
C A R D E L L I F E S T

Martín Abadi
Philippa Gardner
Andrew D. Gordon
Radu Mardare (Eds.)

Essays for the Luca Cardelli Fest
September 8-9, 2014
Microsoft Research Cambridge
Technical Report MSR-TR-2014-104

Preface

Luca Cardelli has made exceptional contributions to the field of programming
languages and beyond. Throughout his career, he has re-invented himself every
decade or so, while continuing to make true innovations. His achievements span
many areas: software; language design, including experimental languages; pro-
gramming language foundations; and the interaction of programming languages
and biology. These achievements form the basis of his lasting scientific leadership
and his wide impact.

Luca was born in Montecatini Terme, Italy, studied at the University of Pisa
until 1978, and received a Ph.D. in computer science from the University of
Edinburgh, supervised by Gordon Plotkin. He held research positions at Bell
Labs, Murray Hill (1982–1985), and at Digital’s Systems Research Center, Palo
Alto (1985–1997). He joined Microsoft Research in Cambridge in 1997, where
for many years he managed the Programming Principles and Tools group. Since
2013, he holds a Royal Society Research Professorship at the University of Oxford,
alongside his position as Principal Researcher at Microsoft Research.

Luca Cardelli is a Fellow of the Royal Society, an ACM Fellow, an Elected
Member of the Academia Europaea, an Elected Member of AITO (International
Association for Object Technologies), and a member of EATCS (European As-
sociation for Theoretical Computer Science) and ISCB (International Society for
Computational Biology).

A scientific event in honour of Luca Cardelli has been organized in Cambridge
(UK) on September 8–9, 2014. This celebration will gather many of Luca’s col-
leagues and friends. It will include talks on a wide variety of topics, correspond-
ing to many of the areas in which Luca has worked. Its program is available at
http://research.microsoft.com/lucacardellifest/.

Complementing these talks, and as a more lasting reflection of the event,
many of Luca’s colleagues and friends wrote the short papers included in this
informal volume. Luca is always asking “what is new”, and is always looking to
the future. Therefore, we have asked authors to produce short pieces that would
indicate where they are today and where they are going. Some of the resulting
pieces are short scientific papers, or abridged versions of longer papers; others are
less technical, with thoughts on the past and ideas for the future. We hope that
they will all interest Luca.

We thank all the contributors for their work, and Andrew Phillips for his
editorial help.

Mart́ın Abadi
Philippa Gardner

Andrew D. Gordon
Radu Mardare

Table of Contents

Naiad Models and Languages . 7
Mart́ın Abadi

The Behavior of Probabilistic Systems: From Equivalences to Behavioural
Distances . 15

Giorgio Bacci, Giovanni Baci Bacci, Kim G. Larsen and Radu Mardare

The Challenges of Attaining Grace (in a Language Definition) 27
Andrew Black, Kim Bruce, Michael Homer and James Noble

The Gene Gate Model: Some Afterthoughts . 41
Ralf Blossey

Multilinear Programming with Big Data . 51
Mihai Budiu and Gordon Plotkin

Types and Logic, Concurrency and Non-Determinism . 69
Lúıs Caires

What Makes a Biological Clock Efficient? .85
Attila Csikász-Nagy and Neil Dalchau

Two Possibly Alternative Approaches to the Semantics of Stochastic Process
Calculi . 95

Rocco De Nicola, Diego Latella, Michele Loreti and Mieke Massink

Refining Objects . 109
Robert Harper and Rowan Davies

A Theory of Model Equivalence . 141
Ozan Kahramanoğullari and James F. Lynch

Challenges in Automated Verification and Synthesis for Molecular
Programming .155

Marta Kwiatkowska

Temporal Logic: The Lesser of Three Evils . 171
Leslie Lamport

Simple Proofs of Simple Programs in Why3 . 177
Jean-Jacques Lévy

Introduction to New Perspectives in Biology . 187
Giuseppe Longo and Mael Montévil

Luca Cardelli and the Early Evolution of ML . 201
David MacQueen

Tiny Bang: Type Inference and Pattern Matching on Steroids 215
Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn and
Scott Smith

The Spider Calculus: Computing in Active Graphs . 227
Benjamin C. Pierce, Alessandro Romanel and Daniel Wagner

From Amber to Coercion Constraints . 243
Didier Rémy and Julien Cretin

Classical π . 257
Steffen van Bakel and Maria Grazia Vigliotti

Naiad Models and Languages

Mart́ın Abadi
Microsoft Research

Abstract

Naiad is a recent distributed system for data-parallel computation. The
goal of this note is to review Naiad and the computing model that underlies
it, and to suggest opportunities for explaining them and extending them
through programming languages, calculi, and semantics.

1 Prologue

Luca Cardelli’s research often demonstrates the great value of programming nota-
tions and their semantics in understanding and improving a wide variety of com-
putational concepts and phenomena. Some of these concepts and phenomena—
for example, linking—are close to programming languages, though often hidden
inside implementations. Others, like ambients and chemical reactions, may seem
more surprising. Finding and developing an appropriate programming-language
perspective on such subjects requires insight and elegance, but it can be quite
fruitful, as Luca’s work illustrates superbly.

On the occasion of a celebration of Luca’s research, his friends and colleagues
were invited to write short pieces that would summarize where they are and
where they are going. At present I am engaged in several disparate activities
in computer security and in programming languages and systems. So, in this
note, I chose to focus on one particular project, namely the development of the
Naiad system and of the corresponding theory. This subject is related to people
and topics that I encountered while working with Luca, such as Kahn networks
and the integration of database constructs into programming languages. More
importantly, perhaps, it is a subject in which Luca’s perspective and approach
may prove crucial in the future. (Lately, I sometimes ask myself “What would
Luca do?”) The subject does not have obvious connections to the many topics on
which Luca and I worked together (type systems, objects, explicit substitutions,
and more), nor does it have the breadth of Luca’s current research interests—but
that may all come in due course.

7

The next section is a brief description of Naiad; further details and references
can be found in recent papers (Murray et al. 2013; Abadi et al. 2013; McSherry
et al. 2013). The following section outlines some areas of current and future
research (joint work with many colleagues, listed below).

2 Naiad in a nutshell

Naiad is a distributed system for data-parallel computation. It aims to offer
high throughput and low latency, and to support a range of tasks that includes
traditional batch and stream processing and also iterative and incremental com-
putations. For example, a Naiad application may process a stream of events such
as tweets (Murray et al. 2013); as they arrive, the events may feed into an incre-
mental connected-components computation and other analyses, which may, for
instance, identify the most popular topics in each community of users. Naiad thus
aspires to serve as a general, coherent platform for data-parallel applications. In
this respect, Naiad contrasts with other systems for data-parallel computation
that focus on narrower domains (e.g., graph problems) or on particular styles of
programs (e.g., with restrictions on loops).

2.1 Timely dataflow

At the core of Naiad is a model for parallel computing that we call timely dataflow.
This model extends dataflow computation with a notion of virtual time. As in
Jefferson’s Time Warp mechanism (Jefferson 1985), virtual time serves to differ-
entiate between data at different phases of a computation. Unlike in the Time
Warp mechanism, however, virtual time is partially ordered (rather than linearly
ordered, since a linear order may impose false dependencies).

In Naiad, each communication event is associated with a virtual time. This as-
sociation enables the runtime system to overlap—but still distinguish—work that
corresponds to multiple logical stages in a computation: different input epochs,
iterations, workflow steps, and perhaps speculative executions. It also enables the
runtime system to notify nodes when they have received their last message for a
given virtual time. This combination of asynchronous scheduling and completion
notification implies that, within a single application, some components can func-
tion in batch mode (queuing inputs and delaying processing until an appropriate
notification) and others in streaming mode (processing inputs as they arrive).

As is typical in dataflow models, we specify computations as directed graphs,
with distinguished input nodes and output nodes. The graphs may contain loops,
even nested loops. Therefore, at each location in a graph, we can define times-
tamps of the form (input epoch, loop counters), where there is one loop counter

8

for each enclosing loop context at that location. Each loop must contain a feed-
back node whose function is to increment a timestamp counter. Nodes for loop
ingress and egress introduce and remove time coordinates, respectively.

During execution, stateful nodes send and receive timestamped messages, and
in addition may request and receive notification that they have received all mes-
sages with a certain timestamp. So the runtime system must be able to reason
about the possibility or impossibility of such future messages. This reasoning re-
lies on the “could-result-in” relation, which intuitively captures whether an event
at graph location l1 and virtual time t1 could result in an event at graph location
l2 and virtual time t2. The reasoning combines a simple static analysis of the
graph with a distributed algorithm for tracking progress.

2.2 Higher layers

Building on the timely dataflow substrate, Naiad offers several higher-level pro-
gramming models. To date, we have the most experience with a model based
on language-integrated queries, specifically on a dialect of LINQ. This dialect
includes batch-oriented operators that process entire data collections at once, in
the spirit of DryadLINQ (Yu et al. 2008) and Spark (Zaharia et al. 2012), in-
cremental operators that accumulate state between invocations, and differential
operators that compute in terms of additions and deletions of data records. We
have also explored other programming idioms and interfaces, such as Pregel-style
Bulk Synchronous Parallel computation (Malewicz et al. 2010) and BLOOM-style
asynchronous iteration (Conway et al. 2012).

3 Further work

The remainder of this note outlines a few directions of current and future work
(though not a comprehensive list), roughly in top-down order. Some of this work
is well underway; other suggestions are more tentative and speculative.

3.1 Other front-end models and languages

As mentioned above, our work to date relies primarily on language-integrated
queries, but Naiad can support other models of iterative computation. It may
be worthwhile to investigate those in more detail. Going beyond these models,
however, we may wish to support recursive dataflow computations, in addition
to iterative ones.

Recursion in dataflow is not entirely new (Blelloch 1996), but supporting
it in Naiad gives rise to theoretical and practical difficulties, at various levels.

9

In particular, Naiad’s current concrete embodiment of virtual time is based on
simple iteration counters. With recursion, stacks would probably have to play a
role, and the treatment of the could-result-in relation would need to be revisited.

One possible approach might go as follows. For simplicity, let us consider a
dataflow graph that includes distinguished nodes that represent recursive calls to
the entire computation, an input node in, an output node out, and some ordinary
nodes (for instance, for selects and joins). We split each recursive-call node c into
a call part call-c and a return part ret-c, with an edge between them. A stack
is then a finite sequence of recursive-call nodes, and a “pointstamp” a pair of
a stack and a node. Finally, the could-result-in relation is the least reflexive,
transitive relation on these pointstamps such that: (1) (s, call-c) could result
in (s.c, in); (2) symmetrically, (s.c, out) could result in (s, ret-c); and (3) if v is
not call-c and v′ is not ret-c for any c, and there is an edge from v to v′, then
(s, v) could result in (s, v′). This definition looks principled but too complex to be
useful at run-time. Fortunately, it is equivalent to a simpler criterion that requires
only finding the first call in which two stacks differ and performing an easy check
based on that difference.1 Special cases might allow further simplifications.

3.2 Differential computation

One of Naiad’s distinctive characteristics is its support for differential computa-
tion. In computing over collections of data, nodes can transmit deltas, rather
than entire collections. Current work aims to generalize differential computation
and to put it on a proper semantic foundation.

Differential computation makes sense over any abelian group G (and not just
over collections of data). It also makes sense relative to many partial orders T ,
but some hypotheses on T are necessary or at least convenient. Specifically, the
differential version δf : T → G of a function f : T → G should be such that
f(t) = Σt′≤t(δf)(t′). If, for each t there are only finitely many t′ such that t′ ≤ t,
the Möbius inversion theorem (Rota 1964), from combinatorics, implies that δf
exists and is unique.2 If there are infinitely many t′ below t, on the other hand, the
sum may not be meaningful. Alas, Naiad has sometimes relied on lexicographic
orders for which the finiteness condition does not immediately hold; one of our

1Without loss of generality, suppose that s is of the form s1.s2 and s′ is of the form s1.s
′
2,

where s2 and s′2 start with call nodes call-c and call-c’ respectively if they are not empty.
We assume that call-c and call-c’ are distinct if s2 and s′2 are both non-empty (so, s1 is
maximal). Let l be ret-c if s2 is non-empty, and be v if it is empty. Let l′ be call-c’ if s′2 is
non-empty, and be v′ if it is empty. We can then prove that (s, v) could result in (s′, v′) if and
only if there is a path from l to l′.

2Alternatively, one may assume only that there are finitely many elements in each interval,
but require that f be 0 below a certain element.

10

goals is to make sense of this situation.
In programming-language terms, an abelian group of collections may be seen

as a base type. Going further, a language with support for differential com-
putation would include type operations to form other abelian groups. Some of
these operations may be standard constructions such as products. Others would
be more specific to iterative, differential computation. In particular, for each
type σ, we may define a type σ+ that intuitively represents functions from N
to σ, that is, σ indexed by an additional natural-number time coordinate, as
required for iteration.

At the level of terms, the language would include common constructs such as
let expressions and iteration, and perhaps also differentiation and integration as
first-class values. Since some of these constructs do not guarantee termination
in general, the language semantics may need to allow partial functions, to which
the classic inversion theorem does not immediately apply.

3.3 The essence of timely dataflow

Some of the ideas in timely dataflow seem viable independently of other aspects
of Naiad, so we may try to recast and understand them in the general setting of
a programming language or calculus. These often include facilities for commu-
nication via messages, but unfortunately not completion notifications, which are
essential to Naiad. We may however be able to explain completion notifications
using extant concepts.

For instance, it may be possible to capture the semantics of completion noti-
fications in terms of the notion of priorities, which has sometimes been studied
in process calculi (e.g., Versari et al. (2009); John et al. (2010)). For each virtual
time t, we may regard the messages for time t as having higher priority than a
notification that time t is complete, so this notification cannot be delivered before
the messages.

An important caveat is that this notification should not be delivered before
all the messages for time t, even ones not immediately available for transmission.
This difficulty may be addressed by imposing, perhaps via the could-result-in
relation, that any such future messages for time t be caused by present messages
with higher priority than the notification.

3.4 Systems work

Although Naiad is by now a fairly mature prototype, further systems work would
be useful. Some of it is pure engineering; some requires new research.

In particular, Naiad’s fault-tolerance remains rudimentary. In the last few
months, we have been designing more flexible fault-tolerance mechanisms. Rea-

11

soning about their correctness is tricky, and might perhaps benefit from work
in concurrency theory, more specifically on models of causality and reversibility
(e.g., Phillips and Ulidowski (2013)). So far, however, we have been able to make
good progress with a straightforward linear-time semantics. We have been writing
proofs with prophecy variables—pleasantly reminiscent of DEC SRC, if nothing
else. In general, prophecy variables are unusual auxiliary variables for which
present values are defined in terms of future values (Abadi and Lamport 1991).
In this particular case, the prophecy variables predict which nondeterministic
choices will persist despite rollbacks.

4 Conclusion

Naiad remains a work in progress, as this note indicates. This note is based
on research with Paul Barham, Rebecca Isaacs, Michael Isard, Frank McSherry,
Derek Murray, Gordon Plotkin, Tom Rodeheffer, Nikhil Swamy, and Dimitrios
Vytiniotis. I am grateful to them for our collaboration. I am also grateful to Luca
Cardelli, who is partly responsible for my interest and research in programming
languages and systems.

References

M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

M. Abadi, F. McSherry, D. G. Murray, and T. L. Rodeheffer. Formal analysis
of a distributed algorithm for tracking progress. In D. Beyer and M. Boreale,
editors, Formal Techniques for Distributed Systems - Joint IFIP WG 6.1 Inter-
national Conference, FMOODS/FORTE 2013, volume 7892 of Lecture Notes
in Computer Science, pages 5–19. Springer, 2013.

G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, Mar. 1996.

N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic
and lattices for distributed programming. In Proceedings of the Third ACM
Symposium on Cloud Computing, pages 1:1–1:14, 2012.

D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and Systems, 7(3):404–425, July 1985.

12

M. John, C. Lhoussaine, J. Niehren, and A. M. Uhrmacher. The attributed pi-
calculus with priorities. Transactions on Computational Systems Biology, 12:
13–76, 2010.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of
Data, pages 135–146, 2010.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In
CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
2013.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
a timely dataflow system. In ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, pages 439–455, 2013.

I. Phillips and I. Ulidowski. Reversibility and asymmetric conflict in event struc-
tures. In P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013 -
Concurrency Theory - 24th International Conference, volume 8052 of Lecture
Notes in Computer Science, pages 303–318. Springer, 2013.

G.-C. Rota. On the foundations of combinatorial theory I. Theory of Möbius
functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2
(4):340–368, 1964.

C. Versari, N. Busi, and R. Gorrieri. An expressiveness study of priority in process
calculi. Mathematical Structures in Computer Science, 19(6):1161–1189, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In 8th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008, pages 1–14, 2008.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, pages 15–28,
2012.

13

14

The Behavior of Probabilistic Systems:
From Equivalences to Behavioral Distances

Giorgio Bacci Giovanni Bacci Kim G. Larsen Radu Mardare
Department of Computer Science, Aalborg University, Denmark

Abstract

In this paper we synthesize our recent work on behavioral distances
for probabilistic systems and present an overview of the current state of
the art in the field. We mainly focus on behavioral distances for Markov
chains, Markov decision processes, and Segala systems. We illustrate three
different methods used for the definition of such metrics: logical, order
theoretic, and measure-testing; and we discuss the relationships between
them and provide the main arguments in support of each of them.

We also overview the problem of computing such distances, both from
a theoretical and a practical view point, including the exact and the ap-
proximated methods.

1 Introduction

Probabilistic bisimulation of Larsen and Skou (1989) and probabilistic trace
equivalence are acknowledged to be the basic equivalences for equating proba-
bilistic systems from the point of view of their behaviors.

An example of probabilistic system is the labelled Markov chain depicted in
Figure 1 (left). Here states s1 and s2 goes to state s4 with probability 2

3
and

1
3
, respectively. Although they move with different probabilities to s4, states
s1 and s2 are bisimilar because they reach any bisimilarity class with the same
probability (clearly, also s4 and s5 are bisimilar).

When the probabilistic models are obtained as approximations of others, e.g.,
as simplified model abstractions or inferred from empirical data, then an equiva-
lence is too strong a concept. This issue is illustrated in Figure 1 (right), where
the states t1 and t2 (i.e., the counterpart of s1 and s2, respectively, after a pertur-
bation of the transition probabilities) are not bisimilar. This motivated the quest
for a robust notion of behavioral equivalence and the development of a theory of
behavioral “nearness”.

15

s2s1 s3

s4 s5

1
3

1
3

1
3

1
3

2
3

1

1

1

t2t1 t3

t4 t5

1
3

1
3

1
3

1
3 + ε

2
3 − ε

1

1

1

Figure 1: A labelled Markov chain (on the left) and an ε-perturbation of it (on
the right), for some 0 < ε < 2

3
. Labels are represented by different colors.

To this end, Giacalone et al. (1990) proposed to use pseudometrics in place
of equivalences aiming at measuring the behavioral similarities between states.
Differently from an ordinary metric, a pseudometric allows different states to
have distance zero, hence it can be thought of as a quantitative generalization
of the notion of equivalence. In this respect, a pseudometric is said behavioral if
states are at distance zero if and only if they are equivalent w.r.t. some behavioral
semantics (e.g., bisimilarity, trace equivalence, etc.).

Behavioral distances do not come only as a robust notion of semantical equiv-
alence, but they can also be used to address some important problems that are
challenging computer science nowadays. One of these comes from systems biol-
ogy and consists in providing analytical tools to help biologists understand the
general mechanisms that characterize biological systems.

A considerable step forward in this direction is due to Luca Cardelli with his
work on process algebra (Regev et al. 2004; Cardelli 2005, 2013) and on stochas-
tic/ODE semantics (Cardelli 2008; Cardelli and Mardare 2010, 2013; Mardare
et al. 2012), etc. Recently, Cardelli and Csikász-Nagy (2012) pointed out how
the Cell Cycle switch (CC) —a fundamental biomolecular network that regulates
the mitosis in eukaryotes— is surprisingly related, both in the structure and in
the dynamics, to the Approximate Majority (AM) algorithm from distributed
computing. The AM algorithm decides which of two populations is in majority
by switching the majority into the totality, and it does so in a way that is fast,
reliable, robust, and asymptotically optimal in the number of reactions required
to obtain the result. The comparison between AM and CC is carried out by suc-
cessive transformations that turn the network structure of the former into that
of the latter. The difference is dictated by biological constraints, that are grad-
ually introduced in the structure of AM during its transformation into CC while
preserving both the computational and the dynamical properties.

Due to these observations, one may argue that CC, even though constrained

16

by biological limitations, tends to behave as similar as possible to AM, the theo-
retical “optimal” one. In this respect, behavioral distances seem the appropriate
analytical tool to measure the quality of a candidate network model for CC: the
closer the network model is to AM the better it is.

In this paper we overview our recent work on behavioral distances in com-
parison with the current state of the art in the field, focusing on four types
of probabilistic systems: discrete-time Markov Chains (MCs), Markov Decision
Processes with rewards (MDPs), continuous-time Markov Chains (CTMC), and
Segala Systems (SS). We examine the main techniques that have been used in the
literature to characterize behavioral distances for probabilistic systems, namely,
logical, fixed point, and coupling characterizations. For each technique, we show
how they have been applied on the different types of probabilistic systems we are
considering, we point out their differences and similarities, and provide practical
and theoretical arguments supporting each one.

Finally, we consider the problem of computing such distances, including both
the exact and the approximated methods, for which we overview the most recent
theoretical complexity results that are known in the literature.

2 Preliminaries

A probability distribution over a finite set S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. We denote by D(S) the set of probability distributions over S.
Let S and L be nonempty finite sets of states and labels, respectively. A

discrete-time Markov chain (MC) is a tupleM = (S, L, τ, `) where τ : S → D(S)
is a transition probability function, and ` : S → L a labeling function. Intuitively,
labels represent properties that hold at a given state, τ(s)(s′) is the probability
to move from state s to a successor state s′. A continuous-time Markov Chain
(CTMC)M = (S, L, τ, ρ, `) extends an MC with a rate function ρ : S → R+ asso-
ciating with each state s the rate of an exponential distribution representing the
residence-time distribution at s. A Segala system (SS) extends an MC by adding
nondeterminism: is a tupleM = (S, L, θ, `) where θ : S → 2D(S) assigns with each
state a set of possible probabilistic outcomes. Finally, a Markov decision process
with rewards (MDP) is a tuple M = (S,A, ϑ, r) consisting a finite nonempty set
A of action labels, a labeled transition probability function ϑ : S×A→ D(S), and
a reward function ρ : S × A → R+ assigning to each state the reward associated
with the chosen action.

A (1-bounded) pseudometric on a set S is a map d : S × S → [0, 1] such that
for all s, t, u ∈ S, d(s, s) = 0, d(s, t) = d(t, s) and d(s, u) ≤ d(s, t) + d(t, u). For a
set S, the indiscrete pseudometric is defined as IS(s, s′) = 1 if s 6= s′, otherwise 0.

17

For a pseudometric d : S × S → [0, 1] on S, we recall two pseudometrics on D(S)

‖µ− ν‖TV = supE⊆S |µ(E)− ν(E)| , (Total Variation)

K(d)(µ, ν) = sup
{∣∣∫ f dµ−

∫
f dν

∣∣ | |f(x)− f(y)| ≤ d(x, y)
}
, (Kantorovich)

and one pseudometric on 2S defined, for A,B ⊆ S, as follows

H(d)(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} . (Hausdorff)

The set of 1-bounded pseudometrics on S, endowed with the pointwise pre-order
d1 v d2 iff d1(s, s′) ≤ d2(s, s′) for all s, s′ ∈ S, forms a complete lattice, with
bottom the constant 0 pseudometrics and top the indiscrete pseudometric IS.

Let λ ∈ [0, 1] and a, b ∈ R, a⊕λb denotes the convex combination λa+(1−λ)b.

3 Behavioral Distances

We overview the three main techniques that have been used in the literature for
the characterization of behavioral pseudometrics over probabilistic systems.

3.1 Logical Characterizations

Real-valued logics. The first authentic behavioral pseudometric on proba-
bilistic systems, due to Desharnais et al. (2004), is defined in terms of a family of
functional expressions to be interpreted as real-valued modal formulas. Given a
probabilistic modelM over the set of states S, a functional f ∈ F is interpreted
as a function fM : S → [0, 1], and the pseudometric δM : S × S → [0, 1] assigns a
distance to any given pair of states of M according to the following definition:

δM(s, s′) = supf∈F |fM(s)− fM(s′)| .

Their work builds on an idea of Kozen (1985) to generalize logic to handle
probabilistic phenomena, and was first developed on MCs. Later, this approach
has been adapted to MDPs, by de Alfaro et al. (2007) and Ferns et al. (2014), and
extended to Segala systems by Mio (2013). Figure 2 shows the set of functional
expressions for the case of MCs. One can think of those as logical formulas: a
represents an atomic proposition, 1−f negation, min(f1, f2) conjunction, 3f the
modal operator, and f 	 q the “greater then q” test. The key result for such a
metric is that two states are at distance 0 iff they are probabilistic bisimilar.

18

F 3 f ::= a

| 1− f
| min(f, f)

| f 	 q
| 3f

aM(s) = IL(a, `(s))

(1− f)M(s) = 1− fM(s)

(min(f1, f2))M(s) = min {(f1)M(s), (f2)M(s)}
(f 	 q)M(s) = max {fM(s)− q, 0}

(3f)M(s) =
∫
fM dτ(s)

Figure 2: Real-valued logic: syntax (on the left) and interpretation (on the right),
where M = (S, L, τ, `) is an MC, a ∈ L a label, and q ∈ Q ∩ [0, 1].

Linear time logics. If the models can be observed by only testing single execu-
tion runs, then bisimulation is to stringent as an equivalence and trace equivalence
is preferred instead. Similar arguments justify the introduction of behavioral dis-
tances that focus on linear time properties only.

In (Bacci et al. 2014) we compared CTMCs against linear real-time specifica-
tions expressed as Metric Temporal Logic (MTL) formulas (Alur and Henzinger
1993). MTL is a continuous-time extension of LTL, where the next and until
operators are annotated with a closed time interval I = [t, t′], for t, t′ ∈ Q+.

ϕ ::= p | ⊥ | ϕ→ ϕ | XIϕ | ϕ UI ϕ ,

The satisfiability relation π |= ϕ is defined over timed paths π = s0, t0, s1, t1 . . . ,
where ti ∈ R+ represents the residence time in si before moving to si+1. Modali-
ties are interpreted as in LTL, with the additional requirement that in the next
operator the step is taken at a time t ∈ I, and the until is satisfied with total
accumulated time in I. We denote by JϕK the set of timed paths that satisfy ϕ.

The quantitative model checking of an CTMCM against an MTL formula ϕ
consists in computing the probability PMs (JϕK) that M, starting from the state
s, generates a timed path that satisfies ϕ. Then, the following pseudometric

δMMTL(s, s′) = supϕ∈MTL |PMs (JϕK)− PMs′ (JϕK)| (1)

guarantees that any result obtained by testing one state against an MTL formula
can be reflected to the other with absolute error bounded by their distance1.

Interestingly, we proved that the measurable sets generated by MTL formulas
coincide with those generated by Deterministic Timed Automata (DTAs) specifi-
cations. Moreover, we singled out a dense subclass of specifications, namely that
of resetting single-clock DTAs (1-RDTA), which implies that (i) the probability
of satisfying any real-time specification can be approximated arbitrarily close by

1Clearly, the discrete-time case can be treated analogously by considering LTL formulas.

19

an 1-RDTA; (ii) the pseudometric (1) can be alternatively characterized letting
range the supremum over 1-RDTA specifications only. This has practical appli-
cations in the quantitative model checking of CTMCs, since this allows one to
exploit algorithms designed by Chen et al. (2011) for single-clock DTAs.

3.2 Fixed Point Characterizations

Often, behavioral distances are defined as fixed points of functional operators
on pseudometrics. The first to use this technique were van Breugel and Worrell
(2001), who showed the pseudometric of Desharnais et al. (2004) (see §3.1) can be
defined as the least fixed point of an operator based on the Kantorovich metric.

This technique is very flexible and adapts easily in different contexts. The key
observation is that functional operators can be composed to capture the different
characteristics of the system. Next we show some examples from the literature.

Markov Chains. Let M = (S, L, τ, `) be an MC. The functional operator
defined by van Breugel and Worrell (2001) is as follows:

FMMC(d)(s, s′) = max
{
IL(`(s), `(s′)),K(d)(τ(s), τ(s′))

}
. (2)

Intuitively, IL handles the difference in the labels, whereas the Kantorovich dis-
tance K(d) deals with the probabilistic choices by lifting the underlying pseudo-
metric d over states to distributions over states. The two are combined by taking
the maximum between them.

Markov Decision Processes. Let M = (S,A, ϑ, r) be an MDP. Ferns et al.
(2004) defined a pseudometric using the following operator, for λ ∈ (0, 1):

FMMDP(d)(s, s′) = maxa∈A
{
|r(s, a)− r(s′, a)| ⊕λ K(d)(ϑ(s, a), ϑ(s′, a))

}
. (3)

The functional mixes in a convex combination the maximal differences w.r.t. the
rewards associated with the choice of an action label in the current state and the
difference in the probabilities of the succeeding transitions.

Segala Systems. Let M = (S, L, θ, `) be an SS. van Breugel and Worrell
(2014) extended the pseudometric on MCs using the following operator:

FMSS (d)(s, s′) = max
{
IL(`(s), `(s′)),H(K(d))(θ(s), θ(s′))

}
. (4)

This functional extends (2) by handling the additional nonderminism with the
Hausdorff metric on sets. In de Alfaro et al. (2007); Mio (2013) a different func-
tional operator is considered; this is obtained from (4) by replacing the sets θ(s)
and θ(s′) with their convex closures.

Continuous-time Markov Chains. Let M = (S, L, τ, ρ, `) be a CTMC. In
Bacci et al. (2014), we proposed the following operator:

FMCTMC(d)(s, s′) = max
{
IL(`(s), `(s′)), 1⊕α K(d)(τ(s), τ(s′))

}
, (5)

20

where α = ‖Exp(ρ(s))−Exp(ρ(s′))‖TV is the total variation distance between the
exponential residence time distributions associated with the current states. Note
that α equals the probability that the residence time in the two states differs.
Therefore, the operator above can be seen as an extension of (2) that takes into
consideration both the probability that the steps occur at different time moments
or that the distinction can be seen later on in the probabilistic choices.

3.3 Coupling Characterizations

Given two probability distrubutions µ, ν ∈ D(X), a coupling for (µ, ν) is a joint
probability distribution ω ∈ D(X ×X) s.t. for all E ⊆ X, ω(E×X) = µ(E) and
ω(X × E) = ν(E). Hereafter, Ω(µ, ν) will denote the set of couplings for (µ, ν).

Couplings have come to be used primarily for estimating the total variation
distances between measures, since the following equality holds

‖µ− ν‖TV = inf {ω(6=) | ω ∈ Ω(µ, ν)} , (6)

but they also work well for comparing probability distributions in general. An-
other notable equality is the following, a.k.a. Kantorovich duality

K(d)(µ, ν) = inf
{∫

d dω | ω ∈ Ω(µ, ν)
}
. (7)

Based on these equalities, behavioral pseudometrics have been given alterna-
tive characterizations in terms of couplings.

Couplings & linear time logics. In (Bacci et al. 2014), we provided an al-
ternative characterization of (1) that works as follows

δMMTL(s, s′) = supE∈σ(MTL) |PMs (E)− PMs′ (E)| (8)

= inf
{
ω(6≡MTL) | ω ∈ Ω(PMs ,PMs′)

}
, (9)

where σ(MTL) denotes the σ-algebra generated by the sets JϕK, for ϕ ∈ MTL, and
≡MTL is the logical equivalence on timed paths. Equation (8) follows by showing
that the generator is dense in σ(MTL), whereas (9) is proven generalizing (6).

Couplings & fixed points. Due to the Kantorovich duality, to the behavioral
distances seen in §3.2 it can be given an alternative characterization based on a
notion of coupling structure (varying w.r.t. the model) as the following minimum

min
{
γC | C coupling structure for M

}
. (10)

where γC is the least fixed point of certain operators ΓC, that we describe below.
A coupling structure C is said optimal if it achieves the minimum in (10).

21

Markov Chains. A coupling structure for an MC M = (S, L, τ, `) is a tuple
C = (τC, `) where τC : (S×S)→ D(S×S) is a probability transition function over
pair of states such that, for all s, s′ ∈ S, τC(s, s

′) ∈ Ω(τ(s), τ(s′)), to be though
of as a probabilistic pairing of two copies of τ .

Chen et al. (2012) showed that the distance of Desharnais et al. (2004) can
be described as in (10) by means of the following operator

ΓCMC(d)(s, s′) = max
{
IL(`(s), `(s′)), κC(d)(s, s′)

}
, (11)

where κC(d)(s, s′) =
∑

u,v∈S d(u, v) · τC(s, s′)(u, v). From (7), one may think of κC

as the specialization of K on a fixed coupling structure C.
Markov Decision Processes. A coupling structure for an MDPM = (S,A, ϑ, r)

is a tuple C = (ϑC, r) where ϑC : (A×S×S)→ D(S×S) is a labelled probability
transition function over pair of states such that, for all a ∈ A and s, s′ ∈ S,
ϑC(a, s, s

′) ∈ Ω(ϑ(a, s), ϑ(a, s′)). In Bacci et al. (2013a) we showed that the dis-
tance of Desharnais et al. (2004), can be described as in (10) using the following
operator

ΓCMDP(d)(s, s′) = maxa∈A
{
|r(s, a)− r(s′, a)| ⊕λ κCa(d)(s, s′)

}
. (12)

where κCa(d)(s, s′) =
∑

u,v∈S d(u, v) · ϑC(a, s, s′)(u, v). Once again, (12) may be
seen the specialization of (3) w.r.t the coupling structure C.

Continuous-time Markov Chains. In Bacci et al. (2014) we extended the case
of MCs in a continuous-time setting, by considering also the couplings over resi-
dence time distributions. A coupling structure for an CTMCM = (S, L, τ, ρ, `) is
a tuple C = (τC, ρC, `) where τC is defined as above, and ρC : S×S → D(R+×R+)
is such that ρC(s, s

′) ∈ Ω(Exp(ρ(s)),Exp(ρ(s′))), for all s, s′ ∈ S.
In this case the functional operator is defined as follows

ΓCCTMC(d)(s, s′) = max
{
IL(`(s), `(s′)), 1⊕β κC(d)(s, s′)

}
, (13)

where κC is defined as above and β = ρC(s, s
′)(6=). Equation (6) justifies the value

chosen for β, making (13) a specialization of (5) w.r.t. a coupling structure C.
Notably, due to the characterization above and (9), in Bacci et al. (2014) we

have been able to prove that the behavioral distance defined as the least fixed
point of FMCTMC is an upper bound of δMMTL in §3.1(1). In fact, this generalizes
from a quantitative point of view the inclusion of probabilistic trace equivalence
into probabilistic bisimilarity.

4 Computational Aspects

Historically, behavioral distances have been defined in logical terms, but effective
methods for computing distances arose only after the introduction of fixed point

22

characterizations. Indeed, one can easily approximate the distance from below by
iteratively applying the fixed point operator, and improving the accuracy with the
increased number of iterations. To this end, the operator needs to be computed
efficiently. For instance, this is the case when the fixed point operator is based on
the Kantorovich metric (see §3.2). Indeed, for µ, ν ∈ D(S) and S finite, the value
K(d)(µ, ν) is achieved by the optimal solution of the following linear program
(a.k.a. transportation problem)

TP(d)(µ, ν) = arg minω∈Ω(µ,ν)

∑
u,v∈S ω(u, v) · d(u, v) (14)

where Ω(µ, ν) describes a transportation polytope. The above problem is in P
and comes with efficient algorithms (Dantzig 1951; Ford and Fulkerson 1956).

In Bacci et al. (2013b), we proposed an alternative exact method that com-
putes the distance of Desharnais et al. (2004) over MCs efficiently, that adopts
an on-the-fly strategy to avoid an exhaustive exploration of the state space. Our
technique is based on the coupling characterization seen in §3.3. Given an MC
M and an initial coupling structure C0 for it, we adopt a greedy search strategy
that moves toward an optimal coupling by updating the current one, say Ci, as
Ci+1 = Ci[(s, s′)/ω] by locally replacing, at some pair of states (s, s′), a coupling,
which is not optimal, with the optimal solution ω = TP(γCi)(τ(s), τ(s′)). Each
update strictly improves the current coupling (i.e., γCi+1 < γCi) and ensures a fast
convergence to an optimal one.

The method is sound independently from the initial starting coupling. More-
over, since the update is local, when the goal is to compute the distance only
between certain pairs, the construction of the coupling structures can be done on-
the-fly, delimiting the exploration only on those states that are demanded during
the computation. Experimental results show that our method outperforms the
iterative one by orders of magnitude even when one computes the distance on all
pairs of states.

In Bacci et al. (2013a) we further improved this technique in the case the
input model is given as a composition of others. In summary, we identified a
well behaved class of operators, called safe, for which is it possible to exploit
the compositional structure of the system to obtain a heuristic for constructing
a good initial coupling to start with the on-the-fly algorithm described above. It
is worth noting that this is the first method that exploits the compositionality of
the system to compute behavioral distances.

Complexity Results. Most of the theoretical complexity results about the
problem of computing behavioral distances relies on fixed point characterizations.

Based on the fixed point characterization of van Breugel and Worrell (2001)
(see §3.2(2)), Chen et al. (2012) showed that the bisimilarity distance of Deshar-
nais et al. (2004) over MCs can be computed in polynomial time as the solution of

23

a linear program that can be solved using the ellipsoid method (Schrijver 1986);
this result has been later extended in Bacci et al. (2014) to CTMCs (see §3.2(5)).

Not surprisingly, the integration of non determinism on top of the proba-
bilistic behavior, as in MDPs and Segala systems, has consequences also from a
complexity perspective. Fu (2012) proved that the fixed point characterization
of the bisimilarity pseudometric of de Alfaro et al. (2007) is in NP ∩ co-NP.
This is done by showing that the problem of deciding if a (rational) fixed point
is the least one is in P, then he provided a nondeterministic procedure to guess
(rational) fixed points. Recently, van Breugel and Worrell (2014) proved that the
problem of computing the distance on Segala systems (see §3.2(4)) belongs to
PPAD2 by using a result by Etessami and Yannakakis (2010) that states that
computing fixed points of polynomial piecewise linear functionals is in PPAD.

In the case of linear (real-)time behavioral distances (see §3.1(1)), the de-
cidability problem is still open. However, in a recent work, we showed that the
MTL (resp. LTL) distance on CTMCs (resp. MCs) is NP-hard to compute (Bacci
et al. 2014, Corollary 23). We proved this result following arguments from Lyngsø
and Pedersen (2002), who proved the NP-hardness of comparing hidden Markov
models with respect to the L1 norm.

References

R. Alur and T. A. Henzinger. Real-Time Logics: Complexity and Expressiveness.
Information and Computation, 104(1):35–77, 1993.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Computing Behavioral Dis-
tances, Compositionally. In MFCS, volume 8087 of Lecture Notes in Computer
Science, pages 74–85, 2013a.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. On-the-Fly Exact Compu-
tation of Bisimilarity Distances. In TACAS, volume 7795 of Lecture Notes in
Computer Science, pages 1–15, 2013b.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Topologies of Stochastic
Markov Models: Computational Aspects. ArXiv e-prints, Mar. 2014.

L. Cardelli. Brane Calculi. In CMSB, volume 3082 of LNCS, pages 257–278.
Springer, 2005. ISBN 978-3-540-25375-4.

2The complexity class PPAD, which stands for polynomial parity argument in a directed
graph, was introduced by Papadimitriou (1994) and it has received increased attention after it
has been shown that finding Nash equilibria of two player games is a PPAD-complete problem.

24

L. Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):
190–215, 2008. ISSN 0304-3975.

L. Cardelli. Two-domain DNA strand displacement. MSCS, 23:247–271, 4 2013.
ISSN 1469-8072.

L. Cardelli and A. Csikász-Nagy. The Cell Cycle Switch Computes Approximate
Majority. Scientific Reports, 2, 2012. doi: 10.1038/srep00656.

L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. In
QEST, pages 171–180, 2010.

L. Cardelli and R. Mardare. Stochastic Pi-calculus Revisited. In ICTAC, volume
8049 of LNCS, pages 1–21. Springer, 2013. ISBN 978-3-642-39717-2.

D. Chen, F. van Breugel, and J. Worrell. On the Complexity of Computing Prob-
abilistic Bisimilarity. In FoSSaCS, volume 7213 of Lecture Notes in Computer
Science, pages 437–451. Springer, 2012.

T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Model Checking of Continuous-
Time Markov Chains Against Timed Automata Specifications. Logical Methods
in Computer Science, 7(1), 2011.

G. B. Dantzig. Application of the Simplex method to a transportation problem.
In Activity analysis of production and allocation, pages 359–373. Wiley, 1951.

L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game Relations and
Metrics. In LICS, pages 99–108, July 2007.

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

K. Etessami and M. Yannakakis. On the Complexity of Nash Equilibria and
Other Fixed Points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov Decision
Processes. In UAI, pages 162–169. AUAI Press, 2004. ISBN 0-9749039-0-6.

N. Ferns, D. Precup, and S. Knight. Bisimulation for Markov Decision Processes
through Families of Functional Expressions. In Horizons of the Mind. A Tribute
to Prakash Panangaden, volume 8464 of LNCS, pages 319–342, 2014.

L. R. Ford and D. R. Fulkerson. Solving the Transportation Problem. Manage-
ment Science, 3(1):24–32, 1956.

25

H. Fu. Computing Game Metrics on Markov Decision Processes. In A. Czumaj,
K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages,
and Programming, volume 7392 of Lecture Notes in Computer Science, pages
227–238. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31584-8.

A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic Reasoning for Probabilistic
Concurrent Games. In IFIP WG 2.2/2.3, pages 443–458, 1990.

D. Kozen. A Probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985.

K. G. Larsen and A. Skou. Bisimulation Through Probabilistic Testing. In POPL,
pages 344–352, 1989.

R. B. Lyngsø and C. N. Pedersen. The consensus string problem and the com-
plexity of comparing hidden Markov models. Journal of Computer and System
Sciences, 65(3):545–569, 2002.

R. Mardare, L. Cardelli, and K. G. Larsen. Continuous Markovian Logics -
axiomatization and quantified metatheory. LMCS, 8(19):247–271, 2012.

M. Mio. Upper-Expectation Bisimilarity and Real-valued Modal Logics. CoRR,
abs/1310.0768, 2013.

C. H. Papadimitriou. On the Complexity of the Parity Argument and Other
Inefficient Proofs of Existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAmbients:
an abstraction for biological compartments. TCS, 325(1):141–167, 2004.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986. ISBN 0-471-90854-1.

F. van Breugel and J. Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. In ICALP, volume 2076 of LNCS, pages 421–432, 2001.

F. van Breugel and J. Worrell. The Complexity of Computing a Bisimilarity
Pseudometric on Probabilistic Automata. In Horizons of the Mind. A Tribute
to Prakash Panangaden, volume 8464 of LNCS, pages 191–213, 2014.

26

The Challenges of Attaining Grace
(in a Language Definition)

Andrew Black
Portland State University

Kim Bruce
Pomona College

Michael Homer James Noble
Victoria University of Wellington

Abstract

Grace is a new object-oriented language, designed for teaching object-oriented
programming to novices. Grace is based on a small number of syntactically and
semantically simple constructs that collaborate to provide a flexible and expres-
sive language. Core features include nested scope, generative object constructors,
and first-class anonymous functions; classes and most control structures are syn-
tactic sugar. On this core we have been able to build pattern matching, a simple
but effective module system, and the infrastructure for supporting pedagogical
dialects.

Grace features a structural type system that clearly separates interface from
implementation. The type system is also gradual, allowing programmers to mix
static and dynamic typing. These features, which we were able to integrate into
the language fairly easily, allow instructors to introduce types as early or late as
they see fit.

Surprisingly to us, the more challenging parts of the language design turned
out to be those related to inheritance from objects, and object initialization in the
presence of inheritance. The challenge was to use generative object constructors
to support Java-like class-based inheritance semantics. We thought that these
semantics were desirable because students who learn Grace as their first language
are likely to transition to Java.

Abadi and Cardelli’s foundational book A Theory of Objects (1996) sets out
the theoretical underpinnings for object-oriented languages, with special empha-
sis on object-based languages. In their model, as in ours, objects are primitive,
and classes are derived from objects. This note discusses the challenges in defin-
ing object inheritance and initialization so that the semantics of inheritance and
initialization are similar to Java’s. We discuss how our work extends that of Abadi
and Cardelli.

27

1 Introduction
Grace is a programming language targeted at novice programmers, and embraces the
following high-level goals (Black et al. 2013):

• to integrate proven new ideas in programming languages into a simple object-
oriented language;

• to represent the key concepts underlying object-oriented programming grace-
fully — in a way that can be easily explained; and

• to allow students to focus on the essential, rather than the accidental, difficulties
of programming, problem solving and system modeling.

Grace is still under development; we plan to begin testing Grace in teaching in the fall
of 2014.

The Grace language, which is described in Section 2, is object-based (everything is
an object) and supports nested scopes and anonymous first-class functions (which are,
consequently, objects). Classes are definable from these more primitive concepts; as
discussed in Section refClasses, we include syntactic sugar for classes to make Grace
more like other object-oriented languages, and to reduce the syntactic overhead of
nesting.

This design makes it remarkably simple to add pattern matching (Homer et al.
2012), a simple module system (Homer et al. 2013), and a system for building peda-
gogical dialects (Homer et al. 2014), similar to “language levels” in DrScheme (Findler
et al. 2002).

Grace includes a structural type system, like Modula-3 (Cardelli et al. 1995) and
OCAML (Rémy 2002), rather than a nominal type system, like Java and C#. Type
annotations on declarations are optional; we call this gradual typing. Gradual typing
allows programmers to combine statically and dynamically typed code in a single pro-
gram. This has pedagogical advantages, because instructors can start teaching using
Grace with dynamic typing, and then gradually move students into a statically typed
dialect of Grace as the deficiencies of dynamic typing become apparent. This limits
the number of new ideas that students must master as they write their first programs.

We have found that these features fit together nicely, and that the resulting language
is both simple and pleasant to use. A prototype implementation, minigrace, is written
in Grace and currently generates either C or JavaScript1.

In spite of these successes, we did run into some difficulties in the Grace design —
difficulties that showed up in sometimes-unexpected places. The core of this paper,
found in Section 4, is a discussion of the difficulties related to inheritance from objects,

1See http://gracelang.org/applications/minigrace/ for information on how to install and use the
compiler. The JavaScript version runs on the web, avoiding the need to download and install any soft-
ware.

28

and object initialization. Initialization is routine when inheriting from classes, but as
we will see, it is tricky when inheriting objects. We discuss the goals that led to these
difficulties, alternative designs, and the present resolution.

2 A Brief Introduction to Grace
This section provides a synopsis of the elements of Grace that are most relevant to the
issues addressed in this paper. A more complete description of Grace as a teaching
language is available in a paper presented at SIGCSE (Black et al. 2013).

2.1 Objects
A Grace object is self-contained, with a unique identity and its own methods and
fields — both constants (defs) and variables (vars). The outside world (other objects)
can interact with an object only through method requests (our term for “message sends”
or “method calls”).

From the beginning, we envisaged that Grace objects would be created by gen-
erative object constructors: expressions that constructs new objects, whose methods
and fields are given in body of the constructor. Emerald’s object constructors are gen-
erative (Raj et al. 1991), as are OCAML objects (Rémy 2002) and JavaScript object
literals. In Grace we can write:

object {
var size := 1
def threshold = curThreshold
method grow(n) {

size := size + n
}
print "a new object has been created"

}

Evaluating the same generative object constructor multiple times generates mul-
tiple new objects, with separate identities but the same structure, and potentially dif-
ferent field values. In the above example, the per-instance constant threshold will be
defined as the current value of curThreshold, which is presumably defined in an outer
scope. This generative property differentiates Grace’s object constructors from the
static object literals of languages like Scala (Odersky 2011) and Self (Ungar and Smith
1991), which are evaluated only once and so create only one object.

Note that Grace object constructors can contain executable code, which may in
general have effects. In this example, print has an obvious effect, but curThreshold
might also have an effect, if curThreshold is a method. Object constructors are expres-
sions, and may be nested inside other expressions, and thus inside methods.

29

2.2 Method Requests
Method requests, which we often refer to simply as requests, are the basic compu-
tational mechanism in Grace. As in Smalltalk, control structures, function applica-
tion, field access, and primitive operations are all invoked using requests. Method
requests are written using the “dot notation” o.m(...), as in many other object-oriented
languages. However, method requests can also be written without an explicit receiver,
as m(...) (or just m if there are no parameters). The object receiving such a request is
determined by the lexical scope. If a method with the same name is available in the
most closely enclosing object, then the receiver is self. Otherwise, the receiver will
be found by inserting a sequence of outers to access a method with a matching name
in some surrounding object.

2.3 Classes
Classes are useful when one wishes to define multiple objects with the same structure.
Grace’s class syntax combines an object constructor with a method definition:

class pointAtx(x')y(y') {
def x = x'
def y = y'
method distanceFromOrigin { ((x^2) + (y^2)).sqrt }

}

This defines a method, which can be used to create an object using a method request:
pointAtx(5)y(10). We will discuss the meaning of classes in more detail in Section 3.

2.4 Other features
Other components of Grace that are less important to the topic of this paper, but which
provide significant expressive power, include the following.

1. A block represents an anonymous function, also known as a λ-expression. For
example, {x −> x +1} represents the successor function. Blocks can be used to
define control structures like for. . . do that can be used just like built-in con-
structs.

2. Methods can have multi-part names, where the parts as separated by parameter
lists. We have already seen this in the definition of the class pointAtx()y(). Simi-
larly, the method that updates an element in a list has the name at()put(), and is
defined like this:

method at(n)put(x) {
boundsCheck(n)
inner.at(n−1)put(x)

30

self
}

3. Gradual typing: Grace can be used as a statically or dynamically typed language,
or with a mix. Type annotations that the programmer chooses to insert will
be checked, either at compile time or at run time. All actual type errors are
caught by the run-time system, whether or not type information is provided by
the programmer.

4. Pattern matching is supported by match()case()...case() statements. Matches
can be based on the identity, type (that is, interface), or other features of the
match argument. Basic pattern matching is built into the language, but refined
matching criteria can be defined by programmers.

3 Objects or Classes: which should be Primitive?
While one could design a language in which both objects and classes are primitive, the
strong connection between the two suggests that only one is necessary. Which should
one choose?

3.1 Modeling Object Constructors with Classes
It is quite possible to have syntax for both objects and classes, but to define objects in
terms of classes. Java, for example, does not have generative object constructors, and
insists that every object is created from a class. However, its anonymous classes can
be used to achieve the same effect as object constructors:

new Object() {
final int x = _x;
final int y = _y;
float distanceFromOrigin { return sqrt((x^2) + (y^2)) };

}

This expression creates a new object with the given fields and method, which inherits
from class Object; it assumes that _x and _y are defined in an outer scope. Ruby calls
this the “eigenclass” model (Perrotta 2010).

3.2 Modeling Classes with Methods
From a pedagogical point of view, it seems strange to make class the primitive: since
classes are used to produce objects, shouldn’t objects come first? In particular, it is
often the case that in the first few weeks of a course for novices, most classes are used
to generate only a single object. It would be simpler to first define objects, and then

31

introduce classes later as a way to generate multiple objects with similar structure. This
reasoning led us to ask how we could model class-based systems using objects.

We have explored two ways of representing classes in Grace. Originally, we repre-
sented classes as objects; more recently we have moved toward a simpler representa-
tion of classes as methods, as we now explain.

The definition of class pointAtx(x')y(y') in Section 2.3 is equivalent to:
method pointAtx(x')y(y') {

object {
def x = x'
def y = y'
method distanceFromOrigin { ((x^2) + (y^2)).sqrt }

}
}

This definition lets us construct a new point at (5, 10) by writing pointAtx(5)y(10).
Because classes define methods, it is easy to build factory objects that provide

multiple ways of constructing objects. For example, if a programmer wanted to be
able to create points by giving either cartesian or polar coordinates, they could define:

def point = object {
class x(x')y(y') {

method x { x' }
method y { y' }
method distanceFromOrigin { ((x^2) + (y^2)).sqrt }

}
method r(r)theta(theta) {

x (r * cos(theta)) y (r * sin(theta))
}

}

They could then create point objects using requests like point.x(3)y(4) or point.r(5)theta
(π/6), which both generate objects with similar (cartesian) representations.

3.3 What about other Roles of Classes?
Class-based inheritance and object-based delegation are often considered roughly equiv-
alent in power (Lieberman et al. 1987). Classes can model object constructors, al-
though not necessarily other features of prototype-based languages, such as delega-
tion (Ungar and Smith 1991). And we have just seen how, by repeatedly executing an
object constructor, objects and methods can subsume the object-generation aspect of a
class.

However, in many languages classes do not just create new objects: they play other
roles as well. For example, Borning (1986) lists seven additional roles for classes in
Smalltalk, and in languages like Java and C++, classes also function as types. The

32

design of Grace does not conflate classes and types: types in Grace are like Java inter-
faces rather than classes. Hence, we don’t have to worry about supporting this aspect
of classes from traditional object-oriented languages.

A key role for classes, however, is as “a means for implementing differential pro-
gramming (this new object is like some other one, with the following differences. . .)”
(Borning 1986). In particular, we wanted to be able to support a notion of inheri-
tance for classes. So we were forced to ask ourselves how we could model class-based
inheritance with the sharing mechanisms of object-based languages.

3.3.1 The Traditional Semantics of Objects and Classes

Semanticists have traditionally modeled objects as fixed points and classes as the gen-
erators of fixed points (Cook 1989; Bruce 2002). The intuition as follows. In an object,
the meaning of self is the object that contains it: an object is a fixed point in which
“the knot has been tied” and self refers to the object itself. A class, in contrast, has
an implicit self parameter (it is explicit in the semantics, but not in the syntax): “the
knot has not yet been tied”. This allows the class to be used both to generate multiple
objects, each with its own self, and in inheritance, because self in the superclass can
later be given the correct meaning, which is the final (extended) object.

Abadi and Cardelli (1996) illustrate this by defining a class as an object containing
a collection of pre-methods — methods where self has been abstracted out as a param-
eter. Essentially, objects are constructed by taking a fixed point with respect to self.
Because classes contain the pre-methods, when a subclass is defined the pre-methods
can be altered by adding new methods or overriding existing ones. When new objects
are defined from the new subclass, the fixed point is taken with respect to the new or
overridden features. As a result, the meaning of self, even in inherited methods, is the
new object, which includes the new and overriding methods introduced in the subclass.

3.3.2 Inheritance from Objects

So how can we inherit from an object? If the object has only the methods obtained
after taking the fixed point, then we cannot get the behavior we want, because self
refers to the wrong object. Thus, it seems that objects will have to contain the pre-
methods. It is still straightforward to execute methods — just pass in the object to be
bound to the self parameter as an extra argument before executing the code. This is,
of course, exactly what most implementations of object-oriented languages do: they
share the pre-methods given in the class definition amongst all of the instances of the
class, and bind self to the receiver when a method request is executed.

So much for methods. But what about an object’s fields — its constants and vari-
ables? These must be initialized. And there lies the difficulty.

33

4 Initializing Objects
Initializing objects is more complex than one might expect. Key issues involve the
order of initialization and the meaning of self during initialization. In Grace, initial-
ization entails executing the code in the body of the object constructor; there is nothing
analogous to Java’s “constructor” (which behaves like an initialization method).

Rather than being absolutely precise in our definitions below, we provide sufficient
intuition behind the operations to illustrate the issues involved. We start by temporarily
ignoring inheritance and looking just at the effect of evaluating an object constructor2.

When an object constructor is evaluated, the first thing that happens is that space
is allocated for all definitions and fields, and their values are set to the special value
uninitialized. Second, the closures for methods are made available to the object: be-
cause methods are closures, references to definitions or variables in methods are not
evaluated at this time.

4.1 A Brief Detour: Representing Methods
While there are many ways in which we might make methods available to an object,
we will pick a particular representation here that will allow us to make our discussion
more concrete. Rather than having a separate slot in the object for each method, we
will choose to represent all the methods together as closures in another structure. Thus,
each object owill maintain a reference to a structureMo that contains all of the closures
corresponding to its methods. Moreover, each closure will not only have a parameter
for each of the explicit parameters in the method, but will also have a self parameter.

We will not here assume that the method closures are shared between objects.
While a reasonable implementation might well share the code of the methods, that
is beyond the scope of the present discussion, in which we focus on an explanation of
the semantics of inheritance.

When a method request of the form obj.m(e) is evaluated, the system will obtain
the closure corresponding to m from Mobj. It will then provide the arguments obj and
e to the closure, and evaluate the closure.

4.2 Back to Initializing Objects
After the space for the object has been allocated and the methods installed, the identi-
fier self is set to refer to this new object. Finally, all the code in the object constructor
is evaluated, from top to bottom. By “all the code” we mean statements at the top-level
of the object constructor, and initialization expressions for fields. If, during this eval-
uation — or indeed at any time during the execution of the program — an uninitialized

2In Grace, everything inherits at least from the top-level Object; we return to this later.

34

field is requested, the program will raise a runtime error. Thus, it is the programmer’s
responsibility to ensure that the code is arranged so that no field is dereferenced before
it is initialized.

There are no restrictions on the kind of code that can be executed during initializa-
tion: the code may comprise arbitrary method requests, including requests on self that
access fields that may not yet be initialized. Rather than complicating the core seman-
tics to manage these “self-inflicted” methods, the semantics of Grace simply raises an
exception, although dialects may include more restrictive static checks. In contrast,
OCAML bans self-inflicted methods altogether during initialization and executes ini-
tializers in the scope surrounding the object constructor.

Once completed, the result of evaluating the object constructor is a reference to the
newly created object. However, notice that the initialization code might also expose
a reference to self before initialization is complete. For example, the initialization
could involve a method request in which self is passed as an argument — what Gil
and Shragai (2009) call “immodesty”. This possibility leads to difficulties because of
interactions between inheritance and initialization.

4.3 Inheritance from Classes
Let us turn our attention to inheritance from classes; we defer to Section 4.4 the trickier
case of inheriting from objects. Consider the class declaration

class d(...) {
inherits c(...)
...

}

What happens when we create a new object by evaluating the expression d(...)?
First, as before, space for the new object dobj is allocated. This will include slots

for all of the fields, both those inherited from c and those newly defined in d. As before,
all these fields are initialised to undefined.

The second step, installing the methods, is more complicated because of inheri-
tance and super. The structure containing the closures that represent the methods of
dobj is prepared as follows:3

1. Allocate the method structure Mdobj with slots for both inherited and newly de-
fined methods. As before, all the methods have an explicit self parameter.

2. Let Mc refer to the method structure of c. Copy the methods from Mc to the
corresponding method slots in Mdobj . Next, create and install the closures corre-
sponding to the methods defined in d. Newly introduced methods go into empty
slots, while overriding methods replace those from Mc.

3We are being very prescriptive of how methods are represented here. Actual implementations will
likely differ from this description, though the semantics should be the same.

35

3. When creating the closures for the methods in d, if a method includes a request
of the form super.q(...), it is compiled into a statically bound call to the closure
corresponding to q in Mc. In addition to the explicit arguments of q, a reference
to dobj is passed as the self argument in this call.

As before, the final steps of object construction are to install a reference to Mdobj in
the newly allocated object dobj, and set self to refer to dobj.

To initialize the definitions and variables in the new object, first run the initializa-
tion code from c (recursively executing its superclasses’ code). In executing this code,
the meaning of self is the new object dobj. Finally, run the initialization code in the
object d.

Given the above description, we can see that if the initialization code in c makes
a self-request for a method that was overridden by d, the overriding method will be
executed. In a similar situation in C++, the initialization code from a superclass would
always run the method in the superclass. In other words, in C++ the initialization code
is run in the original object. Java, in contrast, has a semantics more like that described
above, and executes the overriding method.

Why the difference? Meyers (2005) explains that the semantics chosen by C++ will
avoid accidental references to uninitialized variables that would occur if overriding
code were to refer to the fields of the new object, which have not yet been initialized
(though Gil and Shragai (2009) discuss issues with this semantics). Unfortunately,
using the (overridden) superclass method also means that any new actions taken by the
overriding method will not occur during initialization. For example, if the overriding
method logs updates and then requests the super-method, then actions taken during
initialization will not be logged.

As discussed in Section 4.2, “immodest” initialization code can expose a reference
to the new object. For example, a graphic object may register itself with a display man-
ager so that it can be redrawn as necessary. If this initialization is inherited by a button
object, the display manager might request a method on the button (e.g., requesting that
it draw itself), before the button is fully initialized.

Because of such problems, researchers and practitioners (Gil and Shragai 2009)
have argued for “safe object construction” techniques that restrict or ban both self-
infliction and immodesty, especially in the presence of concurrency (Goetz 2002). Qi
and Myers (2009) have proposed using type-state to solve object initialization prob-
lems in Java.

What is the “right” solution for Grace? After weighing the alternatives, we decided
to follow Java, and allow overriding of methods requested during initialization. In part,
this is because students need to learn about the dangers of such code, and having them
fall into this hole is a good way to create a “teachable moment”. But we also realized
that Grace is safe here in a way Java isn’t. While a Java program can observe a final
field going from null (a legal value) to another legal value, a Grace program attempt-

36

ing to access an uninitialized field immediately raises an exception. Moreover, Grace
dialects can be used to restrict the Grace language; a dialect could implement a check
that allows known safe immodest initialization schemes, while forbidding potentially
dangerous ones. This would not be possible if immodesty were banned in the base
language.

While we have framed this discussion to explain initialization of objects created
using the class syntax, this is unimportant. The description works for all objects that
inherit from a class, whether or not the new object is created using a class or using an
object constructor. The tricky case, discussed below, is when the new object inherits
from an object rather than from a class.

4.4 Inheriting from an Object
While Abadi and Cardelli (1996) extensively discuss inheritance from objects in chap-
ter 4, their formal model of inheritance is limited to pre-method reuse, illustrated
through their modeling of classes as collections of pre-methods, along with a new
method to generate new objects. They then discuss how inheritance of classes can be
modeled in their object calculus with this design. In the informal discussion of object
inheritance and delegation, they mention that it is important that parent objects and
classes be statically visible (pp. 40–41), a restriction that we adopt. However, detailed
formal models of object inheritance are not provided.

We considered adopting Abadi and Cardelli’s approach of defining inheritance only
from classes (as does OCAML), but this seemed overly restrictive, and made objects
into second-class citizens. In this section, we explore why inheritance from objects
can be tricky, and present our solution.

The difficulty with inheriting from existing objects (as opposed to constructor ex-
pressions that create new objects) is that there is no initialization code to run. While
methods are not a problem, how should we initialize the fields of the new object? Our
initial thought was to copy the values of the fields of the superobject. But how do we
copy them? While a shallow copy can sometimes be the correct solution, too often it is
not. For example, suppose an object has a reference to a log object that collects infor-
mation about its activity. If an inheriting object were simply given a reference to the
same log, then activities by the subobject and the superobject would both update the
same log, which is probably not the desired behavior. Constructing a new log object
requires access to the code that initialized the superobject.

One possible solution is to turn the initialization code for every object into a clo-
sure, and have the object carry it around for its whole lifetime, just in case that object is
inherited. This seems unattractive, and might have surprising implications for memory
usage. Languages like Smalltalk separate object construction from initialization, and
make initialization a real method, but that does not work for Grace because defs must
be given their values when they are declared, not later.

37

The lack of an obviously good answer to the initialization question led us to restrict
the use of inheritance to fresh objects: those returned from object constructors and
classes. Also permitted are invocations of clone methods, as well as invocations of
more general methods that do some work and then return a fresh object.

These restrictions on inheritance are intended to ensure that the initialization code
for the superobject is always accessible at the place where it is inherited. They have
the side-effect of ensuring that the structure of the object being inherited is statically
known. This turns out to be quite useful. Suppose, for example, that a class c has a
confidential field f. (Confidential fields are accessible to an object and its subobjects,
but are not visible outside.) Then, if d is a subclass of c, the methods defined in
d may access f. If we did not have full information about c’s structure — including
those components that are not externally visible — we might not know how to interpret
references to f. One of the consequences of this is that if method m has a parameter
p with a method new that creates a new object, then inside m we may construct new
objects by requesting p.new, but we may not construct objects that inherit from p.new.

4.5 Evaluation
For the most part we are satisfied with our solution to the difficulties involved in in-
heriting from objects. However, there is one annoying case that is not covered by our
current solution, which we would like to fix.

There are many situations where objects are immutable and independent of the sur-
rounding scope. For example, an object may be composed only of methods, or it may
contain methods and definitions, but the values of those definitions may also be im-
mutable. Under these circumstances, it is annoying to have to create a (parameterless)
class, all of whose instances will be (and will always remain) identical, just so that one
can inherit from the class rather than from the immutable object itself.

