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Abstract

Background

Outbreaks of Aedes-borne diseases in temperate areas are not frequent, and limited in

number of cases. We investigate the associations between habitat factors and temperature

on individuals’ risk of chikungunya (CHIKV) in a non-endemic area by spatially analyzing the

data from the 2017 Italian outbreak.

Methodology/Principal findings

We adopted a case-control study design to analyze the association between land-cover var-

iables, temperature, and human population density with CHIKV cases. The observational

unit was the area, at different scales, surrounding the residence of each CHIKV notified

case. The statistical analysis was conducted considering the whole dataset and separately

for the resort town of Anzio and the metropolitan city of Rome, which were the two main foci

of the outbreak. In Rome, a higher probability for the occurrence of CHIKV cases is associ-

ated with lower temperature (OR = 0.72; 95% CI: 0.61–0.85) and with cells with higher vege-

tation coverage and human population density (OR = 1.03; 95% CI: 1.00–1.05). In Anzio,

CHIKV case occurrence was positively associated with human population density (OR =

1.03; 95% CI: 1.00–1.06) but not with habitat factors or temperature.
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Conclusion/Significance

Using temperature, human population density and vegetation coverage data as drives for

CHIKV transmission, our estimates could be instrumental in assessing spatial heterogeneity

in the risk of experiencing arboviral diseases in non-endemic temperate areas.

Author summary

Outbreaks of Aedes-borne diseases are still sporadic events in temperate Europe. Among

these, a notable example is provided by the outbreak of CHIKV in Italy in 2017. We inves-

tigated which environmental variables may be spatially associated with CHIKV cases and

to what extent these variables could be used to infer the occurrence of CHIKV cases when

no vector data are available. To do this, we conducted a case-control study designed to

assess the relative risk of observing a CHIKV case. Our results suggest that, across areas

characterized by a relatively lower temperature as well as high vegetation coverage, the

risk of infection is greater in the highly urbanized areas of Rome. On the other hand, in

Anzio, only human population density was found to be positively associated with the like-

lihood of observing a CHIKV case. These preliminary findings may help identify vulnera-

ble areas to be monitored and to be prioritized by integrated vector management as soon

as the autochthonous transmission of an Aedes-borne disease is uncovered.

Introduction

The impact of Aedes-borne viruses such as chikungunya (CHIKV) and dengue (DENV) for

human public health has increased dramatically over the last 50 years, with both diseases

spreading to new geographic locations [1–3]. The expansion of these diseases can be partially

explained by the dispersal and proliferation of the alien mosquito species belonging to the

genus Aedes [4]. Although large outbreaks of the Aedes-borne arbovirus have been rarely

reported in Europe, several autochthonous transmission events have occurred in France [5,6],

Croatia [7] and Italy [8,9].

Among those, two outbreaks of CHIKV transmitted by Aedes albopictus occurred in Italy

in 2007 and 2017, representing the two largest outbreaks recorded so far in continental Europe

in terms of number of cases and geographical spread [10]. The first outbreak occurred in 2007

in two rural and coastal villages (Castiglione di Ravenna and Cervia) in Northeastern Italy

[11]. The second occurred in the summer of 2017, initially affecting the coastal resort town of

Anzio in the Lazio Region and multiple sites within the metropolitan city of Rome and the

coastal town of Latina. Secondary foci for this outbreak were identified in a coastal site of the

Calabria Region (Guardavalle Marina), about 650km from Anzio [9,12].

