

(a,dp,40,P,
P Q —mR b Hol PO p > Q'

Figure 2: SOS Rules for PEPA.

The stochastic operational semantics of PEPA processes (Hillston 1996) is given
by means of definition of the least multi-relation satisfying the rules given in Fig. 2
where: 1 1

1 2 .

P (0 min(re(P), ro(Q))

Please notice that the use of a multi-relation is crucial to guarantee the correct
computation of the rate associated to a process transition. Unfortunately, this notion
is vague. Indeed, no way is provided to formally compute this multi-relation. In the
next section we will show how, by using FuTS, one can elegantly solve the issue of
transition multiplicity.

l"(a’, /lla /12, P9 Q) =def

3 FuTS semantics of PEPA

In this section we show how FuTSs can be used to define stochastic semantics of PEPA
processes.

3.1 FuTSs in a nutshell

As anticipated in Sec. 1, the key ingredients of State to Function Labeled Transition
Systems, FuTSs for short, are the continuation functions & (in the sequel often abbre-
viated with continuations), used as process transition targets, and a rich set of contin-
uation operators, which facilitate the compositional definition of process calculi.

We recall that, for stochastic process calculi with CTMC semantics, the co-domain

of any continuation % is Ry, the set of non-negative real numbers. A transition R .
Z explicitly states that, whenever Z(R’) = 0, process R’ is not reachable in one step
from R by performing action «, while, if Z(R’) = A > 0, then A is the rate of a jump
from state R to state R’ performing action a.

In order to be able to treat different kinds of process calculi in a uniform way, an
obvious step is the generalization of the codomain of continuations to any set of values.

99

Since, for the formalization of the semantics of process calculi it is necessary to be able
(at least) to sum and multiply relevant values, possibly retaining useful properties like
associativity, commutativity and distributivity, the generic continuations are functions
from processes to commutative semi-rings. Actually, for the purposes of our work, it
is sufficient to consider total functions with finite support, i.e. total functions which
yield a non zero value only on a finite set of input values. FTF(S, C) will denote the
class of finite support functions from set § to C. As mentioned above, it is convenient
to equip FTF(S, C) with operators. We will briefly recall them referring to De Nicola
et al. (2013) for detailed formal definitions. The relevant operators are derived from
those of C. We lift +c to FTF(S, C) by letting (%, + .%5)(s) = Z1(s) +c F(s), for
71 and %, in FTF(S, C); furthermore, for injective binary function - : § XS — § we
let (F - %,)(s) yield Z#(s1) -c F2(s2), if there exist (unique, due to injectivity) sy, s,
such that s = s; - 55, and Oc otherwise. We use the notation [s — c¢] for the function
associating ¢ with s and O with any other s* # s, letting [] denote the degenerate
function yielding Oc everywhere. Finally, by ®.% we mean), ¢ -% (s) while for any
CCS,Z(C) =Y cF(s), where . is to be intended as the n-ary extension of +¢,
noting that the sum exists and is finite since .# has finite support.

To define the formal semantics of mono-dimensional process calculi, i.e. process
calculi with a single “kind” of transition relation, like most of the stochastic process
calculi proposed in the literature, simple total deterministic FuTSs are sufficient.

DEermniTION 1. A simple total deterministic state to function £-labelled transition system
(simple deterministic FUTS) over C is a tuple (S, L,C,>) where S is a countable,
non-empty, set of states, L is a countable, non-empty, set of transition labels, C is a
commutative semi-ring, and > is a total function in S — £ — FTF(S,C). °

We use the standard SOS semantics (i) notation s > F for —(s)(@) = F and (ii)
terminology saying that > is the “transition relation”; finally, (s >i>)(s’) = F(s)if
s F. Intuitively, s, s F and (Z s,) = y # Oc means that s, is reachable from
51 via (the execution of) a with a value y € C. (% s,) = Oc means that s, is not
reachable from s; via the above a-transition. In the sequel we will omit “simple total
deterministic” when referring to simple deterministic FUTSs.

A notion of bisimilarity is readily defined for FuTSs. Let ¥ = (S, £L,C,>>) be a
FuTS. An equivalence relation R C S xS is called an # -bisimulation if s, R s, implies

DL o)) = Y (s20)() (1)

s’e[slr s’€[s]r

for all s € § and @ € L, where [s]g is the equivalence class of R which s belongs to.
Two elements s;, s, € S are called F -bisimilar if s; R s, for some ¥ -bisimulation R
for #. Notation s; ~# s,. Again, note that the sums in equation (1) exist and are finite

since, by definition, function (s >3>) has finite support for all s and «.

100

b+a L 2,055 9 P P X:=p

(@1).P>S [P 1] @).P>s e P+O% P+ X%
PSS 2,055 2,a¢ L PS 2,055 9,acl
P 055 (2 <11(X Q) +((X P)<iL.2) Py 05 P 2 MNE 702

Figure 3: Semantics Rules for PEPA

3.2 An operational semantics of PEPA

In this section we show the use of our FUTS approach for the definition of the semantics
of a major fragment of PEPA (Hillston 1996). For the study of the FUTS semantics of
all of the most prominent SPCs we refer the reader to De Nicola et al. (2013); Latella
et al. (2012).

Fig. 3 shows the semantics rules for (the fragment of) PEPA. The relevant semi-
ring is Rs. The rules for rated action-prefix establish that process P is reachable from
(a, A).P via an a-transition with rate A, while no process is reachable from (a, 1).P via
the execution of any action (b) different from a.

The rule for choice is such that the rates at which a process is reachable in one
step via an action a from P or Q are accumulated in the rate at which the process is
reachable in one step via a from P + Q. So, for instance, let R be the term (a;, 4,).P; +
(az, A2).Py; then R N [P, — 4] and R Nt [P, — Ay]; in particular, if a; = a, = a, we
have that R >> [P > 4] + [P, & A, ie. R >> Z with Z(Py) = Ay, Z(P,) = A,
and Z(P) = Og,, for P ¢ {Py,P,}; if P, and P, are the same process P, we get
RS [P — A; +gr,, 42] which encodes the race condition principle of CTMCs.

Let us now consider the semantics of the PEPA cooperation operator. The coopera-
tion syntax constructor x; is clearly injective, thus we have (2,1, 92,)(P13<,.P,) =
P1(P1) vy, P(0>) While (£, 2,) returns 0 when applied to a process which is not
of the form Px1; P, for some P; and P,. The rule for the case a € L encodes the PEPA
minimal rate synchronization principle where @ (resp. ®2) is exactly the apparent
rate of a in P (resp. Q) defined in Hillston (1996). min{ry, r,} is the minimum be-
tween r; and r, and we define r;/0 = 0 and r;/r, as the inverse of the product of R,

if r, # 0. For example, for R as before, assuming a; = a, = a and 4, + 4, > A3,
we get R, (a, A3).P3 — & where P(Pi<iyP3) = A; - A3 - <11+/1132)-/13 = jl'jg,
P(Pyp<iyP3) = by - Ay - —22— = 24 apnd P(P) = 0 for any other P. The rule

(A1+2)- 23 A1+, 7 .
for the case a ¢ L makes use of the characteristic function X R defined as [R — 1]

and computes the rates for the interleaving case. In fact (&2, X P,)(P <1, Py) =

101

Pi(P) -1 = Z(P;) while (£,1,X P,)(R) = 0 if R is not of the form P, P, for
some P;; this essentially means that in the rule, the function (& >1,(X Q)) assigns a
non-zero rate Z?(P’) only to processes P’'>x1;Q such that P’ is reachable in one step
from P via action a and Q remains unchanged. Similar reasoning applies to the sym-
metric case and, as usual, the rates for the resulting a-steps are accumulated together.

It is easy to see that for all P € Pprpa, a € Lpppa, and & function from Pprps
to Ry, if P % P can be derived using the set of rules of Fig. 3, then we have & ¢
FTF(Pprpa, Rso); furthermore, the least relation > C Pprpa X Lprpa XFTE(Pprpa, Rso)
which satisfies the set of rules of Fig. 3 is indeed a function in Ppgps — Lpepa —
FTF(Ppepa,Rsp). We can thus define the FUTS semantics of PEPA as the FuTS
Frera = (Ppepa, Lrepa, Rso, ™ pepa), Where »pppy is the least relation satisfying
the rules in Fig. 3.

For the fragment of PEPA we considered, one can easily prove the formal corre-
spondence between the FUTS semantics and the original SOS, as in Hillston (1996)
where an action-rate indexed family of transition multi-relations % is defined on
processes'. In particular, for all P, Q € Ppepa, a € Lpgpa, and P € FTF(Ppepa, Rso)
such that P »>pgps &2 it holds that: (£ Q) = . o A, where the notation { |}
is used for multi-sets.

Clearly, the FUTS semantics simply abstracts from the different SOS-transitions
from a state to the next one, via a certain action—including possible copies of the
same SOS-transition, which may originate from different derivations in the SOS—
making them collapse into a single FuTS-transition, while accumulating all the rates
labeling the SOS-transitions and embedding the cumulative rate in the continuation.
The interesting thing is that such a accumulation/collapse process is performed while
computing the continuations in a compositional and incremental way, as established
by the semantics rules. Furthermore, the relevant behavioral properties of processes,
as implied by the SOS, are preserved in the FUTS semantics. This is also witnessed by
the fact that the bisimilarity defined on FuTS coincides with the classical PEPA strong
equivalence = (Hillston 1996). Indeed, for all processes P, Q € Ppgpa, P = Q if and

only if P ~¢,,,, O.

Aejup =24

4 Measurable space of PEPA Processes

In this section we show how the approach proposed in Cardelli and Mardare (2014)
can be used to define stochastic semantics of PEPA processes.

"We conventionally call such transitions the SOS-transitions, as opposed to the FuTS-transition re-
lation > pgpa.

102

4.1 A short introduction to measurable spaces

We first recall notions of measure theory and we introduce the terminology and nota-
tions used in Cardelli and Mardare (2014) and in the rest of this section.

Let M be a set; a set T C 2M is a o-algebra over M if and only if contains M and
it is closed under complement and countable union. When X is a o-algebra over M,
the pair (M, X) is called a measurable space, the elements of X measurable sets and M
the support set.

A set Q C 2™ is a generator for the o-algebra T on M if X is the closure of Q under
complement and countable union. A generator with disjoint elements is called a base
for X.

A measure on a measurable space M = (M,X) is a function u : £ — Ry, such
that: u(0) = 0; for any {N;},c; countable sets of pairwise disjoint elements, u({N;}ic;) =
Dicr M(N;). We let w to denote the null measure on (M, Y), i.e. the measure such that
w(M) = 0. Let Q be a base for (M, %), N € Q and r € R.(, then D(r, N) denotes:

) N=N
D, N)(N') = { 0 New

We also let A(M, X) be the measurable space of the measures on (M, X) with the
o-algebra generated, for any set S € X and r > 0, by the set {u € A(M, Z)|u(S) > r}.

Given two measurable spaces (M, X) and (N, ®), a mapping f : M — N is mea-
surable if and only if for any T € 0O, f~1(®) € . We let [M — N] be the class
of measurable mapping from (M, X) to (N, ®). Let (M, X) be a measurable space and
A a denumerable set of actions. An A-Markov kernel is a tuple M = (M, %, 6), with
6:A > M- AM)]. Leta € A, m € M and S a measurable set of states,
f(a)(m) is a measure on the state space; in particular 8(a)(m)(S) € R, represents the
rate of an exponentially distributed random variable that characterizes the duration of
an a-transition from m to an arbitrary s € S.

4.2 A measure oriented semantics of PEPA Processes

In order to apply the approach proposed in Cardelli and Mardare (2014) we have first to
define a o-algebra generated by the syntax of processes. Then, this o-algebra is used
to define a Lpgps-Markov kernel that models stochastic behaviour of PEPA processes.

A o-algebra for the set Pprps of PEPA processes can be defined by considering the
structural congruence relation which equates processes that, in spite of their different
syntactic form, represent the same system. We let =C Pprps X Ppepa be the smallest
relation satisfying the following conditions:

1. =is an equivalence relation on Ppgpa;

103

2. for each P, Q,R € Pprpa and for each set of actions L C Lpgpa:

P, Q=Qpd, P P+Q=Q+P (P+Q)+R=P+(Q+R) X:=P= X=P

3. =is a congruence with respect to the algebraic structure of Ppgpy, ie. if P = Q
then:

P+R=0+R QO R=P>, R (a,A).P=(al).0

Since = is an equivalence relation, we can consider the set $3.,, of =-classes
on Ppeps. Moreover, given a PEPA process P we let P~ the =-class of P. 5, 18
a denumerable partition of Pprps, hence it generates a o-algebra II over Ppgps and
(Ppepa, 1) is a measurable space.

PEPA operators can be lifted to the elements of I1. Let £ and Q be arbitrary el-
ements in IT and P € Ppepy we let P x4, Q and P, p be the following measurable
sets:

Pr,Q= | | P=L0F Pur= | K
PeP,0eQ P <) ReP

The measure space (Ppepa, 1) is the starting point to define our Lpgps-Markov
kernel. Indeed, the latter is defined as the tuple (Ppgpa,ll,0) where 6 : Lpgps —
[Prepa — A(Ppepa, ID)] is inductively defined on the structure of P € Ppgp,4 as follow:

e P=(a,A).Q: forany b € Lpgps

D4, O7) (b =a)

6(b)((a, V).Q) = { w (b # a)

e P=Q+R:Foranya € Lpgpy and P € I1:
0(a)(Q + R)(P) = 8(a)(Q)(P) + (@) (R)(P)
e P=Q<, R foranya¢ Land P €II:
0(a)(Q 1. R)(P) = 0(a)(Q)P 1,) + HAR)(P 1<, o)

forany a € Land P € I

_ uN{r(Q). ru(R)} ,
K RP == T R qu;lwe(a)(@(?’l) Ba)(R)(P>)

where r,(P) (resp. r,(Q)) is the apparent rate of a in P (resp. Q) (Hillston 1996).

