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Abstract
Metagenomic approaches are increasingly recognized as a baseline for understanding the ecology and evolution of
microbial ecosystems.The development of methods for pathway inference frommetagenomics data is of paramount
importance to link a phenotype to a cascade of events stemming from a series of connected sets of genes or
proteins. Biochemical and regulatory pathways have until recently been thought and modelled within one cell type,
one organism, one species.This vision is being dramatically changed by the advent of whole microbiome sequencing
studies, revealing the role of symbiotic microbial populations in fundamental biochemical functions. The new land-
scape we face requires a clear picture of the potentialities of existing tools and development of new tools to charac-
terize, reconstruct and model biochemical and regulatory pathways as the result of integration of function in
complex symbiotic interactions of ontologically and evolutionary distinct cell types.

Keywords: metagenomics; next-generation sequencing; microbiome; pathway analysis; gene annotation

NEXT-GENERATION SEQUENCING
AS CRADLE AND STAGEOF THE
METAGENOMICS REVOLUTION
Microbial communities comprise combinations of

bacteria, archaea, fungi, yeasts, eukaryotes and

viruses, often co-occurring in a single habitat. Until

recently, the tools to systematically study global

community function and environment at the

molecular level were not available, because complex

microbial communities are generally not amenable to

laboratory study [1].

At the beginning of this century, cultivation-

independent diversity studies were limited by the

costs and complexity of Sanger-sequencing methods.

In the past 10 years, the picture of microbial com-

munities has rapidly passed from black and white to a

surprising explosion of bright colours, thanks to the

application of next-generation sequencing (NGS)

technologies to sequencing of environmental samples

(i.e. metagenomics) [2].

Metagenomic approaches allowed the first

large-scale insights into the function of complex

microbial communities and are increasingly recog-

nized as a baseline for understanding the ecology

and evolution of microbial ecosystems as genetic

and metabolic networks. The reasonable conclusion

is that the entire and fascinating diversity of bio-

sphere cannot be appreciated unless framed in the

appropriate meta-context.

This review will focus on the bioinformatics pro-

cedures available for functional annotation and path-

way inference from metagenomics sequence

information (Figure 1 and Table 1). We will initially

discuss methods using 16S rRNA genes to derive
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Figure 1: Flowchart of the main steps and bioinformatics tools required for pathway reconstruction from
metagenomics surveys. Numbers in circles correspond to specific tools and programs developed for the corres-
ponding steps and listed in the right part of the figure (links listed on Table 1). Curly brackets point to application
specific databanks.The analytic procedure ideally bifurcate at the starting point according to the investigation strat-
egy: DNA can undergo a PCR-based amplification step to increase the amount of a specific marker gene (e.g. ribo-
somal RNA) and then subject to Roche 454 sequencing or can be fragmented and prepared into libraries for
metagenomics Illumina/SOLiD sequencing. Both those techniques are characterized by the generation of a huge
amount of short reads that necessitate care and powerful instrumentation for their handling and processing. The
simplest analytic choice is to map short reads into reference databases such as that maintained by the Ribosomal
Database Project for the taxonomy survey via 16S sequencing (1) or into NCBI non-redundant (nr/nt) for environ-
mental microbiome or, in case of gut microbiome surveys, the better-scoped MetaHIT (2). Another possibility is
to assemble the short reads into longer contigs using new generation assemblers specific for unevenly distributed
reads deriving from the multitude of different microbes represented in the community (3). Their application im-
proves the efficiency of gene finding programs that, even though applicable directly on reads, have a higher level of
information to ensure more confident gene identification (4).Once coding sequences have been obtained, their cor-
responding proteins can be searched in reference functional databases encoding information in the form of HMMs
or PSSM frommultiple sequence alignments (5) or directly in reference protein sets derived from primary databanks
or from genome-derived collections. The first approach leads to a direct identification of associated functions that
can be used to identify and score pathways (6) and in the end apply a battery of statistical techniques for sample
characterization (7). The second approach can be used to obtain taxonomic and functional distributions (8) and
allows to directly feed metabolic pathway identification (9) that in turn can be converted into stoichiometric
models (10) for simulating the behaviour of single organisms or the relationships within a community, with the
potential of predicting their response to changing environmental conditions.
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taxonomic information useful as evidence for

presence of a set of cellular functions and biochem-

ical pathways. We will then review the methods

transforming NGS-derived short sequence reads

into taxonomic and functional entities, which in

turn can be framed into the context of biological

pathways.

BIOLOGICALPATHWAYS:THE
BIOINFORMATICS PERSPECTIVE
A biological pathway is classically defined as the series

of molecular interactions that leads to a certain prod-

uct or cellular function. The two-dimensional

graphical display of a pathway aims to capture the

interdependencies between elements that concur to a

biological function resulting from the sequential

interaction of the elements. A biological pathway is

the result of a manual curation made by experts in

different fields aimed at building networks of genes

that have experimentally proven relationships (e.g.

substrate–product link, physical association,

post-translational modification) and cooperate to a

common biological goal. Efforts to create centralized

repositories of pathways such as Kyoto encyclopedia

of genes and genomes (KEGG) [3] or MetaCyc [4]

are struggling with different data models to

make pathways homogeneous in terms of represen-

tation and coding (see www.pathguide.org for a

survey of the wealth of pathway repositories so far

available).

