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Abstract

Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting,

leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic

determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F1 population

of 122 genotypes, from a ‘Starkrimson’ (strong biennial bearer)3‘Granny Smith’ (regular bearer) cross. The number of

inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26

variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited

the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained

50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes
were retrieved from the whole-genome assembly of ‘Golden Delicious’ and their position was compared with QTLs.

Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase

genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial

bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and

candidate gene co-locations and suggest the involvement of different physiological processes such as the

regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also

discussed.
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Introduction

Once a woody perennial plant has passed the juvenile

period when it cannot be induced to flower and has reached
its adult phase of reproductive competence, a proportion of

its meristems will initiate floral organs annually. Flowering

in temperate tree species can be divided into several stages

that include flower induction, flower initiation, flower

differentiation, and blooming. Flower initiation is the key

developmental stage for fruit trees, particularly for horticul-

tural crops such as the apple (Malus3domestica Borkh.),

because it determines the success of commercial orchards

(Buban and Faust, 1982) by its influence on fruit quantity
and quality (Link, 2000), as well as stability of production

from year to year (Schmidt et al., 1989). Flower initiation

can be strongly limited by an excessive crop, leading to the

phenomenon known as biennial bearing (Jonkers, 1979;

Monselise and Goldschmidt, 1982). Commonly used terms

related to alternate bearing include biennial bearing and

irregular bearing. Biennial bearing is characterized by large

Abbreviations: AIC, Akaike Information Criterion; BBI, Biennial Bearing Index; BLAST, Basic Local Alignment Search Tool; BLASTP, protein–protein BLAST; BLUP,
Best Linear Unbiased Predictor; CK, cytokinin; CY, cumulative yield; EST, expressed sequence tag; FI, floral induction; GA, gibberellic acid; GS, ‘Granny Smith’; HRM,
high resolution melting; MRM, multiple QTL mapping; NFI, number of fruit per inflorescence; NSF, number of seed per fruit; NSI, number of seed per inflorescence; PI,
Precocity Index; QTL, quantitative trait loci; SNP, single nucleotide polymorphism; SSR, simple sequence repeat; STK, ‘Starkrimson’; WGD, whole-genome
duplication.
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yields of small sized fruit in ‘on’ years, and low yields,

sometimes even no fruit, in ‘off ’ years. This alternation is

a widely spread phenomenon, occurring in both deciduous

and evergreen trees, and in different tree families and species

such as nuts (hazelnuts, pecans, pistachios, and walnuts),

temperate fruits (apple, apricot, pears, and prunes), sub-

tropical fruits (avocados, citrus, and olives), tropical fruits

(litchis and mangos), and forest trees (beeches, oaks, pines,
and spruces) (Monselise and Goldschmidt, 1982).

Several reliable parameters have been proposed to

phenotype biennial bearing, its intensity, and the synchrony

in different parts of the tree (Monselise and Goldschmidt,

1982). Hoblyn et al. (1936) originally proposed an index to

estimate the intensity of deviation in yield during successive

years that has been renamed by Wilcox (1944) as the

Biennial Bearing Index (BBI). The BBI has been widely
used to study fruit yield (i.e. mass of fruit) over orchards,

individual trees, or branches (Wilcox, 1944; Singh, 1948;

Pearce and Dobersek-Urbane, 1967; Jonkers, 1979). Recent

examples used BBI in apple (Barrit et al., 1997), mango

(Reddy et al., 2003), coffee (Cilas et al., 2011), citrus (Smith

et al., 2004), pecan (Wood et al., 2004), and pistachio

(Rosenstock et al., 2010).

Although generations of scientists have tried to under-
stand this phenomenon, the cause of alternate bearing is

still largely unknown (Singh, 1948; Hoad, 1978; Jonkers,

1979; Monselise and Goldschmidt, 1982; Bangerth, 2006,

2009). External factors (photoperiod, temperature, and

water stress), internal factors such as the carbon-to-nitrogen

ratio and hormones [auxins, cytokinins (CKs), abscisic acid,

ethylene, and gibberellins (GAs)], as well as interaction with

other organs (leaves, terminal shoot growth, and fruit)
affect flower formation in apple (for reviews, see Hanke

et al., 2007; Bangerth, 2009). The negative relationship

between fruit development and flower bud differentiation is

one of the most investigated causes of flower set variability

in apple, as the differentiation of flower buds in apple

overlaps with embryo development in the previous season’s

fruit (Harley, 1942; Foster et al., 2003), leading to competi-

tion between flower initiation and fruit formation.
Experiments using ‘Spencer Seedless’, which can bear

both parthenocarpic and seeded fruit, suggested that seed

development rather than nutritional competition may be

a factor in alternate bearing (Chan and Cain, 1967; Neilsen

and Dennis, 2000). The number of seed per fruit or per

bourse (flowering growth unit) has an effect on biennial

bearing, which can be overcome by a high vegetative growth

rate of the bourse shoot itself (Chan and Cain, 1967;
Grochowska and Karaszewska, 1976; Hoad, 1978; Neilsen

and Dennis, 2000). Seed are known to contain relatively

large amounts of hormones (Luckwill, 1974), and auxin

[indole acetic acid (IAA)], GA, and CK have been

implicated separately, and in combination, as being re-

sponsible for hormonal control of floral induction (FI).

IAA and GA may act together or independently to inhibit

FI in perennial fruit trees, whereas CK is likely to be the
hormone enhancing FI (Bangerth, 2006). Although the spur

(short fruiting shoot) tissues of biennial bearing cultivars

receive more GA through the pedicel than annual bearing

cultivars do (Hoad, 1978), and the peak activity of GA in

apple seed coincides with FI (Luckwill, 1970), it has been

difficult to obtain convincing evidence for the transport of

GA from seed in sufficient quantities to inhibit FI.

Bangerth (2006) proposed that auxin could be the mobile

signal and might stimulate GA synthesis in the meristem.

In this model, GA and auxin could potentially act as FI-
inhibiting signals working in concert, GA as the primary

messenger that stimulates the synthesis/transport of the

second messenger auxin. However, characterization and

quantification of both GA and auxin in the meristem still

need to be performed and, moreover, an inhibitory effect

of GA/auxin and stimulation by CK on the expression of

genes related to FI remain to be demonstrated (Bangerth,

2006).
Since regular bearing appears to be related to FI rather

than floral organ differentiation, it may be hypothesized

that floral integrator and floral meristem identity genes are

involved in this phenomenon. Key genes regulating floral

development have been identified in model plants, such as

Antirrhinum majus and Arabidopsis thaliana (Bernier and

Périlleux, 2005; Tan and Swain, 2006; Corbesier et al.,

2007). These include the flowering promoter gene, FLOW-

ERING LOCUS T (FT), that encodes a protein which is

a major component of florigen (Kobayashi et al., 1999), and

the LEAFY (LFY) and APETALA1 (AP1) genes, which

have been identified as necessary for the determination of

the floral meristem identity (Yanofsky, 1995). Other genes

such as FLOWERING LOCUS C (FLC), TERMINAL

FLOWER 1 (TFL1), BROTHER OF FT (BFT), and

SHORT VEGETATIVE PHASE (SVP) are known to be
repressors of the floral pathway integrators (Boss et al.,

2004; Yoo et al., 2010). Although there are fundamental

differences in the flowering process between annual and

perennial plants, the genetics of FI and floral organ

formation are likely to be similar among these plants (Tan

and Swain, 2006). A set of apple genes with sequence

similarity to genes involved in floral meristem transition of

Arabidopsis has been identified and subjected to expression
studies (Jeong et al., 1999; Sung et al., 1999; Kotoda et al.,

2000, 2002, 2003, 2006, 2010; Van der Linden et al., 2002;

Wada et al., 2002; Kotoda and Wada, 2005; Esumi et al.,

2005). Overexpression of the apple gene orthologues of

LFY, AFL1, and AFL2 (APPLE FLORICAULA/LFY)

(Wada et al., 2002), as well as MdMADS2 and MdMADS5,

orthologues of the Arabidopsis FRUITFULL (FUL) and

AP1, resulted in early flowering in heterologous systems
(Sung et al., 1999; Kotoda et al., 2002). Conversely,

overexpression of the TFL1 orthologue gene of apple,

MdTFL1, in Arabidopsis delayed flowering (Kotoda and

Wada, 2005). Kotoda et al. (2006) further showed that

transgenic ‘Orion’ apple trees with a reduced MdTFL1

transcript level flowered 8 months after grafting, whereas

non-transformed ‘Orion’ plants still had not flowered nearly

5 years after grafting.
Both progeny segregation patterns and differences in

bearing behaviour among cultivars strongly suggest the
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involvement of alleles transmissible by both regular and

non-regular types, together with a possible modification of

expression by a genotype by environment interaction effect

(Monselise and Goldschmidt, 1982). However, there has

been no attempt to identify the genetic and molecular

determinants of biennial bearing, and apple flowering genes

and their allelic variants have never been evaluated for

phenotypic variations in segregating populations or within
the wider Malus germplasm.

The goal of the present study was to investigate the

genetic determinants of biennial bearing in a segregating

population using a combination of quantitative genetics

analysis, quantitative trait locus (QTL) detection, and

candidate gene mapping. A segregating population from

a cross between contrasted genotypes for bearing behav-

iour, ‘Starkrimson’ and ‘Granny Smith’ (STK3GS) (Segura
et al., 2006, 2008, 2009), was phenotyped over six consecu-

tive years and quantification of biennial bearing was based

on yield at the whole-tree scale. QTLs and candidate genes

for the control of flowering and its regularity in apple were

identified and mapped. It was demonstrated that candidate

genes involved in flowering do not co-locate with these

QTLs, whereas several genes related to control of amounts

of the hormones auxin and GA co-located with the QTL
intervals for biennial bearing. Although flowering genes

may not directly determine biennial bearing, their control

by plant hormones might be one of the processes leading to

biennial bearing.

