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Abstract: While high expectations have been raised about the utility of high resolution 

satellite imagery for biodiversity assessment, there has been almost no empirical 

assessment of its use, particularly in the biodiverse tropics which represent a very 

challenging environment for such assessment challenge. This research evaluates the use of 

high spatial resolution (IKONOS) and medium spatial resolution (Landsat ETM+) satellite 

imagery for assessing vegetation diversity in a dry tropical forest in central India. Contrary 

to expectations, across multiple measures of plant distribution and diversity, the resolution 

of IKONOS data is too fine for the purpose of plant diversity assessment and Landsat 

imagery performs better.  
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1. Introduction  

Much expectation has been raised about the utility of high resolution satellite imagery for 

ecological research [1-3], yet so far the hype has largely outpaced actual field assessments. This is 

particularly the case in the tropics. Most remote sensing studies of biodiversity concentrate on trees 

and larger plants which can be more readily discriminated using remote sensors. In areas which have a 

few dominant species, such as temperate forests or mangroves, hyperspatial data have been used to 

delineate tree canopies and directly identify individual trees at the species level [4-6]. This task, 

challenging enough when there are a few species, becomes close to impossible when the number of 

species approaches the level of tens or hundreds. Such is the case in the tropics, where the higher 

numbers of species, greater numbers of individuals and increased species and habitat heterogeneity 

make the task of biodiversity assessment much more challenging, particularly so when done from the 

sky [7]. Examining the potential of such datasets for vegetation diversity assessment in the tropics 

therefore remains a significant challenge and one that has, unfortunately, been insufficiently explored 

so far.  

This is especially ironical considering that tropical habitats are where much of the world‘s species 

diversity is concentrated [8-10]. With accelerated increase in tropical forest clearing and declines in 

diversity taking place across the world, there is an urgent need to identify the locations of biodiversity 

hotspots, map the distribution of vegetation diversity across different habitats and landscapes, and 

monitor rates of change over time. Does high resolution satellite data hold greater potential than 

medium resolution data for this purpose? 

One of the major perceived limitations of current, widely used medium resolution satellite remote 

sensing platforms such as Landsat and SPOT has been that of insufficient spatial resolution. These data 

are collected at pixel resolutions of a few tens of meters in size, where a single pixel generally covers a 

number of different individual plants, often belonging to different species. Each pixel corresponds to a 

mixed field signature averaged across multiple objects, leading to difficulties in species identification. 

Hence, past efforts to use these satellites for ecological studies such as plant diversity estimation have 

achieved only moderate success [11]. The major use these datasets have been put to in these habitats is 

for habitat mapping or land cover/land use research [6,3,12]. 

High resolution satellite imagery, with pixel sizes of the size of 2–5 m, corresponding well to the 

size of individual tree crowns, has been declared as having much greater potential for mapping 

vegetation diversity and distributions [2,4,13,14]. In the past decade, the launch of very high spatial 

resolution satellite sensors like IKONOS, QuickBird, OrbView-3 and the Panchromatic band of IRS 

LISS-3 have provided researchers with the opportunity to study ecological systems at far greater detail 

than previously possible. These data have been used in multiple studies for plant diversity assessment 

in habitats with a smaller number of tree species, such as mangroves, temperate forests and boreal 

forests (e.g., [15-18]). 

Yet the fine spatial resolution provided by these sensors can lead to problems. When pixel 

dimensions shrink to a point where individual pixels are smaller than the size of individual tree 

crowns, then pixel-pixel variability increases dramatically. For instance, some pixels may cover a leaf 

in sunshine while others cover a leaf of the same tree in shade, in gaps between leaves, or even on tree 
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bark—making it hard to handle relatively simple tasks like delineating tree canopies, let alone 

assigning signatures to different species [11]. 

Further, in comparison to hyperspatial data, medium resolution sensors such as Landsat have a 

greater number of bands and are able to record additional information in the middle infrared range, 

which relates to a range of critical plant properties including leaf pigment, water content, and chemical 

composition, and can be very useful for discriminating tree species [19-22]. Landsat also provides data 

over a longer period of time than most other remote sensing platforms, which makes it of great use for 

monitoring programs [14,23].  

