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Abstract

Moderate wine consumption has been shown to lower cardiovascular risk. One of the mechanisms could involve the control of postpran-

dial hyperlipaemia, a well-defined risk factor for atherosclerosis, reasonably by reducing the absorption of lipid oxidised species from the

meal. The objective of the present study was to investigate whether wine consumption with the meal is able to reduce the postprandial

increase in plasma lipid hydroperoxides and cholesterol oxidation products, in human subjects. In two different study sessions, twelve

healthy volunteers consumed the same test meal rich in oxidised and oxidisable lipids (a double cheeseburger), with 300 ml of water

(control) or with 300 ml of red wine (wine). The postprandial plasma concentration of cholesterol oxidation products was measured

by GC–MS. The control meal induced a significant increase in the plasma concentration of lipid hydroperoxides and of two cholesterol

oxidation products, 7-b-hydroxycholesterol and 7-ketocholesterol. The postprandial increase in lipid hydroperoxides and cholesterol

oxidation products was fully prevented by wine when consumed with the meal. In conclusion, the present study provides evidence

that consumption of wine with the meal could prevent the postprandial increase in plasma cholesterol oxidation products.
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Epidemiological studies have indicated that wine can be con-

sidered protective against CVD development when its moderate

consumption is inserted in a correct lifestyle(1), including

the ‘instructions to drink/use’, i.e. ‘to be taken with meals’.

A number of experimental studies have suggested that red

wine compounds, especially polyphenols, might play a role in

preventing the development and progression of atherosclerosis,

acting through different pathways that include inhibition of

lipid peroxidation, metal chelation, free-radical scavenging,

inhibition of platelet aggregation, anti-inflammatory and oestro-

genic activity, improvement of endothelial function, lowering of

blood pressure and modulation of lipoprotein metabolism(2).

The attenuation of postprandial oxidative stress could be one

of the mechanisms explaining the protective action of wine

phenols(3,4). In fact, the absorption of pro-oxidant/oxidised

species with the meal can induce physiological events, such as

the formation of mildly oxidised lipoprotein(5) or endothelial

dysfunction(6), and inflammatory responses(7), all events

linked to the development of CVD.

There is evidence that oxycholesterols are angiotoxic and

could cause atherosclerosis(8). Animal studies have shown

that the addition of oxidised cholesterol to the diet increases

atherosclerosis(9), and epidemiological studies have shown

an association between plasma oxycholesterols and CVD(10).

Oxycholesterols have also shown to possess mutagenic and

carcinogenic effects in both in vivo and in vitro studies(11).

The typical Western diet contains substantial quantities of

oxidised cholesterol, and the mean dietary intake has been

estimated in mg/d per person(12).

In view of the health implications of oxycholesterol

absorption from food, we investigated, in a pilot study, the

possibility that wine consumption with a meal influences the

postprandial increase in plasma lipid hydroperoxides and

oxycholesterols in humans.
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Subjects and methods

Subjects and study design

A total of twelve volunteers (six males and six females, age 24–

35 years) participated in a cross-over study. Subjects, free from

known diseases, were asked to keep their diet as constant as

possible during the study period, and none of them was

taking any drugs or vitamin supplement. The present study

was conducted according to the guidelines laid down in the

Declaration of Helsinki, and all procedures involving human

subjects were approved by the Ethical Committee of the

National Institute for Food and Nutrition Research. Verbal

informed consent was obtained from all subjects; verbal con-

sent was witnessed and formally recorded. Subjects ate the

same test meal in two different sessions (2 weeks apart) after

a 10–12 h fasting interval. The test meal, a double cheeseburger,

was eaten with 300 ml of water (control) or with 300 ml of red

wine (Teroldego Rotaliano, Foradori, 2004). The cheeseburger

weighed approximately 200 g and contained 25·7 g of protein,

25·9 g of lipid (10·5 g SFA, 8·6 g MUFA and 0·8 g PUFA), 34·3 g

of carbohydrate and 83 mg of cholesterol (US Department of

Agriculture food composition table). The alcoholic grade of

wine was 13·3 %, with pH 3·71, total SO2 66 mg/l, and its pheno-

lic content was assessed as reported by Canali et al.(13), with the

exception of flavanols, which were estimated by LC–MS

according to Mattivi et al.(14).

Plasma and meal analyses

Blood was collected before (time 0) and 1 and 3 h after the

meal. Venous blood samples were collected into vacutainers

containing opportune anticoagulants. Plasma samples were

separated by centrifugation and stored at 2808C until anal-

ysis. Plasma total cholesterol, TAG and alcohol were

measured by commercial kits (Futura System Srl, Formello,

Roma, Italy; Sigma, St Louis, MO, USA). Plasma samples for

the determination of oxycholesterols were stored at 2808C,

after the addition of butylated hydroxytoluene (50mg/ml),

and analysed within 2 weeks. Total lipid hydroperoxides

were measured in plasma by the ferrous ion oxidation xyle-

nol orange-2 assay, as described by Nourooz-Zadeh(15).

