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Abstract: Grape is qualitatively and quantitatively very rich in polyphenols. In particular, 

anthocyanins, flavonols and stilbene derivatives play very important roles in plant 

metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the 

color of red grapes and wines and confer organoleptic characteristics on the wine. They are 

used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. 

They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, 

exert protective effects on the human cardiovascular system, and are used in the food and 

pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and 

associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, 

is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. 

Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as 

active defenses against exogenous attack, or produced by extracellular enzymes released 

from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a 

ubiquitous class of flavonoids with photo-protection and copigmentation (together with 

anthocyanins) functions. The lack of expression of the enzyme flavonoid 3',5'-hydroxylase 

in white grapes restricts the presence of these compounds to quercetin, kaempferol and 

isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and 
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syringetin derivatives. In the last ten years, the technological development of analytical 

instrumentation, particularly mass spectrometry, has led to great improvements and further 

knowledge of the chemistry of these compounds. In this review, the biosynthesis and 

biological role of these grape polyphenols are briefly introduced, together with the latest 

knowledge of their chemistry. 
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1. Introduction 

Grape contains a great number of classes of secondary metabolites: in particular, the composition of 

polyphenols is qualitatively and quantitatively very rich. The main polyphenols are anthocyanin, 

flavonol and stilbene derivatives, three classes of compounds displaying peculiar characteristics and 

which play important roles in plant metabolism [1]. 

Phenolic composition is highly affected by differences in grape varieties, environmental conditions 

and cultural practices. Berry phenolics contribute to wine quality and have beneficial effects on many 

aspects of human health. Due to their biological and organoleptic characteristics, anthocyanins, 

flavonols and stilbenes play a key role in wine quality, and grape extracts are used as sources of natural 

compounds in the pharmaceutical, food and nutraceutical industries [2]. As a consequence, studies are 

ongoing to improve knowledge of their chemistry, to better explain their roles in vine physiology, and 

to improve product characteristics. 

In the last ten years, the technological development of analytical instrumentation has greatly 

improved and expanded knowledge of these compounds. In the 1990s, the development of Liquid 

Chromatography Mass Spectrometry (LC/MS) and Multiple Mass Spectrometry (MS/MS and MSn) 

supplied very useful techniques for studying polyphenol structures [3–5]. Many studies on 

anthocyanins in grape and wine have provided experimental evidence for structures which, until a  

few years ago, were only hypothesized, and we can now better understand the mechanisms in which 

they are involved in wine-making and wine aging [6]. A detailed qualitative and quantitative study  

of stilbene derivatives in grape by accurate MS was recently performed, and 18 stilbene  

derivatives, including monomers, glucoside derivatives, dimers (viniferins), trimers and tetramers were  

identified [7]. Study of grape flavonols by LC/MS has also shown the presence of isorhamnetin, 

laricitrin and syringetin derivatives, in addition to those of myricetin, quercetin and kaempferol which 

usually occur in wines [8]. 

In the present review, the biosynthesis and biological role of these classes of polyphenols in grape 

are briefly introduced, together with the latest knowledge on their chemistry. 

2. Biosynthesis of Grape Polyphenols 

2.1. Flavonoids 

All phenolic compounds are synthesized from the amino acid phenylalanine through the 

phenylpropanoid pathway [9]. Phenylalanine is in turn a product of the shikimate pathway, which links 
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carbohydrate metabolism with the biosynthesis of aromatic amino acids and secondary metabolites. 

The general phenylpropanoid pathway is shown in Figure 1. Two main classes of compounds can be 

produced: flavonoids (by chalcone synthase) and stilbenes (by stilbene synthase). The flavonoid 

pathway leads to the synthesis of various classes of metabolites, such as flavonols, flavan-3-ols, 

proanthocyanidins and anthocyanins (Figure 2). 