Materials and methods

Plant material

The F1 progeny used in this study were previously used for
studying tree architecture during the juvenile phase (Segura et al.,
2006, 2007, 2008, 2009). The population was derived from a cross
between two cultivars with contrasted tree and fruiting habits:
‘Starkrimson’ and ‘Granny Smith’ (STK3GS). The female parent
is characterized by an erect growth habit with many short shoots
and a tendency to biennial bearing, whereas the male parent, GS,
has a weeping growth habit with long shoots and exhibits fruit-
bearing regularity (Lespinasse, 1992). This population consists of
122 genotypes and each is replicated twice. However, three
genotypes had only one tree replicate since the second tree
replicate died at the beginning of the experimentation. Two-year-
old seedlings were grafted on the semi-dwarfing rootstock ‘Pajam
1’ and the grafted trees planted in March 2004 at the Melgueil
INRA Montpellier Experimental station using a random experi-
mental design. These trees were not pruned and neither were the
fruit thinned.

Phenotyping

The 122 genotypes were observed during six consecutive years,
from their second to their seventh years. A total of 241 trees were
phenotyped in 2005 and 239 trees in 2010, since two trees died
during the 5 years of the study. From 2005 to 2010, the number of
inflorescences and the number of fruit were recorded, and the
harvested mass of fruit determined at the whole-tree scale. These
variables were recorded for each year of production during the 6
years of the experiment, except for the harvested mass of fruit,
which was not available for year 2.

A range of descriptors was calculated from the variables
measured (number of inflorescences, number of harvested fruit,
and harvested mass) (Table 1). The cumulative yield (CY) is a sum
of the production for each year during the whole length of the
experiment (Smith et al., 2004). The Precocity Index (PI) was
calculated by applying Bartlett’s index for earliness of germination
(Sivasubramanian, 1962) also called the Earliness Index (EI) by
Cilas et al. (2011) (Table 1). This index weights yields according to
the year considered, giving a higher weight to the early years of
production and less to the latter ones. The alternate bearing
behaviour of each genotype was quantified by the BBI, since trees
exhibit a biennial pattern. The BBI was calculated using the
formula developed by Hoblyn et al. (1936). BBI values vary from
0 to 1, where 0 denotes equal yields in successive years and 1
alternate yield (Hoblyn et al., 1936). CY indexes were calculated
from 6 years of data, from 2005 to 2010, whereas PIs were
calculated from 5 years of data (from 2005 to 2009), since no trees
flowered for the first time during the seventh year of the study
(Fig. 1). Because only 36 trees flowered in 2005, compared with
212 in 2006, the BBI was calculated on 5 years of data (from year
3 to year 7) excluding year 2 in order to treat genotypes equally.
Genotypes that began to flower during year 4, 5, or 6 were
excluded from the BBI calculation. Bearing behaviour has been
graphically represented for the whole population based on the
average of phenotypic values for the total number of inflorescen-
ces and fruit, and the harvested mass of fruit per tree, per year
(Fig. 2).
In 2010, the numbers of fruit per inflorescence (NFI) were

counted for 20 inflorescences per tree. Inflorescences were sampled
in the terminal position of spurs located laterally on 2- to 6-year-
old wood of long axillary shoots. Then 10 fruit per tree were
harvested and the number of aborted and fully developed seed per
fruit (NSF) counted. To obtain the number of seed per in-
florescence (NSI), phenotypic averages were calculated per tree for
NFI and NSF and were multiplied together.

Clustering of bearing behaviour

Within the population, contrasted bearing behaviours were
graphically identified based on the average of phenotypic values
for the total number of inflorescences per genotype and per year
(Fig. 3). To establish this classification, trees that began to flower
during year 4, 5, or 6 were not considered and only 114 genotypes
were included (93.4% of the population) that began to flower in
year 2 or 3. The classification was performed manually and relied
on the study of the evolution of yield through time by the
construction of sequences composed of ‘+’ and ‘–’ symbols
reflecting the direction of variation of the yield for each pair of
years. Yields that were higher in year n+1 than in year n were
symbolized by ‘+’, whereas yields that were lower in year n+1 than
in year n were symbolized by ‘–’. These sequences were used to sort
genotypes into clusters with the same pattern. Finally the average
yield per year of all genotypes was calculated for each cluster.
Differences between tree replicates within genotypes were in-

vestigated using the same sequential method as described above.
Three groups were formed: the first group included genotypes
having no differences in sequence between trees, the second group
was composed of genotypes for which tree replicates showed one
difference in the sequence, and the third group was composed of
genotypes showing at least two differences in the sequence.
Genotypes for which production during year n+1 was equal or

superior to year n were considered as regular. Genotypes exhibit-
ing production in year n+1 inferior to year n were considered as
irregular, or biennial when the pattern of alternation was biennial.

Statistical analyses

Statistical analyses were performed using R software v.2.9.2.
(R Development Core Team, 2009). Data sets were analysed using
a two-step method: first, the statistical effects were estimated by an
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analysis of variance (ANOVA) and then the significant effects were
used to construct a linear model that estimated the genotypic value
of the trait for each genotype. Three models were considered: one
for yield data, which have been observed over 6 years, a second
model for the CY index, PI, and BBI, which have one value for the
whole study, and a third model for NFI, NSF, and NSI, which
have 1 year of data, with repetitions within the tree.
Data sets for annual yield indexes were analysed by mixed linear

models that included the year (Y), the genotype (G), the
interaction between genotype and year (G3Y), and the nested
effect of the tree within the genotype (G[T]). For the CY index, PI,
and BBI, a linear model was built considering only the genotype
(G). For NFI, NSF, and NSI, the model considered the genotype
(G), the nested effect of the tree within the genotype (G[T]), and
the nested effect of the fruit within the tree (T[F]). Significance of
the effects was estimated by a type III ANOVA (function lm)
because of unbalanced data. Then, the linear models were
constructed for each variable, considering the significant effects
detected by the ANOVA as fixed effects (Y) and as random effects
(G, G3Y, G3T, and F3T). A model selection was performed
based on the Akaike Information Criterion (AIC) minimization.

For each trait, when the G effect was significant in the model
selected (Table 2), BLUPs (Best Linear Unbiased Predictors) were
extracted using the ranef function. Normal distributions of the
residual errors were analysed to control the correct estimation by
the model of the genotypic value. Because of the non-significant
effect of the genotype, BLUPs were not extracted for BBI_fruit
and BBI_mass, and QTL detection was based on phenotypic mean
values for these variables. Genetic correlations were performed
based on the BLUP using the Pearson coefficient, procedure ‘cor’
(Supplementary Table S1 available at JXB online).

Variable nomenclature

All BLUP variable names, except for NFI, NSF, and NSI, are
composed of a short trait name followed by a suffix indicating if
the variable was based on the number of inflorescences (inf), the
number of harvested fruit (fruit), or the mass of harvested fruit
(mass) (Table 2). BLUP variable names for annual yield indexes
are followed by a suffix representing the year of the measurement.
For example, the inflorescence yield measured during the second
year is Y_inf_2. No numbers were attributed to BLUP variables
that are independent of the year effect (e.g. Y_inf).

QTL mapping

The QTL analysis was performed using BLUP values extracted per
genotype for each variable. The consensus and the parental genetic
maps of STK and GS were used for QTL mapping. QTL analyses
were carried out using MapQTL� 5.0. (Van Ooijen, 2004). First,
a permutation test was performed to determine the logarithm of
the odds (LOD) threshold at which a QTL was declared
significant, using a genome-wide error rate of 0.01, 0.05, and 0.1
with 1000 permutations of the data (Van Ooijen, 2004). In the
second step, an interval mapping analysis was carried out, with
a step size of 1 cM, to detect potential genomic regions associated
with the trait, with a LOD score higher than the threshold. The
nearest marker to each QTL peak was then selected as a cofactor
to perform multiple QTL mapping (MQM), with a step size of 1
cM (Van Ooijen, 2004). Each significant QTL was characterized by
its LOD score, its percentage of explained phenotypic variation,
and its confidence interval in cM corresponding to a LOD score
drop of 1 or 2 on either side of the likelihood peak.
Allelic effects were estimated as Af¼[(lac+lad)–(lbc+lbd)]/4 for

female additivity, Am¼[(lac+lbc)–(lad+lbd)]/4 for male additivity,
and D¼[(lac+lbd)–(lad+lbc)]/4 for dominance, where lac, lad, lbc,
and lbd are estimated phenotypic means associated with each of
the four possible genotypic classes ac, bc, ad, and bd, deriving
from a <ab3cd> cross.

Table 1. Descriptors used to study inflorescence and fruit production in the ‘Starkrimson’3‘Granny Smith’ segregating population over

6 years.

The formula used to calculate each descriptor is shown in relation to the type of data measured, such as the number of inflorescences, the
number of fruit harvested, and the mass of fruit harvested. Yi represents yield for year i, and n represents the number of years studied. With n=7
for Cumulative Yield and Biennial Bearing Index and n=6 for Precocity index.

