## 6<sup>th</sup> Rosaceous Genomics Conference Mezzocorona, Italy – 30<sup>th</sup> September -04<sup>th</sup> October 2012

## Towards a large sized Axiom SNP array for the allo-octoploid strawberry

Bassil N.<sup>(1)</sup>, Amaya I.<sup>(2)</sup>, Bellon F.<sup>(3)</sup>, Mittmann M.<sup>(3)</sup>, Pirani A.<sup>(3)</sup>, Webster T.<sup>(3)</sup>, Brew F.<sup>(4)</sup>, Davis T.M.<sup>(5)</sup>, Mahoney L.<sup>(5)</sup>, Wood D.<sup>(5)</sup>, Yang Y.<sup>(5)</sup>, Zhang H.<sup>(5)</sup>, Denoyes B.<sup>(6)</sup>, van Dijk T.<sup>(7)</sup>, Ficklin S.<sup>(8)</sup>, Jung S.<sup>(8)</sup>, Main D.<sup>(8)</sup>, Peace C.<sup>(8)</sup>, Iezzoni A.<sup>(9)</sup>, Monfort A.<sup>(10)</sup>, Sargent D.<sup>(11)</sup>,  $\underline{W.E}$  .van de  $\underline{Wea}^{(12)}$ 

- (1)USDA-ARS, NCGR, Corvallis, Oregon, USA
- (2)IFAPA-Centro de Churriana, Málaga, Spain
- (3)Affymetrix, Santa Clara California, USA
- (4) Affymetrix UK Ltd, Wooburn Green, High Wycombe, UK
- (5)University of New Hampshire, Durham, New Hampshire, USA
- (6)INRA, Bordeaux, France
- (7)Wageningen-UR Plant Breeding, Wageningen, The Netherlands
- (8) Washington State University, Pullman, Washington, USA
- (9) Michigan State University, East Lansing, Michigan, USA
- (10)IRTA-CRAG, Barcelona, Spain
- (11)Research and Innovation Centre Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- (12)Wageningen-UR Plant Breeding, Wageningen, The Netherlands

A central goal of the RosBREED consortium has been to establish SNP arrays for peach, cherry, apple, and strawberry, to facilitate QTL discovery and marker-assisted breeding. This goal has been advanced by the release of three Illumina® Infinium® arrays for apple, peach, and cherry (8K, 9K and 6K, respectively). Here, we report on the development of a 90K Strawberry Affymetrix Axiom® genotyping array.

The cultivated strawberry is an allo-octoploid. This level and type of ploidy creates challenges to overcome, which we address in several ways. First, the large size of the array permits success despite a lower conversion rate of candidate to functional SNPs than for diploid crops. Second, we exploit site-specific, biological reductions in ploidy resulting from subgenome-specific deletions. Third, we exploit designed reductions in ploidy by targeting probes to sites of subgenome-specific sequence motifs. Fourth, we include SNPs and/or probes specific to one sub-genome.

We are using a diverse germplasm discovery panel of 19 octoploids. The array will target several polymorphism types, including indels and di- and multi-allelic SNPs. Here we describe our approaches to reduce the effective ploidy level so as to choose subgenome-specific SNPs. We also report on a new bioinformatics pipeline, which includes local re-alignment around indels and polymorphism type-specific filt ering strategies. Production of the array starts in September 2012 and it will become commercially available.