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ABSTRACT
Changes in land use, climate, and host community are leading to increased complexity in eco‐epidemiological relationships and

the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus‐transmitted pathogens

in questing ticks over a 10‐year interval (2011–2013, 2020) in natural and agricultural habitats of the Autonomous Province of

Trento (North‐eastern Alps), finding an average prevalence of infection of 27.1%. Analysis of 2652 ticks, investigating four

infectious agents (Borrelia burgdorferi sensu lato, Anaplasma spp., Rickettsia spp., and Babesia spp.), revealed the circulation of

11 different zoonotic pathogens, with varying infection rates across different years and habitats. In 2020, we found a decrease in

Anaplasma phagocytophilum, associated with agricultural habitats, and Rickettsia spp., found in all habitats. In the same year,

Babesia spp. increased in both habitats, similar to Borrelia burgdorferi sensu stricto, which was related to natural habitats. Co‐
infections were identified in 8% of positive‐tested ticks with different spatiotemporal associations, primarily in natural settings.

Our results provide new evidence that the risk of infection with tick‐borne pathogens in the Alpine region varies over time and

in different environments, broadening the current information on co‐infection rates and the circulation of zoonotic pathogens,

previously not reported in this area.

1 | Introduction

Ixodid ticks are obligate hematophagous ectoparasites whose life
cycle consists of three stages (larva, nymph, and adult) that feed on
a broad range of domestic and wild vertebrate hosts, including
humans. Among the so‐called “hard ticks” (Acari: Ixodidae), the
castor bean tick Ixodes ricinus (Linnaeus, 1758) is one of the most
widespread species in the Western Palearctic, being reported in

many European countries (Medlock et al. 2013; European Centre
for Disease Prevention and Control 2023), including the Alpine
region and Italy (Capelli et al. 2012; Lommano et al. 2012; Garcia‐
Vozmediano et al. 2020).

Beyond their eco‐parasitological role, ticks are competent vec-
tors for a large variety of microorganisms that can cause dis-
eases of medical and veterinary importance at the global level
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(Heyman et al. 2010). Climate and land use change, human
population growth, agricultural and wildlife management,
movements of animals and people, and biodiversity loss are
known as the main ecological drivers contributing to the
emergence and spread of tick‐borne diseases (TBDs) (Rizzoli
et al. 2019). Moreover, socioeconomic changes may alter spatio‐
temporal encounters between hosts, vectors, and pathogens, as
well as modulate their ecological niche, community structure,
and abundance (Gottdenker et al. 2014; Guo, Bonebrake, and
Gibson 2019). The composition of the vertebrate community,
including the abundance of competent host species is likely
pivotal in determining the acarological hazard (LoGiudice
et al. 2008; Levi et al. 2016). In particular, the competence of
vertebrate hosts can vary in the quality of blood meals they
provide for ticks (i.e., the probability of survival and molting of
feeding ticks), their attractiveness to vectors, and their ability to
acquire or transmit infections (Ostfeld and Keesing 2012;
Keesing and Ostfeld 2021).

Disease severity in hosts can also be driven by the coexistence of
multiple pathogens, which are present within the same tick
vector (co‐infection) (Cutler et al. 2021). Furthermore, the
interaction among different pathogens can positively
(facilitating/increasing) or negatively (competing/extinguish-
ing) affect the emergence or successful coexistence of diseases
within their ecological niche (Diuk‐Wasser, Vannier, and
Krause 2016). Therefore, co‐infections of different microbes add
another layer of complexity to the pathogen‐tick‐host relation-
ship, providing relevant implications for public health author-
ities, especially in areas such as the Alps, where zoonotic
spillover is very likely.

Our study site is located in the north‐eastern Italian Alps, in
the Autonomous Province of Trento where warmer tem-
peratures, increasing urbanization, high exploitation of
touristic and recreational activities, and intensification of
agriculture are enhancing the interactions among humans,
wildlife, and vectors (Gössling 2002; Gobiet et al. 2014; Bebi
et al. 2017). In this area, several studies have been con-
ducted to unravel the ecological mechanisms driving the
risk of emergence of tick‐borne zoonoses particularly those
transmitted by I. ricinus. For instance, the incidence of tick‐
borne encephalitis virus (TBEv), a flavivirus endemic in the
area (Alfano et al. 2020), has increased as a consequence of a
combination of climatic, environmental, and host‐related
variables, which affects the number of co‐feeding ticks per
host (Cagnacci et al. 2012; Collini et al. 2016; Rosà
et al. 2019). The contribution of host assemblage in affecting
tick infection rates has been confirmed by other studies on
an obligate intracellular tick‐borne bacteria, Anaplasma
phagocytophilum. In particular, both the bank vole (Cle-
thrionomys glareolus) and the roe deer (Capreolus capreolus)
emerged as competent reservoirs due to their potential
capacity to infect I. ricinus larvae (Beninati et al. 2006; Carpi
et al. 2009; Rosso et al. 2017; Baráková et al. 2018).