From a computational point of view, coding (the

framework of rules that allow a pathway to be

described textually) is definitely far more important

than representation. In fact, a correct parsing of the

data that catches information about the elements and

their relationships is fundamental to take full advan-

tage of the efforts made by experts in building such

sets. A number of alternative schemes, mostly imple-

mented in specialized XML (eXtensible Markup

Language), have been proposed to code increased

levels of complexity (SBML [5], SBGN [6], BioPax

[7], CellML [8], KGML [3], BCML [9]). Pathway

repositories also put pathways in the context of

Table 1: Tools for metagenomic analysis indexed by scope

Scope Name Link to program

Recruitment BWA bio-bwa.sourceforge.net
Bowtie bowtie-bio.sourceforge.net
FR-HIT weizhong-lab.ucsd.edu/frhit

Assembly Meta-Velvet metavelvet.dna.bio.keio.ac.jp
META-IDBA i.cs.hku.hk/�alse/hkubrg/projects/metaidba/
IDBA-UD i.cs.hku.hk/�alse/hkubrg/projects/idba_ud/
Genovo cs.stanford.edu/group/genovo/

Genes FragGeneScan omics.informatics.indiana.edu/FragGeneScan
MGA whale.bio.titech.ac.jp/metagene
Glimmer-MG www.cbcb.umd.edu/software/glimmer-mg
GeneMark exon.gatech.edu/metagenome

Annotation RPSBlast www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
HMMer3 hmmer.janelia.org
BLAST blast.ncbi.nlm.nih.gov
RAPSearch2 omics.informatics.indiana.edu/mg/RAPSearch2
RAST rast.nmpdr.org/

Taxonomy RDPclassifier rdp.cme.msu.edu
NBC nbc.ece.drexel.edu
CARMA3 webcarma.cebitec.uni-bielefeld.de
MEGAN ab.inf.uni-tuebingen.de/software/megan
SOrt-ITEMS metagenomics.atc.tcs.com/binning/SOrt-ITEMS

Servers MG-RAST metagenomics.anl.gov
IMG/M img.jgi.doe.gov/
EBI metagenomics https://www.ebi.ac.uk/metagenomics/

Models PathwayTools bioinformatics.ai.sri.com/ptools/
Model SEED seed-viewer.theseed.org/seedviewer.cgi?page¼ModelView

Analysis GSEA www.broadinstitute.org/gsea/
ShotgunFunctionalizeR http://shotgun.math.chalmers.se/
MetaPath www.cbcb.umd.edu/�boliu/metapath/
STAMP http://kiwi.cs.dal.ca/Software/STAMP
HUMAnN uttenhower.sph.harvard.edu/humann
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genomic research and taxonomy, trying to predefine

the pathways available in an organism based on the

genes detected in its genome. Thanks to these repo-

sitories, gene expression (transcriptomics), protein

expression and modifications (proteomics), primary

and secondary metabolites production (metabolo-

mics) as well as their control systems can be framed

in the context of flux analysis, reconstructing path-

ways and modelling their behaviour in a mechanistic

and mathematically appropriate framework [10].

Describing biological processes as a function of the

connectivity between the elements is even more

intriguing in the microbial metagenomics field,

where the classic concept of pathway cannot be con-

fined into one organism but has to be reinterpreted

in terms of flux of information across different spe-

cies. The simultaneous analysis of complex microbial

communities requires defining inter-organismic

‘meta-pathways’, as constructed by combining mul-

tiple pathway parts from multiple organisms, to high-

light the flux of interactions between them and

identify the metabolic functions that make a com-

plex microbial community. A striking example

of such inter-organismic pathways can be found in

a recent analysis of global gene expression of

the bacteriocyte Buchnera aphidicola, supporting a

genome-wide coordination of host gene

expression with bacterial metabolic pathways [11].

Buchnera produces essential amino acids, such as me-

thionine, that are deficient in the aphid’s diet with

the help of complementary aphid-encoded enzymes

(Figure 2) [12]. Pathway-level integration of the dif-

ferent capabilities of different species reveals how

beneficial associations can arise de novo from organ-

isms that are not co-evolved and later become stabi-

lized through natural selection acting within each

species.

The one above is a clear example of how

metagenomics can improve and complement

existing views on pathway evolution, yet more fre-

quently metagenomics is used to investigate the

taxonomic composition of the environment, extract

dominant species and extract their pathways, if

available.

TAXONOMYASTHE BASIC LAYER
OF INFORMATION FOR
METAGENOMICASSEMBLY
The knowledge of the taxonomic distribution of in-

dividuals within a metagenomic sample has a deep

impact on the functional assignment of genes. A high

biodiversity negatively correlates with the functional

assignment, possibly due to the presence of unknown

organisms that potentially encode elusive functions.

