

Sofia 8-9 May 2012

VALIDATION OF DIAGNOSTIC PROTOCOLS FOR THE DETECTION OF GRAPEVINE VIRUSES COVERED BY PHYTOSANITARY RULES

F. Faggioli,

F. Anaclerio, E. Angelini, G. Bianchi, P. A. Bianco, M. Cardoni, P. Casati, R. Credi, E. De Luca, G. Durante, C. Gianinazzi, G. Gambino, A. Luvisi, U. Malossini, F. Mannini, P. Saldarelli, F. Terlizzi, E. Triolo, N. Trisciuzzi

Working group- **ARNADIA**

CAV - Faenza/Ampelos CNR-IVV Bari CNR-IVV Grugliasco CRA-PAV Roma CRA-VIT Conegliano CRSA - Locorotondo ERSA - FVG

IASMA – San Michele all'Adige IPAD - Lodi

- **UNIBO University of Bologna**
- UNIMI University of Milano
- **UNIPI University of Pisa**
- VCR Vivai Cooperativi Rauscedo

REGIONAL PHYTOSANITARY SERVICES INVOLVED IN THE INTER-LABORATORY RING TEST

> SFR Trentino (Laimburg) SFR Emilia Romagna SFR Lombardia SFR Valle d'Aosta SFR Friuli Venezia Giulia (ERSA)

Sofia 8-9 May 2012

WHAT'S THE MEANING OF THE WORK DONE?

A protocol validation is the evaluation of a process to determine its fitness for a particular use. A validated assay yields test results that identify the presence of a specific target

The aim of WG has been to produce validated reference protocols allowing for the harmonization of the diagnosis of the selected grapevine viruses. The choice of the protocols to validate has been made taking into consideration their reliability, efficiency, time consuming, cost effective and large scale use

Sofia 8-9 May 2012

SELECTED TARGETS (VIRUSES)

- Pathological importance
- Diffusion
- >Inclusion in phytosanitary rules (EU and Italy)
- >Availability of large scale diagnostic tools
 - In this view has been selected eight grapevine viruses:

EU

GLRaV 1 GLRaV 3 GFkV GFLV ArMV

GLRaV 2 GVA GVB

Sofia 8-9 May 2012

METHODS UNDER VALIDATION

VIRUS STRUCTURE

LISA: to detect the viral coat protein

RT-PCR: to detect the viral nucleic acid

Sofia 8-9 May 2012

SAMPLING

The vegetal matrix to use in all the protocols is the scraped phloem tissue obtained from woody material collected during the winter

Period: all the dormant season

Source of material: lignified shoots one year old

Type of sample: 2 woody portions collected from the basal part of the shoots. The woody samples must be intact and must not show changes due to abiotic or biotic factors

Maintenance of the sample: The plant material must be dry, must be placed in plastic bags to be stored at low temperatures or in a cool place such as to avoid possible dehydration

Traceability of the sample: Each sample must be properly signed on the envelope and on the plant

Shipment of samples: The samples must reach the laboratory within 72 hours, preferably in cool bags