Since the Trentino‐Alto Adige region is considered a hotspot for
tick‐borne disease circulation, the identification of the various
pathogens carried by Ixodes ricinus, the assessment of the
infection rate with each single pathogen including co‐infection,
and the understanding of the factors affecting tick‐borne disease

risk is essential for the implementation of public health inter-
vention, including the most appropriate diagnostic protocols.
This is particularly true for Alpine areas due to their popularity
for outdoor activities (e.g., tourism, agricultural, silvicultural,
and farming practices) and sensitivity to global changes. Indeed,
both land use, wildlife management, and habitat fragmentation
can alter disease risk and human exposure overtime (Millins
et al. 2018; Dagostin et al. 2024) impacting host community
composition and vector presence (Diuk‐Wasser, VanAcker, and
Fernandez 2021; VanAcker et al. 2023). For instance, the
prevalence of Babesia spp. and Borrelia (sin. Borreliella) burg-
dorferi sensu latu (s.l.) observed in questing I. ricinus ticks
(Mantelli et al. 2006; Rosà et al. 2018) varied in relation to the
habitat type.

In this study, we investigated the changes in prevalence and co‐
occurrence of species belonging to Anaplasma spp., B. burg-
dorferi s.l., Rickettsia spp. and Babesia spp. in questing I. ricinus
ticks over a 10‐year interval (2011–2013, 2020), in two different
habitat types located in the north‐eastern Italian Alps.

2 | Materials and Methods

2.1 | Study Areas

The study sites are located in the Autonomous Province of
Trento (north‐eastern Italian Alps) and are listed as Lamar
(46.1249491–11.0630880, Vallelaghi municipality), Pietramurata
(46.0150215–10.9257080, Dro municipality) and Cavedine
(11.1755773–46.1259899, Cavedine municipality) (Figure 1).
The altitude of the three sites spans from 600 to 800m a.s.l. and
they fall into the warm‐temperate alpine climate zone (sensu
Köppen‐Geiger classification, Rubel et al. 2017), characterized
by moderately cold winters and hot/warm summers
(Meteotrentino, https://www.meteotrentino.it). Each study site
is classified either as “natural“ or “agricultural“ according to
CORINE Land Cover classification layers with a space resolu-
tion of 100m (European Environment Agency EEA 2018).
Specifically, Lamar and Pietramurata belong to categories 25
and 23, that is, mixed (broad‐leaved and coniferous) and broad‐
leaved forest, respectively. Cavedine falls into category 21, that
is, land principally occupied by agriculture with significant
areas of natural vegetation. Following this classification, we
defined Lamar and Pietramurata as natural habitats, while
Cavedine as an agricultural one.

2.2 | Questing Ticks Sampling

Questing ticks were collected in Cavedine and Lamar sites
three times per year (April, May, June) in 2011, 2012, and
2013, while in 2020 sampling was performed only in June.
The Pietramurata site was investigated only in 2011 (April,
May, and June). For all years of sampling (2011, 2012, 2013,
and 2020) standard dragging with 1‐square‐meter white
flannel cloth was carried out through vegetation and leaf
litter along transects of 100 m length. Tick nymphs and
adults attached to the cloth were counted and collected in
tubes, while larvae were discarded.
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Each tick was then washed in ethanol 70%, rinsed with water
for molecular biology, and dried with paper before the mor-
phological identification at the species level using a stereo-
microscope. All samples were stored at −80°C until DNA
extraction.

2.3 | Laboratory Analyses

Ticks were disrupted with TissueLyser II (Qiagen‐GmbH‐
Hilden, Germany) at 30‐Hz frequency (corresponding to 1800
oscillations/minute) for 3.30min, in single tubes using 100 µL
of PBS (Phosphate Buffered Saline) and previously sterilized
stainless‐steel beads (5 mm diameter). DNA was extracted from
individual nymphs and adults using the Qiamp DNA Investi-
gator kit (Qiagen‐GmbH‐Hilden, Germany) protocol “tissues”
optimized for the Qiacube extractor. For samples collected in
2020, the same DNA extraction kit and protocol were used, but
instead of using the automated protocol (Qiacube extractor),
DNA was extracted manually following the manufacturer's
instructions. The final elution volume was 60 µL for both
nymphs and adults. DNA extracted from ticks was used for the
detection of the following pathogen genera: Anaplasma, Bor-
relia, Rickettsia, and Babesia. For Babesia spp., a single‐step

conventional PCR using genus‐specific primers targeting the
18S rRNA gene (Casati et al. 2006) was used, while for Rickettsia
spp. the target was the 17‐ kDa surface antigen and a semi‐
nested PCR was used (Reye et al. 2010). The amplification of the
latter gene was not sufficient for distinguishing Rickettsia spe-
cies in all samples, thus, we used a more variable gene coding
for the outer membrane protein A (ompA). The analysis for
Borrelia species was carried out by applying a nested PCR tar-
geting the intergenic spacer codifying for ribosomal RNA 5S
rRNA and 23S rRNA (modified from Rijpkema et al. 1995).
Finally, for Anaplasma spp., a nested PCR amplification of the
partial 16 s rRNA gene was applied (Massung et al. 1998).
Temperature cycling profile and specific primers were described
in Appendix A (see Tables A1–A3).