A common practice adopted for endemic tropical areas for predicting the spatial-temporal

dynamics of CHIKV and DENV cases is the use of spatio-temporal epidemiological records

(i.e. number of cases, serological data) in association with eco-climatic variables (in Malaysia,

[13,14]; in Philippines [15]; in Sri Lanka [16] in Thailand [17–20]; in India, [21]; in Tanzania,

[22]; in Puerto Rico, [23], in Senegal [24]) rather than estimates of vector density. Several cli-

matic factors (e.g. precipitation, temperature, relative humidity), land use (e.g. rice paddies,

marshes/swamps), features of urban areas or human activities associated with potential breed-

ing habitats, have been linked to DENV or CHIKV outbreaks.
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Few examples are available for urban areas, and mostly for endemic countries, where the

main arbovirus vector is Ae. aegypti. Acharya et al. [25] in Nepal for instance found a positive

statistical relationship between dengue incidence and proportion of urban area and negative

for proximity to roads; population density varied significantly from district to district, while

the associations of land surface temperature and normalized difference vegetation index

remained constant spatially. However, in non-endemic areas, as is the case of continental

Europe, possibly due to the paucity of large outbreaks, similar modelling exercises have not

been carried out [26].

This study employs satellite image-derived measurements and georeferenced addresses of

notified human cases during the 2017 outbreak in Rome and Anzio to explore the extent to

which habitat variables affect individuals’ risk of contracting CHIKV. In particular, we sought

to assess: 1) which environmental variables are associated with CHIKV cases; 2) the spatial

scale at which the identified association is stronger; and 3) how temperature and socio-envi-

ronmental factors might influence the risk of CHIKV transmission across different environ-

mental settings–urban (i.e. Rome) and resort town (i.e. Anzio).

Materials and methods

For this study, a dataset was built by aggregating several population and habitat variables over

a 50-meter regular grid, with a total of 11,118 geographical cells. Considered variables included

temperature records (Land surface temperature), land cover classification, landscape metrics

related to vegetation coverage, and human population density. The covered area encompasses

both the municipality of Anzio and the metropolitan city of Rome, which are about 60km

apart. GRASS GIS version 7.4.0 [27] and R version 3.4.1 [28] were used to build the spatial

dataset and to conduct the proposed analysis.

Temperature

The temperature variable (hereafter denoted as ΔLST) was calculated as the difference between

Land Surface Temperature (LST) at each grid cell and LST at a reference grid cell in the Anzio

municipality (41˚27’00” N 12˚37’51” E). This quantity, expressed in Kelvin degrees, was esti-

mated from all the available cloud-free observations (scene cloud cover lower than 70%) at a

resolution of 30m, as acquired during 2017 by TIRS thermal sensor onboard LANDSAT-8 sat-

ellite (https://earthexplorer.usgs.gov), using NDVI-derived emissivity [29] after removing

residual cloud pixels using quality band masks. Temporal median statistics were then com-

puted from time series of ΔLST. Temperature data were aggregated over time to maintain a

high spatial resolution for this crucial information. Specifically, considering that high spatial

resolution LST data are available from satellite data with decadal revisit time, ΔLST efficiently

summarizes and describes fine spatial variability of temperature, in order to identify areas that

are typically colder (e.g. natural areas) or warmer (e.g. built-up surfaces generating urban heat

islands) than a reference grid cell.

Socio-environmental variables

A land cover map was generated by considering 8 different classes based on digital multispec-

tral aerial imagery acquired by optical sensor in the visible spectrum on May 27, 2008, and on

June 27, 2008 at 0.5m spatial resolution, collected from the Italian National Geoportal (http://

www.pcn.minambiente.it/GN). Mapped land cover classes were ‘bare soil’, ‘roads/concrete’,

‘building’, ‘residential building’, ‘broadleaf vegetation’, ‘coniferous vegetation’, ‘grasslands’,

‘water bodies’. Classification was obtained using SMAP (Sequential Maximum A Posteriori)

supervised classification [30] in GRASS GIS software, which segments multispectral images
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using a spectral class model known as a Gaussian mixture distribution and spectral mean and

covariance parameters. The SMAP segmentation algorithm improves the accuracy and resolu-

tion of urban mapping by segmenting the image into regions rather than segmenting each

pixel separately. A total of 210 ground points were selected from a visual inspection of multi-

spectral aerial imagery, and used for SMAP classifier training (70%) and validation (30%).