Trait Formula Variable
abbreviation

References

Number of
inflorescences

Number of fruit
harvested

Mass of fruit
harvested

Yield Y_inf_n Y_fruit_n Y_mass_n

Cumulative

yield

+
n

i¼2

Yi CY_inf CY_fruit CY_mass Smith et al. (2004)

Precocity index
+n

i¼2
Yi3ðnþ1�iÞ

+n
i¼2

Yi3ðn�1Þ PI_inf PI_fruit PI_mass Sivasubramanian (1962)

Biennial

bearing index

+n
i¼3ðjyi�yi�1jÞ=ðyiþyi�1Þ

n�1
BBI_inf BBI_fruit BBI_mass Hoblyn et al. (1936)

Fig. 1. Number of trees flowering for the first time according to the

year after grafting. Years 1–7 on the x-axis correspond to 2004 to

2010, respectively.
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When a multilocus QTL was detected with at least two
cofactors, models considering markers and their interactions as
cofactors were constructed using a backward procedure under R
software v2.8.1. Models were selected based on the AIC values.
The location of QTLs was illustrated on the genetic maps based on
the peak LOD–1 and LOD–2 intervals using MapChart�

(Voorrips, 2002).
Two rounds of QTL detection were performed. The first round

was performed on a genetic map comprising simple sequence
repeats (SSRs) only, in order to detect the genomic regions of

interest for the candidate gene mapping. The second round of QTL
detection was performed on the genetic map including the
candidate genes, and the results of this QTL detection are
presented in Fig. 4.

Candidate gene mapping

An exhaustive in silico inventory of floral and hormone-related
genes in apple was performed in order to establish a list of
candidate genes that are possibly involved in biennial bearing.
Protein sequences of Arabidopsis corresponding to genes involved
in floral integration and meristem identity were retrieved from the
NCBI database (http://www.ncbi.nlm.nih.gov/). A number of
genes involved in plant response, synthesis, and transport of GA
and CK were also selected. In total, sequences from 196 accessions
from Arabidopsis were searched in silico within the ‘Golden
Delicious’ whole-genome sequence (Velasco et al., 2010) using
BLASTP (protein–protein BLAST) versus apple gene predictions
(amino acid). Ten gene predictions having the best BLAST (Basic
Local Alignment Search Tool) expected values were selected for
each Arabidopsis gene searched. Their positions and their protein
sequences were retrieved on the Malus3domestica genome browser
(http://genomics.research.iasma.it/gb2/gbrowse/apple/), and then
their protein sequences were blasted against the Swiss-Prot protein
reference sequences (http://expasy.org/tools/blast/) in order to
identify the best Arabidopsis protein and Malus cDNA related to
each apple gene prediction (E-value <1E-30). Alignments and
phylogenetic trees analyses were carried out using the deduced
amino acid sequences in order to remove redundant gene
predictions and to determine the number of gene copies present in
the apple genome per Arabidopsis gene (Supplementary Figs S1, S2
at JXB online).
A physical map was generated that included the positions in

Megabases (Mb) of the predicted genes and of the SSR markers
present on the STK3GS genetic map published by Segura et al.
2007 (Supplementary Fig. S3 at JXB online). The positions of the
QTLs detected on the STK3GS consensus map without candidate
genes were then compared with the physical map. Candidate genes
co-locating with QTLs were studied in detail: phylogenetic trees
were built in order to clarify the relationships among the members
of each family and predicted genes were named based on their
similarity with Arabidopsis proteins.
Amino acid sequences were analysed using the Phylogeny.fr

platform (http://www.phylogeny.fr) including the pipeline chaining
programs: MUSCLE 3.7 for multiple alignment, Gblocks 0.91b for
automatic alignment curation, PhyML 3.0 for tree building, and
TreeDyn 198.3 for tree drawing (Dereeper et al., 2008). The
tree building was based on an approximation of the standard
likelihood ratio test.
An exhaustive inventory of genes related to auxin (ARF, AUX/

IAA, and TIR) in the ‘Golden Delicious’ whole-genome sequence
was performed by R Schaffer and K David (2011, unpublished).
The position of the genes on the genome provided by this study
was compared with the position of the QTLs.
The genes co-locating in silico with QTLs were considered as

potential candidates, and specific markers were developed in order
to position them on the genetic map to test their relationship with
the QTLs. PCR primer pairs were designed for the candidate genes
using Primer 3Plus software (http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi). The conditions were set up to
amplify short fragments (100–200 bp), if possible spanning
putative single nucleotide polymorphisms (SNPs). These potential
SNPs were detected within the ‘Golden Delicious’ contig sequences
from the apple genome primary assembly (Velasco et al., 2010) or
by aligning expressed sequence tag (EST) sequences from different
cultivars. The primer pairs for NZmsMdMYB12 and MdCENa
were as in Chagné et al. (2007) and Mimida et al. (2009),
respectively. PCRs were carried out with a real-time PCR
instrument (LightCycler 480�, Roche), combined with high

Fig. 2. Average production per tree calculated for the population

(239 trees) over the 6 years of experiments. (A) Number of

inflorescences, (B) number of fruit harvested, and (C) the mass of

fruit harvested. Dashed lines correspond to the increasing trend

estimated from a linear regression over years.
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resolution melting (HRM) analysis for the detection of DNA
polymorphisms (Liew et al., 2004).
The PCRs were performed in the presence of a generic double-

stranded DNA dye (LCGreen), which binds to double-stranded
DNA only (Wittwer et al., 2003), using a total volume of 7 ll for
each well (13 LightCycler� 480 HRM Mastermix, with 2.5 mM
MgCl2, 0.2 mM for each primer, and 2 ng of genomic DNA). After
activation at 95 �C for 5 min, the reactions underwent 40 PCR
cycles of: 95 �C for 10 s; 55 �C for 30 s; 72 �C for 15 s. The HRM
analysis was performed immediately after the PCR amplification,
with single steps at 95 �C for 1 min; 40 �C for 1 min; 65 �C for 1 s;
and then a slow increase of the temperature to reach 95 �C over 15
min, with continuous measurement of the fluorescence intensity
(25 data points per degree Celsius). The Roche software identified
sequence variants as groups that exhibit similar melting profiles
(Hoffmann et al., 2008).

Genetic map construction

One hundred and twenty-three individuals of the population and
the parents were genotyped using 168 genetic markers, of which
107 were microsatellite markers (SSRs) and 61 were SNPs.
STK and GS parental maps comprised 119 and 124 markers,

respectively. Marker names were followed by the suffix ‘SG’ when
polymorphic for both parents and followed by ‘S’ or ‘G’ when
polymorphic for STK or GS, respectively. JoinMap 3.0 (Van
Ooijen and Voorips, 2001) was used for constructing linkage maps
using five segregation types: ab3cd, ef3eg, hk3hk, lm3ll, and
nn3np for the consensus map. Two segregation types were used to
build parental maps, hk3hk for both maps, and lm3ll and nn3np
for the STK and GS map, respectively. Linkage groups (LGs) were
constructed using a LOD score of 6 for grouping both the STK
and GS maps. The data were analysed as population CP, and map
distances were calculated using the Kosambi function.

Results

Phenotypic expression of biennial bearing in
a segregating population

Of the 242 trees observed in the STK3GS segregating

population, 36, 176, 19, and seven set flowers for the first

time during the second to fifth year after grafting,

respectively (Fig. 1). Only one tree set flowers during the

Fig. 3. Six bearing behaviours identified among genotypes within the population based on the average phenotypic values for the number

of inflorescences. Class effective and average BBI values are indicated in the legend for each graph.

136 | Guitton et al.



sixth year and three trees still did not flower during their

seventh year after grafting. The average production of the

population for both numbers of inflorescences and har-

vested fruit and mass of harvested fruit increased continu-

ously from the second to the seventh year after grafting.

However, compared with the upward trend of production in

the segregating population, a biennial pattern was observed,

as the fifth and seventh years were above the average trend,

whereas the fourth and sixth years were below (Fig. 2).

Within the subset of 114 genotypes that had set flowers

during the second to seventh year after grafting, six bearing

behaviours were graphically identified between genotypes,

based on the average phenotypic values per year for the

number of inflorescences for each genotype (Fig. 3). Bearing

Fig. 4. Genomic positions of the QTLs detected on the consensus ‘Starkrimson’3‘Granny Smith’ (STK3GS) and parental-maps:

‘Starkrimson’ maternal map (STK) and ‘Granny Smith’ pollen parent map (GS). QTLs are represented by boxes, in which length

represents the LOD–1 confidence interval and extended lines represent the LOD–2 confidence interval. Boxes representing QTLs for the

number of inflorescences are white, number of harvested fruit traits are black, mass of harvested fruit traits are hatched, and number of

fruit and seed per inflorescence are double hatched. For trait abbreviations, see Table 2. Mapped candidate genes are in bold

underlined. For candidate gene abbreviations, see Supplementary Table S3 at JXB online.
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patterns A–F include genotypes that began to flower during

year 2 or 3. A fraction of the population (5.7%) was regular

bearing (class A), with production increasing consistently

during the experiment. The remaining five classes were

alternate bearing, and different ‘on’ and ‘off’ years were

identified. Class B (9.8% of the population) were character-

ized by only one ‘off’ year during the seventh year. Class C

(4.9% of the population) increased their production until
the fifth year and then decreased it during the sixth and

seventh year. Class D (32% of the population) began their

biennial pattern during the sixth year and were character-

ized by one ‘off’ year and two ‘on’ years. Classes E (10.6%

of the population) and F (19.7% of the population) had

a clear biennial pattern but were in opposite phase. The

remaining 10.6% of the population had irregular produc-

tion, where ‘on’ and ‘off’ years were identified, but could
not be grouped to form a homogenous class.

Differences between tree replicates within genotypes were

investigated based on inflorescence yield per tree. The

results showed that tree replicates of 48 genotypes had

identical bearing patterns, 47 genotypes had tree replicates

discriminated by 1 year of production, and 15 genotypes by

2 years of production (Supplementary Fig. S4 at JXB

online).