104

e P=X:if X :=Q,foranya € Lpgps and P € II:

0(a)(X)(P) = 6(a)(Q)(P)

The stochastic behaviour induced by the Lpgps-Markov kernel defined above is
exactly the same induced by the FUTS semantics considered in the previous section.
Indeed, it is easy to prove that for any P € Ppgpa, a € Lpgps and P € I1:

a)(P)P)=ve AP : P »> Pand P(P)=v

According to Cardelli and Mardare (2014) we can now define the structural oper-
ational semantics that associates to each process P an infinite measurable set of pro-
cesses. First, we have to introduce some extra notation. We let [“*P] denote the
function Lpgps — A(Ppepa, 1) defined as follows:

D(A4, P7) (b=a)

[“'P1() = { w (b +#a)

Let ¢ : Lpgpa — A(Ppepa, 1) and p” : Lpppa — A(Ppepa, 1), @' & p’ Lpppa —
A(Ppepa, 1) is the function such that for any a € Lpgpa:

(W ®u")a) = p'(a) + " (a)

Moreover, for any P,Q € Ppgpa and L C Lpgpa, ,u'PDﬂg,u”LpEpA — A(Ppepa,Il) is
the function such that, if a € L:

W2 (@)(R) = 1 (@)(R m, 0) + 1 (@R, p)
while if a € L:

PO ey - M) ru(R) P
WEO@OR) = = ® Dﬂ;ﬂ” (@) -1 (P)

Finally, the stochastic transition relation of PEPA processes is the smallest transi-
tion relation = C Pprpa X [Lpepa = A(Ppepa,I1)] satisfying the following rules:

Poy Q—u” Poy Q-u” X:=P Py
(a,d).P—[41P] P+Q -+ P 1=y, Q_W;PD(]%/; X > u

The transition relation — can be used to define a stochastic bisimulation on PEPA
processes (Cardelli and Mardare 2014) . A rate bisimulation relation on Ppgps 1S
an equivalence relation R C Pprps X Ppepa such that for each P,Q € Pppps with
P — uand Q — u, (P,Q) € Rif and only if for any C € II(R)*> and a € Lpgpa,

2If (M,X) is a measurable space and R € M x M, Z(R) denotes the set of measurable R-closed
subsets of M.

105

u(a)(C) = y'(a)(C). Two PEPA processes P and Q are stochastic bisimilar, written
P ~ Q, if and only if there exists a rate bisimulation R such that (P, Q) € R. Relation
~ coincides with the classical PEPA strong equivalence = (Hillston 1996). Indeed, for
all processes P, Q € Ppgpa, P = Q if and only if P ~ Q.

The transition relation — is in fact equivalent to the one considered in the FuTS
semantics of the previous section.

THEOREM 2. For any P € Ppgpa:

Ps PP u and for any P € I1: u(a)(P) = L(P)

5 Concluding Remarks

In this paper we have provided a light-weight presentation of the two frameworks pre-
sented in De Nicola et al. (2013) and in Cardelli and Mardare (2014) together with an
example of their application for the definition of the formal semantics of PEPA, one of
the protypical stochastic process calculi.

The key feature of the FUTSs model introduced in De Nicola et al. (2013) is the
fact that each transition is a triple of the form (s,a, &?). The first and the second
components are the source state and the label of the transition, while the third com-
ponent, &, is the continuation function, which associates a value of a suitable type
with each state, say s’. The only requirement on the co-domains of the continuation
functions is that they must be commutative semi-rings, which make FuTSs a very gen-
eral framework. In De Nicola et al. (2013) the FuTS framework has been applied to
the major stochastic process calculi proposed in the literature, ranging from CCS to
Stochastic mr-calculus, from PEPA to TIPP, but including also those process calculi that
deal with both non-deterministic and probabilistic/stochastic behavior. Furthermore,
in Latella et al. (2012) the basis are set for a systematic study of FUTS within the
coalgebraic framework that calls for further investigations of the relationship between
general Weighted Transition Systems and FuTSs.

The framework proposed in Cardelli and Mardare (2014) relies on a o-algebra
generated by the syntax of processes to structure processes as measurable spaces. The
structural operational semantics associates to each process a set of measures over the
space of processes. The measures encode the rates of the transitions from a process to
a measurable set of processes.

We could say that the two approaches aim at describing the same set of systems
by taking a slightly different approach. FuTS generalize LTS and associate to pairs
(state, label) a weight function, and then define operators to combine, in a structural
oriented approach, such functions in order to give semantics to the different operators
of an calculus. Cardelli and Mardare define operators on measure spaces and rely on

106

them to provide a meaning to the operators of the considered calculus. They associate
to each state a mapping from labels to measures and use operations on measures to
provide the meaning of composite terms.

Our approach seems to be more flexible and its expressivity is vindicated by the
rich set of calculi that have been modeled with FuTS. For example, these have been
also used to model stochastic process calculi with non determinism like IML presented
in Hermanns (2002). We doubt this calculus can be accounted by the approach pro-
posed by Cardelli and Mardare. Indeed, the latter approach, up to now, has been only
used to deal with classical SPCs.

We also feel that our approach is more natural, but of course “Every ugly child is
nice for his mom” or like they say in Naples “every cockroach is beautiful in the eyes
of his mother”. Anyway, for what concerns the choice between the two approaches
that we have briefly outlined in this note, we leave the final word to Luca Cardelli.
Thank you Luca for all contributions and for all inspiring conversations.

References

L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. In Seventh
International Conference on the Quantitative Evaluation of Systems (QEST 2010),
pages 171-180. IEEE Computer Society Press, 2010.

L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. Fundam.
Inform., 131(3-4):351-371, 2014.

R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Model Checking
Mobile Stochastic Logic. Theoret. Computer Science, Elsevier, 382(1):42-70, 2007.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. MarCaSPiS: a Markovian Ex-
tension of a Calculus for Services. In M. Hennessy and B. Klin, editors, Proc. of
SOS 2008, vol. 229, ENTCS, pages 11-26. Elsevier, 2009a.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based Transition Systems
for Stochastic Process Calculi. In A. S., A. Marchetti-Spaccamela, et al., editors,
Proc. of ICALP 2009, vol. 5556, LNCS, pages 435-446. Springer, 2009b.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. A Uniform Definition of Stochas-
tic Process Calculi. ACM Computing Surveys, 46(1):5:1-5:35, 2013.

N. Gotz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed systems de-
sign: The integration of functional specification and performance analysis using
stochastic process algebras. In L. Donatiello and R. Nelson, eds, Performance Eval-
uation of Computer and Communication Systems, vol. 729, LNCS. Springer, 1993.

107

H. Hermanns. Interactive Markov Chains. Springer, 2002. LNCS 2428.

H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evalua-
tion. Theoretical Computer Science. Elsevier., 274(1-2):43-87, 2002.

J. Hillston. A compositional approach to performance modelling, 1996. Distinguished
Dissertation in Computer Science. Cambridge University Press.

B. Klin and V. Sassone. Structural Operational Semantics for Stochastic Process
Calculi. In R. Amadio, editor, FoSSaCS 2008, vol. 4962, LNCS, pages 428-442.
Springer, 2008.

D. Latella, M. Massink, and de Vink. Bisimulation of Labeled State-to-Function Tran-

sition Systems of Stochastic Process Languages. In U. Golas and T. Soboll, editors,
Proc. of ACCAT 2012, vol. 93, EPTCS, pages 23—43, 2012.

C. Priami. Stochastic m-Calculus. The Computer Journal. Oxford University Press, 38
(7):578-589, 1995.

108

Refining Objects

(PRELIMINARY SUMMARY)

Robert Harper

Computer Science Department, Carnegie Mellon University

Rowan Davies

School of Computer Science, University of Western Australia

Abstract

Inspired by Cardelli’s pioneering work, many type disciplines for object-
oriented programming are based on enrichments of structural type theories
with constructs such as subtyping and bounded polymorphism. A prin-
cipal benefit of such a formulation is that the absence of “message not
understood” errors is an immediate corollary of the type safety theorem.
A principal drawback is that the resulting type systems tend to be rather
complex in order to accommodate the methodology of object-oriented pro-
gramming.

We consider another approach based on a simple structural type the-
ory enriched with a system of type refinements with which we may express
behavioral requirements such as the absence of “message not understood”
errors. Ensuring this property is viewed as a verification condition on pro-
grams that use dynamic dispatch, which we construe as an abstract type of
objects supporting instantiation and messaging operations. At the struc-
tural level dynamic dispatch may fail, but at the behavioral level this pos-
sibility is precluded.

To validate this approach we give an interpretation of Featherweight
Java (FJ), a widely-used model of object-oriented programming, that com-
prises a compilation into dynamic dispatch, and an interpretation of the
class table as a system of type refinements. We show that well-typed FJ
programs translate to well-typed and well-refined programs, from which
we deduce the same safety guarantees as are provided by FJ. More impor-
tantly, the behavioral formulation may be scaled to verify the absence of
other behaviors, such as down-cast errors, that are not easily handled using
only structural types.

109

1 Introduction

In fairness, designers of object-oriented languages did not simply “for-
get” to include properties such as good type systems and good modu-
larity: the wssues are intrinsically more complex than in procedural
languages. - Cardelli (1996)

A great deal of effort has gone into the design of type systems for object-oriented
programming. A prime objective, formulated by Cardelli in the 1980’s, is to
devise type systems for object-oriented languages that preclude “message not
understood” errors at run-time (see, for example, Cardelli (1988)). Achieving
this objective proved quite challenging, stimulating a large body of research on
type systems that could account for a rich variety of programming practices while
ensuring that such run-time errors are precluded. Numerous new techniques
were introduced, ranging from relatively simple concepts such as subtyping to
more advanced concepts such as higher-kinded bounded quantification (see, for
example, Bruce et al. (1999) and Fisher and Mitchell (1996)).

These type systems are notoriously complex, to the point that their uptake in
practice has been more limited than one might have hoped. Negative results, such
as the discovery of unsoundness in extant languages such as Eiffel, have had scant
influence on their design or use (see Cook (1989)). Positive results, such as the
development of comprehensive theories of objects by Abadi and Cardelli (1996),
have had only limited influence on the design of new languages. Although lan-
guages such as Modula-3 (Cardelli et al. 1989) have benefited from the theories,
newer object-oriented languages, such as Scala (Odersky and Rompf 2014), have
only weakly developed theoretical foundations. The situation is in sharp contrast
to the direct and continuing influence of type theory on the design and imple-
mentation of functional languages, including notable examples such as Standard
ML (Milner et al. 1997) and Haskell (Jones 2003), and their more recent evolutes
such as Agda (Norell 2008) and Idris (Brady 2013).

It is reasonable to ask why this is the case. One response might be to con-
clude that the complexity of the type theories involved is an indication that the
concepts of object-oriented programming are overly complex, perhaps even con-
ceptually and methodologically suspect. Another reaction might be to argue that
type systems are simply not up to the task, and should either be made substan-
tially more powerful (and complicated), or be abandoned entirely (by reversion
to untyped languages). But, as Scott (1976) made clear decades ago, untyped
languages are uni-typed languages, so there is really no possibility of abandoning
types; it is only a matter of how they are to be deployed.

In this paper we propose an alternative approach to typing object-oriented lan-
guages that exploits the distinction between structural, or intrinsic, typing from

110

behavioral, or extrinsic, typing (Reynolds 1985). Briefly, a structural type system
is a context-sensitive grammar that determines what are the well-formed pro-
grams, and, via Gentzen’s inversion principle, how they are executed. A behav-
ioral type system is a system of predicates or relations (propositional functions),
called type refinements, or just refinements for short, that describe the execu-
tion properties of well-typed programs (Freeman and Pfenning 1991; Davies and
Pfenning 2000; Davies 2005; Dunfield 2007). Whereas showing that a program
is (structurall) well-typed is usually decidable, showing that a program satisfies
a refinement is, by Rice’s Theorem, a matter of verification requiring proof. In
many cases one can derive efficient and effective decision procedures for certain
behaviors, such as the ones we shall consider here, but of course one cannot expect
to have fully automatic verification of such conditions.

Since Cardelli’s orginal work in the area (Cardelli 1988), the structural ap-
proach has drawn the most attention for formulating type disciplines for object-
oriented programming. One reason is that structural type disciplines induce be-
havioral properties of programs from general properties of the language in which
they are written. Most importantly, a properly formulated structural type dis-
cipline enjoys the type safety property (Milner 1978; Wright and Felleisen 1994;
Harper 2012), which guarantees that certain forms of run-time errors cannot arise.
It makes sense, then, to build on this foundation to derive desirable properties of
object-oriented programs, such as the absence of “not understood” errors, from
the safety theorem for the type discipline. This goal has usually been achieved
by regarding objects as analogous to labelled tuples and messages as analogous
to projections, so that type safety ensures that no message may be sent to an
object that does not recognize it. Achieving this goal, while ensuring that the
type system is not too restrictive, requires concepts such as structural subtyping
and bounded quantification (see Abadi and Cardelli (1996) for a thorough dis-
cussion of the techniques required). The result is an impressive array of typing
concepts for relatively little pay-off. Moreover, from a structural point of view,
these concepts are, to an extent, questionable. (For example, width subtyping for
tuples relies on the assumption that projections are meaningful independently of
the tuple type, a property that is not guaranteed by the universal properties of
products, but which can often be arranged to hold in specific implementations.)

The difficulty with the structural approach is that it does not scale well to
ensure other desirable properties of programs, such as the absence of “down-cast
errors,” or to the enforcement of behavioral subtyping conditions (Liskov and
Wing 1994). To better address these issues we propose another approach to
typing object-oriented programs that is based on distinguishing the structural
concept of dynamic dispatch (Cook 2009; Aldrich 2013) from the behavioral
concept of avoidance of run-time errors. According to our view, dynamic dispatch

111

is simply an application of data abstraction in which an abstract type of objects
is equipped with introduction operations that instantiate a class with instance
data and elimination operations that message to invoke a method on an instance.
Thus, dynamic dispatch amounts to heterogeneous programming in which we have
a variety of operations (methods) acting on data of a variety of forms (classes).
Such a setup can be envisioned as a dispatch matrixz whose rows are classes, whose
columns are methods, and whose entries determine the behavior of each method
on each class. The dispatch matrix gives rise to two equivalent implementations
of dynamic dispatch that arise from the duality between sums and products in
type theory. This implies that there is no inherent reason to prefer a product-
based realization of objects; one may just as well use a sum-based representation.
(See Section 3 for further discussion of this point.) This description leaves open
what we mean by the behavior of a method on an instance of a class. When well-
defined, a method determines a result as a function of the instance data of the
object on which it acts. But a method may also be undefined on certain classes,
and would, if invoked, incur a “not understood” error. Thus, at the structural
level, it is possible for dynamic dispatch to fail, even in a well-typed program, just
as it is possible to incur an arithmetic fault in a well-typed numeric computation.

