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ABSTRACT 

Transhumance is an ancient practice of pastoralism that consists of the seasonal migration of herds 

and shepherds in the Mediterranean and the Alps, usually in the mountainous regions there is a vertical 

transhumance of livestock as there is a change in altitude. It begins with the ascent to high altitude, 

between late May and mid-June, and ends with the moving back to the valley floor or plains in mid-

September. 

This herding practice shapes the relationships between people, animals, and ecosystems; it has 

played a key role in proper landscape management, biodiversity conservation, soil protection, and 

maintenance of traditions. Transhumant herders have an in-depth knowledge of the environment, 

ecological balance and climate change, as well as the types of handicrafts and food production that result 

from them; in fact, it is one of the most efficient farming methods, while coping with lower average 

temperature, shorter growing season, greater soil slopes, lower soil fertility and the need for longer 

working time. By itself, mountain animal husbandry is defined as multifunctional and multidisciplinary, 

it is able in addition to integrating the environmental aspect also the economic aspect that reflects on 

tourism and social culture of the place, still ensuring the maintenance and vitality of the mountain. 

The analysis of the inter-relationships among environment, pastures, animals, and food obtained 

is fundamental for improving our knowledge on this complex mountain farming system. Metagenomic is 

a recent approach, with an increasing interest, used to study the complexity of microbial populations in 

different sectors. Metagenomics is combined with culture-dependent methods for providing a better 

characterization and understanding of the microbial communities in a lot of biological samples. In dairy 

cows, metagenomics has been used in several studies on the microbiota of rumen, and intestinal content, 

and of milk and cheese. Often these studies are sectorial, analysing only one of the matrices and without 

identifying the relationships between the matrix studied and the others or the quality traits of food 

products.  
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Therefore, the present dissertation as a general objective aims to study the metagenomics of rumen 

and intestinal contents on one side and metagenomics and quality of milk produced on the other side in 

relation to transhumance to highland pasture (and return to lowlands) as a case study. Specifically, the 

first two contributions (Juribello project) aim to study in detail the ruminal microbiota, the first, and the 

milk microbiota, the second sampled contemporarily on the same cows. In these two groups of cows from 

the same lowland farm were compared: a group that was moved to highland summer pastures and again 

to lowland, and a second (control) group that remains in indoor housing for the entire duration of the trial 

(June to October with monthly samplings). In the first contribution, the complex relationships among the 

end products of rumen fermentation, the predicted methane production, the microbiological count and the 

rumen metagenomics traits were investigated. While in the second contribution, the possible relationships 

between milk microbiota and milk quality and technological properties were studied. Special focus was 

reserved to bacterial taxa related to specific activities, such as cheese-making, health maintenance, milk 

spoilage and pathogenesis. 

The third and fourth contributions (Vezzena Project), on the other hand, concerns the comparison 

of milk from 26 cows from 4 herds during summer highland pasture and then later during indoor housing 

in valley floor farms. In the third contribution, individual milk metagenomics was associated with milk 

composition and quality, udder health, milk B vitamin content and microbiological counts. Finally, the 

fourth and last contribution aimed at evaluating the relationship between intestinal metagenomics and 

milk quality and metagenomics on the same herds and cows during the summer Alpine transhumance, 

and after returning to the lowland permanent valley farm. 

In all the 4 contributions, the microbiological, chemical and technological traits analyzed were 

studied one at a time, but also all together with a multivariate approach. Firstly, the heat-maps of the 

correlations among the analysed traits were obtained and discussed. But the large number of traits 

considered in each of the 4 contributions suggested the need of identifying few independent latent 

explanatory factors responsible of the complex relationships among the many traits analysed. Overall, the 

results of the thesis offer interesting point of view on the evolution of the microbiome of dairy cattle in 
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mountain areas, starting from the practice of summer transhumance, the different changes of pastures, 

animals’ physiology and behaviour and getting to the final products such as milk and cheese, passing 

through the microbial evolutions of rumen an intestinal contents. The use of this innovative approach that 

compares livestock data with microbiology has highlighted even more the various possible connections 

and interactions between the surrounding farming environment, animals and consequently the final 

products. The various future perspectives merit in-depth analysis and interpretations of new possible 

interconnections between the microorganisms (bacteria) and the other animal compartment (rumen 

content, intestinal content and milk) considered within this thesis and microorganisms (yeasts) and 

products (cheese) not included here (but under analysis). 
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RIASSUNTO 

La transumanza è un’antica pratica del pastoralismo che consiste nella migrazione stagionale di 

greggi e pastori, mandrie e mandriani nel Mediterraneo e nelle Alpi. Nelle regioni montane si effettua una 

transumanza verticale del bestiame, in quanto si ha un cambiamento di quota. Inizia con la salita in quota 

per la monticazione, tra la fine di maggio e metà di giugno, e termina con la demonticazione, cioè la 

ridiscesa nel fondovalle o pianura verso la metà di settembre. Questa pratica di allevamento modella le 

relazioni tra persone, animali ed ecosistemi; ha avuto un ruolo fondamentale per la corretta gestione del 

paesaggio, la conservazione della biodiversità, la protezione del suolo, il mantenimento delle tradizioni. I 

pastori transumanti hanno una conoscenza approfondita dell’ambiente, dell’equilibrio ecologico e dei 

cambiamenti climatici, oltre alle tipologie di artigianato e alle produzioni alimentari che ne derivano, si 

tratta infatti di uno dei metodi di allevamento più sostenibili ed efficienti, facendo comunque fronte alla 

temperatura media più bassa, stagione di crescita più breve, maggiori pendenze del suolo, minore fertilità 

del suolo e la necessità di un orario di lavoro più lungo. Di per sé la zootecnia montana si definisce 

multifunzionale e multidisciplinare, è in grado in integrare oltre l’aspetto ambientale anche quello 

economico che si riflette su turismo e cultura sociale del luogo, assicurando ancora il mantenimento e 

vitalità alla montagna. 

L’analisi delle interrelazioni fra ambiente, pascoli, animali e alimenti ottenuti è fondamentale per 

migliorare le conoscenze su questo complesso sistema zootecnico montano. La metagenomica è un 

recente approccio con un interesse sempre più crescente, viene usata per studiare la complessità della 

composizione microbica in settori differenti. La metagenomica combinata con i metodi di coltura-

dipendenti fornisce una migliore caratterizzazione e comprensione delle comunità microbiche in diversi 

campioni biologici. Nel caso dell’allevamento delle vacche da latte la metagenomica è stata impiegata in 

numerosi studi sul microbiota del contenuto ruminale o intestinale, del latte e del formaggio.  Spesso 

questi studi sono settoriali, analizzando solo una delle matrici prima ricordate e senza approfondire le 

relazioni fra la matrice studiata e altre matrici e/o la qualità degli alimenti prodotti. 
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Pertanto, la presente tesi di dottorato come obiettivo generale mira a studiare la metagenomica del 

contenuto ruminale e intestinale da un lato e del della metagenomica e caratteristiche qualitative del latte 

dall’altro, in relazione alla monticazione e demonticazione come caso studio. Nello specifico i primi due 

contributi (Progetto Juribello) hanno come obiettivo lo studio dettagliato del microbiota ruminale, il 

primo, e il microbiota del latte, il secondo, da campioni prelevati contemporaneamente sulle stesse bovine. 

In questi due studi si mettono a confronto due gruppi di vacche della stessa stalla: uno che attua la 

transumanza estiva in pascoli di alta quota, e l’altro (come gruppo di controllo) che rimane in stabulazione 

nell’azienda di fondovalle per tutta la durata della prova (da giugno a ottobre con campionamenti mensili). 

Nel primo contributo si sono andate a ricercare le possibili relazioni tra microbiota ruminale con VFA 

ruminali e produzione di metano. Il secondo contributo è volto invece allo studio in dettaglio del 

microbiota del latte con le sue possibili relazioni con la qualità del latte e le proprietà tecnologiche, con 

particolare focus ai taxa batterici legati a varie attività specifiche, come caseificazione, mantenimento 

della salute, deterioramento del latte e patogenesi, oltre sempre a tenere in considerazione anche gli effetti 

della transumanza estiva. 

Il terzo e il quarto contributo invece (Progetto Vezzena) riguardano il confronto del latte di 26 

vacche provenienti da 4 aziende durante la transumanza estiva e poi successivamente durante la 

stabulazione in stalla di fondovalle. Nel terzo contributo si è andati a studiare in dettaglio la metagenomica 

individuale del latte associata alla composizione e qualità del latte, salute della mammella, contenuto di 

vitamine B nel latte e conte microbiologiche. Infine, il quarto e ultimo contributo riguarda le complesse 

relazioni tra la metagenomica intestinale e la qualità e metagenomica del latte durante la transumanza 

estiva e dopo il ritorno all’allevamento di fondovalle in pianura. 

In tutti i 4 contributi, le variabili microbiologiche, chimiche e tecnologiche analizzate sono state 

studiate una ad una, ma anche tutte assieme con approcci multivariati. Prima di tutto sono state ottenute e 

discusse le heat-maps delle correlazioni fra tutte le variabili. Ma il grande numero di variabili analizzate 

in ciascuno dei 4 contributi ha suggerito la necessità di identificare pochi fattori latenti indipendenti in 

grado di spiegare la maggior parte delle complesse interrelazioni fra le variabili analizzate. 
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Complessivamente i risultati della tesi offrono un interessante punto di vista sul microbioma dei bovini 

da latte allevati nelle zone montane, a partire dalla pratica della transumanza estiva, dai diversi 

cambiamenti dei pascoli, la fisiologia e il comportamento degli animali fino ai prodotti finali come latte 

e formaggio. L’utilizzo di questo approccio innovativo che mette a confronto i dati zootecnici con la 

microbiologia ha evidenziato ancor di più le varie possibili connessioni e interazioni tra l’ambiente di 

allevamento circostante (pascolo di alta quota, o allevamento di fondo valle), gli animali e di conseguenza 

i prodotti lattiero-caseari che ne derivano. Le varie prospettive future meritano un’analisi approfondita 

sulle nuove interconnessioni tra i microorganismi (batteri) e i comparti (rumine, intestino, latte) riportati 

in questa tesi e gli altri microrganismi (lieviti) e comparti (formaggio) non considerati in questa tesi, ma 

previsti nel progetto di ricerca e in corso di studio. 
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GRAPHICAL ABSTRACT 

 

 



 

9 

 

 

  



 

10 

 

GENERAL INTRODUCTION 

The summer transhumance practice and its role in mountain areas 

In the past, in mountain regions of many European countries, livestock farming and human 

activities were of great importance for the rural economy, maintaining the cultural heritage, the 

preservation and protection of the landscape, biodiversity, natural habits and conservation of local 

traditional dairy products (Mack et al., 2013; Sturaro et al., 2013a). The ancient human use of mountain 

slopes for hay meadows has contributed greatly to the colourful appearance of the European Alps in early 

summer. Transhumance is an age-old practice of pastoralism to cope with ecological variability and take 

advantage of the seasonal availability of pasture and water resources (Brottem et al., 2014); nowadays, it 

still plays a crucial role in the dairy farming system, landscape, and benefits ecosystem conservation, 

although a drastic reduction has been observed in recent decades (Leroy et al., 2018).  

The word transhumance derives from the Latin words trans, which means “across”, and humus, 

which means “soil” or “land”. In fact, this practice is based on the vertical movement of livestock from 

winter lowland permanent farms to summer alpine pastures where temporary highland farms are located. 

Highland temporary farms are the constructions used seasonally as shelter for animals during the 

transhumance summer period and are also known as Malga in North Italy, Alm in Germany, Swiss and 

Austria, and Alpage in France. They are usually smaller than the modern barns located in the permanent 

farms in the valleys and lowlands, since topographical and climatic constraints have limited the 

opportunities for intensification. Usually, these temporary farms are also equipped with milking-room and 

dairy facilities, including a small ripening room, for the production and the early ripening of farmhouse 

cheese, providing an appreciable added value, nutritional and renowned quality, to products and systems 

that have to deal with difficult conditions and low productivity.  

Farming in mountain areas has several limitations and difficulties to face. The local climate, the 

limited growing season for culture, steep slopes, and less fertile soils lead to the need for additional efforts 

and complex machinery, resulting in lower productivity and much longer times compared to an intensive 
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farming system. During the summer grazing season, mountain farmers moved the animals and hay making 

from one pasture to another, or meadow to meadow, in order to follow the natural renewal of grasses 

spreading upwards during spring and summer, and to make full advantage of the available territory by 

chasing the vegetation gradient. Due to the great distances and changes in altitude, mountain communities 

commonly occupied a succession of settlement sites, moving from one exploitation area to another.  

Currently, the rapid changes experienced by agrarian practises (intensification in the valley, 

mechanization and abandonment of mountain areas), led in the last decades to the progressive 

abandonment of farming in marginal areas, and consequently, also the highland pastures (from 600 to 

2.500 m a.s.l), resulting in the reappearance of trees on pastures that had been used for centuries 

(MacDonald et al., 2000; Strijker, 2005) causing alteration in the composition, structure and function of 

mountain ecosystems.  

The shift to intensive livestock systems has affected the livestock sector, creating several alarms 

about environmental and dairy sustainability in mountainous areas, including the abandonment of pastures 

and alpine farms. For many years, the reduction of grazing in highland pastures has been associated with 

soil degradation, reforestation, loss of biodiversity and loss of aesthetic quality of the landscape 

(Streifeneder et al., 2007; Ramanzin et al., 2009; Sturaro et al., 2009). For these reasons, nowadays 

mountain farming  is strongly subsidized for the preservation of landscapes, accessibility of tourists and 

recreational environments, control of woods advance, maintenance of local traditions, and last but not 

least  the conservation of local flora and fauna biodiversity (Kianicka et al., 2010; Battaglini et al., 2014; 

Fuerst-Waltl et al., 2019). Moreover, traditional products with the long-standing historical culture of these 

communities and the new opportunities for tourists can be strengthening the local economy. Transhumant 

farmers have an in-depth knowledge of the environment, ecological balance and climate change as it is 

one of the most sustainable and efficient farming methods, as well as possessing excellent skills in 

handicrafts, food productions (MacDonald et al., 2000). Every farming practice is also shaped by the 

environment, topography and climate, and this seasonal practice is a particularly complex agricultural and 

social phenomenon in which people and animals exploit, through movement, the seasonality of different 
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environments. Maintaining transhumance helps contribute to a sense of local identity in an ever-

globalizing world. 

Several studies have been carried out, focused on the investigation of positive effects of mountain 

transhumance: the benefit on the biodiversity of grasslands in particular when compared with of 

abandonment or intensity of grazing (Parolo et al., 2011), the positive mitigating effect on the 

environmental impact of farming (Penati et al., 2011; Guerci et al., 2014), the positive effects on animal 

health and welfare (Mattiello et al., 2005; Corazzin et al., 2010; Comin et al., 2011), and the positive 

influence on the bacterial sensorial and nutraceutical properties of milk (Martin et al., 2005; Gorlier et al., 

2012; Carafa et al.,2020).  

 

The metagenomic approach 

Metagenomics is a recent addition to the molecular toolbox and is the simplest and most unbiased 

way to test the dynamic of microbial populations. It is very powerful approach to study the complexity of 

environmental microbiota, and some of the main ways in which this method can be applied are: 

comprehensive analysis of microbial diversity, functional analysis of microbial communities, discovery 

of new microorganisms and genes, identification of microbial interactions and monitoring of 

environmental changes.  

Microbial studies, including microbiology and microbial ecology, are highly influenced by 

culture-dependent and culture-independent approaches. Briefly, culture-dependent methods involve the 

isolation and characterization of microorganisms based on their ability to grow on specific culture media 

under controlled laboratory conditions, but this have some limitations due to their dependence on 

laboratory conditions, and additionally not all microorganisms can be cultured in the laboratory. While 

the culture-independent methods, such as Next-Generation Sequencing (NGS), are complementary to 

culture-dependent methods; they provide a more comprehensive view on the microbial community, 

including the uncuclturable microorganisms and their functional potential. However, these methods also 

have limitations, such as the inability to determine the viability of microorganisms, the possibility of 
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contamination, and the lack of information about the specific growth requirements of individual 

microorganisms. A combination of both culture-dependent and culture-independent technologies may 

provide a better characterization and a more complete understanding of the microbial communities, than 

that obtained when using each approach independently. 

This analysis encompasses a wide range of biological ecosystems: it is possible to characterise the 

microbial communities in a lot of biological samples that were difficult to investigate with classical 

microbial analyses cause their symbiotic nature (rumen fluid or fecal samples; Dowd et al., 2008); 

obtaining new relevant information on the different microbial  taxa present in these samples. In the context 

of milk, metagenomics can be particularly useful for several reasons. Milk is a complex and dynamic 

ecosystem that contains a diverse range of microorganism, including bacteria, yeast, and fungi, which can 

impact milk quality and safety. By applying metagenomic analysis to milk samples, researchers can obtain 

information on the diversity and functional potential of the milk microbiome, including the possible 

presence of potentially pathogenic microorganisms. 

Therefore, a key advantage of this approach is that it offers a potential means of investigating the 

genomic properties of the large proportion of bacteria, archea and viruses that are suitable for standard 

culture techniques. Consequently, metagenomics is of great importance to the understanding of microbial 

ecology, shedding new light on both phylogenetic and functional perspectives.  

 

The effects of transhumance on animals and final products 

 Alpine pasture is an important feed resource, that is often considered only for some negative 

aspects such as:  low productivity, limited nutritional value, high fibre content and seasonal variations 

(Leiber et al., 2006; Zendri et al., 2016). Alpine pasture has also a lot of positive aspects: they are unique 

in terms of plant biodiversity, generally consisting in complex plant communities, mainly herbs with 

smaller presence of legumes and forages. Soil properties, altitude, climatic and edaphic factors affect their 

botanical composition.  
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Ruminants, through a symbiotic relationship with their rumen microbiota, rely completely on their 

rumen for fermentation of ingested plant material into essential nutrients and energy (Mizrahi, 2013; 

Matthews et al., 2019). Rumen is the largest compartment in the gastrointestinal tract (GIT) of bovines: it 

could be compared to a pre-gastric anaerobic fermentation chamber where is working an ecosystem, 

known as the rumen microbiota consisting of various microbes including bacteria (95% of the total), 

protozoa and fungi (Mizrahi, 2013). Rumen internal environment is portioned into different sacs by 

reticulo-ruminal fold in which the ingested food enters the rumen. The contribution of rumen microbiota 

varies with the host; the choice and development of gut microflora hence is a collaborative play of host 

genetics as well as environment. 

Various studies have shown that microbial colonization of the rumen occurs as soon as the animal 

comes in contact with the outer world, even weeks before the rumen actually become functional (Fonty 

et al., 1987; Jami et al., 2013). The bacteria population, the most abundant ruminal microorganisms (Sirohi 

et al., 2012), is affected by the type of the diet by the host ruminants (Henderson et al., 2015), and it can 

be grouped accordingly to the type of substrate fermented, such as cellulose, hemicellulose, starch, sugars, 

intermediate acids, proteins, and lipids and produce methane. Over the last two decades, knowledge about 

the rumen microbial ecosystem has evolved and changed considerably with the advent of molecular 

techniques such as PCR and DNA-fingerprint methods (Dohrmann et al., 2004; Kim et al., 2011). The 

recent studies by sequencing bacterial 16S rRNA genes showed that there is a group of core bacteria in 

the rumen, with Firmicutes and Bacterioidetes the most predominant bacterial phyla (Liu et al., 2016; 

Mayorga et al., 2016; Sun et al., 2019). At the genus level, Prevotella, Butyrivibrio, and Ruminococcus, 

as well as unclassified Lachnospiraceae, Ruminococcaceae, Bacteroidales, and Clostridiales were the 

most abundant bacteria (Henderson et al., 2015). 

Changes and manipulations in the rumen bacterial community, such as diet supplementation, can 

significantly affect the health and productivity of ruminants, and more sustainable and efficient livestock 

(Lourenco et al., 2020). The adaptability of rumen microbiota is a key feature of ruminant physiology and 

survival strategy (Russell and Rychlik, 2001; McCann et al., 2014).  
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Numerous studies have reported that the rumen bacterial community is influenced by various 

factors, such as species, diet, age, health conditions, feed additives, season and geographical location. 

Nakano et al., (2013) showed that rumen microbiota needs 3-4 weeks to adapt to a pasture based ration 

when no gradual adaptation to the new nutritional situation is granted. Furthermore, De Menezes et al., 

(2011) demonstrated in a cross-over design, with two weeks of diet adaptation, that the rumen bacterial 

and archea community of TMR and pasture fed dairy differs significantly. In both Prevotellaceae were 

more prevalent on pasture, and a possible key role of this bacterial family in reducing methane production 

and in transitioning cows to a pasture-based ration was suggested (De Menezes et al., 2011; Nakano et 

al., 2013; McCann et al., 2014). Depending on the microbiota composition, the feeding nutrients input are 

transformed in an output product (milk and meat protein for humans) in a more or less efficient manner. 

As soon as the feed particles arrive in the rumen, they are colonized by different microorganisms within 

minutes (Martin et al. 1993; Edwards et al., 2007). Microorganisms can digest feedstuff, such as 

carbohydrates, protein and fiber obtaining energy, volatile fatty acids, vitamins and microbial protein that 

play important roles in the host metabolism (Flint and Bayer, 2008; Beaudet et al., 2016; Snelling and 

Wallace, 2017). Fermentation of carbohydrates, structural and non-structural, plant fiber and starch the 

most important, in the rumen leads to the formation of volatile fatty acids (VFA), carbon dioxine (CO2), 

hydrogen (H2), and microbial biomass. In detail, VFA, mainly acetate, propionate and butyrate, can 

provide up to 70-80% of the animal’s energy requirements (Bergman, 1990; Flint and Bayer, 2008).  

Diet and methane-producing bacteria influence the proportion of VFA, over these also depend 

largely on pH. Methanogenic bacteria are the second most abundant class of microorganisms, belonging 

to the kingdom archea (up to 99% of all archea) (Moissl-Eichinger et al., 2018). They are responsible for 

regulating the overall fermentation that takes place in the rumen, and contributing ~40% off global 

agriculture’s greenhouse gas emissions (GHGE) through the production of methane. This production, as 

known as methanogenesis, not only negatively impacts on the environment, but it is also an energy loss 

to the host animal, which ultimately directly impacts farm profitability.  
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To remove the carbon dioxide and methane from the rumen, the cow regularly eructates these 

gases (Mizrahi, 2013). During the degradation of ingested feed particles, some members of the rumen 

community produce hydrogen (H2), as the end product of fermentation. Therefore, methanogenesis acts 

homeostatically, in that it results in the expulsion of excess hydrogen by promoting the continuation of 

fermentations. While methanogens directly produce methane, various other bacteria, fungi and protozoa 

collude to produce a variety of fermentation end products, some of which act to supply the methanogens 

with substrate for methanogenesis, such as CO2 and H2. The methanogenesis process is energy inefficient, 

and has the capability to divert an estimated 6-12% of the animal’s gross dietary energy intake away from 

productive aspects of the animal’s performance, i.e., muscle growth or milk production.  

The protozoal genera present in the rumen are influenced by feeding practices, and are in higher 

numbers when high-digestibility diets are fed, they also appear to be a stabilizing factor for fermentation 

end products. Fresh plants on pasture phenolic compound tannins could affect rumen protozoa due to its 

toxicity (McMahon et al., 2000; Vasta et al., 2010). While the protozoa are an integral part of the microbial 

population and have a marked effect on the fermentation, their benefit to the ruminant is still controversial. 

The anaerobic fungi are the most recently recognized group of rumen microbes. When animals are fed a 

high forage diet, rumen fungi may contribute up to 8% of the microbial mass. While it is still unclear 

whether these fungi are functionally significant, they have been shown to degrade cellulose and xylans, 

indicating some role in fiber digestion. 

Another critical rumen function is microbial protein synthesis by rumen microbes, which can use 

ammonia nitrogen as a source of nitrogen. Ammonia is obtained through microbial degradation of dietary 

protein and dietary non-protein nitrogen, from hydrolysis of recycled urea to the rumen, and from 

degradation of microbial crude protein. While it disappears from the rumen in different ways, such as 

incorporation of the nitrogen by microbes, absorption through the rumen wall, and flushing to the 

omasum. The ruminant animals rely upon microbial crude protein synthesized in the rumen and dietary 

protein which escapes digestion in the rumen for its supply of amino acids (Pfeffer and Hristov, 2005). 

The amino acids are absorbed and utilized in the small intestine. Most of them are used in the synthesis 
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of body proteins, such as muscle and milk protein. Further, also urea can be actively transported from the 

blood to the lumen (urea recycling, depending of the dietary N content), supplying the rumen 

microorganisms with N, thereby increasing the microbial protein synthesis and allowing to augment diet 

low in N (Pfeffer and Hristov, 2005).  

In addition to microbial protein, studies of rumen microbial vitamins have been conducted for 

decades and rumen fermentation could synthesize B group vitamins, including thiamine, riboflavin, 

niacin, vitamin B6, folates, and vitamin B12 for mature ruminants (Beaudet et al., 2016; Castagnino et al., 

2016; Seck et al., 2017). Seck et al., (2017) suggested that the differences in feed ingredients and nutrient 

composition may play an important role in the difference in vitamins production. The vitamin B12 

producers in the rumen were members of the genera Anaerovibrio, Mitsuokella, and Selenomonas within 

the Firmicutes (Seshadri et al., 2018). 

Rumen microbes rapidly and extensively modify dietary lipids. Hydrolysis in the rumen proceeds 

rapidly after ingestion. Following the breakdown of lipids, the microbes are responsible for 

biohydrogenation, or the addition of hydrogen to fatty acids with double bonds. 

After considering the ruminal and fecal microbiome, it is important to pay attention to the bacterial 

community of the cows’s teat skin, which is highly dependent on the rearing environment. 

