Net root C input as determined by ¹³C natural abundance correlates with aboveground net primary productivity across different ecosystem types

^{1,2}C. Martinez, ^{3,4}G. Alberti, ⁵M.F. Cotrufo, ⁶A. Cescatti, ⁷F. Magnani, ⁸F. Camin, ⁹D. Zanotelli, ⁸D. Gianelle and ⁸M. Rodeghiero

¹FOXLAB Joint CNR-FEM Initiative, San Michele All'Adige, Italy; ²CNR-IBIMET, Florence, Italy; ³Dept. of Agriculture and Environmental Sciences, University of Udine, Italy; ⁵Dept. of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA; ⁶JRC-IES, Ispra, Italy; ⁷Dept. of Agricultural Sciences, University of Bologna, Italy; ⁸Fondazione Edmund Mach, San Michele All'Adige, Italy; ⁹Faculty of Science and Technology, Free University of Bolzano, Italy.

Email: cristina.martinez@fmach.it Phone: +39 0461-615597

INTRODUCTION

he ¹³C natural abundance method provides an 'in-situ' method by which to quantify the relative contribution of new C in soil-plant systems where the ¹³C signal of the C input is different to the native SOM (e.g. C_3 plants grown in C_4 soils or *vice versa*). This method was used to quantify net belowground C inputs (C_{NEW} ; i.e. *net* rhizodeposition), an important, yet rarely quantified component of the global C cycle, in four different ecosystem types: forest, grassland, apple orchard, and vineyard. C_{NEW} values were compared with measures of ecosystem productivity (i.e. GPP and ANPP) to assess possible drivers of belowground C dynamics and partitioning.

STUDY SITE AND METHODS

ECOSYSTEM FLUXES (GPP, ANPP AND BNPP)

GPP: site-specific eddy covariance data (Baldocchi *et al.*, 1988) ANPP: inventory approach (sum of total above-ground biomass production) BNPP: sum of $\Delta C_{root (fine)} + \Delta C_{root (coarse)} + C_{NEW}$ (Giardina *et al.*, 2005)

Table 2: Ecosystem fluxes (GPP, ANPP, BNPP), net rhizodeposition (C_{NEW}) and carbon partitioning at the four sites.

	Forest	Grassland	Apple Orchard	Vineyard
[1] GPP	2400	1086	1263	1145
[2] ANPP ± SE	770 ± 43.7	155 ± 23.7	868 ± 69.6	268 ± 71.6
[3] C _{NEW} ± SE	300.4 ± 49.5	217.7 ± 45.6	421.5 ± 63.6	301.7 ± 22.2
[4] $\Delta C_{root (fine)}^{+} \pm SE$	366.9 ± 28.6	201.9 ± 23.3	122.3 ± 23.9	192.0 ± 45.9
[5] $\Delta C_{root (coarse)}$	154.1	N/A	13.0	30.2
[6] BNPP (3+4+5)	821.4	419.7	556.8	523.9
[7] NPP (2+6)	1591.4	574.7	1424.8	771.8
BNPP/NPP (6/7)	0.52	0.73	0.39	0.69
$\Delta C_{root (fine)} / BNPP (4/6)$	0.45	0.48	0.22	0.38
C _{NEW} /BNPP (3/6)	0.55	0.52	0.78	0.62

assuming 48% C in plant root material (Nadelhoffer and Raich, 1992

Fig. 1: (a) Location map of study in northern Italy; (b) location of study sites (Lavarone, Viote, Caldaro, and Mezzolombardo) within the Trentino-Alto Adige region; (c) C_4 soil cores.

Table 1: Study site characteristics.

	LAVARONE (FOREST)	VIOTE (ALPINE GRASSLAND)	CALDARO (APPLE ORCHARD)	MEZZOLOMBARDO (VINEYARD)
Latitude	45°57'23" N	46°00'53" N	46°21'17" N	46°11'49" N
Longitude	11°16'52" E	11°02'45" E	11°16'31" E	11°06'49" E
Elevation (a.s.l.)	1349m	1553m	240m	206m
Land Use	Forest	Alpine grassland	Apple orchard	Vineyard
Vegetation Type	Silver fir	Nardetum	Common apple	Common grape
	(Abies alba)	alpigenum	(Malus domestica)	(Vitis vinifera)
Precipitation	1150mm	1189mm	1051mm	945mm
Air Temperature	7.8°C	5.5°C	11.6°C	12.6°C
Soil Type (FAO-WRB, 1998)*	Humic Umbisol	Calcaric Phaeozem	Calcaric Cambisol	Gleyic/Haplic Fluvisol

ANPP AND C_{NEW}

Statistically significant relationship between ANPP and C_{NEW} ($r^2 = 0.72$; p < 0.01) (Fig. 3)

Stronger when grassed alleys between crop rows accounted for $(r^2 = 0.94; p = 0.03).$

Fig. 3: ANPP versus C_{NEW} (weighted linear regression). SE of the mean shown as error bars. White circles = C_{NEW} values incl. grassed alleys at vineyard and apple orchard sites.