 Thus, there appear to be tradeoffs between the utility of high spatial, low spectral resolution and of 

medium spatial, medium spectral resolution satellite sensors for ecological studies. Yet an exact 

understanding of these tradeoffs remains elusive, given the lack of field research [9]. This paper evaluates 

high spatial resolution (1 m pixel) IKONOS satellite imagery as well as medium spatial resolution (30 m 

pixel) Landsat ETM+ satellite imagery for plant diversity assessment in the dry tropical forests of central 

India. Given the rapidity of forest clearing in the dry tropics, coupled with the high biodiversity in these 

areas, there is a pressing need for identifying best practice approaches to quickly assess plant diversity 

distributions and monitor changes in these habitats: a need that has been insufficiently met this far [9,24]. 

The research described here represents an important step towards this goal.  

2. Study Area 

The Tadoba Andhari Tiger Reserve (TATR) is a national park and wildlife sanctuary located in 

central India, in the eastern part of Maharashtra state (Figure 1). The protected area extends over  

625 km
2
, covering a landscape that is largely a matrix of dry tropical forests, interspersed with some 

grasslands, water bodies and a few small patches of riparian forest alongside streams. The park is 

drained by two main rivers. The southern section of the part is flat, giving way to gradually undulating 

topography as one moves northwards. There is a well developed road network in the northeastern part 

of the reserve, which provides access to the forest for grazing and biomass extraction. To the north, 

south and east, the TATR has some protection from surrounding State controlled Reserve Forest and 

Protected Forest areas. During the time of field work, six villages were located within the boundaries 

of the park (one village has since been relocated outside the park), and there were 53 villages located 

on the periphery. In addition to the six interior villages, several other villages and communities access 

resources from the park. These villages fulfil a large part of their fuel, fodder, timber and non-timber 

forest requirements from the park [25]. The TATR also experiences substantial seasonal use from 

migrant herders, and is frequented by timber, bamboo and wildlife poachers. Thus, despite being 

located within a protected area, this dry tropical forest habitat is also subject to human disturbance due 

to grazing, fire and biomass extraction. While the road network in the northern part of the reserve is 

quite well developed, providing greater access to the forest and leading to greater disturbance, the 

TATR is surrounded on the southern and eastern sides by better protected State controlled Reserve 

Forest and Protected Forest areas. This study area contains a large contiguous region of dry tropical 

forest habitat, in various stages of protection ranging from the better protected forest core to more 

degraded areas at the park boundary adjacent to settlements [25]. This region thus provides us with an 

opportunity to study variation in vegetation diversity and distribution within a relatively 
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heterogeneous, large contiguous patch of dry tropical forest: a habitat type which remains little studied 

despite its importance and susceptibility to change [9,24]. 

Figure 1. Study area map showing the location of the 211 field plots overlaid on a 

Normalized Difference Vegetation Index derived from a Landsat ETM+ image of 29th 

October 2001. 

 

3. Materials and Methods 

3.1. Data Gathering 

3.1.1. Field data collection 

Between 2003 and 2005, a total of 240 circular plots were distributed across the TATR to sample 

plant biodiversity distributions, taking care to ensure that we sampled plant biodiversity at a range of 

distances from the settlements within and outside the protected area. Such a sampling strategy thus 

enables us to sample the variation in biodiversity within the park, from relatively undisturbed core 

areas to degraded areas adjacent to the park outer boundary. Since some of the plots were located 
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outside the landscape covered by the IKONOS images, these were removed from analysis, leaving a 

total of 211 field plots that were used for this study. Figure 1 shows the distribution of the 211 field 

plots with respect to the TATR boundary and the six villages then located within the park. In order to 

depict the distribution of plots with respect to forest cover, the plots are overlaid on a map of the 

Normalized Difference Vegetation Index (NDVI) of the Landsat image. This index, whose values 

range from −1 to +1, is derived from the red and infrared bands, and is an indicator of vegetation 

density (see [26]).  

Nested circular plots were laid, with the outermost plot being 10 metres in radius. Within this, the 

species, diameter at breast height (dbh) and height were recorded for all trees (defined as individuals 

with dbh greater than 10 cm). A nested sub-plot of 3 metres radius was used to record species, dbh and 

height for all shrubs and saplings (defined as individuals with dbh less than 10 cm, but greater than  

one cm). A further nested sub-plot of 1 meter radius was used to record the percentage of ground area 

covered by each herb-layer species. As the species found in the herb layer are highly season-

dependent, and sampling was done during different seasons of the year, only tree and shrub/sapling 

data were used in this analysis for comparative purposes.  