Figure 1. General phenylpropanoid pathway. PAL, phenylalanine ammonia lyase;  

C4H, cinnamate-4-hydroxylase; 4CL, 4-coumaroyl:CoA-ligase; CHS, chalcone synthase; 

STS, stilbene synthase. 

 

2.2. Anthocyanins and Flavonols 

Flavonols are normally glycosylated at the C-3 position of the C ring. Anthocyanins are synthesized 

from anthocyanidins by glycosylation at the 3 and 5 positions of the C ring, are accumulated in berry 

skins and also in the flesh of some “teinturier” varieties, from veraison until full maturity, when 

synthesis stops. Anthocyanidin glycosides are generally more stable than the corresponding aglycones, 

as glycosylation induces intramolecular H-binding within the anthocyanin molecule [10]. Enzyme  

UDP-glucose:flavonoid 3-O-glucosyl transferase (UFGT) catalyses glucosylation of both anthocyanidins 

and flavonols, but its efficiency is much higher for the former [11]. Acylated anthocyanins are present in 

most red grapes, probably due to the presence of the enzyme anthocyanin acyl-transferase. 

Anthocyanins are synthesized in the cytosol and delivered into the vacuole, where they are stored as 

colored coalescences called anthocyanic vacuolar inclusions. Vacuolar uptake may depend on 

mechanisms mediated by tonoplast transporters or based on vesicular trafficking. Transporter-mediated 

uptake may rely on two mechanisms. MATE-type proteins are localized to the tonoplast and function 

as vacuolar H+-dependent transporters of acylated anthocyanins [12]. ATP-binding cassette proteins 

are glutathione S conjugate pumps involved in the uptake of glycosylated flavonoids, independent of 

the presence of an H+ gradient. Glutathione S-transferases (GSTs) are thus expected to participate in 

vacuolar trafficking. They include a member of the GST gene family that has overlapping transcription 

patterns with anthocyanin accumulation [13,14]. Another putative anthocyanin carrier with high 
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similarity to mammalian bilitranslocase has been isolated from grape berries [15]. Although evidence 

exists for a number of transporters, whether anthocyanins enter the vacuole as single molecules and 

then aggregate, or whether cytoplasmic vesicles containing coalesced anthocyanins interact with the 

tonoplast, remains unknown. 

Figure 2. Flavonoid pathway. CHS, chalcone synthase; CHI, chalcone isomerase;  

F3'H, flavonoid-3'-hydroxylase; F3'5'H, flavonoid-3',5'-hydroxylase; F3H,  

flavanone-3-hydroxylases; FLS, flavonol synthase; DFR, dihydroflavonol reductase;  

LAR, leucoanthocyanidin reductase; LDOX, leucoanthocyanidin dioxigenase;  

ANR, anthocyanidin reductase; UFGT, UDP-glucose:flavonoid 3-O-glucosyl transferase;  

OMT, O-methyltransferase. 
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2.3. Stilbene Derivatives 

Although flavonoids are found in all higher plants, only a few species produce stilbenes. Stilbene 

synthase (STS) and chalcone synthase (CHS) are closely related enzymes that specifically control 

flavonoid or stilbene biosynthesis. STS has evolved from CHS several times in higher plants and a few 

amino acid exchanges are sufficient to switch from chalcone to stilbene synthesis [15]. After its 

formation in the grapevine lineage, the STS gene has massively proliferated in the grapevine genome, 

mostly by local duplications, giving rise to a family of 43 members. To what extent each gene copy is 

redundant or whether any specialization has occurred is still unknown. In contrast, only three copies of 

CHS are present in the grapevine genome, with diversified patterns of expression in the grape berry [16]. 

Of other enzymatic steps which convert resveratrol into downstream derivatives, a resveratrol  

O-methyltransferase (ROMT) catalyses the conversion of resveratrol into the highly fungitoxic 

pterostilbene [17], and a glucosyltransferase can produce glucosides of cis- and trans-resveratrol and 

also has residual glucosyl activity on hydroxycinnamic acids and some flavonoids [18]. 