C PARTITIONING AND RHIZODEPOSITION

 $\Delta C_{root(fine)}$: BNPP ~ 50% for forest (45%) and grassland (48%).

Highest C_{NEW}: BNPP at cultivated sites: vineyard (62%) & orchard (78%) (Table 2; Fig. 4).

 $\Box \Delta C_{root}$

100

Higher root turnover (i.e. mortality): due to higher maintenance costs

Sampling Protocol & Soil Processing and Analysis:

* 6 sampling points at each site, 3 replicates (i.e. 18 samples per site) * C_4 soil ($\delta^{13}C = -16.7\%$): US Dept. of Agriculture (USDA-ARS) * C_4 soil cores (Fig. 1c): incubated for 12 months

BELOWGROUND CARBON INPUTS (C_{NEW})

Mass balance equation for calculating fraction of new C (f_{NEW}):

 $f_{\text{NEW}} = (\delta_{\text{SOIL}} - \delta_{\text{OLD}}) / (\delta_{\text{VEG}} - \delta_{\text{OLD}})$

where $\delta_{SOIL} = \delta^{13}C$ of C_4 soil following 1 year of field incubation; $\delta_{OLD} = \delta^{13}C$ of original C_4 soil; and δ_{VEG} of roots.

Net root C input (C_{NEW} ; gC m⁻² yr⁻¹): $C_{NEW} = f_{NEW} \times %C \times BD \times SD$

where %C = soil C concentration; BD = bulk density (0.79g cm⁻³); SD = soil depth (30cm).

Therefore, C_{NEW} = fraction of rhizodeposition remaining in the soil after 12 months minus losses associated with heterotrophic respiration (i.e. *net* rhizodeposition).

BNPP:NPP decreased as NPP increased (Fig. 5)

Partitioning belowground is higher when resource availability is low, and *vice versa* as GPP increases and resources are no longer limiting (Litton *et al.* 2007; Palmroth *et al.* 2006).

Fig. 5: NPP versus BNPP/NPP, calculated with and without the contribution of net rhizodeposition (i.e. C_{NEW}).

associated with fruit production.

Tree morphology:

Vines: no need for large structural roots, invest little in belowground compartments.

Orchard: grafting on dwarfing rootstocks, restrict tree volume, operational costs (harvest/pruning), and root system.

Fig. 2: Box-plots showing differences among the four study sites for the various soil properties within the in-growth soil cores. Outliers are displayed as individual points. Different letters indicate a significant difference among sites (p <0.05).

* C_{NEW} : ranged from 217 ± 111.8 gC m⁻² yr⁻¹ (grassland) up to 421.5 ± 155.9 gC m⁻² yr⁻¹ (apple orchard), but no statistically significant differences observed between sites.

* Annual fine root C accumulation ($\Delta C_{root (fine)}$): highest at forest site (366.9 ± 28.6 gC m⁻²) and lowest at apple orchard (122.3 ± 23.9 gC m⁻²), statistically significant difference (Kruskal-Wallis *H*-value = 13.18; *p* < 0.01)

CONCLUSIONS

BNPP/NPP

Mechnistic ecosystem C balance models could benefit from this ANPP: C_{NEW} relationship since ANPP is routinely and easily measured, and suggests by quantifying site-specific ANPP, root C input can be reliably estimated.

High levels of C allocation to BNPP resulting from net rhizodeposition, confirm the significance of this component within the global C cycle, and highlight the need for more and better measurements of these belowground C components.

<u>References:</u>

Baldocchi, D. et al. (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. *Ecology* 69: 1331-1340

Giardina C.P. et al. (2005) The response of belowground carbon allocation in forests to global change. In *Tree Species Effects on Soils: Implications for Global Change*. Eds. D. Binkley and O. Menyailo. pp 119-154. NATO Science Series, Kluwer Academic Publishers, Dordrecht.

Litton C.M. et al. (2007) Carbon allocation in forest ecosystems. *Global Change Biology* 13: 2089-2109.

Nadelhoffer K.J. and Raich J.W. (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73: 1139-1147.

Palmroth S. et al. (2006) Aboveground sink strength in forest controls the allocation of carbon belowground and its [CO₂]-induced enhancement. *Proceedings of the National Academy of Sciences* 103: 19362-19367.