5 Summary
Grace is an object-oriented language designed for teaching that provides generative
object constructors, classes, and first-class functions. Grace makes object construc-
tors, not classes, primary, because they are simpler and more concrete, and so (we
hope) easier for novices to understand. While classes as object factories were eas-
ily definable from object constructors, it was more challenging to define inheritance
from objects, because of the need to initialize the subobject’s fields based on the su-
perobject. To avoid initializing those fields via a default clone operation that would
frequently provide the wrong result, we instead restrict inheritance to freshly created
objects.

38

References
M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996. ISBN 978-

0387947754.

A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and R. Yannow. Seeking
Grace: A new object-oriented language for novices. In Proc. 44th ACM Technical
Symp. on Computer Science Education, SIGCSE ’13, pages 129–134, 2013.

A. Borning. Classes versus prototypes in object-oriented languages. In ACM/IEE Fall
Joint Computer Conf., pages 36–40, 1986.

K. B. Bruce. Foundations of Object-oriented Languages: Types and Semantics. MIT
Press, Cambridge, MA, USA, 2002. ISBN 0-262-02523-X.

L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3
reference manual. Research Report 53, DEC Systems Research Center, 1995.

W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
Providence, RI, USA, 1989.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: a programming environment for Scheme. J. Funct. Pro-
gram., 12(2):159–182, 2002.

J. Y. Gil and T. Shragai. Are we ready for a safer construction environment? In
Proceedings of the 23rd European Conference on ECOOP 2009 — Object-Oriented
Programming, number 5653 in LNCS, pages 495–519, Berlin, Heidelberg, 2009.
Springer-Verlag. URL http://dx.doi.org/10.1007/978-3-642-03013-0_23.

B. Goetz. Java theory and practice: Safe construction techniques. IBM develop-
erWorks, June 2002. URL https://www.ibm.com/developerworks/java/library/
j-jtp0618/.

M. Homer, J. Noble, K. B. Bruce, A. P. Black, and D. J. Pearce. Patterns as objects
in Grace. In Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12,
pages 17–28, New York, NY, USA, 2012. ACM.

M. Homer, K. B. Bruce, J. Noble, and A. P. Black. Modules as gradually-typed ob-
jects. In Proceedings of the 7th Workshop on Dynamic Languages and Applications,
DYLA ’13, pages 1:1–1:8. ACM, 2013.

M. Homer, J. Noble, K. B. Bruce, and A. P. Black. Graceful dialects. In R. Jones, ed-
itor, ECOOP 2014 — Object-Oriented Programming, 28th European Conference,

39

volume 8586 of LNCS, pages 131–156, Uppsala, Sweden, July 2014. Springer-
Verlag. URL http://link.springer.com/chapter/10.1007/978-3-662-44202-9_6.

H. Lieberman, L. Stein, and D. Ungar. Treaty of Orlando. SIGPLAN Not., 23(5):
43–44, Jan. 1987.

S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs
(3rd Edition). Addison-Wesley Professional, 2005. ISBN 0321334876.

M. Odersky. The Scala language specification. Technical report, Programming Meth-
ods Laboratory, EPFL, 2011.

P. Perrotta. Metaprogramming Ruby. Pragmatic Bookshelf, 2010.

X. Qi and A. C. Myers. Masked types for sound object initialization. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’09, pages 53–65, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-379-2. doi: 10.1145/1480881.1480890. URL http://doi.acm.org/10.
1145/1480881.1480890.

R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul.
Emerald: A general purpose programming language. SP&E, 21(1):91–118, 1991.

D. Rémy. Using, Understanding, and Unraveling the OCaml Language. In
G. Barthe, editor, Applied Semantics. Advanced Lectures. LNCS 2395., pages 413–
537. Springer Verlag, 2002.

D. Ungar and R. B. Smith. SELF: the Power of Simplicity. Lisp and Symbolic Com-
putation, 4(3), June 1991.

40

The gene gate model: some afterthoughts

Ralf Blossey
Interdisciplinary Research Institute USR3078 CNRS

Parc de la Haute Borne, 50 Avenue Halley
59658 Villeneuve d’Ascq, France

Abstract

In 2006, Cardelli, Blossey and Phillips proposed a simple computational
model for the dynamics of transcriptional regulation using stochastic π-
calculus. Here I show that, to some extent, our path of understanding the
properties of this model has run backwards... a recently obtained exact
solution of the gene gate model for a self-regulatory gene allows to elucidate
some very basic properties which would have been nice to know already
in 2006. In this paper I explain the properties of the gene gate model
of the self-regulatory gene in the context of the existing literature. Our
current understanding of this model - which by all means appears to be
the simplest way to model feedback interactions - helps to gain insight into
what a computational theory of gene regulation should be able to provide.

The gene gate model. In 2006, Luca Cardelli together with Andrew Phillips
and Ralf Blossey proposed a simple model of transcriptional regulation, imple-
mented in stochastic π-calculus (Blossey R, Cardelli L, Phillips A (2006)), with
the ambition to be able to compute the dynamic behaviour of ‘small’ gene net-
works. The main idea for the description of a gene is to represent it by two states
G and G′, whereby the gene in state G transcribes protein constitutively at a
rate ε,

G→ε G+ A . (1)

It enters into the state G′ through the interaction with a transcription factor,
for simplicity in this example let us take its own product (this construct then
corresponds to an autoregulated gene):

G+ A→r G
′ + A. (2)

41

Protein A interacts with G and is released after the transition from G to G′. In
state G′, the gene can now either be repressed, and hence not transcribing at all
after which the gene relaxes from state G′ back to the active state G via

G′ →η G, (3)

or G′ can be understood as an activated state, and hence transcribing at a higher
rate,

G′ →η G+ A (4)

with η > ε, and at the same time the gene relaxes back from the highly active
state G′ to the constitutively active state G. (This is the most concise and simple
version, one can separate it in two steps, G′ → G′ + A and G′ → G, but at
the cost of adding another parameter to the model.) It is of course noteworthy
that within this model we entirely neglected the level of mRNA. This biologically
crucial process can, however, be added when needed, so that this omission is not
a critical factor.

This model, which the authors called the ‘gene gate model’, has some pecu-
liarities when compared to other models. First of all, it is regulated, in contrast to
probably its major known forefather, the Markov model by Peccoud and Ycart,
published a long time ago already in the journal Theoretical Population Biology
(Peccoud J, Ycart B (1995)). Like the gene gate model, the Peccoud-Ycart model
consists of a gene which can be in either of two states, G and G′ (we thus inherited
this gene), but the PY-gene is not regulated: a change in its state from active to
non-active occurs purely at random, without the intervention of a protein A, as
in equation (2) above.

The second peculiarity of the gene gate model is that the model is consti-
tutively active, hence it transcribes without the interaction with a transcription
factor. And, ultimately, the final peculiarity is that there is no transcription
factor-DNA complex in the model, see again reaction (2). This feature has met
with some criticism by readers and referees, who sometimes considered this step
‘unphysical’. In our view, this is in fact not the only unphysical feature... (see
the neglect of mRNA) and the critique is not pertinent. The gene gate model
is obviously a caricature of the real process, which involves numerous complex
molecules, of which only some are represented explicitly in the model, while oth-
ers reside somehow in the reaction rates. Just take the RNA polymerase: where
is it? It hides in the rate ε, and in η in the activated case. Our motivation
for this model was to build something which was a ‘minimal’ model, which can,
however, allow to build complex networks - as those illustrated in Figure 1, some-
thing which the Peccoud-Ycart model obviously does not allow. We believed we
pushed this modeling to the extreme, while still being rather faithful to reality in
this sketchy sense.

42

ḃ = !b + "2g! − #b , !13"

and

ġ" = − "1g" + r1gc , !14"

ġ! = − "2g! + r2ga , !15"

hence one has for g the equation ġ=−!ġ"+ ġ!" which follows
from the conservation of gene states.

At this point we stress that we have only considered the
case of binding of a single protein A. In general, the binding
of proteins is rather by multiprotein complexes !dimers or
higher", which is one way to give rise to a Hill coefficient h
when the complexation reaction is considered an equilibrium
!“fast”" reaction #20$. We could take this into account in our
model by adding a corresponding complexation reaction in
the reaction scheme. To be practical we here directly modify
the ODE equation of the gene by replacing a by ah with h
$1 to cover this more general case; in what follows, we
consider h as a continuously variable parameter. It is well
known that a Hill exponent $1 is essential for the dynamic
behavior of simple gene circuits #21$.

For the stochastic simulations we employ the Gillespie
algorithm which is equivalent to the chemical master equa-
tion #4$. We combine the Gillespie method with the stochas-
tic %-calculus, a process algebra originating in theoretical
computer science #22–27$. For a brief introduction into the
main ideas of the calculus, see the Appendix.

III. EXAMPLES

A. Basic circuits

We first discuss the elementary gene circuits that can be
built from the above constructs. All simple transcriptional
networks are either circular, linear or mixed circuits, see Fig.
2. The archetypal loops are the autoinhibitory and autoacti-
vatory loops. The autoinhibitory loop neg!a ;a" is shown in
part !1" of Fig. 2. The ODE’s governing its dynamics are

ȧ = !g − #a !16"

and

ġ = "g" − rga = "#1 − !1 + &ah"g$. !17"

The natural first task is to look at nullclines and fixed points.
The nullcline of g is determined by

g =
1

1 + &ah . !18"

If we have ġ /"%0 and & finite we can keep the circuit near
the nullcline of g. Inserting the nullcline condition into the
equation for a we find

ȧ =
!

1 + &ah − #a , !19"

which is the common form of the Hill-type equation used in
nonlinear dynamics descriptions of gene networks. This turns
out to be a general feature of the gene gate approach: Near
the nullclines of the gene gate states, ġ% ġ"%¯ · %0, the
circuit dynamics reduces to that of the standard Hill equa-
tions. This feature has an immediate consequence for the
fixed points. The nuclline of a is given by

!

1 + &ah = #a , !20"

where the result for g has been used, and we thus find the
standard fixed-point condition of the Hill equation for a.
Since the left-hand side is a hyperbolic function in a, and the
right-hand side is a linear function there is a unique fixed-
point of the circuit.

The argument can be repeated for the autoactivatory loop
pos!a ;a" with the result

ȧ = " −
" − !

1 + &ah − #a =
! + rah

1 + &ah − #a , !21"

which is the typical sigmoidal form of the activatory circuit.
Therefore, we again find that the fixed points are given by a
condition akin to the standard Hill-type equations, which for
h$1 gives rise to three fixed points.

The stability of the fixed points in the gene networks is
not affected by the presence of the genes. We illustrate this
for the bistable circuit composed of two neg gates,
neg!a ;b" &neg!b ;a", where the symbol “&” denotes the com-
position of two gates, see part !1" of Fig. 2. The equations of
the circuit read as

ȧ = !ga − #a !22"

and

ġa = "#1 − !1 + &bh"ga$!23"

and likewise for a↔b. As is well known #21$, the nonlinear-
ity due to the Hill coefficient is needed for the system in
order to display the fixed-point structure of the bistable
switch; for a value of h=1 as in our basic version of the gene
gate model this is not the case. The stability of the fixed
points follows from the eigenvalues of the matrix

FIG. 2. !Color online" The two main classes of simple circuits:
Circular !1" and linear !2". Shown are only the repressive circuits;
activatory circuits and mixtures of both types can be built in a
similar fashion. Circuits shown in !1": The autoinhibitive circuit, a
bistable switch, the repressilator. Circuits shown in !2": A linear
array and a linear array with a head feedback, hence a mixture of a
circular and a linear circuit.

MEAN-FIELD VERSUS STOCHASTIC MODELS FOR… PHYSICAL REVIEW E 78, 031909 !2008"

031909-3

Figure 1: The two main classes of simple gene circuits: Circular (1) and linear
(2). Shown are only the repressive circuits; activatory circuits and mixtures of
both types can be built in a similar fashion. Circuits shown in (1): The self-
repressed circuit, a bistable switch, the repressilator. Circuits shown in (2): A
linear array and a linear array with a head feedback, hence a mixture of a circular
and a linear circuit. Reprinted with permission from (Blossey R, Giuraniuc V C
(2008)). Copyright by the American Physical Society.

The repressilator. In order to build complex networks with this model, we
employed stochastic π-calculus, and studied numerous simple networks composed
of one, two and three genes (Blossey R, Cardelli L, Phillips A (2006, 2007); Blossey
R, Giuraniuc V C (2008)). Within stochastic π-calculus, each gene is represented
by a process; as we have two types of genes, there are generically two of them: the
repressed gene with process neg(·,·), and the activated gene with process pos(·,·).
I do not repeat the definition of these processes here, and refer the interested
reader to our papers (Blossey R, Cardelli L, Phillips A (2006, 2007)). A peculiar
circuit we studied is the repressilator (Elowitz M B, Leibler S (2000)), a three-
gene circuit in which in genes repress each other cyclically, using ⊥ as the sign of
repression (see Figure 1 for the circuit topology)

c ⊥ a ⊥ b ⊥ c (5)

hence it is given, within stochastic π-calculus, by the beautiful ‘compositional’
process

neg(a, b) | neg(b, c) | neg(c, a) (6)

The repressilator circuit oscillates, see Figure 2. We were quite happy with
this result, as the stochastic repressilator computed with the Gillespie algorithm
does exactly what the deterministic version does - and, of course, the real one

3

43

(i)

(ii)

(iii)

(iv)

Figure 3: Parameter variation for a simple repressilator network, based on the gene gate model of

Figure 1. The plots show the populations of proteins P (a), P (b), P (c) over time (Ms).

22

Figure 2: Repressilator oscillations. Shown are protein numbers as a function of
time, for a specific choice of parameters, as indicated in the text. Note that δ
is the degradation rate of the proteins, corresponding to the reaction A →δ 0.
Reprinted with permission from (Blossey R, Cardelli L, Phillips A (2007)).

built in E. coli bacteria by Elowitz and Leibler.

Only that it is not at all clear, why.

When we did our work, we were not aware of this problem. Only later did it
turn up for us that there is indeed a real issue here. Here it is.

In the deterministic setting, the interaction between the transcription factor
proteins and the DNA must be cooperative, hence described by a Hill coefficient
h > 1. In our deterministic version of the repressilator, it actually depends on
the model details we include: if we keep the gene states of the three genes as
variables, we find a condition h > 4/3, while when we ignore the gene states
and keep on the gene products, the proteins, we need to have h > 2 (Blossey R,
Giuraniuc V C (2008)). These values of h are not easily interpreted in physical
terms, but one can think of a reaction like

A+ A+ A→ra A
3 (7)

i.e., the formation of a trimer to be on the safe side. Our stochastic π-calculus
gene gate repressilator however oscillates with only a monomer protein. 1

1There is also the subtle issue of the interpretation of the number of genes as a continuous
variable in our model, see (Blossey R, Cardelli L, Phillips A (2007)). The simplest rationaliza-
tion is to assume that, when talking about the continuous model, one thinks of its application
to an ensemble of synchronized cells which however is not so easy to realize experimentally.

44

Shortly after our work, Biham et al. showed that the stochastic bistable
two-gene circuit, in our notation

neg(a, b) | neg(b, a) (8)

switches stochastically between two states without cooperative effects (Lipshtat
A, Loinger A, Balaban N Q, Biham O (2006)); they then also showed oscillations
it for the repressilator, however for a more complex model (Loinger A, Biham O
(2007)).

Here is why the minimal ‘gene gate’ model is perfectly sufficient to produce
oscillations in the stochastic setting. We only understood it recently from an ex-
act solution of the auto-regulated gene, when represented by its Master equations
for the gene states G and G′, much in the same way as Peccoud and Ycart did
it for their model; in fact, the solution is only moderately more complicated to
obtain, but physically totally different (Vandecan Y, Blossey R (2012)).

Figure 3 shows the probability distribution of protein A of the auto-regulated
gene for a specific range of parameters. As one can see, the distribution is ‘bi-
modal’; actually, we called its shape as being a ‘boundary bimodal’ since one of
the peaks is always located at the number of zero proteins. If one wants to have
a maximum at a finite small number of proteins, then one is required to take into
account the transcription-factor-DNA complex as a state in the model. (That is
all it needs, in fact.)

Why would the presence of the bimodality allow for oscillations? It is exactly
this property which is needed, as the gene regulatory circuit must be capable of
switching between a low-number and a nigh-number state. In the deterministic
version of the circuit, the low-number state is simply absent, if the cooperativity
(the Hill coefficient) is too low. In this sense we can now precisely state the
conditions for oscillations required in the modeling:

• in the deterministic setting, a sufficiently strong cooperatively (Hill coeffi-
cient);

• in the stochastic setting, a model allowing for a bimodal (minimally: a
boundary bimodal) in the protein distribution (Vandecan Y, Blossey R
(2012)).

Figure 4 shows the dynamics of both the stochastic and deterministic versions,
here plotted in ‘phase space’, i.e., the concentration of proteins a,b and c.

45

YVES VANDECAN AND RALF BLOSSEY PHYSICAL REVIEW E 87, 042705 (2013)

(a)

n

P(n)

(b)

n

P(n)

(c)

n

P(n)

(d)

n

P(n)

(e)

n

P(n)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FIG. 2. The probability distribution P (n). Models and parameters
from (a) to (e): (a) (A), ε = 0.01; η = 0.1; r = 1.0; δ = 0.1; (b) (A),
ε = 0.01; η = 0.1; r = 1.0; δ = 0.04; (c) (A), ε = 0.0001; η = 30;
r = 1; δ = 0.5; (d) (R), ε = 10; η = 0.1; r = 0.005; δ = 1; (e) (A),
ε = 0.01; η = 0.1; r = 1.0; δ = 0.008.

values as in (b) but lower the degradation rate even further
(e). Our analytical results of the gene gate models predict
accurately the results of the stochastic dynamics simulations

of these simple gates. For the parameters r = 1, ε = 0.01,
η = 0.1, and δ = 0.001, our Eq. (19) reduces approximately
to a Poisson distribution,

P (n) ≈ λn

n!
e−λ, (23)

with a mean λ = (δε + rη)/[δ(r + δ)] ≈ 99 proteins in
steady-state, in accordance with the simulations for the auto-
activated gene gate [5].

IV. THE TIME-DEPENDENT PROBLEM

In this section, we show, for completeness, that the master
equation of the gene gate model of the self-regulated gene
can be solved also in the time-dependent case, for both the
activated and repressed gene, using the approach developed in
Ref. [24].

Activated case. The time-dependent equations for the
generating function G0(z,t) and G1(z,t) are

∂

∂t
G0(z,t) = ε(z − 1)G0(z,t) + δ(1 − z)

∂

∂z
G0(z,t)

− rz
∂

∂z
G0(z,t) + ηzG1(z,t) (24)

∂

∂t
G1(z,t) = δ(1 − z)

∂

∂z
G1(z,t)

+ rz
∂

∂z
G0(z,t) − ηG1(z,t). (25)

Summing up Eqs. (24) and (25) yields

1
z − 1

∂GT (z,t)
∂t

= −δ
GT (z,t)

∂z
+ εGT (z,t)

+ (η − ε)G1(z,t). (26)

Consequently, we can express G1(z,t) in terms of the to-
tal generating function GT (z,t) = G0(z,t) + G1(z,t), which,
after substitution in Eq. (25), transforms the latter into a
second-order partial differential equation for GT (z,t), i.e.,

∂2GT (z,t)
∂t2

= [δ(δ + r)(z − 1)2 + rδ(z − 1)]
∂2GT (z,t)

∂z2

+ [(2δ + r)(z − 1) + r]
∂2GT (z,t)

∂t∂z

+ [−ε(z − 1) − r

z − 1
− r + η − δ]

∂GT (z,t)
∂t

+ [−(δε + ηr)(z − 1)2 + η(1 − r)δ(z − 1)]

× ∂GT (z,t)
∂z

− ηε(z − 1)GT (z,t). (27)

The substitution of the variables ν = [z(δ + r) − δ]/r and
µ = νe−(δ+r)t makes Eq. (27) separable in these variables.
This substitution brings the singularities at z = δ/(δ + r) and
z = 1 to ν = 0 and ν = 1, respectively. The new form of the
partial equation in terms of these variables is
[

∂2

∂ν2
+ µPa

∂2

∂ν∂µ
+ µQa

∂

∂µ
+ Ra

∂

∂ν
+ Sa

]
GT (µ,ν) = 0

(28)

042705-4

Figure 3: Probability distribution of the produced protein as a function of pro-
tein number (not of time, as in Figure 1), for a generic parameter choice. The
(boundary) bimodality of the distribution is clearly seen: one maximum lies at
n = 0 and another one at n = 9. Reprinted with permission from (Vandecan Y,
Blossey R (2012)). Copyright by the American Physical Society.

46

! fp = ! − " − #0 #1

0 − " − #2

− #3 0 − "
" #37$

with

#0 %
$hbh−1#% + rpch$
#1 + $bh + pch2 , #38$

#1 %
hch−1&rp#1 + bh − $p%'

#1 + $bh + pch2 , #39$

#2 % −
$hch−1

#1 + ch2 , #40$

#3 % −
$hbh−1

#1 + bh2 . #41$

Note that #1 can be both positive and negative. The charac-
teristic polynomial reads as

#" + &$3 + #" + &$#1#3 + #0#2#3 = 0 #42$

which still has a pair of complex eigenvalues. The Hopf
condition is given by

8"3 + 2"#1#3 − #0#2#3 = 0. #43$

The analysis of the full system, genes included, is clearly
more involved than for the repressilator due to the increased
number of variables. We have therefore studied the system
only numerically and compared the reduced and the full ver-
sion, as we did for the repressilator. Our calculations show
that the reduced version #three ODE’s for a ,b ,c$ is less ro-
bust against rewiring than the gene gate version #seven
ODE’s$: The stability limit of the limit cycle regime can
differ by parameter values up to one order of magnitude.
This finding is notable since in the presence of multiple regu-
lations the number of gene states increases linearly with the
number of inputs #neglecting still additional regulatory lay-
ers$ and thus significantly enhances the complexity in mod-
eling circuits with such elements. We close this section with
Fig. 7 #bottom$ which shows the limit cyle of the rewired
repressilator for the reduced deterministic system #h=3$. It
illustrates that in general the presence of the additional posi-
tive loop breaks the #a−b−c$ symmetry between concentra-
tions.

B. Multi-input circuit related to developmental regulation

In this final section we address a second example of a
multi-input gate. It consists of a bistable switch built from
two repressing gates which is placed under additional control
by an activating input. Such motifs occur both in transcrip-
tional regulation &19', but they have also been proposed re-
cently to play a role in morphogen concentration-dependent
cellular development &18'; our example is motivated by the
latter case. The circuit dynamics is governed by the follow-
ing ODE’s #neglecting the gene gate dynamics since we are
concerned with fixed-point dynamics only$;

(b)

(a)

FIG. 6. #Color online$ Top: The limit cycle of the stochastic
repressilator. Simulation parameters are r=rp=1, %=0.1, '=10−2,
"=10−3. Bottom: The deterministic version for comparison #re-
duced system in region III of Fig. 5, parameters identical to the
stochastic version, with h=3$.

(b)

(a)

FIG. 7. #Color online$ Top: The rewired repressilator, a positive
loop is added #see arrow$, so that one of the genes is doubly regu-
lated. Bottom: The limit cycle of the #reduced$ rewired repressilator
circuit; the additional activation interaction breaks the symmetry, as
discernable in the difference in maximal concentrations. Simulation
parameters are r=1, rp=10−4, %=0.1, '1='2=10−2, "=10−3, h=3.

R. BLOSSEY AND C. V. GIURANIUC PHYSICAL REVIEW E 78, 031909 #2008$

031909-6

Figure 4: Top: The limit cycle of the stochastic repressilator. Bottom: The
deterministic version for comparison. Reprinted with permission from (Blossey
R, Giuraniuc V C (2008)). Copyright by the American Physical Society.

47

A closing remark on a model random path in Science. I feel that
the above short story gives a nice illustration of a fairly generic path in Science;
we built something whose properties we did not quite understand, and we found
something whose importance we didn’t immediately understand. As we were be-
ginners in the field, ignorance on some matters may be taken as granted, but in
the end one can understand why our model actually does what it did! At the
time of our collaboration, we were also probably too much involved with bridg-
ing language gaps between computer science and physics, as we tried to apply
ideas from both to a biological problem. In fact, we had a hard time to get our
second paper published in a physics journal, just because of the language barrier
between computer science and physics. My physics colleagues did mostly react
quite strongly (in a strictly negative sense) when exposed to the philosophy of
stochastic π-calculus, but there also are exceptions, like Joachim Rädler from
Ludwig-Maximilians University in Munich, who actually also implemented some
of these ideas with his students.

Looking back, I still cherish my discussions with Luca and Andrew and keep
them in my memory as a model collaboration on interdisciplinary endeavors,
during which we shared our knowledge and tried to overcome our ignorance at the
same time. I also wish to thank my two postdoctoral fellows, Claudiu Giuraniuc
and Yves Vandecan, for their work on the gene gate model.

References

Blossey R, Cardelli L, Phillips A. A compositional approach to the stochastic
dynamics of gene networks. Transactions in Computer Science, 2006.

Blossey R, Cardelli L, Phillips A. Compositionality, stochasticity and coopera-
tivity in dynamic models of gene regulation. HFSP Journal, 2:17–28, 2007.

Blossey R, Giuraniuc V C. Mean-field vs stochastic models for transcriptional
regulation. Physical Review E, 78:031909, 2008.

Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regu-
lators. Nature, 403, 2000.

Lipshtat A, Loinger A, Balaban N Q, Biham O. Genetic toggle switch without
cooperative binding. Physical Review Letters, 96:188101, 2006.

Loinger A, Biham O. Stochastic simulations of the repressilator circuit. Physical
Review E, 76:051917, 2007.

48

Peccoud J, Ycart B. Markovian modelling of gene product synthesis. Theoretical
Population Biology, 48:222–234, 1995.

Vandecan Y, Blossey R. Self-regulatory gene: An exact solution for the gene gate
model. Physical Review E, 87:042705, 2012.

49

50

Multilinear Programming with Big Data

Mihai Budiu Gordon D. Plotkin
Microsoft Research

Abstract

Systems such as MapReduce have become enormously popular for pro-
cessing massive data sets since they substantially simplify the task of writ-
ing many naturally parallelizable parallel programs. In this paper we iden-
tify the computations carried out by such programs as linear transforma-
tions on distributed collections. To this end we model collections as multi-
sets with a union operation, giving rise to a commutative monoid structure.
The results of the computations (e.g., filtering, reduction) also lie in such
monoids, (e.g., multisets with union, or the natural numbers with addi-
tion). The computations are then modelled as linear (i.e., homomorphic)
transformations between the commutative monoids. Binary computations
such as join are modelled in this framework by multilinear transformations,
i.e., functions of several variables, linear in each argument.

We present a typed higher-order language for writing multilinear trans-
formations; the intention is that all computations written in such a pro-
gramming language are naturally parallelizable. The language provides a
rich assortment of collection types, including collections whose elements
are negatively or fractionally present (in general it permits modules over
any given semiring). The type system segregates computations into linear
and nonlinear phases, thereby enabling them to “switch” between different
commutative monoids over the same underlying set (for example between
addition and multiplication on real numbers). We use our language to de-
rive linear versions of standard computations on collections; we also give
several examples, including a linear version of MapReduce.

1 Introduction

As has been famously demonstrated by MapReduce, Dean and Ghemawat (2004),
and followed up by related systems, such as DryadLINQ, Yu et al. (2008), big data
computations can be accelerated by using massive parallelism. Parallelization is
justified for simple mathematical reasons: big data has a natural commutative

51

monoid structure with respect to which the transformations carried out by com-
putations are linear (i.e., homomorphic). We present a programming language
which seeks to expose this linearity; we intend thereby to lay the foundations for
(multi)linear programming with big data.

Our language manipulates two kinds of types: ordinary and linear. In our
setting linear types are commutative monoids (i.e., sets with a commutative as-
sociative operation with a zero). A typical example of such a monoid is provided
by the positive reals R+ with addition.

Big data is usually manipulated as collections; these are unordered bags, or
multisets, of values (sometimes represented as lists); we write X? for the type of
collections of elements of a set X. While the elements of a collection may be from
an ordinary type, the collection type itself is a commutative monoid if endowed
with multiset union (indeed X? is the free commutative monoid over X).

Turning to transformations, given a function f : X → Y between ordinary
types the Map operator yields a transformation Map(f) : X? → Y ? mapping
X-collections to Y -collections. Again, given g : Y → R+, the Reduce operator
yields a transformation Reduce(g) : Y ? → R+ mapping Y -collections to R+.
Both of these are linear, preserving the monoid structures, i.e., we have:

Map(f)(∅) = ∅ Map(f)(c ∪ c′) = Map(f)(c) ∪Map(f)(c′)
Reduce(g)(∅) = 0 Reduce(g)(c ∪ c′) = Reduce(g)(c) + Reduce(g)(c′)

(In fact, since X? is the free commutative monoid over X, these are the unique
such maps extending f and g, respectively.)

These equations justify the use of parallelism. For example, the linearity of
Map implies that one can split a collection into two parts, map them in parallel,
and combine the results to obtain the correct result.

As another example, suppose we have a binary tree of processors, and a col-
lection c partitioned across the leaves of the tree. We map and then reduce at
the leaves, and then reduce the results at the internal nodes. The final result is
Reduce(g)(Map(f)(c)) irrespective of the data distribution at leaves, and of the
shape of the tree. This fact depends on both the associativity and commutativity
of the monoid operations and the linearity of the transformations; in practice this
translates into the ability to do arbitrary load balancing of computations.

Our language is typed and higher-order. The language accommodates binary
functions, such as joins, which have multilinear types (they are linear in each
of their arguments). The language provides rich collection type constructors:
in particular, for any linear types A and (certain) ordinary types X, we can
construct the linear type A[X] whose elements can be thought of variously as
A-ary X-collections, or as key-value dictionaries, with X as the type of keys (or
indices) and A as the type of values.

52

For example, by taking A to be the integers, we obtain multisets with el-
ements having positive and negative counts; these are useful in modelling dif-
ferential dataflow computations, see McSherry et al. (2013). Taking A to be
the nonnegative reals, we obtain weighted collections, which are useful for mod-
elling differential privacy, see Prospero et al. (2014). Dictionaries enable one
to express GroupBy computations. The language further provides a mechanism
for programming computations with both linear and nonlinear phases, possibly
switching between different commutative monoids over the same carrier.

In the rest of this paper, after some remarks on commutative monoids, we
present the syntax and denotational semantics of our language. We then ar-
gue practicality by modelling MapReduce and LINQ distributed computations
through a series of examples (see Meijer et al. (2006) for an account of LINQ).

2 Remarks on commutative monoids

We work with commutative monoids M = (|M |,+, 0) and linear (i.e., homomor-
phic functions) between them. We write U(M) for |M |, the carrier of M (i.e.,
its underlying set). For any n ∈ N and m ∈ M we write nm for the sum of m
with itself n times.

The product of two commutative monoids is another, with addition and zero
defined coordinatewise. Various sets of functions with range a commutative
monoid M also form commutative monoids, with addition and zero defined point-
wise. Examples include: M [X] the monoid of all functions from a given set X
to M which are zero except, possibly, at finitely many arguments; X → M , the
monoid of all functions from a given set X to M ; and M1, . . . ,Mn (M the
monoid of all multilinear functions from given commutative monoids M1, . . . ,Mn

to M . We write a typical element of A[X] with value 0 except possibly at n
arguments x1, . . . , xn as {x1 7→ a1, . . . , xn 7→ an}.

Categorically, U is (the object part of) the forgetful functor to the category
of sets. The product of two commutative monoids is also their sum, and so we
employ the biproduct notation M1 ⊕ M2. The commutative monoid M [X] is
the categorical sum

∑
x∈X M and can also be viewed as the tensor X ⊗M (the

corresponding cotensor is X →M).

53

X = Y

Y = X
b = b |c| = U(c)

X = Y X ′ = Y ′

X ×X ′ = Y × Y ′
A = B

U(A) = U(B)

X = X ′ Y = Y ′

X → Y = X ′ → Y ′

X = U(A) Y = U(B)

X × Y = U(A⊕B)

X = X ′ Y = U(A)

X → Y = U(X ′ → A)

Figure 1: Definitional equality rules for ordinary types.

c = c
A = A′ B = B′

A⊕B = A′ ⊕B′
A = A′ X = X ′

A[X] = A′[X ′]

X = X ′ A = A′

X → A = X ′ → A′

#»

A =
»

A′ B = B′

#»

A (B =
»

A′ (B′

Figure 2: Definitional equality rules for linear types.

3 The language

Types

The language has two kinds of type expressions: ordinary and linear, ranged over
by X, Y, . . . and A,B, . . ., respectively. They are given by:

X ::= b | X × Y | U(A) | X → Y

A ::= c | A⊕B | A[X] | X → B | A1, . . . , Am (B

where b and c range over given basic ordinary and linear types, respectively. The
basic ordinary types always contain bool and nat. The basic linear types always
contain nat+; other possibilities are natmax and real+. In A[X] we restrict X to
be an equality type, meaning one not containing any function types.

We also assume given a syntactic carrier function | · |, mapping basic linear
types c to basic ordinary types |c|. For example |nat+| = |natmax| = nat. This
is used to obtain a notion of definitional equality of types which will enable
computations to move between different linear structures on the same carrier;
the rules for definitional equality are given in Figures 1 and 2; note the use there
of vector notation for sequences of linear types.

54

Semantics of Types

Ordinary types X denote sets [|X|] and linear types A denote commutative mon-
oids [|A|]. The denotations of basic type expressions are assumed to be given. For
example, bool and nat would denote, respectively, the booleans and the natural
numbers; nat+, would denote the natural numbers with addition; and natmax

and real+ would denote the natural numbers with maximum, and the reals with
addition. We assume, for any basic linear type c that [||c||] is U([|c|]) the carrier
of [|c|].

The other type expressions have evident denotations. For example [|X → Y |]
is the set of all functions from [|X|] to [|Y |]; [|U(A)|] is U([|A|]); [|A[X]|] is [|A|][[|X|]];
[|A1, . . . , An (B|] is [|A1|], . . . , , [|An|] ([|B|]; and so on. One can check that
definitionally equal types have equal denotations.

Terms

The language has ordinary terms ranged over by t, u, . . . and multilinear terms
ranged over by M,N, They are given by:

t ::= x | dX(M) | f(t1, . . . , tn) |
〈t, u〉 | fst(t) | snd(t) |
λx : X. t | t(u)

M ::= a | uA(t) | g(M1, . . . ,Mn) |
0A |M +N |MN |
if t then M else N | matchx : X, y : Y as t in M |
〈M,N〉 | fst(M) | snd(M) |
M · t | sum a : A, x : X in M.N |
λx : X.M |M(t) |
λa1 : A1, . . . , an : Am.M |M(N1, . . . , Nn)

In the above we use the letters x, y, . . . , a, b . . . to range over variables. In
the “match” construction x, y have scope extending over M ; and in the “sum”
construction a, x have scope extending over N . We assume given two signatures:
one of ordinary basic functions f : b1, . . . , bn → b and the other of linear basic
functions g : c1, . . . , cn → c.

We introduce three “let” constructions as standard syntactic sugar:

let x : X be t in u =def (λx : X. u)(t)
let x : X be t in M =def (λx : X.M)(t)

let #»a :
#»

A be
»

M in N =def (λ #»a :
#»

A.N)(
»

M)

55

Instead of sum a : A, x : X in M.N : B we may write in a more “mathemati-
cal” way: ∑

a·x∈M

N

Finally we may write unary function applications M(N) in an “argument-first”
manner, as N.M , associating such applications to the left.

Environments

The language has ordinary environments ranged over by Γ and multilinear en-
vironments ranged over by ∆. These environments are sequences of variable
bindings of respective forms:

Γ ::= x1 : X1, . . . , xm : Xn ∆ ::= a1 : A1, . . . , an : An

where the xi are all different, as are the aj. Below we write ∆||∆′ for the set of
all merges (interleavings) of the two sequences of variable bindings ∆ and ∆′.

Typing Rules

We have two kinds of judgements, ordinary and multilinear

Γ ` t : X and Γ | ∆ `M : A

where, in the latter, Γ and ∆ have no variables in common. The rules are either
structural, casting, ordinary, or multilinear, and are as follows:

Structural

Γ, x : X,Γ′ ` x : X Γ | a : A ` a : A

Casting

Γ | `M : A U(A) = X

Γ ` dX(M) : X

Γ ` t : X X = U(A)

Γ | ` uA(t) : A

Ordinary

Γ ` #»
t :

#»

b

Γ ` f(
#»
t) : b

(f :
#»

b → b)

Γ ` t : X Γ ` u : Y

Γ ` 〈t, u〉 : X × Y
Γ ` t : X × Y
Γ ` fst(t) : X

Γ ` t : X × Y
Γ ` snd(t) : Y

56

Γ, x : X ` t : Y

Γ ` λx : X. t : X → Y

Γ ` t : X → Y Γ ` u : X

Γ ` t(u) : Y

Linear

Γ | ∆i `Mi : ci (i = 1, n)

Γ | ∆ ` g(M1, . . . ,Mn) : c
(g : c1, . . . , cn → c,∆ ∈ ∆1|| . . . ||∆n)

Γ | ∆ ` 0A : A
Γ | ∆ `M : A Γ | ∆ ` N : A

Γ | ∆ `M +N : A

Γ | ∆′ `M : nat+ Γ | ∆′′ ` N : A

Γ | ∆ `MN : A
(∆ ∈ ∆′||∆′′)

Γ ` t : bool Γ | ∆ `M : A Γ | ∆ ` N : A

Γ | ∆ ` if t then M else N : A

Γ ` t : X × Y Γ, x : X, y : Y | ∆ `M : A

Γ | ∆ ` matchx : X, y : Y as t in M : A

Γ | ∆ `M : A Γ | ∆ ` N : B

Γ | ∆ ` 〈M,N〉 : A⊕B
Γ | ∆ `M : A⊕B
Γ | ∆ ` fst(M) : A

Γ | ∆ `M : A⊕B
Γ | ∆ ` snd(M) : B

Γ | ∆ `M : A Γ ` t : X

Γ | ∆ `M · t : A[X]

Γ | ∆′ `M : A[X] Γ, x : X | ∆′′, a : A ` N : B

Γ | ∆ ` sum a : A, x : X in M.N : B
(∆ ∈ ∆′||∆′′)

Γ, x : X | ∆ `M : B

Γ | ∆ ` λx : X.M : X → B

Γ | ∆ `M : X → B Γ ` t : X

Γ | ∆ `M(t) : B

Γ | ∆, #»a :
#»

A `M : B

Γ | ∆ ` λ #»a :
#»

A.M :
#»

A (B

Γ | ∆′ `M : A1, . . . , An (B Γ | ∆i ` Ni : Ai (i = 1, n)

Γ | ∆ `M(N1, . . . , Nn) : B
(∆ ∈ ∆′||∆1|| . . . ||∆n)

The use of the merge operator || on linear environments ensures that derivable
typing judgments are closed under permutation of linear environments; as may be
expected, they are not closed under weakening or duplication. Typing is unique
in that for any Γ, ∆ and M there is at most one A such that Γ | ∆ `M : A and
similarly for judgments Γ ` t : X. There is also a natural top-down type-checking
algorithm.

We sketch the denotational semantics of terms below, but their intended mean-
ing should be clear from the previous section. For example, the term MN with

57

M : nat+ indicates the addition of N with itself M times. The terms dX(M) and
uA(t) should be read as “down” and “up” casts, which convert back and forth
between a linear type A and an ordinary type X definitionally equal to U(A).
Using terms of the forms dX(M), uA(t) one can construct conversions between
any two definitionally equal types.

Some constructions that may seem missing from the biproduct are in fact
definable. The first injection inl(M) can be defined by 〈M, 0〉, similarly for the
second, and we can define a cases construction by:

cases K fst a : A.M, snd b : B.N =def let c : A⊕B be K in
(let a : A be fst(c) in M)

+ (let b : B be snd(c) in N)

So given “product” and “plus” we get “sum”; in fact, given any two of “prod-
uct”, “sum”, and “plus” one can define the third.

Semantics of terms

For the basic functions, f , g, one assumes available given functions [|f |], [|g|] of
suitable types.

For environments Γ = x1 : X1, . . . , xm : Xm and ∆ = a1 : A1, . . . , an : An, we
write [|Γ|] for the set [|X1|]× . . .× [|Xm|], and [|∆|] for the carrier of [|A1|]× . . .× [|An|],
respectively. Then, much as usual, the denotational semantics assigns to each
typing judgement Γ ` t : Y a function

[|Γ ` t : Y |] : [|Γ|] −→ [|Y |]

and to each typing judgement Γ | ∆ `M : B a function

[|Γ | ∆ `M : B|] : [|Γ|]× [|∆|] −→ [|B|]

linear in each of the ∆ coordinates (this is why ∆ is called a “multilinear environ-
ment”). The definition is by structural definition on the terms; we just illustrate
a few cases.

The type conversions are modelled by the identity function, for example:

[|Γ | ` dX(M) : X|](#»v , #»α) = [|Γ `M : A|](#»v)

As one might expect the syntactic monoid operations are modelled by the seman-
tic ones, for example:

[|Γ | ∆ `M+N : B|](#»v , #»α) = [|Γ | ∆ `M : B|](#»v , #»α) +[|B|] [|Γ | ∆ ` N : B|](#»v , #»α)

58

For the collection syntax we have first that:

[|Γ | ∆ `M · t : A[X]|](#»v , #»α) = {[|Γ ` t : X|](#»v) 7→ [|Γ | ∆ `M : A|](#»v , #»α)}

Next if Γ | ∆ ` sum a : A, x : X in M.N : X holds then there are, necessarily
unique, ∆′,∆′′ such that Γ | ∆′ ` M : A[X] and Γ, x : X | ∆′′, a : A ` N : B
and ∆ ∈ ∆′||∆′′ all hold. We use the fact that ∆ ∈ ∆′||∆′′ to obtain canonical
projections π′ : [|∆|]→ [|∆′|] and π′′ : [|∆|]→ [|∆′′|].

Suppose that

[|Γ | ∆′ `M : A[X]|](#»v , π′(#»α)) = {v1 7→ a1, . . . , vn 7→ an}

Then

[|Γ | ` sum a : A, x : X in M.Nt : X|](#»v , #»α) =∑
i=1,n[|Γ, x : X | ∆′′, a : A ` N : B|]((#»v , vi), (π

′′(#»α), ai))

The semantics of the other terms pose no surprises; in cases where linear envi-
ronments ∆ are split up, one again makes use of canonically available projections.

Implementation considerations

It very much remains to be seen how useful our ideas prove. In the meantime,
it seems worthwhile saying a little about possible implementation datatypes.
One could use lists, possibly spread among different processors, to represent
collections. Representations would be recursively defined: if R represented X,
and S represented the carrier of A then (R × S)∗ could represent A[X], with
(r1, s1) . . . (rn, sn) representing

∑
i=1,n{xi 7→ ai} if ri, si represented xi, ai, for all

i ∈ {1, . . . , n}.
Such representations have a natural normal form: assuming the ri and si

are already in normal form, one adds the si together (using a representation of
addition on A) to produce a list (r′1, s

′
1), . . . , (r

′
n, s
′
n) with the r′j all different, and

then orders the list using a total ordering of S, itself recursively defined.
When evaluating uA(t) one needs to have the value of t in normal form, as

otherwise the addition implied by the representation relation is that of A, which
may not generally be correct (for example, t may itself be dX(M) where the
(linear) type of M has a different addition from that of A). So when evaluating
dX(M), one should put the value of M into normal form as the correct addition
is then known from the linear type of M .

59

4 Operators

As stated above, the type A[X] can be regarded variously as that of A-valued
X-collections or of key-value dictionaries over A and indexed by X. In particular,
taking A to be nat+ we get the usual unordered collections, i.e., finite multisets
of elements of X; we write this type as X?. We now look at linear versions
of standard operators such as Map, Fold, Reduce, GroupBy, and Join. As our
notion of collection is more general than that used in traditional programming
languages we obtain corresponding generalisations of these operators.

Map

We can define a family of Map operators which operate on both the elements of
a collection and their coefficients. Associating function type arrows to the right,
they have type

(A(B) ((X → Y)→ (A[X] (B[Y])

and are given by:

MapX,Y,A,B =def λf : (A(B). λg : (X → Y). λc : A[X].
∑
a·x∈c

f(a) · g(x)

where we are making use of the summation notation introduced above. Note that
here, and below, operators are often linear in their function arguments.

Specialising to the case where B = A and f : A(B is the identity idA (i.e.,
λa : A. a), we obtain a family of operators

MapX,Y,A : (X → Y)→ (A[X] (A[Y])

where we are overloading notation. When A = nat+ these are the usual Map
operators, but with their linearity made explicit in their type:

(X → Y)→ (X? (Y ?)

Actions and their extensions

We define an action (term) of a linear type A on another B to be a term of
type A,B (B. Such an action always exists when A = nat+, viz., the term
λn : nat+, b : B. nb. In general, we may only be given “multiplication” terms
mA : A,A (A providing an action of A on itself; we may then, as we will see
below, use the given multiplication to obtain actions on other linear types.

60

For example in the case of real+, the multiplication term would denote the
usual multiplication on the positive reals. When we have a multiplication term
on a linear type A we may also have a “unit” term 1A : A (e.g., a term denoting
the usual unit in the case of the positive reals). The unit provides a generalisation
of the multiset singleton map {−} : X → X?, namely λx : X. 1Ax : X → A[X].1

Given an action of A on B we can obtain an action of A on B[X] using a
family of Extend operators. They have type

(A,B (B) ((A,B[X] (B[X])

and are given by:

ExtendX,A,B =def λf : (A,B (B). λa : A, c : B[X].
∑
b·x∈c

f(a, b) · x

Actions can be extended to other types. In the case of biproducts, given an
action of A on both B and C, then there is an action of A on B ⊕C; in the case
of function types, given an action of A on C, there are actions of A on X → C
and

#»

B (C. We leave their definition as an exercise for the reader. Combining
such extensions, one can build up actions on complex datatypes.

Folding

We define a family of Fold operators with type

(A,B (B), (X → B) ((A[X] (B)

They are given by:

FoldX,A,B =def λm : (A,B (B), f : X → B. λc : A[X].
∑
a·x∈c

m(a, f(x))

Note that the fold operator needs an action of of A on B.

SelectMany Using Fold we can define a family of SelectMany operators that
generalise those of LINQ analogously to the above Map operators. They have
type

(A(B), (X → B[X]) ((A[X] (B[X])

1We would expect such a multiplication and unit to make A a semiring (i.e., to provide a
bilinear associative multiplication operation with a unit) and we would expect the actions of
A on other linear types to make them A-modules. If such algebraic assumptions are fulfilled,
some natural program equivalences hold.

61

and are given by:

SelectManyX,A,B = λf : A(B, g : X → B[X]. λc : A[X].
let e : A,B[X] (B[X] be

Extend(λa : A, b : B.mB(f(a), b))
in c.Fold(e, g)

where we have made use of the reverse application notation introduced above,
and have also assumed available a multiplication term mB : B,B (B.

Taking B = A and specialising f : A(B to the identity, we obtain a family
of operators of types

SelectManyX,A : (X → A[X]) ((A[X] (A[X])

again overloading notation. When A = nat+ these have type

(X → X?) ((X? (X?)

and are the usual LINQ SelectMany operators (these are the same as MapRe-
duce’s improperly-named Map operators).

Reduction For general A-valued collections, we may already regard Fold as a
reduction (or aggregation) operator. We can obtain analogues of the more usual
reductions by taking both A and B to be basic linear types where there is an
action of A on B; an example would be to take them both to be real+ and the
action to be mreal+ .

We can specialise the first argument of Fold to the action of nat+ on linear
type’s B and obtain a family of operators

ReduceX,B : (X → B) ((X? (B)

In this generality, these include SelectMany, if we take B to be Y ?. Taking B to
be a basic linear type such as real+ we obtain more usual reductions.

Note that in all the cases considered above, the reduction operations are fixed
to be the sum operations of the target linear types.

GroupBy

As already indicated, one can regard elements of the linear type A[X] as key-value
dictionaries of elements of A, indexed by elements of X. In particular, given a

62

type of keys K, we can regard A[X][K] as the type of K-indexed A-valued X-
collections. With this understanding, we have a family of GroupBy operators
using of key function X → K. These have type

(X → K)→ (A[X] (A[X][K])

and are given by:

GroupByK,X,A = λk : (X → K). λc : A[X].
∑
a·x∈c

(ax) · k(x)

Lookup

Lookup functions extract the element with a given key from a K-indexed dictio-
nary. They have type

K → (A[K] (A)

and are given by:

LookupK,X,A =def λx : K.λc : A[K].
∑
a·x′∈c

if x′ = x then a else 0

where we have assumed available an equality function on K.

Join

We first define cartesian product operations on collections; they require actions
of linear types on themselves in order to combine values with the same index. We
have a family of operations of type

(A,A(A), A[X], A[Y] (A[X × Y]

given by:

CartProdX,A =def λm : A,A(A, c : A[X], c′ : A[X].
∑
a·x∈c

∑
a′·y∈c′

m(a, a′) · 〈x, y〉

We further have a family of Join operations which operate on pre-grouped-
by collections, with a type of keys K for which an equality function is assumed
available. They have type

(A,A(A), A[X][K], A[Y][K] (A[X × Y][K]

and are given by:

JoinX,Y,K,A =def λm : (A,A(A), d : A[X][K], d′ : A[Y][K].∑
c·k∈d let c′ : A[Y] be Lookup(k)(d′) in CartProd(m, c, c′) · k

63

Zip

Our final example is another family of binary functions on key-value dictionaries,
which model the LINQ Zip operation:

ZipX,A,B : A[X]⊕B[X] ((A⊕B)[X]

They take two X-indexed dictionaries and pair entries with the same index. They
are given by:

ZipX,A,B =def λd : A[X]⊕B[X].
Map(inl)(idX)(fst(d)) +A⊕B Map(inr)(idX)(snd(d))

equivalently:

ZipX,A,B =def λd : A[X]⊕B[X]. cases d fst a : A[X].Map(inl)(idX)(a),
snd b : B[X].Map(inr)(idX)(b)

5 Some Example Programs

In this section we give some example programs. The first two compute non-
linear functions. However they are composed from linear subcomputations, and
these are exposed as linear subterms. The last example is a linear version of
MapReduce.

5.1 Counting

Our first example illustrates the utility of being able to move non-linearly between
different monoids with the same carrier. Given a collection, we can count its
elements, taking account of their multiplicity, using CountX : X? (nat+, given
by:

λc : X?.ReduceX,nat+(λx : X. unat+(1))(c)

However, if we instead want to count ignoring multiplicity (i.e., to find the number
of distinct elements), the computation proceeds in two linear phases separated
by a non-linear one, as follows:

• the input collection, read as a nat+-collection by a type conversion from an
ordinary to a linear type, is mapped to a natmax-collection c′ to record only
the presence or absence of an item (by a 1 or a 0),

• c′ is then transformed nonlinearly to a nat+-collection c′′, using the type
conversions, and, only then,

64

• the Count function is applied to c′′.

To do this we use a term SetCountX : U(X?)→ nat+, namely

λx : U(X?).
let c′ : natmax[X] be uX?(x).Map(Conv)(idX) in
let c′′ : X? be uX?(dU(X?)(c

′)) in c′′.Count

where Conv : nat+ (natmax is a linear term converting between nat+ and natmax,
namely λn : nat+. n(unatmax(1)) (it sends 0 to 0 and all other natural numbers to
1), and where we have dropped operator indices.

5.2 Histograms

Our second example is a simple histogram computation. Suppose we have a
collection c of natural numbers and wish to plot a histogram of them spanning
the range 0 to m, the maximum element in the collection (which we assume to be
> 0). The histogram is to have k > 0 buckets, starting at 0, so each bucket will
have width m/k. We model histograms by multisets of natural numbers, where
each element corresponds to a bucket, and has multiplicity corresponding to the
number of values in that bucket.

The following function Histkmax : nat → (nat? (nat?) is provided the maxi-
mum element value and computes the histogram linearly over c:

λm : nat. λc : nat?. c.SelectMany(λn : nat. {bkn/mc})

The maximum element can be found linearly from c using a reduction:

c.Reduce(λn : nat. unatmax(n))

Putting these two together, we obtain a function Histk : nat? → nat? comput-
ing the required histogram:

λc : U(nat?).
let m : nat be dnat(unat?(c).Reduce(λn : nat. unatmax(n))) in
unat?(c).Histkmax(m)

Note the double occurrence of c, signalling nonlinearity.

5.3 A linear MapReduce

We present a linear version of MapReduce. It models the distributed nature of the
data by using a dictionary indexed by machine names to model partitioned collec-
tions. The MapReduce computation begins with the initial collection distributed

65

over the machines, carries out a computation in parallel on each machine, redis-
tributes the data between the machines by a shuffle operation, and then performs
a final reduction.

We begin with the computation carried out on each machine. This applies to
a collection c, and consists of a SelectMany, then a GroupBy using a basic type
K of keys, and then a Reduce at each key. It is given by the following term MR:

λc : X?. c.SelectMany(m).GroupBy(k).Map(Reduce(r))(idK)

which has typing:

k : Y → K | m : X → Y ?, r : Y → A ` MR : X? (A[K]

We next need to model data of any given type B spread across machines. To
do this we assume available a basic type M of machine names and model such
data by an M-indexed dictionary of type B[M]. With this in mind the parallel
computation is given by the following term PMR:

Map(MR)(idM)

which maps MR across the machines and which has typing

k : Y → K | m : X → Y ?, r : Y → A ` PMR : X?[M] (A[K][M]

The shuffle operation employs a key-to-machine function, h : K → M, and is
given by the following term SH:

λe : A[K][M].
sum d : A[K],m : M in e.
sum a : A, k : K in d. ({a} · k) · h(k)

which has typing:

h : K→ M | ` SH : A[K][M] (A?[K][M]

The final reduction is carried out in parallel on each machine and is given by
the following term FR:

Map(Map(Reduce(idA))(idK))(idM)

which maps the reduction at each key across the machines and which has typing

` FR : A?[K][M] (A[K][M]

66

Putting everything together we obtain the entire MapReduce computation.
It is given by the following term MapReduce:

λb : X?[M]. b.PMR.SH.FR

which has typing:

k : Y → K, h : K→ M | f : X → Y ?, r : Y → A ` MapReduce : X?[M] (A[K][M]

One could evidently abstract on the various functions, or choose specific ones.

6 Discussion

One can imagine a number of extensions and developments. Most immediately,
as well as rules for type-checking, one would like an equational system, as is usual
in type theories. This would open up the possibility of proving programs such
as MapReduce correct. Regarding the language design, the reduction facilities
depend on the built-in monoid structures. However in, e.g., LINQ, programmers
can choose their own. In order to continue exposing linearity, it would be natural
to introduce linear types of the form (X, z,m) where z : X and m : X2 → X are
intended to provide X with a commutative monoid structure.

The mathematics suggests further possibilities. For example when working
with A-valued collections (but not dictionaries) it is natural to suppose one has
a semiring structure on A. Perhaps it would be worthwhile to add a kind of
semirings (possibly even programmable) and to have separate linear types of
collections and dictionaries.

Again, commutative monoids have a tensor product A⊗B classifying bilinear
functions. One wonders if this would provide a useful datatype for big data pro-
gramming. The tensor product enjoys various natural isomorphisms, for example:
A[X]⊗B[Y] ∼= (A⊗B)[X × Y], in particular X? ⊗ Y ? ∼= (X × Y)?.

The mathematics suffers if one were to drop commutativity, and just work
with monoids, as in Nesl — see Blelloch (2011). One no longer has linear function
spaces or tensor products. However it is not clear that one would not thereby
enjoy benefits for programming with big data.

There are yet other possibilities for further development. It would be useful
to add probabilistic choices to the language, however the interaction between
probability and linearity is hardly clear. It would be interesting to consider
differential aspects, as in McSherry et al. (2013). This would involve passing from
monoids and semirings to abelian groups and rings. Compilers might well benefit
from language facilities to indicate intended parallelism; an example is the use of

67

machine-indexed collections used above to model MapReduce. One could imagine
a programmer-specified machine architecture, with machine-located datatypes
A@m, see Jia and Walker (2004) and Murphy VII (2008).

References

G. E. Blelloch. Nesl. In D. A. Padua, editor, Encyclopedia of Parallel Computing,
pages 1278–1283. Springer, 2011. ISBN 978-0-387-09765-7.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. 6th OSDI, pages 137–150. ACM, 2004. URL
http://labs.google.com/papers/mapreduce.html.

L. Jia and D. Walker. Modal proofs as distributed programs (extended abstract).
In ESOP, pages 219–233, 2004.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow. In
CIDR. www.cidrdb.org, 2013.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling ob-
ject, relations and XML in the .NET framework. In Proc. SIG-
MOD Int. Conf. on Manage. Data, page 706. ACM, 2006. ISBN 1-
59593-434-0. doi: http://doi.acm.org/10.1145/1142473.1142552. URL
http://doi.acm.org/10.1145/1142473.1142552.

T. Murphy VII. Modal types for mobile code. PhD thesis, CMU, 2008.

D. Prospero, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in
private data analysis, a platform for differentially-private analysis of weighted
datasets. To appear in VLDB14, 2014.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda, K. Pradeep, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-parallel
computing using a high-level language. In Proc. 8th OSDI, pages 1–14. ACM,
2008.

68

Types and Logic,
Concurrency and Non-Determinism

Luı́s Caires
NOVA LINCS/CITI and Departamento de Informática, FCT UNL

Abstract

Behavioural types are becoming an increasingly useful instrument to reason
about the behaviour of complex concurrent and interactive computing systems.
While type systems for traditional programming models have been for long rooted
on pure logical principles, the connections between interactive and concurrent
programming models and their logically motivated type disciplines started to be
better understood only recently. In this note, we motivate an approach to accom-
modate internal non-determinism, a phenomenon pervasively present both in the
behaviour of artificial and natural computing systems but which seems to have
escaped logical analysis, in a type system for session-based communication that
preserves logical compatibility by supporting a Curry-Howard correspondence.
“Each time a man is confronted with several alternatives, he chooses one and eliminates
the others; in the fiction of Tsui Płn, he chooses simultaneously all of them. He creates,
in this way, diverse futures, diverse times which themselves also proliferate and fork.”
(in The Garden of Forking Paths, Jorge Luis Borges)

Dedicated to Luca Cardelli on the occasion of his 60th birthday.

1 Introduction
Type systems for programming languages have its foundational roots in logic, as re-
called in the famous Typeful Programming paper by Luca Cardelli (1991): “... one
can say that typeful programming is just a special case of program specification, and
one can read type as a synonym for specification, and typechecking as a synonym
for verification [...]. This view fits well with the types as propositions paradigm of
axiomatic semantics, and the propositions as types paradigm of intuitionistic logic.”.
Nevertheless, while type systems for traditional programming models are known to be
rooted in pure logical principles, the connections between interactive and concurrent
programming models and their logically motivated type disciplines started to be bet-
ter understood only recently, building on several relationships between substructural
logics and process calculi (e.g., Abramsky (1993); Caires and Cardelli (2004)). This

69

expected development can be seen also as yet another realisation of the fact that “one
can also extrapolate this correspondence and turn it into a predictive tool: if a concept
is present in type theory but absent in programming, or vice versa, it can be very fruit-
ful to both areas to investigate and see what the corresponding concept might be in the
other context.” (Cardelli 1991). In this note, we motivate an approach to accommodate
the concept of internal non-determinism, a phenomenon pervasively present both in
artificial and natural computing systems, and in particular in stochastic models of bi-
ological systems (Cardelli 2008). Quite interestingly, internal non-determinism seems
to keep escaping for some time a reasonable logical analysis, due to the apparent in-
compatibility between the confluence property of cut-elimination and the collapsing
effect inherent of internal non-determinism.

In this note, we investigate a session-based type system for interactive processes
that preserves compatibility of internal non-determinism with logic in the sense of
a Curry-Howard correspondence. The approach involves two key ingredients, both
clearly related to familiar concepts in concurrency and programming languages. The
first one, involves admitting processes denoting alternative potential behaviours among
the various process forms under consideration: these processes are subject to behaviour
preserving reduction rules, but are compatible with cut-elimination, and support com-
positional reasoning about process behavior. The second ingredient involves capturing
non-determinism in the type structure, thus cleanly separating, as a proper conservative
extension of the basic type system, non-deterministic behaviour from the basic deter-
ministic behaviors. To achieve this, we encapsulate non-determinism inside a monadic
presentation supported by two type operators NA and ⊕A, related by duality.

2 Session Types and Linear Logic
The session discipline (Honda 1993; Honda et al. 1998) applies to distributed pro-
cesses which communicate through point-to-point private channels (e.g., such as TCP
sockets). In such a practically relevant setting communications must always occur in
matching pairs: when one partner sends, the other receives; when one partner offers a
selection, the other chooses; when a partner closes the session, no further interactions
may be initiated from either side in the same channel. Sessions are initiated when a
participant invokes a server. A server acts as a shared service provider, with the ca-
pability of unboundedly spawning fresh sessions between the invoking client and a
newly created service instance process. A service name may be publicly shared by any
clients in the environment. In general, a session based system exhibits concurrency
and parallelism in the sense that many sessions may be executing simultaneously and
independently. Both session and server names may be passed around in communica-
tions. Although no races in communications within a session or even between different
sessions can occur; processes may also concurrently invoke shared servers. It is easily
understood that session channels are subject to a linear usage discipline, conforming

70

to a specific state dependent protocol, while server channels can be freely shared, and
invoked according to a simple new session creation protocol.

Caires and Pfenning (2010) introduced a type system for π-calculus processes that
exactly corresponds to a linear logic proof system, revealing the first Curry-Howard
interpretation of session types as linear logic propositions, a line of research further
developed by Toninho, Perez and others. Unlike with traditional session type systems,
the logical interpretation ensures unrestricted progress, meaning that well-typed pro-
cesses never get stuck, as well as livelock freedom. The interpretation can be developed
within either intuitionistic or classical linear logic, with certain subtle differences in ex-
pressiveness (Caires et al. 2012; Wadler 2012). We base the developments in this paper
on the classical interpretation, as it represents rather directly the symmetries present
both at the level of types and process interactions, given the presence of negation. The
presented system thus establishes a Curry-Howard interpretation with classical linear
logic, via the presentation Σ2 of Andreoli (1992) extended with mix principles, which
we also explore here for the first time. The structure is given by the types

A,B ::= ⊥ | 1 | !A | ?A | A⊗B | AOB | A⊕B | A N B

For each type A we define the dual A corresponding to the negation operator of linear
logic (·)⊥, following basic de Morgan laws. Intuitively, the type of a session end-point
is the dual of the type of the opposite session end-point.

1 = ⊥ ⊥ = 1 !A =?A ?A = !A
A⊗B = AOB AOB = A⊗B A⊕B = ANB ANB = A⊕B

Session Termination ⊥ and 1 type terminated sessions, seen from each end-point
partner. No well-typed partner will make further use of a terminated session. Both
types are represented in traditional session type systems by a single type end. In the
presence of mix principles, as we do here, we have ⊥ (1 and 1 (⊥ , so we also
consider ⊥ = 1, and write • for either one, hence • = • (recall A (B , A O B).
We have the rules

0 ` x:•; Θ
(T1)

P ` ∆; Θ

P ` x:•,∆; Θ
(T⊥)

The associated principal cut reduction corresponds to the structural congruence law
0 | P ≡ P rather than to a reduction step expressed by process synchronisation (struc-
tural congruence ≡ is the basic identity on processes).

Send and Receive A⊗ B is the type of a session that starts by sending a session of
type A and then continues as a session of type B. It thus corresponds to the session
type A!.B (Honda 1993). Notice that A ⊗ B is essentially a pair of non-interfering
types, which is what is essentially put to use in our session model. A O B is the type

71

of a session that starts by receiving a session of type A and then continues as a session
of type B. It corresponds to the session type A?.B (so A?.B corresponds to A(B).

Session send and receive are respectively represented by π-calculus input and out-
put guarded processes. An input process has the form x(y).R, representing a process
that receives on session x a session n, passed in parameter y, and then proceeds as
specified by R. The continuation R will use both the received session and other open
sessions (including x). An output process has the form x(y).M , where y is a freshly
created name (this corresponds, without loss of expressiveness, to the output mecha-
nism of the π-calculus with internal mobility). The behaviour of such a process is to
send session y on x and then proceed as defined by M . In our typed language, M al-
ways has the form P | Q (that is M ≡ P | Q where P defines the behaviour of session
y being sent, and Q the behaviour of the continuation session on x). This separation is
key to ensure lock freedom, and does not limit expressiveness. Notice that y is bound
both in x(y).M and in x(y).R. We then have the following typing rules.