Significance of genotypic and year effects on
production traits

The genotypic effect on biennial bearing was evaluated using

a set of measured variables including inflorescence, fruit, and

mass annual yields, and indexes calculated from the mea-
sured variables. Annual yield consisted of 17 measured

variables: six annual yields from year 2 to year 7 for both

the number of inflorescences (Y_inf) and the number of fruit

harvested (Y_fruit), and five annual yields from year 3 to

year 7, for the mass of fruit harvested (Y_mass). Different

effects were considered in ANOVAs depending on the

measured variables and indexes. On annual variables,

ANOVA using years and trees as repetitions showed that G,
Y, G3Y, and G[T] effects were highly significant (P <0.001;

Table 2). G[T] was less significant for fruit mass yield

(Y_mass) and not significant for fruit yield (Y_fruit). As

a result of the significant G3Y effect, BLUPs including this

interaction were extracted for each measured year (n)

(Y_inf_n, Y_fruit_n, and Y_mass_n), as well as BLUPs

specific to the genotype effect (Y_inf, Y_fruit, and Y_mass).

Calculated variables such as the CY, PI, and BBI showed
highly significant G effects in the ANOVA (Table 2). When

calculated on the number and the mass of fruit harvested

(BBI_fruit and BBI_mass), BBIs showed G effects slightly

above the chosen P-value threshold. The PIs for number

and mass of fruit harvested (PI_fruit and PI_mass) and the

CY for mass of fruit harvested (CY_mass) exhibited

a moderate genotypic effect compared with inflorescence

variables. BLUPs were calculated for each index with
significant genotype effect (BBI_inf, PI_inf, PI_fruit,

PI_mass, CY_inf, CY_fruit, and CY_mass).

The NFI and NSF measured in the seventh year showed

highly significant effects of G, G[T], and T[F], except for

NSF, for which T[F] was not significant. For the NSI, only

the genotypic effect was significant (Table 2). BLUPs

specific to the genotype effect were extracted for NFI,

NSF, and NSI.

Correlations between variables

Negative moderate correlations were found for the number

of inflorescences of a given year to the number of fruit
harvested for the previous year (–0.18 to –0.54) and to the

mass of fruit harvested the previous year (–0.20 to –0.59)

(Supplementary Table S1 at JXB online). The NFI and NSI

were positively correlated to variables related to fruit yield

(NFI and Y_fruit, 0.55; and NSI and Y_fruit, 0.43). High

correlations were observed for indices that were calculated

from a set of measured variables. The PI was positively

correlated with the mass of fruit harvested in the first year
of significant production (i.e. third year, 0.74) and nega-

tively with the mass of fruit harvested in the sixth year

(–0.72). The BBI was positively correlated with annual

inflorescence yields of years identified as ‘on’ in the

population, such as the third and fifth years (Fig. 2) (0.33

and 0.42, respectively), whereas it was negatively correlated

with annual inflorescence yields of ‘off’ years, such as the

fourth and sixth years (–0.62 and –0.50, respectively).

Candidate gene identification, phylogenetic analysis,
and genetic mapping

Candidate genes were selected on the basis on their known

function in Arabidopsis, and the list of selected genes

included 114 genes related to flowering and 73 related to

metabolism and catabolism of plant hormones. A search of

Table 2. Significance of the genotype effect (G), the year (Y), the

tree (T), the fruit (F), and their interactions: G3Y, G[T] (i.e. T nested

in G), and T[F] (i.e. F nested in T) in type III ANOVAs performed on

traits phenotyped.

Trait Name of variable G Y G3Y G[T] T[F]

Biennial Bearing Index BBI_inf *** – – – –

BBI_fruit NS – – – –

BBI_mass NS – – – –

Yield Y_inf *** *** *** *** –

Y_fruit *** *** *** NS –

Y_mass *** *** *** * –

Cumulative yield CY_inf *** – – – –

CY_fruit *** – – – –

CY_mass ** – – – –

Precocity index PI_inf *** – – – –

PI_fruit ** – – – –

PI_mass ** – – – –

Number of fruit per inflorescence NFI *** – – *** ***

Number of seed per fruit NSF *** – – *** NS

Number of seed per inflorescence NSI *** – – NS –

NS, non-significant; *P <0.05; **P <0.01; ***P <0.001).
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the apple whole-genome sequence (Velasco et al., 2010) for

candidate genes using BLASTP analysis allowed the estab-

lishment of the number of members for each family and

ascertainment of the location in the genome of 120 genes

putatively involved in flowering and meristem identity, 41 in

metabolism and catabolism of GA and CK, and 14 in

branching. Phylogenetic analyses performed for 12 gene

families (six flowering, two hormones, and one branching)
to determine the putative function for apple gene sets are

illustrated in Supplementary Figs S1 and S2 at JXB online.

Genes were named based on their similarity with Arabidop-

sis proteins and with cDNA from apple. The genetic map

for the STK3GS population was updated from its initial

version (Segura et al., 2006) by mapping 64 genetic markers

located in candidate genes (Fig. 4). The improved consensus

STK3GS map comprised 176 genetic markers including 107
SSRs and 69 SNPs, covered all 17 apple chromosomes, and

encompassed 1057 cM. It was noted that 15 (23.4%) of the

64 candidate genes did not map at the position predicted

from the genome assembly.

Candidate genes related to flowering: In total, 114 sequences

of genes related to flowering were retrieved from GenBank

(http://www.ncbi.nlm.nih.gov/) and used to search homolo-
gous proteins predicted from the apple genome sequence

(Velasco et al., 2010) using BLASTP analysis (i.e. Arabidop-

sis protein queries versus the predicted protein gene set).

One hundred and twenty gene predictions related to flower-

ing were identified, including 12 FT/TFL1, 49 MADS-box,

23 SQUAMOSA protein-like, 22 flowering genes that

belong to different gene families, seven PHYTOCHROME

genes, and seven CONSTANS (CO)-like (COL) genes.
These 120 gene predictions showed highly significant

similarity (E-value <1E-30) to 55 Arabidopsis reference

protein sequences (Supplementary Table S2 at JXB online).

No gene prediction was found for FLC, FLD, FLK,

FRIGIDA, GLOBOSA, HASTY, and ZIPPY. Two

paralogues were identified in duplicated genomic regions of

apple for 39 genes, such as AP1 (LG13 and LG16), EFL3

(LG8 and LG15), and LFY (LG6 and LG14), whereas three
gene copies were found for SUPPRESSOR OF OVER-

EXPRESSION OF CONSTANS 1 (SOC1; LG1, LG2, and

LG7) and only one copy for PISTILLATA (PI: LG8)

(Supplementary Table S2).

A phylogenetic analysis of the FT/TFL1 family genes

indicated the presence of five distinct clades within the apple

genome, with two paralogous predicted gene copies for each

family member: FT, TFL1, homologues of CENTRORA-

DIALIS, MOTHER OF FT, and BROTHER OF FT. Apple

paralogous genes shared more homology with each other

than with Arabidopsis genes (Supplementary Fig. S1A).

Twenty-two Arabidopsis MADS-box genes exhibiting

sequence similarities with 49 apple predicted proteins were

retrieved from GenBank. A phylogenetic analysis indicated

that 2–4 apple putative MADS-box gene had clear orthology

with one Arabidopsis MADS-box (Supplementary Fig. S1B).
Only one apple gene prediction was found for five Arabidop-

sis MADS-box genes (AGL3, AGL12, AGL19, AGL21, and

PI), whereas there were two predictions for nine Arabidopsis

accessions (AGL8, AGL11, AGL24, AP1, SEP1, SEP2,

SEP3, SVP, and TT16), three copies for SOC1 and AGL62,

and four for AGL15, AGL80, AP2, and AP3 (Supplementary

Table S2). A phylogenetic analysis of genes from distinct

gene families related to flowering revealed separated clades

for each Arabidopsis gene. Two paralogous genes were

present in duplicated genomic regions for LFY, EFL3, FCA,
GI, and VRN2 because of the Maloideae whole-genome

duplication (WGD) (Velasco et al., 2010) (Supplementary

Fig. S1C). A total of 23 apple predicted proteins were similar

to 12 Arabidopsis SQUAMOSA protein-like (SPL) genes

(Supplementary Table S2) and a phylogenetic analysis in-

dicated the presence of nine clades (Supplementary Fig.

S1D). The PHYTOCHROME family clustered in four clades

with seven apple predicted genes (Supplementary Fig. S1E).
The COL family comprised seven apple predicted genes that

matched with three Arabidopsis genes (Supplementary Fig.

S1F).

Genetic markers developed from 30 flowering genes were

mapped using the STK3GS mapping population (Supple-

mentary Table S3 at JXB online). Paralogous genes

positioned in homoeologous genomic regions based on the

WGD hypothesis of Velasco et al. (2010) included:
MdSOC1-like, MdSOC1a, and MdSOC1b located on LG1,

LG2, and LG7, MdAFL1 and MdAFL2 on LG6 and LG14,

MdVRN2.1 and MdVRN2.2 on LG4 and LG6, MdVRN1a

and MdVRN1b on LG5 and LG10, MdCLV1a and

MdCLV1b on LG8 and LG15, and MdEFL3a and

MdEFL3b on LG8 and LG15, respectively (Fig. 4). Only

one copy of MdPI was mapped, on LG8.

Candidate genes related to hormones: Seventy-three sequen-

ces of genes related to metabolism and catabolism of GAs

and CKs were used to search homologous proteins pre-

dicted from the apple genome: 33 and 40 genes related to

GAs and CKs, respectively.