Microbial community analysis obtained with rRNA

genes or other markers favours the development of

rapid taxonomic classifiers (RDPclassifier [13] and

NBC [14], Figure 1, step 1) based on naı̈ve

Bayesian statistics and accurate taxonomically orga-

nized reference databases (RDP [15], SILVA [16],

GreenGenes [17] for bacteria and archaea and

AFTOL [18] for Fungi). At an early stage, these data-

bases revolutionized our understanding of how life is

organized at the kingdom level on earth and have

since provided a powerful research and reference

tool for microbial ecologists, microbial taxonomists

and applied microbiologists alike. The Roche FLX

Genome Sequencer is particularly suited for

16S rRNA-based surveys since it can produce

about 1 million high-quality reads of 400–700 bp

Figure 2: Example of a ‘meta-pathway’: amino acid
biosynthesis in the Acyrthosphion pisum/Buchnera aphidi-
cola symbiosis. Amino acids in squared boxes are
non-essential, methionine in round box is essential.
Solid lines and gene names are for Buchnera, dashed
lines and EC codes are for Acyrthosphion. The
non-essential amino acid cysteine (Cys) is synthesized
by Buchnera aphidicola from phloem sap provisioned sul-
phate and A. pisum synthesized serine (non-essential).
Adapted from [11].
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with a well-defined base-call error model that facili-

tates data pre-processing. Samples can be multi-

plexed, thanks to barcodes applied during the

amplification step, allowing accurate high-through-

put microbial identification to the species level

within metagenomic samples. It should be empha-

sized that the debated definition of bacterial species,

strongly hampered by the extensive exchange of

genetic material, could receive a positive improve-

ment by metagenomics [19]. Another widely used

approach to investigate community richness and di-

versity variations, and to complement the taxonomic

characterization, is to cluster the sequences according

to their distance. Distances can be obtained with or

without a multiple sequence alignment [17, 20, 21]

allowing to cope with never observed or classified

species that are frequent in metagenomics.

The information on the taxonomic composition

of a sample can be used to infer the metabolic net-

works and biochemical pathways present in that

sample. Knowing ‘who is there’ is not necessarily

enough to understand natural microbial commu-

nities but may serve as a proxy for metabolic recon-

structions, since likely the most abundant species are

dominant and, if their genomes are known in suffi-

cient details, their metabolic pathways can be used

for simulations (see below) [10].

GENOMEASSEMBLING FROM
HIGHLY UNEVEN, LOWLY
COVERING READS SET
Assembly, i.e. the process of juxtaposing short, over-

lapping fragments and creating longer sequences,

ideally spanning whole chromosomes, is a very com-

plex task in environmental metagenomics. A de novo
assembly is sometimes possible if the estimated diver-

sity is very low and composed of quite different spe-

cies. In such cases, the coverage of the sequencing is

sufficient to confidently combine reads into longer

contigs, frequently after a pre-clustering based on,

e.g. base frequency distribution into appropriate in-

dependent assembly lots. If a taxonomic survey is

available, reference genomes of closely related bac-

terial strains can be used to guide the assembly pro-

cess. Algorithms developed for single genomes

assembly from short reads are still commonly used

to assemble such metagenomic data sets and rely on

graph reduction algorithms based on three alternative

strategies, namely, Overlap Layout Consensus, De

Bruijn Graph (DBG) and the greedy graph. Details

of these programs are well and extensively reviewed

by Miller et al. [22] and an in-depth description is far

beyond the scopes of this review. Usually all the

approaches produce shorter contigs (both in terms

of N50 and maximum contig length) if compared

with single genome assembly, mainly because of

the very low coverage of sequencing due to the in-

herent complexity of the sample. Another layer of

complexity in metagenomic assembly is due to high

frequency of polymorphisms and genome variations

that, along with low complexity regions, lead to

mis-assembly and chimeric contigs formation and is

furthermore hampered by the presence of viruses and

inserted phages [23–25]. Recently, novel assemblers

specific for metagenomics (i.e. Genovo [26]) started

to be developed (Figure 1, step 2). The well-known

and widely used DBG-driven assembler Velvet has

been adapted to cope with multiple genomes, lead-

ing to the release of MetaVelvet [27]. This update

introduced the possibility of isolating sub-graphs

according to a k-mer coverage histogram, that in

metagenomes should present a multi-modal distribu-

tion (indicating the presence of different organisms,

rather than a unimodal distribution typical of single

genomes) and to build scaffolds based on every

decomposed de Bruijn sub-graph containing reads

from related genomes. A similar task is implemented

in Meta-IDBA [28] that partitions the graph into

components based on the topological structure of

the graph and takes advantage of the iterative ap-

proach of the IDBA method that, differently from

all other De Brijin graph assemblers, does not rely on

a specific and possibly inappropriate k-mer size but

builds graphs with a range of them, with benefits for

the overall assembly process [29]. A very recent add-

itional improvement to the IDBA system for meta-

genomes is IDBA-UD that addresses the problem of

uneven distribution of the reads by iteratively

removing short inaccurate contigs and performing

local assembly to fill gaps. This allows larger k-mers

to be evaluated, obtaining longer contigs with less

gaps in both low-depth and high-depth regions [30].

A completely different point of view has recently

been proposed by MetaORFA [31] that introduced

the assembly of proteins instead of genes form open

reading frames (ORFs) predicted in DNA fragments,

using an Euler assembler modified to cope with an

amino acid alphabet.

Despite the progress, genome assembly is still an

error-prone process and the final result depends

mainly on the genome structure and the complexity
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of the metagenomic data set. Importantly, the

benchmark of metagenomic assembly programs is

frequently based on simulated data sets from fully

sequenced genomes (e.g. produced with the valuable

MetaSim software [32] that can produce simulated

reads according to a number of parameters such as

taxonomy distribution and technique-based error

models), providing a ground-true basis for compari-

son, but not necessarily representing real data sets,

which can contain extremely uneven reads, in par-

ticular for unknown species.

FINDING GENES IN
METAGENOMES
In metagenomics, there are two contrasting forces in

action: the greediness of the functional assignment

and the necessity of quantification, i.e. giving

counts to the assigned functions. We will

address these two topics as a unique ensemble here,

to help catching the balance that has to be kept in

drawing robust conclusions on metagenomics results.

