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Abstract

Plants have followed a reticulate type of evolution and taxa have frequently merged via allopolyploidization. A polyploid
structure of sequenced genomes has often been proposed, but the chromosomes belonging to putative component
genomes are difficult to identify. The 19 grapevine chromosomes are evolutionary stable structures: their homologous
triplets have strongly conserved gene order, interrupted by rare translocations. The aim of this study is to examine how the
grapevine nucleotide-binding site (NBS)-encoding resistance (NBS-R) genes have evolved in the genomic context and to
understand mechanisms for the genome evolution. We show that, in grapevine, i) helitrons have significantly contributed to
transposition of NBS-R genes, and ii) NBS-R gene cluster similarity indicates the existence of two groups of chromosomes
(named as Va and Vc) that may have evolved independently. Chromosome triplets consist of two Va and one Vc
chromosomes, as expected from the tetraploid and diploid conditions of the two component genomes. The hexaploid state
could have been derived from either allopolyploidy or the separation of the Va and Vc component genomes in the same
nucleus before fusion, as known for Rosaceae species. Time estimation indicates that grapevine component genomes may
have fused about 60 mya, having had at least 40–60 mya to evolve independently. Chromosome number variation in the
Vitaceae and related families, and the gap between the time of eudicot radiation and the age of Vitaceae fossils, are
accounted for by our hypothesis.

Citation: Malacarne G, Perazzolli M, Cestaro A, Sterck L, Fontana P, et al. (2012) Deconstruction of the (Paleo)Polyploid Grapevine Genome Based on the Analysis
of Transposition Events Involving NBS Resistance Genes. PLoS ONE 7(1): e29762. doi:10.1371/journal.pone.0029762

Editor: Christos A. Ouzounis, The Centre for Research and Technology, Hellas, Greece

Received June 26, 2011; Accepted December 5, 2011; Published January 11, 2012

Copyright: � 2012 Malacarne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was supported by the Provincia Autonoma di Trento. GM and MP were supported by the Post-Doc Projects 2006 ‘‘FLAVONOIDI’’ and
‘‘Resistevite’’ funded by the Provincia Autonoma di Trento. YVdP acknowledges support from Ghent University (Multidisciplinary Research Partnership
‘‘Bioinformatics: from nucleotides to networks’’) and the Interuniversity Attraction Poles Programme (IUAP P6/25), initiated by the Belgian State, Science Policy
Office (BioMaGNet). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: michele.perazzolli@iasma.it

. These authors contributed equally to this work.

Introduction

Plants have followed a reticulate type of evolution: in their

natural history, taxa have frequently merged because of poly-

ploidization events [1–3]. Although component genomes are

known in some polyploid crops [4], in other taxa even the

cytological approach may not resolve genome components.

Because genome sequences are available [1,5,6], transposition

events which have created large gene families [7], such as the

nucleotide-binding site (NBS)-encoding resistance (NBS-R) genes,

could be analyzed. If component genomes have been kept

separated before a polyploidization event during evolution, the

transposition event may be restricted to a fraction of the extant

genome, and this would allows us to recognize the old and recent

history of the species.

NBS-R genes encode proteins with a nucleotide-binding site as

part of the so-called NB-ARC domain [8] and sometimes with a

leucine-rich repeat domain (LRR) [9,10]. NBS-R proteins may

have, as an amino terminal sequence, a toll/interleukin-1 receptor

(TIR) domain or a coiled-coil (CC) structure [11]. The NB-ARC

domain is proposed to function as molecular switch that controls

the activation state of the protein, and the other domains play role

in defining pathogen recognition specificity and downstream

signalling [8]. NBS-R genes occupy single loci or are organized in

clusters [12]. In the latter case, gene duplication via unequal

crossing over has been demonstrated to have the capacity to

generate the clusters [13,14]. NBS-R gene clusters may include

paralogous sequences giving rise to heterogeneous clusters [15,16].

Duplication of chromosomal segments hosting NBS-R genes or

clusters has also been reported [17].

Thus, an extensive analysis of NBS-R gene organization can

increase the understanding of the evolution of a complex polyploid

genome. The problem in such an approach is that, although

genome duplication leading to polyploidy has played a major role

in angiosperm evolution [2,18], ancestral linkage groups tend to be

dispersed on many rearranged chromosomes, with genomes

having suffered wholesale gene losses [19,20]. Such evolutionary

changes in structure and number of chromosomes make it difficult
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not only to find a direct link between whole genome duplication

(WGD) and ploidy state of a species [21], but also to recognize the

founders of polyploid genomes.

Grapevine chromosomes, however, appear stable from an

evolutionary point of view. Grapevine chromosomes can be easily

assorted in triplets because an unexpected within triplet gene order

has persisted for many tens of millions of years [6,22]. Because of

this, transposition events can be analysed in grapevine in the

absence of confounding effects caused by chromosomal translo-

cations and fragment duplications [23].