P ` ∆, y:A; Θ Q ` ∆′, x:B; Θ

x(y).(P | Q) ` ∆,∆′, x:A⊗B; Θ
(T⊗)

R ` Γ, y:C, x:D; Θ

x(y).R ` Γ, x:C OD; Θ
(TO)

The associated principal cut reduction corresponds to the expected (session passing)
process synchronisation. If we consider C = A and D = B we obtain

x(y).(P | Q) ` ∆,∆′, x:A⊗B; Θ x(y).R ` ∆, x:AOB; Θ

(νx)(x(y).(P | Q) | x(y).R) ` ∆,∆′,Γ; Θ
(Tcut)

which reduces to

P ` ∆, y:A; Θ R ` Γ, y:A, x:B; Θ

(νy)(P | R) ` ∆,Γ, x:B; Θ
(Tcut)

Q ` ∆′, x:B; Θ

(νx)((νy)(P | R) | Q) ` ∆,∆′,Γ; Θ
(Tcut)

This corresponds to the standard input/output synchronisation in the (internal) π-calculus,
expressing communication reduction (recall that M ≡ P | Q).

(νx)(x(y).M | x(y).R)→ (νx)(νy)(M | R)

Offer and Choice A ⊕ B types a session that first chooses (from the partner menu
offer) either “left” or “right”, and then continues as a session of type respectively either
A or B. It thus corresponds to a pure, binary version, of the (choice) session type
⊕i∈I{li : Ai}. ANB types a session that first offers (for partner to choose) both“left”
or “right” menu options and then continues as a session of type respectively A or B,
depending on the choice made. It corresponds to a pure, binary version, of the (offer)
session type Ni∈I{li : Ai}. The offer and choice primitives are typed by the additive

72

connectives N and ⊕, namely linear conjunction and linear disjunction.

R ` ∆, x:A; Θ

x.inl;R ` ∆, x:A⊕B; Θ
(T⊕1)

R ` ∆, x:B; Θ

x.inr;R ` ∆, x:A⊕B; Θ
(T⊕2)

P ` ∆, x:A; Θ Q ` ∆, x:B; Θ

x.case(P,Q) ` ∆, x:ANB; Θ
(TN)

The associated principal cut reductions corresponds to the session offer and choice
process synchronization, as expressed by the reductions:

(νx)(x.case(P,Q) | x.inl;R)→ (νx)(P | R)
(νx)(x.case(P,Q) | x.inr;R)→ (νx)(Q | R)

In general, we may consider instead n-ary labeled sums, which are closer to the offer
and choice constructs found in more traditional session types.

R ` ∆, x:A; Θ

x.li;R ` ∆, x:⊕i∈I {li : Ai}; Θ

Pi ` ∆, x:Ai; Θ (all i ∈ I)

x.casei∈I(li.Pi) ` ∆, x: Ni∈I {li : Ai}; Θ
In this case, the principal cut reduction corresponds to the process reduction

(νx)(x.casei∈I(li.Pi) | x.li;R)→ (νx)(Pi | R)

Shared Service Definition and Invocation Shared service definition and invocation
are typed by the linear logic exponentials ! and ?. !A types any shared channel that
persistently publishes a replicated service which whenever invoked spawns a fresh
session of type A (from the server behaviour perspective). Dually, type ?A types any
shared channel on which requests to a persistently replicated service of type A can be
unboundedly issued, from the client’s perspective. We consider the rules:

P ` ∆, y:A;u:A,Θ

u(y).P ` ∆;u:A,Θ
(Tcopy)

P ` ∆;x:A,Θ

P ` ∆, x:?A; Θ
(T?)

Q ` y:A; Θ

!x(y).Q ` x:!A; Θ
(T!)

The associated principal cut reduction corresponds to shared service invocation

(νx)(x(y).P | !x(y).Q)→ (νx)((νy)(P | Q) | !x(y).Q)

Notice that rule T? is silent on the process, as it essentially corresponds to a book-
keeping principle, moving the shared session channel to the exponential context, not
corresponding to an actual reduction step in the process language.

Composition Rules Typed process composition principles are presented in our sys-
tem by a set of orthogonal typing rules, which correspond to cut and mix principles.

0 `; Θ
(T·) P ` ∆; Θ Q ` ∆′; Θ

P | Q ` ∆,∆′; Θ
(T |)

P ` ∆, x:A; Θ Q ` ∆′, x:A; Θ

(νx)(P | Q) ` ∆,∆′; Θ
(Tcut)

P ` y:A; Θ Q ` ∆;u:A,Θ

(νu)(!u(y).P | Q) ` ∆; Θ
(Tcut?)

73

The mix rules (T·) and (T |) express independent composition principles (grouping
non-interfering sub-systems). The cut rules correspond to dependent composition prin-
ciples (connecting subsystems through a selected communication channel). The cut
principle appears in two forms, one for plugging a linear (session) channel (Tcut),
other for plugging with a exponential (shared) channel (Tcut?). For typing “source
code” only the linear cut is required, but the exponential cut is required for the full sys-
tem to enjoy cut-elimination (it thus corresponds to a “run-time” typing rule, in terms
of operational semantics jargon). Notice that session type systems not based on log-
ical principles (Honda et al. 1998; Gay and Hole 2005) usually embody composition
principles quite differently, and fail to ensure a general progress property.

Forwarding We conveniently interpret the identity axiom by a primitive forwarder
process [x ↔ y], with several advantages (Caires et al. 2012), particularly when con-
sidering polymorphism (Caires et al. 2013). The forwarder at type A is typed by

[x↔ y] ` x:A, y:A; Θ

The associated cut reduction (νx)(P | [x ↔ y]) → P{y/x} corresponds to explicit
substitution application (y is not free in P). We assume [x ↔ y] ≡ [y ↔ x] as
a structural congruence axiom. We may represent π-calculus “free” output xy.P by
x(z).([y ↔ z] | P) (cf. the internal mobility translation of Boreale (1998)).

Process reduction semantics The operational semantics of our typed session cal-
culus exhibits a precise correspondence with cut elimination at the logic level. It is
defined by a relation of reduction (P → Q) expressing dynamic evolution, and a rela-
tion of structural congruence, which equates processes with the same spatial (or static)
structure. While most cut-reduction steps directly correspond to process reductions,
other cut-reduction steps are better expressed in the process world as structural con-
gruence principles or behavioural equivalence principles, the same remark also applies
to the so-called commuting conversions (which typically express typed behavioural
equivalences (Pérez et al. 2012)). Behavioural equivalence equates processes present-
ing the same behaviour under all contexts (even if they differ in spatial structure).

Examples We consider a toy scenario involving a movie server and some clients.
The first example models a single session (on channel s) implemented by a client
Alice(s) and a server instance SBody(s). The server instance offers two options, a
“buy movie” option (inl), and a “preview trailer” option (inr). Alice selects the
“preview trailer” option from the server menu.

SBody(s) , s.case(s(title).s(card).s〈movie〉.0, s(title).s〈trailer〉.0)

Alice(s) , s.inr; s〈“solaris”〉.s(preview).0

System , (νs)(SBody(s) | Alice(s))

Assuming some given types for movie titles (T), credit card data (C) and movie files
M , types and type assignments for the various components are given by

74

SBT , (T (C (M ⊗ 1) N (T (M ⊗ 1)
SBody(s) ` s : SBT Alice(s) ` s : SBT System ` ·

We may also consider a shared movie server and two concurrent clients. Now Alice
still selects the “preview trailer” option, but Bob selects the “buy movie” option.

MOVIES (srv) , !srv(s).SBody(s)

Alice(srv) , srv(s).s.inr; s〈“solaris”〉.s(preview).0

Bob(srv) , srv(s).s.inl; s〈“inception”〉.s〈bobscard〉.s(moviefile).0

System , (νsrv)(MOVIES (srv) | Alice(srv) | Bob(srv))

The following types and type assignments are now derivable

MOVIES (srv) ` srv : !SBT ; Alice(srv) `; srv : SBT Bob(srv) `; srv : SBT
Alice(srv) | Bob(srv) ` srv :?SBT System ` ·

We leave to the reader the fun exercise of reconstructing the various typing derivations.

3 Non-Determinism
The main obstacle to the conciliation of “internal” non-determinism within a logically
motivated system interpreting proofs as processes is related to the fact that even if re-
duction steps at the programming language level may directly map into cut-elimination
steps at the level of proofs, such cut-elimination steps express, in the first place, proof
simplification or explicitation identities, towards a normal form. For example, in tra-
ditional functional interpretations, proofs are expressed in some λ-calculus. Then cut-
elimination or proof reduction maps directly into some form of β-reduction, a com-
putationally oriented version of some form of β-conversion, which is, in turn, a be-
havioural equivalence relation. Thus, a Curry-Howard correspondence directly relates
proof reduction with program reduction, since both notions are coherent with conver-
sion, which denotes proof equality. In general, we may understand every proof in the
given logical system as a process or program satisfying the property denoted by the
proposition it is a proof of, and proof reduction / cut-elimination, as the process that
brings up explicitly the single underlying object of behaviour (the “normal form”).

It is remarkable that the Curry-Howard interpretations of session types in linear
logic (Caires and Pfenning 2010; Wadler 2012; Caires et al. 2012) follow these gen-
eral principles, even if now the language is concurrent and expresses message passing
distributed systems, and not functional computation (but see Toninho et al. (2012)). In
fact, due to typing, reduction on session typed processes preserves observational equiv-
alence, given their deterministic and deadlock free nature. It is important to highlight
that the fact that reduction preserves observational equivalence not only already holds
for traditional session type systems, but also for other typed fragments of π-calculi,
where (at least certain sequences of) internal reduction steps preserve observational

75

equivalence, e.g., if P → Q then P ≈ Q (cf. τ -inertness of Groote and Sellink
(1996)). In the world of deterministic session typed processes internal reduction does
not change its future, externally observable behaviour, which by type safety must con-
form with the prescribed session types of its free session channels. In particular, in
the absence of additives (offer and choice), it is clear that the behaviour of a process
is fully determined by its type. Even in the presence of additives, languages for pure
session types (e.g. Honda et al. (1998)) forbid the possibility of truly non-deterministic
session behaviour. Consider the process S , x.case(P,Q) so that S`x:•N•, y:•⊕•;
where P , y.inl;0 and Q , y.inr;0. S can “non-deterministically” choose be-
tween inl or inr on session y. But, in fact, such choice is determined by the selection
made by the environment on x, guarded by the x.case(P,Q) construct, excluding the
possibility of “internal” choice. So, although the typing rule for offer

P ` ∆, x:A; Θ Q ` ∆, x:A; Θ

x.case(P,Q) ` ∆, x:AN A; Θ
(TN)

can express the alternative between processes P and Q, possibly of the same type as
in S above (where A = •, P ` x:•, y:• ⊕ • and Q ` x:•, y:• ⊕ •) it cannot ex-
press real non-determinism: for any well-typed process communicating on x process
S will always get a deterministic behaviour on y. A conceivable way to express “true”
non-determinism at the logical level would be through a typed construct denoting (un-
guarded) internal choice. A possible rendering would be:

P ` ∆, x:A; Θ Q ` ∆, x:A; Θ

P ⊕Q ` ∆, x:A; Θ

where P ⊕ Q would denote internal choice between behaviours P and Q. Intuitively,
this typing (or proof) rule would express superposition of behaviours P and Q in the
space of possibilities, as (TN) does, but replacing explicit external selection by inter-
nally decided non-deterministic choice. The question then arises about what should
be the computational behaviour of P ⊕ Q, usually defined by rules expressing the
non-deterministic collapse of the space of possibilities into one singled out choice.

P ⊕Q→ P P ⊕Q→ Q

It is clear that reduction principles such as these cannot be accepted as adequate proof
reduction principles, as one would loose preservation of observational equivalence un-
der cut-elimination of the proof objects (processes in our case), crucial to obtain a
sound and fully compositional logical interpretation of process behaviour. The coun-
terpart of the two reduction principles depicted above as cut-elimination steps would
be non-deterministic proof reductions

P ` ∆, x:A; Q ` ∆, x:A;

P ⊕Q ` x:A,∆; R ` ∆′, x:A;

(νx)(P ⊕Q | R) ` ∆,∆′;

→ P ` ∆, x:A; R ` ∆′, x:A;

(νx)(P | R) ` ∆,∆′;

→ Q ` ∆, x:A; R ` ∆′, x:A;

(νx)(Q | R) ` ∆,∆′;

76

But, course there is no room for obviously unsound behavioural equivalences such as
(νx)(P | Q) ≈ (νx)(P | R) when Q 6≈ R, which excludes this naive approach. The
fact that non-determinism may induce degeneracy in the computational interpretation
is well known, and usually considered a serious, if not unsurmountable, obstacle to
a Curry-Howard interpretation of non-determinism and concurrency. In this note we
develop a seemingly unexplored avenue to frame this challenge, in the context of our
session types interpretation of linear logic. The main idea involves two key ingredients,
clearly related to familiar concepts in concurrency and programming languages.

The first ingredient, involves admitting processes denoting alternative potential
behaviours among the various process forms under consideration. These processes
are subject to behaviour preserving reduction rules, which are compatible with cut-
elimination, and support compositional reasoning about process behavior. A typed
process then represents a possibly non-deterministic behaviour, denoting all the possi-
ble alternatives, necessary for compositionally and compatibility with equational rea-
soning. Such alternatives “overlap” in the sense that they share linear resources - this
sharing is not unsound since only some alternatives will be “actual”, cf. the rules for
the additive A N B. We should then interpret an “actual” execution step as a choice
among the possible paths in the non-deterministic space of possibilities, a concrete
observation that eliminates other competing alternatives. Such a non-deterministic ex-
ecution step should not however be regarded at the same level as the laws that govern
the global description of the non-deterministic system, which are essentially captured
by rules compatible with cut-elimination, but instead as something that falls outside
the logical explanation. By analogy, we recall the mathematical structure of models
of non-determinism, e.g., the power domain or power set constructions in denotational
(compositional) accounts of non-deterministic computation (Plotkin 1976), or even the
wave function model of quantum systems, which does not attempt to explain the (non-
deterministic) collapse that occurs at the concrete observation step. As in such settings,
we should nevertheless be obliged to formally relate the concrete non-deterministic be-
haviour, each possible observed behaviour, within the intended general model, without
confusing the role of both.

The second ingredient, involves capturing non-determinism in the type structure,
thus clearly and cleanly separating, as a proper conservative extension of the basic
system, non-deterministic behaviour from the basic deterministic one. To achieve this,
we encapsulate non-determinism within a monadic presentation supported by the type
operators NA and ⊕A, naturally related by duality (NA = ⊕A). The basic intuition
is that NA represents the type of a session that may non-deterministically choose to
produce some behaviour conforming to type A. On the other hand, ⊕A represents the
type of a session that may safely interact with (or consume, say) any non-deterministic
behaviour of type A. Non-determinism is thus encapsulated inside the NA monad. In
particular, any process typed in the basic (deterministic) fragment will be subject to

77

the usual discipline of (deterministic) session typed processes discussed above, in a
precise sense. We present the typing rules for these new logical / type operators.

P ` ∆, x:A; Θ

P ` ∆, x:NA; Θ
(TN1)

P ` N∆; Θ Q `N∆; Θ

P ⊕Q ` N∆; Θ
(TN2)

P `N∆, x:A; Θ

P ` N∆, x:⊕A; Θ
(T⊕)

The TN1 rule expresses that any (possibly linear) session can be coerced to a non-
deterministic one, corresponding to the monadic unit A(NA. The rule is silent on
the typed process P , it just acts at the level of types: although it would be possible to
formulate a non-silent interpretation of our non-deterministic types, we prefer not to
do so in this note, as that may seem a bit artificial when viewed from the process model
perspective, and of doubtful pedagogical utility. The crucial mechanism allowing true
non-determinism in the system is encapsulated in the TN2 typing rule, which also
allows the internal choice operator to be introduced at the level of processes. The
TN2 rule requires all linear sessions to be assigned a (producing) non-deterministic
type NA; this seems essential for cut-elimination (and type preservation) and overall
soundness of our interpretation. We will get back to this point below. An informal
explanation of the T⊕ typing rule can be given in fairly intuitive terms: to soundly
accept a non-deterministic behaviour at session x, process P must be already willing
to offer non-deterministic behaviour at every other open session.

The cut elimination step for the N1/⊕ redex essentially advances the session type
of x from the non-deterministic view (of type NA) to the deterministic view (of type
A). As a design option, we interpret this reduction silently at the level of processes.
P ` N∆, x:A; Θ

P ` N∆, x:⊕A; Θ

Q ` ∆′, x:A; Θ

Q ` ∆′, x:NA; Θ

(νx)(P | Q) ` N∆,∆′; Θ

→ P ` N∆, x:A; Θ Q ` ∆′, x:A; Θ

(νx)(P | Q) ` N∆,∆′; Θ

The cut reduction step involving the N2/⊕ pair is far more interesting. We thus have

P ` N∆, x:⊕A; Θ

Q ` N∆′, x:NA; Θ R ` N∆′, x:NA; Θ

Q⊕R ` N∆′, x:NA; Θ

(νx)(P | (Q⊕R)) ` N∆,N∆′; Θ
→

P ` N∆, x:⊕A; Θ Q ` N∆′, x:NA; Θ

(νx)(P | Q) ` N∆,N∆′; Θ

P ` N∆, x:⊕A; Θ R ` N∆′, x:NA; Θ

(νx)(P | R) ` N∆,N∆′; Θ

(νx)(P | Q)⊕ (νx)(P | R) ` N∆,N∆′; Θ

In our correspondence between proofs and processes, this cut reduction step gives
rise to a structural congruence principle rather than to a dynamic reduction step: it
clearly expresses a behavioural equivalence law (distribution of parallel composition
over choice), not explicitly involving any process interaction.

78

(νx)(P | (Q⊕R)) ≡ (νx)(P | Q)⊕ (νx)(P | R)

This principle resembles the expansion law of CCS equational theory, which also dis-
tributes parallel compositions over choices. The structural congruence 0 ⊕ 0 ≡ 0
also follows from the expected proof reduction; remarkably, from other available com-
muting conversions (Caires and Pfenning 2010; Pérez et al. 2012) we may derive the
equation P ⊕ P ≈ P , for any well-typed P (idempotence of choice).

The conditions enforced by our typing rules for the non-deterministic fragment
seem difficult to relax. For example, let B = • ⊕ • (cf., a type of “booleans”), and
consider the following typing

x.inl; y.inr;0 ` x:B, y:B

x.inl; y.inr;0 ` x:NB, y:NB

x.inl; y.inl;0 ` x:B, y:B

x.inl; y.inl;0 ` x:NB, y:NB
(TN2)

x.inl; y.inr;0⊕ x.inl; y.inl;0 ` x:NB, y:NB

The behaviour on session y is clearly non-deterministic, it can “collapse” on either
y.inl or y.inr: one may think of NB as a type of (linear) non-deterministic booleans.
Although the behaviour on session x is deterministic, the composition rule requires all
sessions to be conservatively typed as non-deterministic, so that the whole process is
assigned type x:NB, y:NB. For the sake of argument, suppose the conditions on our
typing rules where relaxed, allowing non-deterministic typing of single sessions

x.inl; y.inr;0 ` x:B, y:B

x.inl; y.inr;0 ` x:B, y:NB

x.inl; y.inl;0 ` x:B, y:B

x.inl; y.inl;0 ` x:B, y:NB
(TN2)

x.inl; y.inr;0⊕ x.inl; y.inl;0 ` x:B, y:NB

Then, in general we would also need to accept the typing

x.inl; y.inr;0 ` x:B, y:B

x.inr; y.inr;0 ` x:B, y:NB

x.inl; y.inl;0 ` x:B, y:B

x.inr; y.inl;0 ` x:B, y:NB
(TN2)

x.inl; y.inr;0⊕ x.inr; y.inl;0 ` x:B, y:NB

After composition with a process of type y:⊕B, say Q , y.case(0,0), we would ob-
tain (νy)(x.inl; y.inr;0⊕ x.inr; y.inl;0 | Q) ` x:B. This typing would be invalid,
since we would be giving a non-deterministic process a deterministic type (outside the
monad N−). A similar reasoning justifies the form of typing rule (T⊕). Notice how-
ever that one may also express the intended x-deterministic / y-non-deterministic type
anyway, but using a different process, as follows:

y.inr;0 ` y:NB y.inl;0 ` y:NB
(TN2)

y.inr;0⊕ y.inl;0 ` y:NB
(T⊥)

y.inr;0⊕ y.inl;0 ` x:•, y:NB
(T⊕1)

x.inl; (y.inr;0⊕ y.inl;0) ` x:B, y:NB

79

Moreover, in some cases it is possible to assign a purely deterministic type to a process
with actual, but hidden, non-deterministic computations: of course, soundness of our
interpretation ensures that no non-deterministic behaviour can be externally observable
on such a process. This fine grained compositional control of non-determinism is a
natural consequence of our monadic interpretation. Consider some basic laws enjoyed
by the non-deterministic type constructs, given by the following derivable typings

[x↔ y] ` x:⊕⊕A, y:NA; (cf. NNA(NA)
[x↔ y] ` x:A, y:NA; (cf. A(NA)
[x↔ y] ` y:NA, x:A, ; (cf. ⊕A(A)
[x↔ y] ` x:⊕A, y:NA; (cf. NA(NA)
[x↔ y] ` x:NA, y:⊕A; (cf. ⊕A(⊕A)
0 ` x:⊕•, y:•; (cf. N•(•)

Notice that although we have N• (• and • (⊕•, we cannot in general (that is,
for any type A) derive a typing of the form R ` z:NA (A, as that would signal a
“leak” in the non-deterministic monad. The special case of the unit • is sound since
no behaviour apart from the trivial one is involved. This relates to the absence of
information flow at the unit type in the context of information flow type systems (e.g,
Crary et al. (2005)), where a high security value of unit type can be safely declassified
to low security, since no interference may arise at that particular type. In our setting,
there is also no real non-deterministic behaviour of • type (since there is no observable
behaviour of • type at all). The fact that several of the laws above are realised by a
simple forwarder [x↔ y] should not come as a surprise, given the silent interpretation
(at the level of the processes) of our non-deterministic (monadic) type operators.

It is interesting to note the (at least superficial) similarity between the rules for ⊕A
and NA and those for the exponentials !A and ?A respectively. A key difference is vis-
ible in the “contraction principle” expressed by TN2, which works along the space of
possible alternatives (in terms of grouping overlapping states, possibly sharing linear
resources), instead of along the space of shared usages (in terms of fusing replicated
behaviours, not depending on linear resources). This fact also fundamentally sepa-
rates our approach from the differential linear logic of Ehrhard and Regnier (2006),
which may also support a logical interpretation of non-determinism by interpreting all
proofs as sets (more precisely as linear combinations) of “simple” proofs. Our logic
is based on quite different principles, as we encapsulate internal non-determinism in
new connectives related to the additives of linear logic, while differential linear logic
modifies the interpretation of the exponentials, namely !A, by adding the rule of co-
contraction. That suggests a computational model in which non-determinism only ap-
plies to replicated servers, thus quite different from ours. In our model, co-contraction
may conceivably be represented in a finer grained way by deriving N!A via TN2.

Examples We get back to our movie server scenario, and illustrate how to model a
system with a client Randy(s) that non-deterministically decides between either actu-

80

ally buying a movie or just seing its trailer. Essentially, we have

Randy(s) , Alice(s)⊕ Bob(s) USystem , (νs)(SBody(s) | Randy(s))

where the suitable types and type assignments are now given by

SBT , (T (C (M ⊗ 1) N (T (M ⊗ 1)
SBody(s) ` s : ⊕SBT Randy(s) ` s : NSBT USystem ` ·

Consider now a variant server that logs requests on a log service l of type B. We then
obtain the following typings, where of course the visible behaviour at the log channel
l must be given the non-deterministic type NB.

SBodyL(s) , s.case(s(title).s(card).s〈movie〉.l.inl;0, s(title).s〈trailer〉.l.inr;0)
SBodyL(s) ` s:SBT , l:B SBodyL(s) ` s:⊕ SBT , l: N B USystem ` l: N B

It would be easy to extend this system to a shared setting, to illustrate other interesting
non-deterministic behaviours. For example, we could consider a shared movie server
that non-deterministically offers to the client a (possibly) randomly chosen trailer of
the movie title asked for. Such a shared movie server would then be given type

SRBT , !(T (C (M ⊗ 1) N (T ((NM)⊗ 1)

In our next example, we illustrate in a very simple setting how some systems encapsu-
lating non-deterministic behaviour can nevertheless be given a globally deterministic
type, thus showing that the given internal non-determinism is not observable at public
channels. Consider the following processes and typings:

Some(y) , y.inl;0⊕ y.inr;0 Some(y) ` y : NB

Prod , x(y).(Some(y) | b〈“done”〉.0) Prod ` x : (NB)⊗ •, b : String ⊗ •
Cons , x.case(0,0) Cons ` x:(⊕B) O •
Plug , (νx)(Prod | Cons) Plug ` b : String ⊗ •

Notice that the although the producer Prod sends (on x) a non-deterministic boolean
Some(y) (on y) to the consumer Cons , the type of system Plug is b : String ⊗•, a de-
terministic type. In fact, we may easily verify that Plug always reduces to b〈“done”〉.0.
In Fig. 1 we summarise our process language, reduction, and structural congruence.

4 Main Results
We collect in this section a preliminary analysis of our non-deterministic linear logic-
based type system for session process behaviour. First, our system enjoys the cut-
elimination property, which we may express in our setting as follows, given a suitable
defined observational congruence∼=s on processes which includes reduction, structural
congruence, and some necessary commuting conversions (along the lines of Caires and
Pfenning (2010); Pérez et al. (2012); Caires et al. (2012)).

81

(Processes)

P ::= [x↔ y] | P |Q | (νy)P | x(y).P | x(y).P | !x(y).P
| x.case(P,Q) | x.inr;P | x.inl;P | P ⊕Q | 0

(Reduction)

x(y).Q | x(y).P → (νy)(Q | P) x(y).Q | !x(y).P → (νy)(Q | P) | !x(y).P

(νx)([x↔y] | P)→ P{y/x} Q→ Q′ ⇒ P | Q→ P | Q′

P → Q⇒ (νy)P → (νy)Q P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q

x.inr;P | x.case(Q,R)→ P | R x.inl;P | x.case(Q,R)→ P | Q
(Structural Congruence)

P | 0 ≡ P P ≡α Q⇒ P ≡ Q (νx)0 ≡ 0 P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q)

[x↔y] ≡ [y↔x] (νx)(νy)P ≡ (νy)(νx)P

0⊕ 0 ≡ 0 (νx)(P | (Q⊕R)) ≡ (νx)(P | Q)⊕ (νx)(P | R)

Figure 1: The Process Language.

THEOREM 1. If P ` ∆; Θ then there is a process Q such that P ∼=s Q and Q ` ∆; Θ
is derivable without using the rules (Tcut) and (Tcut?).

Then, we state type safety, which is witnessed by theorems of preservation and
progress (for closed systems).

THEOREM 2 (PRESERVATION). If P ` ∆; Θ and P → Q then Q ` ∆; Θ.

We say that process P is live, noted live(P) if and only if P ≡ (νn)(π.Q | R)
for some π.Q,R, n where π.Q is a non-replicated action prefixed process (e.g, π is a
simple session input, output, offer, or choice prefix). We then have

THEOREM 3 (PROGRESS). If P ` ; Θ and live(P) then there is Q such that P → Q.

The following results clarify some key features of the our type system. We say
that a process P is prime if it is not structurally congruent to a process of the form
Q⊕ R with non-trivial (e.g, equivalent to 0) Q and R. We also denote by P ⇒ Q the
reflexive-transitive closure of P → Q. We can prove the following property:

PROPOSITION 4. Let P ` ∆; Θ where types in ∆ are deterministic (do not contain
NA or ⊕A types at the top level, and let P ⇒ Q 6→. Then Q is prime.

Being based on a logical system in which reduction is deeply related with cut-
elimination, it turns out that typed processes enjoy the confluence property, and in
fact also strong normalisation. The proof of these results can be established using for
instance logical relations, along the lines of Pérez et al. (2012).

82

Confluence holds because, as discussed above, non-determinism is captured with-
out losing information, by means of delaying choice in processes of the form P ⊕ Q,
which express alternative (overlapping in time) states. It is nevertheless interesting to
relate our system with extensions of it with reduction rules explicitly collapsing non-
deterministic states in prime states. For that purpose, we consider the extension of
the basic reduction relation defined in Figure 1 with standard rules for internal choice,
namely P ⊕ Q → P and P ⊕ Q → Q. We denote by P →c Q the extended reduc-
tion relation, which still satisfies preservation and progress in the sense of Theorems
2 and 3. We may then show the following result, expressing postponing of internal
non-deterministic collapse of non-deterministic states into prime states.

THEOREM 5 (POSTPONING). Let P ` ∆; Θ. We have
1. If P ⇒ P1⊕ . . .⊕Pn 6→ with Pi prime for all i, then P ⇒c Pi for all 0 < i ≤ n.
2. Let C = {Pi | P ⇒c Pi 6→c and Pi is prime }. Then C is finite up to ≡, with

#C = n, and for all 0 < i ≤ n, P ⇒ P1 ⊕ . . .⊕ Pn →c Pi.

We can therefore tightly relate the system based on pure logically motivated re-
duction with the system extended with the standard (non-logical, non-confluent) re-
duction rules for internal choice, in the sense that the former precisely captures the
set of observable alternatives defined by the latter, while preserving compositional and
equational reasoning about the system behavior.

5 Concluding Remarks
We have sketched an approach to accommodate internal non-determinism in a logi-
cally motivated behavioural type system for concurrent processes, in the setting of a
Curry-Howard correspondence of session types and linear logic. Distinguishing as-
pects of our contribution is the embedding of non-determinism inside a logical system
by the introduction of superposed states motivated by the additive rules of linear logic,
disciplined by specific type operators NA and ⊕A. Apart from the foundational con-
tribution, we should also mention that our approach also adds to the flexibility of the
standard session paradigm, in which deterministic and (externally determined) non de-
terministic phases are sharply distinguished. Our system allows lock-free, confluent
programs with richer combinations of determinism and non determinism, preserving
compatibility with observable collapsing non-determinism (in the sense of Theorem
5). We expect our development to raise many other interesting questions, not only
about expressiveness, but also about induced observational equivalences, its combina-
tion with recursion, and its compatibility with stochastic models of non-determinism.

Acks. Thanks to M. Abadi, P. Gardner, A. Gordon, and R. Mardare for inviting this
contribution, and to Pfenning, Toninho, and Perez for many related discussions.

83

References
S. Abramsky. Computational Interpretations of Linear Logic. Theoret. Comput. Sci.,

111(1–2):3–57, 1993.
J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. J. Log.

Comput., 2(3):297–347, 1992.
M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi.

Theor. Comput. Sci., 195(2):205–226, 1998.
L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theor. Comput.

Sci., 3(322):517–565, 2004.
L. Caires and F. Pfenning. Session Types as Intuitionistic Linear Propositions. In

CONCUR’10, number 6269 in LNCS, pages 222–236, 2010.
L. Caires, F. Pfenning, and B. Toninho. Linear Logic Propositions as Session Types.

Math. Struct. in Comp. Sci., 2012. to appear.
L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Behavioral Polymorphism and

Parametricity in Session-Based Communication. In ESOP’13, number 7792 in
LNCS, 2013.

L. Cardelli. Typeful Programming. IFIP State-of-the-Art Reports: Formal Description
of Programming Concepts, pages 431–507, 1991.

L. Cardelli. On Process Rate Semantics. Theor. Comput. Sci., 391(3):190–215, 2008.
K. Crary, A. Kliger, and F. Pfenning. A Monadic Analysis of Information Flow Secu-

rity with Mutable State. J. Funct. Program., 15(2):249–291, 2005.
T. Ehrhard and L. Regnier. Differential Interaction Nets. Theor. Comput. Sci., 364(2):

166–195, 2006.
S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus. Acta Informatica,

42(2-3):191–225, 2005.
J. F. Groote and M. P. A. Sellink. Confluence for Process Verification. Theor. Comput.

Sci., 170(1-2):47–81, 1996.
K. Honda. Types for Dyadic Interaction. In CONCUR’93, number 715 in LNCS, pages

509–523, 1993.
K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline

for Structured Communication-Based Programming. In ESOP’98, number 1381 in
LNCS, 1998.

J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear Logical Relations for
Session-Based Concurrency. In ESOP’12, number 7211 in LNCS, 2012.

G. D. Plotkin. A Powerdomain Construction. SIAM J. Comput., 5(3):452–487, 1976.
B. Toninho, L. Caires, and F. Pfenning. Functions as Session-Typed Processes. In

FoSSaCS’12, number 7213 in LNCS, 2012.
P. Wadler. Propositions as Sessions. In ICFP’12, ACM, pages 273–286, 2012.

84

What makes a biological clock efficient?

Attila Csikász-Nagy1,2, Neil Dalchau3

1 Randall Division of Cell and Molecular Biophysics and Institute for Mathematical
and Molecular Biomedicine, King's College London, London SE1 1UL, United
Kingdom

2 Department of Computational Biology, Research and Innovation Center,
Fondazione Edmund Mach, San Michele all'Adige 38010, Italy

3 Microsoft Research, Cambridge CB1 2FB, United Kingdom

Abstract

Biological clocks regulate the proper periodicity of several processes at the cellular
and organismal level. The cell cycle and circadian rhythm are the best characterized
among these but several other biological clocks function in cells at widely variable
periodicity. The underlying molecular networks are controlled by delayed negative
feedbacks, but the role of positive feedbacks and substrate-depletion has been also
proposed to play crucial roles in the regulation of these processes. Here we will
investigate which features of biological clocks might be important for their efficient
timekeeping.

Evolution of biological clocks

The ability of organisms to temporally co-ordinate their physiology is evolutionarily
advantageous, and is therefore ubiquitous in nature. Organisms have evolved
numerous so-called biological clocks to optimise their fitness, by co-ordinating their
physiology with the availability of resources. Simple experiments monitoring the
growth of bacteria against varying nutrient availability illustrate an enormous
flexibility in deciding how frequently cells choose to divide. Yet, the developmental
programs that lead to the replication of entire organisms (mammals) are relatively
inflexible. The cell cycle, which culminates in cell division, is controlled by
regulatory networks that have numerous conserved features and components across
the eukaryotic kingdom (Harashima et al., 2013).

Circadian clocks allow organisms to co-ordinate their physiology with the external
time of day, enabling anticipation of changes in temperature, light availability,
predator activity, etc. In contrast to the cell cycle, circadian clocks have evolved
multiple times and have many different features (though some shared components)
across the eukaryotic kingdom (Dalchau and Webb, 2011). The overall structure of
circadian networks involves input pathways, a core oscillator, and output pathways
(Dunlap, 1999). The core oscillator comprises multiple feedback loops that sustain
circadian rhythms with a period of approximately 24 h. Input pathways enable the

85

oscillator to maintain synchrony with external time, while output pathways provide
the biochemical means of the oscillator to regulate downstream physiology,
including gene expression, metabolism and signalling.

Synthesizing biological clocks

In recent years, there has been a large rise in the number of attempts to engineer
biological systems. The field of synthetic biology seeks to improve understanding of
biological functions by attempting to re-create specific systems and their behaviours,
using existing cells and their housekeeping components (RNA polymerase,
ribosomes, proteasomes, etc.) as a chassis. The creation of biological devices is
beginning to open new opportunities in industry, for example using bacteria to
produce biofuels and medicines. A seminal work in this field was the construction of
a biological clock, termed the repressilator, in which three transcriptional repressors
were taken from non-oscillatory networks and inserted into Escherichia coli on a
plasmid, but arranged as a cycle of repression (Elowitz and Leibler, 2000). Briefly,
TetR was placed under the control of a LacI-repressible promoter, LacI was placed
under the control of a CI-repressible promoter, and CI under the control of a TetR-
repressible promoter. It was demonstrated that oscillations in the abundance of the
constituent proteins could be generated when the strengths of the interactions
between the repressor proteins and their cognate DNA-binding domains were tuned
to appropriate levels.

Figure 1. Deterministic simulation of ring oscillators. Sequential inhibition of
transcriptional repressors around a single feedback loop produces oscillations. a. Simulation
of the repressilator (3-component ring oscillator) model in Elowitz & Leibler. b,c. Extending
the model to 5 and 11 components also yields oscillations in protein copy number. Protein 1
is plotted with a thickened black line to emphasize differences in oscillation waveform
between different degree ring oscillators.

The repressilator network is an example of a 3-stage ring oscillator. Ring oscillators
are often used in electrical engineering for generating oscillations. However, only
rings with an odd number of components can give oscillatory dynamics ((Sprinzak
and Elowitz, 2005); examples in Figure 1). This is because each regulator inverts the
gradient of the following regulator, which for an even number of components would
result in an equilibrium ON-OFF-ON-OFF-…-ON-OFF. Using an odd number of

86

components breaks this pattern, and can yield oscillations. Increasing the length of
the feedback loop with additional components leads to more square-like waveforms
(Figure 1). It has recently been established that a repressilator motif also exists in
nature, lying at the heart of the circadian clock in plants (Pokhilko et al., 2012) and
in the core of transcriptional regulation of the cell cycle (Sriram et al., 2007).

Oscillators have also been created in mammals (Tigges et al., 2009) as well as in
cell-free conditions, mixing chemical compounds in such a way as to recapitulate
interaction networks that can exhibit oscillatory behaviour, for instance using
negative feedback. In various works dating back to the 1950s, the famous Belousov-
Zhabotinsky reaction was shown to both oscillate in time and propagate over
excitable media (Field et al., 1972). More recently, the construction of chemical
oscillators made from DNA has been demonstrated, inspired by predator-prey (PP)
cycles (Fujii and Rondelez, 2012). A system of 3 reactions is sufficient to generate
PP cycles: i. an autocatalytic growth of the prey species, ii. an autocatalytic predation
of the prey, and iii. decay of the predator species. The DNA-based PP network relies
on DNA polymerization-depolymerization reactions to recapitulate these reactions,
and is capable of sustaining many (>20) cycles before eventual depletion of
necessary cofactors.

Mathematical analysis of biological clock architectures

There is a long history on the mathematical analysis of biological clocks (Goldbeter,
1997, 2002), still it is not fully understood what makes such a periodic system
efficient. Biological clocks can run with a period of seconds (neural, cardiac, calcium
rhythms) to months and years (ovarian, annual and ecological rhythms) and are
regulated by delayed negative feedback loops that cause oscillations in the activities
of system components (Goldbeter, 2008). Direct negative feedback loops lead to
stabilization of steady states but delay in the loop and non-linearity in the interactions
can induce oscillations (Goodwin, 1965; Griffith, 1968). This generic rule that
delayed negative feedback loops form the basis of biological oscillations is now very
well established for many biological clocks (Fig. 2A). The daily rhythms of the
circadian clock might be the best example, where it was established that the
existence of a direct time delay caused by a transcriptional-translational loop is
driving the periodic appearance of a transcriptional repressor (Dunlap, 1999).
Interestingly it was recently revealed that even in the absence of the delay caused by
transcription-translation the circadian clock is robustly ticking (Nakajima et al.,
2005; O’Neill et al., 2011). Later it was proposed that a positive feedback loop might
play a crucial role in the control of this reduced system (Mehra et al., 2006). Indeed
the importance of positive feedback loops in the robustness of circadian clock
regulation was proposed at other places as well (Tyson et al., 1999; Becker-
Weimann et al., 2004; Hong et al., 2009). These led to the conclusion that the
circadian clock is controlled by interactions of positive and negative feedback loops.

87

Another highly investigated biological clock is driven by the cell cycle regulatory
network. The controlled timing of DNA replication and cell division is determined
by this clock and again earliest models considered a delayed negative feedback loop
to drive this system (Goldbeter, 1991) and later results revealed the importance of
positive feedback loops as well (Pomerening et al., 2005; Tsai et al., 2014). Thus it is
a reoccurring pattern that crucial biological clocks are regulated by interlinked
positive and negative feedback loops (Tsai et al., 2008; Ferrell Jr et al., 2011).

Figure 2. Feedback loops leading to oscillations. A, negative feedback loop, where protein
X activates Y, which activates Z which is eventually inducing the degradation of X. B,
Substrate-depletion, where a substrate S is produced and piling up in this form until the
product P cannot turn on its autocatalytic loop converting most S into P. As P is less stable
than S, the system runs out of both S and P, thus S will pile up again and oscillations emerge.

In the case of glycolytic oscillations of the metabolic system it was proposed very
early that a positive feedback loop has a crucial role in controlling this biological
clock and the oscillations appear as a result of the depletion of the substrate of an
autocatalytic process (Higgins, 1964; Sel'kov, 1968). In this system a stable substrate
is produced and converted into an unstable product in an autocatalytic manner (Fig.
2B) leading to oscillations where S is slowly increasing until P reaches a threshold
and quickly converts all S into P (Fig. 3). The requirements for this system to
oscillate are: i, non-linear autocatalysis on the S�P transition, ii, a background S�P
conversion independent of P to allow P reaching the threshold and iii, removal rate of
P has to be much higher than that of S. Note that this system shows high resemblance
to the above mentioned predator-prey cycles. In both cases the pile up of one species
is followed by the conversion of this species to another species by an autocatalytic
step and eventual removal of the second species.

Interestingly one of the earliest cell cycle models was also working as a substrate-
depletion oscillator (Tyson, 1991) and since then it was further established that the
kinetics of the substrate-depletion model resemble that of the negative feedback with
positive feedback model (Fall et al., 2002). Indeed one can see the delayed negative
feedback in the substrate-depletion model as P removes its activator S (by converting
it to P). Thus we could state again that interlocked positive and negative feedbacks
regulate glycolytic oscillations. It is also important to mention that the substrate-
depletion mechanism that leads to oscillations in time can drive spatial biological
clocks such as pattern formation and emergence of travelling waves (Meinhardt,
1982).

S P

BX

Y

A

Y*
Z

Z*

88

Figure 3. Deterministic simulation of a substrate-depletion oscillator. The substrate S is
produced and first slowly converted into P. When P reaches a threshold it converts all S to P,
which gets quickly destroyed. Leading to a bursting-like pattern in P oscillations.

Efficiency of biological clocks

Going back to the original question in the title: what makes biological clocks
efficient? In fact, how to measure the efficiency of biological clocks? The robustness
of the periodicity of biological clocks were investigated in the context of the
circadian rhythm (Barkai and Leibler, 2000; Gonze et al., 2002) and the cell cycle
(Steuer, 2004; Mura and Csikász-Nagy, 2008). Both were found to be quite robust to
parameter perturbations and also to intrinsic noise resulting from the low molecular
numbers present in the system. So far we have seen many parallels between the
circadian clock and cell cycle regulatory systems. There is one major point where
they differ. The period of the circadian clock is quite insensitive for temperature
changes whereas the cell cycle time can be greatly influenced by alterations in
temperature (Klevecz and King, 1982). This result might suggest that the circadian
rhythm regulatory network is a more efficient time keeper, while the cell cycle
regulatory systems is more efficient in adjusting its period to adapt to environmental
changes (Zámborszky et al., 2007; Hong et al., 2014). Changes in temperature affect
chemical reactions exponentially, following the Arrhenius equation. How such
changes in reaction rates do not influence the period of the circadian clock is a
debated question (Tyson et al., 2008). Several models have been worked out to
understand what causes the temperature compensation in the circadian clock (Ruoff
and Rensing, 1996; Leloup and Goldbeter, 1997; Gould et al., 2006; Hong et al.,
2007; François et al., 2012) and some more generic models of temperature
compensation in biochemical reaction networks have also been proposed (Ruoff et
al., 1997; Hatakeyama and Kaneko, 2012). Recently even a synthetic temperature
compensated oscillator was created (Hussain et al., 2014), interestingly containing
both a positive and a negative feedback loop. Furthermore non-biological ring
oscillators on semiconductors were also designed to be temperature compensated

89

(Hayashi and Kondoh, 1993). Despite all of these results and theoretical ideas we
still lack a coherent generic picture of what makes biological oscillators temperature
compensated and in general robust in proper periodicity.

Conclusions

Recently it was established by Cardelli and Csikász-Nagy that a class of biological
switches follow the dynamical features of an efficient computational algorithm
(Cardelli and Csikász-Nagy, 2012). The Approximate Majority (AM) algorithm is
used in distributed computing as a population protocol computing the majority of
two finite populations by converting the minority population into the majority
population (Angluin et al., 2008). It was shown that AM can mimic the dynamics of
the cell cycle switch regulatory network that induces the transition between stable
cell cycle states. It was also postulated that the cell cycle switch efficiency is
maximal only when its dynamics fully captures that of the AM algorithm (Cardelli
and Csikász-Nagy, 2012) and later this prediction was experimentally verified (Hara
et al., 2012). We have seen that it is very well established that reliable biological
time keeping mechanisms are regulated by the interconnection of such switch
generating positive feedback loops with oscillation inducing negative feedback
loops. The existence of negative feedback is essential and in almost all highly
investigated systems the role of the positive feedback is important for the robust
behaviour of the biological clock. It was established that the positive feedback
module of the cell cycle regulatory network behaves like an efficient algorithm
(Cardelli and Csikász-Nagy, 2012). Later, Cardelli (2014) established a theory to
identify kinetically identically behaving regulatory networks. A future challenge will
be the elucidation of which aspects of real life biological oscillators are important for
their proper ticking and how far their kinetics could be associated to a minimalistic
oscillator model.

References

Angluin, D., Aspnes, J., and Eisenstat, D. (2008). A simple population protocol for
fast robust approximate majority. Distributed Computing 21, 87-102.

Barkai, N., and Leibler, S. (2000). Biological rhythms: Circadian clocks limited by
noise. Nature 403, 267-268.

Becker-Weimann, S., Wolf, J., Herzel, H., and Kramer, A. (2004). Modeling
Feedback Loops of the Mammalian Circadian Oscillator. Biophysical journal 87,
3023-3034.

Cardelli, L. (2014). Morphisms of Reaction Networks that Couple Structure to
Function. BMC Systems Biology in press

Cardelli, L., and Csikász-Nagy, A. (2012). The cell cycle switch computes
approximate majority. Scientific reports 2, 656.

90

Dalchau, N., and Webb, A.A. (2011). Dalchau, N., and Webb, A.A. (2011). Ticking
over. Circadian systems across the kingdoms of life. Biochemist February issue, 12-
15.

Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96, 271-290.

Elowitz, M.B., and Leibler, S. (2000). A synthetic oscillatory network of
transcriptional regulators. Nature 403, 335-338.

Fall, C.P., Marland, E.S., Wagner, J.M., and Tyson, J.J. (2002). Computational cell
biology, volume 20 of Interdisciplinary Applied Mathematics: Springer Verlag.

Ferrell Jr, J.E., Tsai, T.Y.-C., and Yang, Q. (2011). Modeling the cell cycle: why do
certain circuits oscillate? Cell 144, 874-885.

Field, R.J., Koros, E., and Noyes, R.M. (1972). Oscillations in chemical systems. II.
Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid
system. Journal of the American Chemical Society 94, 8649-8664.

François, P., Despierre, N., and Siggia, E.D. (2012). Adaptive Temperature
Compensation in Circadian Oscillations. PLoS Comput Biol 8, e1002585.

Fujii, T., and Rondelez, Y. (2012). Predator–prey molecular ecosystems. Acs Nano
7, 27-34.

Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase. Proceedings of the National Academy of Sciences 88, 9107-
9111.

Goldbeter, A. (1997). Biochemical oscillations and cellular rhythms. Biochemical
Oscillations and Cellular Rhythms, by Albert Goldbeter, Foreword by MJ Berridge,
Cambridge, UK: Cambridge University Press, 1997 1.

Goldbeter, A. (2002). Computational approaches to cellular rhythms. Nature 420,
238-245.

Goldbeter, A. (2008). Biological rhythms: clocks for all times. Current biology 18,
R751-R753.

Gonze, D., Halloy, J., and Goldbeter, A. (2002). Robustness of circadian rhythms
with respect to molecular noise. Proceedings of the National Academy of Sciences
99, 673-678.

Goodwin, B.C. (1965). Oscillatory behavior in enzymatic control processes.
Advances in enzyme regulation 3, 425-437.

Gould, P.D., Locke, J.C., Larue, C., Southern, M.M., Davis, S.J., Hanano, S., Moyle,
R., Milich, R., Putterill, J., and Millar, A.J. (2006). The molecular basis of
temperature compensation in the Arabidopsis circadian clock. The Plant Cell Online
18, 1177-1187.

Griffith, J. (1968). Mathematics of cellular control processes I. Negative feedback to
one gene. Journal of Theoretical Biology 20, 202-208.

Hara, M., Abe, Y., Tanaka, T., Yamamoto, T., Okumura, E., and Kishimoto, T.
(2012). Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-
phase-promoting factor. Nature communications 3, 1059.

Harashima, H., Dissmeyer, N., and Schnittger, A. (2013). Cell cycle control across
the eukaryotic kingdom. Trends in cell biology 23, 345-356.

91

Hatakeyama, T.S., and Kaneko, K. (2012). Generic temperature compensation of
biological clocks by autonomous regulation of catalyst concentration. Proceedings of
the National Academy of Sciences 109, 8109-8114.

Hayashi, I., and Kondoh, H. (1993). Temperature-compensated ring oscillator circuit
formed on a semiconductor substrate: US patent 5180995 A.

Higgins, J. (1964). A chemical mechanism for oscillation of glycolytic intermediates
in yeast cells. Proceedings of the National Academy of Sciences of the United States
of America 51, 989.

Hong, C.I., Conrad, E.D., and Tyson, J.J. (2007). A proposal for robust temperature
compensation of circadian rhythms. Proceedings of the National Academy of
Sciences 104, 1195-1200.

Hong, C.I., Zámborszky, J., Baek, M., Labiscsak, L., Ju, K., Lee, H., Larrondo, L.F.,
Goity, A., Chong, H.S., Belden, W.J., and Csikasz-Nagy, A. (2014). Circadian
rhythms synchronize mitosis in Neurospora crassa. Proceedings of the National
Academy of Sciences 111, 1397-1402.

Hong, C.I., Zámborszky, J., and Csikász-Nagy, A. (2009). Minimum criteria for
DNA damage-induced phase advances in circadian rhythms. PLoS computational
biology 5, e1000384.

Hussain, F., Gupta, C., Hirning, A.J., Ott, W., Matthews, K.S., Josić, K., and
Bennett, M.R. (2014). Engineered temperature compensation in a synthetic genetic
clock. Proceedings of the National Academy of Sciences 111, 972-977.

Klevecz, R.R., and King, G.A. (1982). Temperature compensation in the mammalian
cell cycle. Experimental cell research 140, 307-313.

Leloup, J.-C., and Goldbeter, A. (1997). Temperature compensation of circadian
rhythms: control of the period in a model for circadian oscillations of the PER
protein in Drosophila. Chronobiology international 14, 511-520.
Mehra, A., Hong, C.I., Shi, M., Loros, J.J., Dunlap, J.C., and Ruoff, P. (2006).
Circadian rhythmicity by autocatalysis. PLoS computational biology 2, e96.

Meinhardt, H. (1982). Models of biological pattern formation. Academic Press
London.

Mura, I., and Csikász-Nagy, A. (2008). Stochastic Petri Net extension of a yeast cell
cycle model. Journal of Theoretical Biology 254, 850-860.

Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama,
T., and Kondo, T. (2005). Reconstitution of circadian oscillation of cyanobacterial
KaiC phosphorylation in vitro. Science 308, 414-415.

O’Neill, J.S., Van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.-Y.,
Reddy, A.B., and Millar, A.J. (2011). Circadian rhythms persist without transcription
in a eukaryote. Nature 469, 554-558.

Pokhilko, A., Fernández, A.P., Edwards, K.D., Southern, M.M., Halliday, K.J., and
Millar, A.J. (2012). The clock gene circuit in Arabidopsis includes a repressilator
with additional feedback loops. Molecular systems biology 8.

Pomerening, J.R., Kim, S.Y., and Ferrell Jr, J.E. (2005). Systems-level dissection of
the cell-cycle oscillator: bypassing positive feedback produces damped oscillations.
Cell 122, 565-578.

92

Ruoff, P., and Rensing, L. (1996). The temperature-compensated Goodwin model
simulates many circadian clock properties. Journal of Theoretical Biology 179, 275-
285.

Ruoff, P., Rensing, L., Kommedal, R., and Mohsenzadeh, S. (1997). Modeling
temperature compensation in chemical and biological oscillators. Chronobiology
international 14, 499-510.

Sel'kov, E. (1968). Self-Oscillations in Glycolysis. European Journal of
Biochemistry 4, 79-86.

Sprinzak, D., and Elowitz, M.B. (2005). Reconstruction of genetic circuits. Nature
438, 443-448.

Sriram, K., Bernot, G., and Kepes, F. (2007). A minimal mathematical model
combining several regulatory cycles from the budding yeast cell cycle. IET systems
biology 1, 326-341.

Steuer, R. (2004). Effects of stochasticity in models of the cell cycle: from quantized
cycle times to noise-induced oscillations. Journal of Theoretical Biology 228, 293-
301.

Tigges, M., Marquez-Lago, T.T., Stelling, J., and Fussenegger, M. (2009). A tunable
synthetic mammalian oscillator. Nature 457, 309-312.

Tsai, T.Y.-C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., and Ferrell, J.E.
(2008). Robust, tunable biological oscillations from interlinked positive and negative
feedback loops. Science 321, 126-129.

Tsai, T.Y.C., Theriot, J.A., and Ferrell, J.E., Jr. (2014). Changes in Oscillatory
Dynamics in the Cell Cycle of Early Xenopus laevis Embryos. PLoS Biol 12,
e1001788.

Tyson, J.J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions.
Proceedings of the National Academy of Sciences 88, 7328-7332.
Tyson, J.J., Albert, R., Goldbeter, A., Ruoff, P., and Sible, J. (2008). Biological
switches and clocks. Journal of The Royal Society Interface 5, S1-S8.

Tyson, J.J., Hong, C.I., Dennis Thron, C., and Novak, B. (1999). A simple model of
circadian rhythms based on dimerization and proteolysis of PER and TIM.
Biophysical journal 77, 2411-2417.

Zámborszky, J., Hong, C.I., and Csikász-Nagy, A. (2007). Computational analysis of
mammalian cell division gated by a circadian clock: quantized cell cycles and cell
size control. Journal of biological rhythms 22, 542-553.

93

94

Two possibly alternative approaches to the
semantics of stochastic process calculi∗

Rocco De Nicola (IMT Lucca) Diego Latella (ISTI-CNR, Pisa)
Michele Loreti (Univ. Firenze) Mieke Massink (ISTI-CNR, Pisa)

Abstract

In a recent paper, published in ACM Computing Surveys, we introduced a
unifying framework to describe the semantics of process algebras, including their
variants useful for modeling quantitative aspects of behaviors. In parallel with
our work Luca Cardelli and Radu Mardare advocated a new approach to the se-
mantics of stochastic process algebras based on measure theory. In this note, we
briefly introduce the two approaches and contrast them by using both of them
to describe the semantics of PEPA, one of the most known and used stochastic
process algebra.

1 Introduction
Process Algebras have been successfully used over the last thirty years to model and
analyze the behavior of concurrent distributed systems. They are based on mathemati-
cally rigorous process description languages with well-defined semantics that provide
models of processes, regarded as agents that perform actions (act) and communicate
(interact) with similar agents and with their environment. Process behavior is modeled
by Labelled Transition Systems (LTSs) and these LTSs are then compared according to
behavioral relations, giving rise to so-called process calculi. In some cases, the behav-
ioral relations also have complete axiomatizations, in forms of equations, that exactly
capture the relevant equivalences induced by the abstract operational semantics; then
process calculi are also called process algebras. Nowadays, process algebras, process
calculi and process description languages are often used interchangeably.

∗Research partially funded by projects EU ASCENS (nr. 257414), EU QUANTICOL (nr. 600708),
IT MIUR CINA and PAR FAS 2007-2013 Regione Toscana TRACE-IT.

95

Initially, process calculi were mainly designed to model functional (extensional)
system behavior. However, it was soon recognized that, in order to capture other im-
portant features of concurrent systems, variants were needed to take quantitative fea-
tures into account. This led to the development of timed process calculi, probabilistic
process calculi, and stochastic(-ally timed) process calculi. The latter have proven to
be particularly suitable for capturing important properties related to performance and
quality of service, and even for modeling biological systems.

Terms of stochastic process calculi have been used to model systems and then to
generate Continuous-Time Markov Chains (CTMCs) for performing systems analyses.
In CTMCs, delays are modelled as random variables with negative exponential distri-
butions; each of them is thus characterized by its unique parameter, the rate λ > 0,
and has expected value λ−1. CTMC-based process calculi associate time with actions,
annotating them with rates; by means of a rated action prefix (a, λ).P, with λ being the
rate associated with a.

While the target domains of the semantics functions of stochastic process calculi
have in many cases been CTMCs, the same uniformity cannot be found in the source
PDLs and in the approach taken to associate CTMCs to terms.

Some differences are conceptual; for instance, multi-party process synchronization
is used in most SPCs, but there are notable examples of one-to-one process synchro-
nization use, like stochastic π-calculus of Priami (1995) and stochastic CCS of Klin
and Sassone (2008).

Other differences, instead, are purely technical, a prominent example of such a
technical difference is the modeling of the race condition principle and its relation-
ship to the issue of transition multiplicity. To take transition multiplicity into account
and guarantee that the behavior of terms like (a, λ).P + (a, λ).P is the same as that of
(a, 2 · λ).P, and not as (a, λ).P, several, significantly different, approaches have been
proposed. They range from the use of multi-relations (Hillston 1996; Hermanns 2002)
to proved transition systems (Priami 1995; Gotz et al. 1993) and from LTSs with num-
bered transitions (Hermanns et al. 2002) to unique rate names (De Nicola et al. 2007),
to mention just a few. The feature that unites them all is that they require two steps
to obtain the ‘right’ rate: first an enriched LTS is built and then it is manipulated to
properly combine (e.g. to add up) rates.

In order to provide a uniform account of the many stochastic calculi, in De Nicola
et al. (2009a,b) we proposed a variant of LTSs, namely Rate Transition Systems (RTSs).
In LTSs, a transition is a triple (P, α, P′) where P is the source state, α is the label of the
transition, and P′ is the target state reached from P via α. In RTSs a transition is a triple
of the form (P, α,P), whose first and second component are again the source state
and the transition label, but the third component P is the continuation function that
associates a real non-negative value with each state P′. A non-zero value represents the
rate of the exponential distribution characterizing the time needed for the execution of

96

the action represented by α, necessary to reach P′ from P via the transition. We have
that P(P′) = 0, indicates that P′ is not reachable from P via α. RTSs elegantly solve
the issue of transition multiplicity; the rates of equal transitions, among those derivable
from the semantics rules, are simply added via operations on continuation functions.
Furthermore, RTSs make it relatively easy to define associative parallel composition
operators for calculi adopting the one-to-one interaction paradigm.

In De Nicola et al. (2013), we introduced State to Function Labeled Transition
Systems, FuTSs for short, a generalization of RTSs based on the parameterization of
the co-domain of the continuation functions, which enables us to consider more mod-
els and to take non-deterministic systems into account. The co-domains of FuTSs are
generic commutative semi-rings, and not just the set of non-negative reals. Contin-
uation functions are equipped with a rich set of (generic) operations, making FuTSs
very well suited as a semantic domain for the compositional definition of the oper-
ational semantics of stochastic process calculi. Such operations induce an algebraic
structure on the set of continuation functions, which we systematically exploit for the
compositional definition of the FuTS semantics of PCs. In De Nicola et al. (2013)
we showed that FuTSs can be effectively used as a semantic domain for the composi-
tional definition of the operational semantics of a calculus with both non-deterministic
behavior and stochastic delays, and for an extension including probabilistic discrete
(sub-)distributions over processes. By defining appropriate operators on continuation
functions, we provided a compositional operational semantics of the key fragments
of major stochastic process calculi including TIPP, EMPA, PEPA, StoCCS, IML and
MAL, a language for Markov Automata. We thus provided a uniform, clean and
powerful framework which helps in identifying differences and similarities among the
many stochastic process calculi proposed in the literature.

Almost in the same period we were working on RTSs and FuTSs, Cardelli and Mar-
dare proposed another semantic framework that can be used to express structural oper-
ational semantics of stochastic process calculi in terms of measure theory, see Cardelli
and Mardare (2010, 2014). In their framework, a σ-algebra generated by the syn-
tax of processes is used to organise processes as a measurable space. The structural
operational semantics associates to each process a set of measures over the space of
processes. The measures encode the rates of the transitions from a process to a mea-
surable set of processes.

In this note we give a light-weight presentation of the two frameworks presented
in De Nicola et al. (2013) and in Cardelli and Mardare (2014) together with an exam-
ple of their application for the definition of the formal semantics of a PEPA, a typical
stochastic process calculus. We conclude with a short discussion about the relation-
ships between the two approaches.

97

2 A simple stochastic Process Calculus: PEPA
In this section, we consider a stochastically timed variant of CSP called Performance
Evaluation Process Algebra (PEPA) introduced in Hillston (1996). In this calculus, ev-
ery action is equipped with a rate λ ∈ R>0 that uniquely characterizes the exponentially
distributed random variable quantifying the duration of the action itself (the expected
duration is 1/λ). The choice among the actions that are enabled in each state is gov-
erned by the race policy: the action to execute is the one that samples the least duration.
As a consequence, (i) the sojourn time in each state is exponentially distributed with
rate given by the sum of the rates of the transitions departing from that state, (ii) the ex-
ecution probability of each transition is proportional to its rate, and (iii) the alternative
and parallel composition operators are implicitly probabilistic.

The set PPEPA of the PEPA terms we consider is defined by the grammar in Fig. 1,
where a is a generic element of LPEPA, a given action set, λ is a positive real number,
L is finite subset of LPEPA. Moreover, a suitable equation X = P is assumed for each
process constant X.

P ::= (a, λ).P | P + P | X | P��L P

Figure 1: PEPA Syntax

Term (a, λ).P denotes the process that performs action a and then evolves to P. The
duration of this activity is a random variable exponentially distributed with parameter
λ. The choice P + Q describes a process that behaves like P or like Q, where the pos-
sible enabled actions are selected according to the race condition principle. Finally,
cooperation P��L Q is used to combine behaviours of two processes. In P��L Q,
processes P and Q behave independently for actions not appearing in L while a syn-
chronization is needed to execute actions occurring in L. The principle regulating the
synchronization rate of PEPA processes is the so-called minimal rate, that assigns as
rate of an action resulting from the synchronization of two processes the min of the
rates of the synchronizing actions. Whenever a component process may perform the
same action in several different ways, the cumulative, so-called apparent, rate has to
be considered. Given a PEPA process P and an action α, the apparent rate of α in P,
denoted by rα(P), is inductively defined as follows:

rα((β, λ).P) =def

{
λ, if β = α
0, if β , α

rα(P + Q) =def rα(P) + rα(Q)

rα(P��L Q) =def

{
min(rα(P), rα(Q)) if α ∈ L
rα(P) + rα(Q), if α < L

98

(a,λ).P α,λ−−−→ P
P α,λ−−−→ R

P + Q α,λ−−−→ R

Q α,λ−−−→ R

P + Q α,λ−−−→ R

P α,λ−−−→ Q, X:=P

X α,λ−−−→ Q

P α,λ−−−→ P′, α<L

P��L Q α,λ−−−→ P′��L Q

Q α,λ−−−→ Q′, α<L

P��L Q α,λ−−−→ P��L Q′

P
α,λ1−−−−→ P′,Q

α,λ2−−−−→ Q′, α∈L

P��L Q
α,r(α,λ1 ,λ2 ,P,Q)
−−−−−−−−−−−−→ P′��L Q′

Figure 2: SOS Rules for PEPA.

The stochastic operational semantics of PEPA processes (Hillston 1996) is given
by means of definition of the least multi-relation satisfying the rules given in Fig. 2
where:

r(α, λ1, λ2, P,Q) =def
λ1

rα(P)
·

λ2

rα(Q)
· min(rα(P), rα(Q))

Please notice that the use of a multi-relation is crucial to guarantee the correct
computation of the rate associated to a process transition. Unfortunately, this notion
is vague. Indeed, no way is provided to formally compute this multi-relation. In the
next section we will show how, by using FuTS, one can elegantly solve the issue of
transition multiplicity.

3 FuTS semantics of PEPA
In this section we show how FuTSs can be used to define stochastic semantics of PEPA
processes.

3.1 FuTSs in a nutshell
As anticipated in Sec. 1, the key ingredients of State to Function Labeled Transition
Systems, FuTSs for short, are the continuation functions P (in the sequel often abbre-
viated with continuations), used as process transition targets, and a rich set of contin-
uation operators, which facilitate the compositional definition of process calculi.

We recall that, for stochastic process calculi with CTMC semantics, the co-domain
of any continuation R is R≥0, the set of non-negative real numbers. A transition R

α
�

R explicitly states that, whenever R(R′) = 0, process R′ is not reachable in one step
from R by performing action α, while, if R(R′) = λ > 0, then λ is the rate of a jump
from state R to state R′ performing action α.

In order to be able to treat different kinds of process calculi in a uniform way, an
obvious step is the generalization of the codomain of continuations to any set of values.