Visualization of the success of amplification was confirmed
using the Qiagen QIAxcel capillary electrophoresis system.
Positive PCR products were purified enzymatically using
ExoSAP‐IT (USB, Cleveland, OH, USA) according to the man-
ufacturer's instructions and then sequenced using Sanger
Sequencing (on an ABI 3730xl Genetic Analyzer, Sequencing
Platform Fondazione Edmund Mach). The DNA sequences
were compared with the data stored in the GenBank database
with the Basic Local Alignment Search Tool (Blast; online

FIGURE 1 | Map of the study area and locations of the sampling sites (black dots): (a) Lamar, (b) Pietramurata (monitored only in 2011), and (c)

Cavedine. The right‐side panels show the different land covers of the three sites, according to the CORINE Land Cover classification (100‐m space

resolution; European Environment Agency EEA 2018). https://land.copernicus.eu/pan-european/corine-land-cover/clc2018; accessed 7 Septem-

ber 2023).
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version). Species‐specific alignments were built using the
MUSCLE algorithm implemented in MEGA‐X (Kumar
et al. 2018), manually curated, and deposited into the NCBI
GenBank database.

In samples collected in 2020, we noticed some double peaks or
dubious bases in electropherograms of sequences belonging to
B. burgdorferi s.l. complex, which suggested a coinfection with
different genotypes of this pathogen. For this reason, we applied
a cloning procedure on seven samples using the TOPO XL PCR
Cloning kit (Invitrogen, Life Technologies), and the extracted
plasmid DNA was used for sequencing. The procedure was
successful only in one sample in which we identified a
coinfection (sample name: male tick from Lamar study
site, M12).

2.4 | Statistical Analyses

All statistical analyses were carried out using R V4.2.2 (R Core
Team 2023), and package tidyverse (Wickham 2017) and ggplot2
(Wickham 2016) were used for data management and graphics.

2.4.1 | Pathogen Community

With the term “pathogen community” we refer to the group of
TBPs (tick‐borne pathogens, TBPs) (bacteria and protozoa)
identified in the collected ticks. Species richness using the
Shannon diversity Index (alpha diversity) was estimated for
bacteria and protozoa found in different habitat types and
across sampling years fitting the function diversity in the vegan
package (Oksanen et al. 2016). Pathogen community composi-
tion was explored through an alluvial diagram using the ggal-
luvial package (Brunson and Read 2023), that expresses the
descriptive associations among categorical variables. In our
case, the alluvial diagram described the changes and trends of
pathogens' infections across years and in different habitat types.

2.4.2 | Tick Infection Probability

Prevalence of each TBP across years, habitat type, and tick stage
was calculated in each year, habitat type and tick stage with a
95% confidence interval (CI), using the EpiR package
(Carstensen et al. 2021). Two Proportion Z‐test was applied to
analyze the differences in the prevalence rates of TBPs among
habitat types and years. After testing the collinearity between
habitat type and tick stage (Appendix B, Figure B1), univariate
Generalized Linear Models (GLMs) with binomial error distri-
bution were fitted to investigate how the proportion of ticks that
were infected with each detected TBP (i.e., prevalence) varies
depending on habitat type and tick stage (explanatory vari-
ables). The differences were considered statistically significant if
the p‐values were < 0.05.

Ggeffects package (Lüdecke 2023) was used to retain model
predictions and sjPlot (Lüdecke 2020) to create HTML tables
from regression models.

3 | Results

3.1 | Ticks Screening

A total of 2652 ticks (2288 nymphs and 364 adults) were col-
lected in the study sites from 2011 to 2020 (821 in 2011, 662 in
2012, 650 in 2013, and 519 in 2020; Table 1). Given the recent
identification of I. inopinatus in the Italian peninsula (Daněk
et al. 2024), we did not exclude the presence of the species or its
hybrids in the collected samples. In this sense, all the identified
ticks are considered to belong to the I. ricinus complex that
includes also I. inopinatus. When discriminating between hab-
itat types, 1083 ticks were collected in the agricultural site
(Cavedine), while 1569 in natural ones (Pietramurata and La-
mar). Across all years, nymphs were the most abundant life
stage (86.3%), while adults were in percentage more abundant
in natural habitats than in agricultural ones (19.3% and 5.6%,
respectively) (see also Figure C1b). Ticks collected in con-
secutive months (April, May, June) showed a peak in May both
in natural and agricultural habitats.

3.2 | Tick‐Borne Pathogens Community
Composition

A total of 11 species belonging to four genera of microorganisms
were found in the collected I. ricinus ticks (Table 1). In partic-
ular: A. phagocytophilum, R. helvetica, R. monacensis, R. slovaca,
B. burgdorferi sensu strictu (s.s.), B. afzelii, B. garinii, B. lusita-
niae, B. valaisiana, Ba. divergens and Ba. venatorum (formerly
Babesia spp. EU1), all characterized by zoonotic relevance. They
were recorded in both habitat types except for R. slovaca that
was found only in the agricultural areas.

No differences in relative abundances of TBPs (Shannon Index)
were observed between the agricultural and natural habitat
types and across the sampling years (Table D1), although when
these pathogens were represented ensemble, variations
across years were evident in the tick‐borne pathogen commu-
nity. Notably, qualitatively in the period 2011–2013 we observed
an overall higher infections of TBPs in natural habitats, with
respect to 2020 (Figure 2).

3.3 | Tick Infection Probability

The overall number of infected ticks was 720, with 836 infec-
tions in total, and a total prevalence of 27.1% (720/2652). In
particular, B. burgdorferi s.l., Rickettsia spp., A. phagocytophi-
lum, and Babesia spp. were 21.1% (559/2652), 8.4% (222/2652),
1.6% (43/2652), and 0.4% (12/2652), respectively (for more
details see Table 1).