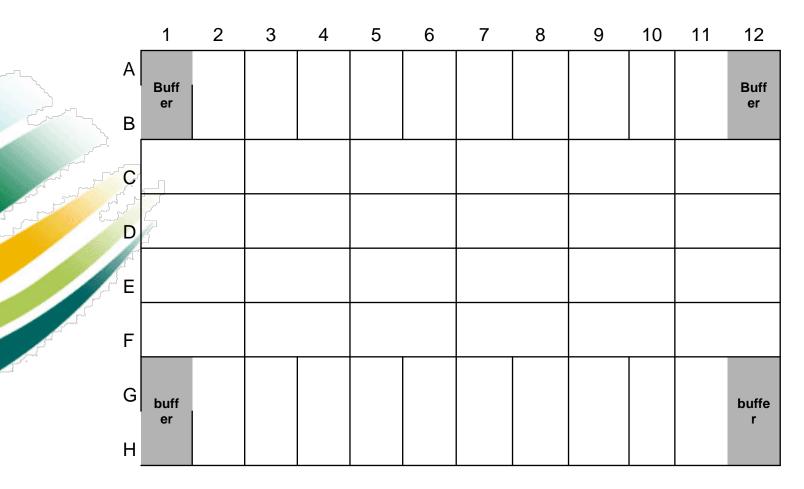
Sofia 8-9 May 2012

ELISA

Antisera from: Agritest (8), Bioreba (10), Sediag (9) Viruses: GLRaV 1, 2, 3, GVA, GVB, GFLV, ArMV, GFkV, GLRaV 1+3, ArMV+ GFLV

The tests were conducted following all instructions provided by the Companies for each antiserum

Moreover, comparative tests of extraction were performed for all antisera, using the following methods:


- 1. Use of plastic bags and homogenizer
- 2. Use of mortar and pestle with or without liquid nitrogen
- 3. Use of milling machines

Sofia 8-9 May 2012

ELISA PLATE SCHEME

Sofia 8-9 May 2012

MULTIPLEX RT-PCR

Ref. Gambino G. and Gribaudo I. 2006. Phytopathology 96 (11): 1223-1229)

Primers: GLRaV 1, 2, 3, GVA, GVB, GFLV, ArMV, GFkV, 18S ic

The tests were conducted following the above reported protocol with some modifications (ie ArMV primers)

Moreover, also in this case, comparative tests of extraction were performed, using the following methods:

- 1. Silica extraction
- 2. CTAB extraction
- 3. McKenzie (1997) +Commercial KIT (RNeasy mini plant Kit Qiagen)

Sofia 8-9 May 2012

SAMPLES UTILIZED IN THE VALIDATION Phloem tissue obtained from the bark

102 reference samples

67 infected (target)

55 varieties 12 rootstocks 17 varieties

18 rootstocks

Plus 20 pool samples composed of 5 plants(1 infected + 4 healthy)

Samples list (122) and their sanitary status

	—
1	GLRaV 1 + GLRaV 2 + GLRaV 3 +
	GVA+ GFkV
2	GVA
3	GVB
4	SANO
5	SANO
6	SANO
7	GLRaV3 + GVA
8	GFLV
9	GFkV
10	POOL DA 42 (GLRaV1, GVA,GFLV)
11	GLRaV 3 , GFLV
12	GVA, GLRAV1, GLRaV3
13	ArMV, GFLV, GLRaV1
14	GLRaV-1
15	POOL DA 107 (GLRaV1)
16	sano
17	POOL DA 106 (GFKV)
18	ArMV
19	ArMV (GRSPaV)
20	GVA, GRLaV2, GLRaV3
21	GLRaV-3+GVA
22	GLRaV-1, GFkV, GFLV
23	SANO
24	SANO
25	GVA + GFLV
26	GLRaV-1 GLRaV-3 GVA
27	POOL DA 93 (GFLV)
28	GFkV
29	sano
30	GLRaV 3
31	GVA
32 33	SANO
33 34	sano SANO
35	ArMV, GFLV, GFKV, GLRaV1, GVA
36	POOL DA 63 (GLRaV2-3, GVA)
37	GLRaV 2 + GFkV
38	POOL DA 66 (GLRaV2, GLRaV3,GVA)
39	GLRaV-1
40	ArMV
41 42	GVA – GFkV – GLRaV-3 GFLV + GLRaV1 + GVA
42 43	POOL SANO
44	GLRaV1
45	GLRaV3