Cheeseburger samples were analysed with the same

methods described for plasma after homogenisation and

extraction with chloroform–methanol(16).

Oxycholesterol measurement

The following four different oxycholesterols were measured

in both the meal and plasma: 7-ketocholesterol (7-Keto-C),

5a,6a-epoxycholesterol, 5b,6b-epoxycholesterol and 7b-

hydroxycholesterol by GC–MS(17).

The four oxycholesterols were selected because they are the

most abundant in food and efficiently absorbed(18).

Briefly, plasma samples (200ml) were added with 1mg of

the internal standard (19-hydroxycholesterol). Saponification

was carried out under N2 flow at 608C for 90 min with 1 ml

of 1 M-NaOH ethanolic solution. Samples were then extracted

with cyclohexane, and the resulting organic layer was

evaporated to dryness under N2. Then, they were resuspended

in 1 ml hexane and applied to solid-phase extraction (Supel-

clean Lc-Si cartridge; Sigma)(19). The oxycholesterol fraction

was dried under N2 and derivatised with 70ml of the Sylon

BTZ kit (at room temperature for 45 min). GC–MS analyses

were performed on an Agilent 6850A gas chromatograph

coupled to a 5973N quadrupole mass-selective detector

(Agilent Technologies, Palo Alto, CA, USA). Gas chromato-

graphic separations were carried out on an Agilent HP-5MS

fused silica capillary column (inner diameter 30 m £ 0·25 mm

and film thickness 0·25mm). The injection mode was splitless

at a temperature of 2808C. The column temperature pro-

gramme was as follows: 1608C (1 min) to 2808C at a rate of

208C/min and held for 15 min. The carrier gas was He at a con-

stant flow of 1·0 ml/min. The spectra were obtained in elec-

tron impact mode at 70 eV ionisation energy; ion source

temperature was 2808C and ion source vacuum was 1025

Torr (1·3 £ 1023 Pa). Analyses were performed both in total

ion current and selected-ion monitoring modes. Selected-ion

monitoring analyses were carried out by selecting the follow-

ing representative ions: m/z 353 for the 19-OH-C trimethylsilyl

(TMS) derivative; m/z 456 for the 7b-hydroxycholesterol TMS

derivative; m/z 474 for the 5b,6b-epoxycholesterol TMS

derivative; m/z 474 for the 5a,6a-epoxycholesterol

TMS derivative; m/z 472 for the 7-Keto-C TMS derivative.

Statistical analysis

Data are presented as means and standard deviations.

Statistical analysis was carried out using repeated-measures

ANOVA, followed by Tukey’s test for multiple comparisons.

Analyses were performed with KaleidaGraph software (ver-

sion 3.6; Synergy Software, Reading, PA, USA). P values

,0·05 were considered statistically significant.

Results

Wine composition

Total polyphenols (1871 mg/l, as catechin equivalents) were in

the typical range for the variety. The concentration of total

proanthocyanidins was 167·7 mg/l. The total administered

dose of the major phenolics was calculated from the concen-

tration in wine measured by HPLC at the time of the exper-

iment. The wine had a quite high content of free

anthocyanins, and the total administered dose was of

304·1mmol. Hydroxycinnamates (85·2mmol administered)

consisted mainly of trans-caftaric acid, coutaric acid and

trans-coumaric acid, with minor amounts of fertaric acid and

grape reaction product (i.e. trans-2-S-glutathionyl-

caftaric acid). Free flavanols (total of 82·9mmol) consisted of

epigallocatechin, (þ)-catechin, epicatechin and gallocatechin.

Myricetin was by far the main flavonol (20·5mmol of total fla-

vonols). Other minor phenolics were tyrosol (29·8mmol) and

the four monomers of resveratrol (for a total of 5·4mmol).

In summary, the single dose of Teroldego wine provided

561 mg of phenolics (which is approximately in the millimolar

level, assuming an average molecular weight of 500).
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Lipid hydroperoxides and oxycholesterols in the test meal

The lipid hydroperoxide content of the test meal was 237

(SD 36)mmol of H2O2 equivalents.

As for oxycholesterols, the test meal contained 498 (SD

147)mg of 7-ketocholesterol, 138 (SD 48)mg of 5a,6a-epoxy-

cholesterol, 91 (SD 6)mg of 7b-hydroxycholesterol and 70

(SD 6)mg of 5b,6b-epoxycholesterol.

When expressed per g of the test meal, total oxycholesterols

were 3·9 (SD 1·1)mg/g, and this value is in accordance with

literature data. van de Bovenkamp et al.(12) reported 3·6mg

of total oxycholesterols/g of a cooked mixed Dutch diet,

while Baggio et al.(20) and Rodriguez-Estrada et al.(21) reported

a concentration of about 2mg/g of hamburger.