In this paper, cluster similarity, phylogenetics, and transposition

events of NBS-R genes have been studied to evaluate alternative

hypotheses of how the triplicate state of the grapevine genome has

evolved.

Results

NBS-R genes and clusters: chromosome grouping
The grapevine Pinot Noir genome contain 391 predicted NBS-

R genes, of which 346 have been anchored to the genome. Of

the anchored NBS-R genes, 55 are single and 291 are grouped

into 52 clusters (CL), each consisting of 2 to 15 genes separated

by an average distance of 8.3 kilo bases (kb) (Table S1 and Table

S2). Clusters extend from 3.6 to 742 kb and, on average, include

7 non-NBS open reading frames. NBS-R genes preferentially map

on chromosomes 1, 3, 5, 7, 9, 12, 13, 15, 18 and 19. CC-type

NBS-R genes predominate: 111 have the LRR domain (CC-NBS-

LRR) and 32 lack the LRR domain (CC-NBS). Among all NBS-R

genes, 27 have the TIR and LRR domains (TIR-NBS-LRR), 6

have the TIR domain (TIR-NBS), 145 have the LRR domain

(NBS-LRR) and 70 have only the NB-ARC domain (NBS-tr). Of

the 29 anchored TIR-type genes, 23 are clustered and are

exclusively located on chromosomes 1, 5, 12, 13 and 18 (Table

S3).

Comparisons among 346 anchored NBS-R genes generated

23693 Ks values, indicating synonymous substitutions per

synonymous site. Of those, 22779 values are between genes of

different clusters and still not in cluster (single NBS-R genes),

denoted as Ks between genes (Ks-bg). Ks-bg was therefore used to

estimate the rate of synonymous substitutions between transposed

NBS-R genes that could give rise to two different clusters during

evolution. The remaining 914 Ks values were derived from

comparisons between genes of the same cluster (denoted as within

clusters, Ks-w) and indicated the rate of synonymous substitutions

between genes of the same cluster. Ks-bg scores had a mean of

1.75, while Ks-w scores had a mean of 0.90 (Figure S1). A

comparison of means and distributions of Ks-bg and Ks-w support

the inference that genes of the same cluster originated mainly by

tandem duplication [17].

Gene-to-gene similarities were also calculated as BLAST bit

scores and a similarity score between clusters was developed

(details in Table S4). The 93rd percentile threshold of all the

between-cluster scores revealed the existence of 94 comparisons

(out of 1326) and made it possible to visualise NBS-R-based

similarities among grapevine chromosomes (Figure 1). High

cluster similarities denoted two chromosome groups: the first,

indicated with Va, included chromosomes 1, 2, 3, 5, 6, 7, 12, 13,

and 18, while the second, indicated with Vc, included

chromosomes 8, 9, 10, 15, and 19. Because of poor content of

clustered genes (Table S2), it was not possible to assign

chromosomes 4, 11, 14, 16, or 17 to either group. When the

more restrictive 96th percentile was used, chromosome 1 was

excluded from Va group, while Vc did not change (Figure S2A).

When the 90th percentile was used, few similarity bridges were

detected between the two chromosomes groups, and chromosome

11 indicated a tendency to associate with Vc chromosomes

(Figure S2B).

Figure 1. Grapevine chromosome groups based on NBS-R gene-
to-gene similarities. Relationships (indicated by joining lines)
between grapevine chromosomes based on the 93rd percentile of
the distribution of among-clusters BLAST bit scores generated by a
pairwise BLAST-P protein sequence comparison. Va (green) and Vc (red)
define two genomes based on the chromosome groups indicated.
Chromosomes that were also associated with Va or Vc genomes based
on the identity scores are highlighted by an asterisk. NBS-R gene
clusters (CL) are indicated within gray circles with the number of NBS-R
genes in brackets.
doi:10.1371/journal.pone.0029762.g001
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Va and Vc grouping was supported by the identity scores

derived from a global alignment between the NBS-R proteins

using the Needleman and Wunsch algorithm (chromosomes with

asterisks in Figure 1). Based on 14 of 19 grapevine chromosomes,

our results supported the hypothesis that NBS-R gene cluster

formation may have followed separate routes in at least two

different genomes, one putatively tetraploid (Va) and the second

diploid (Vc).

NBS-R gene phylogeny and the Va and Vc component
genomes

If the Va and Vc component genomes evolved separately for a

sufficient period of time, NBS-R clusters in a phylogenetic tree should

tend to occupy topologies specific for each of the two putative

genomes. Conversely, in presence of high gene transposition rates

manifested by the extant number of NBS-R genes, a random

distribution of NBS-R genes is expected if all extant grapevine

chromosomes have always been included in the same nucleus.