Microorganisms colonize the teat through, for example, contact between skin and bedding material, a 

factor that depends on the type of animal housing and the feeding conditions of the animals (Zdanowicz 

et al., 2004; Verdier-Metz et al., 2012). Another source of variation could also be due according to the 

characteristics of pastures that create more or less favourable conditions (relative humidity, temperature, 

and ultraviolet radiation) for colonization of the phyllospere by bacteria, yeasts, and filamentous fungi. In 

addition, hygienic practice during milking (washing of milking equipment, care of teats before and after 

milking) are also further sources of microbiome variation. Frétin et al., (2018) have highlighted how the 

grazing system is a potential secondary source of microbial diversity in cheese, and how it is a key factor 

in the assembly of the teat skin microbiota. 
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The microbial composition of milk is highly dependent on the composition of the microbiota of 

the various reservoirs that are directly in contact with the milk, including teat skin and the milking 

equipment. The milk microbiome has always need attention. The theory about the evolutionary benefits 

of a microbiota in milk is, in brief and freely interpreted, as follow: The gut microbiota is essential for 

health and wellbeing of mammals, facilitating uptake of nutrients and providing the host with vitamins, 

etc. consequently, establishing the gut microbiota is a highly important event. Milk is produced in order 

to provide the offspring with nutrients during the first period in life. A bacterial community present in 

milk would, thus, inoculate the intestines of the offspring during the critical phase of gut microbiota 

establishment and be beneficial for the offspring (Martín et al., 2004). 

Over the environment and farming in mountainous areas, summer grazing, would appears, over 

recent years, to have a beneficial aspect for animal welfare and health (Corazzin et al., 2010) due to the 

change in physical environment and diet. Some point of views on important issues regarding the effects 

of transhumance on nutritional status and on milk production and milk quality, which is often processed 

into high-value products, have been analysed in several previous studies (Leiber et al., 2006; Romanzin 

et al., 2013; Sturaro et al., 2013b; Farruggia et al., 2014; Zendri., 2016). While the knowledge on 

comparing cow’s kept on lowland farms with those temporarily moved to highland pasture during the 

summer are limited (Saha et al., 2019; Carafa et al., 2020). In addition, several other changes occur, such 

as physiological, increased energy expenditure and body fat mobilisation associated with daily grazing 

activity, losing body conditions, ruminal ecosystem alterations, new interactions with other animals if 

mixed herds, and new behaviour adaptations to the surrounding environment (Berry et al., 2001; Leiber 

et al., 2004). All these conditions cause a state of nutritional imbalance in lactating cows, which have 

some bearing on milk production, milk composition, cheese-making properties, fertility and health. 

Therefore, pasture supplementation with some concentrates is generally advised for lactating animals. 

Milk and dairy products are an excellent source of different components of most diets. Dairy products 

from animal alpine grass feed-based are believed to be healthier due to their favourable fatty acid profile 

and are positively perceived by consumers for their taste, health, wholesomeness and animal welfare 
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characteristics. It is well known that dairy cows fed on pasture-based diets, characterised by high botanical 

biodiversity, produce milk with distinctive organoleptic and nutritional qualities, e.g. it is richer in 

unsaturated fatty acids than cows fed on total mixed rations, or on hay-based diets or concentrated cereal-

based feeds. Several studies have shown that these fatty acids (FA) are beneficial for human health, and 

the effect of grazing on the FA composition of milk, cheese and rumen is highly variable and depends on 

many factors such as the amount of grass intake, the botanical and chemical composition and vegetative 

stage of the pasture, and of course the amount of feed in the diet. In recent years, the influence of the 

feeding system on composition has received much attention, in particular for polyunsaturated fatty acids 

(PUFA), which are beneficial to health because they are able to reduce the risk of cardiovascular disease 

and, in animal models, conjugated linoleic acids (CLA) have been shown to be involved in 

anticarcinogenic, immunomodulatory and antidiabetic activities (Dewhurst et al., 2006).  

In dairy production, a small variation in milk composition can be attributed, directly or indirectly, 

to several aspects. Some of these factors include breed, individual, stage of lactation, diet, animal health, 

herd management, variation in the feeding system and the impact of seasonal changes end environmental 

conditions. Alpine grazing generally results in a milk yield decline as a consequence of moving to and 

staying on the pastures (Leiber et al., 2006; Zendri et al., 2016). Similarly, the nutritional aspects and 

chemical composition of milk produced in Alpine areas have been well studied. Milk fat is typically lower 

for cows fed high-quality pasture as compared to cows receiving stored forages. The lower protein level 

in milk produced in mountain pastures could be due to low energy supply and hypoxia, which are 

characteristic of high mountain pastures (Leiber et al., 2006). 

Diverse studies have been conducted to try understand better the relationship between alpine 

pastures and milk quality during summer grazing period. The nature of the mountain and alpine pasture 

ingested by ruminants is the main factor of variation in the organoleptic and quality properties of dairy 

products, over the added value of the milk obtained, destined mostly for the production of high-value 

cheeses (Bovolenta et al., 2009; Bergamaschi et al., 2016). Actually, the obtained cheese has a more 
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intense odour, flavour, and colour, compared to that obtained from the milk of cows fed hay and silage 

rations (Coulon et al., 2004). 

For a long time, there has been agreement on the idea that milk is produced sterile and becomes 

contaminated at sampling (Rainard, 2017). In recent years this idea has been challenged when sequencing 

techniques have been used to study the bacterial composition in milk (Oikonomou et al., 2012; Kuehn et 

al., 2013).   

Milk microbiota has been shown to be influenced by many factors including region, season, 

cowshed environment, and hygienic management of milking (Latorre et al., 2010; Kable et al., 2016; 

Doyle et al., 2017; Seon Kim et al., 2017). 

Overall changes in pasture nutritive value that occur between seasons, with spring pasture having 

a greater nutritive value as compared with summer/autumn pasture (Delagarde et al., 2000; Brink et al., 

2007) and a potentially greater energy deficit in the summer months compared to spring. Delagarde et al., 

(2000) observed a decrease in crude protein content (45%) from the top to the bottom 5 cm of the ryegrass 

sward. In contrast, NDF, lignin and non-structural carbohydrate tend to increase from the top to the bottom 

of the pasture sward (Delagarde et al., 2000; Brink et al., 2007; Griggs et al., 2007; Nave et al., 2014). 
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AIMS 

Over the past few years, there has been a growing interest in summer transhumance of livestock 

on the one hand, and the complex living entities defined as microbial communities in different anatomical 

sites, from the most obvious to the less obvious, on the other. 

Given these interests, the research conducted during my PhD studies and presented in this thesis 

aimed to provide new insights and extending the knowledge on the interaction of summer Alpine 

transhumance and the complex and dynamic microbial communities. Ultimately, this research could have 

important implication for improving the sustainability and efficiency of the dairy industry. 

In detail, the study focused on the evolution of the microbiome starting from pasture, moving 

through rumen, feces and the ending to final products such as milk, taking into consideration the possible 

positive effects on animals and humans. 

 

Specific aims were:  

 To study the individual end products of rumen fermentation of Brown Swiss cows affected by 

the summer highland pasture, compared with a control group kept in a lowland permanent farm 

during the trial in order to find possible relationship with predicted methane, microbiological 

counts, and rumen metagenomics traits (Chapter 1). 

 To compare the effects of transhumance to highland summer pasture of Brown Swiss with a 

control group kept in lowland farm conditions towards milk metagenomics and cheese-making 

properties (Chapter 2). 

 To assess the milk microbiota variation during and after transhumance to highland summer 

pasture of Simmental cows, and to characterize milk composition, quality traits, and the milk 

B-vitamins content. The study involved four summer farms located at Passo Vezzena (Trento), 

and four lowland permanent farms in Trentino province. The data were collected individually 

from a total 26 cows during and after transhumance (Chapter 3).  
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 To analyze the relationship between intestinal metagenomics and milk quality and 

metagenomics of 4 herds (5-7 cows/each) during the summer Alpine transhumance, and after 

returning to the lowland permanent valley farm (Chapter 4). 
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INTERPRETIVE SUMMARY 

 

 

Rumen fluid fermentation and metagenomic traits as affected by indoor farming and summer 

highland grazing 

By Secchi et al., page 000. This research deals with the study of rumen microbiota, rumen fermentation 

traits and their interactions in dairy cows. Two groups of cows of the same herds, one maintained indoor 

from June to October, the other moved (July to September) to Alpine pastures were monthly sampled for 

the analysis of 10 fermentation traits of the rumen fluid and for microbiological analyses. Six microbial 

counts and the relative abundancies of 21 rumen bacterial taxa characterized the rumen microbiota during 

the experiment. Almost all traits were affected by the summer transhumance to Alpine pasture, but the 

carryover effect after returning to indoor farming were modest. The complexity of the relationships among 

the traits studied allowed to obtain 5 latent factors explaining rumen fermentation traits, 8 latent factors 

explaining the rumen microbiota, and 10 latent factors when the two datasets were merged. Six of these 

latent factors included contemporarily traits from the two datasets demonstrating the strong relationships 

between rumen microbiota and rumen fermentation activity. 

. 
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ABSTRACT 

The rumen microbiome consists in an extremely biodiverse environment, which includes bacteria, 

archea, fungi and protozoa. The rumen microbial populations contribute to the health and productivity of 

ruminants, and shift when dairy cow changes diet. To this end, we investigated the complex relationships 

between rumen metagenomics and rumen fermentation pattern as affected by indoor farming and summer 

highland grazing sampling monthly (5 months) the rumen fluid produced by 12 Brown Swiss cows divided 

in two groups: the first remained in a lowland indoor farming condition from June to October; the second 

was moved to highland pastures from July to September, and then returned to lowland farm. After DNA 

extraction and Illumina Miseq sequencing, a total of 60 rumen fluid samples were also processed by means 

of an open source pipeline called Quantitative Insights Into Microbial Ecology (Qiime2, version 2018.2; 

https://qiime2.org); microbiological analysis were also performed. Moreover, the rumen fluid was 

analyzed for quantifying the ammonia nitrogen and the volatile fatty acids concentration and to estimate 

the methane production.  

Six microbial counts and the relative abundancies of 21 rumen bacterial taxa characterized the rumen 

microbiota during the experiment. Almost all traits were affected by the summer transhumance to Alpine 

pasture, but the carryover effect after returning to indoor farming were modest. The complexity of the 

relationships among the traits studied allowed to obtain 5 latent factors explaining rumen fermentation 

traits, 8 latent factors explaining the rumen microbiota, and 10 latent factors when the two datasets were 

merged. Six of these latter latent factors included contemporarily traits from the two datasets 

demonstrating the strong relationships between rumen microbiota and rumen fermentation activity. 

This study provides a broad picture of the microbial populations in the rumen liquid of dairy cows 

reared in the permanent farm or in a summer temporary farm, and their co-occurrence implicates specific 

relationship between different microbial domains in response to dietary and environmental changes. 

 

Keywords: rumen fluid microbiota, volatile fatty acids, rumen ammonia, enteric methane emission, 

summer Alpine transhumance.  
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INTRODUCTION 

The rumen resident microbial population and its potential roles have been the focus of extensive 

research in recent years and have contributed significantly to the understanding the ruminant nutrition. 

Ruminants can feed on plant material rich in cellulose and hemicellulose thanks to the action of the 

microbial community living in symbiosis in the rumen. Bacteria account for more than 95% of the total 

number of microorganisms, including anaerobic fungi, protozoa, and methanogenic archea, and they are 

able to degrade plant lignocellulosic matter, contributing greatly to the health status and energy 

requirements of the host (Mizrahi, 2013; Kuma et al., 2015).  

Although they have flexible metabolic capacities, ruminal microorganism populations are 

influenced by various external factors, such as diet composition and physical characteristics of feed, 

feeding frequency, age, geographical location and ruminant-host interaction, all of which affect the 

maintenance, performance and productivity of animals (Denman and McSweeney, 2006; Sirohi et al., 

2012; Mizrahi and Jami, 2018; Zeineldin et al., 2018). 

During summer transhumance cows experience an extreme change of diet end environment, they 

have a higher energy requirement due for the physical activity considerably increases when grazing in the 

mountains. These factors could cause a nutritional imbalance and influence the rumen microbial 

community structures, as well as the production, quality and composition of milk (Leiber et al., 2006; De 

Menezes et al., 2011; Zendri et al., 2016a) and dairy products (Bergamaschi et al., 2016 ; Bittante et al., 

2022). 

Exploring the microbial composition and interactions occurring in the rumen is fundamental for 

driving rumen function towards enhancing animal health and productivity. Many metagenomics studies 

have opened new frontiers on investigating the biodiversity of rumen, the relation between dietary shifts, 

microbial composition and methane emissions, have been performed recently (Kumar et al., 2015; 

Denman et al., 2018; Delgado et al., 2019).  

Methanogenic bacteria (up to 99% of all Archea) are the second most abundant class of 

microorganisms (Moissl-Eichinger et al., 2018) and responsible for regulating the overall fermentation 
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that takes place in the rumen, contributing about 40 % of global agriculture's greenhouse gas (GHGE) 

emissions through methane production (FAO, 2020). This production, known as methanogenesis, has both 

a negative impact on the environment, as well as representing a loss of energy for the host animal, directly 

impacting livestock profitability and being largely affected by breed of cows and farming systems 

(Bittante et al., 2018; Martínez-Marín at al., 2023). While methanogens produce CH4 directly, various 

other bacteria, fungi and protozoa collaborate to produce a variety of fermentation end-products, some of 

which act to provide the methanogens with the substrate for methanogenesis, such as CO2 and H2; these 

gases are regularly erupted by cows (Mizrahi, 2013). 

In the rumen, volatile fatty acids are produced by fermentation of organic matter. The predominant 

VFA are acetic, propionic and butyric acids, with isobutyric, valeric, iso-valeric, 2-mehylbutyric and 

others generally present in relative small amounts. The concentration and the relative proportions of VFA 

were related to the nature of the feed (Bergman, 1990). VFA are produced in large amounts through 

ruminal fermentation and are of paramount importance in that they provide greater than 70% on the 

ruminant’s energy supply (Bergman, 1990; Flint and Bayer, 2008). 

Therefore, the general aim of this research was to study the effects of farming systems, and 

particularly the extreme conditions of summer Alpine pasture vs indoor feeding, on the fermentation end 

products concentration in the rumen fluid and the composition of rumen microbiota and the possible 

relationships between rumen fermentation and rumen metagenomics traits. 
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MATERIALS AND METHODS 

The experimental design and rumen fluid sampling 

This work is part of a larger project (Juribello project) on the effect of transhumance of cows to 

summer highland pastures on their productivity and on the chemical, technological and microbiological 

characteristics of milk produced. All the previous details about the environmental conditions and the 

methods used are available in three prior studies: the first dealing with cow’s body condition, milk 

production and composition, and cheese-making efficiency (Saha et al., 2019a), the second reporting some 

preliminary data on milk microbial counts (Carafa et al., 2020), and third on milk metagenomics analysis 

(Secchi et al., 2023).  

The research was carried out in a mountain area in Trentino province (North-eastern Italian Alps), 

and was based on the selection of two farms: the first was a modern lowland permanent farm (PF) (Malè, 

Trento, Italy, 737 m above sea level) where lactating cows are kept indoor with loose housing, total mixed 

diet and milking parlor; and a summer temporary farm (Malga Juribello) in the highland Alpine pasture 

(ALP) (within the “Paneveggio – Pale di San Martino” Natural Park, Passo Rolle, Trento, Italy, 1860 m 

above sea level) where cows are maintained at pasture days and night free to graze, with the milking and 

the supplementation with a compound feed (3 to 6 kg/d according to milk production) in a milking parlor 

placed in an old barn.  

Briefly, 12 Brown Swiss cows from PF were selected at the end of May; at the beginning of June 

they were randomly divided into two groups (6 cows each) reared in the same conditions; at the beginning 

of July one of the two groups was moved to the temporary farm in the ALP highland pastures (HIGH 

group) for three months, while the other group remained indoor in the lowland permanent farm (LOW 

group) all the times; at the end of September the HIGH group return back to the PF together with LOW 

group in the same pen till the end of experiment, at end of October. Each cow was sampled monthly (from 

mid-June to mid-October). 

The sampling of June represented the initial conditions of the two groups: being reared together, 

the expectation was of non-significant differences for all traits. The samplings of July, August and 
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September represented the effects of the two farming conditions: indoor keeping in the lowland vs pasture 

in the highlands. The last sampling of the two groups reared together in October represented the evaluation 

of possible carry-over effects of summer pasture on the indoor rearing. 

A total of 60 individual rumen fluid samples (12 cows × 5 months) were collected by using a 

flexible stomach tube. Each sample was divided into different aliquots: about 10 g of the rumen fluid were 

placed in 15 mL tubes, immediately frozen in liquid nitrogen, and stored at -80°C in the Research and 

Innovation Centre, Food Quality and Nutrition Department of the Fondazione Edmund Mach (San 

Michele all’ Adige, Trento, Italy) until microbiological analysis; two aliquots with 4 mL of rumen fluid 

added with 1 mL of metaphosforic acid (25%, w/v) needed for blocking the fermentation, and stored at -

20 °C in the ‘LaChi’ laboratory, University of Padova (Legnaro, Italy) until fermentation end product 

analyses. All the experimental procedure involving animals were approved by the “Ethical Committee for 

the Care and Use of Experimental Animals” of University of Padova (CEASA) and were completed under 

veterinary control. 

 

Analyses of Ammonia and VFAs concentration in the rumen samples and prediction of methane 

production 

The ammonia nitrogen (N-NH3) content in the buffered rumen fluid was determined using a 

commercial ammonia assay procedure (Megazyme, K – AMIAR 02/20, Wicklow, Ireland). The ammonia 

concentration (mg/L) was calculated using the formula in the ammonia assay procedure of Megazyme, 

and the results were converted in mmol/L. 

To determine individual VFAs, the acidified samples were filtered through a 0.22-μm whatman 

syringe filter. The VFA concentrations in the filtered samples were determined using a Jasco high-

performance liquid chromatography (HPLC) equipped with a PU-2080 pump, a model RI-2031 refraction 

index detector, a model AS-2055 autosampler, and a model CO-2060 column oven. The chromatographic 

separation was performed with an Aminex HPX 87H column (300 mm ˟ 77.8 mm, Biorad), the flow-rate 
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was set at 0.6 ml/min, the volume of the sample injected was 20 μL, and the column temperature was 

maintained at 65°C. At the end data were interpreted using the ChromNAV software (version 2.0, Jasco). 

For the prediction of methane (CH4), we used the equation proposed by Ramin and Huhtanen, 

(2012), predicted according to VFA stoichiometry equations by Wolin, (1960). The authors developed an 

in vitro method for prediction of methane production in the rumen of cows using the kinetic parameters 

from an automated in vitro gas production (GP) system in s 2-compartment rumen model. This approach 

takes rumen dynamics into account and may have advantages compared with single time point batch 

culture systems. The equation used was: 

Predicted methane (mL)= 22.4 × (0.5 × AA – 0.25 × PA + 0.50 × BA – 0.25 × VA) 

where AA, PA, BA, VA are the production (mmol) of acetic acid, propionic acid, butyric acid and valeric 

acid, and 22.4 correspond a gas volume (mL/mmol gas). For the present work we decided to remove the 

gas volume because we used in vivo sample while in vitro samples as used by the authors. 

 

Microbiological counts and isolation 

Ruminal fluid samples were homogenized, decimally diluted in sterile peptone water and plated 

onto the following agar media: a bicarbonate-buffered mineral medium supplemented with vitamins 

(BBM), incubated in anaerobic conditions for 2 weeks at 37 °C, was used to cultivate rumen bacteria 

(Kenters et al., 2011); de Man, Rogosa and Sharpe (MRS) agar acidified to pH 5.5 with 5 M lactic acid, 

incubated in anaerobic conditions for 48 h at 37 °C; MRS agar with 0.05% (w/v) L-cysteine (MRS-cys), 

incubated in anaerobic conditions for 48 h at 37 °C; M17 agar for 48 h, incubated at 30 °C in aerobic 

conditions; sodium lactate and yeast extract lactate (YELA) incubated at 37 °C for one week in anaerobic 

conditions for counting propionibacteria; Wilkins Chalgren (WC) incubated at 37 °C for 48 h in anaerobic 

conditions for the total count of anaerobic bacteria; Wallerstein Laboratory Nutrient Agar (WL) 

supplemented with chloramphenicol, incubated for 5 days at 30 °C. All culture media were purchased 

from Oxoid (Milan, Italy).  
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Ten or more colonies were randomly isolated from BBM, MRS-cys, WC, YELA, and purified by 

subsequent culturing. Cell morphology was determined by microscopy, Gram and catalase tests were 

performed. Only Gram-positive, brown and catalase-positive colonies were isolated from YELA, which 

are reported to belong to Propionibacterium genus (Thierry and Madec, 1995); whereas, Gram-positive 

and catalase-negative bacteria were isolated from the other media. Pure cultures were stored at -80 °C in 

glycerol (20%, v/v).  

 

DNA extraction and genotypic identification of the rumen indigenous bacteria  

The bacterial DNA was isolated using the InstaGene™ Matrix (Bio-Rad Laboratories S.r.l., 

Segrate, Italy). Quick-gDNA™ MicroPrep (Zymo Research, Italy). 

A fragment of the 16S rRNA gene was amplified using the primers 27F (50-

GAGAGTTTGATCCTGGCTCAG) and 1495R (50-CTACGGCTACCTTGTTACGA) (Grifoni et al., 

1995). The PCR products were purified using the Exo-SAP-IT™kit (USB Co., Cleveland, OH), and 

sequenced in an ABI PRISM 3100 sequencer (Applied Biosystems, Italy), using the BigDye Terminator 

v1.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA). The obtained sequences were 

compared using the BLAST algorithm available on the National Center for Biotechnology Information 

(NCBI, USA). All amplifications were run in a T100™ ThermalCycler (Bio-Rad Laboratories, Hercules, 

CA, USA). 

 

Total DNA extraction and preparation of the MiSeq library from rumen samples 

For total genomic DNA extraction, 2 mL of ruminal fluid were centrifuged at 4,000 g for 10 min 

at +4 °C, and the supernatant was discarded. Genomic DNA was extracted from the pellet using the the 

QIamp® PowerFecal® DNA Kit (Qiagen, Milano, Italy), with an additional bead beating step incorporated 

into the protocol. All DNA samples were purified by DNeasy PowerClean Pro Cleanup Kit (Qiagen, 

Milan, Italy), and quantified by Nanodrop8800 Fluorospectrometer (Thermo Scientific, USA). 
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The primers 515F (5′- GTGCCAGCMGCCGCGGTAA-3′) and 909R (5′-

CCCCGYCAATTCMTTTRAGT-3′) targeting for the 16S rRNA gene, were used to amplify bacterial 

and archaeal V4-V5 region (Xue et al., 2016); the primers ITS1F (5′-GTTTCCGTAGGTGAACCTGC -

3′) and ITS4 (5′- TCCTCCGCTTATTGATATGC -3′) were used to amplify the ITS1-5.8S region of 

yeasts and fungi (Gardes and Bruns, 1993). Unique barcodes were attached before the forward primers to 

facilitate the differentiation of samples, and the Agencourt AMPure kit (Beckman coulter) was used for 

cleaning the amplicons and preventing preferential sequencing of smallest amplicons. The concentration 

of amplicons was determined using the Quant-iT PicoGreen dsDNA kit (Invitrogen) following the 

manufacturer’s instructions. In order to ensure the absence of primer dimers and to assay the purity, the 

generated amplicon libraries quality was evaluated by a Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA) 

using the High Sensitivity DNA Kit (Agilent). Following quantitation, the cleaned amplicons were mixed 

and combined in equimolar ratios. Amplicon library preparation, quality and quantification of pooled 

libraries and high throughput sequencing by Illumina technology were performed at the Sequencing 

Platform, Fondazione Edmund Mach (FEM, San Michele all’Adige, Italy). 

 

Illumina data analysis and sequences identification by QIIME2 

Raw paired-end FASTQ files were demultiplexed using idemp 

(https://github.com/yhwu/idemp/blob/master/idemp.cpp) and imported into Quantitative Insights Into 

Microbial Ecology (Qiime2, version 2018.2;  https://qiime2.org; Bolyen et al., 2019). Sequences were 

quality filtered, trimmed, de-noised, and merged using DADA2 (Callahan et al., 2016). Chimeric 

sequences were identified and removed via the consensus method in DADA2. Representative sequences 

were aligned with MAFFT and used for phylogenetic reconstruction in FastTree using plugins alignment 

and phylogeny (Price et al., 2009; Katoh and Standley, 2013). Alpha and beta diversity metrics were 

calculated using the core-diversity plugin within QIIME2 and emperor (Vázquez-Baeza et al., 2013).  

Taxonomic and compositional analyses were conducted by using plugins feature-classifier 

(https://github.com/qiime2/q2-feature-classifier). A pre-trained Naive Bayes classifier based on the 

https://qiime2.org/
https://github.com/qiime2/q2-feature-classifier


 

46 

 

Greengenes 13_8 99% Operational Taxonomic Units (OTUs) database 

(http://greengenes.secondgenome.com/), which had been previously trimmed to the V4 region of 16S 

rDNA, bound by the 341F/805R primer pair, was applied to paired-end sequence reads to generate 

taxonomy tables.  

The data generated by Illumina sequencing were deposited in the NCBI Sequence Read Archive 

(SRA) and are available under Ac. PRJNA528228 

 

 

Statistical Analysis 

The microbiological counts data were expressed in log CFU/mL, while the metagenomic relative 

abundancies were log10 transformed. Two samples were excluded from the statistical analysis because of 

incomplete data.  

 

Mixed model analysis of variance 

The concentration of end products of rumen fermentation, the predicted methane production, the 

rumen microbiological counts, and the log10-transformed relative abundancies obtained from the rumen 

metagenomic analysis were analyzed with a linear mixed model (RStudio version 1.4.1106), which 

include the fixed effects of the month × group interaction (10 levels: 5 months, from June to October; and 

2 groups of cows, HIGH and LOW), and the random effect of cow within group. We used a function to 

estimate R2
GLMM statistic, r.squaredGLMM, included in the MuMln package for the R statistical software, 

we consider the conditional R-squared because concern variance explained by both fixed and random 

factors (Nakagawa and Schielzeth, 2013).  

To measure the effect of season and lactation in progress in the control group kept indoor in the 

PF during the 5 month, polynomial contrasts were estimated between the 5 least-square means of the 

months within the LOW group to determine the response curve of each trait (linear, quadratic, and cubic 

components). Contrasts between the HIGH and LOW groups were estimated separately within each month 

http://greengenes.secondgenome.com/
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to test for the following: the homogeneity of groups in the same environment (indoor) at the beginning of 

the trial (June); the effect of transhumance to highland pasture during the summer months (July, August, 

and September) compared with the control indoor group; and the carryover effect of summer pasture on 

the HIGH group after returning to indoor conditions on the PF (October).  