To rule out this possibility we introduce a behavioral type discipline that
allows us to express the expectation that certain methods are well-defined on
certain classes (or, equivalently, that certain classes admit certain methods as
well-defined on their instances). Specifically, we will use a semantic form of
type refinements of the kind introduced by Freeman and Pfenning (1991) and
further developed by Davies and Pfenning (2000); Davies (2005). According to
the semantic viewpoint, a type refinement is a predicate (or, more generally, a
relation) on a structural type that respects observational equivalence, so that
expressions that behave the same way enjoy the same properties. The behavior
of dynamic dispatch may be specified by refining the type of the dispatch matrix
to express, for example, the expectation that certain methods are well-defined
on certain classes. Richer properties of dynamic dispatch may be specified in a
similar manner. For example, we may express invariants on the instance data
of certain classes (for example, that an integer is always positive) or properties
of the results of certain methods (for example, that it return a non-negative
number). The critical subsumption property (Cardelli 1988) of type disciplines
for object-oriented programming is expressible using logical entailments between
refinements, allowing us to support verification in the presence of a class hierarchy.

To assess the viability of our approach, we give an interpretation of Feath-
erweight Java (Igarashi et al. 1999) in terms of the structural formulation of
dynamic dispatch to account for its dynamics. We then introduce a system of
type refinements derived from the Featherweight Java class table to express the

112

expectation that certain methods are well-defined on certain classes. We then
prove that well-typed and well-refined programs cannot incur a “not understood”
error, but may still incur a “down-cast error”, replicating the guarantees provided
by the Featherweight Java type system. Previous work (Davies 2005; Dunfield
2007; Xi and Pfenning 1998) suggests that other conditions, such as absence of
down-cast errors or array bounds errors, may be verified in a similar manner. By
generalizing from predicates to binary relations it also appears possible to verify
equational properties of programs, such as the Liskov-Wing subtyping criterion,
in a similar manner. In this respect our approach coheres with the trend to in-
tegrate verification of program properties into the development process, allowing
us to express a variety of properties of programs that are not easily achievable
using purely structural techniques.

2 Background

We will work in a background structural type theory with finite products and
sums; function types; general recursive types; predicative polymorphic types; and
an error monad with two forms of error. Detailed descriptions of these standard
typing constructs may be found in (Harper 2012). We make no use of subtyping,
of higher kinds, or of any of the more advanced forms of polymorphism found
in the literature (not even impredicativity). Our treatment of the error monad
follows the judgmental formulation given by Pfenning and Davies (2001) in which
there is a modal separation between expressions of a type, which may diverge,
but otherwise evaluate to a value of that type, and commands of a type, which
may incur a run-time error (that is, an uncaught exception) when evaluated. We
confine ourselves to functional behavior, and do not consider mutation in this
brief account.

The syntactic skeleton of our language, L, is given by the following grammar:

Type T =t type variable

(T)ier finite product

[T;Jicr finite sum

71 — 7o partial function

ut.T type recursion

Vt.T type abstraction

T7cmd encapsulated command
Expression e = =x value variable

cmd £ encapsulated command

113

Command k = rete return a value
bndx < e; k sequence
error signal an error
fail signal a failure

The finite product (7);e; and sum [r;];e; types are indexed by a finite set, I, of
indices, which may be construed as position numbers or field labels. The finite
product and sum types are often written in the display forms [[,., 7 and >, 7.
Function types, 71 — 7o classify partial (possibly divergent) functions so as to be
compatible with general recursive types, put.7. Polymorphic types, V.7, express
(predicative) type abstraction. Existentials are definable from polymorphic types
in the usual way, and are sufficient for our purposes. Much of the syntax of
expressions is elided for the sake of brevity, but is largely standard.!

The command type 7 cmd represents an error monad formulated in the style of
Pfenning and Davies (2001). We consider two forms of error, one that is deemed
permissible in a normal execution, and one that is deemed impermissible and
should be ruled out by verification. (In Section 4 down-cast errors are considered
permissible, and not-understood errors are considered impermissible.) A permis-
sible error is signaled by error, and an impermissible error is signaled by fail.
A non-error return is effected by the command ret e, where e is a pure expres-
sion, rather than another command. The command bnd z < e ; k evaluates e to
an encapsulated command, evaluates it, possibly incurring a failure or an error,
which are propagated, and otherwise passes the return value to the command k.
The command type 7 cmd is equivalent to the delayed sum type

() = [ret — 7, error — (), fail < ()] (i.e., equivalent to 1 — 7 + 2).

The monadic bind is then an implied three-way case analysis in which the error
cases are propagated implicitly, and the return case is handled by the continuation
of the bind. This simplifies programming, and is sufficient for our purposes. We
note that an error monad does not incur the complications with refinements in
the presence of general computational effects considered by Davies and Pfenning
(2000) and Dunfield and Pfenning (2003).

The static semantics of L is given by three forms of typing judgment:

A+ T type type formation
'Fae:r expression typing
Ak~ command typing

The definitions of these judgments are largely standard, and omitted here. For the
sake of clarity, we give the rules for the command types, which are less familiar.

1See, for example, Harper (2012) for more details.

114

FFAakAT
I'A cmd k& : 7 cmd

I'bae:r
I'bA error A~ 7 I'ba fail A~ 7 I'Fareted T

I'Fae:memd Tx:mbakAn
'Fabndz e ;k~n

The dynamic semantics of L is given by the following judgments:

e val evaluated expression

e e expression transition

k err run-time error

k fail run-time failure

k final completed computation
kw— K command transition

The first two define the final states and transition of expression evaluation. The
second two define the error states and transition for commands. The expression
cmd k is a value, regardless of the form of k; it represents a suspended expression
that may incur a failure or error when executed. The command rete is fully
executed when e val; any errors or failures arising within a command are propa-
gated as such.? Note that error and failure are observable outcomes of complete
programs; these are used in the definition of Kleene equivalence, which states
that two pograms either both diverge or have the same observable outcomes.

We now formulate a system of type refinements in the style of Freeman and
Pfenning (1991) and Davies (2005). A refinement, p, of a type, 7, is, in general,
a relation on the elements of 7. Davies and Pfenning considered only unary
relations, which is all that are required here, but is useful to consider binary
relations to express deeper properties of programs, as in Denney (1998). We
depart from Davies and Pfenning, however, in treating refinements semantically,
rather than syntactically. In their work refinements are formulated as a syntactic
type discipline, with emphasis on decidability of refinement checking. Here we
stress the semantics of refinements, leaving mechanical verification as a separate,
albeit but important, practical matter.

2The full definition of the static and dynamic semantics of L, and the proof of its type safety,
may be found in Harper (2012).

115

The syntax of refinements is given as follows:

p =T variable p1— P2 partial function
T truth V(t27:0).p generic family
L falsity 1-p summand
p1 N\ pe conjunction pr.pinr recursive
p1V py disjunction retp normal return
(p)icr product error error
fail failure

The logical refinements represent finite conjunctions and disjunctions of proper-
ties of any fixed type. The product, function, and command refinements represent
the action of their corresponding types on predicates. The summand refinements
specify, for a finite sum type, a summand and refinement of its underlying value.
The finite sum refinement may be defined by the equation

Zpi £ \/(Z © i),

el il

the disjunction of all of its summand refinements. The recursive refinement
wr.p in r specifies one of a set of mutually recursive properties of the recur-
sive unrolling of a value of a recursive type. The command refinements, error,
fail, and ret p, are just summand refinements for the sum type underlying the
command refinement, as discussed earlier.

The generic refinement requires further explanation. Following the treatment
of abstract refinements for Standard ML modules by Davies (2005), the refinement
YV (t 3 7:0).p refines the polymorphic type V¢ .7 by introducing a type variable,
t, a finite set, 7, of variables refining ¢, and a finite set of entailment assumptions,
0, involving the variables ¥ C t. The generic refinement may be seen as the
behavioral analogue of bounded quantification (Cardelli and Wegner 1985), but
with the freedom to introduce a finite set of abstract refinements satisfying a
specified set of entailments.

The entailment judgment p; <, ps between two refinements of 7 states any
closed expression of type 7 that satisfies p; also satisfies p,. Entailment may be
seen as the behavioral analogue of structural subtyping. If 6 is a finite set of
refinement assumptions p; <, p., then the hypothetical judgment 6 . p <. p’
states that whenever the entailments in 6 are valid, then so is p <, p’. We write
© for a family of refinement assumptions 6, indexed over types 7. This notation
often arises when the types 7 range over a given set of type variables A.

The expression refinement judgment has the form

1 €r P13 Tn €7, Pn "@667— Py

116

where O is a family of refinement assumptions for A, © F p; C 7; (for each i),
OFapCr,and a7y, ..., 2 T bFa e T,

The semantics of the basic refinement judgments is given by assigning to each
refinement p C 7 a subset of the closed expressions, modulo observational equiva-
lence, of the type 7, and similarly for closed commands, which are expressions of a
distinguished sum type. The details of the construction of such an interpretation
are too involved to present here, but the required techniques are well-understood.?
The semantics of refinements enjoys these properties:

eec, T iff always
e€, L iff never
ec.prApy iff e€,ppande €, po
e€.-pmVpy it e€ pioree, p
e €iryier (Prier i e-ier p (Vie)
€ Erry p1 —p2 it ey €, p1 implies e(ey) €., po
i€ €, topi i e € py
fold(e) € e pr.pinr; iff e €y [Wrp in ri/r, .o, 070 in 7y /1] ps
ecCye.V(t27:0).p iff elol €4, [p/T]p forall o,7C o sat. §
cmdk €, cap it ke p

retec, retp iff e€.p
error €, error iff always
fail €, fail iff always

In the clause for refinements of V ¢t.7 we quantify over refinements g = {p1,..., pn}
of the (monomorphic) type o such that the entailments [g/7]6 over o are all valid.
Generally, an entailment p; <, p is valid iff whenever e €, p;, then e €, py, and
this extends to sets of entailments conjunctively.

3 Dynamic Dispatch

3.1 Structural Typing

Consider a system defining a finite set, M, of methods acting on data objects
classified by a finite set, C', of classes. Associated to each class ¢ € C is a type
7¢, called the instance type of ¢, the type of ¢, that classifies the instance data of
that class. Associated to each method m € M is a type 7, called the result type

3The main difficulty is with recursive types, for which see Pitts (1996); Crary and Harper
(2007); Harper (2012)). Using only predicative polymorphism considerably simplifies the con-
struction. The refinements of the concrete sum monad for errors are interpreted the same
as refinements for functions returning sums, similar to a simple, unary version of the PER
semantics for monadic refinements for exceptions given by Benton and Buchlovsky (2007).

117

of m, that classifies the result of that method when applied to some data object.
Such a system may be concisely described as an element of the type

Thet = (Z 74) = (H Tim)

ceC meM

parameterized by the choice of classes and methods and their associated instance
and result types. It describes a collection of methods each acting on data of one of
a collection of classes, which is an instance of the general concept of heterogeneous
programming available in any language with products and sums.

By a de Morgan-type duality there is an isomorphism between 7, and the
type Tym defined by the equation

Tdm = H H (76— Tm).

ceCmeM

The type Tam describes a dispatch matriz of dimension |C| x |M|, with rows
indexed by classes and columns indexed by methods. The entry, e, of the
dispatch matrix defines the behavior of method m on instances of ¢ as a function
of type 7¢ = 7¢ — 7, mapping 7¢, the instance type of ¢, to 7,,, the result type
of m. The class ¢ and method m may be thought of as the coordinates of the
behavior of method m on instances of class c.

Any matrix may be seen as a row of columns or a column of rows. In the case
each row ¢ € (' of the dispatch matrix determines the behavior of methods M
on instances of the class ¢. Thus the dispatch matrix may be seen as C-indexed
column of methods acting on the instance data of c:

Tdm = H (TC - (H Tm))‘
ceC meM

Dually, each column m € M of the dispatch matrix determines the behavior of
m on the instances of each of the classes C. Thus the dispatch matrix may also
be seen as an M-indexed column of results for each possible instance:

Tdm = H (Z T¢) — T
meM ceC

In view of these isomorphisms neither organization can be seen as more significant
than the other. They are, rather, equivalent descriptions of the information
encoded in the dispatch matrix.

Dynamic dispatch is an implementation of the abstract type

Tad = I op; - (new — H T = tobj, snd < H tobj — Tm)) s
ceC meM

118

which specifies a type, tobj, of objects on which are defined two families of op-
erations, instantiation and messaging, which are, respectively, the introductory
and eliminatory forms of the object type. The intended behavior is that send-
ing a message m to an instance of class ¢ engenders the behavior given by the
dispatch matrix with coordinates ¢ and m. Clients of this package are equipped
with instantiation and messaging operations

F'Fae: 7€ ['Fa et top
I' =a newlc] () : top; I' A snd[m](e) : 7,

Given a dispatch matrix, egm, we may implement dynamic dispatch 744 in two
equivalent ways, by defining a representation type, 7.pj, and an associated class,
or constructor, vector, e, of type

A c
ch(Tobj) - H (7_ - Tobj)a
ceC
and a method, or message, vector, eny, of type
A
Tune(Totj) 2= [[(Toby = 7om)-
meM

We will consider two equivalent implementations of the dynamic dispatch
abstraction. The method-based, or sum, form of dynamic dispatch is given by the
following definitions:

¥ A c
Tobj—g T

ceC
tew = (=)\ (2:7%) [c—= 2])ecc

emy = (M =)\ (this:Tij) case this{[c = 2] = eqm - ¢- m(x) }eec)mem-

The class-based, or product, form of dynamic dispatch is given by the following

definitions:
I A
Top = H T
meM

(c= X (@:7%) (M= edm - ¢ m(2)) memr)ceo

>

6CV

A I
emv = (M = X\ (T:750) T M) e

For either choice of implementation the instantiation and messaging opera-
tions behave by deferral to the constructor and messaging vectors, respectively:

newlc] (e) —* (e - ¢) (e)
snd [m] (6) '_>* (emv . m) (6)7

119

whenever e is a value of appropriate type. Then, by construction, we have in
either case that

snd [m] (new[c] (e)) —* (egm - m -) (e),

again under the condition that e is a value. This property may be seen as charac-
terizing dynamic dispatch (Igarashi et al. 1999) in that sending a message m to
an instance of class ¢ engenders the behavior assigned to m on ¢ by the dispatch
matrix.