Gene finding on genomic sequences is a funda-

mental step which allows the annotation and charac-

terization of the functional potential of the

prokaryotic community under investigation. In meta-

genomics sequencing projects, particularly for

complex communities, gene calling is hampered by

the fragmentation of the assembly that affects the

genome of low abundant species producing also unas-

sembled singletons. Moreover, reads produced by

NGS contain errors according to the particular tech-

nology used to sequence the genomes: this can lead to

frame shifts and make gene prediction more difficult.

Classical tools for gene finding on genomes (e.g.

Glimmer [33]) efficiently base their predictions on

hidden Markov models (HMMs), trained on the

gene structure of known similar organisms or on gen-

eralized prokaryotic or eukaryotic genes. As

metagenomic-derived genes originate from a mixture

of different organisms, this approach cannot be used

directly, at least not with the confidence used in single

genomes. To overcome this problem, gene predictors

based on more complex models have been developed

that try to minimize the limitations imposed by the

lack of predetermined models and incorporate codon

bias and start/stop codon patterns of known genes of

available whole genomes (Figure 1, step 3).

MetaGene Annotator [34] integrates statistical

models of bacterial, archeal and prophage genes;

uses di-codon-based self-training models selected

from input sequences (based on GC content) and in-

corporates species-specific patterns of ribosome bind-

ing sites, allowing increased confidence in predicting

translation starts. FragGeneScan [35] instead incorp-

orates in the same HMM codon usage bias, sequen-

cing error models and start/stop codon patterns and

allows the recovery of genes directly from short frag-

ments (reads) since it does not need evident start or

stop codons. Recently, the well-known Glimmer

gene finder has been updated into Glimmer-MG

[36] that also integrates phylogenetic classifications

and sequence clustering (pre-grouping together

those genes that likely originate from the same organ-

ism) to further improve gene prediction. Finally, the

another widely used HMM-driven gene finder

GeneMark has been adapted to take advantage of

direct polynomial and logistic approximations of

oligonucleotide frequencies from short metage-

nomics reads to heuristically drive the model param-

etrization and obtain better gene predictions [37]. To

the best of our knowledge, no recent independent

comparison has been performed on specificity and

sensitivity of metagenomics gene finders, but it has

been reported [35] that FragGeneScan has the greatest

accuracy with Illumina-sized read length (�100 bp),

while longer sequences obtained, e.g. from pyrose-

quencing or even from assemblers, are predicted with

high accuracy by most gene finders. The constraints

imposed by the format of this review do not allow

performing an extensive comparison of the different

gene finding algorithms, yet the importance of this

subject indicates that such an effort should indeed

be undertaken.

It remains a hard task to distinguish between true

ORFs and false ones. An approach used to solve this

limitation is progressive clustering of ORFs with cal-

culation of Ka/Ks (synonymous and non-syn-

onymous substitution rates), assessing the selective

pressure acting on the ORF and, if absent, to score

it as unlikely (a possible false positive) [38]. A limi-

tation of the Ka/Ks approach for metagenomic data

sets is the lack of reference genomes for several of the

sequences and the consequent uncertainty in map-

ping the ORFs to chromosomes and discriminating

homologs from paralogs. A variety of web-oriented

computational resources are also available such as

RAMMCAP [39], which makes use of CD-HIT

[40] as a fast sequence clustering method to group

similar ORFs and reduce the amount of data while

increasing reliability.

Functional annotation and pathway inference in metagenomics data 701
 at Istituto A

grario di S.M
ichele all'A

dige on N
ovem

ber 27, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


FUNCTIONALANALYSISONGENES
ORREADS
A possible approach for function finding and quan-

tification in metagenomics is to treat reads such as

transcriptomics data and try to simply map them to

reference genomes (e.g. versus NCBI nt or MetaHIT

unique CDS), counting the number of matches and

scoring the functions accordingly (Figure 1, step 4).

A number of programs have been developed to rap-

idly and efficiently accomplish this task using reads

recruiters, i.e. very fast pair wise aligners (Figure 1,

step 5) such as BWA [41], Bowtie [42] (both built

upon the Burrows–Wheeler Indexing system) or

FR-HIT [43] (that builds a k-mer hash table for

the reference sequences and then performs seeding,

filtering and banded alignment to identify the align-

ments to reference sequences that meet user-defined

cutoffs) or more classic, parallel versions of BLAST

[44]. Due to the enormous amount of information to

be processed, speed is an important aspect of re-

cruiters even if false-positive results are frequent

due to the highly heuristic procedures. A good bal-

ance seems to be present in FR-HIT, which shows

accuracy similar to the slower BLAST but consist-

ently higher than the faster BWA and Bowtie, even

if independent studies have not been drawn so far.

Such raw quantification is usually followed by nor-

malization for reference coding sequence length [45].

This approach risks to be hampered by sequence

conservation due to functional homology in different

organisms. In fact, a read that maps into a highly

conserved region of a gene (e.g. in a structurally or

functionally conserved region of the coded protein,

that tend to be highly maintained in evolution) will

probably be assigned to different targets with a simi-

lar score.

A possible solution is to move from CDS-based

references to profile-based protein references.