Additionally, vector representation of single buildings and the road network reproduced in the

Carta Tecnica Regionale (CTR), collected from the OpenData portal of Lazio Region (http://

dati.lazio.it/weblist/cartografia/prodotti/2002_2003_CTRN_5K_SHP), were used as support

layers to classify different areas into three mutually exclusive classes (‘roads/concrete’, ‘build-

ing’ and ‘residential building’), and to retrieve a measure of the building volume, multiplying

the building plane area by the building height as provided by CTR for each building. Mapped

land cover achieved an overall accuracy of 87.2% and Cohen’s kappa of 0.77. For each grid cell

we computed the percentage of the three different mapped vegetation classes (ie: ‘broadleaf

vegetation’, ‘coniferous vegetation’, ‘grasslands’) and the overall vegetation coverage (hereafter

Veg cover) as the sum of three class percentages [31]. We further defined a qualitative variable

Vegetation type representing the predominant vegetation class (ie above 50%, see Table 1) in

the considered area. Finally, landscape metrics were computed using the R ‘landscapemetrics’

package [32] to evaluate the number and variability of vegetation patches within each grid cell,

specifically the Shannon diversity index (hereafter Veg div.sh), patch richness (hereafter Vegp.

rich), representing the absolute number of single vegetation patches, and the area-weighted

mean shape index (hereafter Veg awmsi) [33].

Population data were extrapolated from population 2011 census data (http://www.istat.it)

for the census sections included in the study area. Recorded population was distributed within

the residential building volume of each section, in order to spatially downscale population den-

sity (inhabitants/hectare) at grid cell level. Moreover, building volume was used to calculate

the adjusted population density, in order to take into account tourist and not only resident

data. Average population density in residential areas, calculated using the volumetric method,

was used to scale up population density in tourist-dense areas of the Anzio municipality.

Table 1. Summary of temperature and socio-environmental characteristics of case and control cells considering entire database.

Characteristics Control Cell, N = 1,272 Case Cell, N = 318 p-value3

human population density (inhabitants/hectare) 101 (5, 27) 2 141 (6, 48)2 <0.0013

Vegetation coverage 401 (28, 57) 2 341 (23, 47) 2 <0.0013

Vegetation area weighted mean shape index 0.601 (0.52, 0.82) 2 0.621 (0.52, 0.81) 2 0.53

ΔLST (˚K) 4.551 (2.61, 6.27) 2 4.341 (2.67, 5.99) 2 0.33

Vegetation Shannon diversity index 0.681 (0.57, 0.85) 2 0.681 (0.57, 0.82) 2 0.53

Vegetation patch richness 201 (13, 31) 2 201 (13, 30) 2 0.75

Vegetation classes 0.64

0 (None) 16 (<0.1%) 06 (0%)

1 (broadleaf vegetation) 366 (2.8%) 116 (3.5%)

2 (coniferous vegetation) 5216 (41%) 1396 (44%)

3 (grasslands) 7146 (56%) 1686 (53%)

Location >0.95

Anzio 6687 (53%) 1677 (53%)

Rome 6047 (47%) 1517 (47%)

1 = Median, 2 = interquartile range, 3 = Wilcoxon rank sum test; 4 = Fisher’s exact test; 5 = Pearson’s Chi-squared test, 6 = Numbers of cells with Vegetation classes

0,1,2,3 (%), 7 = Number of cells in Anzio and Rome city (%).

https://doi.org/10.1371/journal.pntd.0010655.t001
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Chikungunya cases

Chikungunya case notifications within the municipalities of Rome and Anzio were collected

by the Regional Service for Surveillance and Control of Infectious Diseases–Lazio Region [12].

Epidemiological data included for each identified case the geographic location of residence

and the date of symptom onset range: June 27 to October 12, 2017). Details on the collection

of epidemiological data are provided in [12].