 

Correlation analysis and latent explanatory factors analysis 

Three datasets were created: 

a) Rumen fermentation (rf-dataset): including all the chemical analyses carried out in the cow’s 

rumen fluid samples and the calculated (C2+C4)/C3 ratio and CH4 production (10 traits); 

b) Rumen metagenomics (rm-dataset): including the relative abundancies data of the 21 

bacterial taxa identified in cow’s rumen fluid samples; 

c) Rumen fermentation and metagenomics (rfm-dataset): merging the two sub-datasets of the 

chemical characteristics of rumen fluid and the relative abundancies of the bacterial taxa 

identified in cow’s rumen samples (31 traits); 

Correlations were calculated within the rf-dataset and within the rm-dataset, and also between the 

rf-dataset and the rm-dataset. 

Given of the complexity and high number of the relationships among all the traits of the three 

datasets, we used a multivariate factor analysis (FA) to summarize the interrelated measured traits in a 

small number of unmeasured latent independent explanatory variables (factors). Factor analysis was 

performed separately on each dataset obtaining a variable number of latent explanatory factors named 

respectively FN-rf, FN-rm, and FN-rfm, where N is the progressive number of factors (N: 1 to a max of 

8) within FA. First, we performed Kaiser–Meyer–Olkin and Bartlett's tests, which showed that the traits 

were suitable for FA. The FA was carried out with Varimax rotation in the R environment (R Core Team, 

2016) using the psych package (available at CRAN, the Comprehensive R Archive Network, version 

2.2.9; https://cran.r-project.org/web/packages/psych/index.html) in 3 steps: (1) extraction of factors such 

https://www.sciencedirect.com/science/article/pii/S0022030222006695#bib56
https://www.sciencedirect.com/science/article/pii/S0022030222006695#bib56
https://cran.r-project.org/web/packages/psych/index.html
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that the minimum number of uncorrelated latent factors explained the greatest proportion of common 

variance; (2) factor rotation until each factor was defined by a few variables with high loadings; and (3) 

biological interpretation of the factors based on the strength of the loadings of the variables. The 

eigenvalues of the factors and the communalities of the variables after rotation were also determined. 

Three FA were performed with eight latent explanatory factors each. The scores of each samples for each 

factor were analysed using the same linear mixed model used for metagenomics. 

  



 

49 

 

RESULTS AND DISCUSSION 

Rumen fluid fermentation traits  

Table 1 shows the descriptive statistics for the rumen fluid traits, including the prediction of 

methane production. The proportion of different VFA found on average on the four herds practicing the 

summer transhumance is different from those usually found on the rumen fluid of cows maintained indoor 

in intensive farming systems (Saha et al., 2019b). The acetic acid is much higher and the propionic, butyric 

and valeric (both in the n- and iso forms) acids are much lower. This testimony the lower quantity of 

concentrates supplemented to cows of the mountain transhumant farming system respect to the lowland 

indoor intensive system.  

The analysis of the major sources of variation of rumen fermentation traits, illustrated in Figure 1, 

showed that the combination of month of the year (which reflect also different climatic conditions and the 

advancing of lactation and pregnancy stages) and group of cow (HIGH vs LOW) represents the greatest 

source of variation for ammonia N and n-valeric acid (≈ 60%), and an important source for all the other 

VFA proportions or VFA-derived traits (≈25% to 40%). The permanent effect of individual cow is much 

less important, varying from almost a null value for the n- and iso-valeric acids to ≈ 15% in the case of 

isobutyric acid. The remaining, very important for all traits, source of variation is the residual one. 

The fixed combined effect of Month × Group of cows was significant for all the traits listed in 

Table 1. The disaggregation of the pattern of traits from June to October in LOW group (maintained 

constantly indoor) was opposite for acetic and for propionic acids (see Table 2). The contrasts between 

HIGH and LOW groups of cows within month of sampling was generally not significant (with two 

exceptions) in June, when no difference was expected because were kept together indoor in the same pen, 

with the same diet. In July, August and September, when HIGH group was on ALP highland pastures and 

LOW group was still indoor, all traits listed in Table 2 presented a significant contrast in at least one of 

the three sampling months. In October only 4 of the 10 composition traits of the rumen fluid presented 

significant differences between the two groups. 
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The differences observed during summer are congruent with the greater content of fiber of the diet 

of grazing HIGH group (higher acetic acid) and with the greater content of starch (higher propionic acid) 

in the diet of indoor LOW group of cows (Saha et al., 2019a). It worth noting that the composition of 

grass of pasture was changing during summer with the increasing maturity of forages. The differences 

observed in October could be, at least in part, interpreted as residual effects of the different farming 

systems of the two groups of cows during the previous summer transhumance.  

 

Correlations between rumen fluid fermentation traits and their latent explanatory factors 

The 45 Pearson correlation coefficients observed among the 10 rumen fluid chemical composition 

traits are represented as heat-map plot in Figure 2. Ammonia N presents moderate positive correlations 

with total VFA concentration n-valeric acid and predicted methane production and a negative correlation 

with isobutyric acid. Increased ammonia N and VFA concentration in rumen fluid are both indicators of 

greater availability of fermentable nutrients in the rumen. The increase of the proportion of n-valeric acid, 

like the increase of ammonia N concentration in rumen fluids are indicators of greater fermentable proteins 

availability. Lastly the increased production of methane is congruent with the increased fermentation 

activity in the rumen (see the very large correlation coefficient between total VFA and methane production 

in Figure 2). 

Regarding the relative molar proportions of VFA, it could be seen that propionic acid is negatively 

correlated with all the other VFA (except n-valeric acid), and particularly with the acetic acid. As expected 

the ratio (C2+C4)/C3 is positively correlated with the acids at the numerator (and also with the isovaleric 

acid) and negatively with the denominator (and also with the n-valeric acid). These 45 different, and 

sometime strong, correlations justify the attempt to combine them at the research of fewer independent 

latent explanatory factors. 

The Table 3 summarizes the results obtained from FA on rf-dataset. Five latent factors (F1-rf to 

F5-rf) explained 81.6% of total variance-covariance matrix of the 10 traits considered. The first factor 

(F1-rf) represents 28.1% of total variance and is based on three traits with large loadings: acetic acid molar 
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proportion (positively), propionic acid (negatively), and the ratio (C2+C4)/C3 (positively), and also on a 

fourth trait (isovaleric acid molar proportion) with a moderate positive loading. Due to its composition 

we named this factor “VFA ratio” and could be considered a qualitative latent factor expressing the major 

type of fermentations in the rumen. The scores of this latent factor are affected by the combined effects 

of Month × Group and their 10 least squares means (LSM) are depicted in Figure 3. It can be seen that the 

baseline of LOW group of cow was quadratic with the minima values in summer. Values of the HIGH 

group of cow were numerically greater respect to those of the LOW group, but without reaching the 

statistically significance, during the summer transhumance. 

The second latent factor (F2-rf) was strongly based on total VFA content of rumen fluid and on 

the derived predicted methane production, and, moderately, on ammonia N (Table 3). This factor 

represents 20.1% of total variance and could be considered a quantitative descriptor of rumen fermentation 

that we named “Methane”. The combined effect of Month × Group of cows is much more important for 

this factor than for the previous one, but the disaggregation of the major factors sees, this time, a non-

significant variation of the baseline of LOW group June to October, and, on the contrary, significant strong 

differences (in favor of LOW vs HIGH group) during the first three months, and a tendency to become 

similar at the end of the experimental period (October). 

The third factor (F3-rm) is based on the two isoforms of the butyric (strongly) and valeric 

(moderately) acids (Table 3), thus named “iso-VFA”. F3-rm represented 12.1% of total variance, was 

significantly affected by Month × Group combined effects, and showed no trend in the baseline and a 

significant contrast in favor of HIGH group of cows only in September sampling month (Figure 3). 

The fourth (F4-rf) and fifth (F5-rf) factors are strongly and positively related, respectively, to n-

butyric acid (and moderately negatively to acetic acid also) and to n-valeric acid (and moderately to 

ammonia N too), so that we named them “n-C4” and “n-C5”, respectively (Table 3). They represented a 

similar proportion of total variance (11.0% and 10.3%), and were both affected by the combined effect of 

Month × Group of cows. Both F4-rf and F5-rf showed a similar cubic reference baseline for LOW group 

of cows (with the minimum score in July and the maximum in September) and an opposite effect of 
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summer transhumance. In fact, the HIGH group of cow showed a significantly higher score of F4-rf “n-

C4” in July and a lower score for F5-rf “n-C5” in September. The meaning of these patterns is not easily 

interpretable. 

In summary, the average scores of three latent factors out of five (VFA-ratio, n-C4, and n-C5) 

showed a variation from June to October in the LOW group of cows maintained constantly indoor on a 

TMD, and all factors, excluded VFA-ratio, showed significant differences during summer between HIGH 

group of cows grazing the Alpine pasture and LOW group of cows indoor. 

Based on our knowledge, during transhumance, cows experience an extreme change in diet, 

environment, and physical activity that increases significantly. These various factors could cause 

nutritional imbalance and affect not only the quality and composition of milk and dairy products, but also 

the microbial composition of the rumen (Leiber et al., 2006; Henderson et al., 2015; Zendri et al., 2016b). 

In fact, it could be seen (Table 1) that the month × group interaction exerted a significant effect in all the 

trait considered. During the three summer months of grazing on pastures, we observed a decreasing 

concentration of nitrogen ammonia and methane in the rumen fluid (Table 4). The concentration of the 

ammonia nitrogen (N-NH3) has been used as a qualitative reference to understand the adequacy of the 

rumen environment according to the microbial activity on fibrous carbohydrates (Dermann 2009). N-NH3 

is the preferred nitrogen source for growth of fibrolytic microorganisms (Russell, 2002). One of the factor 

that influence the low concentration of ammonia in the ruminant is the amount of feed protein entering 

the rumen. High dietary protein content with high degradability will result in an increased rumen fluid 

ammonia concentration. (Souza et al., 2013). The average nitrogen ammonia was in the range of that 

found by Souza et al., (2013) estimated by the catalyzed indophenol colorimetric reaction (CICR) and 

Kjeldahl distillation (KD) method. 

The volatile fatty acids (VFA) are produced within the rumen by fermentation of organic matter, 

these can have an important effect on production and product composition in ruminants. The relative 

proportions in which VFA are produced, are influenced by a number of factors, including substrate 
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composition, substrate availability and rate of depolymerization, and microbial species present. 

Interaction between these factors hamper conclusions with respect to the effect of one single factor.  

The influence of methane production in the rumen is shown by the increased levels of propionate 

produced when methanogenic bacteria are inhibited (Demeyer and Van Nevel, 1979). Fermentation of 

structural carbohydrates, compared to fermentation of starch, yielded high amount of acetic and low 

amounts of propionic acid. 

Production of volatile fatty acids in ruminal fluid, including acetate, propionate and total butyrate 

(n-butyrate and iso-butyrate) have been related to methane production using stoichiometric equations 

(Moss et al., 2000). Changes in (acetate+butyrate)/propionate have also been associated with changes in 

methane production in vivo (Moss et al., 2000; Danielsson et al., 2012).  

Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize 

microbial protein as an energy and protein supply for the ruminant, respectively. However, this 

fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that 

may limit production performance and contribute to release of pollutant to the environment. 

Methane, which is a major greenhouse gas produced during ruminal fermentation, has a significant 

ratio in the adverse economic and ecological impact of global climate change. However, O’Callaghan et 

al., (2016) showed that the fatty acid profile of milks from pasture-based and TMR feeding systems are 

markedly different, and that the fatty acid profile combined with multivariate analysis could be exploited 

to verify milk products from grass-fed system. 

 

Rumen microbiota  

Rumen microbiota was studied using two different methodological approaches: the classical 

methods leading to microbial counts referred to selective media and the metagenomics approach based on 

DNA analysis. The descriptive statistics of microbial counts included in Table 4 represent then 

quantitative data referred to some of the most important groups of live bacteria found in rumen fluid, 
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whereas those of the relative abundancies represent the proportions of the quantity of different bacterial 

taxa found in rumen fluid DNA, i.e. a qualitative data because the sum is constant. 

The analyses of the relative importance of the major sources of rumen microbiota variation are 

represented in Figure 4 for bacterial counts and in Figure 5 for metagenomic relative abundancies of 

bacteria taxa found in rumen fluid. The combined effects of Month × Group of cows represent an 

important source of variation (≈ 35% to 50% of total variance) for all bacterial counts except BBM (rumen 

medium), whereas the permanent differences among different cows within groups was much less 

important being almost null in the case of BBM (Rumen medium) and YELA (putative Propionibacteria) 

counts and arriving to a maximum of ≈ 15% in the case of the other bacterial counts.  The residual variance 

represents about half of total variance for all bacterial counts with the only exception of BBM (Rumen 

medium) where it reaches almost 80% of total variance.  

The proportions among the most important sources of variation of the relative abundancies of 

individual bacterial taxa are, as expected, much more variable than for bacterial counts (Figure 5). The 

proportion of variance explained by the combined effects of Month × Group of cows was very scarce in 

the case of Other Bacteroidetes and Gammaproteobacteria, whereas represent about 30% to 80% of the 

total for all other bacterial taxa found in rumen samples. The permanent differences among different cows 

within group was almost null for 8 out of 21 bacterial taxa found in rumen fluid. The largest proportion 

of cows variability (≈ 20% of total) was observed for Other Bacteroidetes, i.e. the taxon with the lowest 

incidence of Month and Group. Also residual variance was extremely different in different taxa ranging 

from about 20% to 85%. 

The great importance of the combined effects of Month and Group of cows is confirmed by their 

statistical significance achieved by all bacterial counts and individual bacterial taxa relative abundancy 

(Table 4), with the only exception of Other Bacteroidetes and Gammaproteobacteria taxa. The 

disaggregation of the two combined effects showed (Table 5) that 3 out of 6 rumen bacterial counts and 

13 out of 21 rumen bacterial taxa were characterized by significant seasonal patterns of the baseline values 

showed by the cows of the LOW group (constantly maintained indoor). The bacterial trends identified 
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belong to 6 different patterns: linear increase or decrease, quadratic with a maximum or a minimum peak, 

and cubic with a maximum followed by a minimum or vice versa.  

Regarding the comparison between the two groups of cows within each month of sampling, all 

bacterial counts and the bacterial taxa relative abundances (with the only exception of the two taxa with 

non-significant effect of the combined Month × Group) showed a significant contrast in at least one of the 

5 months sampled (Table 5). In June none of the bacterial counts and only one taxon (Lachnospiraceae) 

out of 21 taxa presented a significant difference. This is congruent with the assumption of initial statistical 

homogeneity of the two groups of cows (in June both groups were reared indoor in the same pen with the 

same diet). During the three months of the summer transhumance about half of the bacterial traits (14, 14 

and 15 out of 27 traits in July, August and September, respectively) presented significant a difference in 

each sampling month. In total, beyond the two previously cited taxa, only one more had no significant 

contrast during summer (Spirochaetes), and 4 taxa presented significant contrasts every month 

(Fibrobacter, Lachnospiraceae, Lentispherae, and Succinovibrionaceae), the remaining having one or 

two significant differences (Table 5). 

In the case of microbial counts, all significant contrasts were positive, meaning greater counts in 

rumen samples of the HIGH than in the LOW group of cows. In the case of the taxa identified through 

metagenomics approach, as expected, the contrast of the relative abundance for the two group of cows 

were both positive or negative. 

Lastly, the number of significant contrasts in October rumen samples (when all the cows were 

again together indoor) was 7 (one count and 6 bacterial taxa). This value is about half respect to the months 

of summer transhumance, but is not supporting the null hypothesis. This means that in October there is 

still a carryover effect of the previous transhumance on some microbial trait. It worth noting that on the 

same cows, on milk samples taken the same dates of rumen fluid samples, we found only two significant 

contrasts out of 46 microbial traits (Secchi et al., 2023) and only one out of 20 milk quality traits (Saha et 

al., 2019a).  
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Ruminal microbes are a major sources of other nutrients for the ruminant (Hussein et al., 1995). 

Major chemical components of ruminal microorganisms are nitrogen, carbohydrates, lipids and ash 

(Strom and Øskov, 1984). The content of organic matter, nitrogen and amino acids in mixed rumen 

bacteria increase by decreasing the level of forage in the diet (Martin, 1994). Ruminal microbial growth 

depends on their capability to degrade the ferment feed ingredients. 

Prevotella has been associated with propionic acid production and this  genus is known to play a 

pivotal role in the degradation and utilization of non-cellulosolitic plant polysaccharides, proteins, 

starches and xylans (Strobel, 1992; Accetto and Avguštin, 2019). 

 

Correlations between rumen microbiological traits and their latent explanatory factors 

The 210 Pearson correlation coefficients observed among the relative abundancies of the 21 

bacterial taxa identified and quantified in rumen fluid samples are represented as heat-map plot in Figure 

6. It is possible to see that there are many complex interrelationships (positive and negative) among 

bacterial taxa so that a clear understanding of all is not possible. The need for a simplification in this case 

is much more essential than in the case of the rumen fluid chemical traits. So we carried on a FA to search 

for relatively few independent latent explanatory factors explaining the major part of the 

variance/covariance of the matrix of rumen microbiota dataset. We decided to analyze only data obtained 

from metagenomics approach, excluding the bacterial counts, to put together only homogeneous data. 

In total we obtained 8 latent factors from the rumen metagenomic dataset (F1-rm to F8-rm), 

representing 72% of the overall variability. The loading of the factors and communality coefficients of 

the 21 microbial traits are listed in Table 6. Only the Other Bacteroidetes taxon was not included in any 

latent factor and need to be considered an independent microbiological trait of rumen fluid. Two other 

taxa, involved in a latent factor, showed a communality coefficient slightly lower than 0.50 

(Erysipelotrichaceae, and Gammaproteobacteria), all the other taxa could be well represented by the 

latent factors.  
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An interpretation of the 8 latent factor requires probably further research. Anyway, it could be seen 

from Table 7 that the first (F1-rm) represents almost one fifth of total variance, other 5 factors (F2-rm to 

F6-rm) represent slightly less than one tenth of total variance each, and only the last two factors (F7-rm 

and F8-rm) represents only 5.8% and 2.7% of variance respectively. Both these latter factors were two-

trait factors, whereas the other factors are much complex, including 4 to 9 microbiological taxa each 

(Table 6). The F8-rm is also the only one not presenting a significant combined effect of Month × Group 

of cows (Table 7).  

The disaggregation of the combined Month × Group effect depicted, in Figure 7, make clear that 

3 out of 8 latent factors are characterized by a significant variation of the baseline from June to October 

of the LOW group of cows (maintained constantly indoor). It should be remembered that this variation is 

not merely e seasonal variation, but it includes the effect of advancing lactation stage and pregnancy 

condition of cows. 

The effect of farming system seems much more evident than seasonal variation. All latent factors, 

excluding the F8-rm, presented some significant contrast between HIGH and LOW group of cows during 

the three months of the summer transhumance. Only one contrast was significant in June (F5-rm) and two 

contrasts in October (F5-rm, and F7-rm). These results substantially confirm those previously seen on 

milk microbiota in the same cows and dates (Secchi et al., 2023).  

 

Correlations between rumen fluid fermentation traits and rumen microbiological traits, and their latent 

explanatory factors 

The 210 Pearson correlation coefficients observed between the 10 rumen fluid chemical 

composition traits and the relative abundances of the 21 rumen bacterial taxa are represented as heat-map 

plot in Figure 8. Also in this case the number, complexity and variability of correlations obtained required 

to search for fewer independent latent factors, with the objective of identify possible relationships between 

the rumen microbiota and the fermentation pattern of rumen fluid. 
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 Combining the two datasets of 10 rumen fermentation traits and 21 relative abundances of rumen 

bacterial taxa we extract 10 independent explanatory factors (F1-rfm to F10-rfm) explaining 73 % of total 

variance/covariance matrix. The loadings of the 10 latent factors and the communality coefficients of the 

31 traits included in the FA are listed in Table 8. It is very interesting to note that 6 out of 10 latent factors 

are “mixed” factors, i.e. they are based contemporary on rumen fermentation traits and rumen 

metagenomic taxa. This confirm, as expected, the strong interrelations between microbiota and rumen 

fermentation. One latent factor (F4-rfm) is based only on two fermentation traits (total VFA concentration 

and predicted methane production and substantially mimic the F2-rf “Methane” factor obtained analyzing 

rumen fermentation traits alone. Three other latent factors (F5-rfm, F6-rfm, and F7-rfm), on the contrary, 

were based only on microbiological traits, substantially mimicking the latent factors F5-rm, F4-rm, and 

F3-rm, respectively. 

The first “joint” latent factor (F1-rfm) reflect the combination of F1-rf “VFA ratio” with 9 bacterial 

taxa, the most important of which are the opposite effects of Other Bacteroidales (loading 0.621) and 

Succinivibrionaceae (-0.764). It explains 16.4% of total variance, it is affected modestly by the combined 

effects of Month × Group of cows (Table 9) because the only significant contrast between HIGH and 

LOW groups of cows was recorded in July samples, in favor of HIGH cows (Figure 9). 

The second joint latent factor (F2-rfm) includes the ammonia N concentration of rumen fluid (with 

a negative loading) as the only fermentation trait, together with 7 microbial taxa (Table 8): the Archea, 

Ruminococcaceae and Succinivibrionaceae with negative loadings, and the Other Bacteroidales, 

Fibrobactere, Lentispherae and Tenericutes with positive loadings. F2-rfm represents 9.7% of total 

variance, has the strongest combined effect of Month × Group of cows (Table 9) and, in fact, is 

characterized by a linear growing baseline of the LOW group of cows, and by much higher scores in 

HIGH than LOW group of cows during summer transhumance in July and August samplings (Figure 9). 

Apparently, this latent factor could be considered a good indicator of the effect of farming system. 

The third joint latent factor (F3-rfm) combines the F3-rf “Iso-VFA” latent factor of rumen 

fermentation traits, with the addition of a moderate negative loading for ammonia N concentration, and 7 
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rumen bacterial taxa, 4 of which representing the F6-rm latent factor of rumen microbiota with the addition 

of moderate positive loadings of Ruminococcaceae, Clostridia, and Verrucomicrobia (Table 8). It 

represents 9.5% of total variance, is affected by the combined effect of Month × Group of cows (Table 

9), but present only one significant contrast, in favor of the HIGH group of cows, in September sampling 

(Figure 9). 

The other three joint latent factors (F8-rfm, F9-rfm, and F10-rfm) are based 3, 2, and 2 traits (Table 

8), representing only 5.1%, 3.6% and 3.3% of total variance (Table 9), respectively. F8-rfm is strongly 

based on n-butyric acid, and, with moderate negative loadings, on acetic acid and Elusimicrobia. F9-rfm 

is strongly based on n-valeric acid and, also in this case, on a moderate negative loading of Elusimicrobia. 

Lastly, F10-rfm is based on Alphaproteobacteria and, less strongly, on isovaleric acid. All these three 

latter latent factors present a seasonal baseline pattern from June to October in LOW group of cows 

maintained indoor and one or two significant contrasts between the two groups (Figure 9). 
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CONCLUSIONS 

 

Ten fermentation traits, six microbial counts and the relative abundancies of 21 rumen bacterial 

taxa characterized the rumen microbiota and fermentation during the 5 months experiment. Almost all 

traits were affected by the summer transhumance to Alpine pasture, but the carryover effect after returning 

to indoor farming were modest. The complexity of the relationships among the traits studied allowed to 

obtain 5 latent factors explaining rumen fermentation traits, 8 latent factors explaining the rumen 

microbiota, and 10 latent factors explaining both rumen fermentation and microbiota, when the two 

datasets were merged. Six of these latter latent factors included contemporarily traits from the two datasets 

demonstrating the strong relationships between rumen microbiota and rumen fermentation activity. 
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TABLES AND FIGURES 

Table 1. Rumen fermentation traits: descriptive statistics, significance of the Month × Group interaction, 

conditional determination coefficient (R2c) and root mean square error (RMSE) of the ammonia nitrogen, 

volatile fatty acids (VFA), and predicted methane production. 

 Samples

N 

Descriptive statistics: Month × Group, 

F-value 
R2c RMSE 

Traits Mean ±SD 

Ammonia N, mmol/L 58 4.74 2.41 10.4 *** 0.704 1.36 

Total VFA, mmol/L 58 96.8 20.1 5.4 *** 0.547 14.1 

Volatile fatty acids, mol%:       

Acetic Acid 57 67.59 2.72 4.8 *** 0.438 2.14 

Propionic Acid  57 18.83 2.63 2.9 * 0.351 2.24 

Iso-butyric Acid  58 0.70 0.20 3.0 ** 0.434 0.16 

N-butyric Acid 57 10.72 1.26 4.2 *** 0.455 0.98 

Iso-valeric Acid 58 0.84 0.18 2.8 * 0.307 0.16 

N-valeric Acid 57 1.01 0.23 9.4 *** 0.607 0.15 

Ratio (C2+C4):C3 57 4.28 0.65 2.9 ** 0.337 0.57 

Methane production, mmol/mol 

of VFA 
58 32.90 6.92 4.0 ** 0.458 5.35 

  *P<0.05; **P<0.01; ***P<0.001;  

C2: Acetic acid; C3: Propionic Acid; C4: Butyric acid;  
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Table 2. Rumen fermentation traits: significance, order and shape of the patterns observed for ammonia 

nitrogen, volatile fatty acids (VFA) and predicted methane production of rumen fluid samples collected 

during the experiment on cows maintained always indoor, and difference of cows moved to summer 

highland pastures respect to indoor cows before (June), during (July, August, and September) and after 

(October) transhumance. 

*P<0.05; **P<0.01; ***P<0.001;  

C2: Acetic acid; C3: Propionic Acid; C4: Butyric acid; 

Q: up-down = zenithal quadratic pattern rising to a maximum during summer and then decreasing;  

Q: down-up = nadir quadratic pattern decreasing to a minimum during summer and then increasing;  

C: down-up-down = cubic pattern decreasing to a minimum in July, rising in September and then decreasing again.  

 Pattern on indoor cows:  Difference of transhumant respect to indoor cows: 

Traits P-value Order : shape  June July August September October 

Ammonia N, mmol/L >0.05 -  0.50  -4.56*** -1.80 -5.65*** 1.14 

Total VFA, mmol/L >0.05 -  -29.90** -35.00*** -27.80** -23.80** -7.60 

Volatile fatty acids, mol%:         

Acetic Acid 0.019 Q: down-up  2.40 1.10 1.80 3.90** 2.50* 

Propionic Acid 0.028 Q: up-down  -1.70 -3.80** -0.50 -3.00* -0.60 

Isobutyric Acid >0.05 -  -0.02 0.17 -0.10 0.33** 0.15 

n-Butyric Acid <0.001 C: down-up-down  -0.11 2.57*** -1.16 -0.95 -1.40* 

Isovaleric Acid 0.002 Q: down-up  -0.06 0.01 0.10 0.23* -0.26** 

n-Valeric Acid <0.001 C: down-up-down  -0.02 -0.13 -0.18 -0.63*** -0.20* 

Ratio (C2+C4):C3 0.038 Q: down-up  0.51 0.87* 0.10 0.69* 0.24 

Methane production, 

mmol/mol of VFA 
>0.05 -  -10.60** -9.30** -9.40** -5.50 -1.80 
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Table 3. Rumen fermentation traits: designation, loadings, explained variance (in % of total variance), 

conditional determination coefficient (R2c) and root mean square error (RMSE) of the scores of the latent 

explanatory factors of the rumen fermentation traits (FN-rf) (χ2 = 410.71; 5 degrees of freedom; P< 0.001). 