The prevalence between years varied depending on the specific
TBP considered (see Figure E1, Appendix E). A. phagocytophi-
lum showed a slight increase in 2013 and a statistically signif-
icantly lower prevalence in 2020 compared to previous years
(Z‐test, p‐value = 0.03) (Figure 3). In contrast, Ba. venatorum
and Ba. divergens had low prevalence in 2011, were not eval-
uated in 2012 and 2013, and increased significantly in 2020
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(Z‐test, p‐value = 0.07 for Ba. divergens and Z‐test, p‐value =
0.03 for Ba. venatorum) (Figure 3). Among the five species of the
B. burgdorferi s.l. complex, B. burgdorferi s.s. and B. lusitaniae
showed a significant decrease in prevalence in 2012, and an increase
in 2013 and 2020 (Z‐test, p‐value= 0.05 and p‐value= 0.001,
respectively), while B. afzelii, B. garinii, and B. valaisiana did not
show any significant variation (see Figure 3). Regarding Rickettsia
spp., there were no significant variations in prevalence across
the years, while R. slovaca was found only in 2011.

Following the collinearity test, tick stage and habitat type were
retained and modelled in the univariate Binomial GLMs (see
Tables F1 and F2). In particular, the prevalence of A. phago-
cytophilum was lower in natural habitats (Figure 4a, see
Table F1) and in nymphs (Figure 4b, see Table F2). Ba. vena-
torum decreased prevalence in natural habitats (Figure 4c, see
Table F1), while the tick stage was not statistically significantly
different. Among B. burgdorferi s.l. complex, only B. lusitaniae

and B. burgdorferi s.s. showed statistically significant relation-
ships: both species were more prevalent in natural habitats
(Figure 4d,f, Table F1), while tick stage was relevant only for B.
lusitaniae with a lower prevalence in nymphs (Figure 4e, see
Table F2). Finally, the prevalence of Rickettsia spp. did not
retain any significant association with tick stage or habitat type
(Tables F1 and F2).

3.4 | Co‐Infections in Ticks

In total 58 ticks were coinfected with 116 double infections,
representing 8% of the positive ticks (58/720) or 2.2% of all ticks
tested (58/2652). The number of coinfected ticks was higher in
natural (N= 38) compared to agricultural habitats (N= 20)
(Figure 5a). All the combinations of pathogens were maintained
across habitat types except for Babesia spp. which was associated

FIGURE 2 | Alluvial diagram visualizing the changes in tick‐borne pathogens' infections across sampling years (2011, 2012, 2013, 2020; color

gradient) and in different habitat types (Panel a: agricultural habitat; Panel b: natural habitat).
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FIGURE 3 | Prevalence rates for the tick‐borne pathogens investigated in I. ricinus ticks collected in the Province of Trento, Italy, across

sampling years (2011–2013, 2020). Every facet shows one single pathogen species (R. slovaca is not shown in the figure since it was detected only in

2011). Vertical bars represent the 95% confidence interval.
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with B. burgdorferi s.l. in agricultural habitats, and with Rickettsia
spp. in natural ones. When considering multiple associations
between TBP species (Figure G1 for details), the most frequent
association was between Rickettsia (R. helvetica and
R. monacensis) and Borrelia species (B. afzelii, B. garinii,
B. burgdorferi s.s., B. lusitaniae and B. valaisiana) with 1.7% (46/
2652) ticks, mostly found in natural habitats (N= 32). Especially
R. helvetica was found to be associated with four out of five B.
burgdorferi s.l. (N= 28). R. monacensis was identified with B.
burgdorferi s.l. (N= 18) and once in association with
B. lusitaniae (N= 1). Other co‐infections included A. phagocyto-
philum with B. burgdorferi s.s. (N= 2), B. garinii (N= 2),
R. helvetica (N= 1) and R. monacensis (N= 2). Babesia spp. was
associated with B. afzelii (N= 2), B. burgdorferi s.s. (N= 1) and R.
helvetica (N= 1). Finally, a co‐infection between B. afzelii and B.
burgdorferi s.s. was also identified (N= 1).

Regarding the temporal pattern, pathogens were associated
slightly differently across sampling years (see Figure 5b).
Babesia spp. was associated with Rickettsia spp. in 2011, while
they coinfected ticks with B. burgdorferi s.l. in 2020. Moreover,
A. phagocytophilum was solely bound with B. burgdorferi s.l. in
2012 and with Rickettsia spp. in 2020, while in 2011 and 2013, it
was found together with both the above‐mentioned bacteria
(Figure 5).

4 | Discussion

In this study, we examined the composition of the TBP com-
munity and their infection rates in the Autonomous Province of

Trento in the northeastern Italian Alps. This area proved to be
an excellent study system given the diffuse human activities in
the natural landscapes, and the various studies carried out to
date to investigate the eco‐epidemiological processes involving
I. ricinus as a vector of zoonotic diseases (Mantelli et al. 2006;
Cagnacci et al. 2012; Rosso et al. 2017; Baráková et al. 2018;
Rosà et al. 2018, 2019; Marini et al. 2023). It is of paramount
importance to provide early warning of the rise in hazards and
newly emerging pathogens, already exacerbated by rapid cli-
mate and land use changes (Diuk‐Wasser, VanAcker, and
Fernandez 2021; Gilbert 2021).

Compared to previous studies, we performed a more in‐depth
molecular analysis, which allowed us to identify the pathogens
at the species level, including co‐infections. We then evaluated
the spatiotemporal variation of zoonotic TBPs in the area after a
10‐year interval, considering different habitat types and poten-
tial changes in host communities.