For each plot, we calculated the total species richness (based on tree and shrub/sapling nested 

plots), the tree species richness, the tree Shannon diversity and the number of trees [27]. Unlike 

temperate ecosystems where most remote sensing studies of vegetation diversity have taken place [11], 

and which tend to be dominated by a small number of species, this landscape is a subtropical 

ecosystem, and there are no species that are dominant in the tree canopy to the extent one can pick up 

from a satellite. The most common species in this region, Tectona grandis (teak), accounts for less 

than 18% of the total number of individuals in the tree canopy. Cassia fistula is the second most 

common species, and accounts for about 11% of all individuals. Further, these species are not 

dominant across all plots, but clustered and dominant in a few locations. Thus, using dominant tree 

species to derive correlations does not appear to be a suitable option for this ecosystem, unlike 

sometimes done for temperate ecosystems. 

3.1.2. Image data acquisition and pre-processing 

Landsat ETM+ (hereafter, Landsat) satellite imagery with a spatial resolution of 28.5 m, acquired 

during 29th October 2001, was downloaded from the Global Land-cover Facility site hosted by the 

University of Maryland (glcfapp.umiacs.umd.edu). The Landsat image was georeferenced to five 

1:50,000 scale Survey of India topographic maps covering our area of interest, using the nearest 

neighbor resampling algorithm [26]. Care was taken to ensure that the RMS error of image-to-image 

coregistration was less than half a Landsat pixel (15 m). Five IKONOS images were also acquired, 

covering the major portion of the park. The resolution of these images was 1 m (using PAN-sharpened 

multispectral data). As it was not possible to locate five images all taken on the same date, we 

purchased three adjacent images of a single satellite path taken on 5th December 2000, two images of 

an adjacent path taken on 27th December 2000, and finally, one adjacent image from a third satellite 

path taken on 22nd October 2000. All images are from the dry season, when it is easier to separate 

biomass in agriculture and grass fields from forests, and from dates that are closely spaced, thereby 

minimizing problems of image incompatibility due to seasonal and annual differences. 
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Images taken from the same IKONOS satellite path on the same date did not require mosaicing. We 

atmospherically and radiometrically corrected images of adjacent paths, mosaiced them, and then 

registered the mosaiced images to the Survey of India 1:50,000 scale toposheets, with registration 

RMS errors maintained under 4 m. This is essential to ensure that the association of the plot location 

with satellite data is not compounded by errors in co-registration. Finally, an overlay function and 

careful visual comparisons were used to verify that the Landsat and IKONOS images overlapped 

exactly, and misregistration was minimized [26]. All image processing was carried out using the 

ERDAS Imagine
TM

 image processing software. 

Each plot was located on the Landsat and IKONOS images using GPS coordinates taken at the plot 

center at the time of the field survey. The size of each plot (a 10 m radius circle) is less than the size of 

a Landsat ETM+ image pixel (28.5 m). Since this study was conducted within a forested landscape, 

however, GPS errors of up to 20 m were recorded in some instances, especially in those plots with a 

dense tree canopy. In order to account for these positional uncertainties, we instead associated each 

plot with a 3 × 3 window around the central pixel within which the plot was located, and calculated the 

average value for the 9 pixels located within this window (see also [28]). This was done for the 30 m 

bands 1–5 and 7, Tasseled Cap indices of Brightness, Greenness, and Wetness, and the NDVI, Infra 

Red Index (IRI), Middle Infra Red Index (MIRI), which are believed to relate to vegetation density 

and species diversity [11,26,29]. For the 15 m panchromatic band, we used a correspondingly larger  

6 × 6 window. These image-derived values were related with the plant biodiversity values calculated 

for the associated plot. In addition, since species diversity can be influenced by landscape 

heterogeneity, we also computed the texture values for each index—here defined as the standard 

deviation of each index for a 3 × 3 window around the central pixel associated with each plot, or a  

6 × 6 window for the 15 m panchromatic band—and related these values with plot biodiversity. 

