36th International Symposium on Capillary Chromatography and

9th GCxGC Symposium

Chairman Prof. L. Mondello Honorary Chairman Prof. P. Sandra

May_27 - June 1, 2012

Palazzo dei Congressi, Riva del Garda Italy

ABSTRACT BOOK

INFORMATION

Prof. L. Mondello Chromaleont a spin-off of the University of Messina Tel. (+39)-090-6766536 Fax. (+39)-090-358220 E-mail : iscc@chromaleont.it

V Forum on Microcolumn Separations

ABSTRACT BOOK 36th ISCC and 9th GC×GC Symposium

May 27 – June 1, 2012 Riva del Garda, Italy

Content Sponsors RIVA 2010 meeting

Sponsors VI	
Lecture Abstracts – 36th ISCC	
Lectures	2
Key Note Lectures	68
Lecture Abstracts – 9th GC×GC Symposium	
Lectures	93
Key Note Lectures	123
Poster Abstracts – 36th ISCC and 9th GC×GC Symposium	
A. Fundamentals	131
B. Column Technology	143
C. Sample Preparation	172
D. Sampling Systems	211
E. Capillary GC	213
F. (Micro) Liquid Chromatography	231
G. Supercritical Fluid Chromatography and Extraction	243
H. Electromigration Methods	247
I. Instrumentation and Automation	257
J. Coupled and Multidimensional Techniques	271
K. Comprehensive Techniques – Gas Phase Separations	291
K*. Comprehensive Techniques – Liquid Phase Separations	383
L. Trace Analysis	389
M. Environmental Applications	401
N. Energy, Petrochemical and Industrial Applications	431
O. Biomedical and Pharmaceutical Applications	444
P. Analysis of Natural Products, Food, Flavours and Fragrances	481
Q. Microfabricated Chips	533
Index	

Author Index

537

RAPID AND EXTENSIVE QUANTITATION OF SIMPLE PHENOLIC COMPOUNDS FROM WOOD USING HPLC COUPLED WITH FUSED CORE™ BASED COLUMN AND COULOMETRIC ARRAY ELECTROCHEMICAL DETECTOR

Tiziana Nardin¹, Mario Malacarne¹, Giorgio Nicolini¹, Roberto Ferrari², Stefano Ongarato², RobertoLarcher¹

 ¹ Unità Chimica Vitienologica e Agroalimentare, - FEM-IASMA, via E. Mach 1, 38122 S. Michele all'Adige (TN), Italy
² SIGMA ALDRICH SRL, Via Gallarate 154, 20151 Milano, Italy

Oenological barriques are produced with several kind of oak wood, but the traditional species in Europe are Quercus robur, Quercus petraea/sessilis (in Spain also Q. pyreenaica), whereas Quercus alba is widely used in North America (but also Q. bicolor, Q. macrocarpa, Q. prinus, Q. lyrata ...), where, however, barrel's production is traditionally more geared to whiskey ageing.

Lignin, one of the most abundant component of wood (20-35% dry weight) is a three-dimensional polymer characterized by guaiacyl and syringyl structures, and a gentle heating (toasting) promotes the syntheses of guaiacyl (eg: coniferaldehyde, and vanillic acid) and syringyl compounds (eq: sinapaldehvde, vanillin syringaldehyde, and syringic acid). With an extra heating(charring) lignin can break down into much simpler structures as the steam volatile phenols responsible for the smoky aroma and the 'phenolic' flavour (eg: guaiacol, phenol, eugenol/isoeugenol, ethylguaiacol, o/p -cresols). Even if the choice of the preferred barrel is primarily depending on both sensorial and economical evaluations, however, still today the lack of cheap and time-saving methods makes difficult to establish the actual compositional impact of this decision on the aged wine regarding the simple phenolic composition. The use of an HPLCCoulometric Array Electrochemical detector equipped with eight porous graphite working electrodes (set at potentials between 100 and 800 mV) and a pentafluorophenylpropyl fusedcore particles column (Supelco, Ascentis Express® F5 150x3mm, 2.7mm) allowed the investigation of 57 phenolic analytes in 40 minutes. 30 compounds were quantifiable in wines treated with 6 different wood materials (3 French and 3 American oaks). Notably, the most important ones were ellagic acid, siringic acid, homovanillic acid, vanillic acid, coniferaldehyde, siringaldehyde, synapaldehyde, vanillin and tyrosol. The wine samples (2 mL) were only 0.45 mm PTFE filtered before analysis.