In a NJ phylogenetic tree based on the NB-ARC protein

domain, 13 major clades (A to M) were found, and these were

specific for either Va or Vc genomes (Figure 2, Table 1 and Table

S4). Six additional subclades (a to f) were observed as singularities,

with few cases of disagreement with the rule specified above. They

corresponded to: subclade a (three Va genes of cluster CL28

located at the root of the tree); subclade b (one additional gene of

cluster CL28 and seven outgroup NBS-R genes of Pinus); subclade

c (genes that were not clustered or not chromosome assigned

together with nine Va- and Vc-clustered genes); and subclade e (six

Va- or Vc-clustered genes, three non-clustered genes, and one

unassigned gene). Subclades d and f (both with three genes) should

be considered exceptions to the Va-Vc specificity rule.

The topology of gymnosperm outgroup NBS-R genes points to

Va clades a and A as the oldest from an evolutionary perspective

[24]. Moreover, clades A to M include genes located in more than

one chromosome, but these chromosomes always belong to either

group Va or Vc (Table S5). In all chromosomes associated with

Vc, at least one cluster of the genes mapping to clade C is present

(Figure 2 and Table S6). In general, genes of the same cluster have

almost contiguous tree topologies, as expected if local gene tandem

duplication was the mechanism generating clusters [19,25–27].

The plotting of chromosomes and gene clades against gene

classes provided further circumstantial evidence of the existence of

Va and Vc genomes: two NBS-R gene classes were Va-genome

specific, and these were TIR-NBS-LRR and TIR-NBS genes (four

Vc single TIR-type genes are discussed later). Also, clade M, which

consists of NBS-LRR genes, tends to be associated with Va genome

(Table 1, Table S4 and Table S5). The subclade distribution of the

few NBS-R genes belonging to chromosomes that are not assigned

to any component genome (genome-unassigned chromosomes) is

reported in Table S7.

Genome duplications
Based on within-genome collinearity Jaillon et al. [6] previously

showed that the grapevine genome has a triplicate structure. We

have used the same approach to define grapevine chromosome

triplets and have assigned chromosomes to either the Va, green (g),

or the Vc, red (r), genomes (Figure 3 and Figure S3). If the

ancestral Va and Vc genomes can indeed be distinguished from

one another, each chromosome triplet should consist of two Va

and one Vc chromosomes (assigning a tetraploid condition to the

larger Va genome). In Figure S3, grey (y) indicates genome-

unassigned chromosomes. Of 10 possible combinations of triplets

with different colours (g, r, y), only five have been found (Figure

S3) and these are triplets of: ‘‘2g and 1r’’, ‘‘1g, 1r and 1y’’, ‘‘1r and

2y’’, ‘‘1g and 2y’’, and ‘‘2g and 1y’’. All these combinations,

together with the combination ‘‘3y’’, are compatible with the

hypothesis that each triplet should consist of one Vc and two Va

chromosomes. No triplet matched the hypothesis of incompatible

combinations of chromosomes ‘‘1g and 2r’’, ‘‘1y and 2r’’, ‘‘3r’’,

and ‘‘3g’’, with the exception of the triplet of chromosomes 10, 12,

and 19 and a portion of green triplets of chromosomes 3, 7, and 18

(Figure S3). However, the assignment of chromosome 10 to the Vc

genome was based on the NBS-R genes of cluster CL22, which

maps at the very end of the chromosome, a position which may

have been recently acquired because of chromosome end

transpositions, as described for rye [28]. Based on dot plot

analysis (as reported for apple by Velasco et al. [29]), the region of

chromosome 10 hosting cluster CL22 is not orthologous to either

chromosomes 12 or 19. For this reason, only the tip of

chromosome 10 is coloured red in Figure 3.

Expansion of NBS-R genes and clusters
Gene expansion mediated by transposition is revealed by

considering single NBS-R genes. Genes R125, R132, R255, and

R321 (clade A) map to Vc chromosomes 9, 10, 15, and 19,

respectively (Table 2 and Table S1). Because NBS-R clusters of

clade A are absent in Vc, these genes could represent

transpositions from Va clusters to Vc chromosomes. The complete

sequence of the four Vc genes was compared to that of all Va

genes: gene 314 (CL46, chromosome 18) had the lowest Ks, and

we therefore assigned to it the highest probability to be the

progenitor of the four putatively transposed gene copies (Table 2).

The five genes mentioned above have contiguous phylogenetic

topologies (Figure 2). In addition and as expected for genes

transposed by helitrons [30,31], their DNA sequence reveals, at

the expected position, the CTAG motif and the inverted repeats

that form a stem and loop structure (Figure 4). Also, the genes R10,

R284, and R297, which map to Va genome, belong to clade A and

have a low Ks score with the gene 314. In R284 and R297, the

helitron footprints are present: they also should derive from intra-

Va genome transpositions (Figure 4).