Malus3domestica possessed several copies of gibberellin
oxidases, including GA2ox, GA3ox, and GA20ox. Fourteen

MdGA2ox, 10 MdGA3ox, and seven MdGA20ox were

identified in the predicted apple gene set (Supplementary

Table S4 at JXB online), whereas seven, four, and five

copies, respectively of these genes have been reported in

Arabidopsis. A phylogenetic analysis indicated four separate

clades, one each for MdGA3ox and MdGA20ox, and two

for MdGA2ox (Supplementary Fig. S2A). Malus3domestica

paralogous gene copies shared more sequence similarity

with each other than with Arabidopsis genes. Ten apple

putative cytokinin oxidases showed high orthology with five

Arabidopsis cytokinin oxidases, and the phylogenetic analy-

sis indicated the presence of one clade per Arabidopsis gene

(Supplementary Fig. S2B).

Eleven auxin-related genes identified in the apple genome

sequence by R Schaffer and K David (unpublished) co-
located in silico with the QTLs, including: MdAFB6,

MdARF3, MdARF104, MdARF10, MdARF110, MdIAA4,

MdIAA25, MdIAA33, MdIAA103, MdIAA106, and

MdIAA127A.
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Genetic markers for 22 hormone-related candidate genes

positioned on the STK3GS genetic map included four

MdGA2ox, two MdGA3ox, three MdGA20ox, five DELLA,

two cytokinin oxidases, and six auxin-related (Supplemen-

tary Table S3 at JXB online). Six DELLA proteins were

identified as proposed by Foster et al. (2006), and five of

them were positioned on the STK3GS genetic map, with

each subgroup of paralogous gene copies located on
homoeologous genomic regions: MdRGL1a and MdRGL1b

on LG16 and LG13, MdRGL2a and MdRGL2b on LG9

and LG17, and MdRGL3a and MdRGL3b on LG15 and

LG2, respectively (Fig. 4).

Candidate genes related to carotenoid cleavage dioxygenase

(CCD): The CCD gene family involved in plant branching

comprised 14 apple predicted genes that matched with six
Arabidopsis genes (Supplementary Fig. S2C at JXB online).

The phylogenetic analysis indicated the presence of five

clades, including one common clade for NCED3 and

NCED5. Four gene copies were mapped in silico for

MdCCD4, three for MdCCD1, two for MdCCD8, and only

one copy for MdCCD7a on LG2. A second copy of

MdCCD7 was located on LG7 of the STK3GS map,

a duplicated genomic region of LG2, whereas it was not
detected in silico. Three CCD genes were mapped on the

STK3GS genetic map: MdCCD8a, MdCCD8b, and

MdCCD7b (Fig. 4).

QTL detection

In total, 43 QTLs spanning 12 LGs were detected on the

STK3GS consensus genetic map. Twelve, 15, and eight

QTLs were detected for variables related to the number of

inflorescences, harvested fruit, and the mass of harvested

fruit, respectively (Table 3). Seven QTLs were detected for

biennial bearing, including three for the number of inflor-

escences (BBI_inf) and two for both the number and the
mass of harvested fruit (BBI_fruit and BBI_mass). Seven-

teen and 10 QTLs were mapped on the STK and GS

parental maps, respectively (Table 3, Fig. 4).

QTLs for traits related to the number of inflorescences: The

12 QTLs detected for characters related to the number of

inflorescences were spread across seven different LGs (Table

3). The explained genetic variability (R2) for each of the 12
QTLs ranged from 10.4% (precocity, PI_inf) to 24%

(cumulative yield, CY_inf). Nine and four inflorescence

QTLs were detected on the STK and GS parental genetic

maps, respectively, with eight and three of them confirming

positions identified using the consensus map. No significant

QTL was detected for inflorescence yield for the years 4, 5,

and 7 (Y_inf_4, Y_inf_5, and Y_inf_7).

Using the consensus map, three QTLs were detected for
biennial bearing (BBI_inf): at the top of LG4 and LG8 and

at the bottom of LG10. The global linear model indicated

an interaction between the BBI_inf QTLs on LG8 and

LG10 and explained 50% of the genetic variability (Table

4). The two BBI_inf QTLs mapped on LG4 and LG8

exhibited female effect and were confirmed on the STK

parental map using the same cofactors as the consensus

map, Hi04c10x_SG and Hi04b12_S, respectively. The third

BBI_inf QTL detected on LG10 mainly resulted in male effect

and co-located with a QTL for precocity (PI_inf) (Fig. 4).

Strong effect QTLs for inflorescence yield and cumulative

yield (Y_inf_2, Y_inf, and CY_inf) clustered at the top of

LG15 of the STK3GS map and explained 22.9, 22.6, and
24%, respectively, of the genetic variability. These QTLs

were confirmed on both parental maps in the same genomic

regions (Fig. 4). Although QTLs were detected on LG15 for

Y_inf_6 on both parental maps, when the consensus map was

used, QTLs for this trait were identified on other genomic

regions (LG1 and LG8). NZ02B01_S was used as the cofactor

for the QTLs detected on LG15 on both consensus and

female maps, and the MdCCD8b_SG marker was the cofactor
for the QTLs detected on the male parental map.

The QTLs detected on LG1 for annual inflorescence yield

for years 3 and 6 (Y_inf_3 and Y_inf_6) mapped in the same

genomic region on the consensus map and used the same

cofactor (MdGA20ox1a_S) (Table 3). They explained 19.7%

and 13.6% of the variability, respectively, and both were

confirmed on the STK genetic map using CH05g08_SG as

the cofactor. A second QTL identified on LG8 for Y_inf_6
was confirmed on the STK map; both maps used

Hi04b12_S as the cofactor and co-located with a QTL for

BBI_inf. The two QTLs on LG1 and LG8 were not

involved in any epistasic effect and explained 24% of the

genetic variability (Table 4).

Three QTLs were detected on the consensus genetic map

for precocity (PI_inf) on LG3, LG7, and LG10 (Table 3).

None of these QTLs was confirmed on parental maps. The
selected global linear model for this character showed no

interactions among the three QTLs and they together

explained 31% of the variability (Table 4). The LG3 and

LG10 QTLs resulted in a male additivity effect, whereas the

QTL mapped on LG7 mainly resulted in female effect.

QTLs for traits related to the number and the mass of

harvested fruit: Fifteen and eight QTLs were mapped on
the consensus map for variables related to the number and

to the mass of harvested fruit, respectively (Table 3). For

the number of harvested fruit, QTLs were spread across

seven different LGs, with LG1 and LG8 exhibiting the

highest number of QTLs. Their explained genetic variabil-

ity ranged from 12.3% (fruit yield independent of year

effect, Y_fruit) to 19.1% (cumulated yield, CY_fruit).

Seven and four QTLs were confirmed using the parental
genetic maps STK and GS, respectively. No significant

QTLs were detected for fruit yield of years 4 and 6

(Y_fruit_4 and Y_fruit_6). For the mass of harvested fruit,

no QTLs were mapped using the parental maps. QTLs

were spread over six different LGs and were related to four

variables: annual mass yield for years 3 and 7 (Y_mass_3,

Y_mass_7), precocity (PI_mass) and biennial bearing

(BBI_mass).
Two genomic regions were identified for the BBI (BBI_

fruit and BBI_mass) on LG10 and LG13 (Fig. 4). QTLs for
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BBI_fruit and BBI_mass were similarly located and the

same cofactors were used for both traits. The interactions

between the cofactors were significant for BBI_fruit in the

global linear model and explained 37% of the genotypic

variability (Table 4). The QTLs detected on LG10 displayed

mainly male and female effects, whereas on LG13 the QTLs

were mainly due to dominance and female effects (Table 3).
The LG10 and LG13 BBI_fruit QTLs were confirmed using

the GS genetic map.

Five QTLs related to fruit yield were detected on LG1

using the consensus map: four for the yield (Y_fruit_2,

Y_fruit_5, Y_fruit, and Y_mass_3) and one for the CY

(CY_fruit) (Fig. 4). The QTLs detected on the consensus

map for Y_fruit_2, Y_fruit, and CY_fruit were confirmed on

both parental maps using MdGA3ox-like-b_S and

MdSOC1-like_G markers on STK and GS maps, respec-

tively. Both QTLs displayed female, male, and dominant

effects. The Y_fruit_5 QTL resulted in female, male, and

dominant effects and was not confirmed on the parental
maps, probably because of its low LOD score (Table 3).

A second QTL cluster was identified on LG8 for variables

related to annual and cumulated yields of harvested fruit:

Y_fruit_2, Y_fruit_7, Y_fruit, and CY_fruit. Their explained

genotypic variability ranged from 12.2% (Y_fruit) to 17.6%

Table 3. QTLs detected on the consensus STK3GS map by MQM mapping for the number of inflorescences, the number of fruit

harvested, and the mass of fruit harvested phenotyped over 6 years-in the STK3GS apple progeny. For trait abbreviations, see Table 2.