A small number of existing databases collects mul-

tiple sequence alignment of protein sequences that

share a proved (experimentally) or predicted (from

sequence similarity) function. Probably the most im-

portant example of such databanks is NCBI

Conserved Domain Database [46] that incorporates

proteins from several sources such as Pfam/

TIGRFam, COG, Prk, Cazy and many others and

FIGfams, which rely on the SEED classification and

grouping of elements in sequenced genomes. Fast

search engines have been developed to scan protein

sequences against HMMs or profiles generated from

multiple sequence alignments (e.g. HMMer3 [47] or

RPS-Blast [42]) and are currently in use for func-

tional assignment directly on reads or genes from

metagenomics assemblers. Another possibility is to

scan protein databases such as NCBI nr

(non-redundant) with fast, specifically designed pro-

tein search tools such as RAPsearch2 [48] that use

reduced amino acid alphabets (by combining residues

with similar characteristics in a common symbol) to

reduce the overall complexity of the search while

maintaining (an sometimes improving) the recovery

of low-similarity proteins.

PATHWAYANALYSISASATOOLTO
COMPAREMETAGENOMICS
POPULATIONS
The development of methods for pathway-based

analysis has spearheaded the application of bioinfor-

matics in the functional genomics field, becoming

the tool of choice for ‘guilt by association’ statistical

analyses. Such methods allow the linking of a pheno-

type to a cascade of events stemming from a series of

connected sets of genes or proteins. Microarray-

based gene expression studies have used and abused

pathway analysis often calling a pathway what is not

a pathway, but rather a gene set and determined a

functional enrichment statistics or score based on a

pool of genes in the sample (e.g. Fisher exact test,

gene set enrichment analysis [49]). The result of en-

richment methods is a list of pathways that appear to

be significantly over-represented. All these count-

based approaches do not take into account neither

the relative order of the connected genes nor the

topology of the underlying graph: they can help in

interpreting the results, but cannot address the effect-

ive behaviour of the pathway. More complex meth-

ods have therefore been developed that address the

topology and the connectivity of the elements in the

pathway, as well as the flux of changes following a

challenge. Methods such as Impact Analysis can ef-

fectively determine the activation/inactivation status

of a pathway by appropriately weighting the per-

turbation that an over- or down-representation of

an element of the pathway has on the whole path-

way. This represents the state of the art of pathway

analysis in gene expression studies of mammalian

cells or model organisms [50].

Several drawbacks limit the application of statis-

tical methods measuring pathway enrichment to

metagenomics data. The main limitation is that

most of the methods applied to metagenomic data
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sets to score differences in pathway abundance have

been developed for microarrays. Specifically tailored

tools should take greater care in evaluating missing

values that are frequent in metagenomic data sets. So

far metagenomics studies have been mainly measur-

ing DNA sequence abundance, only a few studies,

such as the Buchnera one [12], measure gene expres-

sion, consequently several of the statistical assump-

tions of the methods analysing gene expression

profiles in pure cultures are not applicable. Most im-

portantly, NGS studies investigating the role of sym-

biotic microbial populations in fundamental

biochemical functions hardly ever discover in any

given sample all the genes making up a pathway.

The difficulty in measuring all the components of a

given pathway results in following simple rules of

thumb based on the minimal number of elements

sufficient for a pathway to be considered as present

(Figure 1, step 6). A frequent assumption is that if an

element of a pathway is present in a gene set, this

pathway can be considered as present and scored

accordingly (the so-called naı̈ve approach). It can

be argued that if a single gene contributes to two

pathways automatically makes the score of both

pathways increase: this behaviour raises doubts

about their real copy number. The opposite attitude

is instead to consider a pathway as present only if all

its elements are found in a sample. This approach is

instead too conservative and even less intuitive: it is

clear that pathways are ‘ideal’ groups of genes whose

number have been arbitrarily set from a functional

point of view and all the functional elements actually

coexist, possibly at the same time.

A possible solution to the problem of missing

values in metagenomic pathway analysis is reducing

their size into smaller modules with more detailed,

specific features. The KEGG database maintains an-

cillary, modular subsystems that compose pathways

and can be instanced separately. Flux analysis fre-

quently searches for reduced versions of pathways

with the aim of reducing the total computational

burden of the simulation (examples are the afore-

mentioned Elementary Modes, Paths or Patterns).

Biology also offers examples of modularity in bacter-

ial operons, bacterial genes of a metabolic pathway

organized in the same messenger RNAs and there-

fore co-regulated. Methods and tools for operon

prediction and bacterial pathway reconstruction,

resolving function distribution within single circular

bacterial genomes, have been recently discussed [51].

Their mapping in metagenomics seems easier due to

their relative smaller size, but they are constrained to

respect the assumption of co-linearity, and therefore

have to rely on the performance of metagenomic

assemblers, that though promising often implement

conservative assumption and potentially fail calling

all the genes of an operon as present. The task of

operon and pathway reconstruction is made even

more complicated since genomes are known to

have gaps in the commonly used pathways [52]

and even if in metagenomics many bacterial species

are present, the coverage on the genome is usually

inversely proportional to the biodiversity of the

sample, the higher the biodiversity the lower the

coverage. Some intermediate solutions have been

proposed to adjust pathway abundance and to

avoid overestimation. The PathoLogic module of

BioCyc PathwayTools offers a machine learning ap-

proach to pathway assignment based on a large

number of features (pathway composition and con-

nectivity, genomic context and pathway variants,

plus manually imposed constraints) learned from

some accurate complete genomes [53, 54], leading

to accurate predictions on single genomes (>91%).