Effect of the control and wine meals on plasma lipids, lipid
hydroperoxides and oxycholesterols

Plasma concentrations of total cholesterol, TAG and alcohol,

before and after the control and wine meals, are shown in

Table 1. As expected, there was an increase in plasma TAG

after the consumption of both meals, while ethanol, as

expected, increased significantly only after the wine meal.

Cholesterol concentration did not change significantly after

both meals.

As shown in Fig. 1, the control meal induced a significant

increase in total plasma lipid hydroperoxides. On the contrary,

the wine meal not only prevented this increase, but also

reverted it, inducing a significant decrease in plasma lipid

hydroperoxides.

Fig. 1 shows also the effect of the meal on plasma oxycho-

lesterols. The control meal induced a significant increase in

7b-hydroxycholesterol and 7-ketocholesterol concentrations.

This increase was statistically significant 1 h after the con-

sumption of the meal. The postprandial increase in these

two oxycholesterols was fully prevented when wine was

consumed with the meal. Indeed, wine consumption induced

a significant decrease in 7b-hydroxycholesterol. Both 5a,6a-

epoxycholesterol and 5b,6b-epoxycholesterol showed the

same trend as observed for 7b-hydroxycholesterol and 7-

ketocholesterol, even if their postprandial changes (after both

the control and wine meals) were not statistically significant.

An estimation based on the subjects’ volume of plasma

(55 % of volume of blood, calculated individually as 7 % of

their body weight(22)) indicates that total plasma oxycho-

lesterols (the sum of the measured four oxycholesterols)

represented 105 (SD 29) and 95 (SD 26) % of the ingested

dose 1 and 3 h after the control meal, respectively. As evident

from Fig. 1, after the wine meal, total plasma oxycholesterols

decreased below the baseline value (255 (SD 28) and 231 (SD

41) % of the ingested dose, at 1 and 3 h, respectively).

Discussion

Some authors suggest that the absorption from meals of the

products of lipid oxidation could be, at least partially, the

link between postprandial lipaemia and atherosclerosis(23).

Oxycholesterols are a common component of the Western

diet, and their presence is striking in fast food and processed

food. Studies in both humans(18) and animals(24) have demon-

strated that oxycholesterols are absorbed by the small intestine,

transported in plasma by chylomicrons and incorporated into

lipoprotein. As oxycholesterols posses several proatherogenic

activities(8), a delayed clearance of these compounds from the

circulation could be harmful.

Although oxysterols are principally derived from dietary

sources, circulating oxycholesterols may be produced

enzymatically at the intracellular level and/or from lipopro-

tein oxidation into the circulation(25), or by free radical-

catalysed oxidation of cholesterol during digestion, both at

gastric(4,26) and intestinal levels(27). Even if oxycholesterols

have a faster plasma clearance than ‘normal’ cholesterol, the

level of oxycholesterols in plasma can remain elevated for

more than 6–8 h after a meal(18). Thus, the frequent consump-

tion of foods rich in oxycholesterols can result in a continuous

exposure during most of the day.

According to the literature, the estimates of the extent to

which oxycholesterols are absorbed vary from 6 to 93 %(28).

This wide range of results may be due to both the dose and

vehicle used to administer the oxycholesterols(28). Our estimate

seems to indicate a complete absorption (105 (SD 29) % of the

ingested dose) 1 h after the control meal. We hypothesise, how-

ever, that some of the oxycholesterols present in plasma derive

from the oxidation of the cholesterol contained in the meal

during the digestive process. Although the formation of oxycho-

lesterols during digestion cannot be demonstrated by the pre-

sent study design, several authors provide evidence that lipid

oxidation can occur during digestion(26,27,29), and that the

presence of antioxidants in the digestive tract can protect

from this event(26,30).

A few animal studies have demonstrated that supple-

mentation with antioxidants can prevent the increase in

Table 1. Plasma concentration of some metabolic parameters in plasma after a double cheeseburger meal with 300 ml of water or wine

(Mean values and standard deviations, n 12)

Control Wine

0 1 h 3 h 0 1 h 3 h

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Total cholesterol (mg/l) 1630 300 1650 260 1610 300 1660 250 1640 270 1660 260
TAG (mg/l) 820 160 820* 240 1070* 330 670 210 970 530 1230* 240
Alcohol (%, w/v) 0·01 0·01 0·01 0·01 0·01 0·01 0·01 0·01 0·08* 0·03 0·05* 0·02

* Mean values were significantly different from those of homologous time 0: P,0·005 (by repeated-measures ANOVA, followed by Tukey’s test).
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circulating oxycholesterols induced by a high-fat diet(31), while

the addition of pro-oxidant species to the diet results in a drastic

increase in hepatic oxycholesterols(32). Finally, some human

studies have demonstrated that long-term supplementation of

antioxidants can reduce the plasma level of oxycholesterols(33).