Items 
F1-rf 

“VFA ratio” 

F2-rf 

“Methane” 

F3-rf 

“iso-VFA” 

F4-rf 

“n-C4” 

F5-rf 

“n-C5” 
Communality 

Loadings:       

N-NH3, mmol/L  0.384   0.324 0.351 

Total VFA, mmol/L  0.954*    >0.900 

Acetic acid, mol% 0.888*   -0.317  >0.900 

Propionic acid, mol% -0.938*     >0.900 

Isobutyric acid, mol%   0.916*   >0.900 

n-butyric acid, mol%    0.931*  >0.900 

Isovaleric acid, mol% 0.339  0.420   0.324 

n-valeric acid, mol%     0.882* >0.900 

Ratio (C2+C4):C3 0.939*     >0.900 

Methane production, 

mmol/mol of  VFA  
 0.961*       >0.900 

Explained variance :       

individual 28.1% 20.1% 12.1% 11.0% 10.3% - 

cumulative 28.1% 48.2% 60.3% 71.3% 81.6% - 

Statistical analysis of the scores:       

Group × Month, F-value 2.85 * 4.46 *** 2.33 * 3.88 ** 5.73 *** - 

R2c 0.32 0.51 0.37 0.45 0.49 - 

RMSE 0.80 0.71 0.80 0.74 0.61 - 

* High loading, >0.50; 

*P<0.05; **P<0.01; ***P<0.001;  

C2: Acetic acid; C3: Propionic Acid; C4: Butyric acid; 
R2c = conditional R2. 
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Table 4. Rumen microbiota: descriptive statistics, significance of the Month × Group interaction, 

conditional determination coefficient (R2c) and root mean square error (RMSE) of the rumen 

microbiological counts (expressed as log CFU/mL), and of the log10 relative abundancy of the rumen 

bacterial taxa. 

 Samples 

N 

Descriptive 

statistics: 
Month × Group 

F-value 
R2c RMSE 

Traits Mean ±SD 

Rumen bacterial counts:       

WC: anaerobic TB 58 6.463 0.635 6.0 *** 0.535 0.451 

M17: mesophilic lactococci 58 5.778 0.595 4.3 *** 0.513 0.436 

MRS: mesophilic lactobacilli 58 6.146 0.638 3.9 ** 0.486 0.483 

MRS-cys: bifidobacteria 58 6.443 0.803 5.7 *** 0.588 0.54 

YELA: putative propionibacteria 56 4.381 0.761 6.5 *** 0.522 0.548 

BBM: Rumen medium 57 5.573 0.696 2.4 * 0.278 0.629 

Rumen metagenomics:       

Archea     57 0.240 0.101 9.8 *** 0.633 0.063 

Actinobacteria  58 0.043 0.035 4.8 *** 0.505 0.026 

Prevotella 58 1.605 0.057 3.8 ** 0.377 0.047 

Other Bacteroidales 57 1.378 0.101 5.1 *** 0.532 0.072 

Other Bacteroidetes 58 0.014 0.014 1.4 0.324 0.013 

Elusimicrobia 58 0.035 0.028 4.2 *** 0.434 0.021 

Fibrobacter 57 0.311 0.221 21.2 *** 0.777 0.106 

Lachnospiraceae 58 0.667 0.141 12.6 *** 0.690 0.081 

   Ruminococcaceae 58 0.921 0.138 6.3 *** 0.503 0.101 

   Veillonellaceae 58 0.356 0.179 3.2 ** 0.391 0.147 

Clostridia 58 0.756 0.088 3.6 ** 0.381 0.073 

Erysipelotrichaceae  56 0.112 0.069 3.2 ** 0.352 0.059 

Lentisphaerae  56 0.055 0.061 14.9 *** 0.790 0.029 

Planctomycetes 58 0.059 0.039 4.2 *** 0.465 0.030 

Alphaproteobacteria 57 0.060 0.036 3.4 ** 0.377 0.030 

Deltaproteobacteria 57 0.097 0.067 10.8 *** 0.640 0.041 

   Succinivibrionaceae 58 0.576 0.381 4.3 *** 0.531 0.273   

Gammaproteobacteria 58 0.677 0.293 2.1  0.252 0.270 

Spirochaetes 58 0.634 0.146 3.7 ** 0.375 0.121 

Tenericutes 58 0.381 0.109 9.2 *** 0.599 0.072 

Verrucomicrobria 58 0.042 0.032 5.8 *** 0.023 0.526 

  *P<0.05; **P<0.01; ***P<0.001;  
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R2c = conditional R2. 

Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio. 
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Table 5. Rumen microbiota: significance, order and shape of the patterns observed for microbial count 

(expressed as log CFU/mL) and relative abundance of bacterial taxa on rumen fluid samples collected 

during the experiment on cows maintained always indoor, and difference of cows moved to summer 

highland pastures respect to indoor cows before (June), during (July, August, and September) and after 

(October) transhumance.  

*P<0.05; **P<0.01; ***P<0.001;  

 Pattern on indoor cows:  Difference of transhumant respect to indoor cows: 

 P-value Order:shape  June July August September October 

Microbiological count:         

WC: anaerobic TB >0.05 -  -0.23 1.24*** 0.38 0.69* 0.25 

M17: mesophilic lactococci >0.05 -  0.20 0.48 0.86** 0.27 0.00 

MRS: mesophilic lactobacilli 0.002 C: down-up-down  -0.48 1.09** 0.52 0.08 0.60 

MRS-cys: bifidobacteria 0.019 Q: up-down  -0.32 0.99* 0.26 0.37 0.34 

YELA: putative  propionibacteria 0.023 C: up-down-up  -0.04 -0.17 -0.02 0.76* 0.07 

BBM: rumen medium >0.05 -  0.14 1.04** 0.03 0.64 0.77* 

Rumen fluid bacteria:         

Archea >0.05 -  -0.06 0.01 -0.20*** 0.00 0.02 

Actinobacteria  0.015 C: down-up- down  -0.01 0.06*** -0.01 0.01 0.02 

Prevotella  >0.05 -  -0.01 0.02 -0.06* -0.11*** -0.01 

Other Bacteroidales 0.002 L:up  0.05 0.10* 0.12* 0.15** 0.02 

Other Bacteroidetes >0.05 -  0.00 0.00 -0.01 0.00 -0.01 

Elusimicrobia 0.029 C: up-down-up  0.02 -0.01 0.02 0.03* 0.04** 

Fibrobacter >0.05 -  0.07 0.48*** 0.58*** 0.32*** 0.08 

Lachnospiraceae  0.042 Q: down-up  -0.13* 0.19*** 0.20*** 0.18*** 0.12* 

   Ruminococcaceae 0.024 L: down  0.01 -0.11 -0.15* 0.12* -0.10 

   Veillonellaceae 0.034 C: down-up-down  -0.11 0.26** 0.28** 0.00 0.07 

Clostridia 0.047 L: down  -0.07 0.09* -0.02 0.14** 0.12** 

Erysipelotrichaceae  >0.05 -  -0.03 0.10** 0.13** 0.04 0.06 

Lentisphaerae  >0.05 -  0.02 0.06** 0.12*** 0.17*** 0.05* 

Planctomycetes 0.020 L: up  -0.01 0.00 -0.04* 0.04* 0.01 

Alphaproteobacteria 0.003 Q: down-up  0.02 0.00 0.07*** 0.02 0.00 

Deltaproteobacteria >0.05 -  -0.01 0.02 -0.03 0.17*** -0.04 

   Succinivibrionaceae 0.010 Q: up-down  0.09 -0.68*** -0.56** -0.52* -0.27 

Gammaproteobacteria 0.017 Q: down-up  -0.17 -0.07 -0.09 -0.03 0.01 

Spirochaetes >0.05 -  0.05 0.01 -0.07 -0.08 -0.15* 

Tenericutes <0.001 L: up  0.09 0.17*** 0.18*** 0.10* 0.05 

Verrucomicrobria 0.015 L: up  0.00 0.00 0.00 0.05** 0.03* 
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L: up = linear pattern growing from June to October;  

L: down = linear pattern decreasing from June to October 

Q: up-down = zenithal quadratic pattern rising to a maximum during summer and then decreasing;  

Q: down-up = nadir quadratic pattern decreasing to a minimum during summer and then increasing;  

C: up-down-up = cubic pattern rising to a maximum in July, decreasing to a minimum in September and then 

increasing again; 

C: down-up-down = cubic pattern decreasing to a minimum in July, rising in September and then decreasing again. 

Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio. 
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Table 6. Rumen microbiota: loadings of the latent explanatory factors of relative abundance of the rumen 

bacterial taxa. (χ2 = 97.76; 70 degrees of freedom; P=0.016) 

 F1-rm F2-rm F3-rm F4-rm F5-rm F6-rm F7-rm F8-rm Commu

-nality            

Archea   0.88*       0.79 

Actinobacteria      0.67*    0.51 

Prevotella -0.35     -0.81*   >0.90 

Other Bacteroidales 0.84*     0.33   >0.90 

Other Bacteroidetes         0.14 

Elusimicrobia       0.91*  >0.90 

Fibrobacter 0.72*  0.47      >0.90 

Lachnospiraceae    0.42  0.84*    >0.90 

Ruminococcaceae  0.76*       0.73 

Veillonellaceae    0.72*      0.73 

Clostridia  0.31  0.37 0.47   0.41 0.77 

Erysipelotrichaceae   0.51*      0.45 

Lentisphaerae  0.64*   0.35  0.43   0.89 

Planctomycetes 0.30 0.34  0.54* -0.39    0.66 

Alphaproteobacteria 0.54      0.31 -0.41 0.62 

Deltaproteobacteria    0.45  0.66*   0.78 

Succinivibrionaceae  -0.90*        >0.90 

Gammaproteobacteria   -0.62*      0.43 

Spirochaetes    -0.79*     0.71 

Tenericutes 0.64* -0.34       0.72 

Verrucomicrobria 0.58*   0.49     0.74 

* High loading, >0.50; 

Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio. 
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Table 7. Rumen metagenomics: descriptive statistics, significance levels of the Month × Group 

interaction, and root mean square error (RMSE) of the latent explanatory factors of the rumen bacterial 

taxa. 

 

 
Explained variance: Month × Group  F-

value 

R2c RMSE 

By each factor Cumulative 

F1-rm 18.9% 18.9% 5.0*** 0.543 0.685 

F2-rm 9.5% 28.4% 8.8*** 0.616 0.581 

F3-rm 9.2% 37.6% 4.3*** 0.485 0.688 

F4-rm 9.1% 46.7% 4.3** 0.393 0.762 

F5-rm 8.8% 55.5% 8.0*** 0.592 0.620 

F6-rm 8.0% 63.5% 6.2*** 0.518 0.683 

F7-rm 5.8% 69.3% 3.2** 0.361 0.800 

F8-rm 2.7% 72.0% 1.7 0.269 0.747 

*P<0.05; **P<0.01; ***P<0.001;  

R2c = conditional R2. 
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Table 8. Rumen fermentation traits and metagenomics: loadings of the latent explanatory factors and communality coefficients of rumen traits included 

in the factor analysis (χ2 = 614.05; 200 degrees of freedom; P<0.001). 

 

Items F1-rfm F2-rfm F3-rfm F4-rfm F5-rfm F6-rfm F7-rfm F8-rfm F9-rfm F10-rfm Communality 

Rumen fermentation traits:            

N-NH3, mmol/L  -0.442 -0.440        0.622 

Total VFA, mmol/L    0.920*       >0.900 

Acetic acid, %mol 0.864*       -0.365   >0.900 

Propionic acid, %mol -0.948*          >0.900 

Isobutyric acid, %mol   0.629*        0.534 

N-butyric acid, %mol        0.923*   >0.900 

Isovaleric acid, %mol 0.323  0.452       0.414 0.551 

N-valeric acid, %mol         0.838*  >0.900 

Ratio (C2+C4):C3 0.935*          >0.900 

CH4 production, mmol/mol of VFA    0.929*       >0.900 

Rumen metagenomic taxa :            

Archea 0.367 -0.487         0.484 

Actinobacteria     0.662*      0.509 

Prevotella   -0.788*        >0.900 

Other Bacteroidales 0.621* 0.432 0.449        >0.900 

Other Bacteroidetes           0.149 

Elusimicrobia        -0.426 -0.342  0.433 

Fibrobactere  0.745*     0.312    >0.900 

Lachnospiraceae     0.847*  0.374    >0.900 

Ruminococcaceae  0.306 -0.521* 0.304        0.606 

Veillonellaceae        0.820*    0.874 

Clostridia 0.346  0.312  0.464 0.332     0.708 

Erysipelotrichaceae     0.301  0.447    0.412 

Lentisphaerae  0.519* 0.452   0.356     0.856 

Planctomycetes 0.400    -0.488 0.374     0.713 
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Alphaproteobacteria 0.385         0.639* 0.746 

Deltaproteobacteria   0.633*   0.411     0.646 

Succinivibrionaceae  -0.764* -0.425         0.894 

Gammaproteobacteria 0.329      -0.336    0.318 

Spirochaetes      -0.893*     >0.900 

Tenericutes  0.775*         0.729 

Verrucomicrobria 0.465  0.348   0.395     0.748 

* High loading, >0.50; 

Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, Ruminococcus, Ethanoligenens; Veillonellaceae: 

Anaerovibrio, Selenomonas, Succiniclasticum; Succinivibrionaceae: Ruminobacter, Succinivibrio. 



Table 9. Rumen fermentation traits and metagenomics: descriptive statistics, significance levels of 

the Month × Group interaction, and root mean square error (RMSE) of the latent explanatory factors. 

 

 
Explained variance: Group × Month 

F-value 
R2c RMSE 

Individual Cumulative 

F1-rfm 16.4% 16.4% 2.87* 0.33 0.80 

F2-rfm 9.7% 26.1% 10.76*** 0.63 0.59 

F3-rfm 9.5% 35.6% 6.79*** 0.52 0.68 

F4-rfm 7.1% 42.7% 3.08** 0.43 0.77 

F5-rfm 7.0% 49.7% 6.87*** 0.56 0.65 

F6-rfm 6.0% 55.7% 3.39** 0.35 0.80 

F7-rfm 5.3% 61.0% 1.83 0.37 0.79 

F8-rfm 5.1% 66.1% 3.95** 0.47 0.73 

F9-rfm 3.6% 69.7% 4.15*** 0.42 0.65 

F10-rfm 3.3% 73.0% 2.29* 0.27 0.77 

*P<0.05; **P<0.01; ***P<0.001;  

R2c = conditional R2. 
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Figure 1. Rumen fermentation traits: major sources of variation (expressed as % of total variance) of 

each trait: month × group combined effects (dark blue), individual cow within group (red), and 

residual variability (light blue). 
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Figure 2. Rumen fermentation traits: Heat-map plot of correlations among rumen traits. 
 

 
 

C2: Acetic acid; C3: Propionic Acid; C4: Butyric acid. 
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Figure 3. Rumen fermentation traits: patterns of the scores of the latent explanatory factors of rumen 

fermentation traits (F1-rf to F5-rf) during the experimental period. Blue circles represent LSM of the 

cows kept solely indoors, green triangles represent the cows moved to summer highland pastures, and 

blue triangles represent the latter cows when indoors before and after the summer transhumance. Bars 

represent SE of estimates. Lines and curves represent significant linear, quadratic, or cubic patterns, 

with their R2 values, for the cows kept solely indoors. Asterisks indicate the significance levels of 

the differences between the 2 groups in each month (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 4. Rumen microbiota: major sources of variation (expressed as percentage of total variance) 

of each microbial count: month × group combined effects (dark blue), individual cow within group 

(red), and residual variability (light blue). 
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Figure 5. Rumen microbiota: major sources of variation (expressed as % of total variance) of 

individual rumen bacterial taxa relative abundances: Month × Group combined effects (dark blue), 

individual cow within group (red), and residual variability (light blue). 

 
Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio. 

  



 

85 

 

 

 

 

Figure 6. Rumen microbiota: Heat-map plot of correlations among individual rumen bacterial taxa 

relative abundances.  

 

 
Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio.  
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Figure 7. Rumen microbiota: Patterns of the scores of the latent explanatory factors during the 

experimental period. Blue circles represent LSM of the cows kept solely indoors, green triangles 

represent the cows moved to summer highland pastures, and blue triangles represent the latter cows 

when indoors before and after the summer transhumance. Bars represent SE of estimates. Lines and 

curves represent significant linear, quadratic, or cubic patterns, with their R2 values, for the cows kept 

solely indoors. Asterisks indicate the significance levels of the differences between the 2 groups in 

each month (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 8. Rumen fermentation traits and microbiota: Heat-map plot of correlations between rumen 

bacterial taxa relative abundancies and rumen fermentation traits.  

 

 

Prevotella: copri, melaninogenica; Lachnospiraceae: Blautia et cetera; Ruminococcaceae: Oscillospira, 

Ruminococcus, Ethanoligenens; Veillonellaceae: Anaerovibrio, Selenomonas, Succiniclasticum; 

Succinivibrionaceae: Ruminobacter, Succinivibrio. C2: acetic acid; C3: propionic acid; C4: Butyric acid.  
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Figure 9. Rumen fermentation traits and microbiota: patterns during the experimental period of the 

scores of the 6 out of 10 “mixed” latent explanatory factors (based each including rumen fermentation 

traits and rumen bacterial taxa. Blue circles represent LSM of the cows kept solely indoors, green 

triangles represent the cows moved to summer highland pastures, and blue triangles represent the 

latter cows when indoors before and after the summer transhumance. Bars represent SE of estimates. 

Lines and curves represent significant linear, quadratic, or cubic patterns, with their R2 values, for 

the cows kept solely indoors. Asterisks indicate the significance levels of the differences between the 

2 groups in each month (*P < 0.05; **P < 0.01; ***P < 0.001). 
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INTERPRETIVE SUMMARY 

 

Milk metagenomics and cheese-making properties as affected by indoor farming and summer 

highland grazing 

By Secchi et al., page 96-116. This study addresses the relationships between milk metagenomics, 

milk composition, and dairy efficiency of 2 groups (6 cows/group) of Brown Swiss cows sampled 

over 5 months under two types of rearing: indoor farming and summer highland grazing. A total of 

44 bacterial taxa were obtained in milk, 13 of which are of interest to the dairy industry (lactic acid 

bacteria, LAB, and spoilage bacteria), and for human and animal health (other probiotics, and 

pathogenic bacteria). While on summer highland pastures the cows exhibited an increase in almost 

all the LAB, bifidobacteria and propionibacteria, and a reduction in spoilage taxa. All the bacterial 

changes disappeared when the cows were moved back indoors from the alpine pasture. 
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ABSTRACT 

The study of the complex relationships between milk metagenomics and milk composition 

and cheese-making efficiency as affected by indoor farming and summer highland grazing was the 

aim of the present work. The experimental design considered monthly sampling (over 5 mo) of the 

milk produced by 12 Brown Swiss cows divided into two groups: the first remained on a lowland 

indoor farm from June to October, while the second was moved to highland pastures in July, and then 

returned to the lowland farm in September. The resulting 60 milk samples (2 kg each) were used to 

analyze milk composition, milk coagulation, curd firming, and syneresis processes, and to make 

individual model cheeses to measure cheese yields and nutrient recoveries in the cheese. After DNA 

extraction and Illumina Miseq sequencing, milk microbiota amplicons were also processed by means 

of an open-source pipeline called Quantitative Insights Into Microbial Ecology (Qiime2, version 

2018.2; https://qiime2.org). Out of a total of 44 taxa analyzed, 13 bacterial taxa were considered 

important for the dairy industry (lactic acid bacteria, LAB, 5 taxa; and spoilage bacteria, 4) and for 

human (other probiotics, 2) and animal health (pathogenic bacteria, 2). The results revealed the 

transhumant group of cows transferred to summer highland pastures showed an increase in almost all 

the LAB taxa, Bifidobacteria, and propionibacteria, and a reduction in spoilage taxa. All the 

metagenomics changes disappeared when the transhumant cows were moved back to the permanent 

indoor farm. The relationships between 17 microbial traits and 30 compositional and technological 

milk traits were investigated through analysis of correlation and latent explanatory factor analysis. 

Eight latent factors were identified, explaining 75.3% of the total variance, 2 of which were mainly 

based on microbial traits: pro-dairy bacteria (14% of total variance, improving during summer 

pasturing) and pathogenic bacteria (6.0% of total variance). Some bacterial traits contributed to other 

compositional-technological latent factors (gelation, udder health, and caseins).  

Keywords: milk microbiota, probiotic bacteria, dairy bacteria, milk spoilage, summer 

transhumance.  
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INTRODUCTION 

The microbiota of milk has been studied for many decades because of the important 

relationships between milk microorganisms on one side, and milk characteristics, end product, 

economic impact, and nutritional and health values on the other (Quigley et al., 2013; Boor et al., 

2017; Issa and Tahergorabi, 2019). The most interesting of the favorable relationships between 

microbes and the various milk characteristics are those that concern the role of microbial species, 

especially lactic acid bacteria (LAB), in relation to milk end products, particularly cheese (Skeie, 

2007; Ardö et al., 2017; Nam et al., 2021), and digestion and intestinal functions and integrity in 

human consumers (prebiotics and probiotics; Aryana and Olson, 2017; Nyanzi et al., 2021). The most 

interesting of the unfavorable relationships are the potential effects of some microbial species on the 

spoilage of milk and dairy products (Quigley et al., 2013; Martin et al., 2021), and on the health of 

lactating animals (mastitis; Andrews et al., 2019) and of human consumers (pathogenic activities; 

Verraes et al., 2015). 

The recent development of metagenomics is now expanding our knowledge of these aspects 

of milk microbiota (Addis et al., 2016; Parente et al., 2020). Traditional microbiological studies were 

based on identifying, isolating, characterizing, and counting individual microbial species or strains 

(Tilocca et al., 2020). With metagenomics, the entire milk microbiota composition can be identified 

and characterized. Alongside ecological studies of milk microbial communities, we can now gather 

new information on many microbial taxa involved in different compositional, technological, and 

nutritional properties of milk.  

One of the most important, but also difficult to study, issues is the effect of dairy system, 

particularly pasture grazing, on the milk microbiota, and the effect of the microbiota on the properties 

associated with milk processing and end products, nutritional value, and consumer health (Doyle et 

al., 2017). The difficulties lie mainly in disentangling the confounding effects of environment, 

management, animal characteristics, season, feedstuffs, and hygiene (Du et al., 2020).  
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The opposite extremes of dairy farming are represented by the intensive indoor system, with 

all-year-round use of total mixed rations, and forage-based systems, where the cows are kept at 

pasture day and night, and have only limited access to compound feed during milking (O’Callaghan 

et al., 2017). Among the latter, farms that practice transhumance to temporary farms on highland 

summer pastures are very distinctive for both the extreme environmental conditions the animals face, 

and the renowned quality and nutritional value of their dairy products (Buchin et al., 1999). Little is 

known of the extent to which the specificity of mountain dairy products is due to the milk microbiota. 

We hypothesized that the summer transhumance to highland summer pastures would alter the 

microbial population of the milk, and that milk microbiota could affect the cheese-making process. 

The general aim of this research, therefore, was to study the milk microbiota in indoor housing 

versus summer highland grazing and its relationships with milk quality and technological properties, 

with particular emphasis on the bacterial taxa related to various specific activities [cheese making, 

health maintenance (probiotics), milk spoilage, and pathogeny], and the effects of moving the cows 

from indoor conditions to the summer highland pasture, and then back to indoor conditions. 
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MATERIALS AND METHODS 

Experimental Design and Milk Sampling 

This study is part of a larger project studying the effects of the transhumance of cows to 

summer highland pastures on their productivity, and on the chemical, technological and 

microbiological characteristics of the milk produced. In this project, 2 groups of cows (one kept solely 

indoors, the other moved to summer pasture) were monitored before, during, and after summer 

transhumance. Details on the environmental conditions and methodology can be found in 2 previous 

studies: the first dealing with the cows’ body condition and milk yield, milk composition, and cheese-

making efficiency (Saha et al., 2019), and the second reporting some preliminary data on milk 

microbial counts (Carafa et al., 2020). All samples and measurements were obtained during the farms’ 

normal milking procedures; therefore ethics commission approval was not required. 

In line with the aims of this project, the present study was carried out at 2 farms in a mountain 

area (Trentino Province, northeastern Italian Alps): (1) a modern, permanent farm in a valley (Malè, 

Trento, Italy; 737 m above sea level), where lactating cows are loose housed indoors, fed TMR, and 

milked in a milking parlor; and (2) a temporary summer highland farm (Malga Juribello, within the 

“Paneveggio – Pale di San Martino” Nature Reserve, Passo Rolle, Trento, Italy; 1,860 m above sea 

level), where cows are kept at pasture day and night, and are milked and given a supplementary 

compound feed (3 to 6 kg/d, according to milk production) in a milking parlor in an old barn. 

Briefly, the experimental design consisted of the following steps: the selection at the end of 

May of 12 healthy, multiparous, early-lactation Brown Swiss cows on the permanent lowland farm, 

and their random division into 2 groups of 6 cows each. The cows in both groups had similar (P > 

0.05, based on t-test) parity numbers (2.5 and 2.8, respectively) and DIM (143 and 120, respectively); 

all 12 cows were kept together in the same indoor pen before the start of the experiment (beginning 

of June) and during the first (June) and last month of sampling (October). During summer (July, 

August, and September) 1 of the 2 groups was moved to the temporary highland farm (high group) at 
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the beginning of July, and returned to the permanent farm at the end of September; the other group 

remained indoors on the permanent lowland farm (low group). Monthly samples of milk from each 

cow at the evening milking, from mid-June to mid-October (5 samples per cow) were taken in both 

farms (60 samples in total). 