For the IKONOS data, the pixel resolution (1 m) is smaller than the plot size, which is a circle of  

10 m radius. In order to account for GPS-related positional uncertainties of up to 20 m, we used circles 

of 30 m radius (10 m plot radius plus 20 m maximum GPS uncertainties) which were drawn around the 

GPS coordinates of the plot center. For all pixels falling within the 30 m radius circle, the average and 

standard deviation of all pixels in bands 1–4, as the Tasseled Cap indices of Brightness, Greenness, 

and Wetness and the NDVI were computed and related with the relevant plot diversity and 

density/abundance data. Since IKONOS sensors do not record in the middle infra-red spectrum, we 

could not compute the IRI or MIRI for this dataset. 

3.2. Data Analysis: Relationship Between Spectral and Plant Biodiversity Data 

Pearson‘s correlation coefficients were used to evaluate the correlation between individual bands 

and indices derived from satellite image data, and field-derived species diversity information [30]. 

This provides us with an assessment of the potential of these single bands or indices and texture 

measures for alpha diversity assessment. We further applied a LOWESS (locally weighted scatterplot 

smoothing, also referred to as LOESS [31,32]) procedure to check for the trend of species diversity 

versus spectral information. LOWESS fits a polynomial function to a subset of the data, generally 

splitting the explanatory variable and giving a higher weight to points near the point where the 

response is being estimated. Notice that it is far beyond our aim to build a predictive model of species 
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diversity based on only spectral variables (see the aim section). The intent of using LOWESS was to 

relax the application of ―classical‖ least square based methods and to limit the use of fitting procedures 

to a graphical visualisation of the continuous variation of each species diversity variable with relation 

to spectral information [33]. All the analyses were performed by means of the R software (―cor‖ and 

―lowess‖ functions, package ―stats‖, [34]). 

4. Results 

Tables 1 and 2 indicate the strength of correlation between each spectral and plant diversity 

variable, as assessed by the Pearson‘s correlation coefficient using Landsat ETM+ and Ikonos, 

respectively. A graphical comparison of each spectral variable versus total species richness, tree 

species richness, tree Shannon diversity and the number of trees is reported in Figures 2 to 5. 

Table 1. Pearson correlation coefficients for species diversity vs. Landsat ETM+ spectral 

variables variables. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Spectral variable 
Total species 

richness 

Tree species 

richness 

Tree Shannon 

diversity 

Number of 

trees 

Band 1 Mean −0.328*** −0.275*** −0.297*** −0.066 

Band 1 Standard Deviation −0.118 −0.152* −0.125 −0.112 

Band 2 Mean −0.336*** −0.316*** −0.336*** −0.105 

Band 2 Standard Deviation −0.263*** −0.281*** −0.225*** −0.242*** 

Band 3 Mean −0.293*** −0.251*** −0.26*** −0.091 

Band 3 Standard Deviation −0.139* −0.131 −0.129 −0.045 

Band 4 Mean −0.172* −0.142* −0.186** 0.019 

Band 4 Standard Deviation −0.146* −0.135 −0.167* −0.075 

Band 5 Mean −0.246*** −0.255*** −0.268*** −0.115 

Band 5 Standard Deviation −0.137* −0.142* −0.151* −0.068 

Band 7 Mean −0.254*** −0.25*** −0.26*** −0.112 

Band 7 Standard Deviation −0.093 −0.105 −0.117 −0.039 

Panchromatic Band Mean −0.276*** −0.263*** −0.269*** −0.133 

Panchromatic Band Standard Deviation −0.125 −0.115 −0.138* −0.013 

Brightness Mean −0.305*** −0.278*** −0.307*** −0.077 

Brightness Standard Deviation −0.181** −0.179** −0.179** −0.108 

Greenness Mean 0.202** 0.192** 0.18** 0.112 

Greenness Standard Deviation −0.101 −0.107 −0.123 −0.007 

Wetness Mean 0.228*** 0.241*** 0.25*** 0.118 

Wetness Standard Deviation −0.12 −0.131 −0.142* −0.061 

NDVI Mean 0.166* 0.144* 0.125 0.087 

NDVI Standard Deviation −0.089 −0.098 −0.105 −0.021 

IRI Mean 0.119 0.154* 0.138* 0.117 

IRI Standard Deviation −0.041 −0.041 −0.063 0.004 

MIRI Mean 0.22** 0.193** 0.193** 0.092 

MIRI Standard Deviation 0.01 −0.004 −0.036 0.001 
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Figure 2. Scatterplots of total species richness (SR) vs. Landsat ETM+ spectral variables. 