99

Since, for the formalization of the semantics of process calculi it is necessary to be able
(at least) to sum and multiply relevant values, possibly retaining useful properties like
associativity, commutativity and distributivity, the generic continuations are functions
from processes to commutative semi-rings. Actually, for the purposes of our work, it
is sufficient to consider total functions with finite support, i.e. total functions which
yield a non zero value only on a finite set of input values. FTF(S ,C) will denote the
class of finite support functions from set S to C. As mentioned above, it is convenient
to equip FTF(S ,C) with operators. We will briefly recall them referring to De Nicola
et al. (2013) for detailed formal definitions. The relevant operators are derived from
those of C. We lift +C to FTF(S ,C) by letting (F1 + F2)(s) = F1(s) +C F2(s), for
F1 and F2 in FTF(S ,C); furthermore, for injective binary function · : S × S → S we
let (F1 ·F2)(s) yield F1(s1) ·C F2(s2), if there exist (unique, due to injectivity) s1, s2

such that s = s1 · s2, and 0C otherwise. We use the notation [s 7→ c] for the function
associating c with s and 0 with any other s′ , s, letting [] denote the degenerate
function yielding 0C everywhere. Finally, by ⊕F we mean

∑
s∈S F (s) while for any

C ⊆ S , F (C) =
∑

s∈C F (s), where
∑

is to be intended as the n-ary extension of +C,
noting that the sum exists and is finite since F has finite support.

To define the formal semantics of mono-dimensional process calculi, i.e. process
calculi with a single “kind” of transition relation, like most of the stochastic process
calculi proposed in the literature, simple total deterministic FuTSs are sufficient.

Definition 1. A simple total deterministic state to functionL-labelled transition system
(simple deterministic FuTS) over C is a tuple (S ,L,C,�) where S is a countable,
non-empty, set of states, L is a countable, non-empty, set of transition labels, C is a
commutative semi-ring, and� is a total function in S → L → FTF(S ,C). •

We use the standard SOS semantics (i) notation s
α
� F for �(s)(α) = F and (ii)

terminology saying that � is the “transition relation”; finally, (s
α
�)(s′) = F (s′) if

s
α
� F . Intuitively, s1

α
� F and (F s2) = γ , 0C means that s2 is reachable from

s1 via (the execution of) α with a value γ ∈ C. (F s2) = 0C means that s2 is not
reachable from s1 via the above α-transition. In the sequel we will omit “simple total
deterministic” when referring to simple deterministic FuTSs.

A notion of bisimilarity is readily defined for FuTSs. Let F = (S ,L,C,�) be a
FuTS. An equivalence relation R ⊆ S ×S is called an F -bisimulation if s1 R s2 implies∑

s′∈[s]R

(s1
α
�)(s′) =

∑
s′∈[s]R

(s2
α
�)(s′) (1)

for all s ∈ S and α ∈ L, where [s]R is the equivalence class of R which s belongs to.
Two elements s1, s2 ∈ S are called F -bisimilar if s1 R s2 for some F -bisimulation R
for F . Notation s1 ∼F s2. Again, note that the sums in equation (1) exist and are finite
since, by definition, function (s

α
�) has finite support for all s and α.

100

(a,λ).P
a
� [P7→λ]

b,a

(a,λ).P
b
� []R≥0

P
a
�P ,Q

a
�Q

P + Q
a
�P+Q

P
a
�P , X:=P

X
a
�P

P
a
�P ,Q

a
�Q, a < L

P��LQ
a
� (P ��L(XQ)) +((X P)��LQ)

P
a
�P ,Q

a
�Q, a ∈ L

P��LQ
a
�P��LQ·min{⊕P ,⊕Q}

⊕P ·⊕Q

Figure 3: Semantics Rules for PEPA

3.2 An operational semantics of PEPA
In this section we show the use of our FuTS approach for the definition of the semantics
of a major fragment of PEPA (Hillston 1996). For the study of the FuTS semantics of
all of the most prominent SPCs we refer the reader to De Nicola et al. (2013); Latella
et al. (2012).

Fig. 3 shows the semantics rules for (the fragment of) PEPA. The relevant semi-
ring is R≥0. The rules for rated action-prefix establish that process P is reachable from
(a, λ).P via an a-transition with rate λ, while no process is reachable from (a, λ).P via
the execution of any action (b) different from a.

The rule for choice is such that the rates at which a process is reachable in one
step via an action a from P or Q are accumulated in the rate at which the process is
reachable in one step via a from P + Q. So, for instance, let R be the term (a1, λ1).P1 +

(a2, λ2).P2; then R
a1
� [P1 7→ λ1] and R

a2
� [P2 7→ λ2]; in particular, if a1 = a2 = a, we

have that R
a
� [P1 7→ λ1] + [P2 7→ λ2], i.e. R

a
� R with R(P1) = λ1, R(P2) = λ2,

and R(P) = 0R≥0 for P < {P1, P2}; if P1 and P2 are the same process P, we get
R

a
� [P 7→ λ1 +R≥0 λ2] which encodes the race condition principle of CTMCs.

Let us now consider the semantics of the PEPA cooperation operator. The coopera-
tion syntax constructor ��L is clearly injective, thus we have (P1��LP2)(P1��LP2) =

P1(P1) ·R≥0 P(Q2) while (P1��LQ2) returns 0 when applied to a process which is not
of the form P1��LP2 for some P1 and P2. The rule for the case a ∈ L encodes the PEPA
minimal rate synchronization principle where ⊕P (resp. ⊕Q) is exactly the apparent
rate of a in P (resp. Q) defined in Hillston (1996). min{r1, r2} is the minimum be-
tween r1 and r2 and we define r1/0 = 0 and r1/r2 as the inverse of the product of R≥0,
if r2 , 0. For example, for R as before, assuming a1 = a2 = a and λ1 + λ2 > λ3,
we get R��{a}(a, λ3).P3

a
� P where P(P1��{a}P3) = λ1 · λ3 ·

λ3
(λ1+λ2)·λ3

= λ1·λ3
λ1+λ2

,
P(P2��{a}P3) = λ2 · λ3 ·

λ3
(λ1+λ2)·λ3

= λ2·λ3
λ1+λ2

and P(P) = 0 for any other P. The rule
for the case a < L makes use of the characteristic function XR defined as [R 7→ 1]
and computes the rates for the interleaving case. In fact (P1��LX P2)(P1��LP2) =

101

P1(P1) · 1 = P1(P1) while (P1��LX P2)(R) = 0 if R is not of the form P1��LP2 for
some P1; this essentially means that in the rule, the function (P ��L(XQ)) assigns a
non-zero rate P(P′) only to processes P′��LQ such that P′ is reachable in one step
from P via action a and Q remains unchanged. Similar reasoning applies to the sym-
metric case and, as usual, the rates for the resulting a-steps are accumulated together.

It is easy to see that for all P ∈ PPEPA, a ∈ LPEPA, and P function from PPEPA

to R≥0, if P
a
� P can be derived using the set of rules of Fig. 3, then we have P ∈

FTF(PPEPA,R≥0); furthermore, the least relation�⊆ PPEPA×LPEPA×FTF(PPEPA,R≥0)
which satisfies the set of rules of Fig. 3 is indeed a function in PPEPA → LPEPA →

FTF(PPEPA,R≥0). We can thus define the FuTS semantics of PEPA as the FuTS
FPEPA = (PPEPA,LPEPA,R≥0,�PEPA), where �PEPA is the least relation satisfying
the rules in Fig. 3.

For the fragment of PEPA we considered, one can easily prove the formal corre-
spondence between the FuTS semantics and the original SOS, as in Hillston (1996)
where an action-rate indexed family of transition multi-relations a,λ

−−−→ is defined on
processes1. In particular, for all P,Q ∈ PPEPA, a ∈ LPEPA, and P ∈ FTF(PPEPA,R≥0)
such that P�PEPA P it holds that: (P Q) =

∑
λ∈{| λ′ |P a,λ′−−−→Q|}

λ, where the notation {| |}
is used for multi-sets.

Clearly, the FuTS semantics simply abstracts from the different SOS-transitions
from a state to the next one, via a certain action—including possible copies of the
same SOS-transition, which may originate from different derivations in the SOS—
making them collapse into a single FuTS-transition, while accumulating all the rates
labeling the SOS-transitions and embedding the cumulative rate in the continuation.
The interesting thing is that such a accumulation/collapse process is performed while
computing the continuations in a compositional and incremental way, as established
by the semantics rules. Furthermore, the relevant behavioral properties of processes,
as implied by the SOS, are preserved in the FuTS semantics. This is also witnessed by
the fact that the bisimilarity defined on FuTS coincides with the classical PEPA strong
equivalence � (Hillston 1996). Indeed, for all processes P,Q ∈ PPEPA, P � Q if and
only if P ∼FPEPA Q.

4 Measurable space of PEPA Processes
In this section we show how the approach proposed in Cardelli and Mardare (2014)
can be used to define stochastic semantics of PEPA processes.

1We conventionally call such transitions the SOS-transitions, as opposed to the FuTS-transition re-
lation�PEPA.

102

4.1 A short introduction to measurable spaces
We first recall notions of measure theory and we introduce the terminology and nota-
tions used in Cardelli and Mardare (2014) and in the rest of this section.

Let M be a set; a set Σ ⊆ 2M is a σ-algebra over M if and only if Σ contains M and
it is closed under complement and countable union. When Σ is a σ-algebra over M,
the pair (M,Σ) is called a measurable space, the elements of Σ measurable sets and M
the support set.

A set Ω ⊆ 2M is a generator for the σ-algebra Σ on M if Σ is the closure of Ω under
complement and countable union. A generator with disjoint elements is called a base
for Σ.

A measure on a measurable space M = (M,Σ) is a function µ : Σ → R≥0 such
that: µ(∅) = 0; for any {Ni}i∈I countable sets of pairwise disjoint elements, µ({Ni}i∈I) =∑

i∈I µ(Ni). We let ω to denote the null measure on (M,Σ), i.e. the measure such that
ω(M) = 0. Let Ω be a base for (M,Σ), N ∈ Ω and r ∈ R>0, then D(r,N) denotes:

D(r,N)(N′) =

{
r N = N′

0 N , N′

We also let ∆(M,Σ) be the measurable space of the measures on (M,Σ) with the
σ-algebra generated, for any set S ∈ Σ and r > 0, by the set {µ ∈ ∆(M,Σ)|µ(S) ≥ r}.

Given two measurable spaces (M,Σ) and (N,Θ), a mapping f : M → N is mea-
surable if and only if for any T ∈ Θ, f −1(Θ) ∈ Σ. We let [[M → N]] be the class
of measurable mapping from (M,Σ) to (N,Θ). Let (M,Σ) be a measurable space and
A a denumerable set of actions. An A-Markov kernel is a tuple M = (M,Σ, θ), with
θ : A → [[M → ∆(M,Σ)]]. Let a ∈ A, m ∈ M and S a measurable set of states,
θ(α)(m) is a measure on the state space; in particular θ(α)(m)(S) ∈ R>0 represents the
rate of an exponentially distributed random variable that characterizes the duration of
an α-transition from m to an arbitrary s ∈ S .

4.2 A measure oriented semantics of PEPA Processes
In order to apply the approach proposed in Cardelli and Mardare (2014) we have first to
define a σ-algebra generated by the syntax of processes. Then, this σ-algebra is used
to define a LPEPA-Markov kernel that models stochastic behaviour of PEPA processes.

A σ-algebra for the set PPEPA of PEPA processes can be defined by considering the
structural congruence relation which equates processes that, in spite of their different
syntactic form, represent the same system. We let ≡⊆ PPEPA × PPEPA be the smallest
relation satisfying the following conditions:

1. ≡ is an equivalence relation on PPEPA;

103

2. for each P,Q,R ∈ PPEPA and for each set of actions L ⊆ LPEPA:

P ��L Q ≡ Q ��L P P+Q ≡ Q+P (P+Q)+R ≡ P+(Q+R) X := P =⇒ X ≡ P

3. ≡ is a congruence with respect to the algebraic structure of PPEPA, i.e. if P ≡ Q
then:

P + R ≡ Q + R Q ��L R ≡ P ��L R (a, λ).P ≡ (a, λ).Q

Since ≡ is an equivalence relation, we can consider the set P≡PEPA of ≡-classes
on PPEPA. Moreover, given a PEPA process P we let P≡ the ≡-class of P. P≡PEPA is
a denumerable partition of PPEPA, hence it generates a σ-algebra Π over PPEPA and
(PPEPA,Π) is a measurable space.

PEPA operators can be lifted to the elements of Π. Let P and Q be arbitrary el-
ements in Π and P ∈ PPEPA we let P ��L Q and P��L P be the following measurable
sets:

P ��L Q =
⋃

P∈P,Q∈Q

(P ��L Q)≡ P��L P =
⋃

P ��L R∈P

R≡

The measure space (PPEPA,Π) is the starting point to define our LPEPA-Markov
kernel. Indeed, the latter is defined as the tuple (PPEPA,Π, θ) where θ : LPEPA →

[[PPEPA → ∆(PPEPA,Π)]] is inductively defined on the structure of P ∈ PPEPA as follow:

• P = (a, λ).Q: for any b ∈ LPEPA

θ(b)((a, λ).Q) =

{
D(λ,Q≡) (b = a)
ω (b , a)

• P = Q + R: For any a ∈ LPEPA and P ∈ Π:

θ(a)(Q + R)(P) = θ(a)(Q)(P) + θ(a)(R)(P)

• P = Q ��L R, for any a < L and P ∈ Π:

θ(a)(Q ��L R)(P) = θ(a)(Q)(P ��L R) + θ(a)(R)(P ��L Q)

for any a ∈ L and P ∈ Π:

θ(a)(Q ��L R)(P) =
min{ra(Q), ra(R)}

ra(Q) · ra(R)
·

∑
P1 ��L P1 ⊆ P

θ(a)(Q)(P1) · θ(a)(R)(P2)

where ra(P) (resp. ra(Q)) is the apparent rate of a in P (resp. Q) (Hillston 1996).

104

• P = X: if X := Q, for any a ∈ LPEPA and P ∈ Π:

θ(a)(X)(P) = θ(a)(Q)(P)

The stochastic behaviour induced by the LPEPA-Markov kernel defined above is
exactly the same induced by the FuTS semantics considered in the previous section.
Indeed, it is easy to prove that for any P ∈ PPEPA, a ∈ LPEPA and P ∈ Π:

θ(a)(P)(P) = v⇔ ∃P : P
a
� P and P(P) = v

According to Cardelli and Mardare (2014) we can now define the structural oper-
ational semantics that associates to each process P an infinite measurable set of pro-
cesses. First, we have to introduce some extra notation. We let [a,λP] denote the
function LPEPA → ∆(PPEPA,Π) defined as follows:

[a,λP](b) =

{
D(λ, P≡) (b = a)
ω (b , a)

Let µ′ : LPEPA → ∆(PPEPA,Π) and µ′′ : LPEPA → ∆(PPEPA,Π), µ′ ⊕ µ′′LPEPA →

∆(PPEPA,Π) is the function such that for any a ∈ LPEPA:

(µ′ ⊕ µ′′)(a) = µ′(a) + µ′′(a)

Moreover, for any P,Q ∈ PPEPA and L ⊆ LPEPA, µ′P��Q
Lµ
′′LPEPA → ∆(PPEPA,Π) is

the function such that, if a < L:

(µ′P��Q
Lµ
′′)(a)(R) = µ′(a)(R ��L Q) + µ′′(a)(R ��L P)

while if a ∈ L:

(µ′P��Q
Lµ
′′)(a)(R) =

min{ra(Q), ra(R)}
ra(Q) · ra(R)

·
∑

P1 ��L P1 ⊆ R

µ′(a)(P1) · µ′′(P2)

Finally, the stochastic transition relation of PEPA processes is the smallest transi-
tion relation→ ⊆ PPEPA × [LPEPA → ∆(PPEPA,Π)] satisfying the following rules:

(a,λ).P→[a,λP]
P→ µ′ Q→ µ′′

P+Q→µ′+µ′′
P→ µ′ Q→ µ′′

P ��L Q→µ′P��Q
L µ
′′

X:=P P→ µ

X → µ

The transition relation→ can be used to define a stochastic bisimulation on PEPA
processes (Cardelli and Mardare 2014) . A rate bisimulation relation on PPEPA is
an equivalence relation R ⊆ PPEPA × PPEPA such that for each P,Q ∈ PPEPA with
P → µ and Q → µ′, (P,Q) ∈ R if and only if for any C ∈ Π(R)2 and a ∈ LPEPA,

2If (M,Σ) is a measurable space and R ⊆ M × M, Σ(R) denotes the set of measurable R-closed
subsets of M.

105

µ(a)(C) = µ′(a)(C). Two PEPA processes P and Q are stochastic bisimilar, written
P ∼ Q, if and only if there exists a rate bisimulation R such that (P,Q) ∈ R. Relation
∼ coincides with the classical PEPA strong equivalence � (Hillston 1996). Indeed, for
all processes P,Q ∈ PPEPA, P � Q if and only if P ∼ Q.

The transition relation → is in fact equivalent to the one considered in the FuTS
semantics of the previous section.

Theorem 2. For any P ∈ PPEPA:

P
a
�P ⇔ P→ µ and for any P ∈ Π: µ(a)(P) = P(P)

5 Concluding Remarks
In this paper we have provided a light-weight presentation of the two frameworks pre-
sented in De Nicola et al. (2013) and in Cardelli and Mardare (2014) together with an
example of their application for the definition of the formal semantics of PEPA, one of
the protypical stochastic process calculi.

The key feature of the FuTSs model introduced in De Nicola et al. (2013) is the
fact that each transition is a triple of the form (s, α,P). The first and the second
components are the source state and the label of the transition, while the third com-
ponent, P , is the continuation function, which associates a value of a suitable type
with each state, say s′. The only requirement on the co-domains of the continuation
functions is that they must be commutative semi-rings, which make FuTSs a very gen-
eral framework. In De Nicola et al. (2013) the FuTS framework has been applied to
the major stochastic process calculi proposed in the literature, ranging from CCS to
Stochastic π-calculus, from PEPA to TIPP, but including also those process calculi that
deal with both non-deterministic and probabilistic/stochastic behavior. Furthermore,
in Latella et al. (2012) the basis are set for a systematic study of FuTS within the
coalgebraic framework that calls for further investigations of the relationship between
general Weighted Transition Systems and FuTSs.

The framework proposed in Cardelli and Mardare (2014) relies on a σ-algebra
generated by the syntax of processes to structure processes as measurable spaces. The
structural operational semantics associates to each process a set of measures over the
space of processes. The measures encode the rates of the transitions from a process to
a measurable set of processes.

We could say that the two approaches aim at describing the same set of systems
by taking a slightly different approach. FuTS generalize LTS and associate to pairs
(state, label) a weight function, and then define operators to combine, in a structural
oriented approach, such functions in order to give semantics to the different operators
of an calculus. Cardelli and Mardare define operators on measure spaces and rely on

106

them to provide a meaning to the operators of the considered calculus. They associate
to each state a mapping from labels to measures and use operations on measures to
provide the meaning of composite terms.

Our approach seems to be more flexible and its expressivity is vindicated by the
rich set of calculi that have been modeled with FuTS. For example, these have been
also used to model stochastic process calculi with non determinism like IML presented
in Hermanns (2002). We doubt this calculus can be accounted by the approach pro-
posed by Cardelli and Mardare. Indeed, the latter approach, up to now, has been only
used to deal with classical SPCs.

We also feel that our approach is more natural, but of course “Every ugly child is
nice for his mom” or like they say in Naples “every cockroach is beautiful in the eyes
of his mother”. Anyway, for what concerns the choice between the two approaches
that we have briefly outlined in this note, we leave the final word to Luca Cardelli.
Thank you Luca for all contributions and for all inspiring conversations.

References
L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. In Seventh

International Conference on the Quantitative Evaluation of Systems (QEST 2010),
pages 171–180. IEEE Computer Society Press, 2010.

L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. Fundam.
Inform., 131(3-4):351–371, 2014.

R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Model Checking
Mobile Stochastic Logic. Theoret. Computer Science, Elsevier, 382(1):42–70, 2007.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. MarCaSPiS: a Markovian Ex-
tension of a Calculus for Services. In M. Hennessy and B. Klin, editors, Proc. of
SOS 2008, vol. 229, ENTCS, pages 11–26. Elsevier, 2009a.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based Transition Systems
for Stochastic Process Calculi. In A. S., A. Marchetti-Spaccamela, et al., editors,
Proc. of ICALP 2009, vol. 5556, LNCS, pages 435–446. Springer, 2009b.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. A Uniform Definition of Stochas-
tic Process Calculi. ACM Computing Surveys, 46(1):5:1–5:35, 2013.

N. Gotz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed systems de-
sign: The integration of functional specification and performance analysis using
stochastic process algebras. In L. Donatiello and R. Nelson, eds, Performance Eval-
uation of Computer and Communication Systems, vol. 729, LNCS. Springer, 1993.

107

H. Hermanns. Interactive Markov Chains. Springer, 2002. LNCS 2428.

H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evalua-
tion. Theoretical Computer Science. Elsevier., 274(1-2):43–87, 2002.

J. Hillston. A compositional approach to performance modelling, 1996. Distinguished
Dissertation in Computer Science. Cambridge University Press.

B. Klin and V. Sassone. Structural Operational Semantics for Stochastic Process
Calculi. In R. Amadio, editor, FoSSaCS 2008, vol. 4962, LNCS, pages 428–442.
Springer, 2008.

D. Latella, M. Massink, and de Vink. Bisimulation of Labeled State-to-Function Tran-
sition Systems of Stochastic Process Languages. In U. Golas and T. Soboll, editors,
Proc. of ACCAT 2012, vol. 93, EPTCS, pages 23–43, 2012.

C. Priami. Stochastic π-Calculus. The Computer Journal. Oxford University Press, 38
(7):578–589, 1995.

108

Refining Objects
(Preliminary Summary)

Robert Harper
Computer Science Department, Carnegie Mellon University

Rowan Davies
School of Computer Science, University of Western Australia

Abstract

Inspired by Cardelli’s pioneering work, many type disciplines for object-
oriented programming are based on enrichments of structural type theories
with constructs such as subtyping and bounded polymorphism. A prin-
cipal benefit of such a formulation is that the absence of “message not
understood” errors is an immediate corollary of the type safety theorem.
A principal drawback is that the resulting type systems tend to be rather
complex in order to accommodate the methodology of object-oriented pro-
gramming.

We consider another approach based on a simple structural type the-
ory enriched with a system of type refinements with which we may express
behavioral requirements such as the absence of “message not understood”
errors. Ensuring this property is viewed as a verification condition on pro-
grams that use dynamic dispatch, which we construe as an abstract type of
objects supporting instantiation and messaging operations. At the struc-
tural level dynamic dispatch may fail, but at the behavioral level this pos-
sibility is precluded.

To validate this approach we give an interpretation of Featherweight
Java (FJ), a widely-used model of object-oriented programming, that com-
prises a compilation into dynamic dispatch, and an interpretation of the
class table as a system of type refinements. We show that well-typed FJ
programs translate to well-typed and well-refined programs, from which
we deduce the same safety guarantees as are provided by FJ. More impor-
tantly, the behavioral formulation may be scaled to verify the absence of
other behaviors, such as down-cast errors, that are not easily handled using
only structural types.

109

1 Introduction
In fairness, designers of object-oriented languages did not simply “for-
get” to include properties such as good type systems and good modu-
larity: the issues are intrinsically more complex than in procedural
languages. - Cardelli (1996)

A great deal of effort has gone into the design of type systems for object-oriented
programming. A prime objective, formulated by Cardelli in the 1980’s, is to
devise type systems for object-oriented languages that preclude “message not
understood” errors at run-time (see, for example, Cardelli (1988)). Achieving
this objective proved quite challenging, stimulating a large body of research on
type systems that could account for a rich variety of programming practices while
ensuring that such run-time errors are precluded. Numerous new techniques
were introduced, ranging from relatively simple concepts such as subtyping to
more advanced concepts such as higher-kinded bounded quantification (see, for
example, Bruce et al. (1999) and Fisher and Mitchell (1996)).

These type systems are notoriously complex, to the point that their uptake in
practice has been more limited than one might have hoped. Negative results, such
as the discovery of unsoundness in extant languages such as Eiffel, have had scant
influence on their design or use (see Cook (1989)). Positive results, such as the
development of comprehensive theories of objects by Abadi and Cardelli (1996),
have had only limited influence on the design of new languages. Although lan-
guages such as Modula-3 (Cardelli et al. 1989) have benefited from the theories,
newer object-oriented languages, such as Scala (Odersky and Rompf 2014), have
only weakly developed theoretical foundations. The situation is in sharp contrast
to the direct and continuing influence of type theory on the design and imple-
mentation of functional languages, including notable examples such as Standard
ML (Milner et al. 1997) and Haskell (Jones 2003), and their more recent evolutes
such as Agda (Norell 2008) and Idris (Brady 2013).

It is reasonable to ask why this is the case. One response might be to con-
clude that the complexity of the type theories involved is an indication that the
concepts of object-oriented programming are overly complex, perhaps even con-
ceptually and methodologically suspect. Another reaction might be to argue that
type systems are simply not up to the task, and should either be made substan-
tially more powerful (and complicated), or be abandoned entirely (by reversion
to untyped languages). But, as Scott (1976) made clear decades ago, untyped
languages are uni-typed languages, so there is really no possibility of abandoning
types; it is only a matter of how they are to be deployed.

In this paper we propose an alternative approach to typing object-oriented lan-
guages that exploits the distinction between structural, or intrinsic, typing from

110

behavioral, or extrinsic, typing (Reynolds 1985). Briefly, a structural type system
is a context-sensitive grammar that determines what are the well-formed pro-
grams, and, via Gentzen’s inversion principle, how they are executed. A behav-
ioral type system is a system of predicates or relations (propositional functions),
called type refinements, or just refinements for short, that describe the execu-
tion properties of well-typed programs (Freeman and Pfenning 1991; Davies and
Pfenning 2000; Davies 2005; Dunfield 2007). Whereas showing that a program
is (structurall) well-typed is usually decidable, showing that a program satisfies
a refinement is, by Rice’s Theorem, a matter of verification requiring proof. In
many cases one can derive efficient and effective decision procedures for certain
behaviors, such as the ones we shall consider here, but of course one cannot expect
to have fully automatic verification of such conditions.

Since Cardelli’s orginal work in the area (Cardelli 1988), the structural ap-
proach has drawn the most attention for formulating type disciplines for object-
oriented programming. One reason is that structural type disciplines induce be-
havioral properties of programs from general properties of the language in which
they are written. Most importantly, a properly formulated structural type dis-
cipline enjoys the type safety property (Milner 1978; Wright and Felleisen 1994;
Harper 2012), which guarantees that certain forms of run-time errors cannot arise.
It makes sense, then, to build on this foundation to derive desirable properties of
object-oriented programs, such as the absence of “not understood” errors, from
the safety theorem for the type discipline. This goal has usually been achieved
by regarding objects as analogous to labelled tuples and messages as analogous
to projections, so that type safety ensures that no message may be sent to an
object that does not recognize it. Achieving this goal, while ensuring that the
type system is not too restrictive, requires concepts such as structural subtyping
and bounded quantification (see Abadi and Cardelli (1996) for a thorough dis-
cussion of the techniques required). The result is an impressive array of typing
concepts for relatively little pay-off. Moreover, from a structural point of view,
these concepts are, to an extent, questionable. (For example, width subtyping for
tuples relies on the assumption that projections are meaningful independently of
the tuple type, a property that is not guaranteed by the universal properties of
products, but which can often be arranged to hold in specific implementations.)

The difficulty with the structural approach is that it does not scale well to
ensure other desirable properties of programs, such as the absence of “down-cast
errors,” or to the enforcement of behavioral subtyping conditions (Liskov and
Wing 1994). To better address these issues we propose another approach to
typing object-oriented programs that is based on distinguishing the structural
concept of dynamic dispatch (Cook 2009; Aldrich 2013) from the behavioral
concept of avoidance of run-time errors. According to our view, dynamic dispatch

111

is simply an application of data abstraction in which an abstract type of objects
is equipped with introduction operations that instantiate a class with instance
data and elimination operations that message to invoke a method on an instance.
Thus, dynamic dispatch amounts to heterogeneous programming in which we have
a variety of operations (methods) acting on data of a variety of forms (classes).
Such a setup can be envisioned as a dispatch matrix whose rows are classes, whose
columns are methods, and whose entries determine the behavior of each method
on each class. The dispatch matrix gives rise to two equivalent implementations
of dynamic dispatch that arise from the duality between sums and products in
type theory. This implies that there is no inherent reason to prefer a product-
based realization of objects; one may just as well use a sum-based representation.
(See Section 3 for further discussion of this point.) This description leaves open
what we mean by the behavior of a method on an instance of a class. When well-
defined, a method determines a result as a function of the instance data of the
object on which it acts. But a method may also be undefined on certain classes,
and would, if invoked, incur a “not understood” error. Thus, at the structural
level, it is possible for dynamic dispatch to fail, even in a well-typed program, just
as it is possible to incur an arithmetic fault in a well-typed numeric computation.

To rule out this possibility we introduce a behavioral type discipline that
allows us to express the expectation that certain methods are well-defined on
certain classes (or, equivalently, that certain classes admit certain methods as
well-defined on their instances). Specifically, we will use a semantic form of
type refinements of the kind introduced by Freeman and Pfenning (1991) and
further developed by Davies and Pfenning (2000); Davies (2005). According to
the semantic viewpoint, a type refinement is a predicate (or, more generally, a
relation) on a structural type that respects observational equivalence, so that
expressions that behave the same way enjoy the same properties. The behavior
of dynamic dispatch may be specified by refining the type of the dispatch matrix
to express, for example, the expectation that certain methods are well-defined
on certain classes. Richer properties of dynamic dispatch may be specified in a
similar manner. For example, we may express invariants on the instance data
of certain classes (for example, that an integer is always positive) or properties
of the results of certain methods (for example, that it return a non-negative
number). The critical subsumption property (Cardelli 1988) of type disciplines
for object-oriented programming is expressible using logical entailments between
refinements, allowing us to support verification in the presence of a class hierarchy.

To assess the viability of our approach, we give an interpretation of Feath-
erweight Java (Igarashi et al. 1999) in terms of the structural formulation of
dynamic dispatch to account for its dynamics. We then introduce a system of
type refinements derived from the Featherweight Java class table to express the

112

expectation that certain methods are well-defined on certain classes. We then
prove that well-typed and well-refined programs cannot incur a “not understood”
error, but may still incur a “down-cast error”, replicating the guarantees provided
by the Featherweight Java type system. Previous work (Davies 2005; Dunfield
2007; Xi and Pfenning 1998) suggests that other conditions, such as absence of
down-cast errors or array bounds errors, may be verified in a similar manner. By
generalizing from predicates to binary relations it also appears possible to verify
equational properties of programs, such as the Liskov-Wing subtyping criterion,
in a similar manner. In this respect our approach coheres with the trend to in-
tegrate verification of program properties into the development process, allowing
us to express a variety of properties of programs that are not easily achievable
using purely structural techniques.

2 Background
We will work in a background structural type theory with finite products and
sums; function types; general recursive types; predicative polymorphic types; and
an error monad with two forms of error. Detailed descriptions of these standard
typing constructs may be found in (Harper 2012). We make no use of subtyping,
of higher kinds, or of any of the more advanced forms of polymorphism found
in the literature (not even impredicativity). Our treatment of the error monad
follows the judgmental formulation given by Pfenning and Davies (2001) in which
there is a modal separation between expressions of a type, which may diverge,
but otherwise evaluate to a value of that type, and commands of a type, which
may incur a run-time error (that is, an uncaught exception) when evaluated. We
confine ourselves to functional behavior, and do not consider mutation in this
brief account.

The syntactic skeleton of our language, L, is given by the following grammar:

Type τ ::= t type variable
〈τ〉i∈I finite product
[τi]i∈I finite sum
τ1 ⇀ τ2 partial function
µ t.τ type recursion
∀ t . τ type abstraction
τ cmd encapsulated command

Expression e ::= x value variable
cmd k encapsulated command
. . .

113

Command k ::= ret e return a value
bndx← e ; k sequence
error signal an error
fail signal a failure

The finite product 〈τ〉i∈I and sum [τi]i∈I types are indexed by a finite set, I, of
indices, which may be construed as position numbers or field labels. The finite
product and sum types are often written in the display forms

∏
i∈I τ and

∑
i∈I τ .

Function types, τ1 ⇀τ2 classify partial (possibly divergent) functions so as to be
compatible with general recursive types, µ t.τ . Polymorphic types, ∀ t . τ , express
(predicative) type abstraction. Existentials are definable from polymorphic types
in the usual way, and are sufficient for our purposes. Much of the syntax of
expressions is elided for the sake of brevity, but is largely standard.1

The command type τ cmd represents an error monad formulated in the style of
Pfenning and Davies (2001). We consider two forms of error, one that is deemed
permissible in a normal execution, and one that is deemed impermissible and
should be ruled out by verification. (In Section 4 down-cast errors are considered
permissible, and not-understood errors are considered impermissible.) A permis-
sible error is signaled by error, and an impermissible error is signaled by fail.
A non-error return is effected by the command ret e, where e is a pure expres-
sion, rather than another command. The command bndx← e ; k evaluates e to
an encapsulated command, evaluates it, possibly incurring a failure or an error,
which are propagated, and otherwise passes the return value to the command k.
The command type τ cmd is equivalent to the delayed sum type

〈〉⇀ [ret ↪→ τ, error ↪→ 〈〉, fail ↪→ 〈〉] (i.e., equivalent to 1⇀ τ + 2).

The monadic bind is then an implied three-way case analysis in which the error
cases are propagated implicitly, and the return case is handled by the continuation
of the bind. This simplifies programming, and is sufficient for our purposes. We
note that an error monad does not incur the complications with refinements in
the presence of general computational effects considered by Davies and Pfenning
(2000) and Dunfield and Pfenning (2003).
The static semantics of L is given by three forms of typing judgment:

∆ ` τ type type formation
Γ `∆ e : τ expression typing
Γ `∆ k ∼·· τ command typing

The definitions of these judgments are largely standard, and omitted here. For the
sake of clarity, we give the rules for the command types, which are less familiar.

1See, for example, Harper (2012) for more details.

114

Γ `∆ k ∼·· τ
Γ `∆ cmd k : τ cmd

Γ `∆ error ∼·· τ Γ `∆ fail ∼·· τ
Γ `∆ e : τ

Γ `∆ ret e ∼·· τ

Γ `∆ e : τ1 cmd Γ, x : τ1 `∆ k ∼·· τ2

Γ `∆ bndx← e ; k ∼·· τ2

The dynamic semantics of L is given by the following judgments:

e val evaluated expression
e 7→ e′ expression transition
k err run-time error
k fail run-time failure
k final completed computation
k 7→ k′ command transition

The first two define the final states and transition of expression evaluation. The
second two define the error states and transition for commands. The expression
cmd k is a value, regardless of the form of k; it represents a suspended expression
that may incur a failure or error when executed. The command ret e is fully
executed when e val; any errors or failures arising within a command are propa-
gated as such.2 Note that error and failure are observable outcomes of complete
programs; these are used in the definition of Kleene equivalence, which states
that two pograms either both diverge or have the same observable outcomes.

We now formulate a system of type refinements in the style of Freeman and
Pfenning (1991) and Davies (2005). A refinement, ρ, of a type, τ , is, in general,
a relation on the elements of τ . Davies and Pfenning considered only unary
relations, which is all that are required here, but is useful to consider binary
relations to express deeper properties of programs, as in Denney (1998). We
depart from Davies and Pfenning, however, in treating refinements semantically,
rather than syntactically. In their work refinements are formulated as a syntactic
type discipline, with emphasis on decidability of refinement checking. Here we
stress the semantics of refinements, leaving mechanical verification as a separate,
albeit but important, practical matter.

2The full definition of the static and dynamic semantics of L, and the proof of its type safety,
may be found in Harper (2012).

115

The syntax of refinements is given as follows:

ρ ::= r variable ρ1 ⇀ρ2 partial function
> truth ∀ (t w ~r : θ) . ρ generic family
⊥ falsity i · ρ summand
ρ1 ∧ ρ2 conjunction µ~r.~ρ in r recursive
ρ1 ∨ ρ2 disjunction ret ρ normal return
〈ρ〉i∈I product error error

fail failure

The logical refinements represent finite conjunctions and disjunctions of proper-
ties of any fixed type. The product, function, and command refinements represent
the action of their corresponding types on predicates. The summand refinements
specify, for a finite sum type, a summand and refinement of its underlying value.
The finite sum refinement may be defined by the equation∑

i∈I

ρi ,
∨
i∈I

(i · ρi),

the disjunction of all of its summand refinements. The recursive refinement
µ~r.~ρ in r specifies one of a set of mutually recursive properties of the recur-
sive unrolling of a value of a recursive type. The command refinements, error,
fail, and ret ρ, are just summand refinements for the sum type underlying the
command refinement, as discussed earlier.

The generic refinement requires further explanation. Following the treatment
of abstract refinements for Standard MLmodules by Davies (2005), the refinement
∀ (t w ~r : θ) . ρ refines the polymorphic type ∀ t . τ by introducing a type variable,
t, a finite set, ~r, of variables refining t, and a finite set of entailment assumptions,
θ, involving the variables ~r v t. The generic refinement may be seen as the
behavioral analogue of bounded quantification (Cardelli and Wegner 1985), but
with the freedom to introduce a finite set of abstract refinements satisfying a
specified set of entailments.

The entailment judgment ρ1 ≤τ ρ2 between two refinements of τ states any
closed expression of type τ that satisfies ρ1 also satisfies ρ2. Entailment may be
seen as the behavioral analogue of structural subtyping. If θ is a finite set of
refinement assumptions ρi ≤τ ρ′i, then the hypothetical judgment θ `τ ρ ≤τ ρ′
states that whenever the entailments in θ are valid, then so is ρ ≤τ ρ′. We write
Θ for a family of refinement assumptions θτ indexed over types τ . This notation
often arises when the types τ range over a given set of type variables ∆.

The expression refinement judgment has the form

x1 ∈τ1 ρ1, . . . , xn ∈τn ρn `Θ e ∈τ ρ,

116

where Θ is a family of refinement assumptions for ∆, Θ ` ρi v τi (for each i),
Θ `∆ ρ v τ , and x1 : τ1, . . . , xn : τn `∆ e : τ .

The semantics of the basic refinement judgments is given by assigning to each
refinement ρ v τ a subset of the closed expressions, modulo observational equiva-
lence, of the type τ , and similarly for closed commands, which are expressions of a
distinguished sum type. The details of the construction of such an interpretation
are too involved to present here, but the required techniques are well-understood.3
The semantics of refinements enjoys these properties:

e ∈τ > iff always
e ∈τ ⊥ iff never

e ∈τ ρ1 ∧ ρ2 iff e ∈τ ρ1 and e ∈τ ρ2

e ∈τ ρ1 ∨ ρ2 iff e ∈τ ρ1 or e ∈τ ρ2

e ∈〈τ〉i∈I
〈ρ〉i∈I iff e · i ∈τi ρi (∀i ∈ I)

e ∈τ1⇀τ2 ρ1 ⇀ρ2 iff e1 ∈τ1 ρ1 implies e(e1) ∈τ2 ρ2

i · ei ∈[τi]i∈I
i · ρi iff ei ∈τi ρi

fold(e) ∈µ t.τ µ~r.~ρ in ri iff e ∈[µ t.τ/t]τ [µ~r.~ρ in r1/r1, . . . , µ~r.~ρ in rn/rn]ρi
e ∈∀ t.τ ∀ (t w ~r : θ) . ρ iff e[σ] ∈[σ/t]τ [~ρ/~r]ρ for all σ, ~ρ v σ sat. θ

cmd k ∈τ cmd ρ iff k ∈τ ρ
ret e ∈τ ret ρ iff e ∈τ ρ

error ∈τ error iff always
fail ∈τ fail iff always

In the clause for refinements of ∀ t.τ we quantify over refinements ~ρ = {ρ1, . . . , ρn}
of the (monomorphic) type σ such that the entailments [~ρ/~r]θ over σ are all valid.
Generally, an entailment ρ1 ≤τ ρ2 is valid iff whenever e ∈τ ρ1, then e ∈τ ρ2, and
this extends to sets of entailments conjunctively.

3 Dynamic Dispatch

3.1 Structural Typing

Consider a system defining a finite set, M , of methods acting on data objects
classified by a finite set, C, of classes. Associated to each class c ∈ C is a type
τ c, called the instance type of c, the type of c, that classifies the instance data of
that class. Associated to each method m ∈M is a type τm, called the result type

3The main difficulty is with recursive types, for which see Pitts (1996); Crary and Harper
(2007); Harper (2012)). Using only predicative polymorphism considerably simplifies the con-
struction. The refinements of the concrete sum monad for errors are interpreted the same
as refinements for functions returning sums, similar to a simple, unary version of the PER
semantics for monadic refinements for exceptions given by Benton and Buchlovsky (2007).

117

of m, that classifies the result of that method when applied to some data object.
Such a system may be concisely described as an element of the type

τhet , (
∑
c∈C

τ c)⇀ (
∏
m∈M

τm)

parameterized by the choice of classes and methods and their associated instance
and result types. It describes a collection of methods each acting on data of one of
a collection of classes, which is an instance of the general concept of heterogeneous
programming available in any language with products and sums.

By a de Morgan-type duality there is an isomorphism between τhet and the
type τdm defined by the equation

τdm ,
∏
c∈C

∏
m∈M

(τ c⇀ τm).

The type τdm describes a dispatch matrix of dimension |C| × |M |, with rows
indexed by classes and columns indexed by methods. The entry, ecm, of the
dispatch matrix defines the behavior of method m on instances of c as a function
of type τ cm , τ c ⇀ τm mapping τ c, the instance type of c, to τm, the result type
of m. The class c and method m may be thought of as the coordinates of the
behavior of method m on instances of class c.

Any matrix may be seen as a row of columns or a column of rows. In the case
each row c ∈ C of the dispatch matrix determines the behavior of methods M
on instances of the class c. Thus the dispatch matrix may be seen as C-indexed
column of methods acting on the instance data of c:

τdm
∼=
∏
c∈C

(τ c⇀ (
∏
m∈M

τm)).

Dually, each column m ∈ M of the dispatch matrix determines the behavior of
m on the instances of each of the classes C. Thus the dispatch matrix may also
be seen as an M -indexed column of results for each possible instance:

τdm
∼=
∏
m∈M

(
∑
c∈C

τ c)⇀ τm.

In view of these isomorphisms neither organization can be seen as more significant
than the other. They are, rather, equivalent descriptions of the information
encoded in the dispatch matrix.

Dynamic dispatch is an implementation of the abstract type

τdd , ∃(tobj.〈new ↪→
∏
c∈C

τ c⇀ tobj, snd ↪→
∏
m∈M

tobj ⇀ τm〉),

118

which specifies a type, tobj, of objects on which are defined two families of op-
erations, instantiation and messaging, which are, respectively, the introductory
and eliminatory forms of the object type. The intended behavior is that send-
ing a message m to an instance of class c engenders the behavior given by the
dispatch matrix with coordinates c and m. Clients of this package are equipped
with instantiation and messaging operations

Γ `∆ e : τ c

Γ `∆ new[c](e) : tobj

Γ `∆ e : tobj

Γ `∆ snd[m](e) : τm

Given a dispatch matrix, edm, we may implement dynamic dispatch τdd in two
equivalent ways, by defining a representation type, τobj, and an associated class,
or constructor, vector, ecv, of type

τcv(τobj) ,
∏
c∈C

(τ c⇀ τobj),

and a method, or message, vector, emv, of type

τmv(τobj) ,
∏
m∈M

(τobj ⇀ τm).

We will consider two equivalent implementations of the dynamic dispatch
abstraction. The method-based, or sum, form of dynamic dispatch is given by the
following definitions:

τΣ
obj ,

∑
c∈C

τ c

ecv , 〈c ↪→ λ (x:τ c) [c ↪→ x]〉c∈C
emv , 〈m ↪→ λ (this:τΣ

obj) case this {[c ↪→ x]⇒ edm · c ·m(x)}c∈C〉m∈M .

The class-based, or product, form of dynamic dispatch is given by the following
definitions:

τΠ
obj ,

∏
m∈M

τm

ecv , 〈c ↪→ λ (x:τ c) 〈m ↪→ edm · c ·m(x)〉m∈M〉c∈C
emv , 〈m ↪→ λ (x:τΠ

obj)x ·m〉m∈M .

For either choice of implementation the instantiation and messaging opera-
tions behave by deferral to the constructor and messaging vectors, respectively:

new[c](e) 7→∗ (ecv · c)(e)
snd[m](e) 7→∗ (emv ·m)(e),

119

whenever e is a value of appropriate type. Then, by construction, we have in
either case that

snd[m](new[c](e)) 7→∗ (edm ·m · c)(e),

again under the condition that e is a value. This property may be seen as charac-
terizing dynamic dispatch (Igarashi et al. 1999) in that sending a message m to
an instance of class c engenders the behavior assigned to m on c by the dispatch
matrix.

This basic model of dynamic dispatch may be elaborated to account for several
forms of self-reference found in object-oriented languages:

1. Any method may call any other, including itself.

2. Any class may create an instance of any other, including itself.

3. The instance type of a class may involve any object.

4. The result type of a method may involve any object.

Scaling up to allow for these behaviors is largely a matter of generalizing the
type τdm, choosing τobj to be a recursive type, and making corresponding changes
to the class and method vectors, based on the choice of τobj. The details of the
construction can be found in Harper (2014), but may be briefly summarized as
follows.

The types of the components of the dispatch matrix must be changed so that
they have access to the class vector (for creating new instances) and the method
vector (for sending messages to instances). Moreover, the instance type of each
class and the result type of each method may involve instances created in this
manner. Thus, the components of the dispatch matrix are given the (predicative)
polymorphic type

τ cm , ∀ tobj . τcv(tobj)⇀ τmv(tobj)⇀ τ c(tobj)⇀ τm(tobj).

The type variable, tobj, is the abstract type of objects with which the behaviors
interact via the class- and method vectors.behaviors provided as arguments.

In the method-based (sum) form the type τobj of objects is defined by the
equation

τΣ
obj , µ tobj.

∑
c∈C

τ c(tobj),

whereas in the class-based (product) form the type τobj is defined by the equation

τΠ
obj , µ tobj.

∏
m∈M

τm(tobj).

120

The implementations of the method and class vectors in terms of the dispatch
matrix are slightly more involved than before, because the object types are recur-
sive (requiring folding and unfolding operations), and either the method vector
(in the sum form) or the class vector (in the product form) must be self-referential
using standard fixed-point operations.

Finally, we observe that it is not necessary for every method to be meaning-
fully defined on every class of object. More precisely, an ill-defined situation may
be defined as one that signals a run-time error corresponding to the “message not
understood” error described in the introduction to this paper. This amounts to
choosing τm, the result type of method m, to admit the possibility of a run-time
fault, which may be accomplished using the error monad described in Section 2.
Once this possiblity is allowed, it becomes important to specify and verify that
certain method and class combinations are sensible, which we view as a behav-
ioral, rather than structural, property of a program.

3.2 Behavioral Typing

As we have seen in the preceding section, dynamic dispatch is a form of hetero-
geneous programming in which the behavior of a collection of methods is defined
on the instances of a collection of classes. In some cases the behavior is to give
rise to a “not understood” error, reflecting that the particular combination is ill-
defined. The expectation that a method m be defined on every instance of a class
c is not inherent in the idea of dynamic dispatch, but is rather a methodological
consideration imposed from the outside, much as one might insist as a matter
of methodology that other forms of run-time fault are to be precluded. Indeed,
following Cardelli’s principle, one might say that what makes dynamic dispatch,
a mode of use of recursive products and sums, be “object-oriented” is just that
such expectations are stated and and enforced for each program (for example,
by decalarations that form a “class table” for a program). More generally, one
may wish to enforce many other methodological conditions, such as absence of
“down-cast” errors, or avoidance of “bound check” errors, not all of which can be
anticipated in a particular structural type system.

In Section 4 we will carry out a full-scale verification of the absence of “not
understood” messages for an interpretation of FJ as an application of dynamic
dispatch. Here we outline the general approach to verification of properties of
dynamic dispatch using type refinements. For the sake of clarity , we first con-
sider the non-self-referential case of dynamic dispatch; this makes it easier to
explain the generalization to admit self-reference. To carry out a verification of
the properties of dynamic dispatch involves the following ingredients:

1. A family of refinements ρcm v τ cm, which constrains the behavior of the

121

entries of the dispatch matrix. This family determines a refinement ρdm v
τdm given by

ρdm ,
∏
c∈C

∏
m∈M

ρcm v
∏
c∈C

∏
m∈M

τ cm.

2. A family of refinements ρcobj v τobj, for each c ∈ C, and ρmobj v τobj, for each
m ∈ M . In Section 4 we will choose the refinement ρcobj to express that an
object is an instance of class c, and the refinement ρmobj to express that an
object understands method m.

3. A refinement ρc v τ c characterizing the instance data of class c. The
instance refinement determines a refinement of the class vector type given
by

ρcv ,
∏
c∈C

(ρc⇀ρcobj) v
∏
c∈C

(τ c⇀ τobj).

The refinement ρcv states that if the instance data satisfies ρc, then the
resulting instance will be an object that satisfies ρcobj.

4. A refinement ρm v τm characterizing the result of method m. The result
refinement determines a refinement of the method vector type given by

ρmv ,
∏
m∈M

(ρmobj ⇀ρm) v
∏
m∈M

(τobj ⇀ τm).

The refinement ρmv states that if an object satisfies ρmobj, then the result of
method m will satisfy ρm.

5. Because τ cm is τ c⇀τm, the refinement ρcm must satisfy the entailment ρcm ≤
ρc⇀ρm so that if ρcm holds for matrix entry ecm, instances satisfying ρc are
mapped to results satisfying ρm.

These choices determine verification conditions that ensure that dynamic dispatch
is well-behaved. We must ensure that edm ∈ ρdm, which is to say that ecm ∈ ρcm for
each behavior ecm, and then we must show ecv ∈ ρcv and that emv ∈ ρmv, making
use of this fact. In sum form the method vector condition follows directly from
the fact that edm ∈ ρdm, but the class vector condition must be checked for the
choice of ρc and ρcobj. In product form the dual situation obtains: the class vector
condition follows from the verification of the dispatch matrix, and the method
vector condition must be verified for the choice of ρmobj and ρm.

These conditions ensure that dynamic dispatch satisfies the following proper-
ties:

1. if e ∈ ρc, then new[c](e) ∈ ρcobj, and

122

2. if e ∈ ρmobj, then snd[m](e) ∈ ρm.

In the case that τm is a command type τ ′m cmd, indicating that method m may
fail when invoked, then some additional conditions are required to ensure that
“message not understood” errors are avoided. Specifically, if instances of c are to
admit method m, then we require the following conditions:

1. Failure is not an option: ρcm ≤ ρc⇀ ret ρ′m ∨ error, for some ρ′m such that
ρ′m v τ ′m.

2. Any object satisfying ρcobj must satisfy ρmobj: ρ
c
obj ≤ ρmobj.

These further conditions ensure that if e ∈ ρc, then

snd[m](new[c](e)) ∈ ret ρ′m ∨ error,

which is to say that sending m to an instance of c cannot fail.
The self-referential case is handled similarly, with some additional complica-

tions arising because the entries in the dispatch matrix are polymorphic in the
object type and abstracted with respect to the class and method vectors. The
ingredients are as follows:

1. As before, a family of refinements ρcm v τ cm characterizing the behavior of
method m on instances of class c as specified by the dispatch matrix.

2. As before, a family of refinements, ~ρ, consisting of refinements ρcobj v τobj,
for each c ∈ C, and ρmobj v τobj, for each m ∈M .

3. Variable refinements ~r consisting of refinements rc and rm of the abstract
object type tobj for each c and m. These are to be thought of as abstract
correlates of the refinements ρc and ρm of τobj that will instantiate them
when the dispatch implementation is chosen. The refinement variables ~r
are governed by a finite set of entailment assumptions, θ, that must be true
when τobj instantiates tobj and ~ρ instantiates ~r.

4. As before, instance and result refinements, stated parametrically in tobj and
~r v tobj, and object refinements for each class and method, also parametri-
cally in the same variables.

5. We require that

ρcm ≤ ∀ (tobj w ~r : θ) . ρcv(~r)⇀ρmv(~r)⇀ρc(~r)⇀ρm(~r),

where ~r and θ are the refinement variables and their governing entailments
described above.

123

The last requirement ensures that ecm satisfies the instantiation of the polymorphic
refinement

ρcv(~ρ)⇀ρmv(~ρ)⇀ρc(~ρ)⇀ρm(~ρ),

where τobj is the object type refined by the refinements ~ρ specified above.
A detailed example is given in the next section in which we give an interpre-

tation of FJ into L, and use refinements to state and prove that “not understood”
errors are precluded in well-refined programs.

4 Refining Featherweight Java

4.1 Overview

To demonstrate the suggested separation of structural from behavioral typing,
we give a relatively straightforward translation of Featherweight Java (Igarashi
et al. 1999) into L, then equip it with a system of refinements that ensures that
“message not understood” failures cannot arise in a well-refined program. End-
to-end we achieve the same safety guarantees as were ensured by the original
formulation; our goal here is to show that the proposed reorganization is adequate
to achieve the same ends. But, as we shall outline in Section 5, the separation
permits consideration of significantly more elaborate verifications than are feasible
by increasing the complexity of the structural type system that determines the
operational semantics of the language.

The main idea is very simple, particularly if we (temporarily) ignore the self-
referential aspects of FJ (to which we shall return momentarily). The key step is
to translate the FJ class table into a dispatch matrix whose entries are commands
that either return the behavior of method m on class c when it is defined by the
class table, or signal a failure to indicate that it is not defined.

The main idea of the verification hinges on the definition of two forms of
refinement particular to the problem at hand, inst[c] and recog[m], which
refine the type τobj, regardless of whether it is chosen to be of sum or product
form. Informally, an object o : τobj is an instance of class c is defined semantically
to mean that for every method m associated to class c in the FJ class table,
the object o does not fail when method m is invoked on it. Notice that o is not
required to have arisen from the constructor of class c, but could be any object
that behaves in the way that such an object would (that is, it could be an instance
of a subclass of c). This semantic instance property is certainly not decidable,
but this is not relevant to our purposes. Similarly, an object o : τobj recognizes the
method m if any instance of any class declared to have m in the class table does
not fail when sent message m. This, too, is not decidable, but this is not relevant
for our purposes. What is relevant is that the semantic definition of inst[c] is

124

not defined by declaration, and does not reflect the history of how the object was
created, but is instead a description of its behavior when executed. This ensures
that the subsumption principle of FJ is validated under our interpretation.

Following the methodology outlined in Section 3, we will set up a system of
refinements that ensures that no “message not understood” errors can arise. The
instance refinement, ρc v τ c, is chosen as the product of the class types declared
for the instance variables

∏
cf∈F c ρcobj. The result refinement ρm is chosen to be

ret ((
∏

c i∈argm

ρcobj)⇀ (ret ρresm
obj ∨ error))

expressing the typing conditions augmented with the possibility of a “downcast”
error as outcome of the method body. In the case that the class table does not
associate m with c, we instead choose ρcm

′ as

fail v τm

reflecting that it is a “not understood” message. In either case we have

ρc⇀ρm v τ c⇀ τm.

The refinements ρcobj are chosen to be inst[c] for each c ∈ C, and the refine-
ments ρmobj are chosen to be recog[m] for each m in M . These choices ensure
that the class vector entry at c creates objects that are, semantically, instances of
c, and that the method vector entry at m delivers a non-error result when applied
to the instance data of a class for which it is defined. We note that if m occurs
in the class table entry for c, then inst[c] ≤ recog[m], which states that an
instance of c admits the message m, as would be expected. Similarly, FJ has the
property that if c <: c′ then every method m is the class table entry for c if it is
in the class table entry for c′, thus inst[c] ≤ inst[c′]. These choices determine
the refinements of the class and method vectors, as described in Section 3.

To complete the verification we need only check that the dispatch matrix de-
rived from the FJ class table, and the associated class and method vectors satisfy
the stated refinements, which they shall do by construction. This guarantees
the well-behavior of dynamic dispatch in the sense described in Section 3, which
ensures that “message not understood” cannot arise.

The main additional complication to account for self-reference is that we must,
as outlined in Section 3, choose abstract refinement variables rc and rm that refine
the abstract type tobj of objects, together with a set of entailments, θ, that will
be true for ρcobj and ρmobj when tobj is instantiated to τobj. Within the dispatch
matrix the code makes use of these assumptions, just as it would have made
use of the refinement entailments that are true of inst[c] and recog[m] in the
non-self-referential case. The result proceeds along similar lines to those outlined
above.

125

4.2 Compiling FJ to L

The following presentation of FJ follows the CBV version by Pierce (2002). One
difference is that we use m for FJ method names, because we need to distinguish
these from the method names m in the interpretation in L. For classes c the two
coincide.

The syntax of FJ is a subset of Java, aside from top-level programs, which
consist of a class table and an expression to evaluate.

class declarations CL ::= class c extends c {c f ;K ME}
constructor declarations K ::= c(c f) {super(f); this.f = f ; }
method declarations ME ::= c m(c x) {returnT ; }
terms T ::= x | T .f | new c(T) | T ·m(T) | (c) T
values V ::= new c(V)

class table CT ::= CL

program P ::= (CT,T)

We now instantiate our framework to show a relatively straightforward com-
pilation of FJ programs to L types and expressions. To ease the presentation and
aid comparison we adopt some similar notation to FJ, including having a single
implicit global class table CT .

We rely on the following auxiliary definitions from the presentation of FJ by
Pierce (2002):

mtype(m, c) mbody(m, c) fields(c) c <: d

We also require the following definitions derived from these, which depend on
some standard properties of FJ like unique fields. For notational convenience we
treat method arguments like records with integers as the field names. Also, the
Π record type below with c i ∈ argm constructs a record type with indices i, and
in what follows similarly the index excludes the c type declaration.

argm , (c1 1), . . . , (cn n)

resm , c

}
where mtype(m, c′) = c→ c for some c′

(this maps each m uniquely)

F , {cf | cf ∈ F c′ for some c′} (this maps each f uniquely)

F c , fields(c)

τ arg
m (tobj) ,

∏
c i∈argm

tobj

126

Each FJ method m gives rise to a method m in the interpretation. Fields and
casting are implemented by adding extra methods: for each field we have a
method get[f] and for each class we have a method cast[c]. We write m to
indicate a method in the interpretation, which may be any of the three forms m,
get[f] or cast[c].

In Figure 1 we instantiate the framework in L in the previous sections by
defining the sets of classes and methods, C and M , and the associated types
τ c(tobj) and τm(tobj). This instantiates the types of the dispatch entries and the
types of the method and class vectors from Section 3. Following the convention for
FJ, these definitions implicitly depend on the FJ class table CT for a particular
program, and much of the remainder of this section assumes similarly that there
is a fixed “global” class table.

Class Types

C , {c | c is declared in CT}

τ c(tobj) ,
∏

c′f∈F c

tobj

τcv(tobj) ,
∏
c∈C

(τ c(tobj)⇀ tobj)

Method Types

M , {m | m is declared in CT}
∪ {get[f] | f ∈ F}
∪ {cast[c] | c ∈ C}

τm(tobj) , τ ′m(tobj) cmd

where τ ′m(tobj) , τ arg
m (tobj)⇀ (tobj cmd)

τ ′get[f](tobj) , tobj

τ ′cast[c′](tobj) , tobj

τmv(tobj) ,
∏
m∈M

(tobj ⇀ τm(tobj))

τ cm , ∀ tobj . τcv(tobj)⇀ τmv(tobj)⇀ τ c(tobj)⇀ τm(tobj)

Figure 1: Compiling FJ syntax to L types

The dispatch matrix entries ecm are defined in Figure 2 via an auxiliary com-
mand kc,Γm , with the context Γ explicitly indicating which type variables and typed
expressions variables are allowed to be free relative to the command, in this case
tobj, cv, mv, u and this. We adopt the convention that each FJ variable has a
corresponding L variable with the same name. This is particularly convenient in
the translation of terms |T |Γ. Also in what follows we often use substitutions Ψ,
to replace free variables with types and expressions as appropriate, such as the
substitution for this here.

More generally, a context Γ can specify allowed free type variables t and

127

ecm , Λ(tobj)λ (cv:τcv(tobj))λ (mv:τmv(tobj))

λ (u:τ c(tobj)) cmdΨ(kc,Γm)

where Γ ,

(
tobj, cv : τcv(tobj),mv : τmv(tobj),
u : τ c(tobj), this : tobj

)
Ψ , this 7→ cv · c(u)

and kc,Γm , ret (λ (x:τ arg
m (tobj)) ‖T‖Γ,x:tobj) if mbody(m, c) = (x,T)

, fail if mbody(m, c) is undefined
kc,Γ
get[f] , ret (u · f) if f ∈ F c

, fail otherwise

kc,Γ
cast[c′] , ret this if c <: c′

, error otherwise

Figure 2: Dispatch entries for FJ methods m, plus get[f] and cast[c′]

allowed free expression variables along with their type which can depend on type
variables earlier in the context. This means that tobj is an abstract type in the rest
of Γ. Indeed, we consider the initial part of Γ with tobj, cv : τcv(tobj),mv : τmv(tobj)
to correspond to a client’s view of an existential package with type τdd from
Section 3, with cv andmv being the new and snd components. This is appropriate
here because with self-reference the bodies of the dispatch entries are themselves
clients of dynamic dispatch abstract type. Γ is augmented with u : τ c(tobj) so
that the instance data of the object is available and this : tobj to appropriately
allow this to appear in the FJ method bodies.

In the definition of kc,Γm in Figure 2, for each class c the we interpret each
of three kinds of methods using the fail command appropriately for undefined
method bodies and undefined fields and error for casts to non-superclasses.

Defined method bodies are translated via an inductive translation ‖T‖Γ which
we will see shortly. We use a little syntactic sugar here, following FJ, writing
λ (x:τ arg

m (tobj))T to abbreviate a function binding the variables in x to the cor-
responding components of the argument.

To interpret FJ we only need to use the instance data u in two ways:

• Each get method get[f] for class c is interpreted as a command returning
the f field of u : τ c(tobj). f must be present in τ c(tobj) if f ∈ F c, assuming
that we’ve correctly dispatched to ecget[f] due to sending method get[f] to
an instance of (exactly) class c. (See the definition of e′mv below.)

• The FJ special variable this is substituted by the expression cv · c(u) with

128

type tobj which is equivalent to the object on which the method was called,
assuming that we’ve correctly dispatched to ecm due to sending method m
to an instance of c. This is then available for the translation of recursive
method calls in method bodies (via ‖T‖Γ,x:tobj) and is also used for successful
casts.

It’s important here that the instance data for a class c is only directly accessed
from the get[f] method implementation for exactly the class c. All other uses
of the instance data are via method calls to this which dispatch appropriately,
hence no subtyping or similar constraints are ever required between the types of
instance data of different classes.4

We compile FJ expressions T as corresponding L commands, in a relatively
direct way, aside from making the propagation of errors explicit via the monadic
bind. The compilation is parameterized by a context Γ that includes FJ expres-
sion variables in scope to corresponding L expression variables, including this
which is always in scope in FJ method bodies. Γ also maps cv and mv to corre-
sponding L expressions for the class and method vectors (renaming as necessary
to avoid clashes with FJ variable names).

‖T‖Γ , cmd |T |Γ

|x|Γ , retx if x is in Γ (including when x is this)

|new c(T)|Γ , bndx←‖T‖Γ ; ret (cv · c)(x)

|T ·m(T)|Γ , bndx←‖T‖Γ ; bnd y← (mv ·m)(x) ;
bndx←‖T‖Γ ; bndw← y(x) ; retw

|T · f |Γ , bndx←‖T‖Γ ; bnd y← (mv · get[f])(x) ; ret y

|(c)T |Γ , bndx←‖T‖Γ ; bnd y← (mv · cast[c])(x) ; ret y

At this point we can use the expressions ecm to interpret the class table CT of an
FJ program as a typed L expression for the dispatch matrix:

edm = 〈〈ecm〉m∈M〉c∈C

We sketch here two parts of the type correctness theorem for the compilation
to L of the FJ syntax. Because every FJ class/type is interpreted as tobj, type
correctness in L corresponds to FJ syntactic correctness, including scoping of
variables and consistency of argument counts. We omit some syntactic lemmas
such as that subclasses have all the fields of their superclasses with the same

4An alternative approach to this is to pass it as a separate argument to ecm, with an invariant
that u and this must correspond. This makes little difference here when interpreting FJ, but
appears to scale better to certain kinds of extensions like run-time inheritance.

129

type. Note that the FJ object types of the fields are not yet relevant, and the
presence of specific object types in the lemma statement is simply because FJ
lacks a judgment witnessing syntactic correctness without also requiring specific
object types.

We write `FJ MEOKin c for the FJ judgment “ME is a valid method declaration
for class c”, which implicitly depends on the types declared in CT; see Pierce
(2002).

Lemma 1.