The samples taken in June represent the initial condition of the 2 groups: having been reared 

together, non-significant differences for all traits were expected. The samples taken in July, August, 

and September represent the effects of the 2 farming conditions: indoors in the valley versus on 

highland pasture. The fifth sample, taken in October after the 2 groups had been together again for a 

month, represented potential carryover effects of summer pasturing on indoor rearing. 

Each sample was divided into 2 aliquots: the first (50 mL) was immediately frozen in liquid 

nitrogen, taken to the Research and Innovation Centre, Food Quality and Nutrition Department of the 

Fondazione Edmund Mach (San Michele all’Adige, Trento, Italy), and stored at -80 °C before 

microbiological analyses within 3 mo; the second aliquot (2 L) was immediately refrigerated at 4 °C 

and transported to the Milk Laboratory of the Department of Agronomy, Food, Natural Resources, 

Animals and Environment of the University of Padova (Legnaro, Padua, Italy) for evaluation of milk 

quality, cheese-making aptitude, and cheese yield. 

 

Metagenomic Analyses 

In a previous study (Carafa et al., 2020), we analyzed in detail the bacterial counts of milk 

regarding a preliminary comparison of the samples taken during summer pasturing (n = 18) with those 

taken indoors on the permanent farm (n = 42), without taking into account the effects of group and 

month. In the present study, the principal bacterial taxa identified by Qiime2 (version 

2018.2; https://qiime2.org; Bolyen et al., 2019) were classified into four categories according to their 

potential activity in relation to the cheese-making (LAB), other probiotics, spoilage, and pathogenic 

properties of milk, and were statistically analyzed, disentangling the effects of individual cows, 

https://qiime2.org/
https://www.sciencedirect.com/science/article/pii/S0022030222006695#bib16
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groups of cows, month of sampling, and environmental and feeding conditions. The relationships 

between the metagenomic information and the qualitative and cheese-making properties of milk were 

also explored. 

In brief, genomic DNA was extracted using the DNeasyPower Food Microbial Kit (Qiagen) 

and quantified by Nanodrop8800 Fluorospectrometer (Thermo Scientific). The Miseq Library 

(Illumina) was prepared according to the authors’ recommendations and followed by Illumina 

sequencing. All the sequencing data were processed using Qiime2, and the final data were deposited 

in the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA528228), 

where they can be accessed with accession number PRJNA528228. 

 

Bacterial Categories 

The 4 categories of the identified taxa are here briefly reported. The LAB category includes 

the taxa belonging to the Lactobacillaceae family, including Lactobacillus, Leuconostoc; (Zheng et 

al., 2020), Lactococcus, and Enterococcus (Gagnon et al., 2020); the “other probiotics”  category 

includes all the taxa belonging to the Propionibacterium (Rabah et al., 2017) and Bifidobacterium 

genera (Prasanna et al., 2014). The “spoilage bacteria” category includes all the taxa belonging to the 

order Clostridiales (Burtscher et al., 2020) and the genera Pseudomonas (Meng et al., 2017), Kocuria 

(Ribeiro-Júnior et al., 2020), and Alicyclobacillus (Pornpukdeewattana et al., 2020). Finally, the 

“pathogenic” category includes all the taxa belonging to the genus Staphylococcus (Gebremedhin et 

al., 2022), and the family Enterobacteriaceae (Anand and Griffiths, 2011). The remaining 31 

bacterial taxa were grouped as “other milk bacteria”. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA528228
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Milk Composition, Cheese-Making Aptitude, and Cheese Yield 

Within 20 h of collection, the second aliquot was used to evaluate milk composition, 

traditional coagulation properties, whey composition, cheese yields, and milk nutrient recoveries in 

the curd, and for curd firming modeling and the manufacture of model cheeses.  

 

Milk composition 

In brief, milk composition traits (TS, fat, nonfat solids, protein, casein, lactose, and urea 

contents) were evaluated with a Milkoscan FT2 infrared analyzer (Foss A/S). Somatic cell counts 

were obtained with a Fossomatic Minor FC counter (Foss A/S) and then log-transformed to SCS. The 

fat/protein ratio and casein number (casein as a percentage of protein) were computed from the fat, 

protein, and casein contents. In the present study, we used the qualitative and technological 

characteristics of the milk samples to search for potential relationships with the metagenomic 

information from the same milk samples.  

Milk coagulation properties and curd firming modeling parameters 

Traditional milk coagulation properties were using a lactodynamograph (Formagraph; Foss 

A/S) according to Cecchinato et al. (2013), and consisted of the following: rennet coagulation time 

(RCT, min), curd-firming time (k20, min), and curd firmness (a) 30, 45, and 60 min after rennet 

addition (a30, a45, and a60; mm). Estimates of the curd-firming and syneresis equation parameters of 

each individual milk sample were obtained by extracting 240 curd firmness values (one every 15 s 

for 60 min) from the lactodynamograph. The equation parameters were rennet coagulation time by 

equation (RCTeq, min), the curd-firming instant rate constant (kCF, %/min), the syneresis instant rate 

constant (kSR, %/min), maximum curd firmness (CFmax, mm), and time to reach CFmax (tmax, min; 

Malchiodi et al., 2014).  

Model Cheese Making, Cheese Yields, Milk Nutrient Recoveries in the Curd, and Whey Composition 
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A larger aliquot (1,500 mL) from each milk sample was used to manufacture a model cheese 

according to a procedure that replicates the process for making full-fat cheese (Stocco et al., 2018). 

Briefly, the procedure was as follows. (1) Each milk sample was poured into a stainless-steel 

laboratory vat. (2) The vat was placed in a water bath and heated to 35 C for 30 min; (3) Rennet 

solution (8 mL; Hansen Standard 215 with 80 ± 5% chymosin and 20 ± 5% pepsin; Pacovis Amrein 

AG) freshly diluted to 4.29% (wt/vol) in distilled, water was added. (4) After coagulation, the curd 

was cut. (5) The curd was drained for 30 min. (6) The resulting whey was collected, weighed and 

sampled. (7) The chemical composition (TS, fat, protein, and lactose) of the whey samples was 

analyzed with a Milkoscan FT2 infrared analyzer (Foss A/S). (8) The curd was pressed for 30 min at 

250 kPa in a cheese-pressing machine, turning every 10 min. (9) The pressed curd wheel was soaked 

in a brine solution (20% NaCl) for 30 min. (10) After brining, the cheese wheels were weighed and 

the pH measured with a Crison Basic 20 electrode (Crison Instruments SA). The percentage yields of 

fresh cheese (%CYCURD) and cheese solids (%CYSOLIDS) were determined, as well as the following 

nutrient recovery traits (REC; the quantity of a given nutrient in the cheese as a percentage of the 

same nutrient in the milk processed): milk fat (RECFAT, %), milk protein (RECPROTEIN, %), total milk 

solids (RECSOLIDS, %), and milk energy (RECENERGY, %). 

 

Statistical Analysis 

All relative bacterial abundancies were log10 transformed. Two samples were excluded from 

the statistical analysis because of a lack of microbiological data in one and of qualitative-

technological data in the other. All bacterial and qualitative-technological data were checked to 

identify and exclude outlier values (outside the interval ± 3 SD of the mean).  

Mixed-Model ANOVA 
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The log10 transformed relative abundances obtained from the milk metagenomic analysis were 

analyzed with a linear mixed model in the R environment (R Core Team, 2016), which included the 

fixed effects of the month × group interaction (10 levels: 5 mo, June to October; and 2 groups, high 

and low), and the random effect of cow within group. Polynomial contrasts were estimated between 

the 5 least square means of month within low group to determine the response curve of each trait 

(linear, quadratic, and cubic components) during the 5 mo the cows were kept indoors on the 

permanent farm as a measure of the effect of season and advancing lactation in the control group. 

Contrasts between the high and low groups were estimated within each month to test for the 

following: homogeneity of groups in the same environment (indoors) at the beginning of the trial 

(June); the effect of transhumance to highland pasture during the summer months (July, August, and 

September) compared with the control indoor group; and the carryover effect of summer pasture on 

the high group after returning to indoor conditions on the permanent farm (October). A similar model 

with the month × group interaction treated as a random factor was run to quantify the relative 

importance of this environmental or diet factor, individual animal within group, and residual factors 

not accounted for by the model. The variances in these 3 sources of variation were expressed as 

percentages of their sum (total variance).  

The model used here is the same model that we used in the previous study (Saha et al., 2019) 

to analyze the qualitative and technological properties of milk.  Thus, those results are not reported 

and discussed here, except where they are useful for interpreting relationships with the metagenomics 

data.  

Correlation analysis and latent explanatory factor analysis 

The 2 datasets of metagenomic relative abundances (only for the bacterial categories of 

interest; i.e. LAB, other probiotics, spoilage, and pathogenic bacteria), and the qualitative and 

technological properties of milk were merged for the correlation and multivariate analyses to explore 

the relationships between bacterial and chemical/technological traits. Correlations were calculated 



 

103 

 

 

 

 

among the metagenomic relative abundances of the selected taxa and groups, and between the 

metagenomic relative abundances and the qualitative and technological milk traits.  

Due to the high number and complexity of the relationships among all the traits, we used a 

multivariate factor analysis (FA) to summarize the interrelated measured traits in a small number of 

unmeasured latent independent explanatory variables (factors). Factor anlysis was performed on the 

selected traits as follows. First, we performed Kaiser–Meyer–Olkin and Bartlett’s tests, which showed 

that the traits were suitable for FA. The FA was carried out with Varimax rotation in the R 

environment (R Core Team, 2016) using the psych package (available at CRAN: The Comprehensive 

R Archive Network, version 2.2.9; https://cran.r-project.org/web/packages/psych/index.html) in 3 

steps: (1) extraction of factors such that the minimum number of uncorrelated latent factors explained 

the greatest proportion of common variance; (2) factor rotation until each factor was defined by a few 

variables with high loadings; and (3) biological interpretation of the factors based on the strength of 

the loadings of the variables. The eigenvalues of the factors and the communalities of the variables 

after rotation were also determined.  

Eight latent explanatory factors were extracted from the 47 milk traits selected (17 bacterial 

and 30 qualitative or technological traits). To better understand their meaning, the sign of all the 

loadings of the second, sixth and eighth factors were inverted. The scores of each milk sample for 

each factor were analyzed using the same linear mixed model as that used for the metagenomic 

relative abundances. 

 

  

https://cran.r-project.org/web/packages/psych/index.html
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RESULTS  

Factors of Variation in Milk Metagenomic Relative Abundances 

As a first step in examining the factors of variation in the relative abundances of the bacterial 

taxa of the 4 designated groups, we present in Figure 1 a summary of the percentages of total variance 

represented by the combined effects of group of cows (low vs. high) and of month of sampling (June 

to October; dark blue), the effects of individual cows within group (red), and the residual sources of 

variations (light blue). It is clear that the effects of the group × month interaction represent a major 

source of variation (>45% of total variance) in the relative abundances of about two-thirds of the 

bacterial traits, with the exception of Leuconostoc, Enterococcus, other LAB, Clostridiales, 

pathogenic bacteria, and Staphylococcus. The variability due to individual cows was negligible for 

10 out of 17 traits, very important for Staphylococcus and Clostridiales taxa, and moderate for 

Enterococcus, other LAB, Kocuria, pathogenic bacteria and Enterobacteriaceae. 

 

Combined Effects of Group of Cow and Month of Sampling on Milk Metagenomic Relative 

Abundances 

Table 1 shows the levels of statistical significance of the combined effects of group and month 

of sampling for the relative abundances of the 44 bacterial taxa identified, and their sums in categories 

defined by their prevalent activity. The month × group interaction exerted a significant effect on the 

relative abundances of LAB, other probiotics, and spoilage bacteria, and of all the taxa within these 

categories except for the Leuconostoc taxa. The pathogenic bacteria group was not significantly 

affected, although the Staphylococcus and Enterobacteriaceae taxa within this group were; these two 

taxa went in opposite directions. The relative abundances of the 31 bacterial taxa belonging to neither 

the desired nor the undesired groups were significantly affected in fewer than half of cases. 

Figure 2 shows the plots of the relative abundances of the sum of all the milk LAB taxa having 

a desired effect on cheese-making, and of the individual taxa (Lactobacillus, Leuconostoc, 
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Lactococcus, Enterococcus, and other LAB). In the first plot, we can see that the relative abundance 

of LAB exhibits a significant quadratic pattern in the low group during the 5 mo of the experiment, 

with the lowest value occurring in August. In June, the difference between the high and the low groups 

of cows was not significant, which is expected as all the cows were housed and fed together indoors 

on the permanent lowland farm. In contrast, during the three summer months (July, August, and 

September), when the high group was on the summer highland pastures, their values were always 

significantly higher than the low group. At the end of summer, when the high group returned to join 

the low group on the permanent farm in the valley, the 2 groups showed no significant differences, 

indicating the absence of carryover effects of summer transhumance. 

Lactobacillus, Lactococcus, and Enterococcus showed a trend very similar to the LAB 

category, probably because of their high relative abundances during the summer highland grazing 

period. The situation is very different for Leuconostoc and the other LAB taxa: over the 5 mo of the 

experiment the low group exhibited a linear decreasing pattern in the case of Leuconostoc, and a 

linear increasing pattern for other LAB.  

Other probiotics followed a cubic pattern (Figure 3) for the low group, with the highest relative 

abundances in August and September, mainly due to the pattern of Bifidobacterium. Throughout the 

study period the high group exhibited higher abundances than the low group, with the difference 

increasing month by month. Again, as for LAB, no carryover effect was observed after the HIGH 

cows returned to the indoor permanent farm (October). 

Spoilage bacteria showed a complex pattern (Figure 4), and some seasonal variation in the 

low group according to bacterial taxa. With the exception of Kocuria, the relative abundances of all 

the spoilage bacteria taxa were lower in the high than in the low group during summer pasturing. This 

difference was significant in July and August for Alicyclobacillus, in August for Clostridiales, in 

September for Pseudomonas, and in August and September for the whole group. No carryover effect 

was observed in October. 
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Finally, the relative abundances of the pathogenic bacteria (Figure 5) followed a cubic pattern 

for the low group of cows (with the highest value in July), due to the pattern of Staphylococcus. The 

differences between the high and low groups were not significant for these bacteria because of the 

opposite patterns in Staphylococcus and Enterobacteriaceae: the high group had a lower relative 

abundance of Staphylococcus than the low group and a higher relative abundance of 

Enterobacteriaceae during summer pasturing. (No differences were observed before and after 

transhumance). 

The results of the mixed-model ANOVA of the other 31 bacterial taxa detected in milk are 

summarized in Table 2.  Regarding the seasonal pattern of the low cows, only 12 of the 31 taxa 

exhibited a significant trend: Jeotgalicoccus, Aerococcaceae, and Acinetobacter showed a linear 

increase over time; Rhodococcus, and Delftia showed a quadratic pattern with a maximum during 

summer; Bacteroidales showed a quadratic pattern with a minimum during summer; 

Chitiniphagaceae, Solibacillus, other Bacillales, Ochrobactrum, Sphingomonas, and other 

Alphaproteobacteria followed a cubic pattern with the maximum value in July and the minimum in 

September. The other 19 taxa showed no significant variation over time. 

Comparing the high and low cows within each month, we found an unexpected significant 

difference for Bacteroidales in June. We detected some difference in 19 of the 31 taxa during the 3 

summer months (i.e., when the high group was on highland pastures while the low group remained 

indoors): in 10 in July, 3 in August, and 10 in September. Higher values of 9 taxa were observed in 

the high group, and 14 taxa in the low group. Only other Firmicutes and Xanthomonadaceae showed 

significant carryover effects in October. 

 

Correlations  

Correlation analyses were carried out on the relative abundances of the bacterial taxa known 

to have some specific activity in the 4 designated categories, and their Pearson correlations are 
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summarized in a heat plot in Figure 6. The relative abundances of the individual taxa, and the LAB 

and other probiotics categories, were generally positively correlated with each other, with the 

exception of the Leuconostoc taxa, which is almost entirely independent of all the other taxa and 

categories. 

The spoilage bacteria taxa exhibited low correlations with each other and negative correlations 

with the relative abundances of the taxa of the LAB and other probiotics categories (Figure 6). The 2 

taxa included in the pathogenic bacteria category were negatively correlated with each other, and 

their correlations with other bacterial categories were in opposite directions: Enterobacteriaceae were 

positively correlated with the LAB and other probiotics categories and taxa, and Staphylococcus had 

low correlations with spoilage bacteria taxa. 

The correlations among the constituents and technological properties of milk are not among 

the objectives of this study, as they are already well known; therefore, they are not illustrated in detail 

and discussed here. 

The correlations between the bacterial taxa and the constituents and technological traits of 

milk are summarized in a heat plot in Figure 7. These correlations vary greatly according to taxa and 

milk trait. It is worth noting that the LAB and other probiotics categories and their individual taxa 

exhibited correlations with many of the 30 milk composition and technological traits that were often 

in opposite directions to those shown by the spoilage bacteria category and individual taxa.  

 

Latent Explanatory Factors of the Bacterial, Compositional and Technological Traits of Milk 

The multivariate FA carried out on the 47 selected bacterial, compositional, and technological 

milk traits identified 8 latent explanatory factors. The loadings of each factor, excluding those that 

were non-relevant (< 0.30), are reported in Table 3, with high loadings (> 0.50) indicated by asterisks. 

All 17 bacterial taxa were included in one (n=6) or more (n=11) factors. Leuconostoc, other LAB, 

Clostridiales, Alicyclobacillus, and Enterobacteriaceae had the lowest loading values (never higher 
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than 0.44) and therefore are not well represented by any latent explanatory factor. In contrast, all 4 

bacterial categories presented high communality loading values (0.68 to 0.90).  

The 30 compositional and technological traits of milk, with the exception of milk urea, SCS, 

and whey protein, often contributed to characterizing the factors and presented high communality 

values. 

The 8 latent explanatory factors represented 75.3% of the total covariance of the whole matrix, 

with individual values ranging from 14.2% for the first factor to 5.3% for the eighth (Table 4). It is 

worth noting that the mixed-model ANOVA of the scores of each factor revealed that all the latent 

explanatory factors, except factor 7, were significantly affected by the combined effect of group of 

cows and month of sampling (Table 4).  

The 10 least squares means values, the standard errors, the seasonal patterns of low cows, and 

the significance levels of the differences between the 2 groups of cows within each month are 

illustrated in Figure 8 (one plot for each of the 8 latent explanatory factors). Factor 1 was characterized 

by a quadratic trend with the maximum value in October for the cows kept solely indoors (low group), 

and presented no significant differences between the 2 experimental groups of cows in any month of 

sampling. Factor 2 presented a quadratic seasonal trend with the maximum value in August, and the 

high group having significantly greater values during the 3 summer months. Factor 3 presented a 

quadratic seasonal pattern for low cows, but with the minimum in August and the high group having 

significantly higher values in July and August. Factor 4 presented a pattern that was almost the 

opposite of that of Factor 3: low cows followed a cubic pattern with the maximum in August, and 

high cows had significantly lower values in September. Factor 5 presented a linearly increasing 

pattern for low cows and significantly lower values in the high group only in August. Factor 6 

presented a cubic seasonal pattern with the maximum in July and no differences between the 2 groups 

of cows. Factor 7 presented a linearly increasing pattern for the low group and no differences between 
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the 2 groups. Factor 8, like factor 7, presented a linearly increasing pattern for the low group, and no 

differences between the 2 groups. 
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DISCUSSION 

Effects of Group of Cows and Individual Cows 

In this study, we compared 2 groups of cows kept in the same physiological, environmental, 

nutritional, and management conditions only in June, when they were all kept indoors on the lowland 

permanent farm. At P <0.05 there is a 5% probability that the differences between the high and low 

are due to chance, and at P <0.01 the probability is 1%. Of the 56 contrasts tested (the relative 

abundances of 44 taxa and four categories of bacteria shown in Figure 2, 3, 4, and 5 and Table 2, and 

the scores of 8 explanatory latent factors shown in Figure 8), 3 were significant at P <0.05 

(Bacteroidales taxa, factor 3, factor 5) and one at P <0.01 (Pseudomonas taxa), so we can assume the 

2 groups were homogeneous. No information is available in the literature on the variability in 

bacterial traits in different, randomly composed groups of cows. The increasing variability among 

groups of cows may be due to permanent differences among different cows observed in subsequent 

samplings (animal effect). As seen in Figure 1, the permanent animal effect is generally small or not 

observable for the majority of bacterial taxa. This means that the (high) variability observed among 

different milk samples is due to the effects of other common factors (environment, diet, hygiene 

practices, milking routine, etc.) or individual, nonpermanent factors (temporary diseases, cleanness 

of teat surface, feed selection, etc.; Du et al., 2020; Parente et al., 2020). It is not surprising that the 

bacterial taxa with the highest animal effect was Staphylococcus that is a potential pathogen generally 

considered to be a cause of clinical mastitis (Verraes et al., 2015; Bobbo et al., 2017; Keane, 2019). 

It is worth noting that the cows selected for this study were all healthy, and that none of them 

developed clinical mastitis during the study. On the other side, single episodes of clinical mastitis do 

not influence the (permanent) animal effect, only the residual variance, and repeated cases of clinical 

mastitis normally result in the cows being culled. The high animal effect observed in Figure 1 for 

Staphylococcus could be interpreted as the predisposition of some healthy cows to carry greater or 

lesser quantities of these bacteria. Whether this indicates a predisposition for subclinical mastitis is 
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not known, and is an issue worth investigating with a much larger number of animals. Cows have a 

(modest) heritability for both the incidence of clinical mastitis (Koeck et al., 2014), and the level of 

the mastitis indicator represented by the somatic cell content in the milk (Urioste et al., 2010; Pegolo 

et al., 2021). This indicates an interaction between the cow’s genome and the infectiousness of the 

pathogens causing mastitis, so the variability in the relative abundances of Staphylococcus taxa 

among different animals observed here could also depend on their genome. 

Other bacterial taxa shown in Figure 1 exhibiting a nontrivial animal effect are other LAB, 

Clostridiales, and Kocuria. We found no information in the scientific literature on animal 

repeatability of the relative abundances of these taxa, so this, too, could be an interesting line of 

research with respect to cheese-making efficiency or cheese defects (de Paiva Anciens Ramos et al., 

2021). 

Associations Between Milk Microbiota, Milk Composition, and Cheese-Making Properties 

Association studies between milk microbiota and composition and cheese-making properties 

are infrequent and deal mainly with the potential effects of pathogenic bacteria on udder health, and 

mastitis in particular (Leitner et al., 2006; Bobbo et al., 2017).  

Multivariate statistical analyses are often used to study associations among different bacterial 

taxa (Rodrigues et al., 2017) and between these and other milk or cheese characteristics (Nyman et 

al., 2014). The most commonly used method is principal component analysis, as it is very efficient, 

although the results are not always easy to interpret. Factor analysis has the advantage of better 

clustering the observed traits so that the latent explanatory factors can be related to a small number 

of important traits. Unfortunately, this method is seldom used with metagenomics data sets, and we 

are not aware of any FA combining the microbiological, compositional, and technological properties 

of milk, which means that it is not possible to compare our results with those of other authors. 

It is worth noting that in this analysis we did not obtain any latent factors based on the 

simultaneous strong influence of bacterial and other milk characteristics. This means that milk 
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characteristics do not seem to be highly dependent on microbiological populations, nor vice versa. 

Two of the 8 factors were based mainly on bacterial taxa, and the other 6 on milk composition and 

cheese-making properties.  

As seen in Table 4, the first latent explanatory factor (14.2% of total variation) is based on 

traits obtained mainly from lactodynamographic tests and modeling, and particularly, with negative 

loadings, on the time from rennet addition to coagulation (RCT and RCTeq), and the time to reach a 

given (k20) or maximum (tmax) curd firmness. Early gelation is obviously positively correlated with 

an increase in the traits measuring curd firmness (a30, a45, a60, and CFmax) and allows more time for 

estimating curd syneresis (kSR; Table 3). This is why we named this factor the “milk gelation factor”. 

It also includes the protein and casein contents of milk and whey with positive loadings; protein, 

especially casein, are known to have a favorable effect on the rapidity and intensity of coagulation 

(Amalfitano et al., 2019). Among the bacterial traits, only 2 LAB taxa are involved in the gelation 

factor, but with opposite signs: negative in the case of Leuconostoc, positive in the case of other LAB. 

Finally, milk urea is also included with a negative loading. 

The second most important latent factor, obtained from the analysis (14.0% of total variation), 

shown in the Table 4, is substantially based on milk metagenomics, as it includes, with positive 

loadings, the 2 categories (and their major taxa) that have putative positive effects on the commercial 

and nutritional value of milk: LAB and other probiotics. However, it also includes the spoilage 

bacteria taxa with a negative loading, and spoilage microorganisms are well known to have a negative 

impact on the value and quality of dairy products (Martin et al., 2021). The pathogenic bacteria 

category is not included in this factor because of the opposite sign of the loadings of the two taxa it 

includes. It is evident that this important latent factor can be considered an index of the favorableness 

of the microbiological profile of milk, and for this reason we named it “pro-dairy bacteria”. This 

factor also includes, with a negative sign, some traits related to milk and whey composition, but none 

of these characterizes the latent factor (Table 3). 
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The third latent explanatory factor in Table 4 (11.7% of total variation) is based on milk fat 

content and cheese yield. It is worth noting that fat is a major component of curd solids but is, in 

particular, the component with the highest variability, much greater than that of protein. This explains 

why milk fat is so closely associated with milk solids (and the fat/protein ratio) and with cheese yield 

expressed as cheese solids as a percentage of the TS of the processed milk. This last trait is obviously 

associated with the recovery of milk solids and energy in the curd, and also with water retained in the 

curd and fresh cheese yield. This is why in Table 3 we named this latent explanatory factor “Cheese 

yield factor”. It is also associated with, but not characterized by, whey fat, because with the increasing 

fat content of milk we expect an increase in both fat retained in the curd and fat lost in the whey, 

although proportionally in favor of the former due to the positive relationships between the fat content 

of milk and fat recovery in the curd. The other traits (negatively) associated with the cheese yield 

factor were casein number and milk lactose content. Because lactose is the major component of milk 

solids and ends up being mainly lost with the whey, it is evident that, as it increases in milk, it causes 

a reduction in the yield of cheese solids. The meaning of the negative loading of casein number in 

this factor is less evident, but we should bear in mind that this trait is at the same time also included 

in 2 other factors, discussed later. A cheese yield factor was also identified in a previous large data 

set that did not include metagenomic information (Dadousis et al., 2018b). It was the most important 

factor in that study, representing 14% of all variation and, as in this study, was characterized by yield 

of cheese solids, fat content, and recovery of milk energy in the curd, as well as by protein content. 