STS accepts as substrates 4-coumaroyl-CoA and 3 molecules of malonyl-CoA. Like CHS, STS 

carries out three reactions of condensation that produce resveratrol. In the STS reaction, the terminal 

carboxyl group is removed prior to closure of the A ring, which causes different ring-folding in 

resveratrol compared with tetrahydroxychalcone, the product of CHS. CHS and STS thus compete for 

the same substrates and control the entry points into the flavonoid and stilbene pathways, respectively. 

2.4. Effects of Agrochemicals and Plant Activators on Grape Polyphenols 

Biosynthesis of anthocyanin can be influenced by exogenous elicitors and different chemical 

compounds have been tested to increase their content in grape berries. Use of hormones, such as 

abscisic acid (ABA), jasmonate compounds, ethylene, salycilic acid, and non-hormone chemicals, such 

as ethanol and eutypine, were shown to promote the anthocyanin biosynthesis [19]. Recent studies 

showed also an increase of anthocyanin content in grapes treated with benzothiadiazole (BTH) and a 

BTH/methyl jasmonate mixture [20,21]. Also chitosan (a linear polysaccharide) and pectin-derived 

oligosaccharides have shown an increase the polyphenolic and anthocyanic content in grape [22,23]. 

Agrochemicals and plant activators act in the vine as elicitor also in the stilbene synthesis. The most 

used agrochemical is fosetyl-Al, a systemic fungicide active against Oomycetes fungi, like 

Plasmopara viticola, which induces the synthesis of trans-resveratrol and ε-viniferin in the leaves [24]. 

Plant activators include a large array of organisms, such as Botrytis cinerea, Plasmopara viticola, 

Tricoderma viride, Erysiphe necator, Rhizopus stolonifer, Aspergillus carbonarius,  

Aspergillus japonicus, Laminarina spp., Bacillus spp., and many products such as aluminium chloride, 

ozone, sucrose, dimethyl-β-cyclodextrin, MeJ, BTH, chitosan oligomers, salicylic acid, ABA,  

beta-amino-butyric acid (BABA), emodin, and treatments with UV rays [25–27]. 

While the influence of agrochemicals and plant activators on grape stilbenes, flavan-3-ols [28] and 

anthocyanins is a known issue due to SAR (systemic acquired resistance) and activators induce the 

expression of phenylpropanoid genes in grapevine [29], little is reported about their influence on 

flavonols. An induction of their synthesis, similar to that observed for anthocyanins, could be 

expected, given the closeness of the two biosynthetic pathways. In a “one vintage (2004)/one variety 
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(Merlot)/one activator (BTH)” experiment, Iriti et al. revealed a very poor effect in the total flavonoids 

amount [28]. However, this study was not specific for flavonols. In a two-year study on treatment with 

BTH and methyl jasmonate (MeJ) conducted on Monastrell grape (2009–2010), an increase in flavonol 

concentration was observed [20] but the wide biological variability makes the results not completely 

consistent for the two years investigated. BTH-treated grapes had a higher flavonol concentration in 

both years (+17% and +56%), while the treatment with MeJ increased flavonols only in one year even 

if with a more pronounced effect (+131%). Differences between treated/untreated samples was more 

evident in the colder-humid year (2010), in which the conditions were more favorable for the 

development of pathogens, but no difference in the flavonol profile was observed. In any case, the 

influence of agrochemicals and plant activators in flavonoid synthesis is still an unclear argument in 

which further studies are needed. 

3. Chemistry and Proprieties of Anthocyanins 

In general, polyphenols are characterized by antioxidant activity, and in vitro studies have shown 

that they act as radical peroxyl scavengers in the formation of complexes with metals. Their ability to 

cross the intestinal wall of mammals (although some compounds show low bioavailability) and their 

cellular signaling activity has also been proven [1,30,31]. 