Fitted curves represent LOWESS based smoothing.  
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Figure 3. Scatterplots of tree species richness (SR) vs. Landsat ETM+ spectral variables. 

Fitted curves represent LOWESS based smoothing.  
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Figure 4. Scatterplots of tree Shannon diversity vs. Landsat ETM+ spectral variables 

Fitted curves represent LOWESS based smoothing.  
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Figure 5. Scatterplots of the number of trees vs. Landsat ETM+ spectral variables Fitted 

curves represent LOWESS based smoothing.  
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As Table 1 and Figure 5 indicate, Landsat ETM+ does not show high correlation with the number 

of trees in this dry subtropical ecosystem. Instead, the spectral information contained in the Landsat 

image appears most sensitive to total species richness (Figure 2, Table 1), followed by tree Shannon 

diversity (Figure 4, Table 1) and tree species richness (Figure 3, Table 1). Apart from band 4, all bands 

appear to pick up information on species richness and diversity, with bands 2 and 1 appearing to be the 

most sensitive (Table 1, Figures 2 to 5). Although the panchromatic band is significantly correlated to 

parameters of species richness and diversity, it is not any more sensitive than the 30 m bands, despite 

its greater spatial resolution of 15 m (Table 1, Figures 2–5, notice the flatness of the LOWESS curve 

of panchromatic variability versus all the considered species richness and diversity measures).  

It is somewhat surprising to note the lower correlation coefficients and the lesser significance of the 

correlations between Landsat band 4 and plant diversity values (flat LOWESS curve of Figures 2 to 5, 

see even Table 1), given the fact that this band is supposed to be receptive to the amount of vegetation 

in the upper canopy [26]. Possibly as a consequence of this, neither of the two most commonly used 

vegetation indices—NDVI nor IRI—appear very useful for plant diversity assessment in this 

ecosystem, while MIRI, which does not incorporate information from band 4, is more sensitive. 

Compared to all vegetation indices, however, Tasseled Cap indices, which incorporate information 

from all 30 m bands, appear to be more receptive to plant diversity. While all 3 tasseled cap indices 

appear to contain useful information, Brightness is the most sensitive to plant diversity levels, even 

more than Greenness. Greenness and Wetness means show significant positive relationships with most 

plant diversity indicators, signifying that—as can be expected—areas with greater vegetation biomass 

and more moisture tend to harbor increased levels of plant diversity in this dry tropical forest 

ecosystem. Brightness has a significant negative relationship with plant diversity and density, since 

open areas with greater levels of exposed soil and more brightness will naturally have decreased tree 

density and diversity. 

Textural variables (as measured by standard deviation) do not appear to provide as much 

information on vegetation diversity. Texture provides absolutely no information significant for 

evaluating the number of trees. For most bands, texture provides either non-significant or weakly 

significant correlations to species richness and diversity, with the exceptions of the textural 

information contained in bands 2, 5 and Brightness. Textural variables are largely negatively 

correlated with plant diversity, indicating a decrease in plant diversity in heterogeneous areas that have 

been disturbed due to human action (largely biomass extraction, grazing and fire, in this ecosystem, 

see [25] for further details) in comparison to undisturbed and relatively homogeneous forest patches. 

In some landscapes, disturbance could lead to higher plant diversity due to pioneer species invading 

new niches created by fire or grazing, however this does not appear to be the case for this landscape. A 

similar pattern was found by Gillespie [39] in the same habitat (tropical dry forests) using NDVI. 