46	SANO
47	SANO
48	POOL DA 18 (ArMV)
49	SANO
50	GLRaV 3, GFkV, GFLV
51	SANO
52	sano
53	POOL DA 44 (GLRaV1)
54	SANO
55	GVA + GFkV +GLRaV-3+GLRaV2
56	GFLV
57	GLRaV3
58	SANO
59	GVA+GLRaV1+GFLV
60	sano
61	sano
62	Sano
63	GLRaV 2 + GLRaV 3 + GVA
64	POOL DA 12 (GVA,GLRaV1-3)
65	SANO
66	GLRaV 2, GLRaV 3 GVA
67	SANO
68	GLRaV 2 (isolato BD)
69	GFLV – GFkV – GLRaV-3
70	GFLV
71	GVA – GFkV – GLRaV-3
72	GFkV+ GLRaV 2 + GLRaV 3 + GVA
73	GFkV
74	POOL DA 1 (GLRaV1-2-
	3,GVA,GFkV)
75	ArMV, GFKV
76	GLRaV2 GLRaV3
77	GFkV + GLRaV2
78	GFLV, GFKV
79	GLRaV3
80	GLRaV1
81	SANO
82	Sano
83	SANO POOL
84	SANO
85	
86	Sano a
87	GVA, GRLaV2, GLRaV1
88	GLRaV2 (isolato BD)
89	SANO
90	GLRaV-1 e GVA

91	GFLV, GLRaV 3
92	GLRaV 1-3 e GVA
93	GFLV
94	SANO
95	ArMV
96	GVA
97	SANO
98	sano
99	sano
100	SANO
101	SANO
102	GFLV – GFkV – GLRaV-3
103	GLRaV 2 (isolato BD)
104	GFkV, GLRaV3
105	GFKV
106	GFkV
107	GLRaV1
108	GVA
109	sano
110	SANO
111	GLRaV 3 + GVA
112	GLRaV 3, GVA, GFLV
113	GFKV
114	GLRaV 2 (isolato RG)
115	POOL DA 70 (GFLV)
116	POOL DA 112 (GLRaV3, GVA, GFLV)
117	POOL GFLV
118	POOL DA 72 (GFKV, GLRaV2-
	3,GVA)
119	POOL DA 95 (ArMV)
120	POOL DA 25 (GVA,GFLV)
121	POOL DA 71 (GVA, GEKV, GLRaV3

- POOL DA 71 (GVA, GFKV, GLRaV3
- POOL DA 113 (GFKV)

All samples were analyzed in blind

Sofia 8-9 May 2012

VALIDATION PARAMETERS

For the protocol validation has been calculated the following parameters, according to UNI/CEI/EN ISO/EC 17025 and 16140 – EPPO – Diagnostics PM7/76 and PM7/98:

•Diagnostic sensitivity: ability of the method used to detect the presence of the pathogen in the samples surely infected by the pathogen in question - true positive

•Diagnostic specificity: ability of the method used to NOT detect the presence of the pathogen in samples not infected by the pathogen in question - true negative

•Accuracy: the average of diagnostic sensitivity and specificity

•Analytical sensitivity: the smallest amount of infectious entities that can be identified by the diagnostic method

•Repeatability or accordance: degree of conformity of the results obtained in replications of the method, made at short intervals of time, using the same reference sample and in the same working conditions i.e. equipment, operator, laboratory

•Reproducibility or concordance: degree of conformity of the results obtained using the same method with the same reference samples in different laboratories

Sofia 8-9 May 2012

PERFORMANCE CRITERIA

Obtained positive / expected positive (positive agreement)	Α	С	Obtained positive / expected negative (positive deviation)
Obtained negative / expected positive (negative deviation)	В	D	Obtained negative / expected negative (negative agreement)

% SENSITIVITY: % SPECIFICITY: % ACCURACY: A/(A+B) D/(C+D) A + D/(A+B+C+D)

Analytical sensitivity: the smallest amount of infectious entities that can be identified by diagnostic method (in the case of plant viruses, which cannot be quantified *in vitro*, corresponds to dilution limit of initial extract in which, the used method, is able to identify the pathogen

Sofia 8-9 May 2012

For the REPEATABILITY or ACCORDANCE has been chosen 4 targets (3 infected and one healthy) and made two dilutions. The samples were analyzed by the same person, with the same reagents, three times on the same day. The values were calculated by checking how many times the same result was repeated regardless of whether they were infected or not % REPEATABILITY or ACCORDANCE C/N C = concordant results N = total samples

