

XXIII Congresso SItE

Ancona, 16-18 Settembre 2013

Università Politecnica delle Marche
Facoltà di Economia "G. Fuà", Caserma Villarey

Abstract

S2.9 Modelling the impact of multi-host helminth parasites on hosts' population dynamics

Bolzoni L.¹, Rosà R.¹, Manica M.², Pugliese A.^{2*}, Rizzoli A.¹

¹Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy; ²Department of Mathematics, University of Trento, Povo, Italy, * andrea.pugliese@unitn.it

This work is inspired by multi-annual observations of helminth infection levels and population densities of rock partridge (*Alectoris graeca saxatilis*) that is an endangered species in the Dolomitic Alps (northern Italy). Field data show that the nematode parasite *Ascaridia compar* infect both rock partridge and black grouse (*Tetrao tetrix*), and also suggest a competitive interaction between the two galliform species that share a common spatial domain in the Alps. We hypothesized two possible interaction mechanisms: direct competition and parasite-mediated competition, also called apparent competition, and we used mathematical models as a proof-of-principle verification of these hypotheses. Outputs from the direct competition model are in contrast with field observations, while outputs of the parasite-mediated competition model qualitatively fit the observed pattern suggesting that the sharing of parasite free-living stages between the two species can trigger the competition playing an important role in the decline of rock partridge in Trentino region. The model has been extended to a spatial model that allows for a partial habitat overlap, showing the role of diffusion in shaping either exclusion or spatial segregation of the competitor less tolerant of infestation.