Quoting the author: "the higher the mean NDVI values and the lower the variation in NDVI values the 

higher the species richness". Two main causes appear to drive this process: (i) disturbance may result 

in significant structural damage to the tropical dry forest, and (ii) early successional forests generally 

contains lower species diversity while late-successional forests (with a higher biomass and a lower 

disturbance) generally contain a higher plant species diversity in terms of both richness and 

composition [39]. We even refer to Nagendra and Rocchini [7] for a complete dissertation on 

heterogeneity measurement in dry tropical forests. 
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In contrast to Landsat, IKONOS imagery (Table 2 and Figures 6 to 9) appears less sensitive to plant 

diversity, with decreased strength of correlation as well as lowered statistical significance compared to 

the correlations observed with Landsat.  

Table 2. Pearson correlation coefficients for species-diversity variables vs. IKONOS 

spectral variables. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Spectral variable 
Total species 

richness 

Tree species 

richness 

Tree Shannon 

diversity 

Number of 

trees 

Band 1 Mean −0.018 −0.041 −0.012 −0.131 

Band 1 Standard Deviation −0.118 −0.007 −0.050 0.198*** 

Band 2 Mean −0.133 −0.148* −0.129 −0.159* 

Band 2 Standard Deviation −0.127 −0.021 −0.066 0.183*** 

Band 3 Mean −0.149* −0.159* −0.142* −0.138* 

Band 3 Standard Deviation −0.140* −0.044 −0.090 0.158* 

Band 4 Mean −0.235*** −0.149* −0.181** 0.016 

Band 4 Standard Deviation −0.080 0.012 −0.056 0.175* 

Brightness Mean −0.080 −0.008 −0.050 0.131 

Brightness Standard Deviation −0.187** −0.127 −0.175** 0.051 

Greenness Mean −0.164* −0.069 −0.110 0.086 

Greenness Standard Deviation −0.068 0.026 −0.049 0.166* 

Wetness Mean −0.169* −0.192** −0.176** −0.119 

Wetness Standard Deviation −0.114 −0.056 −0.098 0.057 

NDVI Mean −0.020 0.042 0.012 0.099 

NDVI Standard Deviation −0.106 0.011 −0.054 0.235*** 

Figure 6. Scatterplots of total species richness (SR) vs. IKONOS spectral variables Fitted 

curves represent LOWESS based smoothing. 
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Figure 7. Scatterplots of tree species richness (SR) vs. IKONOS spectral variables. Fitted 

curves represent LOWESS based smoothing. 
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Figure 8. Scatterplots of tree Shannon diversity vs. IKONOS spectral variables. Fitted 

curves represent LOWESS based smoothing. 
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Figure 9. Scatterplots of the number of trees vs. IKONOS spectral variables. Fitted curves 

represent LOWESS based smoothing. 
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Interestingly, IKONOS is more sensitive to the number of trees than to plant diversity variables 

(Table 2, Figure 8). In this satellite, band 4 appears to be the best predictor of plant diversity, followed 

by the Tasseled Cap index of wetness, and band 3. Unlike with Landsat, mean values of Greenness are 

significantly negatively correlated with plant diversity. This may be a consequence of the fine scale 

variation in pixel values picked up by IKONOs, which encompasses shaded areas of tree cover and 

leads to an artefact of perceived reduction in greenness in vegetation-rich areas. Textural variables do 

not appear to be as sensitive to plant diversity information, apart from the brightness index, which as 

with Landsat, shows a negative correlation with plant diversity, possibly for similar reasons that 

heterogeneity indicates disturbance (e.g., fire or biomass uptake), which in this landscape appears to 

negatively impact vegetation diversity, since it structurally damages the tropical dry forest habitat. 

5. Discussion 

Through outlets such as Google Earth, high resolution satellite images have become increasingly 

popular, making detailed images of large parts of the Earth easily available to the larger public. Yet, 

the scientific applicability of these images remains limited due to technical issues ranging from 

calibration and geometric correction [35], to atmospheric correction [36], and spatial enhancement [37]. 

Due to these limitations, as well as the difficulty and expense related to acquiring these data, their use 

for ecological studies remains limited. This is particularly true in the tropics, where such data is not as 

easily available. Yet this study, one of the few field assessments of the utility of high resolution 

satellite data for vegetation diversity assessment in the tropics, clearly demonstrates that Landsat data, 

which are more readily available over all parts of the Earth, and which will soon be made available 

free to the global research community [7], appear to be more informative for purposes of plant 

diversity assessment.  