Similar analyses were conducted for R79 and R131 of clade E,

R256 of clade G, R346 of clade I, and R129 of clade M. All map to

Vc chromosomes, and clustered genes of the corresponding clades

are present only in Va chromosomes (Table 1). Of these single

genes, R256, R346, and R129 have putative helitron fingerprints

(Figure 4 and Table S8), and their ancestors could be, respectively,

clustered genes 22 (CL4) for clade G, 237 (CL35) for clade I, and

208 (CL32) for clade M. Also the gene R55 of clade M, specific to

Va genome, has the helitron footprints and could derive from the

putative ancestor 208 (CL32) by an intra-Va genome transposition.

Similar results were obtained for Va genes R29, R39, and R58

(clade J). Clustered genes of this clade were present only in Vc

genome (Table 1), and among these gene 113 of cluster CL19 was

found the most similar to the three single genes. Single genes R29

and R39 also have helitron footprints (Figure 4).

Table S8 summarizes the role of helitron-mediated gene

transposition in the origin of single NBS-R genes. Of the single

genes listed in the table (excluding those marked with n.d.) 29.4%

should have apparently resulted from helitron-mediated transpo-

sition.

The Va to Vc transposed NBS-R genes can be used to estimate

the time from their transposition, i.e., the date when their

component genomes fused. Ks values from progenitor genes and

their helitron-mobilized copies were converted to time values using

the algorithm described by Schranz and Mitchell-Olds [3], and

the estimated time did not exceed 67 mya, with one exception

(R346, 95 mya, Table 2). The same algorithm was used to predict

Grapevine Genome Evolution
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the time necessary for a transposed NBS-R gene to generate the

homogeneous clusters present in the grapevine genome (Table 3).

The two most different genes in a cluster were compared, and the

resulting Ks values transformed into mya values. The calculated

values ranged from 1 to 138 mya, values which indicate the

estimated time for cluster formation starting from the ancestor

genome to the present time.

Discussion

Duplication and transposition of NBS-R genes
A prominent role of tandem duplication of NBS-R genes, which

was previously demonstrated for several plants [17] including

grapevine [19], is supported by the low Ks values of comparisons

within clusters in the current study. The formation of a gene

cluster at a specific locus should be preceded by gene transposition,

and selection for disease resistance may have been involved in

cluster evolution [32–34]. A question remains concerning the

formation of heterogeneous NBS-R gene clusters. It is difficult to

explain the finding of NBS-R clusters that contain genes with

different function-specific domains. This finding, however, may

also be explained by transposition: we report a direct role of

helitrons in grapevine gene mobilisation, but in plants the same

role has been reported for other transposons [35,36]. Although

helitrons have the capacity to capture different transcribed genes

in a single chimaeric DNA [30,31], it remains unknown how they

Figure 2. Phylogenetic analysis of grapevine NBS-R genes. The most abundant NBS-R gene classes were distributed among the different
clades as follows: clades B, C, D, I and J included 80, 84, 88, 55, and 73% of CC-type genes, respectively; clade A included 70% of TIR-type genes; clades
E, K, and M included 55, 60, and 59% of NBS-LRR genes, respectively; clades F, G, and H included 90, 63, and 67% of NBS-tr genes, respectively. Clades
were assigned to Va (green) and Vc (red) genomes based only on clustered genes (Table 1 and Table S5). Asterisks mark clustered genes considered
as exceptions to the genome assignment of a specific clade. Bootstrap values for clades A to M are expressed as percentages. The analysis included
seven outgroup NBS-R genes of Pinus monticola [24].
doi:10.1371/journal.pone.0029762.g002
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can assemble domains of different NBS-R genes and also relocating

the new genes into existing clusters of the same gene family.

Model for the evolution of the Vitis genome
Fossil seeds of Vitaceae are common in Tertiary floras [37].

Their absence in the Cretaceous suggests that the family failed to

leave a fossil record or that it had not yet evolved. Fossil records

strongly support the inference that the family radiated quickly at

about the time of the Paleocene-Eocene transition, around 55 mya

[38]. Another factor that should be considered is that Vitaceae

seed remains in rocks are very reliable fossil indicators, such that

their presence has a low probability to pass unrecorded [37].

Taken together, these support the inference that Vitaceae emerged

around 60 mya [39]. However, molecular phylogenetic analysis

indicates that the position of Vitaceae is basal to the eurosids

[21,23,40,41]. It is well known that modern angiosperms, after

appearing in the early Cretaceous (late Barremian-early Aptian,

[40,42], see also Text S1A), rapidly diversified: within the first 10–

20 million years of the early Cretaceous all major lines of flowering

plants were present [18,42–46]. If monocots and eudicots diverged

around 150 mya [40,43,44], and if rosids and asterids diverged

shortly thereafter (Text S1B), we would conclude that the

hexapolyploidy state by the Vitis ancestors occurred close to

100 mya [47,48]. At this time, eudicot angiosperms were

established in geographically widespread regions as evident from

tricolpate pollen grains in sediments [49]. This is why the data of

Chen and Manchester [37] pose a dilemma: did the Vitaceae

family emerge 60 or 100 mya?