We reported the circulation of 11 species of bacterial and pro-
tozoan agents belonging to B. burgdorferi s.l. complex, Ana-
plasma, Rickettsia, and Babesia, all considered hazardous for
human health; and the occurrence of co‐infections due to their
relevance for public health. As expected from previous studies
in the area (Rosà et al. 2018), pathogens occurrence showed
heterogeneity in their distribution according to the type of
habitat.

Among the TBDs investigated in this study, Lyme disease (or
Lyme borreliosis) is currently the most common arthropod‐
borne disease in temperate regions of the northern hemisphere,

FIGURE 4 | Relationships between the prevalence of tick‐borne pathogens, habitat types, and tick stages. Only statistically significant re-

lationships are shown. Black dots are the average values of prevalence for each pathogen, while bars represent the 95% confidence intervals. Panels

have different Y‐axis ranges to assist visualization. Panel a, b: A. phagocytophilum; Panel c: B. venatorum; Panel d, e: B. lusitaniae; Panel f: B.

burgdorferi
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causing global public health problems (Steinbrink et al. 2022).
Compared to our previous study that considered the pathogen
at the genus level (Rosà et al. 2018), we identified 5 genotypes of
B. burgdorferi s.l. complex. B. lusitaniae has been occasionally
detected in human patients (Collares‐Pereira et al. 2004; Lopes
de Carvalho et al. 2008), while the pathogenicity of B. valaisiana
in humans is currently under debate (Diza et al. 2004; Margos,
Sing, and Fingerle 2017). Meanwhile, the other three detected
species (B. burgdorferi s.s., B. afzelii and B. garinii) are well‐
recognized Lyme borreliosis‐causing agents (Strnad and
Rego 2020). The overall infection rate of B. burgdorferi s.l. was
higher when compared to data from a European review (12.3%;
Strnad et al. 2017) and a recent study conducted in the Eastern
Italian Alps (0.2%–6.6%; Bertola et al. 2021). The increase was
even more profound when compared to a study performed in
the same area 20 years ago (1.32%; Mantelli et al. 2006),
although this was probably due to methodological limitations.
Other studies conducted in the Alps and the Apennines (Capelli
et al. 2012; Ragagli et al. 2016; Oechslin et al. 2017; Millet
et al. 2019; Garcia‐Vozmediano et al. 2020; Schötta et al. 2023)
reported a prevalence similar to ours. We recorded an increase
in prevalence rates from nymph to adult ticks in B. lusitaniae
and B. burgdorferi s.s., and in natural habitats, highlighting the
complex relationship between host competence and habitat
types. The complexity of hosts’ competence for B. burgdorferi s.l.
emerged indirectly from the high prevalence of B. lusitaniae and

B. burgdorferi s.s. in natural compared to agricultural habitats.
Landscape acts as an important driver of B. burgdorferi s.l.
persistence by affecting the movement and community com-
position of hosts, as well as ticks’ activity and their abundance
(Millins et al. 2018; Diuk‐Wasser, VanAcker, and
Fernandez 2021). Given the highly diversified host community
on which B. burgdorferi s.l. relies on (Hofmeester et al. 2016;
Wolcott et al. 2021), woodland landscapes can provide suitable
conditions for vertebrate hosts (such as rodents, reptiles, birds,
and large mammals like deer) involved in the bacterium sylvatic
cycle (Millins et al. 2017). Among others, two studies showed
evidence of the relative importance of woodland habitats for the
risk of Lyme disease, with higher prevalence and density of
infected ticks in woodland landscapes with respect to adjacent
open habitats (Halos et al. 2010; Gilbert 2016).

Conversely, A. phagocytophilum and Ba. venatorum resulted
more associated with agricultural habitats. Several terres-
trial vertebrate species are considered hosts for A. phago-
cytophilum, such as foxes, wild boars, birds, reptiles, and
large wild‐living ruminants (Stuen, Granquist, and
Silaghi 2013), although depending on A. phagocytophilum
ecotypes (Baráková et al. 2014; Jahfari et al. 2014; Jaarsma
et al. 2019). Wild ungulates, such as roe deer, red deer, and
mountain ungulates are hosts also for Ba. venatorum
(Yabsley and Shock 2013). In particular, roe deer, one of the

FIGURE 5 | Number of co‐infections identified in I. ricinus ticks. Panel a: by habitat type (agricultural or natural); Panel b: across sampling years

(2011, 2012, 2013, 2020).