The correlation coefficients observed between spectral data and field estimations of diversity at the 

plot level compare favourably overall with those noted in other studies [24,38,39]. It is somewhat 

puzzling to observe that, while Landsat derived vegetation indices of Greenness, NDVI and MIRI 

show a significant positive relationship with plant diversity (as expected and also as observed by other 

studies in similar landscapes, see [39]), the IKONOS derived Greenness index was significantly 

negatively correlated with plant diversity. We speculate that this may be an artifact of the fine 

resolution of IKONOS imagery, where a larger number of pixels in vegetation rich areas may be 

picking up numerous small patches of shade cast by vegetation canopies (see [7]), leading to lower 

perceived values of Greenness. Similar findings have been observed in a study conducted in a pine 

forest, where the IKONOS derived Enhanced Vegetation Index was found to have a negative 

relationship with the Leaf Area Index [40].  

Although the maximum correlations achieved are less than 0.5, the intent here was to compare 

different satellite platforms and not to use these imagery in themselves for absolute predictions. In fact 

it is unlikely that accurate predictions of vegetation species diversity can be completed using spectral 

variables alone, as even shown by the general flatness of LOWESS models. Instead, satellite-based 

variables may represent a set of good predictors within more complex models that include information 

on habitat types, soil, climate, and other variables such as autocorrelation [11,41,42]. 
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Yet, overall trends clearly indicate that Landsat imagery appears to be better suited for assessing 

plant abundance and biodiversity compared to IKONOS data. This is largely due to the scale of data, 

which clearly makes a difference when deriving meaningful measures of landscape heterogeneity that 

relate to distributions of tree density and diversity. The scale of IKONOS data is too low for the 

purpose of plant diversity assessment in this landscape, with some of the 1 m pixels falling in tree 

shade, and others in sunlit areas. In contrast, Landsat imagery at the scale of 30 m appears more suited 

for the purpose of vegetation diversity assessment in this landscape. 

As with other ecological data, the observation of plant biodiversity is scale dependent, and 

outcomes depend upon the spatial grain of study [1,2,7,17]. Ideally, the spatial resolution used should 

be such that information is obtained to an adequate degree of accuracy, using the least amount of  

data [11]. If the spatial resolution is too low, such that the size of a satellite image pixel is orders of 

magnitude less than the distribution of organisms (here, trees and higher plants), discrimination of 

organisms into different species or other categories becomes difficult. This is the aspect that has most 

often been emphasized in discussions of hyper spatial satellite imaging platforms, leading to the 

assumption that increasing image spatial resolution will always result in increased information on 

ecological distributions. For instance, Hernandez-Stefanoni and Dupuy [42] write that ‗using a satellite 

image from a higher spatial resolution sensor like IKONOS could have yielded a more accurate 

estimation of species density, but would have been far more costly‘. 

Such implicit assumptions of the greater utility of high resolution satellite imagery are widespread, 

but do not always hold true. As an example, Rocchini [17] compared hyperspatial Quickbird (3 m 

pixel) against medium resolution Landsat (30 m pixel) imagery. He found that hyperspatial spectral 

data had similar correlations with species diversity compared to Landsat, which he attributed to the 

higher spectral resolution of Landsat data. 

When spatial resolution is so high that pixels are at least an order of magnitude smaller than that of 

the object (here, organism) being categorized, then the variability of information provided by pixels 

covering a single object correspondingly increases, to the point that accurate identification can become 

very difficult. Data from platforms such as IKONOS, or aerial photography, have a spatial resolution 

high enough that pixels cover different parts of a tree, including shaded leaves, sunlit leaves, bark, and 

sometimes even understorey components and the forest floor [43-45]. The variation in spectral 

information across pixels covering different parts of a tree can be high enough to obscure the main 

pattern, thus making it difficult to assign pixels to species with any reasonable degree of accuracy. An 

ideal spatial resolution for biodiversity assessment would minimize the variance between spectral 

signatures of pixels covering a single organism or species, while maximizing the variation between 

organisms belonging to different species, as discussed further in Woodcock and Strahler [46] and 

Ricotta et al. [47]. 