QTLs LG LOD R2 Cofactor Allelic effect Af Am D Parental map detection

BBI_inf 4 5.31*** 0.157 Hi04c10x_SG Af 0.039 –0.006 –0.008 STK

8 4.33** 0.120 Hi04b12_S Af –0.027 –0.013 –0.018 STK

10 4.63** 0.135 MdGA2ox8a_G Am, D 0.013 0.032 0.023

Y_inf_2 15 6.11*** 0.229 NZ02b01_S Af, Am, D 9.46 –9.30 6.31 STK/GS

Y_inf_3 1 5.18*** 0.197 MdGA20ox1a_S Am 1.958 16.13 –2.149 STK

Y_inf_6 1 4.51** 0.136 MdGA20ox1a_S Am –7.57 –38.2 6.46 STK

8 5.55*** 0.185 Hi04b12_S Af, Am, D 35.0 26.7 11.96 STK

Y_inf 15 6.03*** 0.226 NZ02b01_S Af, Am, D –19.3 19.0 –13.2 STK/GS

CY_inf 15 6.35*** 0.240 NZ02b01_S Af, Am, D –117 103 –71 STK/GS

PI_inf 3 4.51** 0.128 NZmsMdMYB12_S Am, D 0.005 0.013 –0.010

7 4.77** 0.145 MdSOC1b_S Af, Am, D 0.014 –0.011 0.002

10 4.12** 0.104 MS06g03_G Am 0.001 0.017 0.002

BBI_fruit 10 5.16*** 0.184 MdAFB6_S Am 0.027 0.052 0.023 GS

13 4.87*** 0.148 CH03h03z_SG Af, Am, D 0.021 –0.004 –0.045 GS

Y_fruit_2 1 4.19** 0.140 MdGA20ox1a_S Af, Am, D 1.471 –3.662 1.914 STK/GS

8 4.03** 0.124 MdPI_SG Af, Am, D 2.417 3.373 –1.674 STK

Y_fruit_3 5 4.43** 0.144 CH04e03_SG Af, D –4.477 0.112 2.280

11 5.46*** 0.162 GD_SNP01140_SG Af, Am, D –3.330 4.330 –2.869

Y_fruit_5 1 3.71* 0.134 MdSOC1-like_G Af, Am, D –3.674 5.513 –7.144

Y_fruit_7 8 4.84** 0.176 MdPI_SG Af, Am, D –12.52 –13.51 6.064 STK

Y_fruit 1 4.35** 0.144 MdGA20ox1a_S Af, Am, D –4.682 11.80 –6.186 STK/GS

8 4.06* 0.123 MdPI_SG Af, Am, D –8.017 –10.40 5.481 STK

CY_fruit 1 5.91*** 0.191 MdGA3ox_like_b_S Af, Am, D –49.00 99.7 –51.43 STK/GS

8 5.07** 0.157 MdPI_SG Af, Am, D –62.98 –83.53 50.44 STK

PI_fruit 3 5.46*** 0.154 CH03g07_SG D 0.001 0.003 –0.012

5 5.37*** 0.170 CH03a04_S Af, D –0.010 0.003 0.007

11 4.80** 0.163 NZ04h11y_G Am 0.002 0.011 –0.005

BBI_mass 10 4.18** 0.144 MdAFB6_S Af, Am, D 0.030 0.045 0.016

13 4.89*** 0.160 CH03h03z_SG Af, D 0.021 –0.003 –0.049

Y_mass_3 1 4.92** 0.179 B2-T7_S Am –0.088 0.363 –0.063

5 4.96** 0.151 CH02a08z_S Af –0.314 0.076 0.103

Y_mass_7 2 3.78* 0.161 NH033b_SG Am –0.013 0.818 0.181

PI_mass 3 4.96** 0.154 CH03g07_SG D 0.001 0.004 –0.013

5 4.74** 0.156 CH03a04_S Af –0.011 0.005 0.007

11 4.28* 0.143 NZ04h11y_G Am 0.000 0.013 –0.004

NFI 8 4.64** 0.215 MdPI_SG Af, Am, D –0.057 –0.155 0.038 STK

NSF 3 7.33*** 0.210 CH03e03_SG Af, Am, D –0.406 0.640 –0.395

3 5.14*** 0.148 MdCENa_S Af, Am, D 0.603 –0.245 –0.228

17 5.42*** 0.179 MS06g03_G Af, Am 0.575 –0.446 –0.115

NSI 3 5.54*** 0.154 NZmsMdMYB12_S Af, Am, D 0.071 1.120 –0.664

3 4.03** 0.102 MdCENa_S Af, D 0.788 –0.360 0.782

10 4.48** 0.155 MS06g03_G Am, D 0.354 –1.311 –1.807

17 6.38*** 0.191 MdLD_G Af, Am 1.047 –1.016 –0.237
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(Y_fruit_7) (Table 3). These four QTLs were confirmed on

the STK genetic map and MdPI_SG was used as the

cofactor on both maps.

For the Y_fruit_2, Y_fruit, and CY_fruit QTLs mapped

on both LG1 and LG8, the global linear model included

interaction between LG1 and LG8 only for CY (CY_fruit),

explaining 40% of the genetic variability (Table 4).
The annual yield of year 3 (Y_mass_3) QTLs on LG1

mainly resulted in male additivity and explained 17.9% of

the variability (Table 3). A second Y_mass_3 was detected

on LG5 and displayed a female effect. For this variable, the

interaction between the cofactors was not significant in the

global linear model and explained 15% of the genetic

variability (Table 4).

Two QTLs were detected on the consensus map for fruit

yield of year 3 (Y_fruit_3) on LG5 and LG11, with

epistatic effect explaining together 49% of the genetic
variability. No QTLs were mapped on the parental maps

for this variable. However, the QTLs for both fruit and

mass yields of year 3 (Y_fruit_3 and Y_mass_3) on LG5

Table 4. Global model estimations for traits with several QTLs detected by MQM with P, the effect probability, and global R2, the

proportion of variation explained by the model.

Models were selected according to AIC values. Some of the markers used in MapQTL as cofactors were replaced by their nearest marker

with four genetic classes (ab, bc, ad, and bd, or ef, eg, fg, and ee) for the model construction. For trait abbreviations, see Table 2.

Trait LG Effects Cofactor P-value Global R2

BBI_inf 4 Hi04c103_SG Hi04c10x_SG 0.0017 0.49

8 Hi04b12_S CH02g09_SG 0.0068

10 MdGA2ox8a_G COL_SG 3.81E-05

8*10 CH02g09_SG*COL_SG 0.0134

Y_inf_6 1 MdGA20ox1a_S CH05g08_SG 6.54E-05 0.24

8 Hi04b12_S CH02g09_SG 0.0539

PI_inf 3 NZmsMdMYB12_S CH03e03_SG 9.72E-05 0.31

7 MdSOC1b_S Hi03a10_SG 0.0024

10 MS06g03_G COL_SG 0.0094

BBI_fruit 10 MdAFB6_S COL_SG 0.0002 0.37

13 CH03h03z_SG CH03h03z_SG 0.0003

10*13 CH03h03z_SG*COL_SG 0.0267

Y_fruit 1 MdGA20ox1a_S CH05g08_SG 4.11E-05 0.29

8 MdPI_SG CH02g09_SG 0.0022

Y_fruit_2 1 MdGA20ox1a_S CH05g08_SG 4.83E-05 0.29

8 MdPI_SG CH02g09_SG 0.0026

Y_fruit_3 5 CH04e03_SG CH04e03_SG 5.12E-05 0.49

11 GD_SNP01140_SG GD_SNP01140_SG 1.95E-06

5*11 CH04e03_SG*GD_SNP01140_SG 3.37E-05

CY_fruit 1 MdGA3ox_like_b_S CH05g08_SG 2.90E-05 0.40

8 MdPI_SG CH02g09_SG 0.0010

1*8 CH05g08_SG:CH02g09_SG 0.0626

PI_fruit 3 CH03g07_SG CH03g07_SG 0.0001 0.71

5 CH03a04_S CH04e03_SG 0.0033

11 NZ04h11y_G CH04g07_SG 0.1705

3*5*11 CH03g07_SG:CH04e03_SG:CH04g07_SG

BBI_mass 10 MdAFB6_S COL_SG 0.0042 0.23

13 CH03h03z_SG CH03h03z_SG 0.0006

Y_mass_3 1 B2-T7_S CH05g08_SG 0.0338 0.15

5 CH02a08z_S CH05f06_SG 0.0056

PI_mass 3 CH03g07_SG CH03g07_SG 0.0002 0.70

5 CH04e03_SG CH04e03_SG 0.0098

11 CH04g07_SG CH04g07_SG 0.1999

3*5*11 CH03g07_SG:CH04e03_SG:CH04g07_SG

NSF 3 CH03e03_SG CH03e03_SG 0.0002 0.65

3 MdCENa_S Hi04c10y_SG 0.0000

17 MdLD_G CH05d08y_SG 0.0002

3*3*17 CH03e03_SG:Hi04c10y_SG:CH05d08y_SG

NSI 3 NZmsMdMYB12_S CH03e03_SG 0.0037 0.85

3 MdCENa_S Hi04c10y_SG 0.0010

10 MS06g03_G COL_SG 0.2828

17 MdLD_G CH05d08y_SG 0.0031

3*3*10 CH03e03_SG:Hi04c10y_SG:COL_SG

3*3*17 CH03e03_SG:Hi04c10y_SG:CH05d08y_SG
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co-located with QTLs for precocity (PI_fruit and PI_mass)

(Fig. 4).

Three QTLs were detected for the PI of fruit and mass

(PI_fruit and PI_mass) on LG3, LG5, and LG11 of the

consensus map. The global linear model showed that the

LG11 QTL was only involved in epistasic effect and showed

significant epistatic effect, with the three QTLs explaining

together 71% and 70% of the genetic variability for PI_fruit
and PI_mass, respectively (Table 4). The QTLs displayed

female and male additivity, and also important dominant

effects, and were not detected on the parental maps.

Number of fruit per inflorescences and number of seed per

fruit: The QTL detected for the NFI on LG8 resulted mainly

in male additivity effect and explained 21.5% of the genetic

variability (Table 3). MdPI_SG was used as the cofactor and
the QTL co-located with QTLs mapped for fruit yield.