Statistical analysis

We adopted a design derived from case-control epidemiological studies. Case cells were

defined as the cells of the grid where at least one CHIKV case was notified during the study

period. For each “case” cell, 4 “control” cells (i.e. cells where no cases of CHIKV were notified)

were randomly selected. Control cells were sampled by adopting a risk set scheme defined as

follows. For any case cell, at the date of symptom onset, control cells were randomly sampled

among cells without previous CHIKV cases lying within a spatial buffer of 500m from at least

one case cell. The distance of 500m was chosen according to evidence provided by a modeling

study, which highlighted that 90% of CHIKV transmission chains likely occurred within this

distance from the index case [34]. Control cells were randomly sampled from those associated

with residential locations (i.e. by discarding cells that according to data provided by the Italian

National Statistics Institute contained a zero value human density population). The final data-

set was composed of 318 case cells (167 in the Anzio municipality and 151 in the Rome munic-

ipality) and 1,272 control cells. In each cell, we first calculated the mean value of

environmental variable buffers from 0 to 250m. The maximum buffer radius was chosen to

avoid a potential overlap between the case and control cells buffers. Moreover, this distance is

consistent with the expected flight range (estimated by capture-mark-recapture data) of 95%

of Ae. albopictus adult females in 3 days [35]. Descriptive statistics were carried out with Wil-

coxon rank, Fisher’s and Pearson’s Chi-squared tests as appropriate.

We used a conditional logistic regression model to explore the association between ΔLST,

population density and environmental variables at different spatial scales and CHIKV notified

cases. We included a priori in the multivariate model the ΔLST and population density vari-

ables at the spatial scale of the CHIKV cases. However, to identify the most suitable spatial

scale for the considered environmental variables, we investigated the univariate relationships

between each of the five environmental variables (Shannon diversity index, patch richness,

area-weighted mean shape index, vegetation coverage, and vegetation type) at six geographical

levels (50m increasing circular buffers as explained above) and the logit of detecting a case,

and selected the final spatial scale associated with the best model performance, based on the

Akaike Information Criterion (AIC). Then we included in the multivariate model only the

environmental variables having a p-value smaller than 0.2 [36]. We also entered a categorical

term for case location (Anzio or Rome). Vegetation coverage was also entered after categoriza-

tion in 4 quartiles to facilitate the interpretation of interaction terms with population density.

Finally, interaction between ΔLST and location (Anzio or Rome) was considered to capture

potential differences in the LSTs between the two areas. We also fitted separate regression

models for each location.

Alternative regression models were considered for sensitivity analysis. First, we added cubic

spline terms, with 3 knots, for longitude and latitude of cell centroids instead of using a cate-

gorical variable for the location (Anzio or Rome). Second, we adjusted the population size of

Anzio to account for people residing in Anzio during summer months. Finally, for the envi-

ronmental variable having p-value<0.2 we used a quantitative variable rather than categoriz-

ing it in 4 quartiles.
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Results

Temperature and socio-environmental characteristics of case and control cells in Anzio and

Rome are shown in Table 1 and Fig 1. Compared to control cells, case cells show a higher

median population density and lower vegetation coverage (Fisher’s exact test, p-value<0.001

Fig 1. Color scales at grid cell level (50m) of vegetation coverage in percentage terms in Rome (a) and Anzio (d);

ΔLST in Kelvin degrees (˚K) in Rome (b) and Anzio (e); population density in inhabitants/hectare (in/ha) in

Rome (c) and Anzio (f). Shapefile republished from GADM database (https://gadm.org/download_country_v3.html)

under a CC BY license of Global Administrative Areas (GADM), copyright 2018–2022.

https://doi.org/10.1371/journal.pntd.0010655.g001
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Table 1). A similar number of CHIKV cases was reported from Anzio (N = 167) and Rome

(N = 151), although population density was higher in Rome (min = 1.92 max = 503, inhabi-

tants/hectare) compared to Anzio (min = 1.36 max = 92 inhabitants/hectare), and the mini-

mum and maximum median ΔLST were -0.69 and 12.47˚K and -1.34 and 8.78˚K in Rome and

Anzio respectively (Fig 1).