Anthocyanins are natural colorants present in the skin of red grapes that play a key role in the 

organoleptic characteristics of wines [32–34]. Anthocyanin accumulation also occurs in the pulp of the 

berries of a few “teinturier” varieties (which turn out to be slightly colored) with asymmetrical 

distribution within grape flesh and skins [35]. Environmental effects have a greater influence on the 

anthocyanin content in grape than their composition, which is more closely linked to variety. 

Anthocyanins have different biological functions in plant tissues, such as protection against solar 

exposure and UV radiation, pathogen attacks, oxidative damage and attack by free radicals; they are 

also capable of attracting animals for seed dispersal and of modulating signaling cascades [19]. 

Together with the other polyphenolics, anthocyanins have been studied to evaluate the ripening  

stage of grape [36], for chemotaxonomic purposes, and for their biological properties such as 

antioxidant, antimicrobial and anti-carcinogenic activity, and their protective effect on the 

cardiovascular system [37–41]. In addition, they represent an important source of natural colorants for 

the food, nutraceutical and pharmaceutical industries [42–44]. 

Glycosylation at the C-3 and C-5 positions of the molecule affects the perceived color of the 

anthocyanin pigment: 3-glucoside derivatives are more intensely colored than 3,5-diglucosides, and 

acylation of glucose further increases the stability of the compound [45,46]. In general, V. vinifera 

grapes contain only 3-O-monoglucoside derivatives, due to two disruptive mutations in the anthocyanin 

5-O-glucosyltransferase gene, which produces a nonfunctional form of the enzyme that normally performs 

5-glycosylation in other grapevine species [47]. The main grape anthocyanins of these varieties are 

delphinidin, cyanidin, petunidin, peonidin and malvidin, present as monoglucoside, acetylmonoglucoside 

and p-coumaroylmonoglucoside derivatives. More recently, pelargonidin-3-O-glucoside and its acetyl  

and p-coumaroyl derivatives have been found [35,48,49]. The structures of the main V. vinifera 

anthocyanins are shown in Figure 3. Some anthocyanin oligomers have also been found in grape 

(Table 1) [50]. 
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Figure 3. Structures of the principal V. vinifera grape anthocyanins. 

 

Table 1. Oligomeric anthocyanins identified by liquid chromatography-mass spectrometry 

(LC/MS) analysis in Shiraz grape skins. F, fragment ion; M, molecular ion;  

Dp, delphinidin; Cy, cyanidin; Pt, petunidin; Pn, peonidin; Mv, malvidin; G, glucose;  

pCG, p-coumaroyl glucoside [50].  

m/z Assignment m/z Assignment m/z Assignment 

287(F) Cy 795(F) MvDp + G 1315(F) MvMvMv + 2G 
301(F) Pn 809(F) MvPt + G 1417(F) MvMvCy + G·pCG 
303(F) Dp 823(F) MvMv + G 1431(F) MvMvPn + G·pCG 
317(F) Pt 941(M) MvCy + 2G 1433(F) MvMvDp + G·pCG 
331(F) Mv 955(M) MvPn + 2G 1433(M) MvMvCy + 3G 
449(M) Cy + G 957(M) MvDp + 2G 1447(F) MvMvPt + G·pCG 
463(M) Pn + G 971(M) MvPt + 2G 1447(M) MvMvPn + 3G 
465(M) Dp + G 985(M) MvMv + 2G 1449(M) MvMvDp + 3G 
479(M) Pt + G 1087(M) MvCy + G·pCG 1461(F) MvMvMv + G·pCG 
493(M) Mv + G 1101(M) MvPn + G·pCG 1463(M) MvMvPt + 3G 
617(F) MvCy 1103(M) MvDp + G·pCG 1477(M) MvMvMv + 3G 
631(F) MvPn 1117(M) MvPt + G·pCG 1579(M) MvMvCy + 2G·pCG 
633(F) MvDp 1131(M) MvMv + G·pCG 1593(M) MvMvPn + 2G·pCG 
647(F) MvPt 1271(F) MvMvCy + 2G 1595(M) MvMvDp + 2G·pCG 
661(F) MvMv 1285(F) MvMvPn + 2G 1609(M) MvMvPt + 2G·pCG 
779(F) MvCy + G 1287(F) MvMvDp + 2G 1623(M) MvMvMv + 2G·pCG
793(F) MvPn + G 1301(F) MvMvPt + 2G   