Unlike many previous studies which have focused on the use of vegetation indices, we find that 

individual bands, particularly band 2 of Landsat and band 3 of IKONOS, provide critical additional 

information. Previous studies in evergreen landscapes [29,48] indicate that Landsat derived indices of 

vegetation are highly sensitive to plant abundance, perhaps even more so than to species richness and 

Shannon diversity. Yet, we find in our study that vegetation indices have low, non significant 

relationships with stand density, while they demonstrate stronger relationships with species richness 

and diversity. This is in concordance with other reports that suggest that relationships between satellite 
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derived vegetation indices and stand density vary from habitat to habitat. Two other studies in dry 

tropical forests have similar findings. Gillespie [39], studying tropical dry forests in southern Florida, 

found NDVI to be more strongly correlated with evergreen species density than deciduous, but more 

strongly correlated with deciduous species richness than evergreen. A study by Feeley et al. [24] in a 

dry tropical forest in Venezuela, also found vegetation indices (NDVI, IRI and MIRI) to be better 

correlated with species diversity indices than with stand density. 

In congruence with studies in conifer forests in Scotland [49], and in tropical littoral forests in 

Madagascar [50], we find that textural measures derived from Landsat data—apart from band 2  

texture —do not correlate with variations in stem density. Yet, several IKONOS derived measures of 

landscape texture—particularly band 1 texture, band 2 texture and NDVI texture—are significantly 

correlated with stem densities, indicating that the landscape microheterogeneity influential in driving 

stem density in this landscape appears to be at a scale closer to that of the 1 m IKONOS pixel than the 

30 m Landsat pixel. 

Landsat textural variables appear more useful in assessing vegetation diversity, however. Other 

research previously mentioned in dry tropical forests has indicated that Landsat derived NDVI textural 

measures help predict species diversity [39], as do findings from a tundra landscape in the Canadian 

arctic with substantial landscape heterogeneity [51]. In this landscape, where disturbance due to human 

impact by fire, grazing and biomass extraction frequently takes place [25], it is very likely that indices 

of texture are picking up areas of greater human disturbance, which leads to habitat 

microheterogeneity. While this may have led to increased plant diversity in other instances, here the 

impact appears to have been in the direction of reduced vegetation diversity. The scale of this 

heterogeneity appears to be important. Thus, we find several Landsat derived textural  

measures—particularly band 2 texture and Brightness texture—are negatively correlated with plant 

biodiversity variables. In contrast, few IKONOS derived textural variables appear to correlate with 

vegetation diversity. Thus, it appears that the finer spatial scales at which IKONOS derived measures 

of landscape heterogeneity are taken are better related to the scales at which stem density is 

distributed, while landscape heterogeneity at the Landsat pixel scales of 30 m appear more suited for 

the estimation of species richness and Shannon diversity distributions. 

This study clearly demonstrates the utility of medium spatial resolution Landsat satellites for plant 

diversity assessment even in the species rich tropics. This is good news for ecologists and conservation 

biologists. Landsat data is available across the world, at regular intervals of time, and relatively low 

cost compared to high resolution images like IKONOS and Quickbird [7]. There are glaring gaps in 

the availability of hyperspatial data, especially prominent in tropical biodiversity hotspots, where the 

need for biodiversity assessment and monitoring is perhaps most critical [10,52,53]. 

Further, unlike medium resolution satellite platforms which routinely collect data across the globe 

at specified intervals, hyperspatial image collection is largely commissioned, making these data 

available less frequently, for fewer areas, and at irregular, often unpredictable intervals of time. 

Hyperspatial data is also very expensive. As previously stressed, Rocchini [17] has demonstrated the 

higher efficiency of Landsat imagery with respect to Quickbird, in terms of achieved results vs. costs. 

These costs put hyperspatial imagery out of the reach of many ecologists, especially those located in 

developing countries where the need is perhaps the greatest [7]. Finally, many countries also restrict 

the availability of high spatial resolution data, due to perceived issues of security [54]. Yet, 



Remote Sens. 2010, 2                    

 

 

493 

unfortunately, while this study points to the greater utility of the long term Landsat platforms for 

biodiversity assessment, Landsat data of high quality is not available for most parts of the world after 

2003, due to data striping issues with the Landsat sensor. Thus, at a time when it has just been 

announced that Landsat data will be made available free for all scientific use very soon, such research 

will only receive its final impetus when these data are available with the same frequency for recent 

time frames. 
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