The results of univariate logistic models linking environmental variables and the risk of

detecting a case are shown in Tables 2 and S1. Table 2 shows the univariate model with the

lowest AIC, among the 6 buffers tested for each covariate (from 0 to 250m, range 50m). For

most considered spatial scales (from 0m to 250m buffer), environmental variables (ie Vegeta-

tion Shannon diversity index, Vegetation area weighted mean shape index, Vegetation patch

richness, Vegetation classes) were not significantly associated with a CHIKV occurrence

(Table 2, p-values<0.2). The only exception was found for vegetation coverage at the smallest

spatial scale (0-50m from the centroid of the cell covering the residence of a case) (Table 2,

p-value<0.001).

Based on the results of habitat variables, we entered Vegetation coverage as covariate in the

multivariate model (Table 3).

We found a slightly higher risk of CHIKV infection in populated and vegetated cells, as

cells that fall in the 4th quartile of vegetation coverage had a 1.8% (CI 95%: 0.01%. 3.5%)

increase in the risk of notification of a CHIKV case during the study period. CHIKV risk is

positively associated with ΔLST (i.e. cells that are cooler compared to reference cells have a

higher probability of harboring CHIKV transmission) only in Rome (Table 3).

Table 2. Summary of univariate regression models. Spatial scale of 5 environmental variables associated with the logit of detecting notified CHIKV cases in the entire

dataset (Anzio&Rome = 318 CHIKV cases).

Variables scale coef Se coef p.value AIC

Vegetation coverage 0-50mt -0.022 0.003 <0.0001 1154.83

Vegetation Shannon diversity index 200-250mt -0.194 0.434 0.654 1199.39

Vegetation area weighted mean shape index 200-250mt 0.11 0.358 0.758 1162.05

Vegetation patch richness 0-50mt -0.003 0.005 0.638 1199.37

Vegetation classes 0-50mt -0.115 0.109 0.292 1198.48

Coef = Coefficient estimates by regression model. SE coef = Standard Error.

https://doi.org/10.1371/journal.pntd.0010655.t002

Table 3. Relationship between temperature/socio-environmental variables and notified CHIKV cases resulting

from the entire dataset.

Variables OR (CI 95%)

human population density 1.007 (1.0007–1.0137)

Vegetation coverage (II quart) 0.912 (0.578–1.439

Vegetation coverage (III quart) 0.812 (0.507–1.298)

Vegetation coverage (IV quart) 0.185 (0.098–0.348)

ΔLST 0.954 (0.830–1.097)

Rome 3.569 (1.4009–9.097)

human population density*Vegetation coverage (II quart) 0.996 (0.987–1.006)

human population density*Vegetation coverage (III quart) 0.996 (0.985–1.007)

human population density*Vegetation coverage (IV quart) 1.017 (1.000–1.035)

ΔLST *Rome 0.824 (0.690–0.984)

(OR: odds ratio, lower and upper limits of 95% confidence interval). II quart = Second quartile, III quart = third

quartile, IV = fourth quartile.

https://doi.org/10.1371/journal.pntd.0010655.t003
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In sensitivity analyses we found similar results when using natural splines of geographical

coordinates of cell centroids to adjust for location instead of using a categorical variable for

location (S2 Table) or when adjusting the population density of Anzio to account for increased

density during summer months (S3 Table). Finally, we found similar results when using quan-

titative vegetation coverage variable (S4 Table).

The same multivariate model applied to the entire dataset was refitted for Anzio and Rome

separately (Table 4). In Rome we found significant associations between the risk of CHIKV

transmission with higher population density, vegetation coverage (Fig 2) and cooler cells. The

model for Anzio shows a significant interaction term between human density population and

vegetation coverage (p-value<0.001). However, a variance analysis (anova with LRT test, p-

value = 0.16) conducted to compare model performances when the interaction term is

included (or not) in the regression showed no statistical support to include the interaction

term (we obtained the opposite result when comparing the performance of different models

applied to Rome data only).

