

ISTITUTO AGRARIO DI SAN MICHELE ALL'ADIGE Fondazione Edmund Mach

1°MS-EnviDay, Bologna May 12th, 2011

Leonardo Cerasino, PhD

Centro Ricerca ed Innovazione – Fondazione Edmund Mach Istituto Agrario di San Michele all'Adige (TN) Mail: leonardo.cerasino@iasma.it

Cyanobacterial toxins profiling in the Subalpine lakes

2/12

Harmful Algal Blooms (HABs)

• An algal bloom is a rapid increase in the population of algae in an aquatic system. Typically only one or a few phytoplankton species are involved and some blooms may be recognized by discoloration of the water.

- Algal blooms may also be of concern as some species of algae produce toxins.
- Causes: denaturalization, eutrophication, global changes.

Anabaena lemmermannii

Microcystis aeruginosa

Planktothrix rubescens

Aphanizomenon flos-aquae

1°MS–EnviDay, Bologna May 12th, 2011

Toxic Cyanobacteria in the southern subalpine lakes

First records of Harmful Algal Blooms in the deep southern subalpine lakes.

	Anabaena Iemmermannii	Planktothrix rubescens	Microcystis aeruginosa/flos-aquae	Aphanizomenon flos-aquae
Garda	1990		1990-1992	
Iseo	1997	1998	2006	
Como	2006		1980s and 2000-2003	
Lugano		1980-85	2006	1999
Maggiore	2005			

Cyanotoxins

^{5/12} Cyanotoxins extraction and analysis

Commercial standards:

LR [D-Asp³]LR

RR [D-Asp³]RR VR LA

LF

LW LY WR

NOD-R

^{6/12} Microcystins Analysis

Product ions 135.1 and 213.1 can be conveniently used for identification (and possibly quantitation) of MC with different AA 2, 3, 4.

List of MC screened:

	Molecular ion	DP (V)	CE (V)
LR / [D-Asp ³]LR	[M+2] ²⁺	50	20
RR / [D-Asp ³]RR	[M+2] ²⁺	100	43
YR / [D-Asp ³]YR	[M+2] ²⁺	50	20
LA / [D-Asp ³]LA	[M+1] ⁺	70	80
LY / [D-Asp ³]LY	[M+1] ⁺	90	100
LW / [D-Asp ³]LW	[M+1] ⁺	90	90
LF / [D-Asp ³]LF	[M+1] ⁺	90	100
WR / [D-Asp ³]WR	[M+1] ⁺	50	20

LC separation - Reverse Phase
Inj. Volume: 8 μl Eluents: A= Water, B= ACN (both containing 0.1% FA) Flow rate: 0.25 ml/min Gradient: B from 30% (0 min) to 80% (5 min), to 30 % (6 min) Column: Acquity BEH C18 (1.7 μm) 2.1×50mm, 40°C
MS detection: ESI+, MRM scanning mode

Transition 1 Transition 2

 $[M+1]^{+}/135.1$ (or $[M+2]^{2+}/135.1$) $[M+1]^{+}/213.1$ (or $[M+2]^{2+}/213.1$)

General settings:

Ion Spray5000VEntrance Pot.10VCell Exit Pot10VInterface Heater T300°C

^{7/12} Microcystins Analysis

^{8/12} Alkaloids Analysis

$ \begin{array}{c} $	H H H N NH HN NH N NH HN NH H H	n Cylind N	ommercia tandards natoxin-o drospermo	a opsin	LC separation - F Inj. Volume: 8 µl Eluents: A= 0.05M Flow rate: 0.25 ml Gradient: B from 2 20 % (6 min) Column: Acquity HJ MS detection: E	HILIC NH4F, B= MeOH /min 20% (0 min) to 80% (5 min), to ELIC (1.7 μm) 2.1×50mm, 30°C SI+, MRM scanning mode
H Anatoxin-a(S)					General settings:	Ion Spray5000VEntrance Pot.10VCell Exit Pot10VInterface Heater T300°C
List of alkaloids screened: Ana-a Dihydro-Ana-a Dihydroxymetoxy-Ana-a Epoxy-Ana-a Hydroxyl-Ana-a HomoAna-a Dihydro-homoAna-a Dihydroxymetoxy-homoAna-a Epoxy-homoAna-a Hydroxy-homoAna-a Cylindrospermopsin Desoxy-cylindrospermopsin	Transition 1 166/149 168/151 198/181 182/165 182/165 180/163 182/165 212/195 196/179 196/179 196/179 416/194	Transition 2 166/91 416/176	DP(V) 70 70 70 70 70 70 70 70 70 70 70 70 90	CE(V) 30 30 30 30 30 30 30 30 30 30 30 30 53		
Phenylalanine	166/120		70	30		

1°MS–EnviDay, Bologna May 12th, 2011

Alkaloids Analysis

Linearity range: 2 - 100 µg/l	
LOQ (μg/l): Anatoxin-a cylindrospermopsin	2.0 4.0

10/12

Istituto Agrario di San Michele all'Adige

Fondazione Edmund Mach

Deault

Resum			{ ¹ Maggio	Dre Como Idra
	MC tot	MC tot (LReq)	ANA-a	Pusiano Iseo Garda
Garda	0.3-96	0.03-10	45-2000	1755 Par .
Iseo	<i>90-112</i>	14-17	60-400	
Como	80-200	<i>15-38</i>	400-1700	
Lugano	<u>84-98</u>	15-17	n.d.	
Maggiore	26-76	12-34	120	• MC are widely distributed in the lakes.
Levico	16-278	4.5-78	n.d.	• Highest MC concentrations in the most
Ledro	4600	375	n.d.	eutrophic lakes.
Idro	15	1.4	n.d.	• Values are always below the WHO limit
Pusiano	530-3493	70-460	n.d.	ot 1 µg/1 MC-LR for drinking waters.

Min-max cyanotoxins concentrations (ng/l) in the trophogenic layer (0-20m). Data refer to samplings conducted in June - October 2009.

• ANA-a is present only in few lakes and is related to the presence of *A. lemmermannii*.

11/12	Result	S					
					51	Lugano Maggiore Como Idra Levico	
	%	[D-Asp ³]RR	УR	[D-Asp ³]LR	LR	Sum ^a	Fusiano Garda
	LD ₅₀ in mice	200	100	150	50		
	Garda	92	3	3	2	99%	$\sim n \sim$
	Iseo	64	25	8	1	<mark>98%</mark>	∽ (
	Como	77	8	4	9	<u>98%</u>	
	Lugano	75	1	10	8	9 4%	
	Maggiore	47	8	6	37	99%	• There is a wide MC diversity among
	Levico	13	60	27	1	100%	iunes.
	Ledro	97	1	1	-	99%	• The most toxic variant LR
	Idro	<i>95</i>	-	5	-	100%	one exception).
	Pusiano	77	16	5	1	<u>98%</u>	• Different lakes have different

Abundances of individual MC. Minor variants are LF, LW, [D-Asp³]YR.

Istituto Agrario di San Michele all'Adige

Fondazione Edmund Mach

• Different lakes have different "toxic potentials".

STITUTO AGRARIO DI SAN MICHELE ALL'ADIGE Fondazione Edmund Mach

1°MS–EnviDay, Bologna May 12th, 2011

12/12

Thank you for your kind attention

leonardo.cerasino@iasma.it