A cheese yield latent factor was also identified from analysis of a large data set obtained from 

observations on dairy ewes (Manca et al., 2016). 

The fourth factor presented in Table 3 is characterized by the lactose content of milk and 

whey, milk nonfat solids, and whey solids (lactose being the major constituent of both the latter). As 

expected, because lactose is retained in very small proportions in the curd, this factor included 

recovery of milk solids and energy in the curd, with negative loadings. An increase in lactose content 
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is frequently associated with a lower somatic cell content (see the negative loading of SCS) and whey 

proteins (see the positive loading of casein number), and, taken together, there are interpreted as 

indicators of good udder health (Macciotta et al., 2012). This is why we named this factor “udder 

health factor”, as others have done for cattle (Macciotta et al., 2012; Cecchinato et al., 2012; Dadousis 

et al., 2018a,b; Cecchinato et al., 2019), and for goats and sheep ( Manca et al., 2016; Vacca et al., 

2016). Note that the udder health factor is associated with the variations in 5 bacterial taxa: the 

decrease in Enterococcus, Propionibacterium, and Enterobacteriaceae, and the increase in other 

LAB and Alicyclobacillus. The meaning of these associations is clear for Enterobacteriaceae, but not 

for the other taxa.  

In a previous study we found relationships between the presence of a few bacterial groups 

causing mastitis and the qualitative and technological properties of milk (Bobbo et al., 2017). 

Staphylococcus aureus was the contagious bacteria most frequently isolated in milk samples from 

individual cows. The presence of this pathogen was associated with decreases in daily milk yield, 

casein number, and milk lactose (i.e. the udder health factor), but not in other milk constituents. The 

contagious milk bacteria were also associated with a worsening of milk coagulation and curd firmness 

properties, and a decrease in cheese-making efficiency and, in particular, recovery of milk fat and 

protein in the curd (Bobbo et al., 2017). More information on the relationships between milk SCC or 

SCS and milk properties can be found in Bobbo et al. (2016). 

The fifth factor listed in Table 3 is characterized by milk casein, milk protein (whey protein), 

nonfat solids, casein number, and protein recovery in the curd. It is evident that casein content has a 

central role in this factor, so we named it “casein factor”. It also includes some traits related to the 

rate and degree of curd firming (k20, a60, and CFmax), confirmation that caseins play an important role 

in curd firming, much more so than in milk coagulation time (Jõudu et al., 2008). Protein is also more 

correlated than fat with the retention of water in the curd, which explains the positive loading of curd 

cheese yield (Cipolat-Gotet et al., 2020). In any case, we should bear in mind that different protein 
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fractions have different effects on milk coagulation and curd firming traits (Amalfitano et al., 2019), 

as well as cheese yield and milk nutrient recovery in cheese (Cipolat-Gotet et al., 2018). It is worth 

noting that “other LAB taxa” is the only microbiological trait positively included in this factor. 

As seen in Table 3, the sixth factor is, like the pro-dairy bacteria factor, based only on bacterial 

traits. It is characterized mainly by the pathogenic bacteria category, specifically by the 

Staphylococcus taxa, but not by Enterobacteriaceae (included negatively in the udder Health factor). 

This is why we named it “pathogenic bacteria”. It is worth noting that mastitis has been described as 

a dysbiosis, an imbalance in the healthy mammary gland microbiome (Andrews et al., 2019). This 

latent factor is also associated with a negative loading to the LAB (Leuconostoc and Enterococcus 

taxa) and spoilage bacteria categories (particularly the Kocuria and Pseudomonas taxa), and with a 

positive loading to Alicyclobacillus. 

The seventh factor (Table 3) is also mainly characterized by traits obtained during the 

lactodynamographic test, but here the time intervals from rennet addition to coagulation are not 

included (earliness of coagulation, as in the case of the gelation factor), whereas the rapidity of the 

curd firming (kCF, k20 and tmax) and syneresis processes (kSR) is central, and explains the positive 

loading of a30, the small loading of a45, and the negative loading of a60. This is why we named this 

the “curdling factor”. Small correlations between gelation time, rapidity of curd firming and syneresis 

were previously reported by Macciotta et al. (2012). It is worth noting that 2 independent latent factors 

representing coagulation traits and curd firming traits were also obtained on goats milk (Todaro et 

al., 2005). 

The eighth factor in Table 3 is characterized by positive loading of the recoveries of milk fat 

(RECFAT) and total milk solids (RECENERGY) in the curd, and a negative loading of the fat and TS 

contents in the whey, so we named this the “fat recovery factor”. 
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Effects of Season or Lactation Stage, Farming System, and Pasture Carryover 

We were unable in this study to disentangle the effects of season and lactation stage, because, 

as is often the case in pasture-based farming systems, the cows at the beginning of pasturing are 

generally in the first half of lactation, and it progresses together with the advancing season. Having 

initially created 2 homogeneous groups of cows for lactation stage, and having kept their composition 

constant during the experiment, we found a similar overlap in advancing season and lactation stage 

in the high (moved to summer pastures) and the low group (kept solely indoors). In the case of the 

high group, the overlap also went hand in hand with the gradual maturation of the forage on the 

summer pasture. This should be borne in mind when interpreting the results, as the often significant 

seasonal pattern of the low cows (Figures 2, 3, 4, and 5, and Table 2) represents the simultaneous 

change in season and lactation stage, but not feeding regime (constant TMR).  

We were also unable to model the same pattern in the case of the high group, because we 

cannot assume continuous evolution along the 5 experimental months. This group, in fact, underwent 

2 abrupt changes: the move from the permanent farm in the valley to the highland pastures, and then 

the return to indoor conditions. In this case, we considered the low group as the control, and compared 

the high group against them month by month. As seen before, the substantially low incidence of 

significant contrasts between the 2 groups in June supports the assumption of initial homogeneity of 

the 2 groups. 

The large number of significant differences observed in July, August, and September for the 

bacterial traits and the latent factors confirms the hypothesis of very large effects of farming system 

(permanent indoor housing vs. summer highland pasture), and is consistent with results previously 

obtained by the same project using bacterial culture-dependent and -independent approaches (Carafa 

et al., 2020). Other authors have observed large difference in the microbiota of milk produced by 

cows kept indoors and cows at pasture (Bonizzi et al., 2009; Doyle et al., 2017). The autochthonous 

LAB of milk produced on highland pastures are known to be important for the cheese-making process 
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and the final quality of traditional mountain cheeses (Carafa et al., 2019). As the metagenomics results 

are expressed as relative abundances (i.e. proportions among different taxa and not their population 

sizes), it would be useful to draw comparisons with bacterial plate counts on different selective media 

to obtain a clearer picture of the actual amounts of viable bacterial populations in the milk samples 

analyzed.  In our previous study (Carafa et al., 2020), we found that summer highland grazing 

increased the counts of all bacterial categories. The increases in aerobic (+41%), anaerobic (+54%), 

and mesophilic lactococci (+45%) and Bifidobacteria counts (+47%) from the low to the high group 

were similar, whereas the increases in mesophilic lactobacilli (+411%), Propionibacteria (+125%), 

and coliform counts (+631%) were several times greater, largely congruent with the increase in their 

relative abundances found here using metagenomics. The substantial increases in the relative 

abundances of the LAB category and its main taxa (Figure 2), and of the pro-dairy factor (Figure 8) 

during summer highland pasturing, confirm that the improvement in milk chemical composition 

observed in this project and in several other studies  (Bergamaschi et al., 2016; Bergamaschi and 

Bittante, 2018; Bittante et al., 2021) is due to pasturing. It is well known that different farming 

systems, as well as individual farms (Bokulich and Mills, 2013; Skeie et al., 2019; Priyashantha and 

Lundh, 2021) and dairy plants, affect cheese-making efficiency and product quality (Falardeau et al., 

2019; Nam et al., 2021). This also supports the claimed specificity of cheeses produced on temporary 

highland summer farms in Alpine regions (Bittante et al., 2011a; 2011b) and signals the possibility 

of authenticating the origin of dairy products according to farming system (Bergamaschi et al., 2020).  

It is worth noting that, in a previous large survey, a significant effect of dairy system was 

found for latent factors named “cheese yield”, “udder health” and “yield” (Dadousis et al., 2018b; 

production traits were not included here). The effect of farming system favored modern indoor 

farming for cheese yield and yield, but favored traditional farming for udder health.  

The potential carryover effects of summer pasture after the cows return to indoor rearing have 

not been extensively studied at the microbiological level. It is worth noting that, in this study, the 
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carryover effect on milk bacteria was negligible, whereas some effects on milk quality, composition, 

and cheese-making aptitude have been observed (Saha et al., 2019). 

.  
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CONCLUSIONS 

We can conclude that the milk microbiota is very complex, and the majority of bacterial taxa 

are strongly influenced by farming system as well as by the advancement of season and lactation 

stage. Transhumance of dairy cows from indoor conditions to summer highland pastures may increase 

the relative abundances of LAB, and other probiotic bacteria (bifidobacteria and propionibacteria) 

and decrease the abundances of spoilage bacteria, thereby improving the milk in terms of cheese-

making aptitude and benefits to human health. This effect disappears after the cows return indoors in 

the autumn. Systematic differences in milk microbiota among different cows concern some bacterial 

taxa, particularly the pathogenic bacteria and Clostridiales, signaling the need for new studies on the 

relationships between the cow genome and milk microbiota. Metagenomic analysis of milk 

microbiota appears to be a powerful tool for studying the complex relationships between farming 

system, individual cow characteristics, and the value of milk for cheese-making and for human and 

animal health.  
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TABLES AND FIGURES 

Table 1. Descriptive statistics, significance levels of the Month × Group interaction, and the root 

mean square error (RMSE) of the log10 relative abundances of milk bacterial taxa with known dairy 

(LAB), other probiotic, spoilage and pathogenic activities, and of other bacteria found in the milk 

 Samples, 

N 
Descriptive statistics Month x Group 

F-value 
RMSE 

traits Mean ±SD 

Lactic acid bacteria (LAB) 57 0.780 0.528 10.0*** 0.335 

Lactobacillus 57 0.277 0.452 25.0*** 0.200 

Leuconostoc 57 0.082 0.165 1.5 0.158 

Lactococcus 57 0.294 0.487 20.6*** 0.237 

Enterococcus 58 0.384 0.389 2.8* 0.335 

Other LAB 58 0.191 0.288 3.9** 0.214 

Other probiotics 57 0.287 0.426 15.8*** 0.230 

Propionibacterium 55 0.059 0.140 10.6*** 0.086 

Bifidobacterium 57 0.245 0.399 14.2*** 0.224 

Spoilage bacteria 58 1.182 0.585 12.9 *** 0.342 

Clostridiales 58 0.308 0.346 2.4* 0.258 

Pseudomonas 58 0.745 0.631 5.4*** 0.482 

Kocuria 58 0.659 0.654 7.7*** 0.425 

Alicyclobacillus 58 0.111 0.178 6.6*** 0.129 

Pathogenic bacteria 58 0.656 0.522 1.8 0.447 

Staphylococcus 57 0.404 0.494 2.4* 0.341 

Enterobacteriaceae 57 0.229 0.395 11.9*** 0.220 

Other bacteria      

Actinomyces 56 0.019 0.096 3.0** 0.083 

Corynebacterium 55 0.016 0.071 0.9 0.072 

Rhodococcus 57 0.215 0.314 2.9* 0.250 

Other Actinomycetales 56 0.153 0.243 4.1*** 0.197 

Bacteroidales 57 0.283 0.279 5.0*** 0.207 

Flavobacterium 57 0.094 0.189 2.2* 0.173 

Chryseobacterium 58 0.536 0.515 3.8** 0.378 

Other Flavobacteriales 57 0.094 0.144 1.4 0.139 

Sphingobacterium 57 0.152 0.195 3.6** 0.154 

Other Sphingobacteriales 57 0.028 0.077 1.7 0.073 

Chitinophagaceae 57 0.015 0.061 1.0 0.056 

Solibacillus 57 0.055 0.163 1.8 0.153 

Jeotgalicoccus 56 0.041 0.122 1.9 0.103 

Exiguobacterium 57 0.013 0.071 0.9 0.071 

Other Bacillales 57 0.112 0.283 3.2** 0.220 

Aerococcaceae 58 0.148 0.286 3.1** 0.229 

Carnobacteriaceae 56 0.045 0.151 1.8 0.128 

Other Firmicutes 56 0.004 0.020 1.0 0.020 

Ochrobactrum 57 0.068 0.159 3.2** 0.118 
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Paracoccus 57 0.080 0.194 7.9*** 0.132 

Sphingomonas 57 0.050 0.093 2.6* 0.080 

Other Alphaproteobacteria 58 0.276 0.313 1.6 0.278 

Delftia 58 0.148 0.230 1.7 0.213 

Other Betaproteobacteria 57 0.177 0.225 1.0 0.225 

Deltaproteobacteria 55 0.001 0.007 0.9 0.007 

Epsilonproteobacteria 56 0.015 0.042 0.9 0.042 

Ruminobacter 55 0.022 0.066 0.8 0.066 

Acinetobacter 58 0.751 0.507 6.7*** 0.326 

Enhydrobacter 56 0.073 0.169 0.7 0.174 

Xanthomonadaceae 58 0.599 0.465 4.8*** 0.363 

Other GammaProteobacteria 57 0.187 0.280 1.9 0.260 

*P<0.05; **P<0.01; ***P<0.001;  
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Table 2. Significance levels and order and shape of the patterns observed for microbial abundances 

of bacterial taxa, with no specific dairy, probiotic, spoilage or pathogenic activity in milk samples 

collected from cows kept permanently indoors, and differences between these and the cows moved 

to summer highland pastures in the months before (June), during (July, August, and September) and 

after (October) transhumance, in terms of log10 relative abundance 

1
 L: up = linear pattern increasing from June to October; Q: up-down = zenithal quadratic pattern rising to a maximum 

during summer and then decreasing; Q: down-up = nadir quadratic pattern decreasing to a minimum during summer and 

then increasing; C: up-down-up = cubic pattern rising to a maximum in July, decreasing to a minimum in September, 

and then increasing again. Dashes indicate absence of a significant pattern for indoor cows. 

*P<0.05; **P<0.01; ***P<0.001. 

  

 Pattern on  indoor cows1  Difference between transhumant vs. indoor cows: 

Item P-value Order:shape  June July August September October 

Actinomyces NS -  0.00 0.01 0.00 0.20*** 0.00 

Corynebacterium NS -  -0.01 0.01 0.00 0.09 0.04 

Rhodococcus 0.005 Q:up-down  -0.01 -0.34* -0.36* 0.12 -0.10 

Other  Actinomycetales NS -  0.11 0.20 -0.07 0.51*** -0.08 

Bacteroidales 0.017 Q:down-up  -0.36* -0.19 -0.26 0.19 -0.04 

Flavobacterium NS -  0.00 0.07 0.03 -0.08 0.03 

Chryseobacterium NS -  0.02 0.71** 0.52 0.98*** -0.23 

Other Flavobacteriales NS -  -0.13 0.08 -0.13 0.01 -0.17 

Sphingobacterium NS -  -0.07 -0.15 -0.05 -0.33** 0.11 

Other  Sphingobacteriales NS -  -0.02 0.10* 0.00 0.07 -0.02 

Chitinophagaceae 0.046 C:up-down-up  -0.01 -0.02 0.00 0.00 -0.03 

Solibacillus 0.015 C:up-down-up  -0.11 -0.18* 0.00 0.00 -0.09 

Jeotgalicoccus 0.002 L:up  0.05 -0.01 0.00 -0.15* -0.11 

Exiguobacterium NS -  0.00 0.00 0.00 0.00 -0.02 

Other  Bacillales <0.001 C:up-down-up  0.02 -0.47** -0.02 -0.06 -0.27 

Aerococcaceae 0.001 L:up  0.10 -0.13 -0.09 -0.32* -0.04 

Carnobacteriaceae NS -  -0.06 0.00 0.01 -0.10 0.13 

Other Firmicutes NS -  0.00 0.00 -0.01 0.00 -0.03* 

Ochrobactrum 0.04 C: up-down-up  -0.03 -0.29** -0.10 0.01 0.02 

Paracoccus NS -  0.00 0.52*** 0.14 0.17* 0.01 

Sphingomonas <0.001 C:up-down-up  -0.01 -0.15** -0.05 -0.03 -0.06 

Other  Alphaproteobacteria 0.031 C:up-down-up  0.08 -0.02 -0.43* 0.23 -0.20 

Delftia 0.033 Q:up-down  -0.09 -0.22 -0.23 -0.27* 0.14 

Other Betaproteobacteria NS -  0.16 0.11 -0.18 0.07 0.03 

Deltaproteobacteria NS -  0.00 -0.01* 0.00 0.00 0.00 

Epsilonproteobacteria NS -  0.00 0.00 0.01 0.02 -0.02 

Ruminobacter NS -  -0.04 -0.05 -0.03 0.00 0.00 

Acinetobacter 0.003 L:up  -0.10 0.21 0.81** -0.28 0.72 

Enhydrobacter NS -  0.07 -0.09 0.00 -0.07 -0.11 

Xanthomonadaceae NS -  0.08 -0.57* -0.28 -0.74*** 0.45* 

Other GammaProteobacteria NS -  0.04 0.30 -0.05 0.43** 0.03 
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Table 3. Loadings on the latent explanatory factors of the relative abundances of milk bacterial taxa, 

milk and whey constituents, milk coagulation, curd firming, and cheese yield. 

 Factor 1: Factor 2: Factor 3: Factor 4: Factor 5: Factor 6: Factor 7: Factor 8: 

Communality 
Item1 Gelation Pro-dairy 

Cheese 

yield 
Udder health Caseins Pathogens Curdling Fat recovery 

Milk bacterial groups          

LAB  0.63*    -0.39   0.68 

Lactobacillus  0.83*       0.82 

Leuconostoc -0.40     -0.33   0.37 

Lactcoccus  0.65*       0.61 

Enterococcus    -0.53  -0.37   0.48 

Other LAB 0.33   0.31 0.33    0.44 

Other probiotics   0.91*       >0.90 

Propionibacterium  0.52*  -0.46     0.55 

Bifidobacterium  0.92*       >0.90 

Spoilage bacteria  -0.79*    -0.42   0.85 

Clostridiales  -0.31       0.24 

Pseudomonas  -0.57*    -0.31   0.43 

Kocuria  -0.48    -0.52*   0.57 

Alicyclobacillus    0.38  0.41   0.36 

Pathogenic bacteria      0.80*   0.74 

Staphylococcus  -0.35    0.78*   0.77 

Enterobacteriaceae  0.48  -0.36     0.43 

Milk technological traits          

  Milk composition:          

TS   0.89*      >0.90 

Milk fat   0.95*      >0.90 

Nonfat solids   -0.36   0.52 0.70*    >0.90 

Milk protein 0.35 -0.32    0.81*    >0.90 

Fat/Protein ratio   0.84*  -0.44    >0.90 

Milk casein 0.30     0.86*    >0.90 

Casein number    -0.38 0.33 0.53*    0.61 

Milk urea -0.43        0.43 

  Udder health traits:          

SCS    -0.40     0.25 

Milk lactose     -0.31 0.75*     >0.90 

  Coagulation properties:             

RCT -0.96*        >0.90 

k20 -0.47    -0.31  -0.56  0.69 

a30 0.87*      0.31  >0.90 

a45 0.79*        >0.90 

a60 0.44 -0.36   0.41  -0.59  >0.90 

  Curd firming modeling:         

RCTeq -0.96*        >0.90 

kCF       0.90*  >0.90 

kSR 0.67*      0.48  0.84 

CFmax 0.81*    0.38    >0.90 

tmax -0.75*      -0.54*  >0.90 

  Cheese yields:          

%CYCURD   0.58*  0.50*    0.64 

%CYSOLIDS    0.85*  0.31    >0.90 

RECFAT        0.87* >0.90 

RECPROTEIN        0.62*    0.45 

RECSOLIDS   0.65* -0.56*     >0.90 

RECENERGY   0.68* -0.38    0.47 >0.90 

  Whey composition:         

Whey total solids  -0.35    0.75*    -0.36 >0.90 
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Whey fat   0.47     -0.83* >0.90 

Whey protein 0.39 -0.41    0.34    0.57 

Whey lactose  -0.36   0.88*     >0.90 
1LAB = lactic acid bacteria; RCT = rennet coagulation time; K20 = curd-firming time; a30, a45, a60 = curd firmness 30, 

45, 60 min after rennet addition, respectively; RCTeq = rennet coagulation time by equation; kCF = curd-firming instant 

rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness; tmax = time to reach CFmax; %CF = 

percentage cheese yields; REC = nutrient recovery traits. 

*High loading, >0.50. 
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Table 4. Descriptive statistics, significance levels of the Group × Month interaction, and root mean 

square error (RMSE) of the latent explanatory factors of milk bacterial taxa, milk and whey 

constituents, milk coagulation, and curd firming properties, and cheese yield. 

 
Explained variance (%) Group × Month  

F-value 

RMSE 

Latent explanatory factor By each factor Cumulative 

Factor 1: “Gelation factor” 14.2 % 14.2 % 7.3*** 0.49 

Factor 2: “Pro-dairy bacteria” 14.0 % 28.2 % 23.1*** 0.46 

Factor 3: “Cheese yield factor” 11.7 % 39.9 % 2.4* 0.84 

Factor 4: “Udder health factor” 9.4 % 49.3 % 13.0*** 0.44 

Factor 5: “Casein factor” 9.2 % 58.5 % 6.5*** 0.55 

Factor 6: “Pathogenic bacteria” 6.0 % 64.6 % 2.8* 0.69 

Factor 7: “Curdling factor” 5.5 % 70.1 % 1.8 0.58 

Factor 8: “Fat-rec factor” 5.3 % 75.3 % 3.5** 0.76 

*P<0.05; **P<0.01; ***P<0.001. 
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Figure 1. Sources of the variation (expressed as percentage of total variance) in individual milk 

bacterial taxa relative abundances and their categories (in bold): effects of the Month × Group 

interaction (dark blue), individual cow within group (red), and residual variability (light blue). LAB 

= lactic acid bacteria.   
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Figure 2. Patterns of the relative abundances of the milk lactic acid bacteria (LAB) taxa having desired 

dairy characteristics (the “LAB” category and individual bacterial taxa) during the experimental 

period. Blue circles represent the LSM of the cows kept solely indoors, green triangles represent the 

cows moved to summer highland pastures, and blue triangles represent the latter cows when indoors 

before and after the summer transhumance. Bars represent the SE of estimates. Lines and curves 

represent significant linear, quadratic or cubic patterns, with their R2 values, for cows kept solely 

indoors. Asterisks indicate the significance levels of the differences between the 2 groups in each 

month (*P<0.05; **P<0.01; ***P<0.001). 
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Figure 3. Patterns of the relative abundances of the other milk bacterial taxa having desired probiotic 

characteristics “other probiotics” category and individual bacteria taxa) during the experimental 

period. Blue circles represent the LSM of the cows kept solely indoors, green triangles represent the 

cows moved to summer highland pastures, and blue triangles represent the latter cows when indoors 

before and after summer transhumance. Bars represent the SE error of the estimates. Lines and curves 

represent significant linear, quadratic or cubic patterns, with their R2 values, for the cows kept solely 

indoors. Asterisks indicate the significance levels of the differences between the two groups in each 

month (*P<0.05; **P<0.01; ***P<0.001). 
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Figure 4. Patterns of the relative abundances of the milk bacterial taxa having undesired spoilage 

characteristics (“spoilage bacteria” category and individual bacteria taxa) during the experimental 

period. Blue circles represent the LSM of the cows kept solely indoors, green triangles represent the 

cows moved to summer highland pastures, and blue triangles represent the latter cows when indoors 

before and after the summer transhumance. Bars represent the standard error of estimates. Lines and 

curves represent significant linear, quadratic or cubic patterns, with their R2 values, for cows kept 

solely indoors. Asterisks indicate the significance levels of the differences between the two groups in 

each month (*P<0.05; **P<0.01; ***P<0.001). 
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Figure 5. Patterns of the relative abundances of the milk bacterial taxa having undesired pathogenic 

characteristics (“pathogenic bacteria” category and individual bacteria taxa) during the experimental 

period. Blue circles represent the LSM of the cows kept solely indoors, green triangles represent the 

cows moved to summer highland pastures, and blue triangles represent the latter cows kept indoors 

before and after the summer transhumance. Bars represent the SE of estimates. Lines and curves 

represent significant linear, quadratic or cubic patterns, with their R2 values, for cows kept solely 

indoors. Asterisks indicate significance levels of the differences between the two groups in each 

month (*P<0.05; **P<0.01; ***P<0.001). 
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Figure 6. Heat plot of the correlations among the bacterial traits included in the factor analysis. 

LAB =lactic acid bacteria. 
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Figure 7. Heat plot of the correlations between the bacterial and chemical-technological traits 

included in the factor analysis. LAB = lactic acid bacteria; RCT = rennet coagulation time; K20 = 

curd-firming time; a30, a45, a60 = curd firmness 30, 45, 60 min after rennet addition, respectively; 

RCTeq = rennet coagulation time by equation; kCF = curd-firming instant rate constant; kSR = 

syneresis instant rate constant; CFmax = maximum curd firmness; tmax = time to reach CFmax; %CF = 

percentage cheese yields; REC = nutrient recovery traits. 
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Figure 8. Patterns of the scores of the latent explanatory factors during the experimental period. Blue 

circles represent the LSM of the cows kept solely indoors, green triangles represent the cows moved 

to summer highland pastures, and blue triangles represent the latter cows when indoors before and 

after the summer transhumance. Bars represent the SE of estimates. Lines and curves represent 

significant linear, quadratic or cubic patterns, with their R2 values, for the cows kept solely indoors. 

Asterisks indicate the significance levels of the differences between the two groups in each month 

(*P<0.05; **P<0.01; ***P<0.001). 
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INTERPRETIVE SUMMARY 

 

Variation of microbiota, chemical composition and B-vitamins in milk from alpine pasture 

and indoor dairy cows 

By Secchi et al., page 000. This study addresses the complex relationships between metagenomics, 

composition, B-vitamin and Lactoferrin in milk of 26 Italian Simmental cows from four farms during 

the summer transhumance to alpine pasture, and successively the same cows when moved back to 

lowland permanent indoor farms. In the milk, 8 traits were obtained for the composition, 4 regarding 

udder health, 4 B-vitamins, 8 for the bacterial counts, and 41 bacterial taxa, 11 of which with special 

interest for the dairy industry (LAB and spoilage bacteria), and human and animal health (other 

probiotics and pathogenic bacteria). The metagenomics analysis confirmed the high variability of the 

milk microbiota during and after summer transhumance, but also a large influence of different herd 

management. 
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ABSTRACT 

The investigation of the complex connections between metagenomics with milk quality, B-

vitamins and Lactoferrin, influenced by indoor farming and summer grazing by comparing different 

farms, was the aim of this work. 