1. If x : c `FJ T : c and Γ = tobj, cv : τcv(tobj),mv : τmv(tobj)
then tobj, x : tobj ` |T |Γ ∼·· tobj.

2. If mtype(m, c) = c→ c0 and mbody(m, c) = (x,T0)
and `FJ c0 m(c x){return T0; } OK in c
then ` ecm : τ cm.

A consequence of our compilation is that the structure of an FJ value V is ob-
servable via its translation k = |V |Γ in L. This is because it is possible to observe
errors and non-errors for calls to cast[c′] on v for each c′, from which we can
determine its class c and then determine (inductively) its fields by calling get[f].
If this observability seems suspect, note that it is required by the definition of
FJ due to the class and fields of object values being observable everywhere, in-
cluding in top-level expressions. Further, the compilation can easily be modified
to accommodate similar languages which allow the exact class of an object to be
hidden (by omitting or restricting the cast methods) or which have private fields
(by omitting the get methods and instead using direct access to the instance
data).

We now characterize the translations of values via the following inductive
definition. (Note that all FJ values have the form new c(V).)

|new c(V)|Γval , cv · c(|V |Γval)

The following lemma shows that for values this is equivalent to the previous
translation |·|Γ, modulo some evaluation steps that reduce bndx←cmd (ret v) ;k
to [v/x]k. This is a standard evaluation rule for monadic commands, and easily
derived from the sum interpretation of commands described in Section 2. We
show some details of the proof just to give the flavor of such proofs.

130

Lemma 2. (value translation)
If Γ = tobj, cv : τcv(tobj),mv : τmv(tobj),Γ

′ and Ψ : Γ with both Ψ(cv) = ecv and
Ψ(mv) = emv terminating (and closed)
then for all V we have Ψ(|V |Γ) 7→∗ k and k final

iff Ψ(|V |Γval) 7→∗ v and v val and k = ret v.

Proof. (sketch) By induction on V . We have just one case.
Case: V = new c(V). Then

Ψ(|V |Γ)

= Ψ(|new c(V)|Γ)

= bndx← cmdΨ(|V |Γ) ; ret (ecv · c)(x)

Ψ(|V |Γval)
= Ψ(|new c(V)|Γval)
= (ecv · c)(Ψ(|V |Γval))

[Left =⇒ right] (the other direction is similar)

If LHS 7→∗ k and k final, then, by inversion on the evaluation, for each Vi there
is ki s.t. Ψ(|Vi|Γ) 7→∗ ki and ki final.
Applying the I.H. to each Vi yields Ψ(|Vi|Γval) 7→∗ vi and vi val and ki = ret vi.

Then LHS 7→∗ ret (ecv · c)(v) and RHS 7→∗ (ecv · c)(v).
But then ret (ecv · c)(v) 7→∗ k (since LHS 7→∗ k, and 7→ is deterministic).

Thus k = ret v for some v with v val and RHS 7→∗ v, as required. �

4.3 Class and method vectors (sum-based)

Now, so far nothing in our FJ compilation is specific to the sum-based or product-
based organization. But, to have a concrete verification of a complete framework,
we now consider the full implementation of self-referential class and method vec-
tors. This subsection isn’t specific to FJ, but applies generally to any edm with
self-reference via cv and mv parameters in dispatch entries. We have delayed the
full details until now so that they can be considered in a more concrete context
than in Section 3.

We focus on the method-based (sum) organization because it is the road
(much) less traveled, and leads to some novel views of some aspects, but every-
thing that follows also works out dually for the class-based (product) organization.

The appropriate sum-based recursive object type τΣ
obj is as in Section 3 and the

corresponding self-referential class and method vectors are as follows. Following
Harper (2012) L uses fold(e) and unfold(e) for recursive types, and selfx is e
and unroll(e) for recursive expressions.

131

τΣ
obj , µ tobj.

∑
c∈C

τ c(tobj)

eΣ
cv , 〈c ↪→ λ (u:τ c(τobj)) fold(c · u)〉c∈C : τcv(τobj).

eΣ
mv , unroll(eΣ

mv
′
) : τmv(τobj)

eΣ
mv
′
, selfmv is 〈m ↪→ λ (this:τobj) case unfold(this) {c · u⇒ ecm

′ }c∈C〉m∈M
where ecm

′ , edm · c ·m[τobj](ecv)(emv)(u)

Lemma 3. (Dynamic dispatch) If v : τ c and v val then

eΣ
mv ·m(eΣ

cv · c(v)) 7→∗ edm · c ·m[τobj](eΣ
cv)(e

Σ
mv)(v)

This lemma exactly characterizes correctness of ecv and emv as an implementation
of dynamic dispatch, and there is a dual proof for the product-based organization.
What follows generally doesn’t depend the implementation, just on this lemma,
except where noted. Hence we generally omit the Σ superscripts in what follows.

4.4 Top-level and compilation correctness

We compile the top-level “external” term T in a program (CT, T) as Ψex(|T |Γex),
via Ψex and Γex (below) which appropriately omit this, and have both Ψex(cv)
and Ψex(mv) closed and terminating.

Γex , tobj, cv : τcv(tobj),mv : τmv(tobj)

Ψex , tobj 7→ τΣ
obj, cv 7→ eΣ

cv,mv 7→ eΣ
mv

Then using the earlier lemmas we can show that the compilation is operationally
sound. This has two parts: one for ordinary FJ evaluation steps and one for in-
valid downcasts. The theorem statement and proof involve FJ evaluation contexts
E{}, defined as follows, as in Pierce (2002).

E{} ::= {} |E{}.f | new c(V ,E{},T)

|E{} ·m(T) | V ·m(V ,E{},T) | (c)E{}

Theorem 4. (compilation correctness) Suppose for a particular FJ class table
CT we have `FJ T : c. Then

1. if T 7→FJ T
′ then Ψex(|T |Γex) 7→∗ Ψex(|T ′|Γex)

132

2. if T has the form E{(c) new c′(V)} and not c′ <: c
then Ψex(|T |Γex) 7→∗ error.

Proof. (Sketch.) By induction on (closed) T for part 1, using Lemma 3
(dynamic dispatch) to emulate FJ calls to m on instances of c with instance
data V via ecm[τobj](ecv)(emv)(v) where |V |Γval 7→∗ v. We similarly use Lemma 2
(value translation) to produce corresponding L values when the FJ evaluation
rule requires certain subterms of T to be values.

4.5 Interpreting FJ types as refinements

Figure 3 shows the details of our interpretation of FJ types, instantiating the
setup in Section 3. Firstly we define M c and dual Cm which we take as our
specification of what class-method combinations are required to dispatch to valid
implementations. This is in fact derived from the class table of the FJ program
here, since FJ lacks a mechanism to separately specify such requirements, and
we wish to provide the same guarantees as the the FJ type system in regards to
“method not understood” failures. We still consider this specification as concep-
tually prior to the actual code implementing classes and methods, and in general
it could be derived from a separate specification.

Unlike for types, the refinements indicated for the results of dispatch entries
ecm for a single method m can differ between classes due to unrequired class-
method combinations. So, we choose ρm(~r) as the appropriate refinement for
required combinations, and then (below in Figure 3) we choose ρcm(~r) as > (which
includes all commands, hence fail) when the combination c,m isn’t specified as
required.

Next Figure 3 introduces type variables rc and rm which conceptually indicate
“instances of c” and “recognizers of m”. However, taking a behavioral view, we
actually characterize rc in terms of behavior, namely the methods that instances
of rc recognize. Thus, rc includes all objects that recognize all methods that
instances of c do.

The refinement rm directly indicates that method m is recognized. θ0 is a set
of entailments that are safe based directly on what class-method combinations
are required. However, this directness may exclude some combinations that be-
haviorally should be included, based on the above characterization of rc. Thus θ
is constructed so that it is a superset of the entailments in θ0, closed with respect
to the behavioral view. As we shall see, θ is sufficient to justify subsumption
between class types in FJ (which is built into some of the FJ typing rules), also
called subclassing, while θ0 is not.

The last part of the union in the definition of θ represents a dual concern:
that given a specified set of required class-method combinations, knowledge that

133

a particular object recognizes a particular method may be sufficient to deduce
that the object also recognizes some other methods. We call this dual concept
supermethoding, and include it here to emphasize that it is the natural dual of
subclassing. Further, we note that what appears to be essentially the same con-
cept has been studied significantly in the mature field of formal concept analysis,
for an overview see the text by Ganter et al. (1997).

We now verify that these definitions satisfy the conditions in Section 3.2

Lemma 5. For all classes c, c′, if CT `FJ c
′ <: c then (rc

′ ≤tobj r
c) is in θ.

Proof. (sketch) Roughly by construction: in FJ, subclassing c to form c′

leads to each method of c either being inherited or overridden in c′ (with the
same type), and so on transitively, hence c′ has all methods that c does.

Lemma 6. For all c ∈ C and m ∈M we have ecm ∈τcm ρcm

Proof. (sketch) We show that for all τobj, ~ρ v τobj with ~ρ sat. θ, and all
ecv ∈ ρcv(~ρ), emv ∈ ρmv(~ρ), vu ∈ ρc(~ρ)
that [τobj/tobj][~ρ/~r][ecv/cv][emv/mv][vu/u]kc,Γm ∈ ρcm′(~r) in each case.

The case for a defined m involves the translation |T |Γ of the method body `FJ
T : resm which we treat by induction on the FJ typing derivation, generalizing
appropriately.

Lemma 7. ~ρΣ satisfies θ.

Proof. From the definitions of ~ρ, ρcobj(~r) and ρmobj(~r) we have each required
ρc ≤ ρm and ρc ≤ ρc

′ simply by inclusions between the sets M c and Cm. (No
entailments for ρc(~ρ) are involved.)

Lemma 8. eΣ
cv ∈ ρcv(~ρΣ) and eΣ

mv ∈ ρmv(~ρΣ).

Proof. (sketch) By the properties of refinements in Section 2.

Lemma 9.
If (m = m and mbody(c,m) defined), or (m = get[f] and f ∈ fields(c)), or
m = cast[c] then ρcm ≤ ∀ (tobj w ~r : θ) . ρcv(~r)⇀ρmv(~r)⇀ρc(~r)⇀ρm(~r)

Proof. For these cases the definitions of the two refinements coincide.

Theorem 10. If `FJ T :c then Ψex(|T |Γex) ∈ (ret inst[c]) ∨ error.
Proof. (sketch) By induction on the typing derivation for T , and using lemma 6
with the subsequent lemmas discharging the assumptions of that lemma.

(Alternatively, the result follows from the type preservation and progress the-
orems of FJ sketched by Pierce (2002) and our earlier lemma that FJ reduction
can be simulated via the interpretation in L, but this is perhaps less convincing
as a demonstration of reasoning using semantic refinements.)

134

Specification of required class-method combinations

M c , {m∈M | mtype(m, c) is defined}
∪{get[f] | f ∈ F c}
∪{cast[c] | c ∈ C}

Cm , {c ∈ C |m ∈M c}

Refinement Variables and Entailment Constraints

~r , {rc}c∈C ∪ {rm}m∈M (with the rc and rm all distinct)

θ0 , {rc ≤tobj rm | c ∈ C,m ∈M
c}

θ , θ0 ∪ { rc ≤tobj r
c′ | for all rm. rc ≤tobj rm in θ0 if rc

′ ≤tobj rm in θ0}
∪ {rm ≤tobj rm′ | for all rc. rc ≤tobj rm′ in θ0 if rc ≤tobj rm in θ0}

Class Refinements

ρc(~r) ,
∏

(c′f)∈F c

rc
′

Method Refinements

ρm(~r) , ret ((
∏

c i∈argm

rc)⇀
(

ret rresm

∨ error

)
)

ρget[f](~r) , ret rc for each c f ∈ F

ρcast[c](~r) , ret rc ∨ error for each c ∈ C

ρcv(~r) ,
∏

c∈C (ρc(~r)⇀ rc) ρmv(~r) ,
∏

m∈M (rm⇀ρm(~r))

Dispatch Entry Refinements

ρcm , ∀ (tobj w ~r : θ) . ρcv(~r)⇀ρmv(~r)⇀ρc(~r)⇀ρcm
′(~r)

where ρcm
′(~r) ,

{
ρm(~r) if m ∈M c

> otherwise

Refinements of τΣ
obj (sum-based)

ρcobj(~r) ,
∧

m∈Mc

ρmobj(~r) ρmobj(~r) ,
∨
c∈Cm

(c · ρc(~r))

~ρΣ , µ~r.(ρcobj(~r))c∈C , (ρ
m
obj(~r))m∈M in ~r

inst[c] , ρcobj(~ρΣ) recog[m] , ρmobj(~ρΣ)

Figure 3: Interpreting FJ types as L refinements

135

Corollary 11. If `FJ T :c then Ψex(|T |Γex) will not evaluate to fail indicating
“message not understood”.

Thus, our interpretation of the type system of FJ as semantic refinements will
correctly accept the translations of all well-typed FJ programs. As well it will of
course accept any program that doesn’t result in a “message not understood” or
“field not understood” error even if the FJ type system rejects it. It can also rule
out downcast failures in essentially the same way, or better, characterize exactly
what conditions will lead to downcast failures.

Of course, a disadvantage is that the semantic approach generally does not
as directly lead to practical tools such as refinement checkers. But, a refinement
checker like that studied (and built) by Davies (2005) can be considered a proof
checker for certain quite restricted language of proofs of semantic properties that
can be conveniently expressed via a few annotations within or alongside a pro-
gram. Making semantic refinements the primary notion not only leads to some
technical simplifications, it clarifies the nature of syntactic refinements and the
exact limitations that should be expected when using a refinement checker.

5 Conclusion
By separating structural from behavioral considerations we have repositioned the
problem of typing for object-oriented programming from one of designing lan-
guages (structural type theories) to one of designing specifications (behavioral
type theories). Rather than privileging the “message not understood” error, we
instead treat it on a par with other conditions, such as “down-cast errors”, that
naturally arise when using dynamic dispatch, and which are much more diffi-
cult to account for in a purely structural framework. More broadly, avoiding
the characteristic errors associated with dynamic dispatch becomes a particular
instance of avoiding a broader class of errors, such as array bounds check errors.
The emphasis on the semantic interpretation of behavioral typing may be further
generalized to account for richer properties, such as the equational properties
inherent in the Liskov-Wing behavioral notion of behavioral subtyping (Liskov
and Wing 1994), by passing from predicates to binary relations defined over a
structural type system.

In our main example we have derived the key safety property provided by the
FJ type system through a combination of structural and behavioral typing. Being
semantically defined, behavioral typing is, in general, not mechanically checkable;
whether a program exhibits (or fails to exhibit) a particular behavior is a mat-
ter of proof. In this respect our formulation is coherent with the general trend
toward the integration of program verification as part of standard software devel-
opment practices. For this to be practical, it is necessary to develop tools that

136

can, in common cases, perform automatic verification, or semi-automatic verifica-
tion via modest “proof hints” such as annotations specifying expected invariants.
For example, it appears that the existing tool SML CIDRE developed by Davies
(2005) is sufficiently expressive and efficient to handle SML code corresponding
to our main example, including refinements of abstract types via refinements in
SML modules. More broadly, it would be interesting to integrate structural and
behavioral typing in a single dependent type theory in which one may regard
type refinements as propositional functions, and then apply automated reasoning
systems, such as Coq (Bertot and Castéran 2004), to perform the verification.
It would appear that in such a framework the FJ type checker would emerge as
a tactic that handles the verification of the absence of “not understood” errors.
This should naturally extend to full Java type checking, and other languages in-
volving dispatch, including more involved aspects such as the variance of generics
which we expect to fit well with behavioral refinements. Further, we expect this
to suggest some natural extensions, for example enriching subtyping of generics
with strictness of type parameters, or the more general constrained inclusions
considered by Davies (2005), with the formulation of even more precise tactics
and refinement checking tools being naturally open-ended.

The semantic foundations for behavioral typing suggest other interesting di-
rections for research. As mentioned earlier, by passing to a relational interpreta-
tion of refinements we may express properties, such as parametricity properties,
that hold of a particular language, or to verify properties such as the behavioral
subtyping condition mentioned earlier, that hold of particular programs. Another
direction is to observe that the structural treatment of dynamic dispatch naturally
gives rise to a semantic account of object-oriented concepts such as subclassing.
Briefly, rather than consider subclass relationships to be a matter of declaration
or construction, as they are in FJ, we may instead define such relationships be-
haviorially in terms of the dispatch matrix. For example, one may consider c to
be a subclass of c′ whenever every method that is well-defined on instances of c′
is also well-defined on instances of c, a semantic formulation of what is stated by
declaration in FJ. It would also be interesting to extend our methods to concepts
such as multiple dispatch (pattern matching on tuples of objects), or more exotic
programming concepts such as predicate dispatch. These seem ripe for consid-
eration from a behavioral/verification viewpoint, without requiring substantial
changes to the underlying structural type theory.

Acknowledgement The authors are grateful to Martín Abadi, Stephanie
Balzer and Matthias Felleisen for their very helpful comments on this work.

137

References
M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

J. Aldrich. The power of interoperability: Why objects are inevitable. In Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, pages 101–116, 2013.

N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In
Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, TLDI ’07, pages 15–26. ACM, 2007.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Springer, 2004.

E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552–593, 2013.

K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108–133, Nov. 1999.

L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138–164, 1988. Summary in Semantics of Data Types, Kahn, MacQueen,
and Plotkin, eds., Springer-Verlag LNCS 173, 1984.

L. Cardelli. Bad engineering properties of object-oriented languages. ACM Com-
puting Surveys (CSUR), 28(4es):150, 1996.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471–522, Dec. 1985.

L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The Modula-
3 type system. In Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, pages 202–212, Jan. 1989.

W. R. Cook. A proposal for making eiffel type-safe. The Computer Journal, 32
(4):305–311, 1989.

W. R. Cook. On understanding data abstraction, revisited. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 557–572, 2009.

K. Crary and R. Harper. Syntactic logical relations for polymorphic and recursive
types. Electronic Notes in Theoretical Computer Science, 172:259–299, 2007.

138

R. Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon
University School of Computer Science, May 2005. Available as Technical Re-
port CMU–CS–05–110.

R. Davies and F. Pfenning. Intersection types and computational effects. In
Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 198–208, 2000.

E. Denney. Refinement types for specification. In Programming Concepts and
Methods PROCOMET’98, pages 148–166. Springer, 1998.

J. Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University, August 2007.

J. Dunfield and F. Pfenning. Type assignment for intersections and unions in
call-by-value languages. In Foundations of Software Science and Computation
Structures, FOSSACS’03, pages 250–266, 2003.

K. Fisher and J. Mitchell. The development of type systems for object-oriented
languages. Theory and Practice of Object Systems, 1(3):189–220, 1996.

T. Freeman and F. Pfenning. Refinement types for ML. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
Toronto, Ontario, June 1991.

B. Ganter, R. Wille, and C. Franzke. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag New York, Inc., 1997.

R. Harper. Practical foundations for programming languages. Cambridge Univer-
sity Press, 2012.

R. Harper. Practical foundations for programming languages (second edition).
Available at http://www.cs.cmu.edu/~rwh/plbook/2nded., 2014.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM SIGPLAN Conference on Object Oriented
Programming: Systems, Languages, and Applications (OOPSLA), Oct. 1999.

S. L. P. Jones. Haskell 98: Introduction. J. Funct. Program., 13(1):0–6, 2003.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841,
1994.

139

R. Milner. A theory of type polymorphism in programming. J. Comput. Syst.
Sci., 17(3):348–375, 1978.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML, Revised edition. MIT Press, 1997.

U. Norell. Dependently typed programming in Agda. In In Lecture Notes from
the Summer School in Advanced Functional Programming, 2008.

M. Odersky and T. Rompf. Unifying functional and object-oriented programming
with scala. Commun. ACM, 57(4):76–86, 2014.

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11(4):511–540, 2001.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

A. M. Pitts. Relational properties of domains. Information and Computation,
127(2):66–90, 1996.

J. Reynolds. Three approaches to type structure. In Mathematical Foundations
of Software Development. Springer-Verlag, 1985. Lecture Notes in Computer
Science No. 185.

D. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522–587,
1976.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, Nov. 1994.

H. Xi and F. Pfenning. Eliminating array bound checking through dependent
types. In PLDI, pages 249–257, 1998.

140

A Theory of Model Equivalence

Ozan Kahramanoğulları
The Microsoft Res. – Uni. of Trento

COSBI, Rovereto, Italy

James F. Lynch
Department of Computer Science,

Clarkson University, Potsdam, NY, USA

Abstract

We propose a theory for quantitative comparison of models in terms
of flux networks obtained from stochastic simulations. The technique is
applicable to a range of models from chemical reaction networks to rule-
based models. The fluxes of the networks are given by the flow of species
instances in stochastic simulations (Kahramanoğulları and Lynch (2013)).
This makes it possible to define a quantitative notion of equivalence, which
includes graph isomorphism of flux networks as a special case. We use the
technique for comparing models with respect to their simulations at arbi-
trary time intervals with varying degrees of accuracy, and for simplifying
models when a larger model produces the same behavior as the smaller
one. Other more involved queries that we aim to address include queries
on emulation of a complex model by a simpler one.

Introduction

In systems biology, models are commonly refined and extended, and often com-
pared for their capability to produce a behavior of interest. Despite the limited
number of formal means, drawing parallels between various models of biologi-
cal systems is central to many investigations in this field. Furthermore, existing
efforts are often limited by the measurement of ad hoc model signals, as it is
inherently challenging to provide a general method for the task.

To this end, we propose a methodology for comparing models in relation to the
dynamic behavior that is produced by the model components. For this purpose,
we use the fluxes generated by a model as a summary of the dynamic behavior,
where flux is given by the flow of resources during stochastic simulations (Kahra-
manoğulları and Lynch (2013)). The graphs that we obtain by computing the
fluxes display how many of the model species instances flow between which model
components during which intervals of the simulations. As this provides a mathe-
matical structure that quantifies the model dynamics, we use this information as

141

a summary of the model that can be compared to other structures obtained in the
same way. Moreover, the quantitative observations made during the comparisons
are useful in contrasting the stronger components of the models that account for
most of the dynamical behavior with the weaker components.

In the following, we illustrate our approach on examples. We provide an
introduction as discussed in Kahramanoğulları and Lynch (2013) to the compu-
tations of fluxes in stochastic simulations with models that are typically defined
as chemical reaction networks as well as their more compact representations in
the form of rule-based descriptions. We describe the notions of our method, first
on a simple example, and then on published models from the literature. We
illustrate the notion of flux equivalence (Kahramanoğulları and Lynch (2011))
on a model of GTP-binding proteins (Goryachev and Pokhilko (2006); Cardelli
et al. (2009)). We then extend our discussion to the cases where models with
varying sizes and structures are compared. For this purpose, we resort to the
cell cycle and approximate majority models, which were previously compared in
Cardelli and Csikász-Nagy (2012) by using stochastic and deterministic simula-
tions together with probabilistic model checking. While providing analyses that
are consistent with these studies, our method gives rise to promising observations
that have a potential as a formal method for model comparison.

Models and Flux

The method for stochastic flux analysis presented in Kahramanoğulları and Lynch
(2013) can be applied to any discrete or continuous time discrete event simula-
tion that implements reaction networks as Markov chains. Rule based model-
ing languages with a stochastic simulation engine as well as implementations of
stochastic Petri nets fall into this category. The method can thus be applied
to all such languages; here, for simplicity, we use the chemical reaction network
representation of the models.

The flux analysis method is based on marking individuals that are trans-
formed by the reactions during the simulations, and using the markings to track
the causal dependencies between reaction instances as in event structures (Kahra-
manoğulları (2009); Kahramanoğulları (2006)). We process this causality infor-
mation to obtain a quantification of the flow of resources between reactions, and
thereby quantify the network fluxes at chosen time intervals. This is easily imple-
mented by assigning a unique identifier to each network species instance in the
initial state and to each reaction product of every reaction instance. In our case,
these identifiers are integers.

The formal definitions of our method for obtaining the flux graphs are de-
scribed in detail in Kahramanoğulları and Lynch (2013). Below, we thus give a

142

Sim. Trajectory Sim. Trace Sim. Configuration

Figure 1: The transformation from a simulation trajectory generated by the net-
work in the introductory example to its simulation trace, and the transformation
from the simulation trace to the simulation configuration.

textual description that summarizes the method and the structures it uses.
A reaction instance is a random event whose probability is determined by the

current state of the network. A reaction can be applied at a state to obtain a
reaction instance if its reactants are available at that state and the reaction is
picked by the simulation algorithm from all the applicable reactions. Whenever a
reaction is applied at a state the simulation algorithm updates the resulting state
with the reaction products and their unique identifiers in a structure that we call
simulation trajectory. Because this information can be recorded in a bounded
amount of time during simulation in real time, the method does not introduce
any additional complexity to the simulation algorithm.

Example. Consider the chemical reaction network below, where each reaction
is named with an integer.

1 : A→ P + P, 2 : P → B, 3 : P → C, 4 : B + C → D

The initial state is {A(1)}, where 1 is the unique identifier of the species instance
A. A possible 4-step simulation trajectory is depicted on the left-hand-side of
Figure 1, where each node of the graph is a reaction instance: the first parameter
of the label of the node is the reaction name, and the second parameter is the
reaction instance time. The edges are the species instances that are produced
by the source node and consumed by the target node. Each edge has a unique
integer identifier.

By using the unique identifiers of the species instances in a reaction trajec-
tory, which indicate the production-consumption relationship between reaction
instances of the simulation, we construct a directed graph structure. This graph
structure, called the simulation trace, makes the causality relationship explicit.

143

Sim. configuration
Flux

configuration

Figure 2: The simulation configuration of a simulation with the network in the
introductory example and the initial state {A(1), A(2), A(3), A(4)}. In the sim-
ulation configuration, each edge is additionally decorated with its species for
illustration purposes. We first obtain the simulation configuration and then the
flux configuration.

Example. Consider the simulation trace in the middle in Figure 1, which is
obtained from the simulation trajectory of the example above. The nodes denote
the species instances: the first parameter of the triple is the unique identifier of
that species instance, the second parameter is the identifier of the reaction that
created it, and the third parameter is the time it is created. The edges denote the
causality relationship between the species instances in the sense that the node at
the source of an edge is required for the production of the node at the target.

By further processing this graph, we obtain an edge-labeled directed multi-
graph that reveals the independence and causality information of the transitions
with respect to the flow of specific resources between reactions. The information
displayed by this graph is different from that given by the simulation trace, where
the evolution of the species instances with respect to the reactions is shown.
In this graph, which we call simulation configuration, each node is a pair that
contains the reaction that is applied and its time in the simulation.

Example. Consider the simulation configuration on the right-hand-side of
Figure 1. Each edge is labeled with the species that is produced by the reaction

144

at the source node of that edge and consumed by the reaction at the target node.
In order to quantify the flow of resources between the reactions within given

time intervals of the simulation, we compress simulation configurations into struc-
tures that we call flux configurations. A flux configuration is a graph, where the
nodes are the reactions of the network. We obtain a flux configuration first by
merging the edges of the simulation configuration such that all the edges with
a certain species within the given time interval are mapped to a single edge by
filtering out their time stamps. For each label that denotes a network species
instance, we then count in the simulation configuration the number of edges from
each node (which corresponds to a reaction of the network) to other nodes within
the given time interval. The number of such edges is then used to decorate the
edge for that species between the respective reactions.

The flux configurations give a summary of the specific resource flows between
specific reactions at arbitrary time intervals during the simulation, and thereby
they provide a narrative for the essence of the dynamic behavior.

Example. Consider the chemical reaction network given in the example above.
A simulation trace for the initial state {A(1), A(2), A(3), A(4)} is depicted on the
left-hand-side of Figure 2. The figure demonstrates the simulation configuration
and the flux configuration obtained from this trace. In the flux configuration the
nodes are reactions, and the edges are the pairs of species names and their counts.

The time and space complexity of generating the above data structures is
linear in the number of simulation steps, which follows from the facts that there
is a fixed number of reactions, and each reaction involves a fixed number of
species. It is also evident that the flux graphs can be generated in linear time
and space. Because the steps of this algorithm do not modify the generation
of the individual events, the algorithm can be included in any discrete events
simulator of chemical reaction networks.

Model Equivalence as Flux Equivalence

In order to demonstrate our concept of equivalence, we use the chemical reaction
network depicted in Figure 3. This network models Rho GTP-binding protein
activation. For detailed dynamic analysis of this network, we refer to Goryachev
and Pokhilko (2006) with respect to ordinary differential equations and we refer
to Cardelli et al. (2009); Kahramanoğulları and Lynch (2013) with respect to
stochastic simulations.

In this network, all the reactions except 18, 20, and 22 are reversible. Here,
we consider the regime with the initial conditions given with R0 = 1000, E0 = 776
and A0 = 1; the analysis on regimes with other initial conditions can be found

145

1 : A + R
1.0−→ RA

2 : A + RD
1.0−→ RDA

3 : A + RT
1.0−→ RTA

4 : E + R
0.43−→ RE

5 : E + RD
0.0054−→ RDE

6 : E + RT
0.0075−→ RTE

7 : R
0.033×D−→ RD

8 : R
0.1×T−→ RT

9 : RA
500−→ A + R

10 : RD
0.02−→ R

11 : RDA
500−→ A + RD

12 : RDE
0.136−→ E + RD

13 : RDE
6.0−→ RE

14 : RE
1.074−→ E + R

15 : RE
0.033×D−→ RDE

16 : RE
0.1×T−→ RTE

17 : RT
0.02−→ R

18 : RT
0.02−→ RD

19 : RTA
3.0−→ A + RT

20 : RTA
2104−→ RDA

21 : RTE
76.8−→ E + RT

22 : RTE
0.02−→ RDE

23 : RTE
0.02−→ RE

D = 50,T = 500

Figure 3: The GTPase chemical reaction network and their rates as in Goryachev
and Pokhilko (2006); Cardelli et al. (2009); Kahramanoğulları and Lynch (2013).

Figure 4: Left: Example simulation plot of the network in Figure 3. The initial
numbers of the species are R0 = 1000, E0 = 776, and A0 = 1. Right: Example
simulation plot of the network obtained by reducing the network in Figure 3 with
respect to the dominant fluxes. This network consists of the reactions 3, 5, 6, 11,
13, 16, 20, and 21. The initial numbers are set to the steady-state values of the
left-hand-side simulation with the complete network.

in Kahramanoğulları and Lynch (2013). When we run stochastic simulations at
this regime we obtain time-series plots as on the left-hand-side of Figure 4.

The stochastic flux analysis can be applied on any arbitrary time interval that
can be a transient period as well as steady state. However, in accordance with
the analysis in Goryachev and Pokhilko (2006), we analyzed the steady state
fluxes of this model for the time interval between 2.0 and 2.5 as this interval
provides a sufficient number of events in accordance with the convergence time
of the simulation. As with time-series analysis, flux analysis in stochastic sim-
ulations needs to be repeated on multiple simulations in order to increase the
confidence levels. While some systems require a greater number of simulations,
others converge quickly to their steady state as it is the case for the network here.

146

Figure 5: The flux configuration for the time interval from 2 to 2.5 and the
structure obtained from it by filtering the fluxes that are weaker than 10% of the
average flux, i.e., the flux configuration after cut-off at 0.1.

Nevertheless, due to the observations being made on stochastic simulations, to
perform a statistical analysis on a small sample, we have repeated our analysis on
a set of 25 simulations to verify our results, where we repeated the observations
discussed below. This statistical analysis is discussed in Kahramanoğulları and
Lynch (2013).

A representative flux configuration with this network is depicted on the left-
hand-side of Figure 5. On the set of 25 simulations, we reduce the flux configu-
rations to dominant fluxes that account for most of the dynamical behavior. For
this purpose, we apply a cut-off value that is computed in terms of the average
flux of the system at this interval.

Definition 1. Let F [t, t′] denote a flux configuration for a time interval between
t and t′, with the edges 〈j1, j′1, s1, n1〉, . . . , 〈j`, j′`, s`, n`〉, where, for each i, we have
that ji, j

′
i are nodes, si is a species name, and ni is the count of that species on the

edge. The average flux is σ = (
∑`

k=1 nk)/` . For an x ∈ R+, the flux after cut-off
at x, denoted by F [t, t′](x), is the restriction of F [t, t′] to those edges 〈j, j′, s, n〉
satisfying n > xσ.

The flux configuration displays a quantification of the flow of species instances
between reactions during a steady state interval of a simulation. As these flows
determine the dynamic behavior of the simulation, the stronger fluxes have a
greater influence in determining the emerging behavior in comparison to the
weaker ones. By applying the definition above to the flux configuration and
removing the weaker fluxes from the flux configuration, we obtain a picture of

147

the dominant behavior of the system that is in accordance with the applied cut
off value. This is because only a subset of the fluxes of the original network is
significant, while the remaining fluxes can have negligible values in delivering the
behavior that is, for example, observed at the time-series plot. In this setting, ob-
taining a convergence with a smaller cut-off value can be considered more reliable
in terms of singling out the dominant behavior. The flux configuration obtained
by applying the cut-off value of 0.1 on the set of 25 simulations is depicted on
the right-hand-side of Figure 5.

The fluxes on the right-hand-side of Figure 5 are those that play a dominant
role in tuning the behavior of the network during simulation. This is because
these fluxes have a greater weight in comparison to the others, and they thus
shift the simulation resources, thereby causing a shift in the time series of the
simulation. In order to observe this, we reduce the network in Figure 3 to a
network that consists of the reactions that participate in the flux configuration
on the right-hand-side of Figure 5. These are the reactions 3, 5, 6, 11, 13, 16, 20,
and 21. The simulations with the reduced system do not only agree in terms of
their flux configurations, but also their time series behaviors are in agreement as
depicted in Figure 4.

As illustrated in the network above, we relate different models according to a
comparison of their flux configurations in terms of graph isomorphisms, whereby
we impose the condition that the same cut-off value is applied to the compared
flux configurations. This way, the cut-off value employed is used as a metric that
quantifies the similarity between the compared models.

Definition 2. Given two flux configurations, F [t, t′] and F ′[t′′, t′′′], we say that
they are flux equivalent at x, denoted with F [t, t′] ≈x F ′[t′′, t′′′], if and only if
F [t, t′](x) and F ′[t′′, t′′′](x) are isomorphic graphs.

Proposition 3. Flux equivalence is an equivalence relation.

We define our metric in terms of cut-off values, which provide quantifications
of the similarity of the models with respect to their flux configurations.

Definition 4. The distance between two configurations F [t, t′] and F ′[t′′, t′′′] is
the smallest r such that F [t, t′] ≈r F ′[t′′, t′′′].

Equivalence by Filters and Maps

The network that we have used above illustrates how flux analysis can be used
to identify dominant reactions of a network. This way, we can identify a sub-
network of the original network that is capable of producing a similar behavior

148

Approximate Majority Cell Cycle

1 : B +X → X +X

2 : B + Y → Y + Y

3 : X + Y → X +B

4 : X + Y → B + Y

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 : B +R→ X +R

2 : B + Z → Y + Z

3 : P +X → Q+X

4 : Q+ T → P + T

5 : Q+X → R +X

6 : R + T → Q+ T

9 : W + S → U + S

7 : Y +R→ B +R

8 : U + S → Z + S

10 : U +X → W +X

11 : X + Z → B + Z

12 : Z +X → U +X

Figure 6: Graphical representation of the approximate majority network (left)
and the cell cycle network (right), and their lists of reactions.

as the original one. We now show that we can compare complex chemical reac-
tion networks with different structures according to their capability to emulate
each other. For this purpose, we use the two chemical reaction networks in Fig-
ure 6, that is, the approximate majority network (AM) and cell cycle network
(CC). These two systems (and intermediate systems) were previously compared
in Cardelli and Csikász-Nagy (2012) based on stochastic and deterministic simu-
lations, and probabilistic model checking with the conclusion that they emulate
each other. Another approach that uses morphisms, however based on the static
structures of the models, is proposed in Cardelli (2014).

Here, we use the ideas above together with maps that collapse larger flux
configurations into smaller ones. In these systems X and Y compete against
each other for domination. As an example, we compare the networks AM and
CC to show the emulation of the more complex CC network by the simpler AM
network. Example simulation plots with these networks that illustrate their time
series behavior for X, Y , and B are depicted in Figure 7, where X dominates.
For the comparison of these networks, we use two different approaches, namely
equivalence by filters and equivalence by maps.

Equivalence by Filters. We introduce a mechanism that filters out the
flux of the enzymatic species instances in all the reactions in both networks. For

149

Figure 7: Example simulation plots with the approximate majority network (left)
and the cell cycle network (right) for the cases, where X dominates.

Figure 8: Example flux configuration with the approximate majority network
(left) and the cell cycle network (right) for the cases, where X dominates. In
these simulations, only non-enzymatic fluxes are observed. The nodes are the
reactions of both networks, and 0 denotes the species at the initial state.

example, for the reaction 1 of the AM network, we only consider the reactant
B for the analysis, while disregarding the reactant X and keeping track of only
one of the X in the product. In other words, in the flux configurations, we only
monitor the species instances that get transformed by the reactions. For the
species X, Y , and B, these result in the flux-equivalent configurations depicted
in Figure 8, where the left-hand-side graph is AM and the right-hand-side is CC.

Equivalence by Maps. We consider all the species in all reactions, and
in order to compare AM and CC, we use maps on CC that merge reactions and
aggregate network species. This is because the flux configuration graph of CC
contains 12 reactions and 11 species in contrast to 4 reactions and 3 species in
AM. A flux configuration of CC is depicted in the Appendix in Figure 10. A flux
configuration of AM is depicted as the large graph in Figure 9, where the nodes A,

150

B, C, and D denote the reactions 2, 3, 4, and 1 of the AM network, respectively.
The black, red, and blue edges are the fluxes of X, Y , and B, respectively.

In order to relate the two networks, we thus employ a map that merges the
fluxes of the reactions and aggregates the species of the CC in Figure 10. As
a first step for this, we use the observation that both of the systems employ
two non-linear positive feedback loops. In the cell cycle network, X contributes
as an enzyme by reactions 10 and 12 to the inhibition of Z, which inhibits the
transformation of X to B. Similarly, the reactions 3 and 5 contribute to the
production of R, which contributes to the production of X by participating in
the reactions 1 and 7. By relying on these observations, we are faced with multiple
options for merging the reactions, however not all of these merges can provide a
good match between the compared graphs. We thus use the information on the
feedback loops together with the structure of the flux configuration, and merge
the reactions 1, 3, and 5 into a single reaction; and we merge the reactions 7,
10, and 12 to another. At the second positive feedback loop, the reactions 4, 6,
8, 9, and 11 contribute to the production of Y . By merging these reactions, we
obtain the node C in Figure 9. In the graph, the blue edges denote the B fluxes,
whereas the black and red edges denote X and Y fluxes together with the fluxes
of others that are involved in the nodes.

The resulting merged configuration is identical to the configuration of the AM
network in Figure 9, that is, the large graph in Figure 9 is a flux graph of both
AM and CC. This is because, as a result of merging the fluxes in Figure 10 as
described above,

– the reaction nodes 7, 10 and 12 become node B in Figure 9;
– the reaction nodes 1, 3 and 5 become node D in Figure 9;
– the reaction nodes 4, 6, 8, 9 and 11 become node C in Figure 9.

All the species that are different from X,Y and B in Figure 10 are put in an X or
a Y edge in Figure 9. This is because between two reactions, there is never an X
and Y flux together, so all the fluxes that are different from X and Y in Figure
10 are considered auxiliary fluxes to X and Y . As a result of this reasoning,
we map the components of the cell cycle network that participate in a complex
mechanism to a simpler component in the AM network in a way that takes into
account the feedback mechanisms that are shared by these two networks.

Discussion

Our notion of equivalence is based on flow of resources between reactions during
simulations. The stochastic nature of the approach makes it plausible for the

151

Figure 9: A complete flux configuration of the approximate majority network,
which is equivalent to the configuration obtained by merging the reaction nodes
and edges of the complete cell cycle flux configuration. A, B, C, and D are the
graphs of the merged fluxes in the complete cell cycle network. 0 denotes the
species at the initial state. Here, for example, the fluxes in box C are the ones
due to the reactions 4, 6, 8, 9, and 11, which contribute to the conversion of X
to B in a positive feed-back loop of the cell cycle network. These reactions are
merged into a single node C in the main graph. As the node C of the main graph
also denotes the reaction 4 of the approximate majority network that converts
X to B, these maps imply that the reaction 4 of approximate majority network
emulates the reactions 4, 6, 8, 9, and 11 in box C. See the text for further details.

models, where the quantities of certain species are arbitrarily small or the time
intervals of interest are not necessarily steady state intervals.

The different graphs that are obtained prior to a flux configuration are the

152

phases that correspond to the intermediate steps in obtaining event structures
from transition system trajectories Kahramanoğulları (2009). In this respect, the
event structures approach provides a quantitative means to observe the causality
within the system dynamics. Moreover, the different kinds of graphs that we
use while computing the flux configurations expose different aspects of the same
simulation, and they can thus be of independent interest.

We have employed a cut-off function that is based on the average fluxes of
the system. However, different notions of cut-off can be more appropriate for
different systems, which remains a topic of future investigation. Other questions
concern investigations of a statistical nature: as a simulation with a certain initial
state has infinitely many different time-series, it has infinitely many simulation
trajectories. Future research can provide estimates to reach a desired level of
confidence.

References

L. Cardelli. Morphisms of reaction networks that couple structure to function.
2014.

L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate
majority. Scientific Reports, Nature Publishing Group, 2(656), 2012.

L. Cardelli, E. Caron, P. Gardner, O. Kahramanoğulları, and A. Phillips. A
process model of Rho GTP-binding proteins. Theoretical Computer Science,
410/33-34:3166–3185, 2009.

A. B. Goryachev and A. V. Pokhilko. Computational model explains high ac-
tivity and rapid cycling of Rho GTPases within protein complexes. PLOS
Computational Biology, 2:1511–1521, 2006.

O. Kahramanoğulları. On linear logic planning and concurrency. Information
and Computation, 207:1229–1258, 2009.

O. Kahramanoğulları and J. Lynch. Stochastic flux equivalence. Technical Report
at The Microsoft Research - University of Trento COSBI, PP-0179-2011, 2011.

O. Kahramanoğulları and J. Lynch. Stochastic flux analysis of chemical reaction
networks. BMC Systems Biology, 7(133), 2013.

O. Kahramanoğulları. Nondeterminism and Language Design in Deep Inference.
PhD thesis, TU Dresden, 2006.

153

Appendix A

Figure 10: A flux configuration of the cell cycle model.

154

Challenges in automated verification and
synthesis for molecular programming

Marta Kwiatkowska
Department of Computer Science, University of Oxford, UK

marta.kwiatkowska@cs.ox.ac.uk

Abstract

Molecular programming is concerned with building synthetic nanoscale
devices from molecules, which can be programmed to autonomously per-
form a specific task. Several artifacts have been demonstrated experi-
mentally, including DNA circuits that can compute a logic formula and
molecular robots that can transport cargo. In view of their natural inter-
face to biological components, many potential applications are envisaged,
e.g. point-of-care diagnostics and targeted delivery of drugs. However,
the inherent complexity of the resulting biochemical systems makes the
manual process of designing such devices error-prone, requiring automated
design support methodologies, analogous to design automation tools for
digital systems. This paper gives an overview of the role that probabilis-
tic modelling and verification techniques can play in designing, analysing,
debugging and synthesising programmable molecular devices, and outlines
the challenges in achieving automated verification and synthesis software
technologies in this setting.

1 Introduction

Recently, significant advances have been made in the experimental design and
engineering of synthetic, biomolecular systems, such as those built from DNA,
RNA or enzymes. The interest in such devices stems from the fact that they
are autonomous – they can interact with the biochemical environment, process
information, make decisions and act on them – and programmable, that is, they
can be systematically configured to perform specific computational or mechanical
tasks. The computational power of such systems has been shown to be equivalent
to Turing computability (Soloveichik et al. 2010), albeit the computation itself
proceeds through molecules acting as inputs, interacting with each other and

155

producing product molecules. Experimental advances are fast accelerating, with
examples that have been demonstrated including diagnostic biosensors (Jung and
Ellington 2014), logic circuits built from DNA (Seelig et al. 2006; Qian and Win-
free 2011), DNA-only controllers (Chen et al. 2013) and molecular robots that
can deliver cargo (Yurke et al. 2000; Yin et al. 2004). Since such systems can
perform information processing within living cells, their use is envisaged in health-
care applications, where safety is paramount. The fast-growing field of molecular
programming is concerned with developing techniques to design, analyse and re-
alise the computational potential of such programmable molecular devices. In
conjunction with the DNA self-assembly capabilities, which has enabled a wide
range of structure-forming technologies at the nanoscale (Rothemund 2006), the
future potential of these developments is tremendous, particularly for smart ther-
apeutics, point-of-care diagnostics and synthetic biology.

Device design is supported by electronic design automation (EDA) environ-
ments, which provides methodologies and tools to automate the design, verifica-
tion, testing and synthesis of electronic systems from a high-level description. The
software level, at which design is applied, is separate from the hardware level, e.g.
fabrication, and can involve multiple levels of abstractions. In the semiconductor
industry, design automation has established itself as a key technology to tackle
the complexity of the designs, improve design quality, and increase reuse. In the
1990s, VLSI design was revolutionised by formal verification, and in particular
automated methods such as model checking, now a key component of modern
EDA tools, which ensure device safety and reliability, and significantly reduce
development costs.

Molecular programming aims to devise programming languages, techniques
and software tools to achieve automatic compilation of a molecular system down
to the set of components that can be implemented physically at the molecular
level and executed. This is analogous to the motivation for hardware description
languages, e.g. VHDL, which are refined automatically, through a series of in-
termediate abstractions, down to a detailed physical implementation in silicon.
This paper puts forward the view that formal verification will play a similar role
in design automation for molecular programming. However, the latter brings
with it unique challenges: the necessity to consider inherent stochasticity of the
underlying molecular interactions, the need to state requirements in quantitative
form, and the importance to consider control of molecular systems, and not just
programming in the conventional sense. Therefore, probabilistic modelling and
automated, quantitative verification techniques (Kwiatkowska 2007; Kwiatkowska
et al. 2007, 2011), such as those already developed for systems biology (Regev
et al. 2001; Heath et al. 2008; Ciocchetta and Hillston 2009; Kwiatkowska et al.
2010) in addition to tools tailored to DNA computing (Phillips and Cardelli 2009;

156

Aubert et al. 2014), will form a key component of design automation for molecular
programming.

The paper begins by giving a brief introduction to molecular programming,
illustrated by a simple example of DNA biosensing, and then reviews the cur-
rent status of formal modelling and verification technologies for molecular pro-
gramming, outlining the research challenges. More detail about application of
automated, quantitative verification in DNA computing can be found in the tu-
torial paper (Kwiatkowska and Thachuk 2014) and elsewhere (Lakin et al. 2012;
Dannenberg et al. 2013b,a, 2014).

2 Molecular programming

The term molecular programming (Hagiya 2000; Winfree 2008) refers to the ap-
plication of computational concepts and design methods to the field of nanotech-
nology, and specifically biochemical reaction systems. The idea is to design bio-
chemical networks that can process information and are programmable, that is,
can be configured to perform a given task, be it computation of a logic formula
or transporting a cargo to a specified target. Chemical reaction networks (CRNs)
provide a canonical notation for describing biochemical systems, based on well
understood stochastic or kinetic laws, and the computational and nanorobotic
mechanisms that they can implement. A molecular program is thus a series of
reactions, for example X+Y → Z, meaning that inputs (specially designed DNA
strands) X and Y are transformed to produce strand Z. An example is the Ap-
proximate Majority program (Angluin et al. 2008), where, starting with given
initial numbers of molecules X and Y placed in solution, with high probability
the network will converge to a state that only contains the molecules that were
initially in majority.

In order to implement molecular programs, DNA technologies have been de-
veloped, of which DNA strand displacement (DSD) (Zhang et al. 2007; Zhang
and Seelig 2011) is particularly popular, since it uses only DNA molecules, is
enzyme-free, and easy to synthesize chemically. Any CRN can be implemented
using the limited set of DSD reactions (Soloveichik et al. 2010); in fact, the DSD
realisation of Approximate Majority was experimentally demonstrated in Chen
et al. (2013) and related to the cell cycle in Cardelli and Csikász-Nagy (2012).
DSD can be used to implement logic gates, where inputs and outputs are (single)
DNA strands. An example is the transducer gate designed by Cardelli (2010)
and the diagnostic biosensors of Jung and Ellington (2014).

The promise of DNA systems is that they can interact with biological com-
ponents in their local environment, including within living cells. An important
application of such systems is therefore biosensing, a decision process that aims to

157

Figure 1: A DNA walker track that acts as a biosensor, shown here with six
blockades.

detect various input biomarkers in an environment, such as strands of messenger
RNA within a cell, and take action based on the detected input. We illustrate
molecular programming applications with an example of a biosensor based on
DNA walker circuits, which are realised using DNA strand displacement technol-
ogy. DNA walkers (Wickham et al. 2011) can traverse tracks of DNA strands
(anchorages) that are tethered to a surface, typically DNA origami tile (Rothe-
mund 2006), taking directions at junctions that fork into two tracks, respectively
labelled with X and ¬X. When the system is prepared, a self-consistent set of
unblocking strands is added to unblock X or ¬X but not both, ensuring that
the walker is directed towards the target. Alternatively, the walker senses the
strands that guide it towards the target, indicating detection and readiness to
take action. The tracks can also join, and in general this type of DNA walker
can be represented as a planar circuit that can compute an arbitrary Boolean
function (Dannenberg et al. 2013b, 2014).

Example 1. We consider a biosensor that detects the presence of DNA strands
X and Y , and delivers cargo to the end node. Figure 1 shows the walker circuit,
where the tracks labelled X and ¬Y are unblocked, meaning Y is absent. At the
junction, the walker selects or senses the unblocked track.

The stepping process is illustrated in Figure 2. The walker strand carries
a load (Q) that will quench fluorophores (F) that are attached to absorbing
anchorages (1). It starts on the initial anchorage and, when a nicking enzyme (E)
is present (2), traverses the circuit until it reaches an absorbing anchorage, which
prevents further stepping. When the nicking enzyme is added to the solution, it
binds to the walker-anchorage complex and cuts the anchorage into two strands.
The strand formed from the tip is too short to remain hybridized to the walker,
and melts away into solution. This exposes the top six nucleotides of the walker,

158

Figure 2: DNA walker circuit that can sense incoming strands (the domain
coloured green).

which then attach to the next anchorage (3). In a displacement reaction, the
walker becomes completely attached to the new anchorage (4). The reaction is
energetically favourable, as the walker re-forms the six base-pairs with the intact
anchorage that were lost after the nicking.

Repeating this process, the walker arrives at the junction. The walker contin-
ues down the track that was unblocked due to the presence of the strand being
sensed (5), eventually quenching the fluorophore (F) on reaching the final node.
The change in fluorescence is easily detectable, indicating that the presence of a
certain configuration of molecules has been detected.

The biosensing example illustrates well the functionality that design automa-
tion for molecular programming must support. Firstly, we need modelling frame-
works that can provide rigorous foundations to the mechanisms described by
populations of molecules interacting through biochemical reactions, both in well-
mixed solution, as well as localised, e.g., tethered to a surface. These must be
able to capture molecular motion and structure-forming, in addition to informa-
tion processing and decision making. Secondly, we need programming languages
tailored to molecular programming and programming abstractions, to provide the
layers through which molecular programs are transformed into the actual phys-
ical realisations. Thirdly, in view of the stochasticity, quantitative specifications
are needed, which the designed molecular programs must meet, such as ensuring
that “the probability of incorrect detection is tolerably low”, and “the expected
time for the walker to reach the target node is sufficiently fast”. Finally, a broad
range of analysis and synthesis methods is necessary, where the former should
focus on predictability, correctness and resource usage, and the latter will need
to cover automated synthesis of both the mechanism as well as the layout, as in
DNA walker circuits.

159

3 Design automation for molecular programming

Modelling frameworks. A computational process is typically formalised by
defining a transition system comprising a set of system states and a formal set
of rules that govern the evolution of the system over time. A molecular pro-
gram combines discrete, continuous and stochastic dynamics. The class of mod-
els that naturally captures such behaviours is known as stochastic hybrid sys-
tems. In view of their complexity and intractability, the modelling frameworks
for stochastic hybrid systems resort to discretisation or approximation, which,
under suitably strong conditions, can reduce the system model to, e.g., a finite-
state Markov chain variant or a coupled system of linear equations, which are
all tractable. When in solution, molecular networks, such as DNA strand dis-
placement networks above, induce discrete stochastic dynamics; if spatiality is
included, however, the continuous dimension must also be integrated to model
motion in the physical space. Another important requirement is the need to aug-
ment models with quantitative features specific to molecular programming, e.g.,
thermodynamics, kinetics and resource usage.

There are two established frameworks for modelling molecular reactions in
solution, the continuous deterministic approach and the discrete stochastic ap-
proach (Kurtz 1972; Gillespie 1977; McAdams and Arkin 1997). In the deter-
ministic approach, one approximates the number of molecules by a continuous
function that represents the time-dependence of the molecular concentration and
evolves according to differential equations (ODEs) based on mass action kinetics.
The ODE approach is suitable for modelling averaged behaviour and assumes
large numbers of molecules. The discrete stochastic framework, on the other
hand, models the stochastic evolution of populations of molecules. Reactions are
discrete, stochastic events governed by rates that are typically assumed to be de-
pendent only on the number of molecules: the system is conveniently represented
as a continuous-time Markov chain (CTMC). This approach is more accurate in
cases where the number of molecules is small and the system behaviour becomes
non-continuous. It is also appropriate when it is necessary to take account of ab-
stract spatial information, such as track layout in the case of molecular walkers.

The modelling challenge: State-based abstractions of molecular programs have
the potential to enable analysis of correctness of the computation performed by
the molecular program, for example deadlock, presence or absence of a given
strand, or termination. The key challenge is scalability, which can be improved
by identifying suitable model reductions, for example based on bisimulation quo-
tients, symmetry reductions or symbolic techniques, or compositional theories.
Another difficulty is the need to integrate the discrete, continuous and stochastic
dynamics within a tractable modelling framework, in order to model molecular
robotic systems and origami folding.

160

Languages for molecular programming. A number of programming lan-
guages exist that are specifically tailored to DNA computation, for example Visual
DSD (Phillips and Cardelli 2009), from which CTMC models are automatically
generated; Caltech’s Seesaw Compiler, which accepts descriptions of logic circuits
and outputs DNA sequences; and DACCAD (DNA Artificial Circuits Computer-
Assisted Design) (Aubert et al. 2014), which outputs reaction networks in ODE
semantics. The tools also output SBML format for further processing. One
advantage of textual design descriptions is their flexibility and ease of modifi-
cation, with the view to enable design reusability. Another advantage is that,
as for conventional circuit designs, a range of analysis techniques are available
to check for correctness of the designs, in addition to specialised properties of
DNA systems such as sequencing thermodynamic properties, e.g. NUPACK, and
structural descriptions for origami designs, as supported by CadNano. More gen-
erally, a variety of stochastic process algebras supported by software tools, such
as stochastic pi-calculus (Regev et al. 2001) and BioPEPA (Ciocchetta and Hill-
ston 2009), are capable of modelling molecular networks. Systems biology tools
such as COPASI (Hoops et al. 2006) are also often applicable.

The language challenge: Though existing process-algebraic languages have
proved useful for describing complex molecular programs, much more effort is
needed to design high-level languages for emerging experimental phenomena, such
as localised hybridization, origami design and molecular motors, to capture as-
pects such as spatiality, geometry and mobility, together with associated rigorous
semantics, equivalence/refinement notions, and compositional behavioural theo-
ries.

Programming abstractions for design automation. Design automation
tools implement design flows that compile high-level system descriptions, via in-
termediate languages, down to the physical design. Typically, at the top level,
designs will be given in the form of a Boolean function or component-based de-
signs, and compiled into intermediate notations, such as the CRN level and the
sequence level, before they can be physically realised through nanofabrication.
An example intermediate language is Cardelli’s Strand Algebra (Cardelli 2010),
a stochastic process algebra supported by the DSD tool (Phillips and Cardelli
2009). Designs can be analysed using a variety of techniques at the intermediate
level, in technology neutral fashion. In common with digital designs, molecular
programming languages are modular, and can be built from appropriate bio-
components, which are themselves abstractions of certain biological mechanisms,
for example molecular motors, local hybridization or self-assembly. Composition-
ality at the design level is therefore a desirable feature of the abstractions, both
at the level of syntax, as well as semantics, which is harder to achieve in presence

161

of stochasticity and hybrid dynamics.
The abstraction challenge: Despite progress made towards modeling well-

mixed molecular systems, for example using stochastic pi-calculus, there is an
urgent need to develop quantitative theories for the different levels of abstraction
hierarchy, in order to support the design of predictable molecular systems. In
particular, we need to develop compiler technology for molecular programming,
including design and implementation of intermediate language abstractions, and
efficient algorithms for computing approximate abstractions to a specified level
of precision.

Specification notations. Since molecular programs are naturally characterised
using quantities, for example kinetics, thermodynamics and stochasticity, the
specifications that these programs must meet have to reflect these characteristics.
For example, a biosensor must detect the given molecule with sufficiently high
probability, and a molecular walker will need to guarantee delivery in a specified
time interval, while tolerating a predefined failure rate. Stochastic and real-time
temporal logics, for example CSL (Baier et al. 2003; Kwiatkowska et al. 2007),
can be used to express many such properties for CTMC models, and logics such
as MTL and STL for hybrid models. Conventional temporal logic notations also
have their uses; for example, we may wish to require that a molecular program
reaches some final state. Furthermore, characteristics typical for device engineer-
ing, such as safety, reliability and performance, also apply here. For example, for
the DNA walker, which may fail to step correctly on to the next anchorage and
instead jump to the following one, we may express the probability of finishing
correctly at time T by the CSL formula P=?[F

[T,T] finished-correct].
The specification challenge: Designs must meet specifications that are set

in advance. There has been little work concerning quantitative specification for-
malisms that capture aspects specific to the molecular programming setting, such
as kinetic energy and thermodynamics, as well as behavioural specifications for
out-of-equilibrium systems, e.g. oscillations. Devising suitable logic formalisms
to support these more expressive specifications is desirable.

Analysis methods. A broad range of analysis methods exist to exercise mod-
els of molecular programs, which are dependent on the modelling framework used.
They include techniques similar to those for digital systems, for example equiv-
alence checking and substitutivity for components, and must extend to capture
specialised features, to mention support for DNA self-assembly and structure
forming, where thermodynamics and sequence design play a part. For ODE or
hybrid models of molecular programs, analytical methods or numerical simula-
tion can be used to plot average quantities, such as population sizes, over time.

162

For discrete stochastic models, stochastic simulation, for example Gillespie’s algo-
rithm, generates individual trajectories by applying Monte Carlo techniques. In
contrast, automated verification via model checking is able to establish whether a
given temporal logic property – e.g., can the system reach a terminal (deadlock)
state? – holds in the model. For discrete stochastic models, we apply auto-
mated, quantitative verification (also known as probabilistic or stochastic model
checking) (Kwiatkowska et al. 2007), which accepts a model description and a
property specified as a probabilistic temporal logic formula, and computes the
probability that the property is satisfied in the model, or expected cost/reward.
Compared with simulation, such methods are exhaustive and can offer guaran-
tees on reliability or performance. The computation can be exact, involving
numerical algorithms based on uniformisation (Baier et al. 2003) or fast-adaptive
uniformisation (Dannenberg et al. 2013a) (for transient probability), or approxi-
mate, based on probability estimation of the proportion of simulated trajectories
that satisfy the property (Younes et al. 2006) (referred to as statistical model
checking). These techniques have been applied to analyse molecular signalling
networks (Heath et al. 2008) and have since been adapted to molecular programs.
For example, an undesirable deadlock state was automatically discovered in the
Cardelli transducer gate design modelled in Visual DSD, and the probability of
reaching deadlock obtained using the PRISM (Kwiatkowska et al. 2011) proba-
bilistic model checker as a back-end (Lakin et al. 2012). In Dannenberg et al.
(2013b,a, 2014), DNA walker systems were subjected to comprehensive analysis
of their reliability and performance; a CTMC model was developed based on ex-
perimental data (Wickham et al. 2011) and analysed with PRISM. The results of
the analysis by PRISM can be used by the designer to improve the design of the
circuit.

Example 2. We illustrate the role of automated, quantitative verification tech-
niques in molecular programming through assessing the reliability and perfor-
mance of a biosensor implemented using DNA walker circuits (Dannenberg et al.
2013b, 2014). Experiments (Wickham et al. 2011) demonstrate that the walker
can traverse a track with one or more omitted anchorages, which shows that the
walker is capable of stepping across distances that are double or triple the nor-
mal anchorage-to-anchorage distance. This has been incorporated in the model,
resulting in the walker being able to jump over blockades, or even reverse direc-
tion, which can prevent it from reaching the intended absorbing anchorage and
quenching the fluorophore. The walker may also deadlock before reaching an
absorbing anchorage, which happens when no uncut anchorages are within reach.
This affects the safety of biosensors implemented using DNA walkers.

The trade-off between reliability and deadlock as a function of blockade length
is depicted in Fig. 3, obtained by model checking the model in Fig. 1 against the

163

CSL property P=?[F
[T,T] end-node] that queries the probability of the walker

being either finished or deadlocked at time T , where T is 8 mins multiplied by
circuit depth. Note that the probability that the walker arrives at the incorrect
end-node drops off, while the probability of deadlock increases with the depth of
the circuit.

Figure 3: Probability of reaching an absorbing anchorage or deadlock by time T
(8 mins times circuit depth) for the walker circuit in Fig. 1.

The analysis challenge: Stochastic simulation methods are known to be com-
putationally intensive and their performance is poor for molecular systems that
we wish to design and analyse today. We need much more efficient simulation
techniques, for example those based on multi-scale simulation which have shown
promise. Formal verification techniques, such as automated verification via model
checking or interactive theorem proving, are able to establish, via a systematic
exploration of the model or mathematical proof, the correctness of a molecu-
lar program. Their limitation is the size of the state-space of the model that
can be handled, and therefore scalable, quantitative verification techniques are a
major goal of this research. Promising techniques include SAT/SMT methods,
abstraction-refinement schemes and compositional proof methods. Since the mod-
els of molecular programs typically include quantitative and possibly continuous
aspects, for example stochasticity and energy, we ultimately need the analysis
methods to extend to the full class of stochastic hybrid systems. To facilitate
their analysis one must apply abstractions and (numerical) approximations. This
raises the question of the level of precision, including accuracy and error bounds,
that the analysis method can inherently guarantee, in turn impacting the pre-
dictability of the molecular program’s behavior.

164

Synthesis methods. In addition to being able to perform verification of molec-
ular programs against requirements, an important question is whether it is possi-
ble, given a specification, to automatically synthesize a program that is guaran-
teed to satisfy the specification. This approach would ensure correct-by-construction
designs, and is in its infancy, particularly regarding quantitative synthesis. Tech-
niques developed in systems biology to infer models from experimental data are
naturally applicable here. For example, parameter synthesis (or estimation) can
be used to fit the kinetic rates in a molecular program to observations (Hoops
et al. 2006), or even find the optimal values of parameters to satisfy a given quan-
titative formula for stochastic models (Brim et al. 2013). One example based on
the DNA walker circuits is finding the range of walker failure rate parameters so
that a specified reliability of the design can be guaranteed. More generally, for
a given (quantitative) specification, synthesis methods can be used to automati-
cally configure a system from components; to synthesise a program (mechanism)
that guarantees the satisfaction of the property; or even to evolve such as pro-
gram, using techniques from evolutionary computation or genetic programming.
For nanorobotic systems, a natural question is whether we can synthesise pro-
grammable controllers that ensure the safety of the molecular device. Similarly to
digital systems, synthesis algorithms are also necessary to support and optimise
the structural designs, including 2D/3D origami structures and the geometric
layout of DNA walker circuits.

The synthesis challenge: This topic has been little researched in the context
of quantitative or hybrid models, and its complexity and intractability pose a
huge challenge. Promising technique might include template-based synthesis of
mechanisms, and developing controller synthesis methods, including from multi-
objective specifications.

Integration. A major challenge is to integrate all abstraction levels (from ther-
modynamics, to sequence, to CRNs), and to achieve fully automatic compilation
from high-level specifications to physical structures, with analysis enabled at each
level and connected across levels. This can be achieved by relying on modular
designs and substitutivity of component specifications for their implementations.
The compositional design methodologies and CAD tools that result from this
effort will support effective processes to engineer systems from independently
specified bio-components.

The integration challenge: Once the integrated CAD tools have been devel-
oped, their usefulness must be evaluated on real molecular programs and synthetic
biology designs. Criteria for success include the rate of take up of the technolo-
gies, improvement in scale and complexity of the designs, the efficiency of software
tools, the accuracy of predictions for quantitative aspects, and the quality of the

165

synthesised designs.