This basic model of dynamic dispatch may be elaborated to account for several
forms of self-reference found in object-oriented languages:

1. Any method may call any other, including itself.

2. Any class may create an instance of any other, including itself.
3. The instance type of a class may involve any object.

4. The result type of a method may involve any object.

Scaling up to allow for these behaviors is largely a matter of generalizing the
type Tam, choosing 7.p; to be a recursive type, and making corresponding changes
to the class and method vectors, based on the choice of 7. The details of the
construction can be found in Harper (2014), but may be briefly summarized as
follows.

The types of the components of the dispatch matrix must be changed so that
they have access to the class vector (for creating new instances) and the method
vector (for sending messages to instances). Moreover, the instance type of each
class and the result type of each method may involve instances created in this
manner. Thus, the components of the dispatch matrix are given the (predicative)
polymorphic type

76 E Vtobj - Tew(tobj) = Tmw(tobj) — T(tobj) — Tom(tob;)-

The type variable, topj, is the abstract type of objects with which the behaviors
interact via the class- and method vectors.behaviors provided as arguments.

In the method-based (sum) form the type 7o of objects is defined by the
equation

X A c
Tobj = Htobj-ZT (tobj)a
ceC

whereas in the class-based (product) form the type 7op; is defined by the equation

Topj = 4 Tobj- H Ton (tobj)-
meM

120

The implementations of the method and class vectors in terms of the dispatch
matrix are slightly more involved than before, because the object types are recur-
sive (requiring folding and unfolding operations), and either the method vector
(in the sum form) or the class vector (in the product form) must be self-referential
using standard fixed-point operations.

Finally, we observe that it is not necessary for every method to be meaning-
fully defined on every class of object. More precisely, an ill-defined situation may
be defined as one that signals a run-time error corresponding to the “message not
understood” error described in the introduction to this paper. This amounts to
choosing 7,,, the result type of method m, to admit the possibility of a run-time
fault, which may be accomplished using the error monad described in Section 2.
Once this possiblity is allowed, it becomes important to specify and verify that
certain method and class combinations are sensible, which we view as a behav-
ioral, rather than structural, property of a program.

3.2 Behavioral Typing

As we have seen in the preceding section, dynamic dispatch is a form of hetero-
geneous programming in which the behavior of a collection of methods is defined
on the instances of a collection of classes. In some cases the behavior is to give
rise to a “not understood” error, reflecting that the particular combination is ill-
defined. The expectation that a method m be defined on every instance of a class
¢ is not inherent in the idea of dynamic dispatch, but is rather a methodological
consideration imposed from the outside, much as one might insist as a matter
of methodology that other forms of run-time fault are to be precluded. Indeed,
following Cardelli’s principle, one might say that what makes dynamic dispatch,
a mode of use of recursive products and sums, be “object-oriented” is just that
such expectations are stated and and enforced for each program (for example,
by decalarations that form a “class table” for a program). More generally, one
may wish to enforce many other methodological conditions, such as absence of
“down-cast” errors, or avoidance of “bound check” errors, not all of which can be
anticipated in a particular structural type system.

In Section 4 we will carry out a full-scale verification of the absence of “not
understood” messages for an interpretation of FJ as an application of dynamic
dispatch. Here we outline the general approach to verification of properties of
dynamic dispatch using type refinements. For the sake of clarity , we first con-
sider the non-self-referential case of dynamic dispatch; this makes it easier to
explain the generalization to admit self-reference. To carry out a verification of
the properties of dynamic dispatch involves the following ingredients:

1. A family of refinements p¢ C 7¢. which constrains the behavior of the

m?

121

entries of the dispatch matrix. This family determines a refinement pq,, =

Tdm given by
i =TT ST 7

ceC meM ceCmeM

2. A family of refinements Pobj & Tobj, for each ¢ € C, and pgp; E Top;, for each
m € M. In Section 4 we will choose the refinement pf; to express that an
object is an instance of class ¢, and the refinement pg; to express that an
object understands method m.

3. A refinement p¢ C 7¢ characterizing the instance data of class ¢. The
instance refinement determines a refinement of the class vector type given

by
Pev £ H (— pgbj) C H (Tc - 7_obj)’

ceC ceC

The refinement p., states that if the instance data satisfies p°, then the
resulting instance will be an object that satisfies pg.

4. A refinement p,, C 7, characterizing the result of method m. The result
refinement determines a refinement of the method vector type given by

TT (e — 2 € T Goti = 720).

meM meM

lI>

pmv

The refinement pm, states that if an object satisfies pgp;, then the result of
method m will satisfy p,,.

5. Because 75, is 7¢ — 7, the refinement p§, must satisfy the entailment pf, <
p° — pm so that if p¢ holds for matrix entry ef , instances satisfying p¢ are
mapped to results satisfying p,,.

These choices determine verification conditions that ensure that dynamic dispatch
is well-behaved. We must ensure that eqyn € pam, which is to say that ef, € p¢, for
each behavior ef , and then we must show e., € p., and that ey, € pmy, making
use of this fact. In sum form the method vector condition follows directly from
the fact that eqm € pgm, but the class vector condition must be checked for the
choice of p® and p,;. In product form the dual situation obtains: the class vector
condition follows from the verification of the dispatch matrix, and the method
vector condition must be verified for the choice of pg; and pyy,.

These conditions ensure that dynamic dispatch satisfies the following proper-
ties:

L. if e € p°, then new[c] (e) € pgy,;, and

122

2. if e € pgp;, then snd[m] (e) € py,.

In the case that 7, is a command type 7,, cmd, indicating that method m may
fail when invoked, then some additional conditions are required to ensure that
“message not understood” errors are avoided. Specifically, if instances of ¢ are to
admit method m, then we require the following conditions:

1. Failure is not an option: p, < p®— ret p! V error, for some p! such that
P E i

2. Any object satisfying pgy,; must satisfy pgp:: poy; < pop;-
These further conditions ensure that if e € p¢, then
snd[m] (newlc] (e)) € retp, V error,

which is to say that sending m to an instance of ¢ cannot fail.

The self-referential case is handled similarly, with some additional complica-
tions arising because the entries in the dispatch matrix are polymorphic in the
object type and abstracted with respect to the class and method vectors. The
ingredients are as follows:

1. As before, a family of refinements p¢, C 75 characterizing the behavior of
method m on instances of class ¢ as specified by the dispatch matrix.

2. As before, a family of refinements, p, consisting of refinements pg,; T Tobj,
for each ¢ € C, and pgy; © Tobj, for each m € M.

3. Variable refinements 7 consisting of refinements r¢ and r,, of the abstract
object type to for each ¢ and m. These are to be thought of as abstract
correlates of the refinements p° and p,, of Top; that will instantiate them
when the dispatch implementation is chosen. The refinement variables 7
are governed by a finite set of entailment assumptions, 6, that must be true
when 7, instantiates to; and p instantiates 7.

4. As before, instance and result refinements, stated parametrically in to; and
7 T tobj, and object refinements for each class and method, also parametri-
cally in the same variables.

5. We require that

P <V (tobj A 7:0) . pey(T) = pu(T) = p°(7F) = pm(7),

where 7 and 6 are the refinement variables and their governing entailments
described above.

123

The last requirement ensures that e, satisfies the instantiation of the polymorphic
refinement

Pe(P) = pav(P) = () = pm(P),

where 7, is the object type refined by the refinements p specified above.

A detailed example is given in the next section in which we give an interpre-
tation of FJ into L, and use refinements to state and prove that “not understood”
errors are precluded in well-refined programs.

4 Refining Featherweight Java

4.1 Overview

To demonstrate the suggested separation of structural from behavioral typing,
we give a relatively straightforward translation of Featherweight Java (Igarashi
et al. 1999) into L, then equip it with a system of refinements that ensures that
“message not understood” failures cannot arise in a well-refined program. End-
to-end we achieve the same safety guarantees as were ensured by the original
formulation; our goal here is to show that the proposed reorganization is adequate
to achieve the same ends. But, as we shall outline in Section 5, the separation
permits consideration of significantly more elaborate verifications than are feasible
by increasing the complexity of the structural type system that determines the
operational semantics of the language.

The main idea is very simple, particularly if we (temporarily) ignore the self-
referential aspects of FJ (to which we shall return momentarily). The key step is
to translate the FJ class table into a dispatch matrix whose entries are commands
that either return the behavior of method m on class ¢ when it is defined by the
class table, or signal a failure to indicate that it is not defined.

The main idea of the verification hinges on the definition of two forms of
refinement particular to the problem at hand, inst[c] and recogl[m], which
refine the type 7o, regardless of whether it is chosen to be of sum or product
form. Informally, an object o : Top; is an instance of class ¢ is defined semantically
to mean that for every method m associated to class ¢ in the FJ class table,
the object o does not fail when method m is invoked on it. Notice that o is not
required to have arisen from the constructor of class ¢, but could be any object
that behaves in the way that such an object would (that is, it could be an instance
of a subclass of ¢). This semantic instance property is certainly not decidable,
but this is not relevant to our purposes. Similarly, an object o : 7o recognizes the
method m if any instance of any class declared to have m in the class table does
not fail when sent message m. This, too, is not decidable, but this is not relevant
for our purposes. What is relevant is that the semantic definition of inst[c] is

124

not defined by declaration, and does not reflect the history of how the object was
created, but is instead a description of its behavior when executed. This ensures
that the subsumption principle of FJ is validated under our interpretation.
Following the methodology outlined in Section 3, we will set up a system of
refinements that ensures that no “message not understood” errors can arise. The
instance refinement, p¢ C 7¢ is chosen as the product of the class types declared
for the instance variables Hcfe e Popj- Lhe result refinement py, is chosen to be

ret ((H Pob;) — (ret plp™ V error))

cigcarg,,

expressing the typing conditions augmented with the possibility of a “downcast”
error as outcome of the method body. In the case that the class table does not
associate m with ¢, we instead choose p¢, as

fail C 7,
reflecting that it is a “not understood” message. In either case we have
P° = pm E 7= T

The refinements pf,; are chosen to be inst [¢] for each ¢ € €, and the refine-
ments pgp; are chosen to be recoglm] for each m in M. These choices ensure
that the class vector entry at ¢ creates objects that are, semantically, instances of
¢, and that the method vector entry at m delivers a non-error result when applied
to the instance data of a class for which it is defined. We note that if m occurs
in the class table entry for ¢, then inst[c] < recogl[m], which states that an
instance of ¢ admits the message m, as would be expected. Similarly, FJ has the
property that if ¢ <: ¢ then every method m is the class table entry for ¢ if it is
in the class table entry for ¢/, thus inst [¢] < inst[¢/]. These choices determine
the refinements of the class and method vectors, as described in Section 3.

To complete the verification we need only check that the dispatch matrix de-
rived from the FJ class table, and the associated class and method vectors satisfy
the stated refinements, which they shall do by construction. This guarantees
the well-behavior of dynamic dispatch in the sense described in Section 3, which
ensures that “message not understood” cannot arise.

The main additional complication to account for self-reference is that we must,
as outlined in Section 3, choose abstract refinement variables r¢ and r,,, that refine
the abstract type top; of objects, together with a set of entailments, 6, that will
be true for pgbj and pgrf)j when %, is instantiated to 7op;. Within the dispatch
matrix the code makes use of these assumptions, just as it would have made
use of the refinement entailments that are true of inst[c] and recog[m] in the
non-self-referential case. The result proceeds along similar lines to those outlined
above.

125

4.2 Compiling FJ to L

The following presentation of FJ follows the CBV version by Pierce (2002). One
difference is that we use m for FJ method names, because we need to distinguish
these from the method names m in the interpretation in L. For classes ¢ the two
coincide.

The syntax of FJ is a subset of Java, aside from top-level programs, which
consist of a class table and an expression to evaluate.

class declarations CL == classcextendsc{c¢ f; K ME}
constructor declarations K = c(¢ f) {super(f); this.f = f;}
method declarations ME := c¢m(cT) {returnT};}

terms T = z|T.f|newc(T) | T -m(T)|(c) T
values V = newc(V)

class table CT == CL

program P == (CT,T)

We now instantiate our framework to show a relatively straightforward com-
pilation of FJ programs to L types and expressions. To ease the presentation and
aid comparison we adopt some similar notation to FJ, including having a single
implicit global class table C'T'.

We rely on the following auxiliary definitions from the presentation of FJ by
Pierce (2002):

mtype(m,c) mbody(m,c) fields(c) c<:d

We also require the following definitions derived from these, which depend on
some standard properties of FJ like unique fields. For notational convenience we
treat method arguments like records with integers as the field names. Also, the
IT record type below with ct € arg,,, constructs a record type with indices 7, and
in what follows similarly the index excludes the ¢ type declaration.

arg,, = (c11),..., (ca n)} where mtype(m,) =¢ — ¢ for some ¢

resm = ¢ (this maps each m uniquely)

F 2 {cf | cf € F® for some ¢} (this maps each f uniquely)
F¢ 2 fields(c)

H tobj

Ci€aTEpm,

Ton® (tobj)

(1>

126

Each FJ method m gives rise to a method m in the interpretation. Fields and
casting are implemented by adding extra methods: for each field we have a
method get[f] and for each class we have a method cast[c]. We write m to
indicate a method in the interpretation, which may be any of the three forms m,
get[f] or cast[c].