Each anthocyanin has a particular hue, ranging from red to blue. Delphinidin derivatives are 

associated with blueness and cyanidin derivatives are reddish. Methylation may affect color stability, 

as anthocyanin-O-methylation reduces the chemical reactivity of phenolic hydroxyl groups [51]. The 

combination of anthocyanin quantities and profiles contributes to the intensity and hue of the color of 

fruit and wines [52]. 

Non-V. vinifera grapes (e.g., V. riparia, V. labrusca) also often contain 3,5-O-diglucoside 

anthocyanins. As they are practically absent in V. vinifera grapes, in several countries (e.g., the EU) 

some of these varieties cannot be used to produce wines (e.g., Isabelle, Clinton, and others [53]), and 

their presence in a wine is an indication of fraud. The anthocyanin composition of 21 hybrid red grape 
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varieties produced by crossing V. vinifera, V. riparia, V. labrusca, V. lincecumii and V. rupestris 

species was recently studied [54]. LC/MS/MS analysis identified 24 anthocyanins, including  

11 diglucoside derivatives (structures shown in Figure 4). As regards their content in grape, some 

varieties showed up to 5 g/Kg/grape of total anthocyanin (expressed as malvidin-3-O-glucoside).  

Table 2 lists other monomer anthocyanins identified in the extracts of some grape varieties. 

Figure 4. Structures of anthocyanins identified in 21 different hybrid red grape varieties. 

 

Table 2. Monomer anthocyanins identified in skin extract or juice of different grape 

cultivars [48,55]. Pg, pelargonidin; Dp, delphinidin; Cy, cyanidin; Pt, petunidin;  

Pn, peonidin; Mv, malvidin.  

Anthocyanin m/z (M+) Cultivar 

Cy-3-O-pentoside 419 Casavecchia 
Pg-3-O-glucoside 433 Concord, Salvador, Rubired 
Cy-3-O-(6-O-acetyl)pentoside 461 Casavecchia 
Cy-3-O-(6-O-p-coumaryl)pentoside 565 Casavecchia 
Dp-3-O-glucoside-pyruvic acid 533 Isabelle 
Dp-3-O-(6-O-p-coumaryl)glucoside-pyruvic acid 679 Isabelle 
Pn-3-O-glucoside-acetaldehyde 487 Isabelle, Pallagrello 
Mv-3-O-glucoside-acetaldehyde 517 Isabelle 
Pt-3-O-(6-caffeoyl)-5-O-diglucoside 803 Isabelle, Casavecchia 
Dp-3-O-(6-acetyl)-5-O-diglucoside 669 Isabelle 
Dp-3-O-(6-feruloyl)-5-O-diglucoside 803 Isabelle, Casavecchia 
Pn-3-O-(6-O-p-coumaryl)-5-O-diglucoside 771 Concord, Salvador, Isabelle, Casavecchia 
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4. Chemistry and Proprieties of Stilbene Derivatives 

Stilbenes are phytoalexins naturally occurring in a few edible plants, and they also occur in grape. 