A possible explanation of this dilemma can be obtained by

reconsidering how the grapevine genome acquired the polyploid

state. Up to 50–80% of angiosperms have a recognised hybrid

origin [50,51] and all extant angiosperm species are ancient

polyploids [21,52]. Jaillon et al. [6] discovered that three genomes

contributed to the Vitis lineage and concluded that the polyploidy of

the genome was derived from paleohexaploid ancestors. However,

the alternative explanation could be the hypothesis that eudicot

ancestors had a different ploidy state as recently proposed by

Abrouk et al. [40]. Synthetic events leading to hexaploidy may, in

Table 1. Presence of clustered and single (in brackets) NBS-R genes in putative Va and Vc component genomes.

Genome Clade NBS-R gene classes Genes in the alternative genome

CC-NBS CC-NBS-LRR TIR-NBS TIR-NBS-LRR NBS-LRR NBS-tr

Va A - - 17 (3) 3 9 (1) 1 (2) TIR-NBS-LRR, (2) TIR-NBS, (1) NBS-tr

B 3 1 - - 1 - -

D 7 - - - 1 - -

E 2 (1) - - - 7 (2) 3 (2) NBS-LRR, 2 NBS-tr

G 1 1 - - 4 9 (1) NBS-LRR, 1 (1) NBS-tr

H - - - - 5 10 -

I 11 (1) 2 (1) - - 8 (2) - (1) NBS-LRR

K 2 - - - 2 - 1 NBS-LRR

M 16 3 - - 38 (3) 7 (1) 1 NBS-LRR

Vc C 23 (1) 13 - - 4 3 (1) CC-NBS-LRR

F - - - - 1 12 (1) (1) NBS-tr

J 9 2 - - 3 3 (2) CC-NBS-LRR, (1) CC-NBS

L 1 - - - 3 2 (1) -

Genes of clades A to M of Figure 2, as divided in classes based on presence/absence of their specific domains, are considered.
doi:10.1371/journal.pone.0029762.t001

Figure 3. Triplicate state of Vitis chromosomes. The formation of
triplets is based on the homology among groups of genes located on
specific chromosome fragments and homologous DNA segments
present on other chromosomes [5,6,22]. Assignment of chromosomes
to either Va (green) or Vc (red) genomes was based on cluster i)
similarity and ii) identity scores. Grey lines represent chromosomes not
assigned to the two genomes; they could represent a third genome
(Vb), for which we lack direct proof. Roman numbers indicate
chromosomes, while Arabic numbers represent the length of the
chromosomes in megabase pairs. Exceptions to the assignment of
chromosomes are represented by chromosome IV and XIV, which could
not be definitively assigned to one of the putative genomes.
doi:10.1371/journal.pone.0029762.g003
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fact, correspond in time to the Vitaceae emergence based on fossils.

A similar hypothesis has been proposed to explain conflicts between

plant molecular ages and the fossil records for crown-group

Hedyosmum (Chloranthaceae) and for Ephedra (Gnetales) (Text

S1A). The taxon Hedyosmum experienced two phases of diversifica-

tion: an early Cretaceous radiation followed by a mid-Cenozoic one

that generated the extant diversity [53]. Following a similar model

for Vitaceae, an early evolution may have later been integrated by

crosses with a species that evolved separately for a significant

amount of time (Figure 5). A fusion between genomes with different

ploidy has also been proposed for rosids based on a SynMap

approach [54], although pre-rosid paleopolyploid events were not

dated in that study. During the second phase the family may have

acquired the seed morphological innovation that persists today. In

support of this hypothesis we report multiple circumstantial proofs:

i) the NBS-R gene cluster distribution; ii) the Va- or Vc-specific

nature of most major phylogenetic clades; iii) the genome specificity

of clade C (Vc) and of TIR-NBS-LRR and TIR-NBS genes (Va); and

iv) the time of transposition events among Va NBS-R gene clusters

and Vc chromosomes and vice versa. Our alternative hypothesis

does, apparently, fit the distribution of chromosome number in

extant Vitaceae genera. If the ploidy number of Vitaceae is a

multiple of 6 or 7 [55], genera like Tetrastigma (n = 11, 22),

Cyphostemma (n = 11) and Cissus (n = 12, 24, 40) have tetraploid taxa;

others, Vitis included, have n = 19, 20 and can be considered

hexaploid (even octoploid when n = 30 to 40; Text S1C). Moreover,

families that are very closely related to Vitaceae, like Leeaceae,

Celastraceae, Dilleniaceae and Rhamnaceae, all have almost

tetraploid genera (n = 10 to 13). In conclusion, the cytogenetics of

this group of related genera and families does not negate the

hypothesis that their ancestors may have been tetraploid. In

polyploids, moreover, genomes can minimize cytological exchanges

based on mechanisms similar to the one of the Rosa canina complex.