In detail, this study compared the milk obtained from 26 Italian Simmental cows of four herds 

during summer transhumance to four Alpine pastures (ALP) and milk of the same cows obtained 

during the following permanence in the indoor permanent farms (PF). The milk composition (8 traits), 

the udder health traits (4 traits, including lactoferrin), the B-vitamins content (4 traits), the bacterial 

counts (8 traits) and the relative abundances of milk bacterial taxa obtained (41 individual taxa and 5 

groups) were analyzed on 52 milk samples. Results obtained using a linear model including herd, 

ALP vs PF and their interaction showed that there are many significant differences in milk 

composition and microbiological traits and that interaction represents an important source of 

variability. The large number of traits considered (70) and the complex matrix of variance-covarince 

between them suggested to perform a latent factor analysis on the dataset. Eight latent explanatory 

factors explained 75% of all variance. Seven latent factors (the most important of which being “Pro-

dairy”, “Probiotics”, and “Caseins”) combined contemporarily milk composition and microbial traits 

and characterized the differences observed between the milk obtained during summer transhumance 

to Alpine pasture and during the following indoor rearing, among the different herds and their 

interaction. The exception was the “Udder health” latent factor.  

 

Keywords: raw milk, milk metagenomics, MiSeq Illumina, B-vitamins, lactoferrin, summer 

transhumance, lactic acid bacteria. 
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INTRODUCTION 

In the European Alps and other mountainous regions, semi-natural pastures are the main food 

resources for ruminants during the summer season. Transhumance of dairy cows to temporary 

summer farms on high mountain pastures is an important ancient practice with a long-standing 

traditional heritage, also relevant to the maintenance and preservation of the environment and 

biodiversity (Eriksson, 2011; Sturaro et al., 2013).  

When dairy cows are moved to summer pastures, they undergo several changes, which could 

cause nutritional imbalances and affect the production, quality, and composition of milk and dairy 

products (Bergamaschi et al., 2016; Zendri et al., 2016; O’Callaghan et al., 2017). These changes are 

influenced by a combination of different feed quality, availability, and botanical composition of 

pastures, increased physical activity during grazing, pasture adaptation, and different climatic 

conditions (Gorlier et al., 2012).  

The summer transhumance to highland pasture is responsible of deep modification of 

composition, technological properties, microbiological profile and human health effects of milk and 

other dairy products. 

We have carried out a previous research (Juribello project)  on the changes before, during, and 

after summer transhumance on the nutritional and technological aspects, but also from the 

microbiological profile of milk of two groups of cows, a control group that remained indoor on a 

permanent lowland farm during all the experiment and a transhumant group which moved from 

lowland to Alpine highland pasture during summer and returned in the permanent farm in autumn 

(Saha et al., 2019; Carafa et al., 2020).  

Milk is a rich medium for the development of a wide variety of microorganisms and in 

accordance with the definition proposed by Marchesi and Ravel, (2015), the milk microbiota refers 

to the set of microorganisms present in milk. The milk microbiota has been extensively investigated 

principally in cows (Addis et al., 2016; Doyle et al., 2017; Taponen et al., 2019), but also in other 



 

151 

 

 

 

 

dairy species such as sheep (Blanco et al., 2020), goats (Mcinnis et al., 2015), donkeys (Papademas 

et al., 2021), buffalo (Catozzi et al., 2017), and women (Butts et al., 2020; Lyons et al., 2022).  

During the Juribello project we have analyzed the milk microbiota and we have seen that 

during summer transhumance there was increasing in lactic acid bacteria and other probiotics, and a 

decreasing in spoilage bacteria (Secchi et al., 2023). These changes reflect an improvement of 

technological properties of milk and a benefit for human health, but all the changes disappeared after 

summer transhumance. 

But the health effect of milk is not limited to microbiological profile or to the fatty acid profile 

(Bergamaschi and Bittante, 2017), but also in the content of vitamins. The B vitamins are a group of 

water-soluble vitamins abundant in milk, and they have key functions as enzyme cofactors or 

intermediate components in major metabolic reactions (Graulet and Girard, 2017); they are also 

synthesized by the microorganisms in the rumen, so B vitamin deficiency is limited to situations 

where an antagonist is present or the rumen lacks the precursors to produce the vitamin. The 

knowledge about the effect of grazing on the profile of water-soluble vitamins in cows' milk is scarce. 

Magan et al. (2020), for example, investigated how the use of pasture or concentrate-based cow 

feeding systems significantly affected the relative concentrations of a limited number of water-soluble 

vitamins in the skim milk and whey protein powders ingredients analyzed. 

Currently, there is a lack of studies regarding the milk microbiota during and after summer 

transhumance and the B-vitamin profile of milk, even from individual animals of different farms in 

the same area, because often experimental trials are limited to single farms. The purpose of this study 

is to investigate, in 4 different farms, the response to summer transhumance of dairy cows on variation 

in the dairy microbiota and its relationship to milk quality, B vitamins, and Lactoferrin. 
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MATERIALS AND METHODS 

 

Experimental design 

The experimental design was a 4 × 2 factorial design: 4 herds and two locations/seasons. Each 

herd was housed in a different permanent farm (PF) from autumn to spring, and was moved in a 

different temporary farm in the highland for Alpine pasture (ALP) during summer transhumance.  

The four PF are located in Veneto (Villaverla, Vicenza, Italy) and Trentino Alto Adige 

(Levico Terme, Trento, Italy) provinces, and are at an altitude between 70 to 500 m above sea level.  

The corresponding four ALP are located on the Vezzena highland (Trento, Italy) between 1380-1700 

m above sea level.  

Twenty-six healthy Italian Simmental cows in mid-lactation, representative of their herds, 

were selected (5 to 7 animals per herd). Two PF herds (C, and P) were loose-housed, while the other 

two PF (M, and F) were tie-stall housed. Animals were fed meadow and alfalfa hay and compound 

feeds. At the end of June 2020, the herds were moved from the PF to their respective ALP, where the 

cows were free to graze day and night on Alpine pastures in different areas according to grass 

availability, without a rigid rotation plan. Each farm was also giving a compound feed supplement in 

the milking parlor according to milk yield.  

 

Milk sampling 

Individual milk samples were collected once at the end of July, four weeks after the beginning 

of Alpine pasture, and once at the end of October four weeks after cows were moved back to the PF 

for a total of 52 milk samples.  

Two of the four PF and all ALP are equipped with a milking parlour and perform pre-milking 

cleaning of the teat skin and foremilk stripping. The two PF with tied cows used mobile single bucket 

milking machine.  All the milk samples were obtained using the equipment adopted for official milk 



 

153 

 

 

 

 

recording by the Provincial Federation of Trento Breeders and approved by ICAR (International 

Committee for Animal Recording https://www.icar.org/). The sampling was based on a complete 

milking of all the four udder quarters during the evening milking.  

None of the cows showed clinical symptoms of mastitis during the whole experiment. Two 

aliquots from each milk sample was taken: 50 mL for quality traits and microbial count analysis, were 

stored at 4°C until analyses, carried out within 24 h; 50mL for the metagenomic analysis were 

immediately frozen in liquid nitrogen and then stored at –80 °C until analyses were carried out within 

three months. 

 

Milk composition traits 

The milk composition was performed at the milk laboratory of the Department of Agronomy, 

food, Natural Resourced, Animals and Environment (DAFNAE) of the University of Padova. 

Each individual milk samples were analyzed for protein, fat, lactose, and urea content with a 

MilkoScan FT2 infrared analyzer (Foss Electric A/S, Hillerød, Denmark) calibrated according to the 

following reference methods: ISO 8968-2/IDF 20-2 for protein, ISO 1211/IDF for fat, and ISO 

26462/IDF 214 for lactose. Somatic cell counts (SCC) were obtained with a Fossomatic Minor FC 

counter (Foss Electric A/S) and log-transformed to somatic cell score (SCS) using the formula SCS 

= log2(SCC/100,000)+3 as proposed by Ali and Shook, (1980). 

 

Determination of lactoferrin by ELISA 

The content of lactoferrin in the milk was determined by commercial enzyme-linked 

immunosorbent assay (ELISA) test kits from Cloud-Clone, (Cat. SEA780Bo 96 test for Lactoferrin 

(LTF), organism species: Bos Taurus, CLOUD-CLONE CORP. Houston, USA), according to the 

manufacturer’s recommendations. Briefly, milk samples were centrifuged for 15 minutes at 10,000 × 

g at 4°C, collect the aqueous fraction and centrifuged twice more for a total of 3 cycle. After. The 
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samples were diluted for 500–1000 times with MilliQ water (Heidebrecht and Kulozik, 2019). 100 μL 

of the samples or reaction standards was added into a 96-well plate pre-coated; the solutions were 

removed after an incubation at 37 °C for 1 h; the wells were then washed three times with Wash 

solution. Then, 100 μL of Detection Reagent B was added to each well, and incubated at 37 °C for 

30 min; the wells were washed as before for 5 times. 

Next, 90 μL of substrate solution was added to each well and incubated at 37 °C for 10-20 

min to allow for the color to develop. Finally, 50 μL of Stop solution was added to each well to stop 

the reaction; the plates were immediately placed in a Multiskan FC plate reader (Thermo Fisher 

Scientific, Karlsruhe, Germany) the absorbance of three replicates was recorded at 450 nm 

immediately. The standard curves were generated as a 7-parameter curve fit using Soft-Max Pro. The 

final concentrations of lactoferrin were expressed as the average of three replicates. 

 

Vitamins B analysis by LC-MS/MS 

The B vitamins analysis were performed at the Metabolomic Platform, Fondazione Edmund 

Mach (FEM, San Michele a/Adige, Italy). All the reagents and chromatographic solvents (methanol, 

acetonitrile, formic acid and B-vitamins standards) were HPLC or LC-MS grade and purchased from 

Sigma-Aldrich (St. Louis, MO, USA), MilliQ water was used for the chromatography. The vitamins 

separation was performed with an Exion LC system provided by AB Sciex LLC (Framingham, MA, 

USA) using an Acquity UPLC BEH C18 (1.7 μm, 2.1 mm × 50 mm) column (Waters corporation, 

Milford, MA, USA) at 40 °C. The mobile phase consisted of water + 0.1% formic acid (A) and 

acetonitrile + 0.1% formic acid (B). Elution was performed at 0.25 mL/min with the following 

gradient: 0 – 3.00 min increase B 0% to 48%, 3.01 – 4.50 min hold 100% B, and 4.51 – 7 min hold 

0% B.  An integrated valve was scheduled to release the analytes into the mass spectrometer only 

from 0.5 to 3.5 min in order to keep source and analyzer free from dirt. An AB Sciex LLC QTRAP 

6500+ was operated in positive ion multiple reaction monitoring (MRM) mode using a Turbo V ion 
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source with the following settings: Curtain Gas (CR) 35 °C, IonSpray Voltage (IV) 4500 V, 

Temperature 400 °C, Collision Gas (CAD) Medium, Ion Source Gas 1 (GS1) 45 psi, and Ion Source 

Gas 2 (GS2) 55 psi. Each period was scheduled with 600 cycles of 0.2 s cycle time each. The signal 

was acquired only in the analyte elution window (from 0.5 to 3.5 min). All the detailed settings for 

the MS/MS method are summarized in Table S1. Stock solutions of each individual standard were 

prepared in water/methanol (1:0.25), while vitamins were prepared as 10X - 100X or 1000X stock 

solutions. All the solutions were stored and refrigerated at -20°C until used. Briefly the samples 

preparation was prepared as following, 2 mL of each frozen milk samples were centrifuged at 16,000 

g for 30 min, 100 μL of clear surnatant was placed in a HPLC vial, 2 μL was the injection volume. 

MultiQuant and Analyst from AB Sciex LLC were used for data acquisition and elaboration, 

respectively. 

 

Metagenomic analyses 

Milk samples microbiological counts and isolation 

Microbiological analysis were performed at the microbiological laboratory of the Research 

and Innovation Center, Fondazione Edmund Mach (FEM, San Michele a/Adige, Italy). Milk samples 

were decimally diluted in sterile peptone water and plated onto the following agar media: Plate Count 

Agar (PCA) with skim milk (1 g/L) for the total bacterial count (TBC), in aerobic conditions for 24 

h at 30 °C; Wilkins Chalgren (WC), for the anaerobic total bacteria count, incubated in anaerobic 

conditions for 48 h at 37 °C; de Man, Rogosa and Sharpe (MRS) agar acidified to pH 5.5 with 5 M 

lactic acid, for cultivating mesophilic lactobacilli, incubated in anaerobic conditions (in a jar with an 

“Anaerogen” anaerobic system) for 48 h at 30 °C; MRS agar with 0.05% (w/v) L-cysteine (MRS-

cys), for cultivating bifidobacteria, incubated in anaerobic conditions for 48 h at 37 °C; M17 agar, for 

cultivating mesophilic lactococci, incubated in aerobic conditions for 48 h at 30 °C; Yeast Extract 

Lactate Agar (YELA), for counting propionibacteria (brown colonies), incubated in anaerobic 
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conditions for one week at 37 °C; Violet Red Bile Agar (VRBA) for counting coliforms, following 

the overlay method as suggested by manufacturer’s instruction, for 24 h at 37 °C; Columbia Blood 

Agar (CBA) containing 5% defibrinated sheep blood for the count of hemolytic Streptococci 

incubated aerobically at 37 °C, and examined after 24 and 48 h; Columbia Blood Agar (CBA) 

supplemented with 5% defibrinated sheep blood with the addition of Chloramphenicol for growing 

algae, and suppress the growth of microorganisms, incubated aerobic conditions at 37°C, and 

examined after 48 and 72h. For CBA+sheep blood only colonies showing greenish discoloration 

(partial hemolysis) or clear zone (total hemolysis) around the colonies were counted; while for 

CBA+sheep blood+chloramphenicol only the dark grey opaque colonies were counted after a 

microscopic inspection for Prototheca spp. All culture media and anaerobic system were purchased 

from Oxoid (Thermo Fischer, Waltham, MS, USA). 

One to three colonies were randomly isolated from WC and MRS-cys plates (plates with a 

number of colonies in the range of 10 - 300), while only brown colonies were isolated from YELA, 

which are reported to belong to Propionibacterium genus (Thierry and Madec, 1995).  Each isolate 

was purified by subsequent culturing in the proper broth culture (the broth version of the same agar 

medium used for plate counting and isolation). Pure cultures were stored at –80 °C in glycerol (40% 

v/v) stocks. Cell morphology was determined by microscopic observation. 

 

DNA extraction and genotypic identification of the milk-resident bacteria  

All bacterial strains were grown overnight in the proper broth culture at 37 °C before DNA 

extraction. The bacterial DNA was isolated using Quick-gDNA™ MicroPrep (Zymo Research, Italy) 

following the manufacturer’s instructions. A fragment of the 16S rRNA gene was amplified using the 

primers 27F (50-GAGAGTTTGATCCTGGCTCAG) and 1495R (50-

CTACGGCTACCTTGTTACGA), designed by Grifoni et al. (1995).The PCR products were purified 

using the Exo-SAP-IT™kit (USB Co., Cleveland, OH), and sequenced in an ABI PRISM 3100 
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sequencer (Applied Biosystems, Italy), using the BigDye Terminator v1.1 cycle sequencing kit 

(Applied Biosystems, Foster City, CA, USA). The obtained sequences were compared using the 

BLAST algorithm available on the National Center for Biotechnology Information (NCBI, USA). All 

amplifications were run in a T100™ ThermalCycler (Bio-Rad Laboratories, Hercules, CA, USA). 

The pools were always successfully amplified in the bacterial V3-V4 16S rRNA gene region. 

2,023,319 paired-end sequences (an average of 38,910 reads per sample) were obtained.  

 

Total DNA extraction from milk samples 

For total genomic DNA extraction, 4 mL of milk were centrifuged at 4,000 g for 10 min at 4 

°C, and the supernatant was discarded. Genomic DNA was extracted from the pellet using the 

DNeasyPower Food Microbial Kit (Qiagen, Milan, Italy) according to the manufacturer’s instructions 

and quantified by Nanodrop8800 Fluorospectrometer (Thermo Scientific, USA).  

 

Preparation of the MiSeq library  

Amplicon library preparation, quality and quantification of pooled libraries, and pair-end 

sequencing using the Illumina MiSeq system (Illumina, USA) were performed at the Sequencing 

Platform, Fondazione Edmund Mach (FEM, San Michele a/Adige, Italy). Briefly, for each sample, a 

464-nucleotide sequence of the V3-V4 region (Baker et al., 2003; Claesson et al., 2010), of the 16S 

rRNA gene (Escherichia coli positions 341 to 805) was amplified. Unique barcodes were attached 

before the forward primers to facilitate the pooling and subsequent differentiation of samples. To 

prevent preferential sequencing of the smaller amplicons, the amplicons were cleaned using the 

Agencourt AMPure kit (Beckman coulter) according to the manufacturer’s instructions; 

subsequently, DNA concentrations of the amplicons were determined using the Quant-iT PicoGreen 

dsDNA kit (Invitrogen) following the manufacturer’s instructions. In order to ensure the absence of 

primer dimers and to assay the purity, the generated amplicon libraries quality was evaluated by a 
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Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA) using the High Sensitivity DNA Kit (Agilent). 

Following the quantitation, cleaned amplicons were mixed and combined in equimolar ratios. 

 

Illumina data analysis and sequences identification by QIIME2 

Raw paired-end FASTQ files were demultiplexed using idemp 

(https://github.com/yhwu/idemp/blob/master/idemp.cpp) and imported into Quantitative Insights 

Into Microbial Ecology (Qiime2, version 2020.11). Sequences were quality-filtered, trimmed, de-

noised, and merged using DADA2 (Callahan et al., 2016). Chimeric sequences were identified and 

removed via the consensus method in DADA2. Representative sequences were aligned with MAFFT 

and used for phylogenetic reconstruction in FastTree using plugins alignment and phylogeny (Price 

et al., 2009; Katoh and Standley, 2013)); Taxonomic and compositional analyses were conducted by 

using plugins feature-classifier (https://github.com/qiime2/q2-feature-classifier). A pre-trained Naive 

Bayes classifier based on the Greengenes 13_8 99% Operational Taxonomic Units (OTUs) database 

(http://greengenes.secondgenome.com/), which had been previously trimmed to the V4 region of 16S 

rDNA, bound by the 341F/805R primer pair, was applied to paired-end sequence reads to generate 

taxonomy tables. The data generated by Illumina sequencing were deposited in the NCBI Sequence 

Read Archive (SRA) and are available under Ac. PRJNA903798 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA903798). 

 

Bacterial categories 

On the basis of our previous study (Secchi et al., 2023), also in this work we decided to classify 

the relative abundances of the principal bacterial taxa identified by Qiime2 into four categories: the 

Lactic Acid Bacteria (LAB) category includes the taxa belonging to the Lactobacillales order 

(Lactobacillus, Lactococcus and Enterococcus),  and Streptococcus (Khalid and Department, 2011; 

Gagnon et al., 2020); the “Other probiotics” category includes all the taxa belonging to the 

https://www.ncbi.nlm.nih.gov/sra/PRJNA903798
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Propionibacterium (Rabah et al., 2017) and Bifidobacterium genera (Prasanna et al., 2014); the 

“Spoilage bacteria” category includes all the taxa belonging to the Clostridiaceae (Burtscher et al., 

2020) and the Pseudomonas (Meng et al., 2017); and at the end the “Pathogenic bacteria” category 

includes all the taxa belonging to the Staphylococcus genus (Gebremedhin et al., 2022), and the 

Enterobacteriaceae family (Anand and Griffiths, 2011). 

The remaining 30 bacterial taxa were grouped as “other milk bacteria”. 

 

Statistical analysis 

The data regarding microbiological counts were analyzed as means expressed in log CFU/mL, 

while relative bacterial abundancies were log10 transformed. One sample was excluded from the 

statistical analysis due of a lack of milk composition data. All bacterial and qualitative data were 

checked to identify and exclude outliers value (outside the interval ± 3 SD of the mean).  

Mixed-model analysis of variance 

The milk composition, the milk bacterial count, and the log10 transformed relative abundancies 

were analyzed according to a linear mixed model (RStudio version 1.4.1106) including the fixed 

effects of Herds (four levels: C, M, P, F), Location (two levels: ALP and PF), their interaction, and 

the random effect of cow nested in the Herd. It worth noting that the ALP vs PF contrast reflects not 

only the effects of location (geographical area, altitude, management, feeding, etc) but also the effect 

of season (July vs October) and of the lactation stage (mid-lactation vs late-lactation).  We used a 

function to estimate R2
GLMM statistic, r.squaredGLMM, included in the MuMln package for the R 

statistical software, we consider the conditional R-squared because concern variance explained by 

both fixed and random factors (Nakagawa and Schielzeth, 2013). 

Contrast were estimated to examine the difference between ALP and PF to test for the effect 

of summer transhumance on the main effects, but also within each herd to explain the interaction 

between herd and location. A similar model with all effect as random factor was run for quantifying 
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the relative importance of the different herds and locations (and their interaction), of individual 

animals within herd and of residual factors non accounted by the model. The variance of these five 

sources of variation were expressed as percentage of their sum (total variance). 

Regarding Miseq Illumina data: Alpha-diversity was performed with Goods coverage, 

observed OTUSs number and Shannon diversity index and statistical significance of between-group 

alpha diversity metrics were evaluated by Kruskal–Wallis H test in QIIME2; Beta-diversities were 

calculated using Unweighted and Weighted dissimilarity distance matrix in QIIME2. Beta-diversity 

distance matrix indicates differences in taxa composition between samples based on either presence-

absence or quantitative species abundance data. Output matrix was ordinated using principal 

coordinate analysis (PCoA) and visualized using EMPeror (Vazquez-Baeza et al., 2013). Statistical 

significance of beta-diversity distances between groups was assessed using PERMANOVA with 999 

permutations in QIIME2. For differential abundance test, taxonomy information was provided for 

each OTU sequence using ANCOM method (Mandal et al., 2015) implemented in QIIME2.  

 

Correlation analysis and latent explanatory factor analysis 

The dataset regarding relative abundances (only the bacterial categories of our interest), the 

milk composition, and the microbiological traits were merged for the correlation and multivariate 

analysis to explore the relationship between bacterial and chemical traits. 

Correlation were carried out among the metagenomic relative abundancies of the selected taxa 

and group, and between the metagenomic relative abundancies and bacterial counts, and milk 

composition, including B vitamins and Lactoferrin. 

For the high number and complexity of the relationship between all the traits, we used a 

multivariate factor analysis (FA) to summarize the interrelated measured traits in a small number of 

unmeasured latent independent explanatory variables (factors). FA was performed on the selected 

traits as follow: first, we performed KMO (Kaiser-Meyer-Olkin) and Barlett’s tests, which showed 



 

161 

 

 

 

 

that the traits were suitable for FA. The factor analysis was carried out with Varimax rotation in the 

R environment (R Core Team, 2016) using the psych package (available at CRAN: The 

Comprehensive R Archive Network) in three steps: (i) extraction of factors such that the minimum 

number of uncorrelated latent factors explained the greatest proportion of common variance; (ii) 

factor rotation until each factor was defined by a few variables with high loadings; and (iii) biological 

interpretation of the factors based on the strength of the loadings of the variables. The eigenvalues of 

the factors and the communalities of the variables after rotation were also determined. 

Eight latent explanatory factors were extracted from the 39 milk traits selected (8 milk 

composition, 4 udder health traits, 4 vitamins, 8 milk microbial counts, and 15 metagenomic traits). 

The scores of each milk sample for each factor were analysed using the same linear mixed model as 

that used for the metagenomic relative abundancies. 
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RESULTS AND DISCUSSION 

Milk composition, udder health traits and lactoferrin 

Descriptive statistics and results of ANOVA of the mixed model for the milk composition, 

udder health and Lactoferrin are presented in Table 1. 

As our knowledge, transhumance to summer alpine pasture has notable effects on the cows’ 

physiological, social, feeding, and nutritional status, which are reflected in modification to milk 

quality traits of the milk produced (Leiber et al., 2006; Saha et al., 2019) (MY), specifically the 

deficiency in nutrients and energy, and changes in the environment and management may explain the 

decreasing MY that was 19 kg/d during summer transhumance, and increase to 21 kg/d after ALP at 

the PF.  

The average milk composition was in the range of that found in the Alpine region for 

Simmental dual purpose area (Zendri et al., 2016; Bittante et al., 2021) and also in different production 

system and in different European countries (Perišić et al., 2009).  Regarding the different effects that 

we considered, the herd affected all composition traits with the exception of total solids, casein index, 

SCS and lactoferrin (Table 1). The effect of ALP vs PF and of its interaction with herds affect the 

same traits excluding milk fat and fat/protein ratio. The contrasts between ALP and PF reported in 

the Table 2 highlighted that the milk composition traits were quite always lower during the ALP, 

respect to the PF, but also reflected the considerable differences among the herds. It worth noting that 

the decrease of nutrients content between ALP and PF is probably due mainly to the advancing of 

lactation (Amalfitano et al., 2021). In our previous study on summer transhumance, we found that 

cows transferred on highland pasture were producing milk with more fat and protein than the cows 

of the same herd maintained indoor during summer, and both groups increased the content of fat and 

protein in the following October, when both groups were in late-lactation and were kept indoor in the 

PF (Saha et al., 2019).    
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An exception to this interpretation is the pattern of milk urea, which decreased on average 

between the ALP and the PF samplings (Table 2), but with very large differences among different 

herds. This trait reflect much more the protein content of the diet (Bittante, 2022) than physiological 

aspects of the cow, like lactation stage (Amalfitano et al., 2021). . 

Regarding udder health traits, it is possible to see that milk pH and lactose content are much 

different in different herds and also the comparison between ALP and PF is different in different 

herds (interaction between herd and location) whereas the average effect of location (ALP vs PF) was 

not significant (Table 1).  The importance of the interaction between herd and location could also 

explain the differences observed with other studies, based on single herds (Romanzin et al., 2013). 

SCS was lower in ALP samples than in PF samples (Table 2), and also this effect could be probably 

attributed more to the advancement of lactation than to the feeding and environment. Lastly the 

lactoferrin, which is a milk protein with antimicrobial and immunomodulatory activities, was not 

affected by the factors included in the statistical model, but this seems due to the very large variability 

of this trait (Table 1). 