10 of 23 MicrobiologyOpen, 2024

 20458827, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

bo3.70010 by Fondazione E
dm

und M
ach, W

iley O
nline L

ibrary on [11/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



main ungulate species found in the study area, exhibits
marked behavioral and ecological plasticity. It can exploit
not only ecotonal and forested areas, but also human‐
modified landscapes including open agricultural ones
(Tinoco Torres et al. 2011), especially during spring and
autumn (De Groeve et al. 2023), overlapping thereafter with
the peak season of ticks. Moreover, although in the early
1970s population abundance of wild ungulates, such as roe
deer and red deer, generally increased in the Province of
Trento (Sieff 2020; Passoni et al. 2023), in recent years red
deer showed a steep increment, while roe deer remained
rather stable or slightly decreased (Sieff 2020). In this way,
the significant use of agricultural habitats by this ungulate
species, combined with the fluctuations in their abundance,
may have driven infection rates with A. phagocytophilum
and Ba. venatorum, confirming (Hamšíková et al. 2019) and
(Overzier et al. 2013). The pivotal role of roe deer as a
competent host for A. phagocytophilum is supported by the
increasing prevalence of this microorganism detected in all
tick stages from nymphs to adults (Stuen, Granquist, and
Silaghi 2013; Jensen et al. 2017). On the other side, since the
ecotype of A. phagocytophilum associated with I. ricinus was
linked with deer, rather than with rodents (Blaňarová
et al. 2014; Rosso et al. 2017), its decrease in prevalence in
2020 may reflect the trend of declining roe deer population.
This was also observed in Germany (Glass, Springer, and
Strube 2022). Indeed, the temporal variation of roe deer
abundance may have diverted infected I. ricinus ticks
(Rifkin, Nunn, and Garamszegi 2012), thereby decreasing
the prevalence of the bacterium in questing ticks. In gen-
eral, the observed infection rates of Babesia spp. and of the
two detected species (Ba. divergens and Ba. venatorum)
confirmed the results previously obtained in Italy (Capelli
et al. 2012; Castro et al. 2015) and in other Alpine countries,
like Switzerland (Gigandet et al. 2011; Oechslin et al. 2017)
and France (Jouglin et al. 2017), while higher prevalence
was observed in Austria (2.7%; Schötta et al. 2017).

Rickettsiae spp. prevalence did not show any significant influ-
ence on habitat types or years. Our results are similar or lower
with respect to previous studies from Austria (3.8‐13.3%;
Schötta et al. 2023), France (4.6‐17.6%; Halos et al. 2010; Akl
et al. 2019) and Poland (15.0%; Zając et al. 2023). Compared
with Italian data, our results lay among the highest values re-
ported from the Western Italian Alps (13.3‐20.7%; Millet
et al. 2019; Garcia‐Vozmediano et al. 2020) and are the lowest
reported in the Eastern Italian Alps (0.3%–3.7%; Bertola
et al. 2021), suggesting a sort of a west‐to‐east decreasing gra-
dient. Interestingly, although the prevalence (0.43%) was low in
2011, we found evidence of R. slovaca. This species is usually
carried by Dermacentor spp. ticks due to microbial interference
(Cutler et al. 2021), although laboratory findings proved the
potential transmission between Dermacentor spp. and I. ricinus
on the same host via co‐feeding (Bartosik et al. 2017). The
bacterium of R. slovaca is associated with a newly recognized
atypical rickettsiosis (scalp eschar and neck lymphadenopathy
after tick bite, SENLAT). Our detection in I. ricinus, together
with another work from Austria (Schötta et al. 2017), may
suggest a new potential health risk in the Alpine area, as its
incidence has likely been underestimated to date (Parola
et al. 2009; Del Giudice et al. 2023).

Only recently, the co‐infection patterns within ticks have been
investigated (Civitello, Rynkiewicz, and Clay 2010), thanks to the
availability of molecular diagnostic tools. This allowed us to high-
light the presence of multiple pathogens and endosymbionts in
individual tick samples, which might affect disease risk (Diuk‐
Wasser, Vannier, and Krause 2016; Cutler et al. 2021). In this study,
we identified several co‐infections within ticks, especially in natural
habitats (forests), which confirms the potential involvement of a
broad variety of wildlife‐competent species serving as hosts for more
than one pathogen (Carpi et al. 2011; Noden, Roselli, and
Loss 2022). Among co‐infections, B. burgdorferi s.l. and Rickettsia
spp. formed the most frequent association. Although the incidence
was lower, this was consistent with other studies (Lommano
et al. 2012; Raileanu et al. 2017; Raulf et al. 2018). Remarkably,
Raulf et al. (2018) provided evidence that this association may favor
higher replication rates of these two pathogens in the tick, but at the
same time have a detrimental influence on the tick vector itself, that
is, increasing mortality of nymphs. Moreover, we observed co‐
infections also among different Borrelia genotypes, that is, B. afzelii
and B. burgdorferi s.s. as found in Moutailler et al. (2016). Further,
we detected co‐infections of A. phagocytophilum with B. burgdorferi
s.l. and with Rickettsia spp. confirming that I. ricinus may facilitate
the synergies between A. phagocytophilum and other pathogens
(Civitello, Rynkiewicz, and Clay 2010). The interactions involving
Babesia spp. resulted instead rare, although the co‐occurrence
between B. microti and B. burgdorferi s.l. in the United States is
more frequent and can exacerbate and prolong disease symptoms in
humans (Diuk‐Wasser, Vannier, and Krause 2016). Babesiosis is an
emerging zoonotic tick‐borne parasitic disease (Hildebrandt and
Hunfeld 2014) whose reservoirs are small mammals and is present
in the United States (Swanson et al. 2023) and in Europe (Silaghi
et al. 2012). The synergism between Borrelia and Babesia spp. has
been rarely detected in Europe (Lommano et al. 2012), but recently
it has been proved that Babesia infection tended to occur more
frequently among Borrelia‐positive ticks (Pawełczyk et al. 2021). In
this study, Ba. venatorumwas associated with R. helvetica in natural
habitats in 2011, while we found it more frequently with two dif-
ferent species of the Borrelia complex (B. afzelii and B. burgdorferi
s.s.) in agricultural habitats in 2020. Even though we did not find
B. microti in questing ticks, a previous study performed in the same
area identified B. microti from I. ricinus ticks collected from rodents
(Baráková et al. 2018). This can pose a threat to human health and
should be considered when diagnosing and treating tick bite
symptoms.

