
13Net root C input as determined by C natural abundance correlates with 
aboveground net primary productivity across different ecosystem types
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BELOWGROUND CARBON INPUTS (C )NEW

ECOSYSTEM FLUXES (GPP, ANPP AND BNPP)
13he C natural abundance method provides an ‘in-situ’ method by which to 

13quantify the relative contribution of new C in soil-plant systems where the C Tsignal of the C input is different to the native SOM (e.g. C  plants grown in C  soils 3 4

or vice versa). This method was used to quantify net belowground C inputs (C  i.e. NEW;

net rhizodeposition), an important, yet rarely quantified component of the global C 
cycle, in four different ecosystem types: forest, grassland, apple orchard, and vineyard. 
C  values were compared with measures of ecosystem productivity (i.e. GPP and NEW

ANPP) to assess possible drivers of belowground C dynamics and partitioning. 
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Fig. 1: (a) Location map of study in northern Italy; (b) location of study sites (Lavarone, Viote, Caldaro, and Mezzolombardo) within the 
Adige region; (c) C  soil cores. 4
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STUDY SITE AND METHODS

Sampling Protocol & Soil Processing and Analysis:

* 6 sampling points at each site, 3 replicates (i.e. 18 samples per site)
13* C  soil (dC = -16.7 : US Dept. of Agriculture (USDA-ARS) 4

* C  soil cores (Fig. 1c): incubated for 12 months  4

.
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CONCLUSIONS

t

.

Mechnistic ecosystem C balance models could benefit from this ANPP:C  relationship NEW

since ANPP is routinely and easily measured, and suggests by quantifying site-specific 
ANPP, root C input can be reliably estimated.

High levels of C allocation to BNPP resulting from net rhizodeposition, confirm the 
significance of this component within the global C cycle, and highlight the need for more 
and better measurements of these belowground C components.
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Table 1: Study site characteristics.
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GPP: site-specific eddy covariance data (Baldocchi et al., 1988)
ANPP: inventory approach (sum of total above-ground biomass production)
BNPP: sum of DC  + DC  + C  (Giardina et al., 2005)root (fine) root (coarse) NEW
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Fig. 2: Box-plots showing differences among the four study sites for the various soil properties within the in-growth soil cores. Outliers are displayed as 
individual points. Different letters indicate a significant difference among sites (p <0.05).

* Soil classification by A. B rner and S. Chersich (unpublished)ö
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Mass balance equation for calculating fraction of new C (f ):NEW

13where d = dC of C  soil following 1 year of field incubation; SOIL 4

soil; and dof roots.VEG 

-2 -1Net root C input (C ; gC m  yr ): C  =  f  %C  BD  SD NEW NEW NEW 

-3where %C = soil C concentration; BD = bulk density (0.79g cm ); SD = soil depth (30cm). 

Therefore, C  = fraction of rhizodeposition remaining in the soil after 12 months minus NEW

losses associated with heterotrophic respiration (i.e. net rhizodeposition).

..

....

f  = (d - d) / (d - d)NEW SOIL OLD VEG OLD

× × ×

13d = dC of original C  OLD 4
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Table 2: Ecosystem fluxes (GPP, ANPP, BNPP), net rhizodeposition (C ) and carbon partitioning at the four sites.NEW

 Forest Grassland Apple Orchard Vineyard 

[1] GPP 2400 1086 1263 1145 

[2] ANPP ± SE 770 ± 43.7 155 ± 23.7 868 ± 69.6 268 ± 71.6 

[3] CNEW ± SE 300.4 ± 49.5 217.7 ± 45.6 421.5 ± 63.6 301.7 ± 22.2 

[4]  DCroot (fine)
 ̂± SE 366.9 ± 28.6 201.9 ± 23.3 122.3 ± 23.9 192.0 ± 45.9 

[5]  DCroot (coarse) 154.1 N/A 13.0 30.2 

[6] BNPP (3+4+5) 821.4 419.7 556.8 523.9 

[7] NPP (2+6) 1591.4 574.7 1424.8 771.8 

BNPP/NPP (6/7) 0.52 0.73 0.39 0.69 

DCroot (fine) /BNPP (4/6) 0.45 0.48 0.22 0.38 

CNEW/BNPP (3/6) 0.55 0.52 0.78 0.62 

  ̂  assuming 48% C in plant root material (Nadelhoffer and Raich, 1992)

* C : NEW

(apple orchard), but no statistically significant differences observed between sites.

-2* Annual fine root C accumulation ( ): highest at forest site (366.9  28.6 gC m ) 
-2and lowest at apple orchard (122.3  23.9 gC m ), statistically significant difference 

(Kruskal-Wallis H-value = 13.18; p < 0.01)

-2 -1 -2 -1ranged from 217  111.8 gC m  yr  (grassland) up to 421.5  155.9 gC m  yr  ± ±

ÄC ±root (fine)

±

ANPP AND CNEW

tStatistically significant 
relationship between ANPP and 

2C  (r  = 0.72; p < 0.01) (Fig. 3)NEW

Stronger when grassed alleys 
between crop rows accounted for 

2(r  = 0.94; p = 0.03).

Fig. 3: ANPP versus C  (weighted linear regression). SE of NEW

the mean shown as error bars. White circles = C values NEW 

incl. grassed alleys at vineyard and apple orchard sites.

C PARTITIONING AND RHIZODEPOSITION
DC :root (fine) BNPP ~ 50% for forest (45%) and grassland (48%). 

Highest C :BNPP at cultivated sites: vineyard (62%) & orchard (78%) (Table 2; Fig. 4).NEW
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tBNPP:NPP decreased as NPP 
increased (Fig. 5)

Partitioning belowground is 
higher when resource 
availability is low, and vice versa 
as GPP increases and 
resources are no longer limiting 
(Litton et al. 2007; Palmroth et 
al. 2006).

Fig. 5: NPP versus BNPP/NPP, calculated with and without the 
contribution of net rhizodeposition (i.e. C ). NEW
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tHigher root turnover (i.e. mortality): 
due to higher maintenance costs 
associated with fruit production.

Tree morphology: 

Vines: no need for large structural 
roots, invest little in belowground 
compartments. 

Orchard: grafting on dwarfing 
rootstocks, restrict tree volume, 
operational costs 
(harvest/pruning), and root system. 

Fig. 4: BNPP carbon partitioning between root C and CNEW.
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