

EGU23-5314, updated on 02 May 2023 https://doi.org/10.5194/egusphere-egu23-5314 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

100 key questions to guide hydropeaking research

Daniel Hayes¹, Maria Cristina Bruno², Maria Alp³, Isabel Boavida⁴, Ramon Batalla^{5,6}, Maria Dolores Bejarano⁷, Markus Noack⁸, Davide Vanzo⁹, Roser Casas-Mulet^{10,11}, Damian Vericat^{5,12}, Mauro Carolli¹³, Diego Tonolla¹⁴, Jo Halleraker^{15,16}, Marie-Pierre Gosselin¹⁷, Gabriele Chiogna¹⁸, and Terese Venus¹⁹

¹University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, Wien, Austria

²Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy

⁴CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

⁵Fluvial Dynamics Research Group, University of Lleida, Lleida, Spain

⁶Hydrological Processes Area, Catalan Institute for Water Research, Girona, Spain

⁷Natural Systems and Resources Department, Universidad Politécnica de Madrid, Madrid, Spain

⁸Institute of Applied Research, Karlsruhe University of Applied Science, Karlsruhe, Germany

⁹Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zürich, Switzerland

¹⁰Aquatic Systems Biology Unit, School of Life Sciences, Technical University of Munich, Freising, Germany

¹¹Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Victoria, Australia

¹²Landscape Dynamics and Biodiversity, Forest Sciences and Technology Centre of Catalonia, Solsona, Spain

¹³Energy Systems, SINTEF Energy Research, Trondheim, Norway

¹⁴Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland

¹⁵Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway

¹⁶Water Resource and Knowledge Department, Norwegian Environment Agency, Trondheim, Norway

¹⁷Norsk institutt for naturforskning, Department for Aquatic Ecology, Trondheim, Norway

¹⁸Technical University of Munich, Hydrology and River Basin Management, Munich, Germany

¹⁹Technical University of Munich, Agricultural Production and Resource Economics Unit, Freising, Germany

Hydropeaking has received increasing attention in the last years, but many knowledge gaps remain, potentially hampering effective policy and management efforts in rivers under such type of hydropower production. In this study, we collected open hydropeaking research questions from over 200 experts in river science, practice, and policy across the globe using an online survey available in five languages. We used a systematic method of determining expert consensus (Delphi method) to identify 100 core questions related to the following thematic fields: (i) hydrology, (ii) physico-chemical properties of water, (iii) river morphology and sedimentology, (iv) ecology and biology, (v) socio-economics and energy markets, (vi) policy and regulation, as well as (vii) management and mitigation measures. The consensus list of questions shall inform and guide researchers in focusing their efforts to foster a better science-policy interface, thereby improving

³RiverLy, INRAE, Villeurbanne, France

the sustainability of peak-operating hydropower in a variety of settings.