MinPath [55] introduced a parsimony method solved

with integer programming to filter out spurious as-

signments and basically to find the minimal set of

pathways that can be explained with the supplied

gene functions and abundances. This approach lead

to a conservative yet accurate identification of path-

ways in single genomes when compared with KEGG

identifications (that are known to be inflated) and

does not rely on training, so it appear more suitable

for metagenomic data sets. In fact, the current

number of complete bacterial genomes is still too

limited with respect to the worldwide microbial di-

versity and the dependence of PathoLogic on com-

pleteness of the genome as a source of information

(e.g. the genomic context of the genes or the taxo-

nomic similarity) partially limits its application in

metagenomic data sets, which mainly contain

sequences from hypothetical non-cultivable taxo-

nomical entities. Metagenomic-specific methods

usually assess their accuracy by constructing synthetic

read/gene sets from existing complete genomes and

simulate communities at different complexities (e.g.

using the MetaSim software [32]). This kind of

benchmark sets represents the golden standard for

metagenomic tailored programs.

Recently, a statistical framework was proposed for

modelling gene family abundance [56] and two

models for pathway analysis were elaborated taking
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into account pathway size, gene length and gene

overlap, using genes known to be present only

once per genome [57, 58] for normalization.

Unfortunately, to the best of our knowledge these

models have not been distributed as usable software

and therefore they represent interesting yet theoret-

ical methods. Finally, when calculating statistical en-

richment, the study design requires determining a

ratio between conditions. Metagenomics studies

have barely defined the rules to normalize across

samples and within the same sample (Figure 1, step

7). A confident quantification of gene abundance is

fundamental when comparing the results from dif-

ferent metagenomic samples, since incorrect map-

ping is the major source of overestimation and bias.

Normalization of metagenomic data requires to

account for the estimate of average genome sizes,

relieving comparative biases introduced by differ-

ences in community structure, number of sequen-

cing reads and sequencing read lengths between

different metagenomes, as well as from sub-sampling

[59, 60]. When discussing the statistical tools to cal-

culate enrichment in functions, so far principal com-

ponent analysis and non-linear multidimensional

scaling are used to visualize the data and identify

the factors that characterize different data sets. In

2009, the R package ShotgunFunctionalizeR was

published, which allows gene- and pathway-centric

analyses based on statistical analysis such as binomial

and hypergeometric tests and generalized linear

models with a Poisson canonical logarithmic link

[61]. In 2010, the STAMP project was presented

[62] showing a graphical interface for metagenomic

analyses and, most notably, an open community was

created that promotes ‘best practices’ in choosing ap-

propriate statistical techniques and reporting results

in metagenomics. In 2011, the LEfSe statistical pro-

cedure was introduced, implementing multivariate

techniques to robustly identify features that are stat-

istically different among biological classes and then

performing additional non-parametric pairwise tests

to assess whether these differences are consistent with

biological test cases, also providing size effects and

dimension reduction to the results sets [63]. A prob-

ably more pathway-oriented analysis was proposed in

2010 with MetaPath that included the network

structure into statistics. Starting from the KEGG

global metabolic pathway (actually from the network

of KEGG reactions), MetaPath uses Metastats [64] to

identify sub-networks that differentiate two

meta-samples and it provides statistics for pathway

abundance and topology.

Very recently a new promising methodology to

reconstruct the functional potential of microbial

communities from metagenomic sequences was pro-

posed with the name HUMAnN (HMP Unified

Metabolic Analysis Network) [65]. The authors pro-

pose a combination of several of the above-men-

tioned steps but they add several improvements,

among which: (i) filtering steps to ensure that un-

likely pathways are removed and that the abundance

of consistent pathways is robustly evaluated, (ii) a

normalization step based on taxonomic profiles

from BLAST hits and (iii) a combination of pathway

abundance and coverage (i.e. the proportion of genes

in the pathway actually found in the sample) to ap-

propriately interpret the results.

METABOLIC NETWORKS
RECONSTRUCTIONAND
SIMULATIONS
The increasing availability of complete, annotated

genomes, allows building genome-scale metabolic

models (GMMs) directly from abundance analyses

at the species or genus level.

The methods that will be described in this para-

graph rely heavily on the accuracy of the taxonomic

annotation. Concerns have been raised regarding the

use of 454 pyrosequencing for determination of

taxonomic abundance, due to the biasing effect of

using a reference database or to the amplification step

required in DNA preparation for pyrosequencing.

These limitations can be minimized by using mul-

tiple databases and by confirming major outcomes

using PCR-independent methods, including NGS

techniques that do not require amplification steps.

Tools have therefore been developed that use pro-

tein or nucleotide databases to extract taxonomic

data from short metagenomic sequence fragments

(with or without prior assembling, Figure 1, step

8). Examples of such tools are MEGAN [66],

CARMA [67], Sort-ITEMS [68] or MetaPhyler

[69] that use similarity searches, the faster

PhyloPythia [70] or TETRA [71] that use

taxonomy-fitted nucleotide or codon usage compos-

ition analysis or SPHINX that uses a combination of

the two [72].