In Figure 1 we instantiate the framework in L in the previous sections by
defining the sets of classes and methods, C' and M, and the associated types
T¢(tobj) and 7,,(top;). This instantiates the types of the dispatch entries and the
types of the method and class vectors from Section 3. Following the convention for
FJ, these definitions implicitly depend on the FJ class table C'T for a particular
program, and much of the remainder of this section assumes similarly that there
is a fixed “global” class table.

Class Types Method Types
C £ {c| cis declared in CT} M = {m | mis declared in CT'}
U{get[f]| f € F}
U{cast[c] | c€ C}

T(totg) =[] tons

cfeFe 7_m(tobj) S T;z(tObj) cmd
where Tra(tobj) £ T (tobj) = (topy cmd)
Tyen(f] (tobj) 2 Lopy

7—éast[c’] (tObj) = tObj

ch(tobj) é H (Tc(tobj) - tobj) va(tobj) é H (tobj - 7-m(tobj))

ceC meM

‘7—731 2 Vtobj . ch(tobj) - va<tobj) - 7—C<tobj> - Tm(tobj) ‘

Figure 1: Compiling FJ syntax to L types

The dispatch matrix entries e, are defined in Figure 2 via an auxiliary com-
mand k%! with the context I' explicitly indicating which type variables and typed
expressions variables are allowed to be free relative to the command, in this case
tobj, cv, muv, u and this. We adopt the convention that each FJ variable has a
corresponding L variable with the same name. This is particularly convenient in
the translation of terms |T'|'. Also in what follows we often use substitutions W,
to replace free variables with types and expressions as appropriate, such as the
substitution for this here.

More generally, a context I' can specify allowed free type variables t and

127

er, £ Altop) A (cv:7ey(Fob)) A (M : Ty (Foby))
A (u:7¢(tob;)) cmd W(kGT)
a [Tobj; €Vt Tey(tobj), MU Ty (Fobj),
where I' = < w7 (tobj), this : top;

U £ this— cv-c(u)

and kST 2 ret (\ (T:728(top)) || T||T% b)) if mbody(m,c) = (z, T)
£ fail if mbody(m, c) is undefined
k;;rt[f] 2 ret(u-f) if feFe°
£ fail otherwise
kz:;t[c’] £ ret this ife<: ¢
A .
= error otherwise

Figure 2: Dispatch entries for FJ methods m, plus get[f] and cast[c/]

allowed free expression variables along with their type which can depend on type
variables earlier in the context. This means that ¢.p; is an abstract type in the rest
of I'. Indeed, we consider the initial part of I' with topj, v : Tey (fob), MU 1 Tiy (tob;)
to correspond to a client’s view of an existential package with type 74q from
Section 3, with cv and mwv being the new and snd components. This is appropriate
here because with self-reference the bodies of the dispatch entries are themselves
clients of dynamic dispatch abstract type. I' is augmented with u : 7%(¢op;) sO
that the instance data of the object is available and this : top; to appropriately
allow this to appear in the FJ method bodies.

In the definition of k%' in Figure 2, for each class ¢ the we interpret each
of three kinds of methods using the fail command appropriately for undefined
method bodies and undefined fields and error for casts to non-superclasses.

Defined method bodies are translated via an inductive translation ||T'||' which
we will see shortly. We use a little syntactic sugar here, following FJ, writing
A\ (T: 738 (tob;)) T' to abbreviate a function binding the variables in T to the cor-
responding components of the argument.

To interpret FJ we only need to use the instance data v in two ways:

e Each get method get[f] for class ¢ is interpreted as a command returning
the f field of u : 7%(top;). f must be present in 7¢(to;) if f € F°, assuming
that we’ve correctly dispatched to Cges(/] due to sending method get[f] to
an instance of (exactly) class ¢. (See the definition of e/, below.)

e The FJ special variable this is substituted by the expression cv - c(u) with

128

type tobj Which is equivalent to the object on which the method was called,
assuming that we’ve correctly dispatched to ef, due to sending method m
to an instance of ¢. This is then available for the translation of recursive
method calls in method bodies (via || T||'*%fb) and is also used for successful
casts.

It’s important here that the instance data for a class c¢ is only directly accessed
from the get[f] method implementation for exactly the class c. All other uses
of the instance data are via method calls to this which dispatch appropriately,
hence no subtyping or similar constraints are ever required between the types of
instance data of different classes.*

We compile FJ expressions T as corresponding L commands, in a relatively
direct way, aside from making the propagation of errors explicit via the monadic
bind. The compilation is parameterized by a context I' that includes FJ expres-
sion variables in scope to corresponding L expression variables, including this
which is always in scope in FJ method bodies. I' also maps cv and mv to corre-
sponding L expressions for the class and method vectors (renaming as necessary
to avoid clashes with FJ variable names).

17| cmd | 7"

lz|" 2 retuw if z is in T" (including when x is this)

newc(T)|' 2 bnd7« || T||"; ret (cv-c) (@)
1T -m(T)|" £ bndz+ ||T|";bndy < (mv-m) (x) ;
bnd7 < || T||* ; bnd w < y(T) ; ret w

T fI"
() T

bndz < || T||" ; bnd y < (mo - get[f]) (z) ;rety
bndz < || T||' ; bndy < (mw - cast[c]) (z) ;rety

> 11>

At this point we can use the expressions e, to interpret the class table C7T" of an
FJ program as a typed L expression for the dispatch matrix:

€dm = <<€$n>meM>cEC

We sketch here two parts of the type correctness theorem for the compilation
to L of the FJ syntax. Because every FJ class/type is interpreted as topj, type
correctness in L corresponds to FJ syntactic correctness, including scoping of
variables and consistency of argument counts. We omit some syntactic lemmas
such as that subclasses have all the fields of their superclasses with the same

4An alternative approach to this is to pass it as a separate argument to e¢,, with an invariant
that w and this must correspond. This makes little difference here when interpreting FJ, but
appears to scale better to certain kinds of extensions like run-time inheritance.

129

type. Note that the FJ object types of the fields are not yet relevant, and the
presence of specific object types in the lemma statement is simply because FJ
lacks a judgment witnessing syntactic correctness without also requiring specific
object types.

We write gy MFEOKin ¢ for the FJ judgment “ MFis a valid method declaration
for class ¢’, which implicitly depends on the types declared in CT; see Pierce
(2002).

LEMMA 1.

1. If T:¢FpyT:c and T = topj, cv: Teu(tob), MU Tru(tob))
then tobj,f . tobj H |T|F ~ tobj-

2. If mtype(m,c) =¢ — ¢g and mbody(m,c) = (T, Tp)
and Fgy co m(¢T){return Tjy; } 0K inc
then e, @ 77,.

A consequence of our compilation is that the structure of an FJ value V is ob-
servable via its translation k = |V|" in L. This is because it is possible to observe
errors and non-errors for calls to cast[c] on v for each ¢, from which we can
determine its class ¢ and then determine (inductively) its fields by calling get|[f].
If this observability seems suspect, note that it is required by the definition of
FJ due to the class and fields of object values being observable everywhere, in-
cluding in top-level expressions. Further, the compilation can easily be modified
to accommodate similar languages which allow the exact class of an object to be
hidden (by omitting or restricting the cast methods) or which have private fields
(by omitting the get methods and instead using direct access to the instance
data).

We now characterize the translations of values via the following inductive
definition. (Note that all FJ values have the form newc(V).)

|newc(V) ’\l:al é Cv - C(|V|\1:al)

The following lemma shows that for values this is equivalent to the previous
translation |-|", modulo some evaluation steps that reduce bnd z < cmd (ret v) ; k
to [v/x]k. This is a standard evaluation rule for monadic commands, and easily
derived from the sum interpretation of commands described in Section 2. We
show some details of the proof just to give the flavor of such proofs.

130

LEMMA 2. (value translation)
If T = topj, cv : Tey(tobj), MU @ Tmy(tonj), I' and W : T' with both V(cv) = e, and
U(mv) = en, terminating (and closed)
then for all V we have VU(|V|')—*k and k final
iff W(|V|',)—*v and vval and k=retwv.

val

PROOF. (sketch) By induction on V. We have just one case.
CASE: V =newc(V). Then

(v T(|V)
= U(|new c(V)|") = U(lnewc (V) |},)
=bnd7 ¢ cmd U(|V|") ; ret (ee - ©) (@) = (eev -) (U([V [,

[Left = right] (the other direction is similar)

If LHS —* k and k final, then, by inversion on the evaluation, for each V; there
is k; s.t. W(|V;|Y) —* k; and k; final.

Applying the L.H. to each V; yields U(|V;|L) —* v; and v; val and k; = ret v;.

val

Then LHS —* ret (eg, - ¢) () and RHS —* (e, - ¢) (D).
But then ret (e - ¢) (@) —* k (since LHS —* k, and + is deterministic).

Thus k = ret v for some v with v val and RHS —* v, as required. [

4.3 Class and method vectors (sum-based)

Now, so far nothing in our FJ compilation is specific to the sum-based or product-
based organization. But, to have a concrete verification of a complete framework,
we now consider the full implementation of self-referential class and method vec-
tors. This subsection isn’t specific to FJ, but applies generally to any ey, with
self-reference via cv and mv parameters in dispatch entries. We have delayed the
full details until now so that they can be considered in a more concrete context
than in Section 3.

We focus on the method-based (sum) organization because it is the road
(much) less traveled, and leads to some novel views of some aspects, but every-
thing that follows also works out dually for the class-based (product) organization.

The appropriate sum-based recursive object type 7‘0211)]- is as in Section 3 and the
corresponding self-referential class and method vectors are as follows. Following
Harper (2012) L uses fold(e) and unfold(e) for recursive types, and self xise
and unroll(e) for recursive expressions.

131

Tij = Mtobj-z T(tobj)

ceC

eZ & (ce—) (u:T(Topj)) £old(c - u))eec © Tev(Tob)-

3

emv

>

unroll (ei\,/) * T (Tobj)

DI

emv

self mvis (m <)\ (this: Top;) caseunfold(this) {c-u =€, }ecc)mem

c !

where €5 £ egm - ¢ - M [Top] (eey) (emy) ()

LEMMA 3. (Dynamic dispatch) Ifv:7¢ and v val then

Y emel - c(v)) = egm - com[ropd (€5) (e3) (v)

e
This lemma exactly characterizes correctness of e, and e, as an implementation
of dynamic dispatch, and there is a dual proof for the product-based organization.
What follows generally doesn’t depend the implementation, just on this lemma,
except where noted. Hence we generally omit the 3 superscripts in what follows.

4.4 Top-level and compilation correctness

We compile the top-level “external” term T in a program (CT,T) as W, (|T|"),
via W, and I'e, (below) which appropriately omit this, and have both We,(cv)
and Ve, (mv) closed and terminating.

Iex £ toij Cv TCV(tObj)v muv . va(tobj)

A) b
Ve = topj — Topj, CU > €

%
cv) muv H emv

Then using the earlier lemmas we can show that the compilation is operationally
sound. This has two parts: one for ordinary FJ evaluation steps and one for in-
valid downcasts. The theorem statement and proof involve FJ evaluation contexts
E{}, defined as follows, as in Pierce (2002).

E{} == {} |[E{}.f | newc(V,E{}, T)
|E{} - m(T) |V -m(V,E{},T) | (¢) E{}

THEOREM 4. (compilation correctness) Suppose for a particular FJ class table
CT we have Fgy T : c. Then

1‘ lfT '_>FJ T/ theH qjex(’T’Fex) '_>* qjex(’T/‘Fex)

132

2. if T has the form E{(c) newc (V)} and not ¢ <: c
then U, (|T|") —* error.

PROOF. (Sketch.) By induction on (closed) T for part 1, using Lemma 3
(dynamic dispatch) to emulate FJ calls to m on instances of ¢ with instance
data V via €S, [Ton;] (€ey) (€my) (v) where [V]L | +—* v. We similarly use Lemma 2
(value translation) to produce corresponding L values when the FJ evaluation

rule requires certain subterms of 7" to be values.

4.5 Interpreting FJ types as refinements

Figure 3 shows the details of our interpretation of FJ types, instantiating the
setup in Section 3. Firstly we define M€ and dual C),, which we take as our
specification of what class-method combinations are required to dispatch to valid
implementations. This is in fact derived from the class table of the FJ program
here, since FJ lacks a mechanism to separately specify such requirements, and
we wish to provide the same guarantees as the the FJ type system in regards to
“method not understood” failures. We still consider this specification as concep-
tually prior to the actual code implementing classes and methods, and in general
it could be derived from a separate specification.

Unlike for types, the refinements indicated for the results of dispatch entries
er. for a single method m can differ between classes due to unrequired class-
method combinations. So, we choose p,,(7) as the appropriate refinement for
required combinations, and then (below in Figure 3) we choose pf,(7) as T (which
includes all commands, hence fail) when the combination ¢, m isn’t specified as
required.

Next Figure 3 introduces type variables 7 and r,,, which conceptually indicate
“instances of ¢’ and ‘“recognizers of m”. However, taking a behavioral view, we
actually characterize ¢ in terms of behavior, namely the methods that instances
of r¢ recognize. Thus, r° includes all objects that recognize all methods that
instances of ¢ do.

The refinement r™ directly indicates that method m is recognized. 6, is a set
of entailments that are safe based directly on what class-method combinations
are required. However, this directness may exclude some combinations that be-
haviorally should be included, based on the above characterization of r¢. Thus 6
is constructed so that it is a superset of the entailments in 0y, closed with respect
to the behavioral view. As we shall see, 6 is sufficient to justify subsumption
between class types in FJ (which is built into some of the FJ typing rules), also
called subclassing, while 6, is not.

The last part of the union in the definition of 6 represents a dual concern:
that given a specified set of required class-method combinations, knowledge that

133

a particular object recognizes a particular method may be sufficient to deduce
that the object also recognizes some other methods. We call this dual concept
supermethoding, and include it here to emphasize that it is the natural dual of
subclassing. Further, we note that what appears to be essentially the same con-
cept has been studied significantly in the mature field of formal concept analysis,
for an overview see the text by Ganter et al. (1997).

We now verify that these definitions satisfy the conditions in Section 3.2

LEMMA 5. For all classes ¢, c, if CT =gy ¢ <: ¢ then (r¢ Stop; 7€) 15 i 0.