Discussion

Our results suggest that land cover and population density represent key predictors not only

for vector abundance [37–40] but also for CHIKV transmission risks. This result was shown

by the model considering data from both areas (Anzio and Rome) where locations with similar

vegetation coverage (i.e. in same quartile) but higher population density had a higher risk of

observing notifications of CHIKV cases. Indeed, after adjusting for other factors it is more

probable that a case will reside in a highly populated area. However, we showed that the

increase in risk associated with a higher population density was steeper in locations character-

ized by a larger vegetation coverage. Therefore, after adjusting for temperature differences, the

occurrence of CHIKV cases is positively associated with the presence of highly vegetated small

buffers within large populated areas. Interestingly, when considering Rome and Anzio

Table 4. Relationship between temperature/socio-environmental variables and notified CHIKV cases resulting

from Rome (N cases = 151) and Anzio (N cases = 167) data separately.

Location Variables OR (CI 95%)

Rome human population density 1.00559 (0.99837–1.0129)

vegetation coverage (II quartile) 0.60689 (0.23835–1.5453)

vegetation coverage (III quartile) 0.99406 (0.41592–2.3759

vegetation coverage (IV quartile) 0.07242 (0.02504–0.2095)

ΔLST 0.72214 (0.61043–0.8543)

human population density * vegetation coverage (II quartile) 1.00020 (0.98787–1.0127)

human population density * vegetation coverage (III quartile) 0.99334 (0.97939–1.0075)

human population density * vegetation coverage (IV quartile) 1.03115 (1.00857–1.0542)

Anzio human population density 1.033 (1.0035–1.0634)

vegetation coverage (II quartile) 0.8158 (0.3986–1.6699)

vegetation coverage (III quartile) 1.3595 (0.5801–3.1861)

vegetation coverage (IV quartile) 0.4264 (0.1102–1.6502)

ΔLST 0.9204 (0.7508–1.1283)

human population density * vegetation coverage (II quartile) 1.0085 (0.9559–1.0639)

human population density * vegetation coverage (III quartile) 0.9015 (0.8141–0.9982)

human population density * vegetation coverage (IV quartile) 0.9444 (0.7589–1.1752)

(OR: odds ratio, lower and upper limits of 95% confidence interval). CI = confidence intervals.

https://doi.org/10.1371/journal.pntd.0010655.t004

PLOS NEGLECTED TROPICAL DISEASES Spatial variability in Aedes-borne outbreaks in non-endemic area

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010655 August 17, 2023 8 / 14

https://doi.org/10.1371/journal.pntd.0010655.t004
https://doi.org/10.1371/journal.pntd.0010655


separately, this association was maintained only in the metropolitan area. Probably, this result

is due to the non-homogenous landscape characterizing the urban texture of the city of Rome,

that induces mosquitoes to aggregate within and around suitable green areas such as parks and

villas. Our hypothesis is that vegetation-covered areas in cities are probably watered regularly

creating anthropogenic breeding sites for the oviposition and development of aquatic stages

[21,41] while also being suitable habitats for biting and resting adult mosquitoes. Moreover,

the high human density surrounding places used for outdoor activities during the daily biting

activity of Ae. albopictus may increase human-vector encounters. This hypothesis is supported

by previous evidences reported by Samson et al., 2013 [42] showing that Ae. albopictus rests

during the daytime in the vegetation around residential areas, thus demonstrating that land-

scape can influence spatial distribution and behavior. Moreover, previous studies showed the

importance of vegetation in urban areas also for what concerns to outdoor resting preferences

[40,43], high plasticity in feeding behaviour [44] and rapid active dispersal [45] of Ae. albopic-
tus. In contrast with Rome, Anzio is characterized by a homogenous presence of townhouses

and villas with small gardens, which represent an ideal habitat for Aedes mosquito species.