A number of models have already been published

[73] by integrating known interactions (e.g. reagent/

product at the enzyme level) from pathway
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repositories such as KEGG [3] or MetaCyc [4]

with stable annotations, e.g. in UniProt [74] or

Brenda [75] databases (Figure 1, step 9). This

knowledge-based integration can be converted into

a mathematical model that can be analysed through

constraint-based approaches and linear programming

methods with one or more objective functions (e.g.

consumption/production of a metabolite or, more

frequently growth rate upon medium change). In

2010, a semi-automatic model generation system

has been developed [76] based on the RAST anno-

tation system upon the SEED framework (relying on

FIGfam database) that automatically maps genes from

full genomes into metabolic maps connected with

the KEGG database (Figure 1, step 10). This

system frames each gene in an appropriate metabolic

context and incorporates, beside pathway topologies

(with enzymes as nodes and reactions as directed

edges), a wide information on intervening com-

pounds and the notion of essentialness that helps in

filling gaps, genes that have not been detected but

that must be present as a function for a pathway to be

rigorously defined. Once the model has been gener-

ated, a battery of techniques can be used to reduce its

complexity and impose biological, spatial or thermo-

dynamic constraints to find optimal metabolic states

via flux balance analysis (FBA). Toolboxes that

accomplish most of these tasks are COBRA, excel-

lently reviewed in [77] and PathwayTools, that use

the BioCyc models and take full advantage of the

MetaCyc pathway database [4]. Searching for elem-

entary flux modes (i.e. the minimal number of

enzymes that works at steady state with all irrevers-

ible reactions pointing to a given end) is a complex

task since their number grows exponentially with

GMM size. This problem can now be addressed,

thanks to linear programming [78], but alternatives

that reduce the complexity exist such as elementary

flux patters [79] or flux path [80].

All the above mentioned methods and theories

have mostly been developed and applied to single

cells, but several attempts have been proposed in

which stoichiometric GMMs from different organ-

isms are mixed following the already established rules

for modelling sub-cellular compartments [81].

Examples are the pioneer works on mutualistic rela-

tionships between Desulfovibrio vulgaris and

Metanococcus maripaludis [82] and on synthropies be-

tween oxygenic phototrophs, filamentous anoxy-

genic phototrophs and sulphate reducing bacteria

of the Yellowstone National Park (USA) [83], as

well as the demonstration that modelling can be

used to identify media that stimulate symbiotic rela-

tionships [84]. Other important examples can be

found in the excellent review of Klitgord and

Segrè [85]. Importantly, increasing interest in micro-

bial community metabolic simulations is evident, as

shown by the recent development of OptCom, a

microbial community-addressed FBA framework

[86].

Metagenomics offers the possibility of comple-

menting existing whole genome sequences by deter-

mining, after appropriate processing and through a

number of specifically designed bioinformatic tools,

the true presence/absence of nodes in the pathways

and eventually to add nodes previously unknown,

therefore greatly improving the precision of recon-

structed models.

Application of more than one taxonomy inference

method is likely to improve the reliability of GMMS

and other taxonomy-based network reconstruction

tools. On the other hand, Illumina-based metage-

nomics provides the investigator with an enormous

amount of sequence information on metabolic net-

works, allowing moving from inference to measure-

ment of the abundance of genes and transcripts.

Hereinafter, we will address key steps and pitfalls of

the process for extracting functional information

from Illumina metagenomics reads.

INTERNATIONALEFFORTSAND
RESOURCES FORMETAGENOMICS
PATHWAYS
As happened in the past, with DNA sequences and

microarray data, repositories specialized in classifying

and organizing metagenomics data have arisen,

thanks to the efforts and funding of international

consortia [87]. The ability to share metagenomics

data requires the definition of the minimal set of

information that has to be made available to the

community to allow comparing data sets from dif-

ferent laboratories [88, 89]. The definition of

common standards is a prerequisite for the develop-

ment of new analysis methods to be tested on a suf-

ficiently large and robust benchmark. The process of

defining such standards is of paramount importance

to achieve the final goal of improving the structure

and dynamics of microbial communities and their

relationships with ecosystems, natural or artificial

habitats and, importantly, human biology and

pathobiology.
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The amount of metagenomic information is

exponentially increasing, the first EU-funded

MetaHIT consortium produced Illumina sequences

of faecal samples of 124 European individuals,

including healthy, overweight and obese adults as

well as patients with inflammatory bowel disease

[90]. When extended to Japanese and American

populations, MetaHIT also established that world-

wide population could be classified into three distinct

enterotypes [91]. The NIH-funded Human

Microbiome Project is also curating and indexing

another fundamental resource for metagenomics,

i.e. a catalogue of reference genomes hosted in the

Genome Online Database framework [92], that simi-

larly to other tools such as MeganDB, MG-RAST

[93], IMG/M [94] or Camera offers web services

dealing with data pre-processing, assembly, gene

finding, functional assignment and, in some cases,

pathway reconstruction. The information deposited

in these resources promises to be a goldmine for

pathway and network inference, reconstructing the

super-meta-pathway subtending the interaction be-

tween mammals and their microbiomes. A glimpse

of the metabolic pathway complexity contained in

metagenomics data sets appeared since the work of

Gill et al. [95]: the human genome lacks most of the

enzymes required for degradation of plant polysac-

charides and they are supplied by the human gut

microbiome that can metabolize cellulose, starch

and unusual sugars such as arabinose, mannose and

xylose, thanks to at least 81 different glycoside

hydrolase families.