Thus, the composition of diet (its antioxidant/pro-oxidant

balance) has a great influence on the circulating level of

oxycholesterols.

However, in all these studies, the effects of antioxidants on

the circulating level of oxycholesterols have been studied after

a chronic supplementation with a high-fat diet. The present

study, instead, demonstrates that wine could prevent the

acute oxycholesterol ‘toxicity’ induced by a single high-fat

meal.

It has been demonstrated that wine or wine polyphenols

consumption can hinder many harmful postprandial events,

such as oxidative stress and endothelial dysfunction. Red

wine consumption with the meal reduces the susceptibility

to oxidation of postprandial LDL(3) and prevents the post-

prandial increase in plasma lipid hydroperoxides and malon-

dialdehyde(4). A standardised grape product suppresses the

meal-induced impairment of vascular endothelial function(34).

In the present study, we have demonstrated for the first time

that a glass of wine can prevent the postprandial increase in

plasma lipid hydroperoxides and oxycholesterols after the

ingestion of a high-fat, high-cholesterol meal. The peak point

seems to correspond to 1 h, but our experimental design (last

point 3 h after the meal) cannot indicate the length of the

effect; this is a limitation of the present study.

Epidemiological studies have indicated a J-shaped relation-

ship between wine consumption and CVD risk(35). The shape

of the curve is the result of the opposite effects of wine/

alcohol on the cardiovascular system: ‘positive’, such as an

increase in HDL-cholesterol, anti-thrombotic effects, improved

endothelial function, reduced insulin resistance, etc. and

‘negative’, such as an increase in postprandial TAG level

(that is evident also from our data, see TAG in Table 1) and

induction of lipid peroxidation by ethanol.

In this view, the postprandial reduction in oxycholesterols

and oxidised lipids could represent a further ‘positive’ effect of

wine. It is well known, in fact, that oxysterols are present in

atherosclerotic lesions(36–38) and atherogenic lipoprotein(39),

and possess several proatherogenic activities, such as cytotox-

icity on endothelial and arterial smooth muscle cells, down-

regulation of LDL receptors on vascular cell, proinflammatory

activities (induction of cytokine release by macrophages and

of the expression of adhesion molecule in endothelial

cells)(40–45). Finally, several animal studies have shown that oxy-

cholesterols promote the onset and the development of athero-

sclerosis(9,46,47).

The results of the present pilot study do not allow

explanation of the mechanisms/reactions by which wine

counteracts the postprandial increase in circulating

oxidised lipids, so that we can just speculate on some possibi-

lities, needing experimental confirmation.

Wine polyphenols and/or alcohol could minimise the post-

prandial increase in plasma lipid hydroperoxides and choles-

terol oxidation products by (1) reducing lipid peroxidation
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Fig. 1. Time course of plasma (a) lipid hydroperoxides and oxycholesterols ((b) 7-ketocholesterol, (c) 7-b-hydroxycholesterol, (d) 5a,6a-epoxycholesterol and

(e) 5b,6b-epoxycholesterol) after the administration of the control meal (—) or wine meal (· · ·). Values are means, with standard errors represented by vertical

bars (n 12). Mean values were significantly different from those of homologous time 0: *P,0·05 and **P,0·01 (by repeated-measures ANOVA, followed by

Tukey’s test).
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products or preventing their formation in the digestive tract(26),

(2) preventing or delaying fat absorption(48–50), (3) inducing

detoxifying enzymes in the gut and liver(51,52), (4) enhancing

the cholesterol oxidation product clearance, through the

induction of enzymes involved in the cholesterol catabolism

towards bile acids(53,54) and (5) chemically reducing lipid

hydroperoxide and/or oxycholesterols into the circulation

after their absorption.

We studied the effect of wine as a whole, thus we cannot

determine which is the wine component (alcohol or polyphe-

nols) responsible for the observed effects and whether other

forms of alcoholic beverages could have similar effects. This

matter is definitely very interesting, and it should be the

object of further investigation. Similarly, it should be important

to study how a different ratio of wine:meal oxycholesterols

could affect the wines capacity to cope with the increase in

plasma oxycholesterols.

The present study provides evidence that consumption of

wine with a meal could prevent and ‘counterattack’ the post-

prandial increase in plasma lipid hydroperoxides and oxycho-

lesterols, thus protecting the organism from their potential

proatherogenic effect. In this view, the controversial effect of

a moderate wine consumption on ‘health’ (different effects v.

different diseases) could be revised, as the modality of drinking

wine (either during or separately from the meal) could rep-

resent a decisive factor.
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