For REPRODUCIBILITY or CONCORDANCE has been applied the same method of repeatability, only that analyses were performed in different laboratories, using the same reagents, the same protocol and the same standards. % REPRODUCIBILITY or CONCORDANCE $\Sigma C / \Sigma N$ SC = summation of concordant results for each samples SN = summation of number of laboratories that analyzed the same sample

Sofia 8-9 May 2012

ELISA RESULTS EVALUATION

INTERPRETATION OF READINGS WITH PHOTOMETER

Background (A) = average of the values of the absorbance of the negative controls (healthy and blank - max 0.2 OD) Threshold (B) = A x 2,5 (If this value was greater than or equal to 0.1 OD, otherwise the threshold value will be equal to 0.1 OD). Reading of sample: \geq B = positive Reading of sample: \leq B = negative

In the event that the two replicas were not both above or below the threshold B, the sample was considered doubtful and analyzed again, using the same homogenate, when stored in the refrigerator within 48 hours of its preparation, otherwise a new extract.

Sofia 8-9 May 2012

ELISA - OBTAINED RESULTS

Ī		AGRITEST										
ľ	Parameter	GLRaV1	GLRaV2	GLRaV3	GFKV	ArMV	GFLV	GV	Α	GVB	٦	
Ī	Sensitivity	89	86	81	85	64	75	74		86	7	
	Specificity	97	100	100	100	85	96	100)	100	7	
Ī	Accurancy	93	90	84	88	74	80	80)	92	7	
	Repeatability	100	94	100	100	100	100	95	,	100	7	
Ī	Reproducibility	92	88	98	92	94	87	92		100	1	
Ī	Sensitivity pool	85	32	66	72	64	65	73		nt	1	
{	Specificity pool	100	95	94	100	94	100	100)	nt	1	
	Accurancy pool	89	59	75	84	81	79	81		nt	1	
	Repeatability pool	100	94	100	100	100	100	95		nt	1	
		•				BIORE	BA				_	
	Parameter	GLRaV1	GLRaV2	GLRaV3	GFKV	ArMV	GFLV	GVA	GI	LRaV 1+3	ArMV	+GFLV
	Sensitivity	94	67	90	90	48	82	45		84	8	88
\sim	Specificity	100	100	100	100	95	92	100		100		62
4	Accurancy	96	77	92	92	71	84	58		90		82
	Repeatability	100	92	100	100	100	100	100		100	1	00
	Reproducibility	91	82	91	86	93	91	73		92		93
	Sensitivity pool	61	38	97	47	42	90	30		81		79
	Specificity pool	100	100	100	100	100	93	75		94		62
	Accurancy pool	73	64	98	70	76	91	43		85	-	73
	Repeatability pool	100	86	94	100	100	86	86		100	8	86
1						SEDIAG						1
	Parameter	GLRaV1	GLRaV2	GLRaV3	GFKV	ArMV	GFL\	/ GV	Ά	ArMV+G	FLV	
	Sensitivity	96	87	97	30	50	77	87	7	67		
ľ	Specificity	100	100	100	100	96	92	96	6	67		1
ľ	Accurancy	98	91	97	46	72	81	89)	67		1
ſ	Repeatability	100	92	100	95	100	100	10	0	96		
ľ	Reproducibility*	92	82	92	88	96	91	88	3	74		
	Sensitivity pool	77	21	100	42	43	79	82	2	47		
ľ	Specificity pool	100	95	93	100	97	94	10	0	67		
ľ	Accurancy pool	84	53	98	67	74	85	87	7	53		
ľ	Repeatability pool	100	92	100	95	100	100	10	0	83		

Sofia 8-9 May 2012

ELISA – Some considerations arising from the analysis of the results of different parameters

Extraction methods

Method 1: Use of plastic bags and homogenizer Method 2: Use of mortar and pestle with or without liquid nitrogen Method 3: Use of milling machines

Method 1 resulted less sensitive (5-8%) of method 2 and 3 in detection of GFLV, ArMV and (2-4%) GVA. Method 2 and 3 resulted equivalent between them

Time reading of the results

It was not possible to establish an optimum time for reading regardless viruses and antisera. It seems to be absolutely dependent only from the laboratory.