Zhu et al. [96] undertook a large-scale analysis of

16S rRNA gene sequences to profile the microbiota

inhabiting the digestive system of giant pandas using

a metagenomic approach. They performed predicted

gene functional classification by querying protein se-

quences of the genes against the eggNOG database

(an integration of the COG and KOG databases) and

the KEGG database using BLASTP, finding the pres-

ence of putative cellulose-metabolizing symbionts in

this little-studied microbial environment, explaining

how giant pandas are able to partially digest bamboo

fibre despite a genome lacking enzymes that can

degrade cellulose. Recently, Segata et al. [97] intro-

duced an innovative analysis of the HMP metage-

nomic shotgun sequencing of a subset of the

available body habitats (adult digestive tract). The

study design offered an additional feature, the meas-

ure of the relative abundances of bacterial organisms

based on 16S rRNA genes. The authors examined

the abundances of microbial metabolic pathways

including the relative abundances of individual

enzyme families Kyoto encyclopaedia of genes and

genomes (KEGG), Orthologous groups and of com-

plete metabolic modules, identifying a core set of

metabolic pathways present across these diverse di-

gestive tract habitats. The application [98] of an en-

semble method based on multiple similarity measures

in combination with generalized boosted linear

models to taxonomic marker (16S rRNA gene) pro-

files of the HMP cohort resulted in a global network

of 3005 significant co-occurrence and co-exclusion

relationships between 197 clades occurring through-

out the human microbiome. This network revealed

strong niche specialization, with most microbial as-

sociations occurring within body sites and a number

of accompanying inter-body site relationships. The

co-occurrence of microbial species in similar abun-

dance could be seen as an indication of their being

part of an integrated network, providing a set of

mutually complementary functions integrated in a

multi-organismal pathway. The size of this

super-network can be estimated integrating the

HMP and the MetaHIT studies, indicating that

gene content in gut microbiota is at least 150-fold

higher than human genome and identifies >19 000

different functions, among which at least 5000 never

seen before, at least 6000 shared by all individuals

(the so-called ‘minimal metagenome’) and at least

1200 required for any bacterium to strive in the

human gut (the ‘minimal gut microbiome’).

Finally, it is becoming increasingly clear that this

network varies significantly with geography and

diet and we are just starting to appreciate its com-

plexity. Yatsunenko et al. [99] analysed the gut

microbiome from healthy children and adults from

the Amazonas of Venezuela, rural Malawi and US

metropolitan areas. KEGG ECs data analysis found

that largest differences were determined by Random

Forests and ShotgunFunctionalizeR analyses, finding

pronounced differences in bacterial assemblages and

in the functional profiles in the three study popula-

tions, with distinctive features evident in early in-

fancy as well as adulthood.

CONCLUSIONSAND
PERSPECTIVES
The new landscape we face requires a pro-

found rethinking of our definition of pathway,
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as well as the development of a next

generation of pathway data models for the metage-

nomics field.

Biochemical and regulatory pathways have so far

been thought and modelled within one cell type,

one organism, one species. Recently, cell type-spe-

cific pathway databases and data models were

developed to dissect the contribution of different

cell types to immune function [100]. With the

advent of whole microbiome sequencing studies

this cell type-specific pathway annotation paradigm

will be generalized to annotate species-specific or

strain-specific reactions as part of integrated cross-

species ‘super-meta-pathways’. In this novel perspec-

tive, the network stemming from the interaction of a

community of cells includes all the functions of the

cell type that make the system, irrespectively of the

species contributing a function or a set of functions.

This novel pathway annotation will reconstruct and

model biochemical and regulatory pathways as the

result of integration of function in complex symbi-

otic interactions, indicating exactly which metabolite

is the end product in one cell type and how this

metabolite enters a cell type or a microorganism.

The elements of the network will have to be

functionally connected by means of tools such as

those integrating gene expression with metabolite

networks [101], with an approach conceptually simi-

lar to that developed by De Filippo et al. [102]

correlating the presence of short chain fatty acids

(SCFAs) in a sample with the species carrying the

genes for the pathways involved in SCFAs produc-

tion from their precursors. Currently, the principal

bottleneck for the progress of pathway analysis of

metagenomics data remains assignment of function

and assembly of operons and metagenomes. Despite

the fast paced advancement of tools for statistical

pathway analysis of metatrascriptomes or metagen-

omes, the lack of methods to fill gaps, and of a

proper pathway data model integrating reactions

present in taxonomically different organisms, makes

difficult to determine the exact topology of the path-

way, thus limiting the application of the

most advanced topology-based methods to metage-

nomics. Drastic improvement will be in the future

driven by the appearance of technologies increasing

the length of the sequencing reads, while maintain-

ing or increasing the throughput and their applica-

tion to the analysis of gene expression in mixed

samples.

Key Points

� Next-generation sequencing is cradle and stage of the metage-
nomics revolution.

� Pathways are uniform biological framework that can be used for
functionalmodelling ofmicrobialmetabolisms.

� Taxonomy is the basic layer of information for metagenomics
analyses.

� Metagenomics data can supplement, complement and refine
pathway reconstruction.

� Metagenomics assembly is one of the most complex tasks that
bioinformatics is facing today.

� Finding genes in metagenomes is of paramount importance for
improving currentmethods for pathway analysis.

� Functional assignment of metagenomics data is a complex and
error-prone task that struggle against incompleteness of both
raw data and current available information on genes and
proteins.

� Genome-scale metabolic models and taxonomy can be com-
bined into mathematical modelling for single cell and
community-based analyses.

� Inferred pathways can be used as a tool to compare metage-
nomics populations and to rationally build models of microbial
communities by considering them as communicating elements
of a single, self-comprehensivemap of biochemical reactions.
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