These pentaploid Rosaceae species have one diploid highly

homozygous bivalent-forming genome and several haploid, univa-

lent-forming homologous genomes [56,57]. Because the interge-

nomic exchange of DNA is extremely poor [56], genomes separately

present in the same nucleus retain their integrity. This may have

represented a second possible way in which Va and Vc chromosome

groups remained separated in the same grapevine nucleus before

combining to form the current hexaploid genome.

That NBS-R gene clusters are Va- or Vc-chromosome specific

cannot be attributed to a defective intergenomic transposition:

relatively recent transpositions of single NBS-R genes between Va and

Vc chromosomes are documented here. Indeed, transposition is the

obvious rule in NBS-R gene and cluster evolution [7]. The rule

assumes a random distribution of genes and clusters on all

chromosomes. The finding of a nonrandom distribution supports

the conclusion that the concerned chromosomes were initially

separated and later fused in the same nucleus. Based on rough

calculations, the fusion occurred around 65 mya, while the formation

of NBS-R gene clusters may have started 138 mya. Both estimates

agree with what is currently accepted for angiosperm evolution [40].

That chromosome pairing in Vitis is restricted to bivalents [55] does

not contradict our conclusion: recent allopolyploid somatic hybrids

[58] may have only bivalents, and in the hexaploid Triticum aestivum

the gene region Ph1 (Pairing homoeologous) suppresses multivalent

formation and leads to disomic inheritance [59,60].

Concluding remarks
This paper, which identifies putative component genomes of

Vitis vinifera, shows that gene transposition has the potential to

dissect a complex polyploid genome. In plants, NBS-R gene

duplication, as supported by gene transposition, has been a

frequent event. After transposition at a new genetic locus, NBS-R

gene clusters have probably been generated by tandem gene

duplication. Based on NBS-R cluster similarity, we inferred the

existence of two chromosome groups (named as Va and Vc) as

component genomes of the extant grapevine genome. Each

putative component genome is characterized by unique phyloge-

Figure 4. NBS-R genes showing features of residual helitron activity. The CTAG tetranucleotide and of the inverted repeat forming a stem
and loop structure (underlined) are shown. The numbers of nucleotides between the two gene regions are also indicated.
doi:10.1371/journal.pone.0029762.g004

Table 2. Estimated time of transposition of NBS-R genes.

Single NBS-R
genes

Ancestor NBS-R
gene Helitron footprints Ks Mya

R125 (Vc) CL46_314 (Va) + 1.34 67

R132 (Vc) CL46_314 (Va) + 1.23 62

R255 (Vc) CL46_314 (Va) + 0.69 35

R129 (Vc) CL32_208 (Va) + 0.94 47

R346 (Vc) CL35_237 (Va) + 1.89 95

R256 (Vc) CL4_22 (Va) + 1.23 62

R39 (Va) CL19_113 (Vc) + 0.77 39

R29 (Va) CL19_113 (Vc) + 0.52 26

Ks values of two genes were used to infer time following Schranz and Mitchell-
Olds [3].
Va and Vc are putative component genomes of grapevine.
doi:10.1371/journal.pone.0029762.t002
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netic NBS-R clades and specific events of transposition, mediated

particularly by helitrons, supporting the conclusion that they have

evolved independently. Time estimation indicates that component

genomes may have fused about 60 mya, having had at least 40–

60 mya to evolve independently. The known assembly of the

grapevine chromosomes in triplets enabled us to assign a tetraploid

and a diploid condition to Va and Vc component genomes,

respectively. The current state of grapevine hexaploidy could

derive from an allopolyploidy event that occurred after eudicot

radiation, or from the fusion of two genomes that were kept

separated in the same nucleus during evolution.

Materials and Methods

Similarity analyses of genes and clusters
The grapevine Pinot Noir genome release 3 contain 391

predicted NBS-R genes (http://genomics.research.iasma.it/), [5].

The NBS-R sequences were identified based on their NB-ARC

domain profile (PF00931) [61] using Hmmer [62] and were

classified according to InterPro database (http://www.ebi.ac.uk/

interpro/).

BLASTP on the NBS-R protein dataset retained paralogous

gene pairs that could be aligned over at least 150 amino acids

(identity score .30%, [63]). Based on a CLUSTALW nucleotide

alignment of NBS-R gene sequences, a total of 23693 Ks values

were obtained [64], with Ks values decreasing as gene similarity

increased. Those values denoted as Ks-bg were derived from the

pairwise comparisons between NBS-R genes of different clusters

and of single NBS-R genes, and they were used to estimate the

evolutionary difference between putatively transposed genes. Ks

values denoted as Ks-w were derived from comparisons between

genes of the same cluster.