4 Conclusions

This paper has given a brief overview of the emerging field of molecular program-
ming, discussing existing techniques to support the design process and outlining
future research challenges. Molecular programming has the potential to revo-
lutionise personalised medicine and synthetic biology, with many applications
envisaged, for example programmable intraveneous systems to deliver drugs that
target specific molecules. Since safety is a paramount concern when deploying
such devices, we have put forward the view that quantitative, automated ver-
ification techniques will constitute a key component of design automation for
molecular programming. This can only be achieved through collaboration be-
tween experimental scientists, engineers and computer scientists.

Acknowledgments. The author is supported by the ERC Advanced Grant
VERIWARE and would like to acknowledge participants of the NSF workshop
“Advances in Molecular Programming and Computing: Toward Chemistry as a
New Information Technology” held in 2013 in Copenhangen for helpful discus-
sions.

References

D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008.

N. Aubert, C. Mosca, T. Fujii, M. Hagiya, and Y. Rondelez. Computer-assisted
design for scaling up systems based on dna reaction networks. Journal of The
Royal Society Interface, 11(93):20131167, 2014.

C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineer-
ing, 29:524–541, 2003.

L. Brim, M. Ceska, S. Drazan, and D. Safránek. Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In N. Shary-
gina and H. Veith, editors, Proc. CAV, volume 8044 of Lecture Notes in Com-
puter Science, pages 107–123. Springer, 2013.

L. Cardelli. Two-domain DNA strand displacement. Developments in Computa-
tional Models, 26:47–61, 2010.

166

L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate
majority. Nature Scientific Reports, 2, 2012.

Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik,
and G. Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and
analysis of biological systems. Theoretical Computer Science, 410(33-34):3065–
3084, 2009.

F. Dannenberg, E. M. Hahn, and M. Kwiatkowska. Computing cumulative re-
wards using fast adaptive uniformisation. In A. Gupta and T. Henzinger,
editors, Proc. 11th Conference on Computational Methods in Systems Biology
(CMSB’13), volume 8130 of LNCS, pages 33–49. Springer, 2013a.

F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. DNA walker
circuits: computational potential, design, and verification. In D. Soloveichik
and B. Yurke, editors, Proc. 19th International Conference on DNA Computing
and Molecular Programming (DNA 19), volume 8141 of LNCS, pages 31–45.
Springer, 2013b.

F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. DNA walker
circuits: computational potential, design, and verification. Natural Computing,
2014. To appear.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

M. Hagiya. From molecular computing to molecular programming. In A. Condon
and G. Rozenberg, editors, DNA Computing, volume 2054 of Lecture Notes in
Computer Science, pages 89–102. Springer, 2000.

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Proba-
bilistic model checking of complex biological pathways. Theoretical Computer
Science, 319(3):239–257, 2008.

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. COPASI - a COmplex PAthway SImulator. Bioin-
formatics, 22(24):3067–3074, 2006.

C. Jung and A. D. Ellington. Diagnostic applications of nucleic acid circuits.
Accounts of Chemical Research, 2014. To appear.

167

T. G. Kurtz. The relationship between stochastic and deterministic models for
chemical reactions. The Journal of Chemical Physics, 57:2976, 1972.

M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In
Proc. 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 449–458. ACM Press, September 2007.

M. Kwiatkowska and C. Thachuk. Probabilistic model checking for biology. In
Software Safety and Security, NATO Science for Peace and Security Series - D:
Information and Communication Security. IOS Press, 2014. To appear.

M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In
M. Bernardo and J. Hillston, editors, Formal Methods for the Design of
Computer, Communication and Software Systems: Performance Evaluation
(SFM’07), volume 4486 of LNCS (Tutorial Volume), pages 220–270. Springer,
2007.

M. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology, chapter
Probabilistic Model Checking for Systems Biology, pages 31–59. Jones and
Bartlett, 2010.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
CAV’11, volume 6806 of LNCS, pages 585–591. Springer, 2011.

M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design
and analysis of DNA strand displacement devices using probabilistic model
checking. Journal of the Royal Society Interface, 9(72):1470–1485, 2012.

H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Pro-
ceedings of the National Academy of Sciences, 94:814–9, 1997.

A. Phillips and L. Cardelli. A programming language for composable DNA cir-
cuits. Journal of the Royal Society Interface, 2009.

L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332:1196–1201, 2011.

A. Regev, W. Silverman, and E. Y. Shapiro. Representation and simulation of
biochemical processes using the pi-calculus process algebra. In Pacific Sympo-
sium on Biocomputing, pages 459–470, 2001.

P. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440:297–302, 2006.

168

G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314:1585–1588, 2006.

D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for
chemical kinetics. Proceedings of the National Academy of Science, 107(12):
5393–5398, 2010.

S. F. J. Wickham, M. Endo, Y. Katsuda, K. Hidaka, J. Bath, H. Sugiyama,
and A. J. Turberfield. Direct observation of stepwise movement of a synthetic
molecular transporter. Nature Nanotechnology, 6:166–9, 2011.

E. Winfree. Toward molecular programming with DNA. SIGPLAN Not., 43(3):
1–1, Mar. 2008. URL http://doi.acm.org/10.1145/1353536.1346282.

P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif. A unidirectional
DNA walker that moves autonomously along a track. Angewandte Chemie
International Edition, 43:4906–4911, 2004.

H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statisti-
cal probabilistic model checking. International Journal on Software Tools for
Technology Transfer (STTT), 8(3):216–228, 2006.

B. Yurke, A. Turberfield, A. Mills, F. Simmel, and J. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406(6796):605–8, 2000.

D. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand displace-
ment reactions. Nature Chemistry, 3:103–113, 2011.

D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree. Engineering entropy-
driven reactions and networks catalyzed by DNA. Science, 318(5853):1121,
2007.

169

170

Temporal Logic:
The Lesser of Three Evils

Leslie Lamport

Microsoft Research

In the Beginning

Amir Pnueli introduced temporal logic to computer science in 1977 in a paper
presented at FOCS (Pnueli 1977). That paper inspired Susan Owicki to organize
an informal seminar on the subject at Stanford during the 1977–78 academic
year. Temporal logic sounded to me like yet another of the useless formalisms
that computer scientists seemed fond of, but I decided to attend anyway. That
was one of the best decisions I ever made.

Owicki (together with David Gries) and I had independently developed what
is now known as the Owicki-Gries method for proving invariance properties of
concurrent programs (Lamport 1977; Owicki and Gries 1976). I had also devised
a method for proving liveness properties of the form P ;Q, read P leads to
Q, which asserts that if P is true then Q will eventually become true. Written
informally, my proofs were reasonable. However, their formalization was ugly and
complicated.

Owicki and I soon realized that Pnueli’s temporal logic was ideal for formal-
izing liveness proofs. The logic was simple, based on the single operator 2, read
always or henceforth, where 2P asserts that P is true from now on. Its dual 3P ,
defined to equal ¬3¬P , asserts that P is eventually true. My ; operator could
be defined by

P ;Q ≡ 2(P ⇒3Q)

Temporal logic added to my liveness proofs the ability to directly use invariance
properties. The invariance of a formula I means that 2I is true. We could use
this fact to prove liveness properties by applying the proof rule

(I∧P);Q

2I⇒ (P ;Q)

171

This rule was the key to the elegant formalization of liveness proofs. It was
enshrined in the boxes of the proof lattices Owicki and I introduced (Owicki and
Lamport 1982).

Inadequate and Evil

In the late 1970s and early 1980s, I and many of my colleagues started going
beyond the realm of proving that programs satisfied particular properties to try-
ing to write and verify complete specifications. Temporal logic seemed to be
wonderful for the task of specifying a system. A specification would simply be
the conjunction of temporal-logic formulas that asserted properties the system
must satisfy. I believe that the first publication advocating this approach was by
Richard Schwartz and Michael Melliar-Smith (1981).

By the time of that paper’s publication, I had realized that temporal logic
was not all that wonderful. In fact, I was originally an author but had my name
removed because I had become disillusioned with the method. Watching Schwarts
and Melliar-Smith, along with Fritz Vogt, spend days trying to specify a FIFO
queue (a very trivial example) convinced me that the method would never work
on any real example.

Others also realized that there was a problem. Most thought that the source
of the problem lay in the simplicity of Pnueli’s temporal logic. So, they developed
a multitude of new, more complicated logics based on more expressive and more
complicated temporal operators. I was not immune to that temptation (Lamport
1981). However, I eventually realized that the fundamental problem lay in trying
to specify something by a list of properties.

Years of experience have taught me that human beings cannot understand the
consequences of a conjunction of separate properties. As one of many pieces of
evidence, consider multiprocessor memory models. Engineers have often specified
them by a list of properties—for example, in the specifications of the DEC/Compaq
Alpha (Alpha Architecture Committee 1998) and the Intel Itanium (Intel 2002)
memories. Even the people who wrote the specifications did not understand them.
Jim Saxe discovered that the published Alpha memory specification permitted
causal loops, in which a write stores a completely arbitrary value, and that value
is justified by a later read. Using a formal specification that we wrote, my col-
leagues and I discovered errors in the (very simple) examples in an early version
of the Itanium memory specification.

This experience revealed the inadequacy of temporal logic for writing specifi-
cations. However, inadequacy is not evil. I discovered that temporal logic is evil
in the late 1980s when it led my colleague Mart́ın Abadi and me to believe a false
result for several days. Those who know me will not be surprised that I made
such an error, but those who know Mart́ın Abadi will realize that, if he could be

172

confused by temporal logic, then anyone can be.
Temporal logic is evil because it does not satisfy the deduction principle.

In ordinary mathematics, we prove the implication P ⇒Q (P implies Q) by
assuming P is true and proving Q is true. This reasoning is expressed by the
following proof rule, which is called the deduction principle.

P

Q

P ⇒Q

The deduction principle is not valid for temporal logic and other modal logics.

For example, a basic axiom of temporal logic is P
2P , which asserts that, if P is

true, then it is always true. The deduction principle would allow us to deduce
from this the truth of P ⇒2P , a formula asserting that, if P is true initially,
then it is always true—which is not valid in general.

The Greater Evils

The source of temporal logic’s evil is that its formulas have an implicit variable
representing time. The truth of a temporal formula asserts that the formula

is true for all values of this variable. Calling the variable t, a proof rule P
Q

asserts that ∀ t :P implies ∀ t :Q, while the truth of P ⇒Q means ∀ t : (P ⇒Q).
The deduction principle is invalid for temporal logic because we cannot deduce
∀ t : (P ⇒Q) from (∀ t :P)⇒ (∀ t :Q).

One way to eliminate this problem is to make the time variable t explicit.
Every atomic formula becomes an explicit function of t, so P ;Q is written
∀ t : (P (t)⇒∃ s ≥ t :Q(s)). This is exactly what Nissim Francez did in his the-
sis (Francez 1976). The messiness of representing even so simple a formula as
P ;Q indicates why this is a bad idea. In fact, Francez was Pnueli’s student,
and I believe it was his thesis that inspired Pnueli to use temporal logic. Tem-
poral logic is a lesser evil than the complexity introduced by an explicit time
variable.

Another way people have tried to avoid the evil of temporal logic is to use
some form of program logic in its place. Logic is a branch of mathematics, and
one of the most basic operations of mathematics is substituting an expression for
a variable. Substitution is fundamental to computing because it lies at the heart
of refinement, which is also called implementation. In a volume commemorating
the retirement of Willem-Paul de Roever, I illustrated refinement as substitution
by showing how to derive an important hardware protocol from a simple specifi-
cation. The main step essentially consisted of substituting (p + c) mod 2 for the
variable x in the assignment statement x := x + 1 (Lamport 2010).

173

Although evil, temporal logic is still mathematics. One can therefore derive
a temporal-logic description of the protocol from its temporal-logic specification
by substituting (p + c) mod 2 for x. However, literally substituting for x in the
statement x := x + 1 makes no sense. One cannot substitute an expression for
a variable in a program logic with assignment statements. Indeed, I know of no
program logic in which such substitution is possible. A “logic” that does not
permit substitution is a greater evil than temporal logic.

A Necessary and Useful Evil

Although evil, temporal logic is necessary. It is the best way we know to reason
about liveness. Moreover, its ability to describe reactive systems, even if only in
principle, helps us to understand them. The traditional first step in creating a
science is to introduce mathematics. Temporal logic is the natural mathematics
of reactive systems.

We cannot remove the evil from temporal logic, but we can overcome its inad-
equacy for writing specifications. This doesn’t require new temporal operators;
the 2 operator that Pnueli introduced in 1977 is (approximately) enough. The
trick is to extend the base formulas from state predicates to actions, which are
predicates on pairs of states (Lamport 1994). The result is a logic that confines
the evil of temporal logic mainly to the domain for which it is both necessary and
useful: liveness.

References

Alpha Architecture Committee. Alpha Architecture Reference Manual. Digital
Press, Boston, third edition, 1998.

N. Francez. The Specification and Verification of Cyclic (Sequential and Concur-
rent) Programs. PhD thesis, Weizmann Institute of Science, Rehovot, Israel,
June 1976.

Intel. A formal specification of Intel Itanium processor family memory or-
dering. Application Note. http://download.intel.com/design/Itanium/

Downloads/25142901.pdf, Oct. 2002.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Softw. Eng., SE-3(2):125–143, Mar. 1977.

L. Lamport. Timesets—a new method for temporal reasoning about programs. In
D. Kozen, editor, Logics of Programs, volume 131 of Lecture Notes in Computer

174

Science, pages 177–196, Berlin, Heidelberg, New York, May 1981. Springer-
Verlag.

L. Lamport. The temporal logic of actions. ACM Trans. Prog. Lang. Syst., 16
(3):872–923, May 1994.

L. Lamport. Computer science and state machines. In D. Dams, U. Hannemann,
and M. Steffen, editors, Concurrency, Compositionality, and Correctness (Es-
says in Honor of Willem-Paul de Roever), volume 5930 of Lecture Notes in
Computer Science, pages 60–65. Springer, 2010.

S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–284, May 1976.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
ACM Trans. Prog. Lang. Syst., 4(3):455–495, July 1982.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, Nov.
1977.

R. L. Schwartz and P. M. Melliar-Smith. Temporal logic specification of dis-
tributed systems. In Proceedings of the 2nd International Conference on Dis-
tributed Computing Systems, pages 446–454. IEEE Computer Society Press,
Apr. 1981.

175

176

Simple proofs of simple programs in Why3

Jean-Jacques Lévy
State Key Laboratory for Computer Science,

Institute of Software, Chinese Academy of Sciences

& Inria

Abstract

We want simple proofs for proving correctness of simple programs. We
want these proofs to be checked by computer. We also want to use current
interactive or automatic provers and not build new ones. Finally Hoare
logic is a good framework to avoid complex definitions of the operational
semantics of programming languages. In this short note, we take the exam-
ple of merge-sort as expressed in Sedgewick’s book about Algorithms and
demonstrate how to prove its correctness in Why3, a system developed at
Université de Paris-Sud, Cnrs and Inria. There are various computer sys-
tems which integrate proofs and programs, e.g. VCC, Spec#, F?, Frama-C,
etc. Why3 integrates a small imperative language (Why ML) and an ex-
tension of Hoare logic with recursive data types and inductive predicates.
It is interfaced with interactive systems (Coq, Isabelle/HOL, PVS) and au-
tomatic provers (Alt-Ergo, Z3, CVC3, CVC4, E-prover, Gappa, Simplify,
Spass, Yices, etc). Therefore Why3 can also be considered as a fantastic
back-end for other programming environments.

1 Introduction

Formal proofs of program safety are always a big challenge. Usually they comprise
a large number of cases, which make them intractable on paper. Fortunately
there are a few proof-assistants which guarantee the exactness of formal proofs,
but less many mixing programs and proofs. Moreover we believe that these
computer-checked proofs should be readable and simple when we have to prove
simple programs. In this note, we take Hoare logic as the basic formal setting
and we consider a simple Pascal-like imperative programming language (Why
ML) with an ML-like syntax. This logic is first-order with several extensions
to allow recursive data and inductively defined predicates. We hope that both

177

syntax of the programs and logic are self-explainable. If not, the interested reader
is referred to the Why3 web site. We illustrate here the use of the Why3 system
through a proof of the merge-sort program. We consider two versions of it: on
lists and on arrays. The version on arrays is far more complex to prove correct.

2 Mergesort on lists

In Why ML, merge-sort on lists of integers is expressed in figure 1. Its correctness
proof is easy. Pre and post-conditions follow keywords requires and ensures in
the headers of functions. In post-conditions, result represents the value returned
by the function; sorted, permut, (++) are predicates and functions defined in
the theory of polymorphic lists in the Why3 standard library (located at URL
http://why3.lri.fr/stdlib-0.83). Part of this theory is visible in figure 2. The
verification conditions generated by Why3 can be proved automatically with Alt-
Ergo, CVC3 and Eprover 1-6. The longest proof is the one for the post-conditions
of merge (5.02 sec by CVC3) and split (2.05 sec by Eprover). These timings are
obtained on a regular dual-core notebook. The choice of the provers and of
the transformations to apply to goals (splitting conjunctions, inlining function
definitions) is manual, but easy to perform thanks to the Why3 graphic interface.

Moreover the assertions are natural and look minimal. Maybe the most mys-
terious part is the post-condition of merge, which states that the result is a per-
mutation of the concatenation `1 ++ `2 of the parameters `1 and `2 of merge. This
property is needed to prove the sorted post-condition since x1 (or x2) should
be ranked with respect to the result of the recursive calls of merge. In fact it is
sufficient to know that that result only contains elements of the lists `1 (or `2).
Now the proof of permut in the post-condition of merge is totally orthogonal and
is resumed in the second part of figure 1.

3 Mergesort on arrays

We now consider the program as written in Sedgewick and Wayne (2011). In this
version of mergesort there is a trick in organizing the area to merge as a bitonic
sequence, increasing first and decreasing afterwards (although not expressed in
that way in the book). It thus avoids multiple loops or tests as halting conditions
of loops. See the code on figure 3 in Why ML language where the second half of
a is copied into second half of b in reverse order. In pre and post-conditions, new
predicates or functions are used: sorted_sub and permut_sub mean sorted and
permut on subarrays between bounds lo (included) and hi (excluded); (old a)

means the array a before calling the function.

178

l et rec split (l : list int) (∗ f i r s t par t ∗)
= match l with
| Nil −> (Nil , Nil)
| Cons x Nil −> ((Cons x Nil) , Nil)
| Cons x (Cons y l ’) −> l et (xs , ys) = split l ’ in

((Cons x xs) , (Cons y ys))
end

let rec merge l1 l2

requires { sorted l1 /\ sorted l2}
ensures { sorted result /\ permut result (l1 ++ l2) }

= match l1 , l2 with
| Nil , _ −> l2

| _ , Nil −> l1

| Cons x1 r1 , Cons x2 r2 −>
i f x1 <= x2 then Cons x1 (merge r1 l2)

else Cons x2 (merge l1 r2)
end

let rec mergesort l

ensures { sorted result }
= match l with
| Nil | Cons _ Nil −> l

| _ −> l et l1 , l2 = split l in merge (mergesort l1) (mergesort l2)
end

(∗ second par t ∗)
l et rec split (l : list int)
ensures { l et (l1 , l2) = result in permut l (l1 ++ l2)} = . . .

l et rec merge l1 l2

ensures { permut result (l1 ++ l2)} = . . .

l et rec mergesort l

ensures { permut result l} = . . .

Figure 1: Mergesort on lists

The proof of sorted in post-condition of mergesort needs several add-ons to
the theory of arrays in the Why3 standard library as shown in figure 4. An
array is represented by a record with two fields: an integer length and a total
map elts from integers to values. The functions get and set reads and writes
a value from or into an element of an array (or map). Thus we define the pred-
icates array_eq_sub_rev_offset, dsorted_sub and bitonic_sub both on arrays
and maps. (Why3 translates predicates over arrays into predicates over maps,
where the solvers are mainly acting). The first predicate is a technical abbrevia-

179

function (++) (l1 l2 : list ’a) : list ’a = match l1 with
| Nil −> l2

| Cons x1 r1 −> Cons x1 (r1 ++ l2)
end

inductive sorted (l : list t) =
| Sorted_Nil :

sorted Nil

| Sorted_One :
forall x : t . sorted (Cons x Nil)

| Sorted_Two :
forall x y : t , l : list t .
le x y −> sorted (Cons y l) −> sorted (Cons x (Cons y l))

function num_occ (x : ’a) (l : list ’a) : int =
match l with
| Nil −> 0
| Cons y r −> (i f x = y then 1 else 0) + num_occ x r

end

predicate permut (l1 : list ’a) (l2 : list ’a) =
forall x : ’a . num_occ x l1 = num_occ x l2

Figure 2: Theory of lists

tion to test for equality after reversing and adding an offset to a subarray. The
two last predicates mean down-sorted or bitonic on sub-arrays (and sub-maps).
We finally add two lemmas about weakening the interval of a bitonic subarray.

To prove the first part (sorted_sub) of the post-condition of mergesort1, we
add several assertions and invariants in its body as shown on figure 5. We use a
new operator (at a ’L) in formulas meaning the value of array a at label L. The
proof of the 161 verification conditions is fully automatic with the Alt-Ergo prover
and quasi online. But this happened after many attempts and reformulations of
assertions and invariants and use other provers. Retries are favourised by the
incremental dependency analysis (stored in a so-called why3session.xml file) of
Why3 which only recomputes the modified goals.

To summarize the logic of this function, there are two recursive calls on both
halves of array a; the first half is copied into the first half of array b; the second
half is copied in reverse order into the second half of array b; finally the merge
of the two halves of b is returned in a. Notice that during the merge phase, the
index j can go over the half m of the array b. Therefore the assertion m <= !j is
not true since the index j can go up to lo when all elements are equal in b.

The second part (permut_sub) of the post-condition of mergesort1 follows the
same lines and is exhibited at URL http://jeanjacqueslevy.net/why3/sorting/.

180

Permutations on arrays are defined by counting the number of occurrences for
each value. Therefore the proof demands several properties of occurrences of
values in sub-arrays. The proof is very natural except for a couple of redun-
dant assertions, which ease the behaviours of automatic provers. In fact, many
provers are involved in that second part, namely Alt-Ergo, Yices, CVC4 and Z3,
thoroughly chosen thanks to the graphical interface of Why3. Moreover several
manual transformations were needed, such as inlining and splitting of conjunc-
tions.

The two lemmas about weakening the interval of map_bitonic are proved by 30
lines of easy and readable Coq (with ss-reflect package). It needs 4 extra lemmas
(each with 7-line long Coq proof) sorted_sub_weakening, dsorted_sub_weakening,
sorted_sub_empty and dsorted_sub_empty which states the weakening of inter-
vals for (d)sorted subarrays and the (d)sorted status of empty subarrays. In fact
these lemmas could also be proved by automatic provers, but there is a trade-off
between expressing abstract properties and a detailed computable presentation.
For instance, bitonic is defined with an existential connector, which is quasi
equivalent to the end of automatic first-order provers. A more precise presenta-
tion with parameterizing the index at peak of the bitonic sequence would have
reactivated the automatic methods. In fact, this trade-off is a big advantage of
Why3. For instance, a verification condition can also be first attempted in Coq,
and later proved automatically after simplifications.

4 Conclusion

The mergesort example demonstrates the versatility of the Why3 system. One
can nicely mix automatic and interactive proofs. The multiplicity of solvers (SMT
solvers and theorem provers) give high confidence before attacking an interactive
proof, which is then reserved for conceptual parts. It is even possible to call back
automatic provers from the interactive parts (not in the mergesort example, but
it did happen in a version of quicksort to avoid a long Coq proof with numerous
cases), but it requires to solve several technical typing subtleties. The system
demands some training since it is a bit complex to manipulate numerous solvers
and interactive proof-assistants. The WhyML memory model is rather naive
since variables and arrays only allow single assignments. New variables or new
arrays are created after every modification of their contents. Moreover arrays are
immediately expanded to maps. Therefore it would be interesting to understand
how far one can go with this memory model. It did not prevent from already
building a gallery of small verified programs existing in the Why3 public release.
The Frama-C project uses Why3 among other analyzers to build a verification
environment for C programs written for small run-times or embedded systems.

181

l et rec mergesort1 (a b : array int) (lo hi : int) =
requires {Array . length a = Array . length b /\

0 <= lo <= (Array . length a) /\ 0 <= hi <= (Array . length a) }
ensures { sorted_sub a lo hi /\ permut_sub (old a) a lo hi }

i f lo + 1 < hi then
let m = div (lo+hi) 2 in
mergesort1 a b lo m ;
mergesort1 a b m hi ;
for i = lo to m−1 do

b [i] <− a [i]
done ;

for j = m to hi−1 do
b [j] <− a [m + hi − 1 − j]
done ;

l et i = ref lo in
let j = ref hi in
for k = lo to hi−1 do

i f b [! i] < b [! j − 1] then
begin a [k] <− b [! i] ; i := ! i + 1 end

else
begin j := ! j − 1 ; a [k] <− b [! j] end

done

let mergesort (a : array int) =
ensures { sorted a /\ permut (old a) a }

l et n = Array . length a in
let b = Array . make n 0 in

mergesort1 a b 0 n

Figure 3: Mergesort on arrays

Finally it is interesting to notice how robust and intuitive is Hoare logic.

5 Acknowledgements

This short note is dedicated to Luca Cardelli for his 60th anniversary. Luca has
always loved mixing theoretical topics and real computing systems. I hope this
short note satisfies that criterion. I also thank Chen Ran for her help in multiple
Why3/Coq proofs.

References

C. Barrett and C. Tinelli. CVC4, the smt solver. New-York University - University
of Iowa. URL http://cvc4.cs.nyu.edu.

182

use map . Map as M

clone map . MapSorted as N with type elt = int , predicate le = (<=)

predicate map_eq_sub_rev_offset (a1 a2 : M . map int int) (l u : int)
(offset : int) =
forall i : int . l <= i < u −>

M . get a1 i = M . get a2 (offset + l + u − 1 − i)

predicate array_eq_sub_rev_offset (a1 a2 : array int) (l u : int)
(offset : int) =

map_eq_sub_rev_offset a1 . elts a2 . elts l u offset

predicate map_dsorted_sub (a : M . map int int) (l u : int) =
forall i1 i2 : int . l <= i1 <= i2 < u −> M . get a i2 <= M . get a i1

predicate dsorted_sub (a : array int) (l u : int) =
map_dsorted_sub a . elts l u

predicate map_bitonic_sub (a : M . map int int) (l u : int) = l < u −>
exists i : int . l <= i <= u /\ N . sorted_sub a l i /\

map_dsorted_sub a i u

predicate bitonic_sub (a : array int) (l u : int) =
map_bitonic_sub a . elts l u

lemma map_bitonic_incr : forall a : M . map int int , l u : int .
map_bitonic_sub a l u −> map_bitonic_sub a (l+1) u

lemma map_bitonic_decr : forall a : M . map int int , l u : int .
map_bitonic_sub a l u −> map_bitonic_sub a l (u−1)

Figure 4: Theory add-ons for mergesort on arrays

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.
The alt-ergo automated theorem prover, 2008. URL http://alt-ergo.lri.

fr/.

F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, Wroc law, Poland, August 2011. URL
http://proval.lri.fr/publications/boogie11final.pdf.

L. de Moura and N. Björner. Z3, an efficient smt solver. Microsoft Research.
URL http://z3.codeplex.com.

183

B. Dutertre and L. de Moura. The Yices SMT Solver. SRI. URL http://yices.

csl.sri.com.

J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet provers. In
M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European Sym-
posium on Programming, volume 7792 of Lecture Notes in Computer Science,
pages 125–128. Springer, Mar. 2013.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for
the Coq system. Rapport de recherche RR-6455, INRIA, 2008. URL http:

//hal.inria.fr/inria-00258384.

R. Sedgewick and K. Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.

A. Tafat and C. Marché. Binary heaps formally verified in Why3. Research Report
7780, INRIA, Oct. 2011. http://hal.inria.fr/inria-00636083/en/.

184

l et rec mergesort1 (a b : array int) (lo hi : int) =
requires {Array . length a = Array . length b /\

0 <= lo <= (Array . length a) /\ 0 <= hi <= (Array . length a) }
ensures { sorted_sub a lo hi /\ modified_inside (old a) a lo hi }

i f lo + 1 < hi then
let m = div (lo+hi) 2 in

assert{ lo < m < hi } ;
mergesort1 a b lo m ;

’L2 : mergesort1 a b m hi ;
assert { array_eq_sub (at a ’L2) a lo m } ;
for i = lo to m−1 do

invariant { array_eq_sub b a lo i}
b [i] <− a [i]
done ;

assert{ array_eq_sub a b lo m } ;
assert{ sorted_sub b lo m } ;
for j = m to hi−1 do

invariant { array_eq_sub_rev_offset b a m j (hi − j)}
invariant { array_eq_sub a b lo m}
b [j] <− a [m + hi − 1 − j]
done ;

assert{ array_eq_sub a b lo m } ;
assert{ sorted_sub b lo m } ;
assert{ array_eq_sub_rev_offset b a m hi 0} ;
assert{ dsorted_sub b m hi } ;

’L4 : l et i = ref lo in
let j = ref hi in
for k = lo to hi−1 do

invariant{ lo <= ! i < hi /\ lo <= ! j <= hi}
invariant{ k = ! i + hi − ! j}
invariant{ sorted_sub a lo k }
invariant{ forall k1 k2 : int . lo <= k1 < k −>

! i <= k2 < ! j −> a [k1] <= b [k2] }
invariant{ bitonic b ! i ! j }
invariant{ modified_inside a (at a ’L4) lo hi }
assert { ! i < ! j } ;
i f b [! i] < b [! j − 1] then

begin a [k] <− b [! i] ; i := ! i + 1 end
else

begin j := ! j − 1 ; a [k] <− b [! j] end
done

Figure 5: Proof of mergesort on arrays

185

186

Introduction to New Perspectives in Biology

Giuseppe Longo∗ Mael Montévil†

Abstract

This note introduces recent work in Theoretical Biology by borrowing from
the Introduction (chapter 1) of the book by the authors: “Perspectives on Or-
ganisms: Biological Time, Symmetries and Singularities”, Springer, 2014. The
idea is to work towards a Theory of Organisms analogue and along the Theory
of Evolution, where ontogenesis could be considered as part of phylogenesis.
As a matter of fact, the latter is made out of “segments” of the first: phyloge-
nesis is the “sum” of ontogenetic paths and they should be made intelligible by
similar principles. To this aim, we look at ontogenesis from different perspec-
tives. By this, we shed light on the unity of the organism from different points
of view, yet constantly keeping that unity as a core invariant. The analysis of
invariance, as the result of theoretical symmetries, and of symmetry changes,
is a key theme of the approach in the book and in the discussion in this note.

1 From physics towards biology

Current biology is largely an experimental discipline, that is most, and actu-
ally almost all, research activities are — highly dextrous — experimentations.
For a natural science, this situation may not seem to be an issue. However,
this is mostly associated to a belief that experiments and theoretical think-
ing could be decoupled, and that experiments could actually be performed
independently from theories. Yet, “concrete” experimentations cannot be con-
ceived as autonomous with respect to theoretical considerations, which may
have abstract means but also have very practical implications. In the field of
∗Centre Cavaillès, République des Savoirs, CNRS, Collège de France et Ecole Normale

Supérieure, Paris, and Department of Integrative Physiology and Pathobiology, Tufts Uni-
versity School of Medicine, Boston. http://www.di.ens.fr/users/longo/
†IHPST, CNRS and université Paris I, Paris. M. Montévil’s Work is supported by région

Île-de-France, DIM ISC

187

molecular biology, for example, research is related to the finding of hypothe-
sized molecules and molecular manipulations that would allow to understand
biological phenomena and solve medical or other socially relevant problems.
This experimental work can be carried on almost forever as biological molecular
diversity is abundant. However, the understanding of the actual phenomena,
beyond the differences induced by local molecular transformations is limited,
precisely because such an understanding requires a theory, relating, in this
case, the molecular level to the phenotype and the organism. In some cases,
the argued theoretical frame is provided by the reference to an unspecified
“information theoretical encoding”, used as a metaphor more than as an ac-
tual scientific notion (Fox Keller 1995; Longo et al. 2012a). This metaphor is
used to legitimate observed correlations between molecular differential manip-
ulations and phenotype changes, but it does so by putting aside considerable
aspects of the phenomena under study. For example, there is a gap between a
gene that is experimentally necessary to obtain a given shape in a strain and
actually entailing this shape. In order to justify this “entailment”, genes are
argued to correspond to “code”, that is a one-dimensional discrete structure,
meanwhile shapes are the result of a constitutive history in space and time:
the explanatory and conceptual gap between the two is enormous. In our
opinion, the absence or even the avoidance of theoretical thinking leads to the
acceptance of the naive or common sense theory, possibly based on unspecified
metaphors, which is generally insufficient for satisfactory explanations or even
false — when it is well defined enough as to be proven false.

We can then informally describe the reasons for the need of new theoret-
ical perspectives in biology as follows. First, there are empirical, theoretical
and conceptual instabilities in current biological knowledge. This can be ex-
emplified by the notion of the gene and its various and changing meanings
(Fox Keller 2002), or the unstable historical dynamics of research fields in
molecular biology (Lazebnik 2002). In both cases, the reliability and the mean-
ing of research results is at risk. Another issue is that the molecular level does
not accommodate phenomena that occur typically at other levels of organi-
zation. We propose many examples in Longo and Montévil (2014), but let’s
quote as for now the work on microtubules (Karsenti 2008), on cancer at the
level of tissues (Sonnenschein and Soto 2000), or on cardiac functions at its
different levels (Noble 2010). Some authors also emphasize the historical and
conceptual shifts that have led to the current methodological and theoretical
situation of molecular biology, which is, therefore, subject to ever changing in-
terpretations (Amzallag 2002; Stewart 2004). In general, when considering the
molecular level, the problem of the composition, that is the putting together,
of a great variety of molecular phenomena arises. Single molecule phenomena
may be biologically irrelevant per se: they need to be related to other levels
of organization (tissue, organ, organism, . . .) in order to understand their
possible biological significance.

In no way do we mean to negate that dna and the molecular cascades

188

related to it play a fundamental role, yet their investigations are far from
complete regarding the description of life phenomena. Indeed, these cascades
may causally depend on activities and organization at different level of analysis,
which interact with them and in particular shape them and deserve proper
insights.

Thus, it seems that, with respect to explicit theoretical frames in biology,
the situation is not particularly satisfying, and this can be explained by the
complexity of the phenomena of life. Theoretical approaches in biology are
numerous and extremely diverse in comparison, say, with the situation in the-
oretical physics. In the latter discipline, theorizing has a deep methodological
unity, even when there exists no unified theory to understand different classes
of phenomena — typically, the Relativistic and Quantum Fields are not (yet)
unified (Weinberg 1995; Bailly and Longo 2011). A key component of this
methodological unity, in physics, is given by the role of “symmetries”, which
we will extensively stress. Biological theories instead range from conceptual
frameworks to highly mathematized physical approaches, the latter mostly
dealing with local properties of biological systems (e. g. organ shape). The
most prominent conceptual theories are Darwin’s approach to evolution — its
principles, “descent with modification" and “selection", shed a major light on
the dynamics of phylogenesis, the theory of common descent — all current or-
ganisms are the descendants of one or a few simple organisms, and cell theory
— all organisms have a single cell life stage and are cells, or are composed of
cells. It would be too long to quote work in the second and third group: they
mostly deal with the dynamics of forms of organs (morphogenesis), cellular
networks of all sorts, dynamics of populations . . . when needed, we will refer to
specific analyses. Very often, this relevant mathematical work is identified as
“theoretical biology”, while we care for a distinction, in biology, between “the-
ory” and “mathematics” analogous to the one in physics between theoretical
physics and mathematical physics: the latter mostly or more completely for-
malizes and technically solves problems (equations, typically), as set up within
or by theoretical proposals or directly derived from empirical data.

In our view, there is currently no satisfactory theory of biological organiza-
tion as such, and in particular, in spite of many attempts, there is no theory of
the organism. Darwin’s theory, and even more so neo-Darwinian approaches,
basically avoid as much as possible the problem raised by the organism. Dar-
win uses the duality between life and death as natural selection to understand
why, between given biological forms, some are observed and others are not.
That is, he gave us a remarkable theoretical frame for phylogenesis, without
confronting the issue of what a theory of organisms could be. In the modern
synthesis, since Fisher (1930), the properties of organisms and phenotypes,
fitness in particular, are predetermined and defined, in principle, by genetics
(hints to this view may be found already in Spencer’s approach to evolution
(Stiegler 2001)). In modern terms, “(potential) fitness is already encoded in
genes”. Thus, the “structure of determination” of organisms is assumed to be

189

theoretically unnecessary and is not approached1.

In physiology or developmental biology the question of the structure of
determination of the system is often approached on qualitative grounds and
the mathematical descriptions are usually limited to specific aspects of organs
or tissues. Major examples are provided by the well established and rele-
vant work in morphogenesis, since Turing, Thom and many others (see Jean
(1994) for phillotaxis and Fleury (2009) for recent work on organogenesis), in
a biophysical perspective. In cellular biology, the equivalent situation leads to
(bio-)physical approaches to specific biological structures such as membranes,
microtubules, . . . , as hinted above. On the contrary, the tentative, possi-
bly mathematical, approaches that aim to understand the proper structure of
determination of organisms as a whole, are mostly based on ideas such as au-
tonomy and autopoiesis, see for example Rosen (2005); Varela (1979); Moreno
and Mossio (2013). These ideas are philosophically very relevant and help to
understand the structure of the organization of biological entities. However,
they usually do not have a clear connection with experimental biology, and
some of them mostly focus on the question of the definition of life and, pos-
sibly, of its origin, which is not our aim. Moreover, their relationship with
the aforementioned biophysical and mathematical approaches is generally not
made explicit. In a sense, our specific “perspectives" on the organism as a
whole (time, criticality, anti-entropy, the main themes of our book (Longo and
Montévil 2014)) may be used to fill the gap, as on one side we try to ground
them on some empirical work, on the other they may provide a theoretical
frame relating the global analysis of organisms as autopoietic entities and the
local analysis developed in biophysics.

In this context, physiology and developmental biology (and the study of
related pathological aspects) are in a particularly interesting situation. These
fields are directly confronted with empirical work and with the complexity of
biological phenomena; recent methodological changes have been proposed and
are usually described as “systems biology”. These changes consist, briefly, in
focusing on the systemic properties of biological objects instead of trying to
reconstruct macroscopic properties from their components, see Noble (2006,
2011); Sonnenschein and Soto (1999) and, in particular, Noble (2008). In the
latter, it is acknowledged that, as for theories in systems biology:

There are many more to be discovered; a genuine “theory of
biology” does not yet exist. (Noble 2008)

Systems biology has been recently and extensively developed, but it also cor-
responds to a long tradition. The aim of our book (Longo and Montévil 2014)

1By the general notion of structure of determination we refer to the theoretical determi-
nation provided by a conceptual frame, in more or less formalized terms. In physics, this
determination is generally expressed by systems of equations or by functions describing the
dynamics.

190

can be understood as a theoretical contribution to this research program. That
is, we aim at a preliminary, yet possibly general theory of biological objects
and their dynamics, by focusing on “perspectives” that shed some light on the
unity of organisms from a specific point of view.

In this project, there are numerous pitfalls that should be avoided. In
particular, the relation with the powerful physical theories is a recurring is-
sue. In order to clarify the relationships between physics, mathematics and
biology, a critical approach to the very foundations of physical theories and,
more generally, to the relation between mathematized theories and natural
phenomena is most helpful and we think even necessary. This analysis is at
the core of Bailly and Longo (2011) and, in the rest of this text, we just review
some of the key points in our approach. By this, we provide below a brief ac-
count of the philosophical background and of the methodology that we follow
in Longo and Montévil (2014). We also discuss some elements of comparison
with other theoretical approaches and then summarize some of the key ideas
of our approach.

Physical theorizing guides our attempts in biology, without reductions to
the “objects” of physics, but by a permanent reference, even by local reduc-
tions, to the methodology of physics. We are aware of the historical contin-
gency of this method, yet by making explicit its working principles, we aim
at its strongest possible conceptual stability and adaptability : “perturbing”
our principles and even our methods may allow further progress in knowledge
construction.

Our “perspectives” on organisms complement Luca Cardelli’s contributions,
largely based on molecular analyses. Yet, links may be established with his
more “systemic” approaches, as beautifully developed in the Brane Calculi,
Stochastic Gene Networks and Process Algebra Models.

2 Objectivization and Theories

As already stressed, theories are conceptual and — in physics — largely math-
ematized frameworks that frame the intelligibility of natural phenomena.

One of the most difficult theoretical tasks in biology is to insert the auton-
omy of the organism in the unavoidable ecosystem, both internal and external:
life is variability and constraints, and neither make sense without the other.
In this sense, the recent exploration in Moreno and Mossio (2013); Montévil
and Mossio (2014) relates constraints and autonomy in an original way and
complements our effort. Both this “perspective" and ours are only possible
when accessing living organisms in their unity and by taking this “wholeness”
as a “condition of possibility" for the construction of biological knowledge.
However, we do not discuss here this unity per se, nor directly analyze its
auto-organizing structural stability. In this sense, these two complementary

191

approaches may enrich each other and produce, by future work, a novel inte-
grated framework.

As for the interplay with physics, our approach particularly s the praxis
underlying scientific theorizing, including mathematical reasoning, as well as
the cognitive resources mobilized and refined in the process of knowledge con-
struction. From this perspective, mathematics and mathematized theories, in
particular, are the result of human activities, in our historical space of human-
ity (Husserl 1970). Yet, they are the most stable and conceptually invariant
knowledge constructions we have ever produced. This singles them out from
the other forms of knowledge. In particular, they are grounded on the consti-
tuted invariants of our action, gestures and language, and on the transforma-
tions that preserve them: the concept of number is an invariant of counting
and ordering; symmetries are fundamental cognitive invariants and transfor-
mations of action and vision — made concepts by language, through history
(Dehaene 1997; Longo and Viarouge 2010). More precisely, both ordering (the
result of an action in space) and symmetries may be viewed as “principles of
conceptual construction” and result from core cognitive activities, shared by
all humans, well before language, yet spelled out in language. Thus, jointly
to the “principles of (formal) proof”, that is to (formalized) deductive meth-
ods, the principles of construction ground mathematics at the conjunction of
action and language. And this is so beginning with the constructions by ro-
tations and translations in Euclid’s geometry (which are symmetries) and the
axiomatic-deductive structure of Euclid’s proofs (with their proof principles).

This distinction, construction principles vs. proof principles, is at the core
of the analysis in Bailly and Longo (2011), which begins by comparing the situ-
ation in mathematics with the foundations of physics. The observation is that
mathematics and physics share the same construction principles, which were
largely co-constituted, at least since Galileo and Newton up to Noether and
Weyl, in the XXth century2. One may formalize the role of symmetries and
orders by the key notion of group. Mathematical groups correspond to symme-
tries, while semi-groups correspond to various forms of ordering. Groups and
semi-groups provide, by this, the mathematical counterpart of some fundamen-
tal cognitive grounds for our conceptual constructions, shared by mathematics
and physics: the active gestures which organize the world in space and time,
by symmetries and orders.

Yet, mathematics and physics differ as for the principles of proof: these are
the (possibly formalized) principles of deduction in mathematics, while proofs
need to be grounded on experiments and empirical verification, in physics.
What can we say as for biology? On one side, “empirical evidence” is at the

2Archimedes should be quoted as well: why is a balance with equal weights at equilib-
rium? for symmetry reasons, says he. This is how physicists still argue now: why does that
particle exist? for symmetry reasons — see the case of anti-matter and the negative solution
of Dirac’s equations (Dirac 1928).

192

core of its proofs, as in any science of nature, yet mathematical invariance
and its transformations do not seem to be sufficiently robust and general as to
construct biological knowledge, at least not at the level of organisms and their
dynamics, where variability is one of the major “invariants”. So, biology and
physics share the principles of proofs, in a broad sense, while we claim that
the principles of conceptual constructions cannot be transferred as such. The
aim of Longo and Montévil (2014) is to highlight and apply some cases where
this can be done, by some major changes though, and other cases where one
needs radically different insights, from those proper to the so beautifully and
extensively mathematized theories of the inert.

It should be clear by now, that our foundational perspective concerns as
a priority the methodology (and the practice) that allows the establishment
of scientific objectivity in our theories of nature. As a matter of fact, in our
views, the constitution of theoretical thinking is at the same time a process of
objectivization. That is, this very process co-constitutes the object of study,
jointly to the empirical evidence, in a way that simultaneously allows its intel-
ligibility. The case of quantum mechanics is paradigmatic for us, as a quanton
(and even its reference system) is the result of active measurement and its
practical and theoretical preparation. In this perspective, then, the objects
are defined by measuring and theorizing that simultaneously give their intel-
ligibility, while the validity of the theory (the proofs, in a sense) is given by
further experiments. Thus, in quantum physics, measurement has a particular
status, since it is not only the access to an object that would be there beyond
and before measurement, but it contributes to the constitution of the very
object measured. More generally, in natural sciences, measurement deals with
the questions: where to look, how to measure, where to set boundaries to ob-
jects and phenomena, which correlations to check and even propose This
co-constitution can be intrinsic to some theories such as quantum mechanics,
but a discussion seems crucial to us also in biology, see Montévil (2014).

Following this line of reasoning, the research program we follow towards a
theory of organisms aims at finding ways to constitute theoretically biological
objects and objectivize their behavior. Differences and analogies, by concep-
tual continuities or dualities with physics will be at the core of our method
(as for dualities, see, for example, our understanding of “genericity vs. speci-
ficity” in physics vs. biology in Longo and Montévil (2011, 2014)), while the
correlations with other theories can, perhaps, be understood later3. In this
context, thus, a certain number of problems in the philosophy of biology are
not methodological barriers; on the contrary, they may provide new links be-
tween remote theorizing such as physical and social ones, which would not be
based on the transfer of already constructed mathematical models.

3The “adjacent” fields are, following Bailly (1991), physical theories in one direction and
social sciences in another. The underlying notion of “extended criticality”, may prove to be
useful in economics, since we seem to be always in a permanent, extended, crisis or critical
transition, very far from economic equilibria.

193

3 A short synthesis of our approach to biological
phenomena

A methodological point that we first want to emphasize is that we focus on
“current” organisms, as a result of the process of biological evolution. Indeed,
the question of the origin of life is a very active field of research. In this field,
most of these analyses use physical or almost physical theories as such, that
is they try to analyze how, from a mix of (existing) physical theories, one can
obtain “organic” or evolutive systems. We will not work at the (interesting,
per se) problem of the origin of life, as the transition from the inert to the
living state of matter, but we will work at the transition from theories of the
inert to theories of living objects. In a sense this may contribute also to the
“origin” problem, as a sound theory of organisms, if any, may help to specify
what the transition from the inert leads to, and therefore what it requires.

More precisely, the method of mathematical biology and biophysical mod-
eling quoted above is usually the transformation of a part of an organism (more
generally, of a living system) into a physical system, in general separated from
the organism and from the biological context it belongs to. This methodology
often allows an understanding of some biological phenomena, from morphogen-
esis (phyllotaxis, formation of some organs . . .) to cellular networks and more,
see above. For example, the modeling of microtubules allows to approach their
self-organization properties (Karsenti 2008), but it corresponds to a theoretical
(and experimental) in vitro situation, and their relation with the cell is not
understood by the physical approach alone. The understanding of the system
in the cell requires an approach external to the structure of determination at
play in the purely physical modeling. Thus, to this technically difficult work
ranging from morphogenesis and phyllotaxis to cellular networks, one should
add an insufficiently analyzed issue: these organs or nets, whose shape and
dynamics are investigated by physical tools, are generally part of an organism.
That is, they are regulated and integrated in and by the organism and never
develop like isolated or generic (completely defined by invariant rules) crystals
or physical forms. It is instead this integration and regulation in the coherent
structure of an organism that contributes in making the biologically relevant
situations, which is often non-generic in the physical sense (Lesne and Victor
2006).

The general strategy we use for our investigations in theoretical biology, is
to approach the biological phenomena from different perspectives, each of them
focusing on different aspects of biological organization, not on different parts
such as organs or cellular nets in tissues The aim is to propose a basis
for a partially mathematized theoretical understanding. This strategy allows
us to obtain relatively autonomous progresses on the corresponding aspects
of living systems. An essential difficulty is that, in fine, these concepts are
fully meaningful only in the interaction with each other, that is to say in a

194

Biology

Origin of life t

Current physical theories

Figure 1: A scheme of the relation between physics and biology, from a di-
achronic point of view. Theoretical approaches that focus on the origin of life
usually follow the physical line (stay within existing physical theories) and try
to approach the “bifurcation” point. The latter is not well defined since there
is no proper theory for the biological entities that are assumed to emerge. Usu-
ally, the necessary ingredients for Darwinian evolution are used as goals to be
obtained from physical systems. From our perspective, a proper understanding
of biological phenomena needs to focus directly, at least as a first (huge) step,
on the properly biological domain, where the Darwinian tools soundly apply,
but also where organisms are constituted. It may then be easier to fill the gap.

unified framework that we are contributing to establish. In this sense, then,
we are making progresses by revolving around this not yet existing framework,
proposing and browsing these different perspectives in the process. However,
this allows a stronger relation to empirical work, in contrast to theories of
biological autonomy, without losing the sense of the biological unity of an
organism.

The method we follow in order to progress in each of these specific aspects of
life phenomena can mostly be understood as taking different points of view on
organisms: we look at them from the point of view of time and rhythms, of the
interplay of global stability vs. instability, of the formation and maintenance
of organization through changes As a result, we combine in Longo and
Montévil (2014) a few of these theoretical perspectives, for which the principal
common organizing concepts are biological time, on one side, and extended
criticality on the other. More specifically, the main conceptual frames that we
either follow directly or that make recurrent appearance in this text are the
following:

Biological temporal organization The idea is that, more than space or
especially energy, biological time is a at the center of biological organiza-
tion. This does not mean that energy is irrelevant, but both time and en-
ergy have a different role from the one they play in physics. The reasons
for this are explained throughout Longo and Montévil (2014). The ap-
proach in terms of symmetry changes that we develop provides a radical
argument for this point of view. Intuitively, the idea is that what matters
in biological theorizing is the notion of “organization” and the way it is

195

constructed along and, we dare to say, by time, since biological time will
be an operator for us, in a precise mathematical sense. In contrast to this,
the energetic level (say, between mammals of different sizes) is relatively
contingent, as supported by the allometric relations,reviewed in the sec-
ond chapter of Longo and Montévil (2014), where energy or mass appear
as a parameter. Some preliminary arguments from physics are provided
by the role of time (entropy production) in dissipative structures (Nicolis
and Prigogine 1977) and by the non-ergodicity of the molecular phase
space, discussed in Kauffman (2002); Longo et al. (2012b).

Extended critical transitions A large part of our work uses the notion of
extended critical transition (Bailly 1991; Bailly and Longo 2008, 2011;
Longo and Montévil 2011) to understand biological systems. This notion
is relatively complex, in particular because of its physical prerequisites.
It is discussed at length, with these prerequisites, in Longo and Mon-
tévil (2014). Note that it provides a precise meaning to the idea of the
physical singularity of life phenomena in the sense that the biological is
approached as a limit case of a physical situation.

Enablement Biologists working on evolution often refer to a contingent state
of the ecosystem as “enabling" a given form of life. A niche, typically,
enables a, possibly new, organism; yet, a niche may be also constructed
by an organism Pocheville (2010). In Longo et al. (2012b) and Longo
and Montévil (2013) an attempt is made to frame this informal notion in
a rigorous context. We borrow here from that work to link enablement to
the role of symmetry changes and we provide by this a further conceptual
transition from physics to biology.

Anti-entropy This notion aims to quantify the “amount of biological orga-
nization” of an organism (Bailly and Longo 2009; Longo and Montévil
2012) as a non-reducible opposite of entropy. It also determines some
temporal aspects of biological organization. This aspect of our investi-
gation gives a major role to randomness. The notion of randomness is
related to entropy and to the irreversibility of time in thermodynamics
and statistical mechanics. As a result, we consider a proper notion of bi-
ological randomness as related to anti-entropy, to be added on top of the
many (at least three) forms of randomness present in physical theories
(classical, thermodynamical, quantum).

Various physical theories (classical, relativistic, quantum, thermodynamic)
make the inert intelligible in a remarkable way. Significant incompatibilities
exist (the relativistic and quantum fields are not unified; they are in fact incom-
patible). However, some major principles of conceptual construction confer a
great unity to contemporary theoretical physics. The geodesic principle and
its accompaniment by “symmetries” (Weyl 1983; Van Fraassen 1989; Bailly

196

and Longo 2011), enable to grasp, under a conceptually unitary perspective,
a wide area of knowledge regarding the inert. Biology, having to date been
less “theorized” and mathematized, can also progress in the construction of its
theoretical frameworks by means of analogies, extensions and differentiations
regarding physical theories, even by means of conceptual dualities. Regarding
dualities, we recall here one that is, we believe, fundamental and that has been
extensively addressed in Bailly and Longo (2011); Frezza and Longo (2010);
Longo and Montévil (2011, 2014)): the genericity of physical objects (that
is, their theoretical and experimental invariance) and the specificity of their
trajectories (basically, their reconstruction by means of the geodesic principle
or identification by mathematical techniques, by symmetries typically). In our
perspective, this is inverted in biology, as it is transformed into the specificity
(individuation and history) of the living object and the genericity of trajec-
tories (evolutionary, ontogenetic: they are just “possibilities” within spaces —
ecosystems — in co-constitution). As a result, the work of theorization differs
strongly between biology and physics.

References
G. N. Amzallag. La raison malmenée. De l’origine des idées reçues en biologie
moderne. CNRS édition, 2002.

F. Bailly. L’anneau des disciplines. Revue Internationale de Systémique, 5(3),
1991.

F. Bailly and G. Longo. Extended critical situations: the physical singularity
of life phenomena. Journal of Biological Systems, 16(2):309, 2008. doi:
10.1142/S0218339008002514.

F. Bailly and G. Longo. Biological organization and anti-entropy. Journal of
Biological Systems, 17(1):63–96, 2009. doi: 10.1142/S0218339009002715.

F. Bailly and G. Longo. Mathematics and the natural sciences; The Physical
Singularity of Life. Imperial College Press, London, 2011. Preliminary
version in French: Hermann, Vision des sciences, 2006.

S. Dehaene. The number sense. Oxford University Press, 1997.

P. A. M. Dirac. The quantum theory of the electron. Proceedings of the Royal
Society of London. Series A, 117(778):610–624, 1928. doi: 10.1098/rspa.
1928.0023. URL http://rspa.royalsocietypublishing.org/content/
117/778/610.short.

R. Fisher. The Genetical Theory of Natural Selection. Clarendon, 1930.

197

V. Fleury. Clarifying tetrapod embryogenesis, a physicist’s point of view.
The European Physical Journal Applied Physics, 45, 2 2009. ISSN 1286-
0050. doi: 10.1051/epjap/2009033. URL http://www.epjap.org/article_
S1286004209000330.

E. Fox Keller. Refiguring Life: Metaphors of Twentieth-Century Biology.
Columbia University Press, 1995.

E. Fox Keller. The century of the gene. Harvard University Press, 2002.

G. Frezza and G. Longo. Variations on the theme of invariants: conceptual
and mathematical dualities in physics vs biology. Human Evolution, 25(3-4):
167–172, 2010.

E. Husserl. The crisis of european sciences and transcendental phenomenology:
an introduction to phenomenological philosophy, chapter Origin of geometry.
Northwestern University Press, Evanston, Illinois, 1970.

R. Jean. Phyllotaxis: A Systemic Study in Plant Morphogenesis. Cambridge
Studies in Mathematics, 1994.

E. Karsenti. Self-organization in cell biology: a brief history. Nature Reviews
Molecular Cell Biology, 9(3):255–262, 2008. doi: 10.1038/nrm2357.

S. Kauffman. Investigations. Oxford University Press, USA, 2002.

Y. Lazebnik. Can a biologist fix a radio? or, what i learned while
studying apoptosis. Cancer Cell, 2(3):179 – 182, 2002. doi: 10.1007/
s10541-005-0088-1.

A. Lesne and J.-M. Victor. Chromatin fiber functional organization: Some
plausible models. Eur Phys J E Soft Matter, 19(3):279–290, 2006. doi:
10.1140/epje/i2005-10050-6.

G. Longo and M. Montévil. From physics to biology by extending criticality
and symmetry breakings. Progress in Biophysics and Molecular Biology, 106
(2):340 – 347, 2011. ISSN 0079-6107. doi: 10.1016/j.pbiomolbio.2011.03.005.
Invited paper, special issue: Systems Biology and Cancer.

G. Longo and M. Montévil. Randomness increases order in biological evolution.
In M. Dinneen, B. Khoussainov, and A. Nies, editors, Computation, Physics
and Beyond, volume 7160 of Lecture Notes in Computer Science, pages 289
– 308. Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-27653-8. doi:
10.1007/978-3-642-27654-5_22. Invited paper, Auckland, New Zealand,
February 21-24, 2012.

G. Longo and M. Montévil. Extended criticality, phase spaces and enablement
in biology. Chaos, Solitons & Fractals, 55(0):64 – 79, 2013. ISSN 0960-0779.

198

doi: 10.1016/j.chaos.2013.03.008. URL http://www.sciencedirect.com/
science/article/pii/S0960077913000489. Invited Paper, Special Issue.

G. Longo and M. Montévil. Perspectives on Organisms: Biological time, sym-
metries and singularities. Lecture Notes in Morphogenesis. Springer, 2014.
ISBN 978-3-642-35937-8. doi: 10.1007/978-3-642-35938-5.

G. Longo and A. Viarouge. Mathematical intuition and the cognitive roots of
mathematical concepts. Topoi, 29(1):15–27, 2010. Special issue on Mathe-
matical knowledge: Intuition, visualization, and understanding (Horsten L.,
Starikova I., eds).

G. Longo, P.-A. Miquel, C. Sonnenschein, and A. M. Soto. Is information a
proper observable for biological organization? Progress in Biophysics and
Molecular biology, 109(3):108 – 114, 2012a. ISSN 0079-6107. doi: 10.1016/
j.pbiomolbio.2012.06.004.

G. Longo, M. Montévil, and S. Kauffman. No entailing laws, but enablement
in the evolution of the biosphere. In Genetic and Evolutionary Computation
Conference, New York, NY, USA, July 7-11 2012b. GECCO’12, ACM. doi:
10.1145/2330784.2330946. Invited Paper.

M. Montévil. Biological measurement and systems biology. to be submitted,
2014.

M. Montévil and M. Mossio. Closure of constraints in biological organisation.
2014. To be submitted.

A. Moreno and M. Mossio. Biological autonomy. A Philosophical and Theo-
retical Enquiry. Springer, Dordrecht, 2013.

G. Nicolis and I. Prigogine. Self-organization in non-equilibrium systems. Wi-
ley, New York, 1977.

D. Noble. The music of life. Oxford U. P., Oxford, 2006.

D. Noble. Claude bernard, the first systems biologist, and the future of physi-
ology. Experimental Physiology, 93(1):16–26, 2008. doi: 10.1113/expphysiol.
2007.038695. URL http://ep.physoc.org/content/93/1/16.abstract.

D. Noble. Biophysics and systems biology. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 368
(1914):1125, 2010. doi: 10.1098/rsta.2009.0245.

D. Noble. The music of life: sourcebook. Oxford, 2011.

A. Pocheville. What niche construction is (not). 2010. URL http://hal.
upmc.fr/tel-00715471/.

199

R. Rosen. Life itself: a comprehensive inquiry into the nature, origin, and
fabrication of life. Columbia U. P., 2005.

C. Sonnenschein and A. Soto. The society of cells: cancer and control of cell
proliferation. Springer Verlag, New York, 1999.

C. Sonnenschein and A. Soto. Somatic mutation theory of carcinogenesis:
why it should be dropped and replaced. Molecular Carcinogenesis, 29(4):
205–211, 2000. doi: 10.1002/1098-2744(200012)29:4<205::AID-MC1002>3.
0.CO;2-W.

J. Stewart. La vie existe-t-elle ? Editions Vuibert, 2004.

B. Stiegler. Nietzsche et la biologie. Puf, Paris, 2001.

B. Van Fraassen. Laws and symmetry. Oxford University Press, USA, 1989.

F. Varela. Principles of biological autonomy. North Holland New York, 1979.

S. Weinberg. The Quantum Theory of Fields. Cambridge University Press,
1995.

H. Weyl. Symmetry. Princeton Univ Pr, 1983.

200

Luca Cardelli and the Early Evolution of ML

David MacQueen

Abstract

Luca Cardelli has made an enormous range of contributions, but the
focus of this paper is the beginning of his career and, in particular, his
role in the early development of ML. He saw the potential of ML as a
general purpose language and was the first to implement a free-standing
compiler for ML. He also made some important innovations in the ML
language design which had a major influence on the design of Standard
ML, in which he was an active participant. My goal is to examine this
early work in some detail and explain its impact on Standard ML.

1 Introduction

My goal here is to tell the story of the early days of ML as it emerged from
the LCF system via Luca Cardelli’s efforts to create a general purpose version of
ML, called VAX ML. Starting in 1983, the new ideas developed in VAX ML and
the HOPE functional language inspired Robin Milner to begin a new language
design project, Standard ML, and for the next two years Luca was an essential
contributor to that effort.

2 VAX ML

We will start by giving a brief history of Luca’s ML compiler, before considering
the language innovations it introduced and how the language evolved in Section
2.1 below.1

Luca began working on his own ML compiler sometime in 1980. The compiler
was developed on the Edinburgh Department of Computer Science VAX/VMS
system, so Luca called it “VAX ML” to distinguish from “DEC-10 ML”, the

1Note that Luca was building his VAX ML at the same time as he was doing research for his
PhD thesis (Cardelli 1982b). He also developed his own text formatting software, inspired by
Scribe, that he used to produce his thesis and the compiler documentation, and a simulation
of the solar system!

201

LCF version of ML2 which ran under Stanford Lisp on the DEC-10/TOPS-10
mainframe.3 Luca’s preferred working language at the time was Pascal, so both
the compiler and the runtime system were written in Pascal, using Pascal’s un-
safe union type to do coercions for low-level programming (e.g. for the garbage
collector).4 The compiler generated VAX machine code, and was much faster
than the DEC-10 (LCF) version, which used the host Lisp interpreter to execute
translated ML code. The VAX ML compiler was working and had begun to be
distributed to users by the summer of 1981 (version 12-6-81, i.e. 12 June 81),
although a working garbage collector was not added until version 13-10-81.

The earliest surviving documents relating to the compiler date to late 1980:
“The ML Abstract Machine”, a description of the abstract machine AM (Cardelli
1980a), (which would develop into the FAM (Cardelli 1983a)), and “A Module
Exchange Format”, a description of an external string format for exporting ML
runtime data structures (Cardelli 1980b). There is a README file titled “Edin-
burgh ML” from March, 1982 that describes how to install and run the system
(Cardelli 1982a), and a partial manual titled “ML under VMS” providing a tuto-
rial introduction to the language (Cardelli 1982d), corresponding to Section 2.1
of “Edinburgh ML” (Gordon et al. 1979).

In early 1982, Nobuo Saito, then a postdoc at CMU, ported VAX ML to Unix,
using Berkeley Pascal (Saito 1982). In April, 1982, Luca completed his PhD
at Edinburgh (Cardelli 1982b) and moved to the Computing Science Research
Center (the home of Unix) at Bell Labs, and immediately began his own Unix
port, which was available for distribution in August, 1982. The runtime system
for the Unix port was rewritten in C, but most of the compiler itself remained in
Pascal. The first edition of the Polymorphism newsletter (Volume I, Number 0)
contained a list of known distribution sites (Cardelli 1982c) in November 1982;
at that time, there were at least 23 sites spread around the world, several using
the new Unix port. The Unix port had three releases during 1982 (13-8-82, 24-
8-82, and 5-11-82), accompanied with some shifts in language design and system
features, notably a new type checker for ref types and an early version of file I/O
primitives.

The next major milestone was the first Standard ML meeting in Edinburgh
in April, 1983 (See Section 3). Luca agreed to a request from Robin Milner to
suspend work on his VAX ML manual pending developments around Robin’s
initial proposal for Standard ML (Milner 1983a). Following the meeting Luca
began to change his compiler to include new features of the emerging Standard

2Commonly called LCF/ML
3Luca referred to these implementations as two varieties of “Edinburgh ML”.
4Since the entire system was written in Pascal, there was no sharp distinction between the

compiler and the runtime, which was simply the part of the system responsible for executing
the abstract machine instructions (FAM code).

202

ML design, resulting in Pose5 2 (August 1983), Pose 3 (November 1983), and
finally Pose 4 (April 1984). This last version is described in the paper “Compiling
a Functional Language” in the 1984 Lisp and Functional Programming conference
(Cardelli 1984a).

2.1 Language Innovations

The first description of the language of VAX ML was a file mlchanges.doc (Cardelli
1981) that was part of the system distribution. This file describes the language
by listing the changes made relative to DEC-10 ML (i.e. LCF/ML). The changes
include a number of minor notational shifts. For instance, LCF/ML used “.”
for list cons, while VAX ML initially used “_”, later shifting to the “::” used
in POP-2 (Burstall and Popplestone 1968). The trivial type (called “unit” in
Standard ML) was denoted by “.” in LCF/ML and by “triv” in VAX ML. A
number of features of LCF/ML were omitted from VAX ML, e.g. the “do” oper-
ator, “sections”, and the “!” and “!!” looping failure traps (Gordon et al. 1979,
Chapter 2).