Their content increases from veraison to ripening, with significant differences among V. vinifera 

varieties [56]. These compounds, and in particular resveratrol, are among the main polyphenols 

associated with the beneficial effects of drinking wine. The main grape stilbenes are cis- and  

trans-resveratrol (3,5,4'-trihydroxystilbene), resveratrol-3-O-β-D-glucopyranoside (piceid), piceatannol 

(3,4,3',5'-tetrahydroxy-trans-stilbene) and resveratrol dimers (viniferins) [57,58]. Isomeric and 

glycosylated forms of resveratrol and piceatannol, such as hopeaphenol, resveratroloside,  

resveratrol-4'-O-β-D-glucopyranoside, and resveratrol di- and tri-glucoside derivatives, have also been 

identified in trace amounts in grape [59]. Glycosylation of stilbenes is functional to storage, 

translocation, modulation of antifungal activity and protection from oxidative degradation. 

Glycosylated derivatives of resveratrol include both piceid and astringin (3'-hydroxy trans-piceid). 

Several in vitro studies have shown that resveratrol has anti-cancer, anti-oxidant and  

anti-inflammatory activity, confers cardioprotection and inhibits platelet aggregation [60–66]. 

Pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) is a dimethylated derivative of resveratrol with 

enhanced fungitoxic activity with respect to its precursor [59]. Piceatannol blocks LMP2A, a viral 

protein-tyrosine kinase implicated in leukemia, non-Hodgkin’s lymphoma and other diseases 

associated with the Epstein-Barr Virus (EBV) [67,68], and also acts on human melanoma cells [69]. 

Viniferins are produced through oxidation of the basic stilbene by 4-hydroxystilbene peroxidases. The 

most important are α-viniferin (a cyclic dehydrotrimer of resveratrol), β-viniferin (a cyclic 

dehydrotetramer of resveratrol), γ-viniferin (a more highly polymerized oligomer of resveratrol),  

δ-viniferin (an isomer of resveratrol dehydrodimer) and ε-viniferin (a cyclic dehydrodimer  

of resveratrol). Of these, ε-viniferin is the major stilbene synthesized in berries infected with  

Botrytis cinerea [70]. Synthesis of ε-viniferin and δ-viniferin can also be induced upon  

Plasmopara viticola infection or UV irradiation [71]. 

ε-Viniferins and ω-viniferins (E and Z isomers) and resveratrol trimers and tetramers (ampelopsin 

D, quadrangularin A, α-viniferin, E- and Z-miyabenol C, isohopeaphenol, ampelopsin H, vaticanol  

C-like) have been found in various parts of the plant, such as leaves, roots, clusters and stems, from 

oxidative coupling of resveratrol or resveratrol derivatives [72]. In Vitis grapevine canes,  

E-ampelopsin E, Eamurensin B, E-resveratroloside, E-3,5,4'-trihydroxystilbene 2-C-glucoside,  

Z-ampelopsin E, scirpusin A, E- and Z-vitisin B have also been found [73]. These compounds are 

formed by oligomerization of trans-resveratrol in grape tissue, a process induced as active defense by 

the plant against exogenous attack, or are produced by extracellular enzymes released from pathogens 

in an attempt to eliminate undesirable toxic compounds [74,75]. 

A study of stilbene derivatives in Raboso Piave and Primitivo grapes was recently performed by 

accurate and multiple (MS/MS) mass spectrometry assays [7]. A metabolomic approach by suspect 

screening analysis identified 18 stilbene compounds, some found in grape for the first time. Figure 5 

shows the structures of stilbenes identified in grape. 
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Figure 5. Structures of stilbenes in grape. (1) Z- and E-astringin; (2) Z- and E-piceid;  

(3) pterostilbene (3,5-dimethoxy-4'-hydroxystilbene); (4) piceatannol; (5) pallidol;  

(6) pallidol-3-O-glucoside; (7) parthenocissin A; (8) trans-resveratrol; (9) resveratroloside; 

(10) hopeaphenol; (11) ampelopsin H; (12) caraphenol B; (13) vaticanol C isomer;  

(14) resveratrol-4'-O-β-D-glucopyranoside; (15) isohopeaphenol; (16) E- and Z-ε-viniferin; 

(17) E- and Z-miyabenol C; (18) E- and Z-δ-viniferin; (19) trans-resveratrol-4'- 

methyl ether. 