Similarly, temperature-related effects were observed in Rome but not in Anzio (i.e. higher

odds of observing CHIKV cases in cooler cells). It is likely that in heavily urbanized areas such

as the metropolitan city of Rome, on average warmer cells are less favorable for the vector,

probably due to the morphology of the landscape not captured by vegetation coverage alone.

Our work analysed which factors may have had an impact on the occurrence of CHIKV

cases during the 2017 outbreak. Our findings on the association between highly anthropized

areas, vegetated area and the likelihood of observing cases are consistent with those coming

from endemic countries such as Tanzania [22], Senegal [24] and Sri Lanka [16], but not from

Brazil where socioeconomic conditions played a greater role than green areas in characterizing

a chikungunya outbreak [46]. However, it is important to note that in non-endemic countries

(i.e. continental Europe) the probability of observing an exotic arbovirus outbreak as well as its

final size are driven also by other variables such as the timing and frequency of arboviral

Fig 2. Estimated probability of a cell harboring CHIKV transmission in Rome using a conditional regression model.

https://doi.org/10.1371/journal.pntd.0010655.g002
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introduction from endemic countries through infected travellers. The two areas first impacted

by the 2017 outbreak (Rome and Anzio) presented the optimal conditions for experiencing an

arbovirus outbreak. Rome, hosts the major airline hub in Italy, the international airport of

Rome Fiumicino where the probability of introduction of infected travellers is not neglectable

[47]. On the other hand, Anzio is a seaside location devoted to domestic tourism and charac-

terized by favourable urban habitats for Ae. albopictus. Many people commute from here to

Rome (~60km) or other cities in the region on a daily basis therefore enhancing the probability

of further seeding local transmission [12]

The following limitations should be taken into consideration to interpret our results. Firstly,

remote sensing imagery can provide only a partial overview of the ecological characteristic of a

site with respect to its potential suitability for a mosquito population as it is currently unable to

assess the presence and conditions of potential breeding sites. Unfortunately, gathering infor-

mation on breeding sites or the type of habitat throughout just a small part of the outbreak

area (Rome = 1.200 km2, Anzio = 43 km2) would have required extensive and costly field sur-

vey, currently unfeasible for public health authorities. Moreover, the studied environmental

variable, vegetation coverage, despite being frequently used [37–40], is an aggregate measure

and therefore may provide only partial information on the type of habitat that is more suitable

for Ae. albopictus. Indeed, the high plasticity and adaptability to human and natural environ-

ment of this species pose a challenge in reducing the assessment of its habitat suitability to just

few indicator variables. Secondly, we do not have information on socio-economic conditions

and differences in our study area. It is important to note that socio-economic and demo-

graphic indices (ie. Stegomyia indices) have previously been related to dengue and chikungu-

nya cases [46,48,49] despite competing evidence suggesting a lack of reliability [50]. We may

assume that in Anzio, socio-economic conditions were homogeneous, but they may have been

an important factor in Rome. Thirdly, we assumed that the rate of case reporting was homoge-

neous over time and different residential area. If this assumption was not met, then our esti-

mates would be biased toward area with higher reporting rate. Finally, we assumed that the

infection was contracted at the geographic coordinates of residence, while the individual may

have acquired the infection in other locations (e.g., at work, at school or while commuting).

The rationale behind this simplifying assumption is based on previous modelling results [34],

suggesting that transmission mostly occurs within 500 meters of the residence of primary

infectors.

Despite these study limitations, these results suggest that within metropolitan areas, the

coexistence of specific environmental characteristics may increase the risk of CHIKV trans-

mission. Our study represents one of the first attempts to explore the relationship between

habitat variables and the occurrence of CHIKV cases in non-endemic areas and may represent

a step forward towards the assessment of possible factors influencing the transmission of

CHIKV at a micro-geographical scale. In addition, the use of satellite-derived measurements

in the considered approach offers the possibility of scaling up the developed approach to other

parts of the country and help prioritize surveillance effort and epidemiological investigation

whenever arboviral circulation is suspected.
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