PROOF. (sketch) Roughly by construction: in FJ, subclassing ¢ to form ¢
leads to each method of ¢ either being inherited or overridden in ¢ (with the
same type), and so on transitively, hence ¢ has all methods that ¢ does.

LEMMA 6. For all c € C and m € M we have e}, €. p},

PROOF. (sketch) We show that for all 7o;, § T Top; With ' sat. 0, and all
v € Pv(P), emv € Pm(P), Vu € P°(P)
that [Tob;/tob] [0/7][€cv/cV][€mv/mu][va /ulkSE € pS(7) in each case.

The case for a defined m involves the translation |T'|' of the method body kg,
T :res, which we treat by induction on the FJ typing derivation, generalizing
appropriately.

LEMMA 7. py satisfies 6.

PROOF. From the definitions of g, pg,;(7) and ppp;(7) we have each required
p° < pm and p¢ < p¢ simply by inclusions between the sets M¢ and C,,. (No
entailments for p°(p) are involved.)

LEMMA 8. ¢ € po () and €, € pm(7s).

PROOF. (sketch) By the properties of refinements in Section 2.

LEMMA 9.

If (m = m and mbody(c,m) defined), or (m = get[f] and f € fields(c)), or
m = castfc] then p, <V (tor; I 7:6) . pe(T) = pmu(F) = p(7) = pm(T)
PROOF. For these cases the definitions of the two refinements coincide.
THEOREM 10. If gy T:c then U (|T|'=) € (ret inst [c]) V error.

PROOF. (sketch) By induction on the typing derivation for T, and using lemma 6
with the subsequent lemmas discharging the assumptions of that lemma.

(Alternatively, the result follows from the type preservation and progress the-
orems of FJ sketched by Pierce (2002) and our earlier lemma that FJ reduction
can be simulated via the interpretation in L, but this is perhaps less convincing
as a demonstration of reasoning using semantic refinements.)

134

Specification of required class-method combinations
M¢ = {meM | mtype(m,c) is defined}
U{get[f] | f € F°} Cn2{ceC|me M}
U{cast[c] | c € C}

Refinement Variables and Entailment Constraints
P2 {rYeec U{rmtmernr (with the 7¢ and 7, all distinct)
0o = {r° <1 Tm | c € C,m € M}

020U {re Zton; re | for all r,. r° Stopy 'm0 O if re Sty T'm I 0o}

¢ e : e e :
UATm Stgyy o | for all e v < o in 0 3 7 <y o7y, i O)

Class Refinements Method Refinements

ret r’'em
,) & ret ((TC)—\())
pf(7) = | | re pm(7) Ciggm V error

(¢ fleke A
Pgetlf](7) = retre foreach cf e F
Peast[d (T) £ retr®Verror foreach ceC
PCV(F) = HceC (pC(F) - rc) pmv(F) £ HmeM (rm - pm(F))

Dispatch Entry Refinements
P 2V (toby D 7:0) - peu(7) = puny(7) = p°(7) = p5,) ' (7)

m(7) if me M°
where p¢/(7) = pm(r) i m '
T otherwise

Refinements of Tozbj (sum-based)

P (M) 2 [\ Py () po (™) &\ (- p°(7)

meMe CECm
%> = MF'<pgbj(f>>0607 (ﬂgréj(F))meM in 7
inst [c] £ pgy, (%) recog[ml £ pli,(7x)

Figure 3: Interpreting FJ types as L refinements

135

COROLLARY 11. Iflgy T:c then V. (|T
“message not understood”.

Lex) will not evaluate to fail indicating

Thus, our interpretation of the type system of FJ as semantic refinements will
correctly accept the translations of all well-typed FJ programs. As well it will of
course accept any program that doesn’t result in a “message not understood” or
“field not understood” error even if the FJ type system rejects it. It can also rule
out downcast failures in essentially the same way, or better, characterize exactly
what conditions will lead to downcast failures.

Of course, a disadvantage is that the semantic approach generally does not
as directly lead to practical tools such as refinement checkers. But, a refinement
checker like that studied (and built) by Davies (2005) can be considered a proof
checker for certain quite restricted language of proofs of semantic properties that
can be conveniently expressed via a few annotations within or alongside a pro-
gram. Making semantic refinements the primary notion not only leads to some
technical simplifications, it clarifies the nature of syntactic refinements and the
exact limitations that should be expected when using a refinement checker.

5 Conclusion

By separating structural from behavioral considerations we have repositioned the
problem of typing for object-oriented programming from one of designing lan-
guages (structural type theories) to one of designing specifications (behavioral
type theories). Rather than privileging the “message not understood” error, we
instead treat it on a par with other conditions, such as “down-cast errors”, that
naturally arise when using dynamic dispatch, and which are much more diffi-
cult to account for in a purely structural framework. More broadly, avoiding
the characteristic errors associated with dynamic dispatch becomes a particular
instance of avoiding a broader class of errors, such as array bounds check errors.
The emphasis on the semantic interpretation of behavioral typing may be further
generalized to account for richer properties, such as the equational properties
inherent in the Liskov-Wing behavioral notion of behavioral subtyping (Liskov
and Wing 1994), by passing from predicates to binary relations defined over a
structural type system.

In our main example we have derived the key safety property provided by the
FJ type system through a combination of structural and behavioral typing. Being
semantically defined, behavioral typing is, in general, not mechanically checkable;
whether a program exhibits (or fails to exhibit) a particular behavior is a mat-
ter of proof. In this respect our formulation is coherent with the general trend
toward the integration of program verification as part of standard software devel-
opment practices. For this to be practical, it is necessary to develop tools that

136

can, in common cases, perform automatic verification, or semi-automatic verifica-
tion via modest “proof hints” such as annotations specifying expected invariants.
For example, it appears that the existing tool SML CIDRE developed by Davies
(2005) is sufficiently expressive and efficient to handle SML code corresponding
to our main example, including refinements of abstract types via refinements in
SML modules. More broadly, it would be interesting to integrate structural and
behavioral typing in a single dependent type theory in which one may regard
type refinements as propositional functions, and then apply automated reasoning
systems, such as Coq (Bertot and Castéran 2004), to perform the verification.
It would appear that in such a framework the FJ type checker would emerge as
a tactic that handles the verification of the absence of “not understood” errors.
This should naturally extend to full Java type checking, and other languages in-
volving dispatch, including more involved aspects such as the variance of generics
which we expect to fit well with behavioral refinements. Further, we expect this
to suggest some natural extensions, for example enriching subtyping of generics
with strictness of type parameters, or the more general constrained inclusions
considered by Davies (2005), with the formulation of even more precise tactics
and refinement checking tools being naturally open-ended.

The semantic foundations for behavioral typing suggest other interesting di-
rections for research. As mentioned earlier, by passing to a relational interpreta-
tion of refinements we may express properties, such as parametricity properties,
that hold of a particular language, or to verify properties such as the behavioral
subtyping condition mentioned earlier, that hold of particular programs. Another
direction is to observe that the structural treatment of dynamic dispatch naturally
gives rise to a semantic account of object-oriented concepts such as subclassing.
Briefly, rather than consider subclass relationships to be a matter of declaration
or construction, as they are in FJ, we may instead define such relationships be-
haviorially in terms of the dispatch matrix. For example, one may consider ¢ to
be a subclass of ¢ whenever every method that is well-defined on instances of ¢
is also well-defined on instances of ¢, a semantic formulation of what is stated by
declaration in FJ. It would also be interesting to extend our methods to concepts
such as multiple dispatch (pattern matching on tuples of objects), or more exotic
programming concepts such as predicate dispatch. These seem ripe for consid-
eration from a behavioral/verification viewpoint, without requiring substantial
changes to the underlying structural type theory.

Acknowledgement The authors are grateful to Martin Abadi, Stephanie
Balzer and Matthias Felleisen for their very helpful comments on this work.

137

References

M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

J. Aldrich. The power of interoperability: Why objects are inevitable. In Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming € Software, pages 101-116, 2013.

N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In
Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, TLDI ’07, pages 15-26. ACM, 2007.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Springer, 2004.

E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552-593, 2013.

K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108-133, Nov. 1999.

L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138-164, 1988. Summary in Semantics of Data Types, Kahn, MacQueen,
and Plotkin, eds., Springer-Verlag LNCS 173, 1984.

L. Cardelli. Bad engineering properties of object-oriented languages. ACM Com-
puting Surveys (CSUR), 28(4es):150, 1996.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471-522, Dec. 1985.

L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The Modula-
3 type system. In Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, pages 202212, Jan. 1989.

W. R. Cook. A proposal for making eiffel type-safe. The Computer Journal, 32
(4):305-311, 1989.

W. R. Cook. On understanding data abstraction, revisited. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 557572, 2009.

K. Crary and R. Harper. Syntactic logical relations for polymorphic and recursive
types. Electronic Notes in Theoretical Computer Science, 172:259-299, 2007.

138

R. Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon
University School of Computer Science, May 2005. Available as Technical Re-
port CMU-CS-05-110.

R. Davies and F. Pfenning. Intersection types and computational effects. In
Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 198-208, 2000.

E. Denney. Refinement types for specification. In Programming Concepts and
Methods PROCOMET 98, pages 148-166. Springer, 1998.

J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, August 2007.

J. Dunfield and F. Pfenning. Type assignment for intersections and unions in
call-by-value languages. In Foundations of Software Science and Computation
Structures, FOSSACS’03, pages 250-266, 2003.

K. Fisher and J. Mitchell. The development of type systems for object-oriented
languages. Theory and Practice of Object Systems, 1(3):189-220, 1996.

T. Freeman and F. Pfenning. Refinement types for ML. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
Toronto, Ontario, June 1991.

B. Ganter, R. Wille, and C. Franzke. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag New York, Inc., 1997.

R. Harper. Practical foundations for programming languages. Cambridge Univer-
sity Press, 2012.

R. Harper. Practical foundations for programming languages (second edition).
Available at http://www.cs.cmu.edu/ rwh/plbook/2nded., 2014.

A. Tgarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core

calculus for Java and GJ. In ACM SIGPLAN Conference on Object Oriented
Programming: Systems, Languages, and Applications (OOPSLA), Oct. 1999.

S. L. P. Jones. Haskell 98: Introduction. J. Funct. Program., 13(1):0-6, 2003.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(6):1811-1841,
1994.

139

R. Milner. A theory of type polymorphism in programming. J. Comput. Syst.
Sei., 17(3):348-375, 1978.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML, Revised edition. MIT Press, 1997.

U. Norell. Dependently typed programming in Agda. In In Lecture Notes from
the Summer School in Advanced Functional Programming, 2008.

M. Odersky and T. Rompf. Unifying functional and object-oriented programming
with scala. Commun. ACM, 57(4):76-86, 2014.

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11(4):511-540, 2001.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

A. M. Pitts. Relational properties of domains. Information and Computation,
127(2):66-90, 1996.

J. Reynolds. Three approaches to type structure. In Mathematical Foundations
of Software Development. Springer-Verlag, 1985. Lecture Notes in Computer
Science No. 185.

D. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522-587,
1976.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38-94, Nov. 1994.

H. Xi and F. Pfenning. Eliminating array bound checking through dependent
types. In PLDI, pages 249-257, 1998.

140

A Theory of Model Equivalence

Ozan Kahramanogullari James F. Lynch
The Microsoft Res. — Uni. of Trento Department of Computer Science,
COSBI, Rovereto, Italy Clarkson University, Potsdam, NY, USA
Abstract

We propose a theory for quantitative comparison of models in terms
of flux networks obtained from stochastic simulations. The technique is
applicable to a range of models from chemical reaction networks to rule-
based models. The fluxes of the networks are given by the flow of species
instances in stochastic simulations (Kahramanogullar1 and Lynch (2013)).
This makes it possible to define a quantitative notion of equivalence, which
includes graph isomorphism of flux networks as a special case. We use the
technique for comparing models with respect to their simulations at arbi-
trary time intervals with varying degrees of accuracy, and for simplifying
models when a larger model produces the same behavior as the smaller
one. Other more involved queries that we aim to address include queries
on emulation of a complex model by a simpler one.

Introduction

In systems biology, models are commonly refined and extended, and often com-
pared for their capability to produce a behavior of interest. Despite the limited
number of formal means, drawing parallels between various models of biologi-
cal systems is central to many investigations in this field. Furthermore, existing
efforts are often limited by the measurement of ad hoc model signals, as it is
inherently challenging to provide a general method for the task.

To this end, we propose a methodology for comparing models in relation to the
dynamic behavior that is produced by the model components. For this purpose,
we use the fluxes generated by a model as a summary of the dynamic behavior,
where flux is given by the flow of resources during stochastic simulations (Kahra-
manogullart and Lynch (2013)). The graphs that we obtain by computing the
fluxes display how many of the model species instances flow between which model
components during which intervals of the simulations. As this provides a mathe-
matical structure that quantifies the model dynamics, we use this information as

141

a summary of the model that can be compared to other structures obtained in the
same way. Moreover, the quantitative observations made during the comparisons
are useful in contrasting the stronger components of the models that account for
most of the dynamical behavior with the weaker components.

In the following, we illustrate our approach on examples. We provide an
introduction as discussed in Kahramanogullar1 and Lynch (2013) to the compu-
tations of fluxes in stochastic simulations with models that are typically defined
as chemical reaction networks as well as their more compact representations in
the form of rule-based descriptions. We describe the notions of our method, first
on a simple example, and then on published models from the literature. We
illustrate the notion of flux equivalence (Kahramanogullar: and Lynch (2011))
on a model of GTP-binding proteins (Goryachev and Pokhilko (2006); Cardelli
et al. (2009)). We then extend our discussion to the cases where models with
varying sizes and structures are compared. For this purpose, we resort to the
cell cycle and approximate majority models, which were previously compared in
Cardelli and Csikdsz-Nagy (2012) by using stochastic and deterministic simula-
tions together with probabilistic model checking. While providing analyses that
are consistent with these studies, our method gives rise to promising observations
that have a potential as a formal method for model comparison.