 

5. Chemistry and Proprieties of Flavonols 

Flavonols are secondary metabolites present in almost all higher plants. They are considered to act 

as UV- and photo-protectors because they absorb strongly at both UV-A and UV-B wavelengths. 

Flavonols also play an important role in wine copigmentation together with anthocyanins, are useful 

markers in grape taxonomy, and are considered bioactive grape/wine compounds of possible 

importance for human health and nutrition. 

The chemical structure of flavonols is closely related with their biosynthesis. Like all phenolic 

compounds, flavonols are products of the phenylpropanoid pathway, which converts phenylalanine 

into 4-coumaroyl-CoA and later into tetrahydroxychalcone (Figure 6). The biosynthesis of the various 

classes of flavonoids, which include flavonols, starts from this last metabolite. In general flavonols are 

C6-C3-C6 polyphenolic compounds in which two hydroxylated benzene rings, A and B, are joined by 

a three-carbon chain which is part of a heterocyclic C ring with a 3-hydroxyflavone backbone, and a 

double bond (Figure 6). 

In detail, they differ in the number and type of substitution in the B ring. Kaempferol is 

monohydroxylated in position 3'; quercetin is dihydroxylated in positions 3' and 4'; and myricetin is 

trihydroxylated in positions 3', 4' and 5'. Isorhamnetin is the methylated form of quercetin,  

and laricitrin and syringetin are the methylated forms of myricetin (Figure 6). All the above 
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compounds normally occur in grape as glucosides, galactosides, rhamnosides, rutinosides and 

glucuronides [32,76–79]. Sugar is linked to position 3 of the flavonoid skeleton. 

Figure 6. Flavonols pathway. The trihydroxylated flavonols myricetin, laricitrin and 

syringetin are lacking in the berries of white grapes. 

 

Flavonols are mainly located in the outer epidermis of the skin, since they act as UV-protecting 

agents. Their synthesis begins in the flower buttons, the highest concentrations being found a few 

weeks after veraison. It then stabilizes during early fruit development and decreases as the grape 

berries increase in size [80,81]. 

The total content and pattern of flavonols is highly variable across genotypes and can also be 

modulated to some extent by biotic and abiotic factors. Flavenol patterns are considered to be an 

important chemo-taxonomical parameter [8,32,41,82,83]. White and light red grape varieties 

synthesize mainly the mono- and di-substituted B-ring derivatives kaempferol, quercetin and 

isorhamnetin; red grapes also accumulate the tri-substitutes myricetin, laricitrin and syringetin [32,84]. 

Quercetin is thus the major flavonol of all white varieties such as Chardonnay, Riesling, Viogner  

and Sauvignon Blanc, in which it represents over 70% of total flavonols. Quercetin is also the  

major flavonol in some light red/rosé varieties such as Nebbiolo, Pinot Noir, Sangiovese and 

Gewuertztraminer, which also contain small percentages of myricetin (less than 20%). Conversely, 

myricetin is the major flavonol of most of the red varieties like Cabernet Sauvignon, Sagrantino and 

Teroldego [32]. Methylated derivatives are generally found in small quantities. All the flavonols 

detected in grape are glycosylated in position 3 of the B ring; no C-glycosylated compounds have been 

found. The sugar is usually glucose or glucuronic acid and galactose, rutinose or pentoses are found in 

smaller quantities. 
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The total amount of flavonols in grapes varies from 1 to 80 mg/Kg of fresh berry, the red cultivars 

often being richer than the white ones [32,41,78,84,85]. Some wild species of Vitis have been found to 

contain much higher amounts of flavonols than Vitis vinifera cultivars like V. palmate (124 mg/Kg) 

and V. riparia (111 mg/Kg) [82,83,86]. Another parameter which influences the amount of flavonols is 

the thickness of the berry skin, and thick-skinned grapes are reported to produce wines with higher 

amount of flavonols (e.g., Cabernet Sauvignon) than thin-skinned ones (e.g., Grenache) [87]. 