The NBS-R gene cluster definition followed Arabidopsis rules

[16]: two or more NBS-R genes were assigned to a cluster when

located within an average of 244 kb, and when not interrupted by

Figure 5. Hypothesized time of events for the evolution of the
Vitis genome. The evolution of this genome is proposed to have
followed two steps leading to hexaploidisation starting from a
paleotetraploid state. In the text, a second scenario is discussed in
light of the cytological data for the Rosa canina. The same two steps can
be hypothesised, with Va and Vc genomes first coexisting in the same
nucleus but not exchanging genetic material, and later fusing to
generate the hexaploid state. In such a case, polyploidization probably
occurred at an intermediate time between 100 and 60 mya.
doi:10.1371/journal.pone.0029762.g005

Table 3. Estimated time of homogeneous NBS-R cluster
formation.

Cluster Gene number Gene_1 Gene_2 Ks Mya

CL2 (Va) 2 CL2_8 CL2_9 0.68 34

CL7 (Va) 3 CL7_41 CL7_42 2.32 117

CL8 (Va) 10 CL8_51 CL8_48 1.31 66

CL27 (Va) 7 CL27_162 CL27_168 1.58 79

CL29 (Va) 4 CL29_181 CL29_183 0.54 27

CL32 (Va) 15 CL32_197 CL32_209 2.74 138

CL33 (Va) 12 CL33_220 CL33_222 2.59 130

CL36 (Va) 5 CL36_245 CL36_247 0.40 20

CL42 (Va) 4 CL42_286 CL42_287 1.92 97

CL45 (Va) 8 CL45_308 CL45_311 2.55 128

CL46 (Va) 2 CL46_314 CL46_315 1.63 82

CL4 (Va) 13 CL4_21 CL4_21 2.32 116

CL6 (Va) 3 CL6_33 CL6_34 0.92 46

CL9 (Va) 2 CL9_56 CL9_57 0.38 19

CL11 (Va) 4 CL11_69 CL11_70 0.98 49

CL13 (Va) 3 CL13_76 CL13_78 0.91 46

CL15 (Vc) 2 CL15_85 CL15_86 0.085 4

CL16 (Vc) 6 CL16_88 CL16_91 2.52 127

CL17 (Vc) 10 CL17_98 CL17_97 1.11 56

CL18 (Vc) 5 CL18_105 CL18_107 2.01 101

CL19 (Vc) 15 CL19_116 CL19_122 1.21 61

CL21 (Vc) 2 CL21_127 CL21_128 1.35 68

CL22 (Vc) 3 CL22_135 CL22_133 1.08 54

CL38 (Vc) 3 CL38_258 CL38_260 0.57 29

CL39 (Vc) 2 CL39_261 CL39_262 0.01 1

CL48 (Vc) 2 CL48_324 CL48_325 0.08 4

CL51 (Vc) 5 CL51_334 CL51_335 0.65 33

CL24 (na) 3 CL24_143 CL24_144 0.95 48

CL41 (na) 2 CL41_279 CL41_280 0.78 39

Ks values of two genes were used to infer time following Schranz and Mitchell-
Olds [3].
Va and Vc are putative component genomes of grapevine.
na: indicates clusters belonging to chromosomes not assigned to Va or Vc
genomes.
doi:10.1371/journal.pone.0029762.t003
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more than 21 open reading frames encoding non-NBS proteins.

This cluster definition agrees well with Yang et al. [19] which used

200 kb as a distance between two contiguous NBS-R genes.

Phylogenetic and sequence analyses
The maximum-likelihood phylogenetic tree (based on 500

bootstrap values) was constructed with PHYML [65], consider-

ing only the NB-ARC aminoacid sequence (295 aa) and using

the JTT-F matrix of ML distances as the starting topology.

Domains were included in clusters of protein sequences using the

CD-HIT program [66], and a representative sequence was

identified for each cluster. Core multiple sequence alignments

(MSAs) were obtained using MAFFT [67] and extended by

adding the sequences of other clusters based on T-COFFEE

[68]. Seven Pinus monticola NBS-R genes [24] were included as

outgroups.

Va and Vc component genomes
A pairwise BLAST-P analysis of the complete protein sequence

of 346 chromosome-anchored NBS-R genes generated gene-to-

gene similarities as BLAST bit scores. Because of the time required

for duplication events, clustered NBS-R genes could be used to

evaluate ancient evolution events. Between-cluster BLAST bit

scores were calculated on the average of n6k gene BLAST bit

score comparisons, where n and k represent the number of genes

of two different clusters. To select clusters significantly more

similar among them, thresholds corresponding to the 90th, 93rd

and 96th percentile of all scores were considered. The 93rd

threshold corresponded to a mean score of 1330 BLAST bit units

and selected, from a total of 1326 cluster comparisons, 94 cases of

clusters having genes that were molecularly very related. The E-

value of the 93rd percentile was lower than E2300, equal to the

probability that similarity scores were due to a random association

of grapevine genes.