Models and Flux

The method for stochastic flux analysis presented in Kahramanogullar1 and Lynch
(2013) can be applied to any discrete or continuous time discrete event simula-
tion that implements reaction networks as Markov chains. Rule based model-
ing languages with a stochastic simulation engine as well as implementations of
stochastic Petri nets fall into this category. The method can thus be applied
to all such languages; here, for simplicity, we use the chemical reaction network
representation of the models.

The flux analysis method is based on marking individuals that are trans-
formed by the reactions during the simulations, and using the markings to track
the causal dependencies between reaction instances as in event structures (Kahra-
manogullar1 (2009); Kahramanogullar1 (2006)). We process this causality infor-
mation to obtain a quantification of the flow of resources between reactions, and
thereby quantify the network fluxes at chosen time intervals. This is easily imple-
mented by assigning a unique identifier to each network species instance in the
initial state and to each reaction product of every reaction instance. In our case,
these identifiers are integers.

The formal definitions of our method for obtaining the flux graphs are de-
scribed in detail in Kahramanogullar and Lynch (2013). Below, we thus give a

142

(0,0)e
Az)

A(1,0,0) ® (0,0)®
(1,0.46) ® A
;&) (1,0.46) »
P(2) P(21,0.46)8 ®P(3,1,0.46)
©(3,0.73) p
~ ~ ©(3,0.73)
(2,1.13)e C(4) ©C(4,3,0.73) 2,1.13)9
B(s) B(521.13) e ol K ¢
© (4,1.86) ® (4,1.86)
DE) ® D(6,4,1.86) o
Sim. Trajectory Sim. Trace Sim. Configuration

Figure 1: The transformation from a simulation trajectory generated by the net-
work in the introductory example to its simulation trace, and the transformation
from the simulation trace to the simulation configuration.

textual description that summarizes the method and the structures it uses.

A reaction instance is a random event whose probability is determined by the
current state of the network. A reaction can be applied at a state to obtain a
reaction instance if its reactants are available at that state and the reaction is
picked by the simulation algorithm from all the applicable reactions. Whenever a
reaction is applied at a state the simulation algorithm updates the resulting state
with the reaction products and their unique identifiers in a structure that we call
simulation trajectory. Because this information can be recorded in a bounded
amount of time during simulation in real time, the method does not introduce
any additional complexity to the simulation algorithm.

Example. Consider the chemical reaction network below, where each reaction
is named with an integer.

1:A— P+ P, 2:P— B, 3:P—C, 4:B+C—=D

The initial state is { A(1)}, where 1 is the unique identifier of the species instance
A. A possible 4-step simulation trajectory is depicted on the left-hand-side of
Figure 1, where each node of the graph is a reaction instance: the first parameter
of the label of the node is the reaction name, and the second parameter is the
reaction instance time. The edges are the species instances that are produced
by the source node and consumed by the target node. Each edge has a unique
integer identifier.

By using the unique identifiers of the species instances in a reaction trajec-
tory, which indicate the production-consumption relationship between reaction
instances of the simulation, we construct a directed graph structure. This graph
structure, called the simulation trace, makes the causality relationship explicit.

143

(0.0
(1,0.36)

(2,0.40)
(3,0.53)

(1,1.38)
(1,1.45)
(1,1.51)

(2,1.52)
(2,1.53)
(2,1.61)
(2,1.62)

(3,1.74)

(2,1.93)

(4,2.09)

(4,2.10)
(4,2.14) °

: . Flux

Sim. configuration .
configuration

Figure 2: The simulation configuration of a simulation with the network in the
introductory example and the initial state {A(1), A(2), A(3), A(4)}. In the sim-
ulation configuration, each edge is additionally decorated with its species for
illustration purposes. We first obtain the simulation configuration and then the
flux configuration.

Example. Consider the simulation trace in the middle in Figure 1, which is
obtained from the simulation trajectory of the example above. The nodes denote
the species instances: the first parameter of the triple is the unique identifier of
that species instance, the second parameter is the identifier of the reaction that
created it, and the third parameter is the time it is created. The edges denote the
causality relationship between the species instances in the sense that the node at
the source of an edge is required for the production of the node at the target.

By further processing this graph, we obtain an edge-labeled directed multi-
graph that reveals the independence and causality information of the transitions
with respect to the flow of specific resources between reactions. The information
displayed by this graph is different from that given by the simulation trace, where
the evolution of the species instances with respect to the reactions is shown.
In this graph, which we call simulation configuration, each node is a pair that
contains the reaction that is applied and its time in the simulation.

Example. Consider the simulation configuration on the right-hand-side of
Figure 1. Each edge is labeled with the species that is produced by the reaction

144

at the source node of that edge and consumed by the reaction at the target node.

In order to quantify the flow of resources between the reactions within given
time intervals of the simulation, we compress simulation configurations into struc-
tures that we call flux configurations. A flux configuration is a graph, where the
nodes are the reactions of the network. We obtain a flux configuration first by
merging the edges of the simulation configuration such that all the edges with
a certain species within the given time interval are mapped to a single edge by
filtering out their time stamps. For each label that denotes a network species
instance, we then count in the simulation configuration the number of edges from
each node (which corresponds to a reaction of the network) to other nodes within
the given time interval. The number of such edges is then used to decorate the
edge for that species between the respective reactions.

The flux configurations give a summary of the specific resource flows between
specific reactions at arbitrary time intervals during the simulation, and thereby
they provide a narrative for the essence of the dynamic behavior.

Example. Consider the chemical reaction network given in the example above.
A simulation trace for the initial state {A(1), A(2), A(3), A(4)} is depicted on the
left-hand-side of Figure 2. The figure demonstrates the simulation configuration
and the flux configuration obtained from this trace. In the flux configuration the
nodes are reactions, and the edges are the pairs of species names and their counts.

The time and space complexity of generating the above data structures is
linear in the number of simulation steps, which follows from the facts that there
is a fixed number of reactions, and each reaction involves a fixed number of
species. It is also evident that the flux graphs can be generated in linear time
and space. Because the steps of this algorithm do not modify the generation
of the individual events, the algorithm can be included in any discrete events
simulator of chemical reaction networks.

Model Equivalence as Flux Equivalence

In order to demonstrate our concept of equivalence, we use the chemical reaction
network depicted in Figure 3. This network models Rho GTP-binding protein
activation. For detailed dynamic analysis of this network, we refer to Goryachev
and Pokhilko (2006) with respect to ordinary differential equations and we refer
to Cardelli et al. (2009); Kahramanogullar1 and Lynch (2013) with respect to
stochastic simulations.

In this network, all the reactions except 18, 20, and 22 are reversible. Here,
we consider the regime with the initial conditions given with Ry = 1000, Ey = 776
and Ayg = 1; the analysis on regimes with other initial conditions can be found

145

1:A+R S RA 9: RA 2% A+ R 17: RT 28 R

2: A+RD -% RDA 10: RD 2B R 18: RT 22 RD

2: A+RT =% RTA 11: RDA 2% A +RD 19 RTA 2% A = RT
/i E+R22RE 12: RDE X E +RD 20 - RTA 2% rRDA
5. E+RD 22 RDE 13: RDE 2% RE 21 RTE 8 E 4+ RT
6: E+RT 2P RTE 14: REXEE LR 22 RTE > RDE
7: R "2%P rD 15 RE "2*5” RDE 29: RTE 2% RE

8: R RT 16 - RE "2 RTE D= 50,T = 500

Figure 3: The GTPase chemical reaction network and their rates as in Goryachev
and Pokhilko (2006); Cardelli et al. (2009); Kahramanogullar: and Lynch (2013).

1000 1000

ol RT s00
800 i inginsmpialtts 800 = g,

I 700 RT
600 500

500
400 400

300

200
L.:—-tf‘:ﬁ-w:-:--«, e e e | 100

15

200

Figure 4: Left: Example simulation plot of the network in Figure 3. The initial
numbers of the species are Ry = 1000, Eg = 776, and Ag = 1. Right: Example
simulation plot of the network obtained by reducing the network in Figure 3 with
respect to the dominant fluxes. This network consists of the reactions 3, 5, 6, 11,
13, 16, 20, and 21. The initial numbers are set to the steady-state values of the
left-hand-side simulation with the complete network.

in Kahramanogullar1 and Lynch (2013). When we run stochastic simulations at
this regime we obtain time-series plots as on the left-hand-side of Figure 4.

The stochastic flux analysis can be applied on any arbitrary time interval that
can be a transient period as well as steady state. However, in accordance with
the analysis in Goryachev and Pokhilko (2006), we analyzed the steady state
fluxes of this model for the time interval between 2.0 and 2.5 as this interval
provides a sufficient number of events in accordance with the convergence time
of the simulation. As with time-series analysis, flux analysis in stochastic sim-
ulations needs to be repeated on multiple simulations in order to increase the
confidence levels. While some systems require a greater number of simulations,
others converge quickly to their steady state as it is the case for the network here.

146

1

o
-

11 2

16
RE131 RTE 149

5 ROATIE J RDA,115 .
% 7;
/ | 3 2 3 2
:U'u > 5 L
[> Y 3
10 N 3 8 &
5 3
8
m 4 o
a ~
~> 2 pry
(4
13 21
am
b 5
e | |
© [
b3
6

Figure 5: The flux configuration for the time interval from 2 to 2.5 and the
structure obtained from it by filtering the fluxes that are weaker than 10% of the
average flux, i.e., the flux configuration after cut-off at 0.1.

Nevertheless, due to the observations being made on stochastic simulations, to
perform a statistical analysis on a small sample, we have repeated our analysis on
a set of 25 simulations to verify our results, where we repeated the observations
discussed below. This statistical analysis is discussed in Kahramanogullar1 and
Lynch (2013).

A representative flux configuration with this network is depicted on the left-
hand-side of Figure 5. On the set of 25 simulations, we reduce the flux configu-
rations to dominant fluxes that account for most of the dynamical behavior. For
this purpose, we apply a cut-off value that is computed in terms of the average
flux of the system at this interval.

Definition 1. Let F|t,t'| denote a flux configuration for a time interval between
t and t', with the edges (j1, ji, S1,m1), - - -, (Je, Jj» Se;), where, for each i, we have
that j;, ji are nodes, s; is a species name, and n; is the count of that species on the
edge. The average flux is 0 = (3¢, ny)/¢. For an x € R, the flux after cut-off
at x, denoted by Flt,t'|(x), is the restriction of F[t,t'] to those edges (j,j', s,n)
satisfying n > zo.

The flux configuration displays a quantification of the flow of species instances
between reactions during a steady state interval of a simulation. As these flows
determine the dynamic behavior of the simulation, the stronger fluxes have a
greater influence in determining the emerging behavior in comparison to the
weaker ones. By applying the definition above to the flux configuration and
removing the weaker fluxes from the flux configuration, we obtain a picture of

147

the dominant behavior of the system that is in accordance with the applied cut
off value. This is because only a subset of the fluxes of the original network is
significant, while the remaining fluxes can have negligible values in delivering the
behavior that is, for example, observed at the time-series plot. In this setting, ob-
taining a convergence with a smaller cut-off value can be considered more reliable
in terms of singling out the dominant behavior. The flux configuration obtained
by applying the cut-off value of 0.1 on the set of 25 simulations is depicted on
the right-hand-side of Figure 5.

The fluxes on the right-hand-side of Figure 5 are those that play a dominant
role in tuning the behavior of the network during simulation. This is because
these fluxes have a greater weight in comparison to the others, and they thus
shift the simulation resources, thereby causing a shift in the time series of the
simulation. In order to observe this, we reduce the network in Figure 3 to a
network that consists of the reactions that participate in the flux configuration
on the right-hand-side of Figure 5. These are the reactions 3, 5, 6, 11, 13, 16, 20,
and 21. The simulations with the reduced system do not only agree in terms of
their flux configurations, but also their time series behaviors are in agreement as
depicted in Figure 4.

As illustrated in the network above, we relate different models according to a
comparison of their flux configurations in terms of graph isomorphisms, whereby
we impose the condition that the same cut-off value is applied to the compared
flux configurations. This way, the cut-off value employed is used as a metric that
quantifies the similarity between the compared models.

Definition 2. Given two flux configurations, F|t,t'| and F'[t",t"]|, we say that
they are flux equivalent at x, denoted with F[t,t'| ~, F'[t",t"], if and only if
Flt, t'|(x) and F'[t",t"|(x) are isomorphic graphs.

Proposition 3. Flux equivalence is an equivalence relation.

We define our metric in terms of cut-off values, which provide quantifications
of the similarity of the models with respect to their flux configurations.

Definition 4. The distance between two configurations Flt,t'| and F'[t" "] is
the smallest r such that Flt,t'] ~, F'[t" t"].

Equivalence by Filters and Maps
The network that we have used above illustrates how flux analysis can be used

to identify dominant reactions of a network. This way, we can identify a sub-
network of the original network that is capable of producing a similar behavior

148

Approximate Majority Cell Cycle

B+ X —->X+X
:B+Y Y +Y
X+Y X+ B
X+Y > B+Y

B+ R—X+R 9. W+S—->U+S
B+7Z—->Y+Z 7:Y+R—>B+R
P+ X —>Q+X 8:U+S5S—>272+S5
Q+T—P+T 10:U+X —->W+X
Q+X >R+ X n:X+2—-B+7Z7
R4+T —Q+T 12: 74+ X ->U+X

=W N =
S U W N =

Figure 6: Graphical representation of the approximate majority network (left)
and the cell cycle network (right), and their lists of reactions.

as the original one. We now show that we can compare complex chemical reac-
tion networks with different structures according to their capability to emulate
each other. For this purpose, we use the two chemical reaction networks in Fig-
ure 6, that is, the approximate majority network (AM) and cell cycle network
(CC). These two systems (and intermediate systems) were previously compared
in Cardelli and Csikdsz-Nagy (2012) based on stochastic and deterministic simu-
lations, and probabilistic model checking with the conclusion that they emulate
each other. Another approach that uses morphisms, however based on the static
structures of the models, is proposed in Cardelli (2014).

Here, we use the ideas above together with maps that collapse larger flux
configurations into smaller ones. In these systems X and Y compete against
each other for domination. As an example, we compare the networks AM and
CC to show the emulation of the more complex CC network by the simpler AM
network. Example simulation plots with these networks that illustrate their time
series behavior for X, Y, and B are depicted in Figure 7, where X dominates.
For the comparison of these networks, we use two different approaches, namely
equivalence by filters and equivalence by maps.