Agronomic and environmental factors also strongly affect mainly the amount and then the profile of 

flavonols in grape. In particular, flavonol biosynthesis in plant tissues is greatly influenced by sunlight. 

In general, it would normally be expected that grapes more exposed to daylight could enhance the 

biosynthetic pathway of all flavonoids [76,82,88–91]. Temperature appears to have a less significant 

influence [76,78]. Some recent studies have shown that high temperatures during maturation decrease 

the expression of genes related to flavonoid synthesis and favor anthocyanin biosynthesis. Day 

temperatures of 15–25 °C, falling to 10–20 °C at night, produced grapes with higher amounts of 

flavonols with respect to higher daytime temperatures (30–35 °C) [90]. Azuma et al. recently 

demonstrated that total flavonol amounts were higher for a daytime temperature of 15 °C under light 

treatment, with small variations in temperature, although in all cases the gene expression responsible 

for their biosynthesis was almost undetectable in bark-treated specimens [76]. UV radiation, 

particularly UV-B, activates flavonol biosynthesis, and any viticultural practice which favors exposing 

grapes to direct sunlight is expected to have a positive influence on their concentration in  

berries [76,77,80,91,92]. There is evidence that biosynthesis of flavonol is more strongly modulated by 

light than other berry metabolites. It has been shown that, although shading has a relatively modest 

effect on berry development and ripening, including accumulation of other flavonoids, it significantly 

decreases flavonol synthesis [92]. In ripe berries developed in opaque boxes, the presence of flavonols 

can be reduced by one order of magnitude [92]. 

6. Conclusions 

Intimate structural knowledge of anthocyanins can be effectively applied in the chemotaxonomy of 

grapes, and is a powerful tool for evaluating polyphenolic ripening of grapes and developing new 

studies on biosynthetic pathways. It can also be used for enological purposes, to improve wine-making 

and wine aging methods. Study of non-V. vinifera grapes has shown that some varieties are qualitatively 

and quantitatively very rich in anthocyanins. Using these grape extracts in the natural colorant industry is 

potentially very interesting, partly due to the considerable contents of anthocyanin-acyl derivatives, 

which retain a more stable color in slightly acidic or neutral solutions [45]. 

The chemistry of stilbenes in grape compounds is very complex. These compounds act as 

phytoalexins, synthesized by plants in response to biotic and abiotic stress. They are also associated 

with the beneficial effects of drinking wine, and research focusing on developing agricultural and 

wine-making practices to increase their content in grapes and wines can be carried out. Lastly, 

producing stilbenes from sustainable sources is also desirable, due to the increased demand for them 

by the nutraceutical and pharmaceutical industries. 

Among the flavonoids, flavonols are ubiquitous secondary metabolites found in all Vitis species. 

They are useful markers in Vitis vinifera chemotaxonomy, since their profiles in grapes are highly 
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influenced by genetic factors at cultivar level. Flavonol profiles can thus be applied to classify both 

white and red varieties. In red varieties, their profiles are closely correlated with those of anthocyanins. 

The class of flavonols is also one of the most important grape flavonoids in terms of concentration, 

especially in white grapes. Their quantity in ripe berries is mainly influenced by environmental 

parameters, as a consequence of their photo-protective effect against excessive direct sunlight. Their 

presence has often been associated with the quality of grapes and wine, and the importance of these as 

two of the best sources of flavonols in the human diet should not be neglected. 

The recent availability of advanced MS technologies has considerably improved our knowledge of 

the chemistry of grape and wine polyphenols. In the next few years, the momentum of applications of 

these analytical techniques in the study of grapes and wines will significant enhance further 

knowledge, leading to substantial benefits in the fields in which these polyphenolic compounds  

are of interest. 
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