This study describes the TBP community and the disease risk in
an Alpine area where human exposure to these pathogenic
microorganisms is likely enhanced by recreational and leisure
activities. We underlined that spatiotemporal variability in
pathogens' distribution and associations is dynamic and in
constant evolution, being driven among others by a combina-
tion of land use patterns, and wildlife host communities
(Parham et al. 2015; Keesing and Ostfeld 2021). Additionally,
vectors, host competence, immunity, and the coexistence of
multiple pathogens within one host, add another layer of
complexity to this relationship (Downs et al. 2019; Cutler
et al. 2021). We provided important insights into the occurrence
and prevalence of TBPs in an Alpine area, including multiple
pathogen‐host associations, which occur or may soon emerge in
this study system. This provides useful knowledge that, even if
sustained by limited spatio‐temporal replications, suggests the
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importance of long‐term community‐based studies applying a
multidisciplinary “One Health” approach.
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TABLE A1 | List of target genes and specific F and R primers for detection of Babesia spp., Borrelia spp., Anaplasma spp., and Rickettsia spp.

from questing Ixodes ricinus ticks.

Pathogen Target gene Primer F Primer R

Babesia spp. 18S ribosomal
RNA gene
(430 bp)

BN2 5′–TAGTTTATGGTTAGGACTACG– 3' BJ1 5′–GTCTTGTAATTGGAATGATGG – 3'

Anaplasma
spp. 1 PCR

16S rRNAgene
(546 bp)

ge3a
5′–CACATGCAAGTCGAACGGATTATT C–3'

ge10r 5′–TTCCGTTAAGAAGGATCTAATCTC
C– 3'

Anaplasma
spp. 2 PCR

ge9f
5′–AACGGATTATTCTTTATAGCTTGCT–3'

ge2 5′–GGCAGTATTAAAAGCAGCTCCAGG–3'

Rickettisa
spp. 1 PCR

17 kDa
common
antigen
(450 bp)*

Rr17K.1p
5′–TTTACAAAATTCTAAAAACCAT–3'

Rr17K.539n 5′–TCAATTCACAACTTGCCATT–3'

Rickettsia
spp. 2 PCR

Rr17K.90p 5′–– 3' Rr17K.539n 5′–TCAATTCACAACTTGCCATT–3'

Borrelia
spp. 1 PCR

5S‐23S
ribosomal RNA

intergenic
spacer (230 bp)

23SC1
5′–TAAGCTGACTAATACTAATTACCC–3'

23SN1
5′–ACCATAGACTCTTATTACTTTGACC–3'

Borrelia
spp. 2 PCR

5SC2 5′–GAGAGTAGGTTATTGCCAGGG–3' 23SN2
5′–ACCATAGACTCTTATTACTTTGACCA–3'

Note: Primer F = primer forward; Primer R= primer reverse; * = Rickettsia monacensis has been investigated targeting outer membrane protein gene A (ompA) (primers:
ompA13f 5′–GCAATTCAAAAAGGTCTTAAA–3′ and ompA545R 5′–TTTCCTGTAAGTGTTATCTTTG–3′; 580 bp).

Appendix A

Polymerase Chain Reaction Details
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Appendix B

Collinearity Between Explanatory Variables of GLMs

FIGURE B1 | Total number of nymph and adult Ixodes ricinus ticks collected in the two habitat types (agricultural and natural; Province of

Trento, Italy). GLMs with Poisson distribution; nymph: β= 0.21 ± 0.04; p‐value < 0.001; adult: β= 1.60 ± 0.14; p‐value < 0.001; reference category:

agricultural habitat.
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Appendix C

Tick Abundance in the Autonomous Province of Trento Across Years and Sites

Appendix D

Shannon Index

FIGURE C1 | Total number of questing Ixodes ricinus ticks per life stage, sampling month and year, in two different habitats: Panel a: agri-

cultural habitat and Panel b: natural habitat; (Province of Trento, Italy, 2011–2013; 2020).

TABLE D1 | Tick‐borne pathogens' diversity based on the Shannon Index in the two habitat types (agricultural and natural) and across years

(Province of Trento, 2011–2013, 2020).

Habitat Year Shannon index

Agricultural 2011 2.075.425

Agricultural 2012 1.699.871

Agricultural 2013 1.847.041

Agricultural 2020 2.075.052

Natural 2011 2.009.177

Natural 2012 1.847.591

Natural 2013 1.918.951

Natural 2020 1.939.258
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Appendix E

Prevalence Across Habitat Types

FIGURE E1 | Prevalence rates for each of the tick‐borne pathogen investigated in Ixodes ricinus ticks collected across habitat types (agricultural

and natural) (Province of Trento, Italy, 2011–2013, 2020). Vertical bars represent the 95% confidence interval: Babesia venatorum (Z‐test, p‐value =
0.04), Borrelia burgdorferi s.s. (Z‐test, p‐value = 1.253e−05) and Borrelia lusitaniae (Z‐test, p‐value = 0.003).
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TABLE F1 | Coefficients of the models fitting the prevalence of 11 pathogens in ticks across the sampling years (2011–2013, 2020), depending on
habitat type.