Equivalence by Filters. We introduce a mechanism that filters out the
flux of the enzymatic species instances in all the reactions in both networks. For

149

spim ~0 spim - X0

298 1 Y1) 2721 Y0
Bl B()

223 1 204 1

1491 1361

7451 685 1

0 0.046 0.022

Figure 7: Example simulation plots with the approximate majority network (left)
and the cell cycle network (right) for the cases, where X dominates.

B627

B152
\ / a1 %110
BJ 997

308] 8254 @® 247§ B,1903

% \\ V110 59

B312 B,740

Figure 8: Example flux configuration with the approximate majority network
(left) and the cell cycle network (right) for the cases, where X dominates. In
these simulations, only non-enzymatic fluxes are observed. The nodes are the
reactions of both networks, and 0 denotes the species at the initial state.

example, for the reaction 1 of the AM network, we only consider the reactant
B for the analysis, while disregarding the reactant X and keeping track of only
one of the X in the product. In other words, in the flux configurations, we only
monitor the species instances that get transformed by the reactions. For the
species X, Y, and B, these result in the flux-equivalent configurations depicted
in Figure 8, where the left-hand-side graph is AM and the right-hand-side is CC.

Equivalence by Maps. We consider all the species in all reactions, and
in order to compare AM and CC, we use maps on CC that merge reactions and
aggregate network species. This is because the flux configuration graph of CC
contains 12 reactions and 11 species in contrast to 4 reactions and 3 species in
AM. A flux configuration of CC is depicted in the Appendix in Figure 10. A flux
configuration of AM is depicted as the large graph in Figure 9, where the nodes A,

150

B, C, and D denote the reactions 2, 3, 4, and 1 of the AM network, respectively.
The black, red, and blue edges are the fluxes of X, Y, and B, respectively.

In order to relate the two networks, we thus employ a map that merges the
fluxes of the reactions and aggregates the species of the CC in Figure 10. As
a first step for this, we use the observation that both of the systems employ
two non-linear positive feedback loops. In the cell cycle network, X contributes
as an enzyme by reactions 10 and 12 to the inhibition of Z, which inhibits the
transformation of X to B. Similarly, the reactions 3 and 5 contribute to the
production of R, which contributes to the production of X by participating in
the reactions 1 and 7. By relying on these observations, we are faced with multiple
options for merging the reactions, however not all of these merges can provide a
good match between the compared graphs. We thus use the information on the
feedback loops together with the structure of the flux configuration, and merge
the reactions 1, 3, and 5 into a single reaction; and we merge the reactions 7,
10, and 12 to another. At the second positive feedback loop, the reactions 4, 6,
8, 9, and 11 contribute to the production of Y. By merging these reactions, we
obtain the node C' in Figure 9. In the graph, the blue edges denote the B fluxes,
whereas the black and red edges denote X and Y fluxes together with the fluxes
of others that are involved in the nodes.

The resulting merged configuration is identical to the configuration of the AM
network in Figure 9, that is, the large graph in Figure 9 is a flux graph of both
AM and CC. This is because, as a result of merging the fluxes in Figure 10 as
described above,

— the reaction nodes 7, 10 and 12 become node B in Figure 9;
— the reaction nodes 1, 3 and 5 become node D in Figure 9;
— the reaction nodes 4, 6, 8, 9 and 11 become node C in Figure 9.

All the species that are different from X,Y and B in Figure 10 are put in an X or
a Y edge in Figure 9. This is because between two reactions, there is never an X
and Y flux together, so all the fluxes that are different from X and Y in Figure
10 are considered auxiliary fluxes to X and Y. As a result of this reasoning,
we map the components of the cell cycle network that participate in a complex
mechanism to a simpler component in the AM network in a way that takes into
account the feedback mechanisms that are shared by these two networks.

Discussion

Our notion of equivalence is based on flow of resources between reactions during
simulations. The stochastic nature of the approach makes it plausible for the

151

C 721

Figure 9: A complete flux configuration of the approximate majority network,
which is equivalent to the configuration obtained by merging the reaction nodes
and edges of the complete cell cycle flux configuration. A, B, C', and D are the
graphs of the merged fluxes in the complete cell cycle network. 0 denotes the
species at the initial state. Here, for example, the fluxes in box C' are the ones
due to the reactions 4, 6, 8, 9, and 11, which contribute to the conversion of X
to B in a positive feed-back loop of the cell cycle network. These reactions are
merged into a single node C' in the main graph. As the node C' of the main graph
also denotes the reaction 4 of the approximate majority network that converts
X to B, these maps imply that the reaction 4 of approximate majority network
emulates the reactions 4, 6, 8, 9, and 11 in box C. See the text for further details.

models, where the quantities of certain species are arbitrarily small or the time
intervals of interest are not necessarily steady state intervals.
The different graphs that are obtained prior to a flux configuration are the

152

phases that correspond to the intermediate steps in obtaining event structures
from transition system trajectories Kahramanogullari (2009). In this respect, the
event structures approach provides a quantitative means to observe the causality
within the system dynamics. Moreover, the different kinds of graphs that we
use while computing the flux configurations expose different aspects of the same
simulation, and they can thus be of independent interest.

We have employed a cut-off function that is based on the average fluxes of
the system. However, different notions of cut-off can be more appropriate for
different systems, which remains a topic of future investigation. Other questions
concern investigations of a statistical nature: as a simulation with a certain initial
state has infinitely many different time-series, it has infinitely many simulation
trajectories. Future research can provide estimates to reach a desired level of
confidence.

References

L. Cardelli. Morphisms of reaction networks that couple structure to function.
2014.

L. Cardelli and A. Csikasz-Nagy. The cell cycle switch computes approximate
majority. Scientific Reports, Nature Publishing Group, 2(656), 2012.

L. Cardelli, E. Caron, P. Gardner, O. Kahramanogullari, and A. Phillips. A
process model of Rho GTP-binding proteins. Theoretical Computer Science,
410/33-34:3166-3185, 20009.

A. B. Goryachev and A. V. Pokhilko. Computational model explains high ac-
tivity and rapid cycling of Rho GTPases within protein complexes. PLOS
Computational Biology, 2:1511-1521, 2006.

O. Kahramanogullari. On linear logic planning and concurrency. Information
and Computation, 207:1229-1258, 2009.

O. Kahramanogullari and J. Lynch. Stochastic flux equivalence. Technical Report
at The Microsoft Research - University of Trento COSBI, PP-0179-2011, 2011.

O. Kahramanogullar1 and J. Lynch. Stochastic flux analysis of chemical reaction
networks. BMC' Systems Biology, 7(133), 2013.

O. Kahramanogullari. Nondeterminism and Language Design in Deep Inference.
PhD thesis, TU Dresden, 2006.

153

Appendix A

Challenges in automated verification and
synthesis for molecular programming

Marta Kwiatkowska
Department of Computer Science, University of Oxford, UK
marta.kwiatkowska@cs.ox.ac.uk

Abstract

Molecular programming is concerned with building synthetic nanoscale
devices from molecules, which can be programmed to autonomously per-
form a specific task. Several artifacts have been demonstrated experi-
mentally, including DNA circuits that can compute a logic formula and
molecular robots that can transport cargo. In view of their natural inter-
face to biological components, many potential applications are envisaged,
e.g. point-of-care diagnostics and targeted delivery of drugs. However,
the inherent complexity of the resulting biochemical systems makes the
manual process of designing such devices error-prone, requiring automated
design support methodologies, analogous to design automation tools for
digital systems. This paper gives an overview of the role that probabilis-
tic modelling and verification techniques can play in designing, analysing,
debugging and synthesising programmable molecular devices, and outlines
the challenges in achieving automated verification and synthesis software
technologies in this setting.

1 Introduction

Recently, significant advances have been made in the experimental design and
engineering of synthetic, biomolecular systems, such as those built from DNA,
RNA or enzymes. The interest in such devices stems from the fact that they
are autonomous — they can interact with the biochemical environment, process
information, make decisions and act on them — and programmable, that is, they
can be systematically configured to perform specific computational or mechanical
tasks. The computational power of such systems has been shown to be equivalent
to Turing computability (Soloveichik et al. 2010), albeit the computation itself
proceeds through molecules acting as inputs, interacting with each other and

155

producing product molecules. Experimental advances are fast accelerating, with
examples that have been demonstrated including diagnostic biosensors (Jung and
Ellington 2014), logic circuits built from DNA (Seelig et al. 2006; Qian and Win-
free 2011), DNA-only controllers (Chen et al. 2013) and molecular robots that
can deliver cargo (Yurke et al. 2000; Yin et al. 2004). Since such systems can
perform information processing within living cells, their use is envisaged in health-
care applications, where safety is paramount. The fast-growing field of molecular
programming is concerned with developing techniques to design, analyse and re-
alise the computational potential of such programmable molecular devices. In
conjunction with the DNA self-assembly capabilities, which has enabled a wide
range of structure-forming technologies at the nanoscale (Rothemund 2006), the
future potential of these developments is tremendous, particularly for smart ther-
apeutics, point-of-care diagnostics and synthetic biology.

Device design is supported by electronic design automation (EDA) environ-
ments, which provides methodologies and tools to automate the design, verifica-
tion, testing and synthesis of electronic systems from a high-level description. The
software level, at which design is applied, is separate from the hardware level, e.g.
fabrication, and can involve multiple levels of abstractions. In the semiconductor
industry, design automation has established itself as a key technology to tackle
the complexity of the designs, improve design quality, and increase reuse. In the
1990s, VLSI design was revolutionised by formal verification, and in particular
automated methods such as model checking, now a key component of modern
EDA tools, which ensure device safety and reliability, and significantly reduce
development costs.

Molecular programming aims to devise programming languages, techniques
and software tools to achieve automatic compilation of a molecular system down
to the set of components that can be implemented physically at the molecular
level and executed. This is analogous to the motivation for hardware description
languages, e.g. VHDL, which are refined automatically, through a series of in-
termediate abstractions, down to a detailed physical implementation in silicon.
This paper puts forward the view that formal verification will play a similar role
in design automation for molecular programming. However, the latter brings
with it unique challenges: the necessity to consider inherent stochasticity of the
underlying molecular interactions, the need to state requirements in quantitative
form, and the importance to consider control of molecular systems, and not just
programming in the conventional sense. Therefore, probabilistic modelling and
automated, quantitative verification techniques (Kwiatkowska 2007; Kwiatkowska
et al. 2007, 2011), such as those already developed for systems biology (Regev
et al. 2001; Heath et al. 2008; Ciocchetta and Hillston 2009; Kwiatkowska et al.
2010) in addition to tools tailored to DNA computing (Phillips and Cardelli 2009;

156

Aubert et al. 2014), will form a key component of design automation for molecular
programming.

The paper begins by giving a brief introduction to molecular programming,
illustrated by a simple example of DNA biosensing, and then reviews the cur-
rent status of formal modelling and verification technologies for molecular pro-
gramming, outlining the research challenges. More detail about application of
automated, quantitative verification in DNA computing can be found in the tu-
torial paper (Kwiatkowska and Thachuk 2014) and elsewhere (Lakin et al. 2012;
Dannenberg et al. 2013b,a, 2014).

2 Molecular programming

The term molecular programming (Hagiya 2000; Winfree 2008) refers to the ap-
plication of computational concepts and design methods to the field of nanotech-
nology, and specifically biochemical reaction systems. The idea is to design bio-
chemical networks that can process information and are programmable, that is,
can be configured to perform a given task, be it computation of a logic formula
or transporting a cargo to a specified target. Chemical reaction networks (CRNs)
provide a canonical notation for describing biochemical systems, based on well
understood stochastic or kinetic laws, and the computational and nanorobotic
mechanisms that they can implement. A molecular program is thus a series of
reactions, for example X +Y — Z, meaning that inputs (specially designed DNA
strands) X and Y are transformed to produce strand Z. An example is the Ap-
proximate Majority program (Angluin et al. 2008), where, starting with given
initial numbers of molecules X and Y placed in solution, with high probability
the network will converge to a state that only contains the molecules that were
initially in majority.

In order to implement molecular programs, DNA technologies have been de-
veloped, of which DNA strand displacement (DSD) (Zhang et al. 2007; Zhang
and Seelig 2011) is particularly popular, since it uses only DNA molecules, is
enzyme-free, and easy to synthesize chemically. Any CRN can be implemented
using the limited set of DSD reactions (Soloveichik et al. 2010); in fact, the DSD
realisation of Approximate Majority was experimentally demonstrated in Chen
et al. (2013) and related to the cell cycle in Cardelli and Csikasz-Nagy (2012).
DSD can be used to implement logic gates, where inputs and outputs are (single)
DNA strands. An example is the transducer gate designed by Cardelli (2010)
and the diagnostic biosensors of Jung and Ellington (2014).

The promise of DNA systems is that they can interact with biological com-
ponents in their local environment, including within living cells. An important
application of such systems is therefore biosensing, a decision process that aims to

157

True False True False
*

Y Y . Y AY
+« Y Y - s Y Y e
+ Y Y + . Y Y +
+« Y =Y + Y Y
¢ Y -Y ¢ s Y -Y +
. Y aY . + Y aY e
* + . +
. .

. .
+ X X e
¢« X =X .
+ X X e
X -X .
+ X X e
* X =X e
* *

.

-
Initial
+

Figure 1: A DNA walker track that acts as a biosensor, shown here with six
blockades.

detect various input biomarkers in an environment, such as strands of messenger
RNA within a cell, and take action based on the detected input. We illustrate
molecular programming applications with an example of a biosensor based on
DNA walker circuits, which are realised using DNA strand displacement technol-
ogy. DNA walkers (Wickham et al. 2011) can traverse tracks of DNA strands
(anchorages) that are tethered to a surface, typically DNA origami tile (Rothe-
mund 2006), taking directions at junctions that fork into two tracks, respectively
labelled with X and —=X. When the system is prepared, a self-consistent set of
unblocking strands is added to unblock X or =X but not both, ensuring that
the walker is directed towards the target. Alternatively, the walker senses the
strands that guide it towards the target, indicating detec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>