Using the Needleman and Wunsch algorithm with the

BLOSUM62 similarity matrix, we calculated the identity among

all NBS-R protein sequences to test the BLAST-P analysis. The

average identity score among clusters was based on n6k protein

comparisons (n and k as above). The same procedure was used to

select clusters that were significantly related.

Within-genome collinearity
An all-against-all BLASTP of the whole predicted protein data

set (31063 codified by the anchored NBS-R genes) identified

paralogous gene pairs if their two sequences were alignable over a

length of more than 150 amino acids with an identity score higher

than 30% [63]. The set of paralogs was used to detect duplicated/

collinear segments by running i-ADHoRe version 2.0 [69], with

the gap size set to 40 genes (the maximum distance between

consecutive paralogs or anchors used to define a duplicated

segment) and the p-value cutoff set to 0.001.

Helitron-mediated NBS-R gene transposition
The 39 region of single NBS-R genes was inspected (www.

emboss.org) to identify inverted repeats forming a putative stem

and loop structure (28-bp threshold, mismatch 21 and maxrepeat

30 bp). Also the CTAG signature following a regular expression

script was searched by imposing a cut-off between CTAG and

stem-loop structure [30]. Kapitonov and Jurka [30] have proposed

three models of helitron transposition that differ in type and size of

DNA sequences that remain in situ. All models accept that the stem

and loop structure and the CTAG signature remain at the excision

site in the 39 of the mobilized genes.

Time of transposition and cluster formation events
Time of transposition events was calculated from Ks values

between putative progenitor genes and their putative helitron-

transposed copies on the basis of the divergence time between

Cleomaceae and Brassicaceae (a Ks value of 0.82 corresponds to

41 mya), as estimated by Schranz and Mitchell-Olds [3]. Among

clustered genes, progenitors of putatively transposed genes were

selected when having, in gene-to-gene comparisons, the lowest Ks

value. Time of homogenous NBS-R cluster formation was inferred

based on Ks-w values.

Supporting Information

Figure S1 Distribution of Ks-bg and Ks-w scores. Ks-bg

scores were calculated by comparing protein products of NBS-R

genes of different clusters and of single NBS-R genes. Ks-w scores

were derived from pairwise comparisons of products of NBS-R

genes belonging to the same cluster.

(TIF)

Figure S2 Relationships between grapevine chromo-
somes based on the 96th (A) and 90th (B) percentile of
the distribution of BLAST bit scores among clusters.
BLAST bit scores were generated by a pairwise BLAST-P protein

sequence comparison. Va (green) and Vc (red) define two genomes

based on the chromosome groups indicated.

(TIF)

Figure S3 Putative Va and Vc grapevine genomes. The

formation of homologous triplets is based on the homology among

groups of genes located on specific chromosome fragments.

Chromosomes were assigned to Va (green) and Vc (red) genomes

by cluster similarity results and by identity scores.

(TIF)

Table S1 Grapevine NBS-R genes of Pinot Noir genome
sequence Release 3 (http://genomics.research.iasma.
it/).
(XLS)

Table S2 Organization and distribution of NBS-R genes
in the Pinot Noir grapevine genome.
(DOC)

Table S3 Chromosome organization of NBS-R genes in
the Pinot Noir grapevine genome.
(DOC)

Table S4 NBS-R gene cluster size and structure, and
their chromosomal position, phylogenetic subclade, and
similarity (BLAST bit scores higher than the 93rd
percentile) with others NBS-R gene clusters.
(DOC)

Table S5 NBS-R gene clusters present in A to M
phylogenetic subclades and assignment to Va and Vc
genomes.
(DOC)

Table S6 Assignment of grapevine chromosomes to Va
and Vc genomes together with NBS-R gene cluster and
their phylogenetic subclades.

(DOC)

Table S7 Distribution of NBS-R genes based on phylo-
genetic subclades and on specific protein domains of
clustered (CL) and single (R) NBS-R genes present on the
unassigned chromosomes 4, 11, 14, 16, and 17.
(DOC)
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Table S8 Presence in 55 single (R) and six clustered
(CL) NBS-R genes of features of helitron transpositive
activity, which include the CTAG tetranucleotide and the
inverted repeat forming the stem and loop structure.
The table includes some of the putative ancestor genes from which

single genes may have originated.

(DOC)

Text S1 Supporting text and references. S1A. Angiosperm

phylogeny. S1B. Rosids fossils. S1C. The family of Vitaceae.

(DOC)
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