Sofia 8-9 May 2012

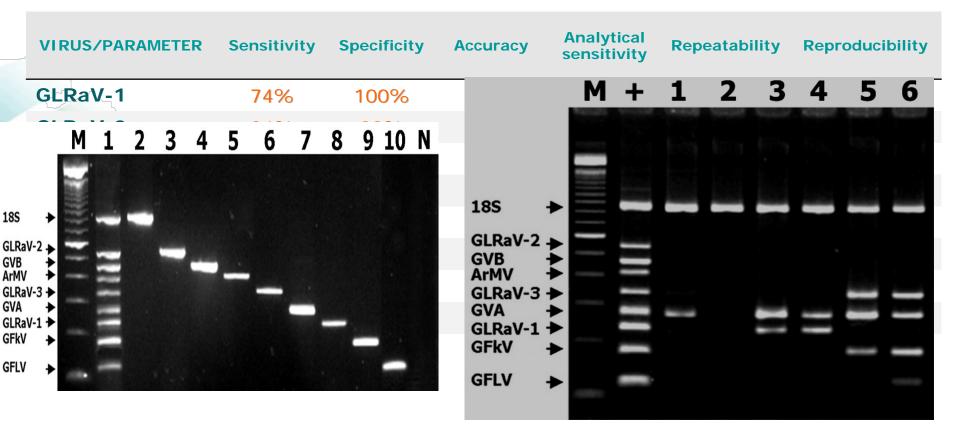
Rootstocks

No difference highlighted for GLRaV 1, 2, 3 and GFkV between the samples of European varieties and rootstocks. Small and not always statistically significant differences (in negative for rootstocks) for ArMV, GVA and GFLV. No difference between the different Companies for the same antiserum,

Pool samples

Generally good results by the pool samples. Surely the accuracy was found to be lower (10-15 percentage points) for GLRaV 1, GLRaV 2 and GFkV compared to individual samples. No statistically significant difference for others.

Antisera comparison


All Antisera behaved absolutely equivalent in the diagnosis of GLRaV 1, 2, 3, GFLV, ArMV. Only two antisera (GFkV of Sediag and GVA of Bioreba) have given results less valid than the respective antisera of other Companies. Good results were obtained by mixed antisera (GLRaV 1 + 3 and GFLV + ArMV) by Bioreba, while mixed antiserum GFLV + ArMV by Sediag proved less performant.

Sofia 8-9 May 2012

MULTIPLEX RT-PCR - OBTAINED RESULTS

Sofia 8-9 May 2012

MULTIPLEX RT-PCR results evaluation with regards to:

Extraction methods

Method 1: Silica extraction Method 2: CTAB extraction Method 3: McKenzie (1997) +Commercial KIT (RNeasy mini plant Kit – Qiagen)

THE THREE METHODS resulted equivalent among them, we suggest the use of the METHOD 3 since is foresees the use of a commercial KIT, giving more assurances about the standardization of the methodology