Model Pathogen Predictors Coefficients S.E. CI p

1 Anaplasma phagocytophilum (Intercept) −3.79 *** 0.21 −4.22 to −3.41 < 0.001

Habitat [Natural] −0.61 * 0.31 −1.23 to −0.01 0.047

2 Babesia divergens (Intercept) −6.99 *** 1.00 −9.85 to −5.50 < 0.001

Habitat [Natural] 1.02 1.12 −0.90–3.99 0.363

3 Babesia venatorum (Intercept) −5.19 *** 0.41 −6.11 to −4.48 < 0.001

Habitat [Natural] −2.17 * 1.08 −5.11 to −0.40 0.045

4 Borrelia afzelii (Intercept) −3.09 *** 0.15 −3.40 to −2.81 < 0.001

Habitat [Natural] 0.20 0.19 −0.17–0.57 0.298

5 Borrelia burgdorferi (Intercept) −3.83 *** 0.21 −4.27 to −3.44 < 0.001

Habitat [Natural] 1.02 *** 0.24 0.57–1.51 < 0.001

6 Borrelia garinii (Intercept) −2.82 *** 0.13 −3.09 to −2.57 < 0.001

Habitat [Natural] 0.23 0.16 −0.09–0.56 0.156

7 Borrelia lusitaniae (Intercept) −6.29 *** 0.71 −8.09 to −5.16 < 0.001

Habitat [Natural] 1.99 ** 0.74 0.76–3.83 0.007

8 Borrelia valaisiana (Intercept) −3.24 *** 0.16 −3.56 to −2.94 < 0.001

Habitat [Natural] 0.35 0.20 −0.03–0.74 0.073

9 Rickettsia helvetica (Intercept) −2.87 *** 0.13 −3.15 to −2.62 < 0.001

Habitat [Natural] −0.07 0.18 −0.41–0.29 0.714

10 Rickettsia monacensis (Intercept) −3.52 *** 0.18 −3.90 to −3.19 < 0.001

Habitat [Natural] 0.17 0.23 −0.27–0.63 0.457

11 Rickettsia slovaca (Intercept) −6.99 *** 1.00 −9.85 to −5.50 < 0.001

Habitat [Natural] −22.14 32329.65 NA–7058.81 0.999

Note: “Habitat”= habitat type (agricultural or natural; reference category: agricultural); “CI”= confidence interval; “p”= p‐value. Significance level: *p< 0.05, **p< 0.01,
*** p< 0.001.

Appendix F

Binomial Generalized Linear Models (GLMs) of Tick‐Borne Pathogens' Prevalence
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TABLE F2 | Coefficients of the models fitting the prevalence of 11 pathogens in ticks across the sampling years (2011–2013, 2020), depending on
the tick stage.

Model Pathogen Predictors Coefficients S.E. CI p

1 Anaplasma phagocytophilum (Intercept) −3.30 *** 0.28 −3.90 to −2.79 < 0.001

Age [Nymph] −1.03 ** 0.34 −1.66 to −0.33 0.002

2 Babesia divergens (Intercept) −25.63 11660.42 −5116.29 to −8059.88 0.998

Age [Nymph] 19.50 11660.42 −1315.99–NA 0.999

3 Babesia venatorum (Intercept) −5.89 *** 1.00 −8.76 to −4.41 < 0.001

Age [Nymph] −0.05 1.08 −1.82–2.89 0.966

4 Borrelia afzelii (Intercept) −3.22 *** 0.27 −3.80 to −2.72 < 0.001

Age [Nymph] 0.28 0.29 −0.25–0.89 0.332

5 Borrelia burgdorferi (Intercept) −2.96 *** 0.24 −3.47 to −2.51 < 0.001

Age [Nymph] −0.19 0.26 −0.69–0.35 0.462

6 Borrelia garinii (Intercept) −2.65 *** 0.21 −3.09 to −2.26 < 0.001

Age [Nymph] −0.03 0.23 −0.46–0.44 0.903

7 Borrelia lusitaniae (Intercept) −3.80 *** 0.36 −4.58 to −3.16 < 0.001

Age [Nymph] −1.23 ** 0.44 −2.07 to−0.31 0.006

8 Borrelia valaisiana (Intercept) −3.02 *** 0.25 −3.54 to−2.56 < 0.001

Age [Nymph] 0.00 0.27 −0.50 – 0.56 0.996

9 Rickettsia helvetica (Intercept) −2.74 *** 0.22 −3.20 – −2.34 < 0.001

Age [Nymph] −0.20 0.24 −0.65–0.30 0.416

10 Rickettsia monacensis (Intercept) −3.15 *** 0.26 −3.71 to −2.67 < 0.001

Age [Nymph] −0.32 0.29 −0.87–0.28 0.265

11 Rickettsia slovaca (Intercept) −25.63 11660.42 −5116.29 to −8059.88 0.998

Age [Nymph] 17.89 11660.42 −2556.51–NA 0.999

Note: “Age”= tick stage (nymph or adult; reference category: adult); “CI”= confidence interval; “p”= p‐value. Significance level: * p< 0.05, **p< 0.01, ***p< 0.001.
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FIGURE G1 | Number and detail of co‐infections identified in the Ixodes ricinus ticks in the two habitat types (agricultural and natural) and

across the sampling years (2011–2013, 2020). The color gradients show the coexistence between multiple tick‐borne pathogens carried by the

collected ticks.

Appendix G

Species‐Specific Pathogens' Co‐Infections Across Years and Sites
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