But the really interesting changes in VAX ML involved (1) new labelled record
and union types, (2) the ref type for mutable values, (3) declaration combinators
for building compound declarations, and (4) modules. We will describe these in
the following subsections.

2.1.1 Labelled records and unions

Luca was of course familiar with the conventional record construct provided in
languages like Pascal (Jensen and Wirth 1978, Chapter 7). But inspired by
Gordon Plotkin’s lectures on domain theory Luca looked for a purer and more
abstract notion, where records and discriminated union types were an expression
of pure structure, representing themselves without the need of being declared and
named. The notation for records used decorated parentheses :

(|a1 = e1; ... ; an = en|) : (|a1: t1; ... ; an: tn|)

where ei is an expression of type ti. The order of the labelled fields in a record
type did not matter – any permutation represented the same type.

Accessing the value of a field of a record was done using the conventional
dot notation: r.a, where r is a record and a is a label. Records could also be
deconstructed in declarations and function arguments by pattern-matching with
a record varstruct (pattern), as in the declaration:

let (|a=x; b=y|) = r

5Luca called his compiler versions “Poses” adopting a terminology from dance.

203

From the beginning, Luca included an abbreviation feature for record patterns
where a field name could double as a default field variable, so

let (|a; b|) = r

would introduce and bind variables named a and b to respective field values in
r. All these features of the VAX ML record construct eventually carried over to
Standard ML, with just a change in the bracket notation to use {...}.

Labelled unions were expressed as follows, using decorated square brackets:

[|a1 = e1|] : [|a1: t1; ... ; an: tn|]

The union type to which a given variant expression belonged had to be determined
by the context or given explicitly by a type ascription. Variant varstructs could
be used in varstructs for declaration and argument bindings, with their own
defaulting abbreviation where a [|a|] stood for [|a = ()|], both in varstructs
and expressions, which supported an enumeration type style.6 A case expression
based on variant varstructs was used to discriminate on and deconstruct variant
values, with the syntax

case e

of [| a1 = v1 . e1;

...

an = vn . en

|]

where e is of type [|a1: t1; ... ; an: tn|].

2.1.2 The ref type

In LCF/ML, mutable variables could be declared using the letref declaration
keyword. In VAX ML, Luca replaced this with the ref type operator with its
interface of operations ref, :=, and !. This approach was carried over unchanged
into Standard ML, though the issue of how ref behaved relative to polymorphism
took many years to resolve. In 1979, Mike Gordon wrote a brief note “Locations
as first class objects in ML” (Gordon 1980) proposing the ref type for ML, with a
restricted type discipline using weak polymorphism and weak type variables. Gor-
don suggested this as a research topic to Luis Damas, who eventually addressed
the problem in his PhD thesis (Damas 1985, Chapter 3) using a rather complex
method where typing judgements were decorated by sets of types involved in refs.
Luca got the idea to use the ref type either from Gordon’s note or via discussions
with Damas, with whom he shared an office for a time. At the end of Chapter

6Initially, the record and variant abbreviation conventions were also applied to types, but
this was not found useful and was quickly dropped.

204

3 of his thesis, Damas returns to a simpler approach to the problem of refs and
polymorphism similar to the weak polymorphism suggested by Gordon, and he
mentions that both he and Luca implemented this approach. However, the issue
is not mentioned in the various versions of Luca’s ML manuals (Cardelli 1982d,
1983c, 1984b), and the ref operator is described as having a normal polymorphic
type.7

2.1.3 Declaration combinators

Another innovation in VAX ML was a set of (more or less) independent and
orthogonal declaration combinators for building compound declarations. These
are

• enc, for sequential composition, equivalent to nesting lets: “d1 enc d2”
yields the bindings of d1 augmented by or overridden by the bindings of d2.

• and, for simultaneous or parallel composition, usually used with recursion.

• ins, for localized declarations: “d1 ins d2” yields the bindings of d2,
which are evaluated in an environment containing the bindings of d1.

• with, a kind of hybrid providing the effect of enc for type bindings and ins

for value bindings; usually used with the special “<=>” type declaration to
implement abstract types.

• rec, for recursion

There were also reverse forms of enc and ins called ext and own for use in where

expressions, thus “let d1 enc d2 in e” is equivalent to “e where d2 ext d1”.
This “algebra” of declarations (possibly inspired by ideas in Robert Milne’s

PhD thesis (Milne 1974)) was very interesting, but in programming the combi-
nators would normally be used in a few limited patterns that would not take
advantage of the generality of the idea. Indeed, certain combinations seemed
redundant or problematical, such as “rec rec d”, or “rec d1 ins d2” (rec
syntactically binds weaker than the infix combinators).

Luca factored the abstype and absrectype of LCF/ML using with (and
possibly rec) in combination of a special type declaration tname <=> texp that
produced an opaque type binding8 of tname to the type expression texp together
with value bindings of two isomorphism functions:

7The notes at the end of (Cardelli 1982c), mention that the 5-11-82 Unix version has a “New
typechecker for ref types.” It is not known whether this typechecker used weak polymorphism.

8Meaning that tname was not equivalent to texp.

205

abstname : texp -> tname

reptname : tname -> texp

A compound declaration tname <=> texp with decl would compose the type
binding of tname with decl while localizing the bindings of abstname and reptname

to decl. Thus with acted like enc at the type level and ins at the value level.
This in principle was more general than abstype/absrectype in LCF/ML, in
that the declaration d1 in d1 with d2 was arbitrary and not restricted to a pos-
sibly recursive simultaneous set of isomorphism (<=>) type bindings, but it was
not clear whether this greater generality would be exploited.

In the end, the and combinator was used in Standard ML, but at the level
of value and type bindings, not declarations (just as it was used in LCF/ML),
the ins combinator became the “local d in e end” declaration form, the rec

combinator was adopted, but at the level of bindings (and still with too general
a syntax!), and the <=>, with combination were replaced by a variant of the old
abstype declaration, but using the datatype form for the type part and restricting
the scope of the associated data constructors.

In later versions, starting with ML under Unix, Pose 2 (Cardelli 1983c), an-
other declaration form using the export keyword was added. A declaration of
the form

export exportlist from decl end

produced the bindings of decl, but restricted to the type and value names listed
in the exportlist. Exported type names could be specified as abstract (in ML
under Unix, Pose 4) meaning that constructors associated with the type were not
exported. Thus both local and abstype declarations could be translated into
export declarations.

2.1.4 Modules

LCF/ML had no module system; the closest approximation was the section

directive that could delimit scope in the interactive top-level. Since VAX ML
aimed to support general purpose programming, Luca provided a basic module
system. A module declaration was a named collection of declarations. Modules
were independent of the environment in the interactive system, and required ex-
plicit import declarations to access the contents of other modules (other than the
standard library of primitive types and operations, which was always accessible);
Luca called this module hierarchy. Compiling a module definition produced an
external file that could be loaded into the interactive system or accessed by other
modules using the import declaration. Importing (loading) a module multiple
times would only create one copy, so two modules B and C that both imported
a module A would share a single copy of A. The export declaration was com-

206

monly used to restrict the interface provided by a module. There was no way to
separately specify interfaces (signatures in Standard ML).

3 The Standard ML Design

LCF/ML had great potential as a language, but its scope was severely limited
by its context as a tool embedded in the LCF proof assistant. Luca realized its
wider potential, which motivated him to create VAX ML. By 1982, both LCF and
Luca’s VAX ML had created a lot of interest, as had HOPE (Burstall et al. 1980),
another functional language developed at Edinburgh by Rod Burstall, Don San-
nella and myself. In November, 1982 a meeting was convened at the Rutherford
Appleton Laboratory (RAL) to discuss the future of these three systems (Witty
and Wadsworth 1982). The meeting was attended by 20 people, including Robin
Milner, Rod Burstall, and several others from Edinburgh, John Darlington from
Imperial College, and Bernard Sufrin from Oxford. The topics discussed included
how the ML and HOPE languages could be supported and further developed (e.g.
by creating new ports, etc.). Sometime during or after this meeting, Bernard Suf-
frin urged Robin to think about creating a new ML design that would consolidate
what appeared successful about LCF/ML, VAX ML, and HOPE.

3.1 Meetings

By early April, 1983, Robin had created a hand-written first draft of “A Pro-
posal for Standard ML” (Milner 1983a). By coincidence, both Luca and I were
in Edinburgh at that time, as were Robin and Rod Burstall and their research
groups (in particular, Kevin Mitchell, Alan Mycroft, and John Scott), and some
other visitors (including, I believe, Guy Cousineau from INRIA)9. So this was a
serendipitous opportunity for many of those most directly interested to immedi-
ately get together to discuss Robin’s proposal. Many of the discussions took place
in Robin’s living room at Garscube Terrace. In the period immediately following
these meetings, Robin summarized some suggested changes (Milner 1983b) and
by June produced a second draft of the proposal (Milner 1983c). We collectively
decided on several parallel efforts: Robin would continue to work on the Core
language proposal, I would work on a module system,10 and Luca would develop
a proposal for stream Input/Output, based on his stream I/O interface in VAX
ML. Luca also undertook to modify his VAX ML compiler by adding Standard
ML design features and removing some features (records, labelled unions, type

9Unfortunately, the records of this first gathering in Edinburgh are spotty, and don’t include
a list of all the people involved

10I had already been working on a module system for HOPE (MacQueen 1981).

207

identity abbreviations) that did not get included in the Standard ML proposal.
Discussion by correspondence and exchange of design proposals continued for the
rest of 1983 and into 1984, including another draft of the Core language proposal
(Milner 1983d), and Luca’s proposal for stream I/O (Cardelli 1983b).

The next year, in early June, a second, more formally organized meeting was
held to continue work on the design (MacQueen and Milner 1985). Luca was not
able to attend this meeting, but I acted as his representative and he was active
in providing comments. This meeting lead to the publication of the fourth draft
of the Core proposal and my first Modules proposal in the Lisp and Functional
Programming Conference that August (Milner 1984; MacQueen 1984). Luca’s
paper “Compiling a Functional Language”, describing the ML under Unix (Pose
4) compiler, also appeared in that conference (Cardelli 1984a). The meeting
report by Robin and myself appeared in December (MacQueen and Milner 1985).

The third meeting, which was called the ML Workshop, took place in May,
1985, and Luca was again able to participate in person. There are extensive
reports and design proposals that were presented at the workshop or followed in
its aftermath, including a meeting report by Bob Harper (Harper 1985a). There
were also two further proposals for the stream I/O library, one by Robin and
Kevin Mitchell (Mitchell and Milner 1985), and another by Bob Harper (Harper
1985b). Another revision of the Modules design was published in Polymorphism
in October (MacQueen 1985).

From 1985 on, Luca’s involvement in Standard ML tapered off because of
other interests (see Section 4 below). Meanwhile, between 1985 and 1989, the
refinement of the Standard ML design proceeded and work on its formal definition
was completed. Counting design documents and versions of the formal definition,
there were a total of (at least) 21 design or definition versions produced between
April 1983 and the end of 1989, not counting modules and I/O.

3.2 Edinburgh ML

In 1982, while Luca was working on the Unix port of VAX ML at Bell Labs, back
in Edinburgh Kevin Mitchell began a project to rewrite the VAX ML compiler in
ML (the VAX ML dialect), replacing the Pascal code and thus allowing the com-
piler to bootstrap itself. John Scott and Alan Mycroft soon joined Kevin on the
project. The runtime system of Edinburgh ML was rewritten in VAX assembly
language, and then later rewritten in C on Unix based on a FAM bytecode inter-
preter, which saved significant code space. John Scott rewrote the parser, using
an elaborate version of Vaughan Pratt’s top-down precedence parser technique

208

(Pratt 1973)11, and Alan Mycroft rewrote the type checker. One of the technical
challenges of the project was that it was hoped the compiler could be ported to
run on a locally developed workstation that had limited memory and no virtual
memory.

The resulting new compiler was called Edinburgh ML, and initially it did not
modify the language from VAX ML. But after the first Standard ML meeting
in April, 1983 Edinburgh ML began to serve as a prototyping testbed for the
Standard ML design along side VAX ML. Alan Mycroft left for Cambridge in the
fall of 1984, and later Nick Rothwell and Bob Harper (in 1985) joined the effort,
and K. V. S. Prasad was also involved at some point. Bob Harper rewrote the
type checker again and implemented the module system as it stood at that point.
This made Edinburgh a quite close approximation to Standard ML, although
internally much of the compiler code remained in the VAX ML dialect, so the
compiler had a general abstract syntax into which both VAX ML and Standard
ML could be translated. Unfortunately this meant that the module system could
not be exploited to organize the structure of the compiler itself, so the code
was rather difficult to work with. In March, 1986, when Andrew Appel arrived
in Princeton, he and I used the Edinburgh ML compiler to begin developing a
new compiler, Standard ML of New Jersey, from scratch in Standard ML. We
bootstrapped our compiler in the spring of 1987 just before exhausting certain
size/space limitations in the Edinburgh compiler.

4 Beside and Beyond ML

During 1984 and 1985, Luca’s effort on Standard ML was diluted as he began
to work on other projects, such as the design and implementation of his own
language, Amber (Cardelli 1986a,b). He also found time to write one of the
most influential papers on type theory of the time, “A semantics of multiple
inheritance” (Cardelli 1984c), which introduced the concept of record (width)
subtyping.

I should also mention his very valuable expository efforts, which helped to
propagate and popularize important ideas in type systems research. These in-
clude particularly the papers “Basic Polymorphic Typechecking” (Cardelli 1985),
“On Understanding Types, Data Abstraction, and Polymorphism” (Cardelli and

11Vaughan Pratt had spent the summer of 1975 in Edinburgh, and had taught everyone his
clever, quick hack for writing parsers. Both the LCF/ML parser (Malcolm Newey) and the
HOPE parser (MacQueen) were written using his technique, partly because none of us knew
about parser generators at that time, and it seemed much easier than writing a recursive descent
parser. The drawback was that it was hard to use symbols for more than one purpose, hence
the “.”, “;”, “;;” separators!

209

Wegner 1985), and “Typeful Programming” (Cardelli 1989).
In the fall of 1985 Luca moved from Bell Labs to DEC SRC in California,

where his language research did not slow down at all! During the next decade he
developed Quest, Fsub, and Obliq, and collaborated on the design of Modula 3.
He also became a major player in research on type systems for object-oriented
languages, and participated in the ML2000 discussions. But I will leave the story
of those accomplishments to other contributors to this celebration.

5 Summary

Luca had the vision to see ML as a successful general purpose language, and he
had the energy and talent to pursue this vision by designing and implementing
the first free-standing version of ML. He followed that accomplishment up by
becoming a key participant in the collective process of designing and prototyping
Standard ML.

6 Acknowledgements

I want to thank Luca Cardelli, Bob Harper, Kevin Mitchell, Alan Mycroft, Mike
Gordon, and Larry Paulson for useful recollections, helpful answers to my many
questions and some bits of useful documentation.

References

R. M. Burstall and R. J. Popplestone. Pop-2 reference manual. In E. Dale
and D. Mitchie, editors, Machine Intelligence 2, pages 207–46. University of
Edinburgh Press, 1968.

R. M. Burstall, D. B. MacQueen, and D. Sannella. HOPE: an experimental
applicative language. In Conference Record of the 1980 Lisp Conference, pages
136–143, August 1980.

L. Cardelli. The ML abstract machine. Early description of the ML abstract
machine (AM), precursor to the FAM., November 1980a.

L. Cardelli. A module exchange format. Description of a textual format for
exporting internal ML data structures., December 1980b.

L. Cardelli. Differences between VAX and DEC-10 ML. file mlchanges.pdf, 1981.

210

L. Cardelli. Edinburgh ML. README file for VAX ML (ML under VMS)
distribution., March 1982a.

L. Cardelli. An Algebraic Approach to Hardware Description and Verification.
PhD thesis, University of Edinburgh, April 1982b.

L. Cardelli. Known vax-ml system locations. Polymorphism: The ML/LCF/Hope
Newsletter, 1(0), November 1982c.

L. Cardelli. ML under VMS. Department of Computer Science, Univ of Edin-
burgh, 1982d.

L. Cardelli. The Functional Abstract Machine. Polymorphism: The
ML/LCF/Hope Newsletter, 1(1), January 1983a.

L. Cardelli. Stream input/output. Polymorphism: The ML/LCF/Hope Newslet-
ter, 1(3), December 1983b.

L. Cardelli. ML under Unix. Bell Labs, August 1983c. Pose 2.

L. Cardelli. Compiling a functional language. In Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pages 208–217, New York,
NY, USA, 1984a. ACM.

L. Cardelli. ML under Unix. Bell Labs, April 1984b. Manual for ML under Unix,
Pose 4.

L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen,
and G. Plotkin, editors, International Symposium on Semantics of Data Types,
volume 173 of Lecture Notes in Computer Science, pages 479–504, June 1984c.

L. Cardelli. Basic polymorphic typechecking. Polymorphism: The ML/LCF/Hope
Newsletter, 2(1), January 1985.

L. Cardelli. Amber. In Proceedings of the Thirteenth Spring School of the LITP on
Combinators and Functional Programming Languages, volume 242 of Lecture
Notes in Computer Science, pages 21–47, 1986a.

L. Cardelli. The amber machine. In Proceedings of the Thirteenth Spring School
of the LITP on Combinators and Functional Programming Languages, volume
242 of Lecture Notes in Computer Science, pages 48–70, 1986b.

L. Cardelli. Typeful programming. Technical Report 45, Digital Systems Research
Center, May 1989.

211

L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471–522, December 1985.

L. Damas. Type Assignment in Programming Languages. PhD thesis, Department
of Computer Science, University of Edinburgh, 1985.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of
LNCS. Springer-Verlag, New York, 1979.

M. J. C. Gordon. Locations as first class objects in ML. Note to Luis Damas
proposing a research topic., 1980.

R. Harper. Report on the Standard ML Meeting, Edinburgh, May 23-25, 1985
(DRAFT). Draft minutes of the May, 1985 Standard ML meeting., 1985a.

R. W. Harper. Standard ML input/output. Polymorphism: The ML/LCF/Hope
Newsletter, 2(1), January 1985b.

K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-Verlag, 2nd
edition, 1978.

D. MacQueen. Modules for Standard ML. Polymorphism: The ML/LCF/Hope
Newsletter, 2(2), October 1985.

D. MacQueen and R. Milner. Report on the Standard ML Meeting, Edinburgh,
6-8 June 1984. Polymorphism: The ML/LCF/Hope Newsletter, 2(1), January
1985.

D. B. MacQueen. Structure and parameterization in a typed functional language.
In Proc. 1981 Symposium on Functional Languages and Computer Architecture,
pages 524–538, June 1981. Gothenburg, Sweden.

D. B. MacQueen. Modules for Standard ML. In Proceedings 1984 ACM Sympo-
sium on LISP and Functional Programming, pages 198–207, August 1984.

R. Milne. The Formal Semantics of Computer Languages and their Implementa-
tions. PhD thesis, Oxford University, 1974.

R. Milner. A Proposal for Standard ML (TENTATIVE). first manuscript draft
of the Standard ML Proposal, April 1983a.

R. Milner. Changes to Proposal for Standard ML. first manuscript draft of the
Standard ML proposal, May 1983b.

R. Milner. A Proposal for Standard ML (second draft). second manuscript draft
of the Standard ML proposal, June 1983c.

212

R. Milner. A Proposal for Standard ML. Technical Report CSR-157-83, Dept of
Computer Science, Univ of Edinburgh, December 1983d.

R. Milner. A Proposal for Standard ML. In Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming, pages 184–197, New York, NY,
USA, 1984. ACM.

K. Mitchell and R. Milner. Proposal for I/O in Standard ML. draft of an I/O
proposal, February 1985.

V. R. Pratt. Top down operator precedence. In POPL ’73: Proceedings of the 1st
annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Langauges, pages 41–51, 1973.

N. Saito. ML System on Vax Unix. README for Saito’s Unix port of VAX ML,
March 1982.

R. W. Witty and C. P. Wadsworth. ML, LCF, and HOPE. Record of a meeting
about the future of ML, LCF, and HOPE at Rutherford Appleton Laboratory,
November 1982.

213

214

Tiny Bang: Type Inference and Pattern
Matching on Steroids

Pottayil Harisanker Menon Zachary Palmer
Alexander Rozenshteyn Scott Smith

The Johns Hopkins University

{pharisa2, zachary.palmer, arozens1, scott}@jhu.edu

Abstract

The ML language and its descendants have proven the power of type
inference combined with pattern matching. But the concepts can be taken
only so far in those language designs: some declared types are needed, and
the systems are not compatible with subtyping and thus object-based styles
of programming are challenging.

In this paper we show how an extreme approach may lead to a better
language design. We describe Tiny Bang, a core language where all data
destruction is expressed via pattern matching. We show how a subtype in-
ference methodology can be used which never requires program annotations
but still supports programmer-declared types as interface specifications.
These programmer-declared typings are also defined in terms of pattern
matching via an extension of pattern matching to higher-order functions.

1 Introduction
Pattern matching and type inference are well-known to be useful programming
language constructs. In this paper we show how an extreme application of these
concepts may lead to a better language design: we require all types be inferred
and combine patterns with application to give a universal data destructor. In
particular, we describe TinyBang, a core language with full type inference and
flexible pattern matching, and show some benefits of this flexibility.

TinyBang’s type system is grounded in subtype constraint type theory (Aiken
et al. 1994), with a series of improvements to both expression syntax and typing.
We briefly outline these features and some of their benefits.

215

Type-indexed records supporting asymmetric concatenation TinyBang
uses type-indexed records: records for which content can be projected based on its
type (Shields and Meijer 2001). For example, consider the type-indexed record
{foo = 45; bar = 22; 13}: the untagged element 13 is implicitly tagged with
type int, and projecting int from this record would yield 13. Since records
are type-indexed, we do not need to distinguish records from non-records; 22,
for example, is a type-indexed record of one (integer) field. Variants are also
just a special case of 1-ary records of labeled data, so ‘Some 3 expresses the
ML Some(3). Type-indexed records are thus a universal data type and lend
themselves to flexible programming patterns in the same spirit as Lisp lists and
Smalltalk objects.

TinyBang records support asymmetric concatenation via the & operator;
informally, {foo = 45; bar = 22; 13} & {baz = 45; bar = 10; 99} results in
{foo = 45; bar = 22; baz = 45; 13} since the left side is given priority for the
overlap. Asymmetric concatenation is key for supporting flexible object concate-
nation, as well as for standard notions of inheritance. We term the & operation
onioning.

Dependently typed first-class cases TinyBang’s first-class functions are
written “pattern -> expression”. In this way, first-class functions are also first-class
case clauses. We permit the concatenation of these clauses via & to give multiple
dispatch possibilities. TinyBang’s first-class functions generalize the first-class
cases of Blume et al. (2006).

In standard type systems, all case branches are constrained to have the same
result type, losing the dependency between the variant input and the output.
This problem is solved in TinyBang by giving compound functions dependent
types: application of a compound function can return a different type based on
the variant constructor of its argument. Additionally, we define a novel notion
of slice which allows the type of bindings in a case arm to be refined based on
which pattern was matched. Dependently typed first-class cases are critical for
typing our object encodings, a topic we discuss later in this section.

Object-oriented programming in TinyBang Objects are commonly en-
coded as records of functions, and method invocation is achieved by invoking a
function in the record. While such an encoding could be made to work in Tiny-
Bang, it is more complex and so we opt to use a variant-based encoding: objects
are message-processing functions which case on the form of message, and method
invocation is a simple function call. This dual encoding can be challenging to type
since the case branches (i.e., the different methods) may return different types;
the TinyBang type system is however flexible enough to type such a case. Ad-

216

ditionally, TinyBang’s first-class case clauses support object concatenation and
thus mixins and subclassing.

A key idea of Bono and Fisher (1998) is a sealing transformation where an ob-
ject template turns into a messageable (but non-extensible) object. Our encoding
of objects extends that idea by adding a resealing operation: the type of self
is captured in the closure of a message dispatch function that can be overridden
due to the asymmetric nature of onioning in TinyBang.

Higher order pattern matching We also extend pattern matching in a new
direction: higher-order function pattern matching. Function patterns can match
a function based on its behavior : the pattern int ~> char, for instance, matches
functions which will accept an int argument and return a char. This pattern
matching check is performed at compile time by the type system, meaning that
there is minimal runtime overhead. Note that our notion of higher-order function
pattern is not simply matching against a declared or nominal type: it is resursively
invoking the typechecker on the function to verify it has the declared type.

There are several potentially important uses of function patterns. First, they
support a type assertion language which TinyBang otherwise lacks (the inferred
types are constraint sets which are unreadable). This overlay is similar to how dy-
namic contracts (Findler and Felleisen 2002) are an independent layer of program
specification; unlike contracts, function pattern matching is statically verified
on all inputs. Second, higher-order function patterns support dynamic dispatch
based on what kind of data an input function will be able to process.

2 Programming in TinyBang
This section gives an overview of the TinyBang language. The formal semantics
are defined in Smith et al. (2014b).

2.1 Language Features for Flexible Objects

While there are many dimensions of flexibility of TinyBang, we initially focus
on object-oriented programming since TinyBang is particularly well-suited to ex-
pressing the kinds of flexible object operations found in scripting languages. The
TinyBang syntax used in this section appears in Figure 2.1. Operator prece-
dence is as follows: labels (e.g. ‘Foo 0) have highest parse precedence, onioning
(e.g. ‘A 0 & ‘B 0) has the next highest precedence, and function arrows (e.g.
x -> ‘A x) have the least precedence.

Program types take the form of a set of subtype constraints (Aiken et al. 1994);
for the purposes of this section we will be informal about type syntax. Our formal

217

e ::= x | () | Z | l e | ref e | ! e | e & e | expressions
φ -> e | e� e | e e | letx = e in e | x := e in e

φ ::= x | () | int | l φ | φ ~>φ | φ &φ | ρ patterns
� ::= + | - | == | <= | >= operators
ρ ::= ’(alphanumeric) opaque patterns
l ::= ‘(alphanumeric) labels

Figure 2.1: TinyBang Syntax

type constraint syntax can be viewed as an A-normalized type grammar, and
this grammar implicitly supports (positive) union types by giving a type variable
multiple lower bounds: for example, int ∪ bool is equivalently expressed as a
type α with constraints int <: α and bool <: α. The details of the type system
are presented in (Smith et al. 2014b).

Simple functions as methods We begin by considering the oversimplified
case of an object with a single method and no fields or self-awareness. In the
variant encoding, such an object is represented by a function which matches on a
single case. We write functions as φ -> e, with φ being a pattern to match against
the function’s argument. Combining pattern match with function definition is
also possible in ML and Haskell, but we go further: there is no need for any match
syntax in TinyBang since match can be encoded as a pattern and its application.
We call these one-clause pattern-matching functions simple functions. Consider
the following object and its invocation:

1 let obj = (‘twice x -> x + x) in obj (‘twice 4)

The syntax ‘twice 4 is a label constructor similar to an OCaml polymorphic
variant. The simple function ‘twice x -> x + x takes a ‘twice label argument
and binds its contents to the variable x. Note that the expression ‘twice 4
represents a first-class message; the object invocation is represented with its
arguments as a variant.

Unlike a traditional match expression, a simple function is only capable of
matching only one pattern. To express general match expressions, functions are
concatenated via the higher-order onion operation & to give compound functions.
We can thus write a dispatch on an object with two methods simply as:

1 let obj = (‘twice x -> x + x) & (‘isZero x -> x == 0) in
2 obj ‘twice 4

So, ML match expressions can be encoded using the & operator using one
simple function for each case. Function conjunction generalizes the first-class

218

cases of (Blume et al. 2006); that work does not support “override” of existing
clauses or heterogeneously typed case branches.

Dependent pattern types The above shows how to encode an object with
multiple methods as an onion of simple functions. But we must be careful not
to type this encoding in the way that match/case expressions are traditionally
typed. The analogous OCaml match/case expression

1 let obj m = (match m with
2 | ‘twice x -> x + x
3 | ‘isZero x -> x == 0) in . . .

will not typecheck; OCaml match/case expressions must return the same type in
all case branches.1 Instead, we give the function a dependent pattern type that
is informally (‘twice int → int) & (‘isZero int → bool). If the function is
applied in the context where the type of message is known, the appropriate result
type is inferred. Because of this dependent typing, match expressions encoded in
TinyBang may be heterogeneous; that is, each case branch may have a different
type in a meaningful way. These dependent pattern types extend the expres-
siveness of conditional constraint types (Aiken et al. 1994; Pottier 2000) in a
dimension critical for typing objects.

Onions are records There is no record syntax in TinyBang; we only require
the record concatenation operator & so we can append values into type-indexed
records. We informally call these records onions to signify these properties. Here
is an example of how objects can be encoded with multi-argument methods:

1 let obj = (‘sum (‘x x & ‘y y) -> x + y)
2 & (‘equal (‘x x & ‘y y) -> x == y)
3 in obj (‘sum (‘x 3 & ‘y 2))

The ‘x 3 & ‘y 2 is an onion of two labels and amounts to a two-label record.
This ‘sum-labeled onion is passed to the pattern ‘x x & ‘y y. (We highlight
the pattern & differently than the onioning & because the former is a pattern
conjunction operator: the value must match both subpatterns.)

2.2 Self-Awareness and Resealable Objects

Up to this point objects have not been able to invoke their own methods, so the
encoding is incomplete. To model self-reference we build on the work of (Bono
and Fisher 1998), where an object exists in one of two states: as a prototype,

1The recent OCaml 4 GADT extension mitigates this difficulty but requires an explicit type
declaration, type annotations, and only works under a closed world assumption.

219

which can be extended but not messaged, or as a “proper” object, which can be
messaged but not extended. A prototype may be “sealed” to transform it into a
proper object, at which point it may never again be extended.

Unlike the aforecited work, our encoding permits sealed objects to be extended
and then resealed. This flexibility of TinyBang allows the sharp phase distinction
between prototypes and proper objects to be relaxed. All object extension below
will be performed on sealed objects. Object sealing in TinyBang requires no
special metatheory; it is defined directly as a function seal, which takes an object
obj and returns its sealed counterpart. We define seal as follows:

1 let fixpoint =
2 f -> (g -> x -> g g x) (h -> y -> f (h h) y) in
3 let seal = fixpoint (seal -> obj ->
4 (msg -> obj (msg & ‘self (seal obj))) & obj) in
5 let obj = (‘twice x -> x + x) &
6 (‘quad x & ‘self self ->
7 self (‘twice x) + self (‘twice x))
8 let sObj = seal obj in
9 let twenty = sObj ‘quad 5 in // returns 20

The seal function operates by adding a message handler which captures every
message sent to obj. The message handler adds a ‘self component to the right
of the message and then passes it to the original object. We require fixpoint to
ensure that this self-reference is also sealed. Thus, every message send to sObj
will, in effect, be sent to obj with ‘self sObj attached to the right.

Extending previously sealed objects In the self binding function above, the
value of self is onioned onto the right of the message; this gives any explicit value
of ‘self in a message passed to a sealed object priority over the ‘self provided by
the self binding function (onioning is asymmetric with left precedence). Consider
the following continuation of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16
2 let obj2 = (‘twice x -> x) & sObj in
3 let sObj2 = seal obj2 in
4 let eight = sObj2 ‘quad 4 in . . . // returns 8

We can extend sObj after messaging it, here overriding the ‘twice message;
sObj2 represents the (re-)sealed version of this new object. sObj2 properly knows
its “new” self due to the resealing, evidenced here by how ‘quad invokes the new
‘twice. To see why this works let us trace the execution. Expanding the sealing
of sObj2, sObj2 (‘quad 4) has the same effect as obj2 (‘quad 4 & ‘self sObj2),
which has the same effect as sObj (‘quad 4 & ‘self sObj2). Recall sObj is
also a sealed object which adds a ‘self component to the right ; thus this
has the same effect as obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because

220

the leftmost ‘self has priority, the ‘self is properly sObj2 here. We see
from the original definition of obj that it sends a ‘twice message to the con-
tents of self (here, sObj2), which then follows the same pattern as above until
obj (‘twice 4 & ‘self sObj2 & ‘self sObj) is invoked (two times – once for
each side of +).

Sealed and resealed objects obey the desired object subtyping laws because
we “tie the knot” on self using seal, meaning there is no contravariant self
parameter on object method calls to invalidate object subtyping. Additionally,
our type system includes parametric polymorphism and so sObj and the re-sealed
sObj2 do not have to share the same self type, and the fact that & is a functional
extension operation means that there will be no pollution between the two distinct
self types. Key to the success of this encoding is the asymmetric nature of &: it
allows us to override the default ‘self parameter.

Resealing is not perfect: if information about the self type is lost due to e.g.
the object being extended having been placed in a heterogenous collection, the self
type may not be expressive enough to support resealing. There still is a possibility
of extension without resealing in this case if no methods are overridden.

Onioning it all together Onions also provide a natural mechanism for in-
cluding fields; we simply concatenate them to the functions that represent the
methods. Consider the following object which stores and increments a counter:

1 let obj = seal (‘x (ref 0) &
2 (‘inc _ & ‘self self ->
3 (‘x x -> x := !x + 1 in !x) self))
4 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record field (the ‘x) and a
function (the handler for ‘inc). This is sound because onions are type-indexed
(Shields and Meijer 2001), meaning that they use the types of the values them-
selves to identify data. For this particular example, invocation obj ‘inc () (note
() is an empty onion, a 0-ary conjunction) correctly increments in spite of the
presence of the ‘x label in obj.

2.3 Flexible Object Operations

Default arguments and overloading TinyBang can encode default argu-
ments. For instance, consider:

1 let obj = seal ((‘add (‘x x & ‘y y) -> x + y)
2 & (‘sub (‘x x & ‘y y) -> x - y)) in
3 let dflt = obj -> (‘add a -> obj (‘add (a & ‘x 1))) & obj in
4 let obj2 = dflt obj in
5 obj2 (‘add (‘y 3)) + obj2 (‘add (‘x 7 & ‘y 2)) // 4 + 9

221

Object dflt overrides obj’s ‘add to make 1 the default value for ‘x. Because
the ‘x 1 is onioned onto the right of a, it will have no effect if an ‘x is explicitly
provided in the message.

The pattern-matching semantics of functions provides a simple mechanism for
defining overloaded functions. We might originally define negation on the integers
as

1 let neg = x & int -> 0 - x in . . .

Later code could then extend the definition of negation to include boolean values:
1 let neg = (‘True _ -> ‘False ())
2 & (‘False _ -> ‘True ()) & neg in . . .

Mixins The following example shows how a simple two-dimensional point ob-
ject can be combined with a mixin providing extra methods (we use sugar o.x for
(‘x x -> x) o):

1 let point = seal (‘x (ref 0) & ‘y (ref 0)
2 & (‘l1 _ & ‘self self -> self.x + self.y)
3 & (‘isZero _ & ‘self self ->
4 self.x == 0 and self.y == 0)) in
5 let mixin = ‘near _ & ‘self self -> self ‘l1 ()) < 4) in
6 let mixPt = seal (point & mixin) in mixPt ‘near ()

Here mixin is a function which invokes the value passed as self. Because an
object’s methods are just functions onioned together, onioning mixin into point
is sufficient to produce a properly functioning mixPt.

The above example typechecks in TinyBang; parametric polymorphism is used
to allow point, mixin, and mixPt to have different self-types. The mixin variable
has the approximate type “(‘near unit & ‘self α) → bool where α is an object
capable of receiving the ‘l1 message and producing an int”.

3 Function Patterns as Interfaces
TinyBang also includes function patterns. Just as other patterns match data
based on its shape, TinyBang’s function patterns match higher-order functions
based on their behavior: a function pattern φ1 ~>φ2 matches an argument which
(1) is a function, (2) takes any argument matching the pattern φ1, and (3) returns
a result matching the pattern φ2. For instance, consider the following:

1 let callDefault = ((() ~> int) & f -> f ())
2 & ((int ~> int) & f -> f 1) in
3 callDefault (n -> n + 3)

222

The purpose of callDefault is to take a function from either the empty record
or an integer onto an integer; callDefault then invokes that function with some
default argument of the correct type. Here, since the argument is a function from
integers onto integers, the simple function on line 2 is invoked.

Note that, as per the function conjunction rules described above, the simple
function on line 1 is skipped, because the argument does not match its pattern.
There is no explicit pattern or type signature in n -> n + 3 which dictates this
behavior; the dispatch to the right side of callDefault is based on the type
inferred for the argument.

To check if a function argument φ -> e matches the pattern φ1 ~>φ2, we sim-
ply verify that the function applied to an argument of the form of the pattern φ1

gives a result matching φ2. This amounts to a subordinate typecheck: if the appli-
cation of the higher-order function argument to this fabricated type successfully
typechecks and matches φ2, then the function matches the pattern; otherwise, it
does not.

Although the algorithm we present above is intuitive, we must take care to
ensure that our definitions are well-founded. In particular it could become pos-
sible for the result of one function pattern match to influence the outcome of
another. To avoid paradoxes, we incorporate an occurrence check and force all
self-referential cases to fail typechecking.

3.1 Patterns as Type Signatures

One well-known problem with type systems using subtype constraint inference
(such as TinyBang’s) is that the inferred types are incredibly complex and there-
fore impractical for programmers to read, write, or understand. Often, this is
because the types are “too good”: they incorporate subtle subtyping relationships
which are irrelevant to the programmer. Even with extensive simplification (Pot-
tier 1999; Eifrig et al. 1995), the inferred types of programs can be of the same
magnitude in size as the program itself! Fortunately, function patterns provide
us with an alternative: because our pattern grammar is now sufficiently powerful,
it can be used (at the programmer’s option) to encode the typical use cases of
type signatures in other languages. For instance,

1 let f = (x -> x + 1) : int ~> int

may be viewed as sugar for
1 let f = let g = . . . in
2 (a & (int ~> int) -> a) g

Here, (a & (int ~> int) -> a) is a restricted form of the identity function
which only applies to functions from int onto int; thus, if g is not such a function,
a type error will arise.

223

Traditional constraint type systems typically use the constrained types them-
selves to define type signatures but this problem may be undecidable in the face
of subtyping (Henglein and Rehof 1998). TinyBang’s pattern matching does not
suffer this complexity because a simpler question is being asked since there is no
subtyping on the input type of our function patterns.

While the underlying The TinyBang type system infers polymorphic types for
functions, it would also be nice to allow such types in declarations. So, TinyBang
supports parametric pattern polymorphism via opaque pattern variables, written
’a to mimic ML syntax. An example of use appears below:

1 let id = x -> x : ’a ~> ’a in . . .

As per the desugaring above, this will match id against the pattern ’a ~> ’a.
Externally, ’a behaves like a type variable: the pattern matches only functions
which return the same type they receive. But our algorithm works by fabricating
an (opaque) type nonce and applying the function (in this case, id) to it.

4 Related Work
TinyBang shares some features and goals with CDuce (Castagna et al. 2014): both
aim to be flexible typed languages built around constraint subtyping. CDuce uses
explicit union/intersection types whereas we embed them in subtype constraints.
We have complete type inference whereas CDuce is a declared type language
with an overlay of local type inference. Our flexible case clause extension and
record concatenation operations are not found in their theory. CDuce has no
precise analogue of our function patterns (it is possible to match on a function
type in CDuce, but it is matching against the type declared and not the function’s
behavior). CDuce takes a local approach to type inference; this has the important
advantage of being modular (which we are not), but the disadvantage of not being
provably complete.

TinyBang’s object resealing is inspired by the Bono-Fisher object calculus
(Bono and Fisher 1998). Objects in this calculus must be “sealed” before they
are messaged; unlike our resealing, sealed objects cannot be extended. Some re-
lated works relax this restriction but add others Riecke and Stone (2002); Bettini
et al. (2011) Unlike all previous works, in our approach (re-)sealing is expressible
directly in the existing language syntax.

Typed multimethods (Millstein and Chambers 1999) perform a dispatch sim-
ilar to TinyBang’s dispatch on compound functions, but multimethod dispatch is
nominally typed while compound function dispatch is structurally typed. First-
class cases (Blume et al. 2006) allow composition of case branches much like
TinyBang. In Blume et al. (2006), however, general case concatenation requires

224

a phase distinction between constructing a case and matching with it. TinyBang
has a form of dependent type which allows different case branches to return dif-
ferent types; this generalizes the expressiveness of conditional constraints (Aiken
et al. 1994; Pottier 2000) and is related to support for typed first-class messages
a la Nishimura (1998); Pottier (2000) – first-class messages are just labeled data
in our encoding.

TinyBang’s onions are a form of record supporting typed asymmetric con-
catenation. The bulk of work on typing record extension addresses symmetric
concatenation only (Rémy 1994). Standard typed record-based encodings of in-
heritance (Bruce et al. 1999) avoid the problem of typing first-class concatenation
by reconstructing records rather than extending them, but this requires the su-
perclass to be fixed statically. A combination of conditional constraints and row
types can be used to type record extension (Pottier 2000); TinyBang uses an
approach that does not need row types.

To our knowledge there is no direct precedent for structural higher-order func-
tion pattern matching. Our interest in the topic was inspired by the power of
runtime contracts (Findler and Felleisen 2002); function patterns are more static
and declarative compared to contracts, because higher-order function contracts
only enforce the contract at runtime and only on the values they were invoked
on, whereas higher-order function patterns are statically enforced at all potential
runtime values.

5 Conclusions
Here we have outlined TinyBang, a core language combining flexible scripting-
style syntax with full static type inference. We illustrated how its flexible opera-
tions can be used to encode standard object-oriented paradigms. TinyBang also
includes higher-order function pattern matching that match on the behavior of
the function. Function pattern matching can be used for in-place type refinements
and interface declarations for subtype constraint systems.

TinyBang without function patterns is proved type sound and decidable in
(Smith et al. 2014b), and an implementation may be downloaded from (Smith
et al. 2014a). We do not expect programmers to write in TinyBang. Instead, pro-
grammers would write in BigBang, a language we are developing which includes
syntax for objects, classes, and so on, and which will de-sugar to TinyBang.

References
A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types. In

POPL 21, pages 163–173, 1994.

225

L. Bettini, V. Bono, and B. Venneri. Delegation by object composition. Science of
Computer Programming, 76:992–1014, 2011.

M. Blume, U. A. Acar, and W. Chae. Extensible programming with first-class cases. In
ICFP, pages 239–250, 2006.

V. Bono and K. Fisher. An imperative, first-order calculus with object extension. In
ECOOP, pages 462–497. Springer Verlag, 1998.

K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information
and Computation, 155(1-2):108–133, 1999.

G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, and L. Padovani. Polymorphic
functions with set-theoretic types. part 1: Syntax, semantics, and evaluation. In
POPL, 2014.

J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In
OOPSLA Conference Proceedings, volume 30(10), pages 169–184, 1995.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP, 2002.

F. Henglein and J. Rehof. Constraint automata and the complexity of recursive subtype
entailment. In ICALP, volume 1443 of Lecture Notes in Computer Science, 1998.

T. D. Millstein and C. Chambers. Modular statically typed multimethods. In ECOOP,
pages 279–303. Springer-Verlag, 1999.

S. Nishimura. Static typing for dynamic messages. In POPL, 1998.

F. Pottier. A framework for type inference with subtyping. In ICFP, 1999.

F. Pottier. A versatile constraint-based type inference system. Nordic J. of Computing,
7(4):312–347, 2000.

D. Rémy. Type inference for records in a natural extension of ML. In Theoretical
Aspects Of Object-Oriented Programming. MIT Press, 1994.

J. G. Riecke and C. A. Stone. Privacy via subsumption. Inf. Comput., 172(1):2–28,
Feb. 2002.

M. Shields and E. Meijer. Type-indexed rows. In POPL, pages 261–275, 2001.

S. Smith, P. H. Menon, Z. Palmer, and A. Rozenshteyn. Tinybang implementation, Jan
2014a. http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz.

S. Smith, P. H. Menon, Z. Palmer, and A. Rozenshteyn. Types for flexible objects.
Technical report, The Johns Hopkins University Programming Languages Labo-
ratory, 2014b. http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_
2014-01-13.pdf.

226

http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz
http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-01-13.pdf
http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-01-13.pdf

The Spider Calculus: Computing in Active
Graphs

Dedicated to Luca Cardelli on his 60th Birthday

Benjamin C. Pierce
University of Pennsylvania

Alessandro Romanel
CIBIO University of Trento

Daniel Wagner
University of Pennsylvania

Abstract

We explore a new class of process calculi, collectively called spider calculi,
in which processes inhabit the nodes of a directed graph, evolving and
communicating by local structural mutations. We identify a kernel spider
calculus that is both minimal and expressive. Processes in this kernel calcu-
lus can construct arbitrary finite graphs, encode common data structures,
and implement the communication primitives of the π-calculus.

1 Introduction

The execution environment for modern software is fundamentally graph-structured.
On both large and small scales—from routers and fiber to processors, memories,
and buses—software components inhabit different physical or logical locations,
and information must cross links when they cooperate. Ordinarily, this graph
structure is hidden behind simpler abstractions such as point-to-point internet
communication or shared memory on a multiprocessor. But there are also situa-
tions where we want to deal with it explicitly.

For example, implementations of these abstraction layers must themselves deal
directly with the underlying graph structure. This includes internet protocols
for routing, broadcast, name resolution, hardware cache coherence mechanisms,
etc. There are also applications that work directly with the graph structure
to increase efficiency. Content distribution networks such as Akamai (Maggs
2001) and Coral (Freedman et al. 2004) fall in this category, as do numerous
distributed graph algorithms—e.g., algorithms for answering reachability queries

227

on streaming graphs (Unel et al. 2009) and approximating shortest paths with
incomplete knowledge of the graph (Henzinger et al. 1997).

In these applications, the graph structure is relatively fixed. In other cases,
the graph may change as the program evolves—for example, in routing algorithms
for ad hoc mobile networks. Indeed, there are cases where the program itself may
alter the topology of the graph in which it is working. Peer-to-peer networks do
just this, establishing logical graph structures for organizing communication over
the location-transparent abstraction of internet routing. Also, some well-known
parallel algorithms operate on virtual graphs: Delaunay mesh triangulation mod-
ifies graphs in which nodes represent physical locations (Kulkarni et al. 2007),
and n-body simulations often use graphs in which each node represents a volume
of the space being simulated (Barnes and Hut 1986).

In the theoretical literature, there has been a corresponding interest in foun-
dational models that explicitly embody notions of locality and connectivity. Vari-
ants of the π-calculus such as Nomadic Pict (Wojciechowski and Sewell 2000) and
the Distributed π-calculus (Hennessy 2007) model mobile computation in the in-
ternet, allowing direct communication only between processes that have migrated
to the same location. Cardelli and Gordon’s Ambient Calculus (Cardelli and
Gordon 2000), the biologically-inspired Brane Calculus (Cardelli 2004), and their
many variants (Bugliesi et al. 2001; Cardelli et al. 1999; Cardelli and Gordon 1999;
Levi and Sangiorgi 2003, etc.) structure locations into a tree; process movement
is restricted to paths in the tree, and processes can alter the tree structure in the
immediate neighborhood of their current location.

We study here a class of systems, dubbed Spider Calculi, which generalize
the ideas of the Ambient Calculus to arbitrary graphs. Our goal in this short
paper is to take a first step into this new design space: to experiment with
basic programming idioms, and to identify a kernel spider calculus that strikes an
attractive balance between expressiveness and simplicity. Some omitted technical
details and a discussion of alternative primitives can be found in a longer online
version (Pierce et al. 2010).

2 Overview

We consider computing in edge-labeled, directed graphs—that is, the “universe”
in which computation happens (called the web, naturally) is a graph with labeled
edges and anonymous nodes.We call the edges links . Self-links are allowed, as
are multiple links between a given pair of nodes and multiple links with the same
label. Also, we prohibit “action at a distance.” Each computational process
(“spider”) is associated with one node at any given time, and only the links
incident to that node are visible to or modifiable. To observe or modify links

228

elsewhere in the graph, the spider must first travel there.
To describe computations in graphs, we need three things. First, we need a

notation for describing the graphs themselves. Second, we need a notation for
local computations at the nodes, including data structures, conditionals, loops,
communication, synchronization, and so forth. And third, we need ways for
processes to navigate and observe the graph. In the interest of parsimony, we have
combined these three as much as possible. In particular, there is no fundamental
need for “local data”; all the data and control structures we need can be encoded
in the structure of the web, just as in the λ-calculus and π-calculus, which encode
local data as functions or processes.

One consequence of this choice is that there are really two distinct kinds of
links: links in some “real graph” and links that are created and used for spiders’
local computation. To avoid interference between the two kinds, and also to
avoid interference between the local computations of distinct spiders, we assume
that link names are scoped—in particular, there is a way to generate fresh link
names that are only known to the spider that generates them—and that a spider
can neither observe nor affect links whose names it does not know. Formally, we
follow the π-calculus and its relatives by introducing a restriction operator ν for
this purpose.

Spiders are written using a few generic combinators—an inert “null process,”
parallel composition, and replication—plus a small set of primitive actions. The
actions express atomic steps that modify and navigate the graph.

We use two benchmarks to test our primitives: building arbitrarily shaped
finite graphs and emulating the π-calculus. Our experience experimenting with
spider programming suggests that any calculus that can do these two things is
expressive enough to capture a broad range of computations in and on graphs.

3 Example

Any “graph computing calculus” should certainly be expressive enough to con-
struct finite graphs of arbitrary shapes. For instance, consider the graph in Figure
1d. We’d like to write a spider program that builds this graph, beginning with a
single node containing a single spider. Figures 1a, 1b, and 1c show intermediate
webs; these will act as subgoals.

The first task is to build a new node with edges to it. We introduce three
primitives for this purpose: create, copy, and reverse. The behavior of the create
action is sketched in Figure 2a (a formal reduction semantics is given in the next
section). The small dashed lines represent other links that may be incident to the
node; these are not affected by the create operation. The figure leaves implicit
the fact that there may be other spiders running at this node, which are also

229

a

b

c

nil

nil

nil

Se

(a) single path

a d

b e

c

nil

nil

nil

nil

nil

Sv

(b) spanning tree

a d

z

b e

z

c v

S'

nil

nil

nil

nil

nil

(c) graph shape

x x

z

y t

z

w v

nil

nil

nil

nil

nil

nil

(d) edge renaming

Figure 1: Building a finite graph

unaffected. This is an instance of a general design principle: spiders interact only
by observing each others’ effects on the graph.

The create operation builds a single directed link from the creating node to
the new one. In a moment, we will also need another edge pointing back from
the new node. The copy and reverse actions, sketched in Figures 2b and 2c, make
this possible. The copy primitive simply creates an additional link with the same
source and target as another link, while reverse swaps the source and target of an
existing link. The three can be combined—create x. copy x as x. reverse x. S ′—
to create a new node with forward and backward links named x to it. (The
reverse primitive chooses nondeterministically between the two available x links,
but since they are identical, the outcome is the same.) We write createboth x. S ′

as shorthand for this spider.
By creating new nodes in sequence, we can create a path with unique names for

each edge on the path. (These names are temporary; the last step will be replacing
them with the actual labels that we want on these edges. Using distinct names
during construction avoids ambiguity in cases where some node in the final graph
has two links with the same name, like the topmost node in Figure 1d.) After the
execution of a single createboth x operation, we have a new node accessible by a
link named x, but no spider at the new node. To put one there, we use the go
action, depicted in Figure 2d. Together, the createboth and go actions are enough
to construct any finite path; the spider Sb shown in Figure 3 demonstrates how
to build the path in Figure 1a. The spider Se in Figure 3 finishes building the
spanning tree by adding another path, then continues as Sv.

Now we introduce cycles. We can create a small cycle with copy x as y, then
increase its size using the throw action depicted in Figure 2e. The spider Sv in
Figure 3 demonstrates this process for building the v edge of our final graph,
creating it initially at the top of the graph by copying a and then throwing each

230

create x.T T
x

(a) the create primitive

copy x as y.S S
x x

y

(b) the copy primitive

(c) the reverse primitive

go x.S S | T
x x

T

(d) the go primitive

throw x over y.S S

x

T
y

T

R R

x

y

(e) the throw primitive

rename x to y.S S
yx

(f) the rename primitive

Figure 2: Spider Primitives

end down the spanning tree. The spider Sz (not shown) is similar, putting the
two z edges into place, then continuing as Sr.

We now have a graph with the desired shape, but with the wrong names. To
rectify this, we introduce the rename primitive, depicted in Figure 2f. The spider
Sr shown in Figure 4 demonstrates the use of this primitive. This leaves us a
graph with the right shape, but with some extra links named a, b, c, d, and e.
We can remove them from the observable web by using the restriction operator
ν to ensure that they cannot affect the behavior of other spiders. This gives us
the final spider S shown in Figure 3.

4 Formal Definition
In the syntax of the spider calculus (Figure 5), we use V,W to range over webs
and S, T to range over spiders. Both include syntactic forms for restriction and

231

S = νabcde. Sb

Sb = createboth a. go a.
createboth b. go b.
createboth c. go c.
go c. go b. go a.Se

Se = createboth d.
go d.
createboth e.
go e.
go e. go d. Sv

Sv = copy d as v.
throw v over a. go a.
throw v over b. go b.
throw v over c. go c.
reverse v. go c. go b. go a. go d.
throw v over e. go e.
go e. go d. Sz

Figure 3: Parts of the spider that builds the graph in Figure 1d.

Sr = go a. go b. rename c to w. go b. rename b to y. go a.

rename a to x. go d. rename e to t. go d. rename d to x. nil

Figure 4: Renaming edges to match the desired graph.

V,W ::= Nil | νx. W | V | W | [S]i | i x→ j

S, T ::= nil | νx. S | S | T | !S | M. S

M ::= create x | go x | copy x as y |
rename x to y | throw x over y | reverse x

Figure 5: Syntax of the spider calculus

V | νx. W ≡ νx. (V | W) if x /∈ fn(V) (res-par)
[nil]i ≡ Nil (trans-nil)
[S | T]i ≡ [S]i | [T]i (trans-par)
[νx. S]i ≡ νx. [S]i if x 6= i (trans-res)

Figure 6: Structural congruence laws (plus associative, commutative laws for |)

for binary and nullary parallel composition. The graph structure of the web
is represented as a parallel composition of nodes and edges, with node identity
determined by name. For example, we regard a web with one node labeled x

232

W −→ W ′

W | V −→ W ′ | V
(red-par)

W −→ W ′

νx. W −→ νx. W ′
(red-res)

W ≡ W ′ −→ V ′ ≡ V

W −→ V
(red-struct)

[!S]i −→ [S]i | [!S]i (red-repl)

[throw x over y. S]i | i x→ j | i y→ k −→ [S]i | k x→ j | i y→ k (red-dthrow)

[create x. S]i −→ [S]i | νj. i x→ j where j 6∈ {i, x} (red-dcreate)

[rename x to y. S]i | i x→ j −→ [S]i | i y→ j (red-drename)

[copy x as y. S]i | i x→ j −→ [S]i | i x→ j | i y→ j (red-dcopy)

[go x. S]i | i x→ j −→ [S]j | i x→ j (red-dgo)

Figure 7: Operational semantics

containing a spider S|T as structurally equivalent to a web with two nodes labeled
i, one containing S and one containing T .1 The form [S]i denotes a spider S
living at node i, and i

x→ j denotes an edge from i to j labeled x.
We use the variable M to range over primitive actions and use lower-case

letters for variable names. As usual, the spider M.S blocks until M can be
executed and then continues as S. The replication of spider S is written !S.
(There is no replication form at the level of webs and no structural congruence
rule for replication; instead, replication is implemented using a reduction rule.)
We abbreviate M. nil as M and νx1. · · · νxn.W as νx1, . . . , xn.W or νx̃.W . We
write fn(S) for the free names of S (ν is the only name binder). Figure 6 defines
the structural congruence. Name restrictions via ν may be floated in and out
of parallel compositions, node boundaries, and other restrictions provided this
does not orphan any names or cause any clashes. Figure 7 gives the operational
semantics, which simply formalizes the informal diagrams we have already seen.

1This may appear to be a significant difference from Ambients, where a solution with a single
node is not equivalent to a solution with two nodes of the same name, but the appearance is
deceptive. Ambient node names correspond to edge names in the spider calculus; node names
in the spider calculus are just a means for representing graph structure in linear form; they are
not directly accessible to programs.

233

5 Programming

We illustrate the expressiveness of the spider calculus by sketching encodings
both for static data like numbers, strings, lists, and so on, and for the λ-calculus
and π-calculus.

Passive encoding The simplest encoding strategy uses the graph structure of
a web in a straightforward way. For example, a number n can be represented by
a location with either a link named succ pointing to a web representing n− 1 or
a link named zero. Computing with numbers in this encoding is straightforward:
just choose one of two spiders based on the existence of one of the above links.
For example, suppose we have a number stored at the bidirectional link x. (By
bidirectional, we mean that there are two links named x pointing in opposite
directions.) Then the following snippet will compute the predecessor of x and
making it available on a link named y:

go x. (copy succ as y. throw y over x | rename zero to zero. go x. copy x as y)

The first two actions in the parallel composition depend, respectively, on the
existence of a link named succ or zero; if the location really is a number, exactly
one of them will fire and one of the two continuations will be released.

Active encoding A different strategy—closer to familiar encodings in π-calculus—
is to represent a number as a spider that repeatedly answers requests for its value.
A number will wait for a link named val to appear, then go to that link, create
either a succ or a zero link, and continue there as its predecessor (if it has one).
Here is the 0 spider: S0 = !νt. rename val to t. go t. create zero. And if Sn
is the spider representing the number n, the spider representing its successor is
Sn+1 = !νt. rename val to t. go t. create succ. Sn. Consuming a number in this
representation is similar in spirit to the previous representation. For example, as-
suming there is a bidirectional link x pointing to a location that contains (only)
a number, here is a spider that creates a link y pointing to a location containing
that number’s predecessor:

go x. νt. createboth t. copy t as val . go t.
(rename succ to succ. go t. rename t to y. throw y over x
| rename zero to zero. go t. go x. copy x as y)

Church encoding of the λ-calculus Figure 9 shows the complete encoding
of the λ-calculus. In “λ-calculus webs,” each node represents the encoding of a λ-
term, with links pointing to other nodes encoding the values of its free variables.
The evaluation strategy is “parallel reduction outside lambdas”: λ-abstractions
are inert until they receive an argument, whereas the function and argument parts

234

Jλx.eK JtK

y

z

val input
Jλx.eK JeK JtK

y

z

y

z

x

Figure 8: Emulating beta-reduction in the spider calculus, assuming fn(e) =
{x, y, z}

Jλx.eK = !νt. rename val to t.
closure fn(e) \ {x} at t.
νx. rename input to x. JeK

JxK = !throw val over x

Je1 e2K = νt1, t2. createboth t1. create t2.
(closure fn(e1) at t1. Je1K
| closure fn(e2) at t2. Je2K
| go t1. rename t1 to val
| copy t2 as input)

Figure 9: Encoding the λ-calculus

of applications run at different nodes and can be evaluated in parallel. There are
two different roles—the function node role and the argument node role—that a
given location can play at different times. A λ-abstraction λx. e is translated to
a function node containing a spider that waits for an argument to arrive in the
form of a link named val appearing at its node. The node t at the other end of
this link is an argument node, and it should have a link named input pointing
to a function location. The λ-spider creates a running copy of its body e at
the node t, after renaming input to x so that e can access it later. Figure 8
depicts this transformation, the heart of a beta-reduction step. The encoding of
a function application e1 e2 at some node t creates new nodes t1 and t2, places
spiders encoding e1 and e2 at these nodes, and plumbs them together by turning
the original node t into an argument node with a link from t1 called val and a
link to t2 called input . A free variable in an encoded λ-term is represented
as a link pointing to the location holding the value associated with that name.
The translation of a variable simply forwards any val requests to the function
location associated with that variable. We model closures as nodes with a link

235

x(y). P

x

P

x

y

val

(a) Input

xy. P

x

y

P

x

y

val

(b) Output

Figure 10: The execution of encoded π-calculus primitives

for each bound name. We often have to copy and transmit an entire closure,
so we introduce an abbreviation: if S = {x1, . . . , xn} is a set of names, then
closure S at t. T will stand for

copy x1 as x1. · · · . copy xn as xn. throw x1 over t. · · · . throw xn over t. go t. T.

This spider makes copies of some number of variable links (with names in S) at
the local node, throws the copies across the link named t, and finally moves itself
across t and continues as T .

Encoding the π-calculus We work with the standard (synchronous, choice-
free) π-calculus. The idea is simple: all of the translations of π processes run in
a single location (which we call root), and a π channel c is represented by a link
named c to a location with zero or more links, all named val, each pointing to a
message waiting to be sent along c. (Using a channel in the π-calculus requires
knowing a name for it; using a channel in the spider calculus requires having an
edge from root to the location for that channel.) Figures 10a and 10b sketch the
high-level behavior of encoded input and output processes. The full definition
of the encoding is given in Figure 11 (just the non-homomorphic cases). The
top-level definition, J P KπS, defines a web with “channel nodes” for each of the
channel names in S and with the encoding of π-process P , written J P Kπ, running
at root .

6 Related Work

Mobile ambients (Cardelli et al. 1999), a key inspiration for the spider calcu-
lus, structure processes into edge-labeled trees, much like the spider calculus’s
edge-labeled graphs. Many spider calculus actions are direct analogues of mobile
ambient actions; in particular, the in x and out capabilities of mobile ambients are
analogous to the go x action of spiders. An interesting difference is that, whereas
open is a fundamental operation of ambients, the kernel spider calculus, which has
no directly analogous operator, is still a quite expressive language. (One could
consider adding a merge operation to identify two nodes in the web. This would
raise headaches with possible code injection, etc., as open does in ambients.)

236

J P KπS = J S Kπ | [J P Kπ]root

J {x1, · · · , xk} Kπ = (root
x1→ j1 | · · · | root

xk→ jk)
where j1 . . . jk are fresh names

J (νx)P Kπ = νx. (create x | J P Kπ)

J xy Kπ = νz, z′. S1

where
S1 = copy x as z. S2

S2 = copy y as z′. S3

S3 = throw z′ over z. S4

S4 = go z. S5

S5 = rename z′ to val

J x(y).P Kπ = νz, z′, y. T1
where
T1 = copy x as z. T2
T2 = copy z as z′. T3
T4 = reverse z′. T5
T5 = go z. T6
T6 = rename val to y. T7
T7 = throw y over z′. T8
T8 = go z′. J P Kπ

provided z, z′ 6∈ fn(P)

Figure 11: Encoding the π-calculus

Safe ambients (Levi and Sangiorgi 2003) and boxed ambients (Bugliesi et al.
2001) propose different restrictions that permit a more controlled style of pro-
gramming than original ambients. Safe ambients introduce co-actions, allowing
actions to fire only when they are properly paired with an identical co-action in
the destination ambient. In essence, an action represents a request and a co-action
represents permission. Boxed ambients replace open with special communication
channels between a parent and its children. Processes stay within a single am-
bient, and only the communication topology changes. The spider calculus has
no analog of safe ambients’ co-actions or of boxed ambients’ restricted mobility;
indeed, the introduction of either feature seems to severely cripple the calculus.
It would be interesting to look for similar restrictions with better properties.

The brane calculus (Cardelli 2004) shares many ideas with safe ambients,
but it has two kinds of locations (the “membrane” and the “fluid”), which must
alternate within the tree. This leads us to wonder whether the spider calculus
could be generalized to allow processes at both nodes and links.

Besides the brane calculus, many other calculi have taken inspiration from
Regev and Shapiro (2002), in which π-calculus was proposed as a tool to model
the dynamics of biological systems. Some of them, like BioAmbients (Regev et al.
2004) and Beta Binders (Priami and Quaglia 2005), are attempts to adapt and
extend Mobile Ambients to better capture biological phenomena. BioAmbients
introduce several modications to ambients. They maintain the hierarchical struc-
ture of ambients but make them nameless; the primitive for opening is replaced
by a merge primitive that fuses two ambients. Capabilities have corresponding
co-capabilities and new primitives for communication between sibling and par-

237

ent/child ambients are introduced. Beta Binders equip ambients with typed in-
terfaces; processes in different ambients can communicate through corresponding
ambient interfaces if some (domain-dependent and user-defined) affinity property
between interface types is satisfied. Although this representation generalizes the
hierarchical structure of ambients, processes can only partially affect ambient
topology by locally modifying interfaces, while process migration and ambient
restructuring is obtained by a set of user-defined functions that split and merge
ambients based on their structure.

Another line of bio-inspired calculi, primarily intended to model phenomena
like the assembly of complexes or polymers, enrich processes with alternative
forms of location. The 3π calculus (Cardelli and Gardner 2012) uses a 3D co-
ordinate system to represent locations. Similarly, in SpacePi (John et al. 2008)
processes are embedded into a vector space and can move individually and com-
municate only if sufficiently close. The BioScapeL calculus (Compagnoni et al.
2013) builds upon 3π and SpacePi and provides a set of high level primitives
designed to model bacteria-material interactions in space.