Sofia 8-9 May 2012

MOLECULAR vs ELISA

		-					
Virus	Diagnostic protocol	Sensitivity	Specificity	Accuracy	Analytical sensitivity	Repeatability	Reproducibility
ArMV	Multiplex RT-PCR	92 %	99 %	98 %	10-2	100%	100 %
	ELISA – A/B/S	64/48/50%	85/95/96%	74/72/72%	10-2	100%	95%
GFLV	Multiplex RT-PCR/	68 %	100%	90 %	10-3	100%	76%
GFLV	ELISA – A/B/S	75/82/77%	96/92/92%	80/84/81%	10-2	100%	90%
GFkV	Multiplex RT-PCR	95%	95%	95%	10 ⁻²	100%	95%
GFKV	ELISA – A/B/S	90/90/30%	100%	92/92/46%	10 ⁻¹	98%	88%
GVA	Multiplex RT-PCR	96 %	99 %	98 %	10-2	100%	94 %
GVA	ELISA – A/B/S	77/45/87%	100/100/96%	83/58/89%	10-1	98%	82%
GVB	Multiplex RT-PCR	100%	100%	100%	10 ⁻²	100%	100%
GVB	ELISA – A/B/S	86%	100%	92%	$10^0 (2^{-2})$	100%	85%
GLRaV 1	Multiplex RT-PCR	74 %	100 %	94 %	10 ⁻²	100%	70 %
GLRAV I	ELISA – A/B/S	89/94/96%	100%	93/96/980%	10-2	100%	92%
GLRaV 2	Multiplex RT-PCR	84%	98%	85%	10-2	95%	83%
GLRAV 2	ELISA – A/B/S	86/67/87%	100%	93/96/98%	$10^0 (2^{-2})$	93%	84%
	Multiplex RT-PCR	100 %	93 %	95 %	10 ⁻³	100%	100 %
GLRaV 3	ELISA – A/B/S	<u>81/90/97%</u>	100%	84/92/97%	10 ⁻³	100%	94%
ELISA		81/75/77%	98/99/97%	87/86/86	10 ⁻¹	99%	89%
MULTIPLEX RT-PCR		89%	98%	95%	10-2	100%	90%

REFERENCE SAMPLES COLLECTION

Ref.	Variety/origin	Sanitary status	Ref.	Variety/origin	Sanitary status
1	Sagrantino	GLRaV 1	24	Piedirosso 4-19-019	sano
2	Sagrantino	GLRaV 3	25	Piedirosso 4-19-034	sano
3	P4/K-S	sano	26	Scimiscià	GLRaV 1
4	P6/K-S	sano	27	Pecorello	GLRaV 2
5	Pinot nero	GLRaV 1	28	Berla Grossa	ArMV
6	Gold Traminer	GLRaV 3	29	Nebbiolo 185	GFkV
7	Gold Traminer	GFLV	30	Moscato 30	GVA
8	Traminer 921 vm	GFLV	31	Albarossa	GVB
9	Pinot nero 189	ArMV	32	varieta europea	GLRav 1, GFLV, ArMV
10	Muller Th. 8013	ArMV	33	Riesling	ArMV, GFKV
11	Traminer 920 vm	GFLV	34	Sangiovese Ceppo G2	GFkV
12	1103 Paulsen P.38	sano	35	Neg 8	sano
13	Pizzutella 2	GVA, GFkV,GLRaV 3	36	Neg 13	sano
14	161/049	GFKV	37	2/9/4 riparia Scribner	GLRaV 2, GLRaV3, GVA
15	157/11	GFKV	38	142/19/4 Terra Promessa	GLRav 1, GFLV, GVA
16	camp. 31637	GVB	39	145/20/3 Red Globe	GLRaV 2
17	camp. 31635	GVB	40	151/14/5 Cereza	GLRaV 3, GVA
20	85 ALB 027	GLRaV 2	41	1/7/2 Riparia Baron	GFLV
21	66 MLI 63 P8	GLRaV 2	42	152/11/2 Corazon de Angel	GVA
22	ELISA 17/2007	GLRaV 3,GVA, GVB	43	4/9/2 Vitis Coignetiae	GLRaV 2, GFkV
23	ELISA 28/2007	GLRaV 3,GVA, GVB	44	147/19/1 Madelaine Vialette	GLRaV 3

CONCLUSION

- For the first time are available harmonized and validated reference diagnostic protocols for the main grapevine viruses
- The efficiency and robustness of the protocols has been proved using a large number of samples in a high number of labs
- For the first time a reference samples collection (targets and not targets) has been established
- >The use of these diagnostic tolls will improve the quality of grapevine germplasm for collections, for mobilization or for sanitary selection purposes

Sofia 8-9 May 2012

Francesco Faggioli

e-mail: francesco.faggioli@entecra.it

CRA - Centro di Ricerca per la Patologia Vegetale CRA - Plant Pathology Research Center