Three QTLs were mapped for the NSF: two on LG3 and

one on LG17 (Fig. 4). The QTLs exhibited female, male,

and dominance effects, but none of these QTLs was

confirmed on parental maps. The global linear model

included an interaction among the three QTLs and

explained 65% of the genetic variability (Table 4). The QTL

mapped on the top of LG3 co-located with the QTL for the
PI of inflorescences (PI_inf).

The QTLs detected for the NSI were very similar to those

described for NSF; however, a fourth QTL was detected at

the bottom of LG10. The global linear model included an

interaction among the four QTLs and explained 85% of the

genetic variability (Table 4).

Co-location between candidate genes and QTLs

The QTL cluster detected for inflorescence and fruit yields at

the bottom of LG1 overlaid four candidate genes genetically

mapped in a small genomic region of 13 cM: MdSOC1-like,

MdGA20ox1a, MdBFTa, and MdGA3ox-like-b. According to
the ‘Golden Delicious’ genome sequence, a COL gene,

MdCOL1, is also located in the same genomic region;

however, this could not be genetically mapped in the present

population. On the consensus map, MdSOC1-like and

MdGA20ox1a were located within the QTL interval of

annual yields (Y_inf_3, Y_inf_6, Y_fruit_2, Y_fruit_5, and

Y_fruit), while MdBFTa and MdGA3ox-like-b co-located

with the cumulative fruit yield (CY_fruit) QTL. When the
parental maps were used, the candidate gene co-location with

the QTL differed slightly. On the STK genetic map, only

MdBFTa and MdGA3ox-like-b co-located with the QTL

cluster, and on the GS parental map, MdSOC1-like was at

the limit of the LOD significance for the QTL cluster.

The candidate gene MdMADS4a mapped on LG2 was

located at the external border of the LOD significance for

the yield mass QTL of year 7 (Y_mass_7).
On LG3, the peak LOD score for the QTLs for precocity

(PI_inf), NSF, and NSI was located right above the

transcriptional factor MdMYB12. Although QTLs for pre-

cocity (PI_fruit and PI_mass) were located in the same

genomic region, MdMYB12 did not map within the QTL

confidence interval. The LOD peaks of the NSF and NSI

QTLs located in the middle of LG3 were positioned directly

above MdCENa. For the second PI_inf QTL on LG7, the

MdSOC1b candidate gene was located within the LOD

score interval.

MdEFL3a mapped within the limit of the QTL intervals

for Y_inf_6 and BBI_inf QTLs on LG8. In silico mapping

revealed that five other candidate genes, MdARF10,
MdARF110, MdIAA4, MdIAA25, and MdGA3ox1a, were

present within these QTL intervals.

The candidate gene MdPI was located right in the middle

of the LOD significance interval for the QTL cluster

mapped on LG8 relating to fruit production and to the

number of fruit per inflorescence. On LG10, the QTL

cluster related to BBI and to the precocity of flowering

spanned MdGA2ox8a and MdAFB6. For these four QTLs,
the LOD score was higher at the MdAFB6 locus than it was

at MdGA2ox8a. The NSI QTL mapped above this QTL

cluster, and several candidate genes were located within the

QTL interval: MdARF3, MdGA2ox2b, MdPHYEb, and

MdGA2ox8a. On LG15, the LOD score of the inflorescence

QTL cluster fell 2 cM before the position of MdCCD8b on

both male and consensus maps. The LG17 QTLs for NSF

and NSI co-located with the MdLD candidate gene.
Flowering genes such as MdFT, MdMFT, MdTFL1,

MdCEN, MdLHP1, MdAFL, MdAP1, and MdMADS4,

and hormone-related genes such as MdRGL did not co-

locate with any QTL mapped.

Discussion

The challenge of quantifying alternate bearing

Quantifying biennial bearing, a physiological phenomenon

that occurs over a range of years, is a complex task. The

approach here utilized data collected over 7 years from an
apple segregating population, including the juvenile phase

and the entrance into mature phase. The calculation of

indices to quantify biennial bearing was essential both to

describe the genetic variability and to identify the genomic

regions linked to this trait.

Most of the trees first flowered during their third year and

their production increased during the experiment. BBI was

calculated using 5 years of yield (i.e. from the third to the
seventh year), although Huff (2001) recommended using

BBI over a minimum of 6 years during the trees’ mature

phase. Indeed, the BBI values can change, depending on the

number of annual yields included in the calculation, and

between the juvenile and mature phases (Smith et al., 2004).

However, these recommendations do not allow the early

evaluation of biennial bearing tendency among genotypes,

which would be useful for breeders. The results suggest that
an early evaluation is possible, since genotypes having

a clear alternate behaviour; that is, characterized by two

‘on’ and two ‘off’ years, had higher BBI values than

genotypes having a clear regular behaviour (Fig. 3).

However, intermediate behaviours might be difficult to
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characterize based on BBI. One major difficulty derived

from the fact that this index includes positive yield differ-

ences due to the ontogenic increasing trend of tree pro-

duction. Estimation of biennial bearing during this period

would certainly be improved by removing the increasing

trend and accounting for yearly fluctuations only.

In addition to indexes, yearly variables were also studied.

Most of them were significantly affected by the year factor
effect and its interaction with the genotype factor (Table 2).

However, the experimental design did not allow a distinction

to be made between the ontogenic and climatic year effects

within the year effect, as previously proposed by Segura

et al. (2008). The interaction G3Y is illustrated by the

graphic representations of bearing behaviours over years

(Fig. 3), which show that ‘on’ and ‘off’ years can occur

during the same climatic year, depending on the genotype.
In addition, genotype by environment interactions can also

be expected, since previous studies demonstrated different

bearing behaviours for the same cultivar, depending on

the cultivation site (for a review, see Monselise and

Goldschmidt, 1982).

BLUPs were used as a tool to predict the genetic merit of

trees based on their field performance for the traits studied.

QTL detection was performed based on BLUP values, in
order to improve the statistical power to detect significant

QTLs (see Segura et al., 2009). Among the traits studied,

the number of inflorescences per tree was the most accurate

for quantification of production and its regularity, because

this trait is less subject to environmental effect. The

significance of the genetic effects was higher for the

variables related to the number of inflorescences than for

the variables related to the number and the mass of harvested
fruit (Table 2). This might be due to environmental effects

that would induce variability during fruit set, self-thinning,

and fruit development.

QTL detection, clustering, and trait correlation

The higher number of QTLs for STK suggests a greater

effect of this parent on these traits and is consistent with the

strong tendency towards the biennial bearing characteristic

of STK compared with the regular bearing GS (Lespinasse,

1992). This also suggests that biennial bearing in the studied

population may be due to alleles that have a negative effect

rather than to positive regular bearing alleles.
QTL clusters were identified on eight genomic regions,

and several of these clusters were due to indices calculated

from a set of measured variables, resulting in QTL co-

location between the index and the variables. For instance,

production precocity was calculated from measured yearly

fruit and mass yields. Strong correlations (0.66 and 0.74 for

fruit and mass, respectively) were found between the yield in

the third year (i.e. the first year of significant production)
and the calculated production precocity, which in turn

resulted in a QTL cluster mapping on LG5 (Fig. 4;

Supplementary Table S1 at JXB online). This emphasized

the third year of production as being highly determinant for

precocity.

However, several statistical correlations and QTL co-

locations occurred for independent variables that result

from common physiological processes. This can be exempli-

fied by QTLs for inflorescence yield of a given year that co-

located with QTLs for fruit yield of the next year on LG1

and were consistent with negative correlations between the

variables, for example Y_fruit_5 and Y_Inf_6, –0.54. These

results corroborate the main hypothesis for biennial bearing
in apple that the presence of fruit influences the formation

of inflorescences the following year, and point to the base of

LG1 as being highly determinant for biennial bearing.

Another example is the fruit yield QTLs that clustered

with a QTL for the NFI on LG8. These co-locations are

supported by significant correlations between variables

(ranging from 0.55 to 0.99). However, lower correlations

were found between the number of inflorescences and fruit
yield (from 0.18 to 0.51). Therefore, the fruiting yield

appears to be influenced more by the NFI than by the

number of inflorescences per tree.

Most interestingly, a number of QTL clusters resulted

from non-correlated variables. For instance, the NSI

mapped adjacent to QTLs for biennial bearing for in-

florescence, fruit number, and mass on LG10, despite a low

correlation between these variables (correlations ranging
from 0.10 to 0.16). Similarly, the co-location between

a QTL for flowering precocity with QTLs for biennial

bearing on LG10 opens up interesting breeding perspec-

tives. Indeed, these variables showed moderate correlations

(0.32), meaning that some genotypes are precocious and

regular, whereas others are precocious and biennial. Geno-

types that are both precocious and irregular represent the

largest proportion within the population, suggesting that in
general trees producing flowers in early stages might enter

in a biennial bearing cycle. Despite this, breeders wish to

select genotypes that combine precocity and regularity, and

these were present in the population studied.

Emerging hypotheses for the control of biennial bearing

This study used QTL detection in a segregating population

combined with a candidate gene mapping strategy to

identify potential genetic determinants of biennial bearing.

It was demonstrated that biennial bearing involves inter-

actions between independent genomic regions spanning

genes of various functions. While stable genetic transforma-
tion to overexpress or knock out genes often provides solid

proof of function for plant genes, it is believed that using

genetic transformation would be extremely challenging for

dissecting biennial bearing because of the control system’s

complexity. It is impossible to generate phenotypes equiva-

lent to biennial bearing in annual model plants using genetic

transformation. Knocking out TFL1 in apple resulted in an

extreme reduction of the juvenile phase with collateral
effects on inflorescence architecture and chilling require-

ments (Kotoda et al., 2003, 2006). However, in the present

study, QTLs for precocity did not co-locate with TFL1,

suggesting that mechanisms upstream of TFL1, and
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possibly controlling TFL1, are determinants in the decision

to set flowers.