The distributed π-calculus (Hennessy 2007) and Nomadic Pict (Wojciechowski
and Sewell 2000) both have explicit, named locations. Processes can go to any
location whose name they know—that is, the connection topology for any given
process is the complete graph on the set of known location names. The formal
presentation of the spider calculus also has explicit locations, but processes them-
selves cannot refer to the location names in any way; only the local connectivity—
which may not be complete—is known. The distributed π-calculus’ notion of
located channels is quite similar to the spider calculus’s notion of located links.

The Chorus language (Lublinerman et al. 2009) proposes another approach—
intuitively rather similar to that of the spider calculus—to computing in graphs.
Chorus models synchronization with neighborhoods: variables in any particular
neighborhood are synchronous, and the basic operations merge and split neigh-
borhoods. Synchronization in the spider calculus is implicit: certain edges may
be interpreted as locks. Nevertheless, Chorus and the spider calculus may both
prove to be good models for the same sorts of sparse parallel algorithms: phys-
ical simulations, computing spanning trees, n-body problems, social networking
simulations, and sparse matrix computations.

Bigraphs (Milner 2009) offer an abstract framework for a great variety of
process calculi, including located ones. Bigraphs share some characteristics with
spiders—in particular, nodes and named edges. However, the structure of nodes
and edges differ significantly from webs: nodes are arranged in a tree structure,
they have have prescribed arities telling how many edges must be incident to
them, and edges can connect arbitrarily many nodes. The result is that the
nodes and edges of bigraphs are used for significantly different purposes than the

238

nodes and edges of a web. Nevertheless, it seems likely that the spider calculus
could be presented as an instance of the bigraph framework.

The Distributed Join Calculus (Fournet and Gonthier 2002) extends the join
calculus (a π-calculus variant) by adding locations and primitives for mobility.
Although locations are arranged in a tree, processes may migrate directly to any
location whose name they know. When a process migrates, it brings along any
sublocations as well. In the spider calculus, by contrast, processes cannot refer
directly to names of locations; only local migration along named edges is allowed.
Also, the spider calculus separates process migration primitives from primitives
that modify the topology.

Meld (Ashley-Rollman et al. 2009) is another language for distributed com-
puting on networks with shifting connection topologies, but with some key dif-
ferences. Like the spider calculus, there are nodes and links arranged in a graph
structure, and computation occurs at the nodes, but in Meld, each node runs the
same program. Meld’s roots are in logic programming; each node generates base
facts (representing local connectivity or observations of the node’s environment,
for example) and inferred facts (which may be inferred from either facts local to
the current node or facts from logically connected nodes). Nodes themselves do
not influence the connection topology, and migration does not make sense, since
all nodes are executing the same program.

Unlike the spider calculus, where the goal is to model computation in a graph,
Google’s Pregel system (Malewicz et al. 2010) and its open source counterpart,
Apache Giraph, are designed for computation on a graph. Consequently, the
communication topology is divorced from the graph structure (any node may
communicate with any other); also, unlike the asynchronous computation of pro-
cess calculi, Pregel processes are synchronous: at computation step n, processes
are expected to handle all messages from step n− 1 and produce messages to be
delivered at step n+1. Although processes are not directly mobile (each node runs
a copy of the same code), nodes are permitted to store state of a user-defined type,
so there are few restrictions on the computations that can be performed. These
two modeling choices produce a system suitable for distributed algorithms whose
input includes a graph, but less so for describing the network graph substrate sup-
porting the distributed computation itself. A similar approach is implemented by
the Graph Processing System (GPS) (Salihoglu and Widom 2013), a distributed
system designed to run on clusters of machines that provides a domain specific
language, Green-Marl (Hong et al. 2012) exposing high-level constructs for im-
plementing parallel analysis algorithms on immutable graphs (e.g., computation
of graph centrality measures).

Since the spider calculus is concerned with local transformations of graph
structures, we should also mention graph rewriting . Connections between graph

239

rewriting and process calculi have been studied in terms of semantics and behav-
ioral theory (Gadducci 2007; König 2000; Gadducci and Montanari 2001). One
interesting question is what forms of graph rewriting can be encoded in the spider
calculus.

7 Future Work

The natural next step in this work is the development of a theory of contextual
equivalence for the spider calculus (some preliminary definitions can be found
in Pierce et al. 2010). This will not only provide us with a formal tool to prove
the correctness of our programs and encodings, but will also allow us to more
deeply understand the expressiveness of our kernel calculus and of its extension
with different combinations of primitives.

More broadly, our survey of related work suggests several possible directions
of interest, such as relating the spider calculus to graph rewriting or improving
safety via typing, co-actions, or more restrictive primitives.

Acknowledgments Many thanks to Davide Sangiorgi, Giorgio Ghelli, Andrew
Gordon, David Walker, Michael Kearns, Martin Hofmann, Mart́ın Abadi, and
Arnaud Sahuguet for insightful discussions and pointers to proof techniques and
related work. Thanks also to the readers of the moca mailing list, who suggested
many relevant papers.

References

M. Ashley-Rollman, P. Lee, S. Goldstein, P. Pillai, and J. Campbell. A Language for Large
Ensembles of Independently Executing Nodes. In Proceedings of the 25th International Con-
ference on Logic Programming, page 280. Springer, 2009.

J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. nature, 324:4,
1986.

M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. Lecture Notes in Computer Science,
pages 38–63, 2001.

L. Cardelli. Brane calculi. In CMSB, volume 4, pages 257–278. Springer, 2004.
L. Cardelli and P. Gardner. Processes in space. Theoretical Computer Science, 431(1):40–55,

2012.
L. Cardelli and A. Gordon. Types for mobile ambients. In Proceedings of the 26th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 79–92. ACM
New York, NY, USA, 1999.

L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213,
2000.

L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. Lecture Notes in
Computer Science, 1644:230–239, 1999.

240

A. Compagnoni, P. Giannini, C. Kim, M. Milideo, and V. Sharma. A calculus of located entities.
In Proceedings of Developments in Computational Models, 2013.

C. Fournet and G. Gonthier. The join calculus: a language for distributed mobile programming.
Lecture Notes in Computer Science, 2395:268–332, 2002.

M. Freedman, E. Freudenthal, D. Mazires, and D. M. Eres. Democratizing content publication
with coral. In In NSDI, pages 239–252, 2004.

F. Gadducci. Graph rewriting for the pi-calculus. Mathematical Structures in Computer Science,
17(3):407–437, 2007.

F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients. Electr.
Notes Theor. Comput. Sci., 45, 2001.

M. Hennessy. A distributed pi-calculus. Cambridge Univ Pr, 2007.
M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar

graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.
S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a dsl for easy and efficient graph

analysis. In ACM SIGARCH Computer Architecture News, volume 40, pages 349–362. ACM,
2012.

M. John, R. Ewald, and A. M. Uhrmacher. A spatial extension to the¡ i¿ π¡/i¿ calculus.
Electronic notes in theoretical computer science, 194(3):133–148, 2008.

B. König. A graph rewriting semantics for the polyadic calculus. In ICALP Satellite Workshops,
pages 451–458, 2000.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. Chew. Optimistic
parallelism requires abstractions. In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, page 222. ACM, 2007.

F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Transactions on Programming Languages
and Systems, 25(1):1–69, 2003.

R. Lublinerman, S. Chaudhuri, and P. Cerny. Parallel programming with object assemblies. In
ACM SIGPLAN Notices, volume 44, pages 61–80. ACM, 2009.

B. Maggs. Global internet content delivery. In Proc. 1st IEEE/ACM Int. Symposium on Cluster
Computing and the Grid, CCGrid, 2001.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135–146. ACM, 2010.

R. Milner. Space and Motion of Communicating Agents. Cambridge Univ Press, 2009.
B. C. Pierce, A. Romanel, and D. Wagner. The Spider Calculus: Computing in active graphs,

2010. Extended version, available from http://www.cis.upenn.edu/∼bcpierce/papers/
spider calculus.pdf.

C. Priami and P. Quaglia. Beta binders for biological interactions. In Computational Methods
in Systems Biology, pages 20–33. Springer, 2005.

A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature, 419(6905):
343–343, 2002.

A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: an abstraction
for biological compartments. Theoretical Computer Science, 325(1):141–167, 2004.

S. Salihoglu and J. Widom. Gps: A graph processing system. In Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, page 22. ACM,
2013.

G. Unel, F. Fischer, and B. Bishop. Answering reachability queries on streaming graphs. Stream
Reasoning, 2009.

P. Wojciechowski and P. Sewell. Nomadic Pict: Language and infrastructure design for mobile
agents. IEEE Concurrency, 8(2):42–52, 2000.

241

242

From Amber to Coercion Constraints

Didier Rémy
INRIA

Julien Cretin
TrustInSoft

Abstract

Subtyping is a common tool in the design of type systems that finds its
roots in the η-expansion of arrow types and the notion of type containment
obtained by closing System F by η-expansion. Although strongly related,
subtyping and type containment still significantly differ from one another
when put into practice. We introduce coercion constraints to relate and
generalize subtyping and type containment as well as all variants of F-
bounded quantification and instance-bounded quantification used for first-
order type inference in the presence of second-order types. We obtain a
type system with a clearer separation between computational and erasable
parts of terms.

1 The different flavors of subtyping
Subtyping in Amber Nowadays, subtyping is a well-understood concept and
tool in the design of type systems, but it has not always been so. The origin of
subtyping goes back to the 60’s when type conversions between base types or type
classes were introduced in programming languages, but the first formalization of
subtyping is by Reynolds (1980). Subtyping was introduced in the strongly typed
functional language Amber by Cardelli (1984). By contrast with simple type
conversions between base types, subtyping in Amber can be propagated through
arrow types covariantly on the codomains of functions and contravariantly on
their domains.

The language Amber had only subtyping but no parametric polymorphism: its
typing rules are those of the simply typed λ-calculus extended with a subtyping
rule Sub:

Sub

Γ ` a : τ τ . σ

Γ ` a : σ

Bot

⊥ . τ
Top

τ . >

Arrow

τ ′ . τ σ . σ′

τ → σ . τ ′ → σ′

243

Through this paper we use the notation τ . σ to mean that τ is a subtype of
σ (or, rather, τ can be coerced to σ) for homogeneity between different forms
of coercions that we will encounter. The subtyping relation is defined by the
three rules, Bot, Top, and Arrow. For the sake of brevity we only consider the
bottom and top types and arrow types; the language Amber also had records and
subtyping between them which played a crucial role in the encoding of objects
(but this is not our focus here), as well as recursive types which we introduce
later on.

Type containment The notion of type containment was introduced simul-
taneously by Mitchell (1984, 1988) who considered the closure of System F by
η-expansion, called Fη: by definition, a closed term is in Fη if it has an η-expansion
in System F. Interestingly, Fη has also a syntactic presentation that is closely re-
lated to the notion of subtyping. It extends the typing rules of System F with a
subtyping rule similar to, but richer than, the one of Amber. Indeed, System F
has polymorphic types, which we write ∀(α) τ , and therefore new subtyping rules
are needed to describe how subtyping relates with polymorphism:
All

τ . σ

∀(α) τ . ∀(α)σ

Trans
τ . σ σ . ρ

τ . ρ

InstGen
β̄ /∈ ftv(∀(ᾱ) τ)

∀(ᾱ) τ . ∀(β̄) τ [ᾱ← σ̄]

Distrib-R
α /∈ ftv(τ)

∀(α) (τ → σ) . τ → ∀(α)σ

The congruence rule for polymorphic types All is unsurprising. Rule Trans
is uninteresting but it is needed in this presentation as it does not follow from
other rules. The two interesting rules are InstGen and Distrib-R. Rule InstGen
allows implicit toplevel type instantiation, as in ML: it means that a polymorphic
type can be freely used at any of its instances. By contrast with ML, this rule can
also be applied under arrow types at the appropriate variance. We write ᾱ for a
sequence of type variables (and similarly for types) with the understanding that
∀(ᾱ) τ stands for a sequence of quantifiers. Free type variables of τ are written
ftv(τ). Notice, that although InstGen may generalize type variables that are
introduced during type instantiation, it cannot generalize other type variables.
Therefore, Fη still need a specific term typing rule for polymorphism introduction.
Rule Distrib-R allows a quantifier to be pushed down on the right of arrow types
when it does not appear on the left. The original rule allowed α to also occur
in τ ; then the quantifier must be pushed down on both sides of the arrow, i.e. the
right-hand side of the coercion becomes (∀(α) τ) → ∀(α)σ. This more general
rule is however derivable from Distrib-R and the other rules.

The Rule Arrow can be easily explained in Fη by the η-expansion of arrow
types. Since Fη is closed by η-expansion, whenever a term a has some type τ → σ
in some context Γ, any type of its η-expansion λx. a x should also be a type of a.
In particular, given τ ′ . τ and σ . σ′, we may type the η-expansion by giving the

244

parameter x the type τ ′ and coerce the occurrence of x as an argument of a to
the expected type τ which results in a value of type σ that can be coerced to σ′.
Hence, the term a also has type τ ′ → σ′ in Fη.

What distinguishes type containment from traditional uses of subtyping is
the inclusion in the subtyping relation of the implicit instantiation of quantifiers,
which by congruence can be applied deeply inside terms. Unfortunately, this
theoretical strength turns into a weakness for using Fη in practice since the type
containment relation becomes undecidable.

Bounded quantification While Fη extends Amber with polymorphic types and
can prove subtyping relations between polymorphic types, it does not allow to
make subtyping assumptions about polymorphic type variables. Bounded quan-
tification introduced by Cardelli and Longo (1991) in the language Quest and
later in the language F<: (Cardelli et al. 1994) solves this problem. Polymorphic
type variables are introduced with an upper bound ∀(α <: τ)σ, whose instances
are types of the form σ[α← ρ] where ρ is a subtype of τ . The unbounded quan-
tification of System F can be recovered as the special case where the bound is >.
Bounded polymorphism is quite expressive and has been used to model record
subtyping and object oriented features.

The most interesting rule in F<: is subtyping between bounded quantifications:
Fsub

Γ ` τ ′ . τ Γ, α . τ ′ ` σ . σ′

Γ ` ∀(α <: τ)σ . ∀(α <: τ ′)σ′

Notice that subtyping holds only between two types having bounded quantifica-
tion on both sides. That is, by contrast with Fη, type instantiation is not part of
the subtyping relation and is made explicit at the level of terms. A good reason
for this choice is to ease typechecking. Still, F<: in its full generality is undecid-
able (Pierce 1994), but some restrictions of the rule, for instance where the bounds
are identical on both sides, are decidable. Bounded polymorphism has also been
extended to F-bounded polymorphism that allows the variable abstracted over
to also appear in the bound, which is useful in object-oriented languages. The
left-premise of Rule Fsub is then replaced by Γ, α . τ ′ ` α . τ .

Bounded polymorphism has been extensively used in many subsequent lan-
guages that combine polymorphism and subtyping, and in particular, to explore
typechecking of objects (Abadi and Cardelli 1996).

Still, bounded polymorphism remains surprising in several ways. First, its
formulation is asymmetric since type variables are introduced with an upper
bound but no lower bound: dually, is there a use for lower bounds? Second, type
variables have a unique bound: could the same variable have several bounds?
Finally, while bounded polymorphism adds to Fη the ability to abstract over

245

subtyping, it does not yet generalize type containment since subtyping holds
only for types with the same polymorphic structure; in particular, the implicit
instantiation ∀(α <:>) τ . τ [α← σ] that is allowed in Fη is not permitted in F<:.

Instance-bounded quantification Surprisingly, the absence of lower bounds
in F<: seemed to have not been a practical limitation and the question remained
mostly theoretical for more than a decade. The need for lower bounds finally
appeared for performing first-order type inference in the presence of second-order
types. Predictable, efficient type inference is usually built on a notion of principal
types, i.e. the ability to capture as a simple type (or type constraint) the set of
all possible types of an expression. Lower bounds allow more expressions to have
principal types.

Full type inference for System F is known for not having principal types be-
cause guessing types of function parameters often leads to an infinite set of solu-
tions. However, if we restrict our ambition to not guess polymorphic types, but
just propagate them, which is the goal of MLF (Le Botlan and Rémy 2009), there
is still a problem to solve, namely the absence of principal solutions.

To illustrate this, consider the function revapp defined as λx. λf. f x of type
∀(α)∀(β)α → (α → β) → β and its partial application to the identity function
id of type ∀(γ) γ2 where γ2 stands for γ → γ. What should be the type of
revapp id? The type ∀(β) ((∀(γ) γ2)→ β)→ β, say τ1, obtained by keeping the
identity polymorphic? Or the type ∀(γ)∀(β) (γ2 → β)→ β, say τ2, obtained by
instantiating id to γ2 before the application and generalizing the result of the
whole application afterwards? Unfortunately, no other type of the application
revapp id is an instance of both of these two types in System F. (Nor in Fη! but,
conversely, both types have a common instance ∀(β) (∀(γ) (γ2 → β))→ β in Fη.)

This dilemma is solved in MLF by introducing lower-bounded (or, rather,
instance-bounded) polymorphism ∀(α :> τ)σ, which reads “for all α that is an
instance of τ , σ.” The application revapp id can then be assigned the type ∀(α:>
∀(γ) γ2)∀(β) (α→ β)→ β, which happens to be principal in MLF. In particular,
τ1 can be obtained by inlining the bound which is permitted by instantiation in
MLF; and τ2 can be obtained by applying instantiation under the lower bound,
generalizing γ afterwards which gives ∀(γ)∀(α :> γ2)∀(β) (α → β) → β, and
finally inlining the bound.

While in this regard MLF appears to be dual of F<:, it is still quite different:
MLF does not use contravariance of arrow types as both F<: and Fη do; conversely,
MLF can freely instantiate polymorphic types, which F<: cannot do: each of the
three languages shares one feature with others but is still missing one of their key
features.

246

a, b ::= x | λx. a | a a Terms
τ, σ ::= α | τ → τ | ⊥ | > | ∀(α : κ) τ | 〈〉 | 〈τ, τ〉 | πi τ Types
κ ::= ? | {α : κ | P} | 1 | κ× κ Kinds
P ::= (∆ ` τ) . τ | ∃κ | > | P ∧ P Propositions
Γ ::= ∅ | Γ, (α : κ) | Γ, (x : τ) Environments

Figure 1: Syntax

Subtyping constraints The absence of multiple bounds in F<: is somewhat
surprising since ML extended with subtyping, say ML≤, naturally comes with
(and requires the use of) subtyping constrains that mix arbitrary upper and
lower bounds (Odersky et al. 1999). It uses constrained type schemes of the form
∀(α|C) τ where C is a set of arbitrary but coherent subtyping constraints between
simple types. Can we extend subtyping constraint to first-class polymorphic
types?

2 The language Fcc
We have seen several type systems with different combinations of subtyping fea-
tures, but none of them supersedes all others. In particular, Fη, F<:, MLF, and
ML≤ are pairwise incomparable. We now describe an extension of System F with
coercion constraints, called Fcc, that combines all features together so that each of
the languages above becomes a (still interesting) subset of Fcc. Here, we present
a small subset of the language just to carry the main ideas underlying its design.
We refer the reader to (Cretin and Rémy 2014b) for technical details.

Terms The language Fcc is implicitly typed for reasons that will be explained
later—but this happens to be an advantage for conciseness: terms are just those
of the untyped λ-calculus, whose notations are reminded in Fig. 1.

Although we focus on the syntactic presentation of Fcc hereafter, we assume
that its semantics is given by full β-reduction. This is to build its type system
on solid ground, without taking advantage of the evaluation strategy: it prevents
from sweeping errors under λ’s just because their evaluation is delayed. Full β-
reduction also models reduction of open terms. A practical language based on Fcc
will eventually have a call-by-name or call-by-value evaluation strategy, which
being a subset of full β-reduction, will remain sound.

Types, Kinds, and Propositions Types, defined on Figure 1, are simple
types (type variables, arrow types, top, and bottom types) extended with con-

247

TermVar

(x : τ) ∈ Γ

Γ ` x : τ

TermLam

Γ ` τ : ? Γ, (x : τ) ` a : σ

Γ ` λx. a : τ → σ

TermApp

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

TermCoer

Γ,∆ ` a : τ Γ ` (∆ ` τ) . σ

Γ ` a : σ

Figure 2: Term typing rules

strained polymorphic types of the form ∀(α : κ) τ where κ is a kind that restricts
the set of types in which α may range.

The kind ? is that of ordinary types, e.g. to form arrow types. The interesting
kind is {α : κ | P}—the kind of types α of kind κ that satisfy the proposition P.

The grammars of types and kinds also include type tuples1 classified by tuple
kinds. Namely, type tuples are constructed from the empty tuple 〈〉 of kind 1 and
pairs of types 〈τ1, τ2〉 of kind κ1 × κ2 when τi has kinds κi; and type projection
πi τ to return the i’s component of kind κi of a tuple type of kind κ1× κ2. Tuple
types are useful for capturing multiple binders but are not technically difficult: the
main technical change is to consider types equal modulo the projection of tuples
and closing equality by equivalence and congruence for all syntactical constructs.
Thus, we will ignore tuples (which are grayed in Figure 1) in the rest of the
technical overview.

Propositions are used to restrict sets of types. The most useful proposition
is the coercion proposition (∆ ` τ) . σ which states that there exists a coercion
from type τ in some context extended with ∆, to type σ. For now, one may just
consider the particular case of simple coercions where ∆ is empty, in which case
the proposition is abbreviated as τ . σ and just means that type τ can be coerced
to type σ. The general case will be explained together with the term typing rules.

The proposition ∃κ asserts that the kind κ is coherent (intuitively, that it
is inhabited, but this is relative to its typing context). It is interesting that
coherence can be internalized as a proposition. The proposition > is the true
proposition and the proposition P1 ∧ P2 is the conjunction of P1 and P2.

Finally, typing environments Γ bind type variables to kinds and program
variables to types. The letter ∆ is used to range over environments that only
bind type variables.

Term typing judgment (Γ ` a : τ) Typing rules, given in Figure 2 are
almost as simple as in Amber: they contain the typing rules of the simply typed

1Not to be confused with the type of term tuples, which we do not include in this core
version.

248

TypePack

Γ, (α : κ) P Γ ` τ : κ Γ ` P[α← τ]

Γ ` τ : {α : κ | P}

TypeUnpack

Γ ` τ : {α : κ | P}
Γ ` τ : κ

Figure 3: Type judgment relation (excerpt)

λ-calculus plus the coercion typing rule, which differs from the Amber Rule in two
important ways. First, the coercion judgment depends on the context Γ, as in
F<:, so that coercion assumptions in the context Γ can be used to prove a coercion
judgment such as Γ ` τ . σ. More importantly, coercions are of the more general
form (∆ ` τ) . σ rather than just τ . σ. As we can see in Rule TermCoer,
the context ∆ contains additional type variable bindings that are added to the
context Γ of the premise under which the coerced term must have type τ . The
typical use of this generalization is in the judgment Γ ` (α : κ ` τ) . ∀(α : κ) τ ,
which holds whenever κ is coherent and ∀(α : κ) τ is well-formed in Γ (see Rule
CoerGen below). As a consequence, the rule for polymorphism introduction

TermGen

Γ ` ∃κ Γ, (α : κ) ` a : τ

Γ ` a : ∀(α : κ) τ

is derivable by TermCoer and CoerGen. It is remarkable that polymorphism
introduction (as well as all erasable features of the type system) can be handled
purely as a coercion typing rule and need no counterpart in term typing rules.

Well-formedness rules (Γ κ and Γ P) The judgments Γ κ and
Γ P state well-formedness of kinds and propositions. Besides syntactical checks,
they are recursively scanning their subexpressions for all occurrences of coercion
propositions (∆ ` τ) . σ to ensure that ∆, τ , and σ are well-typed, as described
by the following rule:

Γ ` ∆ Γ,∆ ` τ : ? Γ ` σ : ?

Γ (∆ ` τ) . σ

In particular, the auxiliary judgment Γ ` ∆, which treats ∆ as a telescope, means
that each binding α : κ of ∆ is well-formed in the typing context that precedes
it, which also implies that the kind κ is coherent in any such binding relatively
to its typing context.

Kinding judgment (Γ ` τ : κ) An excerpt of kinding rules is given in Figure 3,
but most rules have been omitted. Rule TypeUnpack states that whenever a type
τ is known to be of a constrained kind {α : κ | P}, it is also of the kind κ, indeed.

249

PropRes

Γ ` τ : {α : κ | P}
Γ ` P[α← τ]

PropExi

Γ ` τ : κ

Γ ` ∃κ

Figure 4: Proposition judgment relation (excerpt)

CoerRefl
Γ ` τ : ?

Γ ` τ . τ

CoerTop
Γ ` τ : ?

Γ ` τ . >

CoerBot
Γ ` τ : ?

Γ ` ⊥ . τ

CoerTrans
Γ,∆′ ` (∆ ` τ) . τ ′ Γ ` (∆′ ` τ ′) . τ ′′

Γ ` (∆′,∆ ` τ) . τ ′′

CoerWeak

Γ ` (∆ ` τ) . σ

Γ ` τ . σ

CoerArr

Γ ` τ : ? Γ,∆ ` τ . τ ′ Γ ` (∆ ` σ′) . σ
Γ ` (∆ ` τ ′ → σ′) . τ → σ

CoerGen

Γ ` ∃κ Γ, (α : κ) ` τ : ?

Γ ` (α : κ ` τ) . ∀(α : κ) τ

CoerInst

Γ, (α : κ) ` τ : ? Γ ` σ : κ

Γ ` ∀(α : κ) τ . τ [α← σ]

Figure 5: Coercion judgment relation

TypePack shows that, conversely, knowing that τ has kind κ, one must still prove
that P[α← τ] is satisfied to be able to consider that τ has the constrained kind
{α : κ | P}.

Proposition judgment (Γ ` P) The two most interesting rules for proposi-
tions are given in Figure 4. Rule PropRes means that a type of a constrained
kind {α : κ | P} satisfies the proposition P (where τ has been substituted for α).
Rule PropExi means that one must exhibit a type τ of kind κ to ensure that the
kind κ is coherent in its typing context Γ.

Coercion propositions (Γ ` (∆ ` τ) . σ) We have separated the rules for
coercions in Figure 5 although coercions are just a particular case of propositions.
Some rules are slightly obfuscated by the coercion typing context ∆ that has to
be added in some premises. These rules can first be read in the particular case
where ∆ is the empty context, so we have grayed ∆ to help with this reading.

Rule CoerRefl, CoerTop, and CoerBot are obvious and can be skipped.
Rule CoerTrans is also standard—the ∆’s just need to be appropriately con-
catenated.

Rule CoerWeak implements a form of weakening: it tells that if any term of
typing2 Γ,∆ ` τ has typing Γ ` σ, then any term of typing Γ ` τ also has typing
Γ ` σ. Weakening is required as it would not be derivable from the other rules if

2We say that a term a has typing Γ ` τ if the typing judgment Γ ` a : τ holds.

250

we removed it from the definition.
Rule CoerArr is the usual contravariant rule for arrows when ∆ is empty.

Otherwise, the rule can be understood by looking at the η-expansion context
λx. ([]x) for the arrow type. Placing a term with typing Γ,∆ ` τ ′ → σ′ in
the hole, we may give λx. ([]x) the typing Γ ` τ → σ provided a coercion of
type Γ,∆ ` τ . τ ′ is applied around x. The result of the application has typing
Γ,∆ ` σ′ which can in turn be coerced to Γ ` σ if there exists a coercion of type
Γ ` (∆ ` σ′) . σ. Thus, the η-expansion has typing Γ ` τ → σ.

Notice that CoerArr is the only η-expansion rule, since the arrow is the only
computational type constructor in our core language. For each computational
type constructor that we would add to the language, we would need a corre-
sponding η-expansion coercion rule. Erasable type constructors need not have
an η-expansion coercion rule, since these are derivable as their introduction and
elimination rules are already coercions.

Rule CoerGen implements type generalization, but as a coercion rule. It says
that Γ ` (α : κ ` τ) . ∀(α : κ) τ is a valid coercion as long as kind κ is coherent
in Γ and type τ has kind ? in Γ, (α : κ). This coercion makes TermGen derivable
as explained above.

Similarly, CoerInst is the counterpart of type instantiation coercion in Fη: it
says that Γ ` ∀(α : κ) τ . τ [α← σ] is a valid coercion as long as τ has kind ? in
Γ, (α : κ) and σ has kind κ in Γ. Since CoerGen is a coercion rule, we do not
need the more involved version of Fη that performs generalization afterwards.

Notice that there is no counterpart to Distrib-R since it is derivable by a
combination of type generalization, type instantiation, and η-expansion.

Adding recursive types and coinduction

The full language Fcc also has recursive types. These are indeed present in the
language Amber, F<:, etc. as they are unavoidable in a programming language.

We thus extend the grammar of types with the production µα τ , with the
usual restriction on well-foundedness of recursive types that we will not detail
here. We write α 7→ τ : wf to mean that the function α 7→ τ is well-founded and
can be used to form the recursive type µα τ .

Since types are implicit, we chose equi-recursive types, i.e. the equality of re-
cursive types is witnessed by coercions, which are implicit. We add two coercions
to witness folding and unfolding of recursive types:

CoerUnfold

α 7→ τ : wf Γ, (α : ?) ` τ : ?

Γ ` µα τ . τ [α← µα τ]

CoerFold

α 7→ τ : wf Γ, (α : ?) ` τ : ?

Γ ` τ [α← µα τ] . µα τ

To reason with recursive types we also add coinduction in propositions. In

251

order to do so, we change the judgment Γ ` P to Γ; Θ ` P where Θ is used
to collect coinductive hypotheses. We introduce two new rules PropFix and
PropVar to allow reasoning by coinduction.

PropFix

Γ P Γ; Θ,P ` P

Γ; Θ ` P

PropVar

P† ∈ Θ

Γ; Θ ` P

CoerArr

Γ,∆; Θ† ` τ . τ ′ Γ; Θ† ` (∆ ` σ′) . σ
Γ; Θ ` (∆ ` τ ′ → σ′) . τ → σ

Rule PropFix allows the judgment Γ; Θ ` P to be proved under the additional
coinductive hypothesis P (provided P is well-formed in Γ). Of course, coinductive
hypotheses must be guarded before they can be used. This is implemented by
tagging guarded propositions in Θ that are then ready for coinductive use with †.
Hence, rule PropVar can prove P only if P appears guarded, i.e. as P†, in the
coinductive context Θ.

Premises of the rule CoerArr use only subterms of the arrow type, so the rule
acts as a guard for all coinductive assumptions, therefore all propositions of Θ are
tagged in its premises. This is only the case of expansion rules for computational
type constructors, which have a counterpart in terms. Currently, CoerArr is
the only such rule. All other rules just transport Θ unchanged from the premise
to the conclusion.

Reasoning by induction makes the following standard rules for equi-recursive
types derivable (we write τ /. σ for a pair of simple coercions τ . σ and σ . τ):

CoerPeriod

α 7→ σ : wf

Γ; Θ ` (τi /. σ[α← τi])
i∈{1,2}

Γ; Θ ` τ1 . τ2

CoerEtaMu

Γ, (α, β, α . β); Θ ` τ . σ
Γ; Θ ` µα τ . µβ σ

Interestingly, the proof for CoerPeriod requires reinforcement of the coinduction
hypothesis since we need τ1/.τ2 and not just τ1 . τ2 in the coinduction hypothesis.

3 Strength and weaknesses of Fcc
Soundness The type system of Fcc is sound for the full β-reduction seman-
tics. Type soundness is not proved syntactically for reasons explained next, but
semantically, by interpreting types as sets of terms. As a consequence of the
presence of general recursive types (i.e. we do not restrict to positive recursion),
we use a step-indexed technique. Unfortunately, the usual technique of Appel
and McAllester (2001) does not apply to a full β-reduction setting. We propose
a new technique where indexes that are traditionally outside terms are placed
directly on terms and are transformed during reduction. See (Cretin and Rémy
2014a) for details.

252

Termination As a sanity check, the reduction of well-typed programs always
terminates in the absence of recursive types and coinduction.

(Lack of a proof of) Subject reduction The reason not to do a syntactic
proof is that we do not know how to prove subject reduction for Fcc. The problem
is that the type system is either too expressive or too weak: it allows to type
programs that are indeed safe, but with involved non local coercion constraints
that cannot be easily traced during reduction.

Doing a syntactic proof would amount to having an explicitly typed version
of the language and reduction rules for explicitly typed terms that preserve well-
typedness; moreover, reduction of explicitly typed terms must be in bisimulation
with the reduction of implicitly typed ones. The main obstacle is that, in the gen-
eral case, abstract coercions may appear in the middle of a redex. Explaining why
this is difficult in the general case is a bit tricky, as solving one issue immediately
raises another one—see Cretin and Rémy (2012) for details. Quite interestingly,
this configuration can never occur when we restrict to abstract coercions that
are parametric in either their domain or their codomain, i.e. coercions of the
form α . τ or τ . α. Remarkably, these two subcases coincide with bounded
quantification and instance-bounded quantification. Under this restriction, we
can design an explicitly typed language that enjoys subject reduction (Cretin
and Rémy 2012).

(Lack of a good) Surface language Since the type system is implicit, it is
undecidable, of course. What is a good surface language for Fcc is still an open
question. It is always possible to be fully explicit by introducing term syntax for
describing typing derivations in source terms, hence turning type inference into an
easy checking process. However, this would not only contain type annotations but
also full coercion bodies (information which is typically inferred in languages such
as F<:) and of coercion coherence proofs (information which is usually obtained by
construction). Programming at this level of detail would be too cumbersome for
the programmer. Notice however, that Fη already suffers from a similar problem,
since its coercion relation is undecidable.

This issue can be addressed in two directions. Remaining within Fcc, we
may apply partial type inference techniques and hope that sufficient type and
coercion information can be reconstructed. It would also be interesting to look
for subsystems of Fcc that compromise expressiveness for a smaller amount of
annotations. The restriction to coercions that are parametric in either their
domain or their codomain is one such solution. Are there other sweet spots?

253

Expressiveness As announced earlier, Fcc contains Fη, F<:, MLF, and ML≤ as
sublanguages. This confirms that all their features are compatible and can safely
be combined together.

Writing ∀(α | P) τ for ∀(α : {α : ? | P}) τ , bounded quantification and
instance-bounded quantification can be encoded in Fcc as ∀(α | α . τ)σ and
∀(α | τ . α)σ. It is then not difficult to see that the typing rules of F<: (including
F-Bounded quantification) and of MLF are derivable.

The notation is genealized to bindings, writing (α | P) for (α : {α : ?n | P})
where n is the size of ᾱ and, by abuse of notation, let us write αi for πi α when
αi is the i’ component of a sequence ᾱ. Then, a constrained typing judgment
Γ ` e : τ | C in ML≤ can be seen as the Fcc judgment (ᾱ | C),Γ ` e : τ where α
are free variables of Γ, C, and τ .

We have only presented a core subset of Fcc. The full language (Cretin and
Rémy 2014a) also contains products. Sum types are could be also be easily
added. Existential types can be emulated by their CPS encoding. The language
of propositions contains polymorphic propositions ∀(α : κ) P, and could also be
enriched with other propositions.

Incoherent coercions In the subset of Fcc described above, coercions are al-
ways coherent relative to the typing context in which they are used. More pre-
cisely, when an expression a has type ∀(α : κ) τ in Γ, it is always the case that
Γ ` ∃κ. This is necessary because type abstraction does not have any counter-
part in terms and, in particular, does not block the evaluation of a which may
proceed immediately. Without coherence, one could abstract over the absurd
kind constraint > . ⊥ and be able to type any program.

However, there are situations in which abstraction over incoherent coercions
would be useful. First, the coercion may be coherent only for some instances of
the typing context. This is typically the case in the presence of GADTs. Second,
coherence at the abstraction point is often harder to prove than at instantiation
points where types have been specialized. For these reasons, we have also ex-
tended Fcc with incoherent coercion abstractions. Of course, this abstraction must
now block the evaluation and therefore have a counterpart in terms. Interestingly,
this allows to model GADTs as incoherent coercions. Incoherent abstractions are
indeed used in FC (Weirich et al. 2011), the intermediate language of Haskell.
See (Cretin and Rémy 2014a) for further details.

Conclusions
We have given a tour of coercion constraints and shown how they can be used
to explain several type systems that had been designed separated for different

254

purposes, but all around some variations on the notion of subtyping. There are an
amazingly large number of interesting works on subtyping, many of which actually
initiated by Cardelli, and we could unfortunately just select a few citations among
all the relevant ones. As for coercions, the idea is not at all new. There are in
fact several notions of coercions and many works on type systems have already
used coercions as a tool or studied them on their own. So, many more references
could have been included here as well. We refer the reader to (Cretin and Rémy
2014a) for a more thorough treatment of related works.

Coercion constraints can factor many type features of programming languages.
This allows sharing an important part of their meta-theoretical studies, such as
type soundness. It also opens the door to new combinations of features. Besides,
it helps separate the computational and erasable parts of type systems. We thus
believe that they are an interesting framework for designing and studying type
systems.

However, Fcc still lacks a good surface language for the programmer as well an
explicitly-typed calculus to be used as an internal language in a compiler. While
partial type inference techniques could be used for the surface language, finding
an explicit version of coercion constraints that enjoys subject reduction without
sacrificing expressiveness seems much more challenging.

References
M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1st edition, 1996. ISBN 0387947752.

A. W. Appel and D. McAllester. An indexed model of recursive types for foun-
dational proof-carrying code. ACM Transactions on Programming Languages
and Systems., 23(5), Sept. 2001.

L. Cardelli. A semantics of multiple inheritance. In Proc. Of the International
Symposium on Semantics of Data Types, pages 51–67, New York, NY, USA,
1984. Springer-Verlag New York, Inc. ISBN 3-540-13346-1. URL http://dl.
acm.org/citation.cfm?id=1096.1098.

L. Cardelli and G. Longo. A semantic basis for quest. J. Funct. Program., 1(4):
417–458, 1991.

L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of system f
with subtyping. Information and Computation, 109(1/2):4–56, 1994.

J. Cretin and D. Rémy. On the power of coercion abstraction. In Proceedings of
the annual symposium on Principles Of Programming Languages, 2012.

255

http://dl.acm.org/citation.cfm?id=1096.1098
http://dl.acm.org/citation.cfm?id=1096.1098

J. Cretin and D. Rémy. System F with Coercion Constraints. Rapport
de recherche RR-8456, INRIA, Jan. 2014a. URL http://hal.inria.fr/
hal-00934408.

J. Cretin and D. Rémy. System F with Coercion Constraints. In Logic In Com-
puter Science (LICS), July 2014b. To appear.

D. Le Botlan and D. Rémy. Recasting MLF. Information and Computation, 207
(6), 2009.

J. C. Mitchell. Type inference and type containment. In Proc. Of the International
Symposium on Semantics of Data Types, pages 257–277, New York, NY, USA,
1984. Springer-Verlag New York, Inc. ISBN 3-540-13346-1. URL http://dl.
acm.org/citation.cfm?id=1096.1106.

J. C. Mitchell. Polymorphic type inference and containment. Information and
Computation, 2/3(76), 1988.

M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–55, 1999.

B. C. Pierce. Bounded quantification is undecidable. Information and Computa-
tion, 112(1):131–165, July 1994.

J. C. Reynolds. Using category theory to design implicit conversions and generic
operators. In N. D. Jones, editor, Semantics-Directed Compiler Generation,
volume 94 of Lecture Notes in Computer Science, pages 211–258, Berlin, 1980.
Springer-Verlag.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative type
abstraction and type-level computation. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL’11, 2011.

256

http://hal.inria.fr/hal-00934408
http://hal.inria.fr/hal-00934408
http://dl.acm.org/citation.cfm?id=1096.1106
http://dl.acm.org/citation.cfm?id=1096.1106

Classical π

Steffen van Bakel
Department of Computing
Imperial College London

180 Queen’s Gate
London SW7 2BZ, UK

Maria Grazia Vigliotti
Adelard

3-11 Pine Street
London ECR1, UK

Abstract

In this paper we provide the a summary of the work carried out in
collaboration with Luca on the relation between classical logic and the
π-calculus, and outline a different direction the work has recently taken.

Introduction

Our collaboration with Luca Cardelli started when he was visiting professor at
the Department of Computing at Imperial College. At that time the Theory
Group organised weekly informal seminars, and after the presentation of our first
results on the classical sequent calculus X (van Bakel and Lescanne 2008) at one
of these seminars, Luca said “We need to talk.” This started a very interesting
collaboration which led to several philosophical and technical discussions on what
computation and classical logic have in common and how calculi based on the
latter can be modelled in the π-calculus.

The general idea of modelling classical logic in the π-calculus was studied be-
fore our collaboration with Luca started, but preceding research focussed mainly
on linear logic. When X was introduced, it gave a means to directly study the
computational content of Gentzen’s sequent calculus lk (Gentzen 1935) and of
proofs with cut-elimination. The clear presence of non-determinism and reduc-
tion through the exchange of names in X made us wonder if there could be a
meaningful translation into π-calculus.

The main goal of our research was two-fold: on one side we wanted to better
understand the computational content of proofs; on the other side, we wanted
to explore the computational strength of the π-calculus. Was it possible that
the normalised proofs of classical logic could be magically mapped into the π-
calculus, a formal, abstract tool built to understand concurrent computation and
name passing?

257

Proofs in the sequent calculus can be optimised (normalised) by a well-known
procedure called cut-elimination, which eliminates an intermediate assumption.
This normally comes at the cost that proofs become larger and slightly more
complex. If we take the position of viewing the various steps of optimising a
proof as computational steps, what kind of computation would we get? We could
say that X itself of course is already a way of giving computational meaning to
classical proofs, but to appreciate this the reader would need to be fluent in the
reduction rules of LK, which by themselves do not directly exhibit any familiar
notion of computation. So, can we perhaps understand this better after mapping
X into the π-calculus?

In order to answer that last question, we limited X to a variant called LK
(i.e. X without activation, see (van Bakel and Lescanne 2008)). It took several
attempts to define the ‘correct’ translation from LK to π; to solve several prob-
lems we realised that the most elegant way to proceed was to add pairing to
the π-calculus. Once we fully understood the requirements of the translation,
we were able to establish the properties that were needed; through a successful
translation of LK into the π-calculus we have a different way of understanding the
computational content of classical logic. To show that our translation preserved
the logical aspect, we also had to define a novel type system for π: thus the idea
of Classical π was born.

1 The calculus LK
In this section, we first provide a brief discussion of the sequent calculus LK (a
variant of X), which is a term calculus that enjoys the Curry-Howard isomorphism
for Gentzen’s classical sequent calculus lk. LK features two separate categories
of ‘connectors’, plugs and sockets, that act as output and input channels, respec-
tively, and is defined without any notion of substitution or application. This is
one of the greatest novelties of the calculus.

Definition 1 (Syntax) LK-terms are defined by the following syntax, where
Roman characters range over the infinite set of sockets, and Greek characters over
the infinite set of plugs, collectively called connectors :

P,Q ::= 〈x·β〉 | ẑP α̂·β | P α̂ [x] ẑQ | P α̂ † ẑQ
capsule export import cut

The ·̂ symbolises that the connector underneath is bound in the adjacent term.

These terms act as witnesses of the logical rules (Ax), (→R), (→L), and (cut),
respectively. We now define a notion of type assignment for LK:

258

Definition 2 (Type assignment for LK) 1. (Implicative) types are
defined by the grammar A,B ::= ϕ | A→B , where ϕ is a basic type of
which there are countably many. A context of sockets Γ is a mapping from
sockets to types (written as a finite set of statements of the shape x:A).
Contexts of plugs ∆ are defined similarly.

2. Type judgements for LK are expressed via a ternary relation P : Γ l̀k ∆;
we say that P is the witness of this judgement.

3. Type assignment for LK is defined by the following rules:

(cap) : 〈x·β〉 ··· Γ, x:A ` β:A,∆ (cut) :
P ··· Γ ` α:A,∆ Q ··· Γ, z:A ` ∆

P α̂ † ẑQ ··· Γ ` ∆

(exp) :
P ··· Γ, z:A ` α:B,∆

ẑP α̂·β ··· Γ ` β:A→B,∆
(imp) :

P ··· Γ ` α:A,∆ Q ··· Γ, z:B ` ∆

P α̂ [x] ẑQ ··· Γ, x:A→B ` ∆

The reduction rules for LK are directly inspired by Gentzen’s cut-elimination
rules in lk. It is possible to define proof reduction in many ways; Gentzen
decided to consider the simplest contractions, and considered only the last rule
applied in the two sub-derivations of cuts. Following Gentzen’s approach, LK’s
term rewriting rules explain in detail how cuts are propagated through terms
to be eventually evaluated at the level of capsules, where renaming takes place.
Reduction is defined by specifying both the interaction between well-connected
basic syntactic structures, and how to deal with propagating nodes to points in
the term where they can interact.

Reduction depends on the auxiliary notion of introduced connectors.

Definition 3 (Reduction on LK) Introduction :

P introduces α : P = x̂Qβ̂ ·α and α not free in Q, or P = 〈x·α〉.
P introduces x : P = Qβ̂ [x] ŷR with x not free in Q or R, or P = 〈x·α〉.

Logical Rules : (α and x are introduced).

(cap) : 〈y·α〉α̂ † x̂〈x·β〉 → 〈y·β〉
(exp) : (ŷP β̂ ·α)α̂ † x̂〈x·γ〉 → ŷP β̂ ·γ
(imp) : 〈y·α〉α̂ † x̂(Qβ̂ [x] ẑR) → Qβ̂ [y] ẑR

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →

{
Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP) β̂ † ẑR

Left propagation : (α not introduced)

259

(cap†) : 〈y·β〉α̂ † x̂P → 〈y·β〉 (β 6= α)

(exp-out†) : (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂ ·γ) γ̂ † x̂P (γ fresh)

(exp-in†) : (ŷQβ̂ ·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂ ·γ (γ 6= α)

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P)

Right propagation : (x not introduced).

(†cap) : P α̂ † x̂〈y·β〉 → 〈y·β〉 (y 6= x)

(†exp) : P α̂ † x̂(ŷQβ̂ ·γ) → ŷ(P α̂ † x̂Q) β̂ ·γ
(†imp-out) : P α̂ † x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R))

(z fresh)

(†imp-in) : P α̂ † x̂(Qβ̂ [z] ŷR) → (P α̂ † x̂Q) β̂ [z] ŷ(P α̂ † x̂R) (z 6= x)

(†cut) : P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q) β̂ † ŷ(P α̂ † x̂R)

Contextual Rules :

P → Q ⇒

x̂P α̂·β → x̂Qα̂·β
P α̂ [x] ŷR → Qα̂ [x] ŷR
Rα̂ [x] ŷP → Rα̂ [x] ŷQ
P α̂ † ŷR → Qα̂ † ŷR
Rα̂ † ŷP → Rα̂ † ŷQ

We write→∗LK for the reduction relation defined as the smallest pre-order that
includes the logical, propagation rules, and contextual rules.

The notion of head reduction, →h, is defined by excluding reductions in and
toward import, via the elimination of the propagation rules that move into an
import (i.e. (imp†), (†imp-out), and (†imp-in), as well as the second and third
contextual rule).

It is well known that reduction in LK is highly non-confluent: it is easy to check
that the cut P α̂ † x̂Q – with α not in P and x not in Q – in LK can run to
both P and Q, so reducing it decreases the set of reachable normal forms. Also,
cut-elimination is different from Gentzen’s (implicit) definition: he considered
only innermost reduction for his Hauptsatz result.

As we have introduced the calculus for the classical logic, we now introduce
the π-calculus with pairing, which is based on the one defined in (Abadi and
Gordon 1997).

2 The π-calculus with pairing

One of the challenges we had to face, during the development of our encoding,
was to choose the right π-calculus. There are several versions of the π-calculus

260

with both syntactic and semantics variations. We have chosen a π-calculus with
pairs as it made the translation of the LK, in which a term can be constructed
binding two connectors simultaneously, more readable and results stated in a
more natural, cleaner way.

We write either Greek characters or Roman characters for channel names; we
use a, b, c, n for either a Greek or a Roman name.

Definition 4 (π〈〉: the π-calculus with pairing)

1. Channel names and data are defined by:

a, b, c, d ::= x | α names p ::= a | 〈a,b〉 data

2. Processes are defined by the grammar:

P ,Q ::= 0 | P |Q | !P | (νa) P | a(x).P | a p.P | let 〈x,y〉=p in P

We abbreviate a(x).let 〈y,z〉=x in P by a(y,z).P , and (νm) (νn) P by (νmn) P ,
and write ap rather than ap.0 . We write a_b for a(w).bw.

3. Structural congruence ‘≡’ is defined as normal, but extended with:

let 〈x,y〉=〈a,b〉 in P ≡ P [a/x, b/y]

4. The reduction relation →π over the processes of the π〈〉-calculus is defined
by following (elementary) rules:

a p | a(x).Q → Q [p/x], if well defined synchronisation

P → Q ⇒ (νn) P → (νn) Q binding

P → Q ⇒ P | R → Q | R composition

P ≡ Q & Q → Q ′ & Q ′ ≡ P ′ ⇒ P → P ′ congruence

Notice that data occurs only in ap.P and let 〈x,y〉=p in P , and that then p
is either a single name, or a pair of names. This implies that we do not allow
〈a,b〉.P , nor a(〈b,c〉).P , nor a 〈〈b,c〉,d〉, nor (ν〈a,b〉) P , nor let 〈〈a,b〉,y〉=p in P , etc.

There are several notion of equivalence defined for the π-calculus: the one
we consider here, and will show is related to our encodings, is that of weak
bisimilarity.

Definition 5 (Weak bisimilarity) 1. We write P ↓n (and say that P out-
puts on n) if P ≡ (νb1 . . . bm) (np | Q) for some Q , where n 6= b1 . . . bm. We
write P ⇓n (P will output on n) if there exists Q such that P →∗π Q and
Q ↓n. P ↓n (P inputs on n) and P ⇓n (P will input on n) are defined
similarly.

261

2. A barbed bisimilarity ≈· is the largest symmetric relation such that P ≈· Q
satisfies the following clauses:

• if for each name n: if P ↓n then Q ⇓n, and if P ↓n then Q ⇓n;

• for all P ′, if P →∗π P ′, then there exists Q ′ such that Q →∗π Q ′ and
P ′ ≈· Q ′.

3. Weak-bisimilarity is the largest relation ≈ defined by: P ≈ Q if and only if
C[P] ≈· C[Q] for any context C[·].

4. We write P vπ Q if and only if there exists an R such that Q ≡ P | R , and
write P @∼π Q if and only if there exists R such that R ≈ Q and P vπ R .

Notice that P @∼π Q expresses that Q has more behaviour than P . This yields
a clearer statement on the correctness of the encoding.

3 A natural encoding for LK into π〈〉

We now present the main body of our research, which is the translation of V·Un
of LK into π〈〉; it is called natural since it will create processes that output on
names that are associated to plugs, and input on names that are associated to
sockets, and tries as much as possible to encode the joining of connectors through
substitution, following the syntactic structure of terms.

Definition 6 (Natural encoding of LK in π〈〉)

V〈x·β〉Un = x(w).β w VP α̂ [x] ẑQUn = x(α, z).(!VPUn | !VQUn)
VẑP α̂·βUn = (νzα)(!VPUn | β〈z,α〉) VP α̂ † ẑQUn = (νz) (!VP [z/α]Un | !VQUn)

Since in this translation some sub-terms are placed under input, a full repre-
sentation of reduction in LK cannot be achieved: it is not possible to reduce the
(interpreted) terms that appear under an input. In view of the literature that
exists on translations into the π-calculus, this is unfortunate but standard: the
encoding forces a restriction on the modelled reduction rules. Here, it allows us
to only model head reduction.

Observe that in the image of LK in π〈〉, being built without using ‘choice’,
there is no notion of erasure of processes; this implies that, using reduction in
the π〈〉-calculus, we cannot model P α̂ † x̂Q →LK P , assuming α 6∈ fp(P) and
x 6∈ fs(Q); we can at most show:

VP α̂ † x̂QUn =
∆ (νx) (!VP [x/α]Un | !VQUn) ≡ !VPUn | !VQUn

262

Now all reductions will take place in either VPUn or VQUn, and both parts will
remain under reduction. This implies that, in this case, it is clear that the inter-
preted cut VP α̂ † x̂QUn must contain the behaviour of either its contractea, so,
evidently, has more behaviour than both VPUn and VQUn separately; this is nat-
ural for encodings of non-confluent calculi. We see this return in the formulation
of the correctness result for the natural encoding, which is formulated through
A∼π.

Theorem 7 (Operational Soundness of V·Un with respect to →h)
If P →∗h Q, then there exists R such that VPUn →∗π R with R A∼π VQUn.

It is easy to show that all reductions in the encoding are in fact in ≈, so the
above result can be restated as:

Corollary 8 If P →∗h Q, then VPUn A∼π VQUn.

One of the main result of the encoding is that it led to the definition of the
new type system for the π〈〉-calculus, π̀ (van Bakel et al. 2008, 2014). As for
LK, typeability of a process is expressed as P : Γ π̀ ∆, where the left context
Γ contains types for all the input channels of P , and ∆ for its output channels;
since in P a channel can be used for both, it can appear in both contexts. Our
system thereby gives an abstract functional encoding of processes by stating the
connectability of a process via giving the names of the available (connectable)
channels and their types.

Definition 9 (Implicative type assignment for π〈〉) Type assignment for
π〈〉 is defined by the following sequent system:

(0) :
0 : ` (!) :

P : Γ ` ∆

!P : Γ ` ∆

(ν) :
P : Γ, a:A ` a:A,∆

(νa) P : Γ ` ∆

(|) :
P1 : Γ ` ∆ · · · Pn : Γ ` ∆

P1 | · · · | Pn : Γ ` ∆

(W) :
P : Γ ` ∆

(Γ′ ⊇ Γ,∆′ ⊇ ∆)
P : Γ′ ` ∆′

(out) : (a 6= b)
a b : b:A ` a:A, b:A

(pair-out) : (b 6= a, c)
a〈b,c〉 : b:A ` a:A→B, c:B

(in) :
P : Γ, x:A ` x:A,∆

a(x).P : Γ, a:A ` ∆

(let) :
P : Γ, y:B ` x:A,∆

(∗)
let 〈x,y〉=z in P : Γ, z:A→B ` ∆

(*) y, z 6∈ ∆;x 6∈ Γ.

With this notion of type assignment for π〈〉, we show that the natural encoding
V·Un preserves assignable types:

263

Theorem 10 (Type preservation) If P ··· Γ ` ∆, then VPUn : Γ π̀ ∆.

We have shown that, if P is a witness to a judgement (in l̀k), then its encoding
via V·Un is as well. Together with the preservation result (Theorem 7) this implies
that we can not only interpret reduction in lk through synchronisation (similarly
to what was done, for example, in (Milner 1992) for the lazy λ-calculus), but show
that the processes we create through our interpretations accurately represent the
actual proofs, so synchronisation correctly models cut-elimination, and transforms
a proof into a proof.

4 New directions: Fully abstract output-based

encoding of λµx

The idea of giving a computational meaning to classical logic exists for about
twenty years. The pioneering work of Parigot (1992) created λµ, an extension of
the λ-calculus with names and context switches that yields a variant of Gentzen’s
classical natural deduction calculus that focusses on confluence.

Here, we study a variant of λµ with explicit substitution (Bloo and Rose
1995) we defined in (van Bakel and Vigliotti 2012, 2014). We define a notion of
reduction that only ever replaces the head variable of a term; we will see that
this is the notion of computation that the π〈〉-calculus naturally represents.

Definition 11 (Explicit head reduction for λµ) The syntax of the λµ
calculus with explicit substitution, λµx, is defined by:

M,N ::= x | λx.M |MN |M 〈x :=N〉 | µα.[β]M |M 〈α :=N ·γ〉

The notion of head variable hv (M) is defined as usual, and head name hn (M) are
defined by hn (µα.[β]H) = β, hn (M 〈x :=N〉) = hn (M), and hn (M 〈α :=N ·γ〉) =
hn (M)(hn (M) 6= α).

We call a term pure if it does not contain explicit substitution and write C

for the pseudo-term [α]M . The notion of explicit head reduction →xh on terms
in λµx is defined through the following rules:

Main reduction rules : (λx.M)N → M 〈x :=N〉 (β-rule)
(µα.M)N → µγ.M 〈α :=N ·γ〉 (γ fresh)
µα.[α]M → M (α 6∈ fn(M))

µα.[β]µγ.C → µα.C[β/γ]

Term substitution rules : x 〈x :=N〉 → N
M 〈x :=N〉 → M (x 6∈ fv (M))

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉) (x = hv (M))
(PQ) 〈x :=N〉 → (P 〈x :=N〉 Q) 〈x :=N〉 (x = hv (P))

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉 (x = hv (M))

264

Structural rules : (µβ.[α]M) 〈α :=N ·γ〉 → µβ.[γ](M 〈α :=N ·γ〉)N
M 〈α :=N ·γ〉 → M (α 6∈ fn(M))

Contextual Rules :

M → N ⇒

λx.M → λx.N
ML → NL
µα.[β]M → µα.[β]N
M 〈x :=L〉 → N 〈x :=L〉
M 〈α :=L·γ〉 → N 〈α :=L·γ〉

Substitution rules :

M 〈x :=N〉 〈y :=L〉 → M 〈y :=L〉 〈x :=N〉 〈y :=L〉 (y = hv (M))
M 〈α :=N ·β〉 〈y :=L〉 → M 〈y :=L〉 〈α :=N ·β〉 〈y :=L〉 (y = hv (M))

M 〈α :=N ·γ〉 〈β :=L·δ〉 → M 〈β :=L·δ〉 〈α :=N ·γ〉 〈β :=L·δ〉 (β = hn (M))
M 〈x :=N〉 〈β :=L·δ〉 → M 〈β :=L·δ〉 〈x :=N〉 〈β :=L·δ〉 (β = hn (M))

Notice that we do not allow reduction inside the substitution nor inside the right-
hand side of an application. Moreover, the substitution 〈x :=N〉 on PQ is post-
poned on Q until the variable x in Q becomes the head-variable.

The interpretation of λµx terms into the π〈〉-calculus is defined by:

Definition 12 (Logical interpretation of λµx terms)

VxUa =
∆ x(u).!u_a (u fresh)

Vλx.MUa =
∆ (νxb)(VMUb | a〈x,b〉) (b fresh)

VMNUa =
∆ (νc) (VMUc | !c(v,d).(Vv :=NU | !d_a)) (c, v, d fresh)

VM 〈x :=N〉Ua =
∆ (νx)(VMUa | Vx :=NU)

Vx := NUa =
∆ !x(w).VNUw (w fresh)

Vµγ.[β]MUa =
∆ VMUβ [a/γ]

VM 〈β :=N ·γ〉Ua =
∆ (νβ)(VMUa | Vβ :=N ·γU)

Vα := M ·γUa =
∆ !α(v,d).(Vv :=NU | !d_γ) (v, d fresh)

It is called logical because the interpretation of application corresponds to the
representation of natural deduction’s modus ponens into lk.

Observe the similarity between

VMNUa = (νβ) (VMUβ | !β(v,d).(Vv :=NU | !d_a)) and
VM 〈β :=N ·γ〉Ua = (νβ)(VMUa | !β(v,d).(Vv :=NU | !d_γ))

The first communicates N via the output channel β of M , whereas the second
communicates with all the sub-terms that have β as output name. In other words,
the encoding highlights that application is just a special case of explicit structural
substitution, which corresponds to distributed application.

We can now show:

265

Theorem 13 (Soundness) 1. If M →∗xh N , and in this reduction the β-
rule is applied, then VMUa→+

π P and P ≈ VNUa.

2. If M →∗xh N then VMUa ≈ VNUa.

3. If M ↑xh then VMUa↑.

As for full abstraction, notice that since ∆∆ and ΩΩ (where ∆ = λx.xx,
Ω = λy.yyy) are closed terms that do not interact with any context, they are
contextually equivalent; any well-defined interpretation of these terms into the π〈〉-
calculus will therefore map those to processes that are weakly bisimilar to 0 , and
therefore to weakly bisimilar processes. Abstraction, on the other hand, enables
interaction with a context, and therefore the interpretation of λz.∆∆ will not be
weakly bisimilar to 0 . We therefore cannot hope to model normal βµ-reduction in
the π〈〉-calculus; rather, we need to consider a notion of reduction that considers
all abstractions meaningful; therefore, the only kind of reduction on λ-calculi
that can naturally be encoded into the π〈〉-calculus is weak (or lazy) reduction,
→wh. Here we just define weak head normal forms and weak equivalence.

Definition 14 (Weak equivalence for λµ) The λµ weak head-normal forms
(whnf) are defined through the grammar:

Hw ::= λx.M | xM1· · ·Mn (n ≥ 0)

| µγ.[δ]Hw (γ 6= δ or γ ∈ Hw,Hw 6= µγ′.[δ′]H ′w)

We say that M has a whnf if there exists Hw such that M →∗wh Hw.
We define ∼wβµ as the smallest congruence that contains:

M,N have no whnf ⇒ M ∼wβµN
(λx.M)N ∼wβµ M [N/x]
(µα.C)N ∼wβµ µγ.C[N ·γ/α] (γ fresh)

µα.[β]µγ.C ∼wβµ µα.C[β/γ]
µα.[α]M ∼wβµ M (α 6∈M)

Through a number of bisimulations defined on λµ and λµx, and a notion of
approximation semantics, (van Bakel and Vigliotti 2014) goes on to show:

Theorem 15 (Full abstraction) Let M,N be pure λµ-terms, then

VMUa ≈ VNUa ⇐⇒ M ∼wβµN

266

5 Conclusion

We have bridged the gap between classical cut-elimination and the semantics
of concurrent calculi, by presenting a translation of Gentzen’s classical sequent
calculus lk to the π-calculus that preserves cut-elimination. This shows that the
π-paradigm is truly classical in nature.

However, since LK is highly non-confluent, our result is expressed through
A∼π. We therefore applied our techniques to a confluent classical calculus, λµ, and
found that the π-calculus is again ideally suited: we can define an interpretation
that respects single step explicit head reduction by weak bisimilarity ≈, and show
that it is full abstract with respect to weak equivalence ∼wβµ.

So the π-calculus is perfectly fit to deal with calculi that have their basis in
classical logic, both for sequent calculi as for (confluent) natural deduction.

References

M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. In
CCS’97, pp. 36–47. ACM Press, 1997.

R. Bloo and K. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with
Explicit Substitution and Garbage Collection. In CSN’95, pages 62–72, 1995.

G. Gentzen. Investigations into logical deduction. In The Collected Papers of Gerhard Gentzen.
Ed M. E. Szabo, North Holland, 68ff (1969), 1935.

R. Milner. Functions as Processes. MSCS, 2(2):269–310, 1992.

M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS
624, pp. 190–201, 1992.

S. van Bakel and P. Lescanne. Computation with Classical Sequents. MSCS 18:555–609, 2008.

S. van Bakel and M. Vigliotti. An Output-Based Semantics of λµ with Explicit Substitution in
the π-calculus - Extended Abstract. In IFIP-TCS’12, LNCS 7604, pp. 372–387, 2012.

S. van Bakel and M. Vigliotti. A fully abstract semantics of λµ in the π-calculus. CL&C’14,
2014.

S. van Bakel, L. Cardelli, and M. Vigliotti. From X to π; Representing the Classical Sequent
Calculus in the π-calculus. In CL&C’08, 2008.

S. van Bakel, L. Cardelli, and M. Vigliotti. Classical Cut-elimination in the π-calculus. Sub-
mitted, 2014.

267

	15 paper.pdf
	Introduction
	Programming in TinyBang
	Language Features for Flexible Objects
	Self-Awareness and Resealable Objects
	Flexible Object Operations

	Function Patterns as Interfaces
	Patterns as Type Signatures

	Related Work
	Conclusions

	18 DidierRemyCoercions.pdf
	The different flavors of subtyping
	The language Fcc
	Strength and weaknesses of Fcc

	19 luca.pdf
	The calculus LK
	The pi-calculus with pairing
	A natural encoding for 61 into 62
	New directions: Fully abstract output-based encoding of semcolour`l`msemcolourx
	Conclusion

	15 paper.pdf
	Introduction
	Programming in TinyBang
	Language Features for Flexible Objects
	Self-Awareness and Resealable Objects
	Flexible Object Operations

	Function Patterns as Interfaces
	Patterns as Type Signatures

	Related Work
	Conclusions

	18 DidierRemyCoercions.pdf
	The different flavors of subtyping
	The language Fcc
	Strength and weaknesses of Fcc

	19 luca.pdf
	The calculus LK
	The pi-calculus with pairing
	A natural encoding for 61 into 62
	New directions: Fully abstract output-based encoding of semcolour`l`msemcolourx
	Conclusion

	18 DidierRemyCoercions.pdf
	The different flavors of subtyping
	The language Fcc
	Strength and weaknesses of Fcc

	19 luca.pdf
	The calculus LK
	The pi-calculus with pairing
	A natural encoding for 61 into 62
	New directions: Fully abstract output-based encoding of semcolour`l`msemcolourx
	Conclusion