The availability of the apple genome sequence enabled

a comprehensive search for a set of candidate genes

involved in flowering, hormones, and branching to be

performed and their position could be compared with those

of the QTLs detected for biennial bearing in the STK3GS

genetic map. This enabled the fact to be highlighted that co-
location between QTL clusters and candidate genes,

which is not definitive evidence, provides pertinent new

information on putative genetic control of biennial bearing

in apple. While the approach used here was based on

a systematic search of candidate genes using in silico

analysis, it was shown that 24% of the genetic markers

mapped to a different location from that in the genome

assembly, which points at discrepancies in the apple genome
assembly. This indicates that some relevant candidate genes

might have been left out from the QTLs because of wrong

genome location.

Flowering integrator genes and biennial bearing: It has been

shown that genes described as key flowering genes in Malus,

such as MdFT and MdTFL1 (Mimida et al., 2009; Kotoda

et al., 2010), were not present within QTL intervals for
annual yields, precocity, and biennial bearing. Although it

is suggested that these genes are likely not to be directly

responsible for biennial bearing in apple tree, their control

and regulation could be determinant. In contrast, other

flowering genes such as MdBFTa, MdSOC1-like, and

MdCOL1 were located within QTL intervals for inflores-

cence and fruit production mapping on LG1. In Arabidop-

sis, BFT possesses a TFL1-like activity and functions
redundantly with TFL1 in inhibition of inflorescence

meristem development (Yoo et al., 2010). SOC1 co-located

with QTLs on LG1 and LG7 for inflorescence and fruit

production and precocity, respectively. In annual plants,

SOC1 enhances FI in response to GAs (GA4) (Eriksson

et al., 2006). In apple, GA4 has been shown to promote

flowering during ‘off’ years when applied the year before

(Looney et al., 1985). Similarly, CO positively regulates the
expression of two floral integrators, LFY and SOC1, via FT

in Arabidopsis (Samach et al., 2000; Parcy, 2005). However,

based on QTL mapping, it cannot be determined which

gene among MdSOC1, MdBFTa, and MdCOL1 is causative

for the LG1 QTL. Further study, including mRNA

expression during FI with different applications of

hormones (e.g. different forms of GA), is needed.

Homeotic genes and fruit yield: Homeotic genes that are

involved downstream of FI would not be a priori candidate

genes for FI. However, MdPI co-located with a QTL cluster

for fruit production and for the number of fruit per

inflorescence on LG8. Previous studies have suggested that

MdPI could be responsible for seed development, after the

observation that a seedless apple mutant has a mutated PI

gene (Yao et al., 2001), whereas Tanaka et al. (2007)
proposed that the MdPI gene was related to the develop-

ment of petals and stamens and had function equal to

Arabidopsis PI (Coen and Meyerowitz, 1991; Weigel and

Meyerowitz, 1994). Consistently with Tanaka et al. (2007),

the QTL cluster on LG8 does not control the NSF but the

NFI.

Plant hormones and biennial bearing: Several genes involved

in the GA biosynthesis pathway were located in QTL cluster

intervals for production and its alternation: MdGA20ox1a

and MdGA3ox-like-b on LG1 and MdGA2ox8a on LG10.

These genes are known to determine the final amount of

bioactive GA through their influence on key steps of GA

synthesis (reviewed by Hedden and Phillips, 2000). Further-

more, auxin-related genes (MdAFB6) were mapped in the

interval of QTLs for biennial bearing on LG10, and in silico

mapping suggested that some AUX/IAA and ARF genes

might be also located on LG8 and LG13. In pea, auxin has
an important role in regulating GA biosynthesis by inducing

the accumulation of PsGA3ox1 mRNA and reducing the

PsGA2ox1 transcript, increasing the amount of bioactive

GA1 (Ross et al., 2000). Bioactive GA might also directly

target key flowering genes in the shoot apical meristem,

including SOC1 and LFY, which have been shown to be

regulated by GA4 in Arabidopsis (Eriksson et al., 2006). LFY

has been proposed to have a role in apple tree architecture
and be responsible for columnar phenotype (Flachowsky

et al., 2010). In the monocot Lolium temulentum, it has been

shown that GA5 and GA6 are the active GAs in the

induction of flowering (King et al., 2003). However, in apple,

there is no evidence about which GAs are active in FI,

although GAs are known to have an opposite effect on FI in

perennial and annual plants (Jackson and Sweet, 1972).

Indeed, applications of GA to apple trees showed that GA7

is the most inhibitory GA on FI (Tromp, 1982), and

horticultural practices commonly involve the application of

GA during ‘off’ years to prevent an excessive FI and so

attenuate the biennial bearing cycle (Schmidt et al., 2009).

Bioactive GAs might thus be expected to have an inhibitory

effect on key flowering genes/steps in apple.

Is there a common genetic determinism for tree architecture

and biennial bearing? Branching intensity and spur extinc-

tion have been demonstrated to be correlated with biennial

bearing in a set of apple cultivars (Lauri et al., 1995, 1997).

More precisely, spur-type cultivars have often been de-

scribed as having an irregular fruiting behaviour (Looney

and Lane, 1984). Since the STK3GS population was
previously used for dissecting the genetic control of scion

architecture during the first 3 years of growth (Segura et al.,

2009), the comparison of QTL positions between the two

studies enabled a number of QTLs mapping to common

locations to be highlighted. QTLs for branching intensity

were found to co-locate with QTL clusters for biennial

bearing on LG4 and LG13, as well as with QTLs for flower

and fruit production on LG1. This may result from
statistical correlation between traits, since an increase in

branching intensity increases the number of flowering sites.

This is an important component of flowering yield that can

be managed by horticultural practices such as ‘spur artificial
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extinction’ (short fruiting shoot thinning) (Lauri, 2002),

which mitigates biennial bearing. Moreover, the CCD8

gene, which is involved in branching in petunia (Snowden

et al., 2005), was located at the border of the QTL cluster

for inflorescence yield on LG15. Although no QTL for

vegetative branching traits was located on this LG in the

previous study during the first years of tree development, it

is suggested that variations in the MdCCD8b gene might
possibly have an effect on axillary bud activity and on the

number of flowering sites.

A QTL for mean internode length of proleptic axillary

shoots was co-located with a biennial bearing QTL on LG4.

This corroborates the previous assumption of a positive

correlation between bourse shoot length (shoots growing

from inflorescence bases) and return bloom (consecutive

occurrence of flowering in years n and n+1 on two
successive shoots). That resulted from the observation that

bourse shoot length >10 mm appeared to override the

negative effect of seed on FI (Neilsen and Dennis, 2000).

Finally, the biennial bearing QTLs on LG10 were located

close to the genomic region that includes the columnar

locus responsible for compact growth habit (Hemmat et al.,

1997) and a pleiotropic effect for architectural traits in

apple (Conner et al., 1998; Kenis and Keulemans, 2007). As
previously discussed, this region also included candidate

genes for GA biosynthesis and degradation. Numerous

studies have demonstrated the implication of GAs in the

cell elongation process. In particular, GA4 has been shown

to be the active GA in the regulation of cell elongation and

shoot growth in Arabidopsis (Xu et al., 1997), as well as in

the regulation of stem elongation in L. temulentum (King

et al., 2001).
Taken together, these factors, including QTL co-

locations, and mapping of candidate genes associated with

vegetative growth, branching, and FI to QTLs associated

with biennial bearing, strongly support the hypothesis of

common molecular controls for tree architecture and bi-

ennial bearing in apple.

Conclusion

This study of biennial bearing in segregating apple progeny

has provided new knowledge concerning the genetic archi-

tecture of this complex character. Biennial bearing is clearly
a multigenic trait that is influenced by plant age and year

effect as well as genetic effects. The comparison of locations

of QTLs with candidate genes has given a clear indication

that biennial bearing is unlikely to be directly controlled by

floral integrator or meristem identity genes. However, their

control by hormones might be the determinant factor in the

decision to flower, consequently leading to biennial bearing.

Even if not a definite indication of the exact physiological
process, several genes related to metabolism, degradation,

and transport of GA and auxin co-located with QTLs for

biennial bearing, and these genes could regulate the

amounts of substances inhibiting floral induction in the

shoot apical meristem.

It is proposed that the candidate genes may act on

physiological processes believed to be involved in biennial

bearing and might be the genetic determinants of biennial

bearing. However, further analyses are needed to narrow

down the list of candidate genes and to confirm their

implication in biennial bearing.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Phylogenetic analysis of flowering genes from

Arabidopsis thaliana and Malus3domestica.

Figure S2. Phylogenetic analysis of hormone- and
branching-related genes from Arabidopsis thaliana and

Malus3domestica.

Figure S3. Physical position (Mb) of genetic markers

(black) and candidate genes on the 17 chromosomes (Chr)

of the apple genome (‘Golden Delicious’).

Figure S4. Variability of the number of inflorescences per

tree between replicates of the same genotype.

Table S1. Genetic correlations between variables observed
for the number of inflorescences, the number of fruit

harvested, and the mass of fruit harvested.

Table S2. List of 120 candidate genes related to flowering

identified in silico in the ‘Golden Delicious’ apple genome.

Table S3. Accession numbers of gene predictions in the

apple genome and sequences of primers developed for

candidate gene mapping in the population STK3GS.

Table S4. List of 55 candidate genes related to gibberellin
and cytokinin oxidases and to carotenoid cleavage dioxyge-

nase identified in silico in the ‘Golden Delicious’ apple

genome.
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