In Figure 1b we can found the various sources of variability for milk composition traits. It is 

possible to see that the effect of herd is dominant for the fat/protein ratio, and moderate for the milk 

fat. While null effect for protein, casein and casein number, where instead the comparison between 

ALP and PF was important. The interaction between the individual herds and the period/location was 

relevable in some cases, and moderate in urea and pH. The random effect of individual cows, nested 

within the herds, has some visible effect in the case of somatic cell score and casein number. Lastly, 

the residual variation was prevalent in fat/protein ration and milk fat.  

 

B-Vitamins composition 

Descriptive statistics and results of ANOVA of the mixed model for B vitamins content are 

presented in Table 1.  
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B vitamins were water-soluble compounds, and they were produced by plants (except B12), 

by microorganisms (all B vitamins complex), and by animal tissues in minimum quantities (Nicotinic 

Acid). All B vitamins are present in milk and dairy products; depending to consumption habits, milk 

and dairy products can be significant source of B vitamins and occupy a major place in a healthy and 

well-balanced diet. B vitamins are essential for cell life and metabolism, but also additional biological 

activities. Cow milk contains all B vitamins except biotin, because they are supplied to cows by 

feedstuffs ingested and, moreover, because they are synthesized by rumen and milk microorganisms 

(Leblanc et al., 2011). Different factors can affect the B vitamins concentration in cow milk, i.e. stage 

of lactation, breed, season, dietary factors and genetic factors. On average the milk content  found 

here for riboflavin was higher, while for thiamine and nicotinic acid lower than the data reported by 

Graulet and Girard, (2017). It is evident that the four vitamins analyzed are all characterized by a 

large variability among different milk samples, and this explain the low proportion of effects reaching 

the statistical significance. None of the four vitamins were significantly affected by herd, nicotinic 

acid (vit B3) was affected by location being higher in ALP samples than in PF samples (Table 2), and 

riboflavin (vit B2) showed different, and also opposite contrasts between ALP and PF (Table 1: 

significant interaction; Table 2: different contrasts in different herds). 

Bovine dietary riboflavin is primarily sourced from green, leafy forage, in facts riboflavin is 

present in considerably lower concentrations in cereal grains, compared to fresh leafy forage (i.e., 

grass) (Edelman and Colt, 2016). Riboflavin provides pigmentation in leaves, conferring a yellow 

color similar to β-carotene, the relative abundance of which is primarily responsible for the intensity 

of yellow color in fat-containing dairy systems. These results could be in agree with Poulsen et al. 

(2015) study that compared the riboflavin content of bulk milk from three dairies in Denmark, 

recording higher riboflavin concentrations in milk from an organic dairy derived from high dietary 

proportions of grass and legume-based forage, than in milk from two conventional dairies.  
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We detected a very low quantity of folic acid in our milk samples which plays an essential 

role in DNA and methionine metabolism, and the highest milk folate concentrations are found in the 

colostrum. Presence of folate-binding protein in bovine milk has been detected many years ago. This 

protein seems to play a role in secretion of folates into milk (Ford et al., 1972). Milk folate–binding 

protein does not improve efficiency of intestinal absorption of folates in humans, but the protein 

present in cow milk protects the labile forms of folates naturally present in milk from degradation 

during the gastrointestinal transit (Nygren-Babol and Jägerstad, 2012) and reduces folate uptake by 

intestinal bacteria (Ford, 1974), which overall can contribute to increase the amount of folates 

available for absorption. The random effect of individual cows, nested within the herds, in the case 

of the folic acid was dominant (see Figure 1b). 

 

Microbial counts 

Descriptive statistics and outcome of ANOVA on microbial counts and metagenomics relative 

abundancies of raw milk samples are shown in Table 3, while contrasts between ALP and PF in 

general and in specific for each herd are presented in Table 4.  

All plate counts presented large differences due to herds, location (ALP vs PF, with the only 

exception of those onto YELA and WC) and to their interaction (Table 3). The loads of all microbial 

counts measured in milk, were always higher in PF samples than in ALP samples (Table 4).  In fact, 

the TBC (total bacteria count) on PCA, as well as the LAB counts on MRS and M17, hemolytic 

streptococci on CBA, and coliforms in VRBA were significantly higher in PF than in ALP samples. 

This superiority in October PF milk samples respect to July ALP samples seem to be related to 

advancement of lactation and season more than to environment and feeding condition. In fact, in the 

previous study (Carafa et al., 2020) on two groups of cows (one kept always indoor and the other 

moved to highland pastures and returned indoor), we found that in July the milk samples of the second 

group were characterized by higher counts than the first group for aerobic TB (PCA), anaerobic TB 
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(WC), mesophilic lactobacilli (MRS), mesophilic lactococci (M17), putative bifidobacteria (MRS-

cys), putative propionibacteria (YELA), and coliforms bacterial counts (VRBA). 

The Figure 1a shows that the different sources of variability for the milk bacterial counts. The 

comparison between ALP samples and PF samples was prevalent for aerobic TBC and mesophilic 

lactobacilli, and moderate for anaerobic TBC, mesophilic Lactococci and proteolytic.  The interaction 

between the individual herds and the period/location was almost always dominant. The random effect 

of individual cows, nested within the herds, was of scares-null importance with some visible effect 

only in the case of hemolytic streptococci and coliforms. Lastly, the residual variation not accounted 

by the former factors is notable in the case of anaerobic TBC, proteolitics and hemolytic streptococci. 

While, the residual variation is very small for the putative propionibacteria. 

 

High-throughput 16S rDNA sequencing analysis of milk samples 

In total, we obtained the relative abundancy of 41 microbial taxa in milk samples analyzed. 

The 11 taxa more interesting for milk use and value were grouped in 4 groups of taxa, illustrated in 

Table 3: those more related to cheese-making properties of milk (LAB, lactic acid bacteria, 5 taxa), 

those potentially favorable to human health (Other probiotics, 2 taxa), those involved in milk 

deterioration (Spoilage bacteria, 2 taxa), and those potentially affecting negatively humans and 

animals health (Pathogenic bacteria, 2 taxa). These 11 taxa represented all together the 3.30-98.66 % 

of all DNA extracted. The remaining 30 taxa were grouped in “Other bacteria”. Of the 46 taxa and 

groups 38 presented significant differences among the 4 herds, 31 were different in between the ALP 

(July) and PF (October) samples, and 38 were affected by a significant interaction. All taxa were 

significantly affected by at least one of these three fixed factors included in the model. 

For the 11 taxa useful for evaluating the value of milk and for the four groups in which they 

have been grouped it is possible to analyze deeply the relative importance of the different sources of 

variation. The Figure 1a shows clearly that the sources of variability are very different for individual 
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taxa and also for their groups. It is possible to see that the effect of herd is dominant for Enterococcus 

and Enterobacteriaceae, and moderate for Streptococcus, Other LAB, and Pseudomonas.  The 

comparison between ALP samples taken in July and PF samples taken in October, across all herds, 

was relatively important in the case of Lactococcus, Streptococcus, Propionibacteriaceae, 

Staphylococcus and Enterobacteriaceae. The interaction between the individual herds and the 

period/location was always very important and in some cases dominant (Lactobacillus, Lactococcus, 

Propionibacteriaceae, and Clostridiaceae). The random effect of individual cows, nested within the 

herds, was of minor importance with some visible effect in the case of Lactococcus, Enterococcus, 

and Staphylococcus. Lastly, the residual variation not accounted by the former factors is dominant in 

the case of Other LAB, Bifidobacteriaceae, Pseudomonas, and Staphylococcus taxa and in Spoilage 

and Pathogenic bacteria groups. On the contrary, the residual variation is very small for the majority 

of LAB taxa, the Propionibacteriaceae taxa and Other probiotic group. 

It worth noting that the relative importance of different sources of variation of groups of taxa 

are not simply equivalent to the weighted means of their individual taxa (Figure 1a). This is due to 

the fact that relative abundancies are log transformed to search for Gaussian distribution and to the 

fact that they are not independent among different taxa. The positive correlations between the 

individual taxa of a group tend to increase the importance of the source in the group of taxa. An 

example is the higher importance of individual cows for the LAB group respect to the importance of 

cows in the 5 individual taxa of this group. On the contrary, negative correlations between taxa can 

compensate their effects (see herd importance in LAB group and in Pathogenic bacteria group).  

It is well known that raw milk is a complex microbial ecosystem (Quigley et al., 2013). 

Changes in rearing conditions and in seasonality have an impact the quality and safety of milk. In our 

previous work on the Juribello project we have found this peculiarity. In particular, Secchi et al., 

(2023) has shown during the summer months of transhumance a positive increasing on the growth of 
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LAB and other probiotics, as well as a decreasing in spoilage bacteria. In the present study, we are 

unable to distinguish the effect of advancing season and the lactation stage.  

Mallet et al., (2012) found considerable quantitative and qualitative microbial diversity in raw 

milk in the region of Basse-Normandie, France. This diversity was influenced by a combination of 

milk collection practises and farm management practises considered, milk samples were collected in 

a winter period with cows kept indoors, and in a spring period where the cows were outdoor at pasture. 

Each animal’s milk is different, but each farm’s milk is also different. Currently, experimental 

trials ono milk microbiology is often limited to individual farms and individual highland pastures, so 

it is difficult to compare this present work that include 4 different farms and pasture, with the studies 

in the literature. 

 

Correlations among the bacterial and compositional traits of milk 

All the milk traits considered in this study are not independent with each other but present 

variable correlations. The correlations among the composition, udder health and B-vitamins traits are 

shown graphically in the heat map of Figure 2. As expected, total solids, fat, non fat solids, protein, 

fat/protein ratio and casein are generally positively correlated.  Casein number is, on the contrary, 

negatively correlated with the former traits. Correlations of milk urea, pH, SCS and lactoferrin content 

with other composition traits are moderate to low. Lastly, milk lactose is correlated negatively with 

milk fat (and fat/protein ratio) and positively with non-fat solids and casein number, but, especially, 

is negatively correlated with SCS. 

Moving to the four B-vitamins considered, it could be seen from Figure 2 that they tend to be 

positively correlated with each other, with the exception of folic acid (vitamin B9). The correlations 

between the B-vitamins and the other compositional traits are generally very modest, with the 

exception of that between folic acid and SCS (positive) and lactose (negative). 
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While the correlations among milk compositional traits found here are generally in agreement 

with the results of previous studies  (Macciotta et al., 2012), those among B-vitamins, and between 

them and the milk compositional traits are not reported in the literature, the authors are aware of. 

The correlations among the milk bacterial count and the relative abundancies of the milk 

microbial taxa and their groups of interest obtained from metagenomic analysis are depicted in the 

heat-map of Figure 3.  First of all, we can see that the microbial counts tend to be positively correlated 

among them. As expected, it is possible to see that the four groups considered are generally positively 

correlated with their individual taxa, and particularly with those characterized by the largest 

abundancy: LAB group with Lactococcus, Other probiotics with Propionibacteriaceae, Spoilage 

bacteria with Clostridiaceae and Pseudomonas, and Pathogenic bacteria with Staphylococcus. 

Considering the correlations between the individual bacterial taxa, it could be seen that positive 

moderate correlations are found between Lactobacillus and Propionibacteriaceae, and between other 

LAB and Clostridiaceae, whereas negative correlations are found especially between Lactococcus 

and the large majority of the other microbial taxa. Lastly, it could be observed the negative 

correlations between the two taxa grouped in the Pathogenic bacteria (Staphylococcus and 

Enterobacteriaceae), which, moreover, were characterized by opposite correlations with all the other 

groups and taxa (Figure 3). This confirms fully the results obtained in a previous study on a different 

database (Secchi et al., 2023).  

The relationships between microbial counts and metagenomic taxa and groups on one side 

and milk composition and B-Vitamins contents on the other traits are more complex and variable and 

are summarized in the heat-map of Figure 4. 

First of all, we can see that some traits are relatively independent from the others and tend to 

present modest correlation coefficients: YELA and CBA counts and Bifidobacteriaceae and 

Clostridiaceae bacterial taxa among the microbial traits, and the fat/protein ratio, SCS, milk lactose, 

lactoferrin and folic acid among the compositional traits.  
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The other microbial counts tend to be correlated positively with the milk nutrient contents and 

negatively with the casein number, milk pH and B-vitamins. The situation of the 240 correlation 

coefficients between metagenomic and milk composition traits is much more variable (Figure 4) and 

require a different, multivariate, analysis for being studied. A similar situation was found in our 

previous study on Juribello project (Secchi et al., 2023) which, differently from this study, included 

also cheese-making traits, but not the microbial counts. 

 

Latent explanatory factors of the bacterial and compositional traits of milk 

The multivariate factor analysis carried out on the 39 selected compositional and bacterial 

milk traits identified eight latent explanatory factors that all together explained 70% of total variance-

covariance matrix among all traits. The loadings of each factor, excluding those non-relevant (< 0.30), 

are reported in Table 7, while high loading (>0.50) are shown with an asterisk. The explained variance 

(as % of total variance, and the analyses of variance of the scores obtained for each factor and milk 

sample are summarized in Table 8 and, lastly, the contrasts between ALP and PF samplings are 

reported in Table 9. The latent explanatory factors obtained are described and discussed individually. 

We will compare often this study with our previous research (Juribello project) as it is the only work 

reporting latent explanatory factors including milk compositional and microbiological traits (Secchi 

et al., 2023). 

Latent factor 1: Pro-dairy 

The first latent explanatory factor explained 14.4% of all variance and is based especially on 

microbial traits (10 traits) and only on two compositional traits. The dominant traits of this latent 

factor are the relative abundances of LAB group and its major taxa Lactococcus (Table 7) showing 

very high and positive loadings: 0.86 and 0.89, respectively. Also the two pathogenic taxa are 

included in this latent factor, again with opposite sign, negative for Staphylococcus and positive for 

Enterobacteriaceae. Due to these opposed sign of the loadings of its two taxa, it could be expected 
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that the group, Pathogenic bacteria, presents a modest loading. This factor included also 5 of the 8 

bacterial counts (PCA, WC, MRS, VRBA and Proteolytics) all with positive loadings. It worth noting 

that microbial counts, even though expressing different microbial groups, are quantitative traits, so 

they are related to the total bacterial count of the milk sample. On the contrary, the relative 

abundances obtained from metagenomics are qualitative data expressing the proportions of different 

taxa. Being the total a constant (100%), it is expected in this case that an increase in some taxa be 

compensated by the decrease of other taxa. The fact that this latent factor relies mainly on the number 

of several microbial groups and on the proportion of the major taxa considered could explain the 

inclusion, with a negative sign, of the milk pH. Less clear is the meaning of the inclusion in this factor 

of the milk urea, which is often considered an indicator of the dietary availability of protein for the 

lactating cow (Broderick and Clayton, 1997).  

In the previous study, the first latent explanatory factor was based on milk coagulation and 

curd firming traits, non included in this study, but the second factor (representing 14% of variance 

and called Pro-Dairy) was based (positively) on LAB group and taxa, but also on Other probiotics 

(positively), on Spoilage bacteria (negatively) and on the two Pathogenic taxa (Staphylococcus, 

negatively, and Enterobacteriaceae, positively). Due to these similarities, also the latent factor 1 in 

this study was named Pro-Dairy. 

The analysis of variance showed that the Pro-Dairy latent factor was affected significantly by 

all the three fixed factors included in the statistical model (Table 8), with a very high R2c (0.80). In 

fact, the contrasts reported in Table 9 highlighted that this factor was significantly higher in PF than 

in ALP samples, except for the farm P.  

Latent factor 2: Probiotics 

Differently from the previous study, where Other probiotics group and taxa were associated 

with LAB group and taxa, in this study they represented the major loadings (+0.93, see Table 7) of 

the second latent factor, named Probiotics, which represented 10.3% of total variance. In particular, 
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this latent factor is associated with the relative abundancy of Propionibacteriaceae taxon but also 

with the YELA (putative propionibacteria) bacterial count (+0.39). It worth noting that factor 2 is 

associated positively (+0.78) with the relative abundancy of Lactobacillus taxon, but negatively with 

PCA (aerobic TB), WC (anaerobic TB), M17 (mesophilic lactococci) and PCAp (Proteolitics). 

Beyond the 8 microbial traits only one milk composition trait is included in Factor 2: the content of 

nicotinic acid (+0.39, see Table 7). Even though several microbial taxa are known to be involved in 

the synthesis of vitamins, especially of B group, no specific information is available on relationships 

between the microbiota and the nicotinic acid content of milk (Leblanc et al., 2011). 

The latent factor 2 Probiotics is not directly affected by the main factors of Herd and Location 

(ALP vs PF) but by their interaction (Table 8). This interaction is so important that the determination 

coefficient of this latent factor is the highest among all latent factors identified (R2c: 0.85). In fact, 

among the single herds in general were lower during ALP respect PF, and significant opposite in herd 

M (Table 9). 

Latent factor 3: Caseins 

The third latent explanatory factor is based on the milk content of casein, total protein, and 

non-fat solids (loadings +0.80 to +0.90, see Table 7), and to a minor degree (+0.40) to total solids. 

On the contrary, the loading of casein number is negative (-0.39), even though both numerator and 

denominator (casein and total protein) of this ratio are included positively and with similar loadings 

in this latent factor. This seems especially to be due to the lower variability of the numerator than of 

the denominator. This imply that the increase of milk protein seems related more than proportionally 

to an increase of whey proteins than of caseins, and this interpretation is confirmed by the Pearson 

correlations (Figure 2) of milk protein with casein (strong and positive) and casein number (moderate 

and negative). Consequently, this latent factor was named “Caseins” and it explained 9.1% of total 

variance (Table 8). 
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Also in the previous study a “Caseins” latent factor with similar major loadings was found 

(Secchi et al., 2023), explaining 9.2% of total variance. In that case, the factor included also some 

trait relative to milk coagulation and curd firming, cheese yield and the recovery of milk protein in 

the curd.  

This Casein latent factor of this study involves also two microbial traits, both moderate and 

positive: the CBA count and the relative abundancy one of the LAB taxa: the Streptococcus (Table 

7). In the previous research, the only microbial trait included was the relative abundancy of Other 

LAB taxa. 

Differently from the previous latent factor (Probiotics), in the case of Caseins both Herd and 

ALP vs PF factors showed a highly significant effect, whereas their interaction was more moderate 

as the coefficient of determination (R2c: 0.66, Table 8). The Caseins factor tend to be always lower 

during ALP than the PF (see in Table9). 

Latent factor 4: Udder health 

An Udder health latent factor was identified in this and previous study. In both the major 

loading was that of milk lactose content followed by non-fat solids and casein number (all positively) 

and that of SCS and of milk pH (negatively). The lactose content is often found to be negatively 

correlated with somatic cell count or score (Alessio et al., 2021). The association of mastitis 

pathogens infection of cows udder with milk SCS (positive), lactose content (negative), casein 

number (negative), milk pH (positive),  was clearly found by (Pegolo et al., 2022). The meaning of 

the positive loading of casein number is due to the fact that the increase of this trait is linked to a 

relative decrease of whey proteins (mainly lacto-globulin and lacto-globulin) which are known to 

increase in cows with mastitis. Generally, the contrast reported in Table 9 showed a positive 

differences, location either the single herds were higher during ALP than the PF. 

Latent factor 5: Cheese yield 
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The fifth latent factor is based on milk fat, total solids, and fat/protein ratio (Table 7), all 

strictly correlated with each other’s (Figure 2) and represents the 8.4% of total variance (Table 8). 

This factor included also two moderate negative loadings with milk lactose and relative abundancy 

of Streptococcus taxa (Table 7). We named this factor “Cheese yield” following the results obtained 

in the previous study where, beyond milk fat, total solids and fat/protein ratio, this factor was also 

strongly and positively related (+0.85) to cheese yield expressed as weight of cheese solids per 100 

kg of milk processed (Secchi et al., 2023). Obviously, this result is due to the fact that milk fat is the 

milk nutrient more represented in cheese solids in terms of average value, and particularly it is the 

nutrient with the highest contribution to cheese solids variability (Stocco et al., 2022). In the previous 

research, the Cheese yield factor was also strongly related to the efficiency of recovery of milk solids 

and energy in the curd. It worth noting that the Cheese yield factor of the previous study included 

also a positive loading of cheese yield expressed as weight of fresh cheese per 100 kg of milk 

processed, but this loading was slightly lower than that found for cheese yield expressed in cheese 

solids (0.58 vs 0.85, respectively). These two measures of cheese yield were also related positively 

to the “Caseins” factor, but with lower loadings and an inverse ranking (0.50 vs 0.31, respectively). 

This is due to the fact that the water retained in fresh curd is much more related to the cheese content 

of casein that of fat (Stocco et al., 2022).  

The fixed effects included in the statistical model explained a relatively small proportion of 

total variability of this factor (R2c = 0.27, see Table 8), and the only significant source of variation 

was the herd.  

Latent factor 6: Spoil-1 and latent factor 7: Spoil-2 

In this study we found that the relative abundancy of the Spoilage bacteria group of taxa was 

positively related contemporarily to two latent factors, named respectively Spoil-1 and Spoil-2. The 

difference between the two factors was that, beyond the group of taxa, the Spoil-1 was related 

especially to relative abundancy of Clostridiaceae taxon and Spoil-2 to that of Pseudomonas taxon 



 

175 

 

 

 

 

(Table 7). In addition, Spoil-1 presented positive loadings of relative abundancy of Other LAB and 

of Bifidobacteriaceae taxa and negative loadings of PCA, PCAp, and VRBA microbial counts, 

whereas Spoil-2 factor included positive loadings of PCAp counts and relative abundancy of 

Enterococcus taxa and negative loadings of Pathogenic bacteria group, and also of milk urea content 

(Table 7).  They represented 7.4% and 5.8% of total variance, respectively, and were both affected 

significantly by all the three fixed effects included in the model (Table 8). The LSM differences 

between ALP and PF reported in Table 9 showed a significant opposite average effect. Spoil-1 tends 

to be greater during PF than ALP, while Spoil-2 was moderate greater during ALP. 

In the previous research, the Spoilage group and individual taxa were not the base of specific 

latent factors, but were included, with negative loadings, in the Pro-Dairy factor (Secchi et al., 2023). 

Latent factor 8: B-vit 

The last latent explanatory factor is based (Table 7) on two B-vitamins, B1 Thiamine and B2 

Riboflavin, and on some microbial traits, namely: the microbial counts WC (negative loading), M17 

(negative) and YELA (positive, and the relative abundancy of LAB group (positive), Enterococcus 

taxon (positive), and Enterobacteriaceae taxon (negative).  

This latent factor represents 5.8% of total variance and is affected by the herd and, strongly, 

by the interaction of herd with location (Table 8). Lastly, the contrast (Table 9) were quite always 

lower in PF than in ALP. No previous study on the factor analysis of milk traits including B-vitamins 

are available, the authors are aware of, so no comparison with other studies can be done.  

Lactoferrin 

All the traits related to milk composition and udder trait, except lactoferrin, were included in 

one or more latent factors and presented a communality coefficient >0.50 (Table 7) and than could 

be considered represented by latent factors, even though milk urea, pH and SCS were still retaining 

an individual variability worthing to be considered (communality 0.51 to 0.56). In our previous study, 

their communality coefficients were even lower than in this study (Secchi et al., 2023). 
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Lactoferrin didn’t contribute to any of the 8 factors and presented a communality of only 0.17 

(Table 7), so it should be regarded substantially as an independent trait. Lactoferrin is a milk 

glycoprotein that  exerts multiple antimicrobial, antiviral, antifungal properties (Ciccaglione et al., 

2019) and anti-inflammatory and immunostimulatory effects by increasing the synthesis of IgA and 

IgG antibodies and stimulating the production of T and B cells (Bielecka et al., 2022). A 

anticarcinogenic potential of bovine lactoferrin has also been observed. Lactoferrin is considered a 

mastitis marker in dairy ruminants (Giagu et al., 2022), but, even though we have considered it in the 

group udder health traits, it was not included in the latent factor based on the other traits of the same 

group (milk pH, SCS and lactose content, see Table 7). On the other side it worth noting that Bisutti 

et al. (2022) found no correlation between milk lactoferrin and the differential somatic cell count 

(PNM and lymphocytes, and macrophages). On the other side lactoferrin was not affected by any of 

the three fixed effects included in the model (Table 1), probably because of the high residual 

variability. The real meaning of lactoferrin in relation to mastitis of cows should be better indagated. 

Variability of microbial traits not explained by latent factors 

All the microbial traits (8 bacteria counts and 15 relative abundancies of individual bacterial 

taxa and their groups) were included in one or more explanatory latent factors. Only two bacterial 

counts (YELA and CBA) and three relative abundancies (Streptococcus, Bifidobacteriaceae, and 

Pathogenic bacteria as a group) showed a communality coefficient <0.50 and worth then some 

individual attention. 

Lastly, it should have considered that 30 bacterial taxa “Other bacteria” were excluded a priori 

from latent factor analysis because of the limit in the number of traits imposed by this methodology 

which cannot be greater than the number of samples analysed. This means that further research on 

larger number of samples are needed for testing for including “other bacteria” taxa in the 8 latent 

factors obtained here and/or for identifying new latent factors. 
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CONCLUSIONS 

We confirmed that milk produced in summer during Alpine grazing of cows and that obtained 

indoor giving them preserved foodstuffs are very different in terms of composition, udder health 

traits, B-vitamin content and microbiological traits (bacterial counts and metagenomics relative 

abundancies). We have also highlighted that the comparison between Alpine pasture and indoor milk 

is different in different herds, so the interaction between herd and location is very important for the 

large majority of traits analysed. The large number of traits considered and the complexity of their 

relationships suggested to analyse data for identifying some latent explanatory factors. Seven of the 

eight latent factors obtained (the most important of which being “Pro-dairy”, “Probiotics”, and 

“Caseins”) combined contemporarily milk composition and microbial traits and characterized the 

differences observed between the milk obtained during summer transhumance to Alpine pasture and 

that obtained during the following indoor rearing, among the different herds and their interaction. The 

exception was the “Udder health” latent factor. 
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TABLES AND FIGURES 

Table 1. Descriptive statistics (mean ± standard deviation) and statistical analysis of the fixed effects 

(F-value and significance levels) of Herds, Location (ALP vs PF) and interaction between Herds and 

Location of milk composition, udder health traits, and B-vitamins of milk of cows from 4 permanent 

farms moved in June to four Alpine temporary farms (ALP, summer pasture) and moved back to 

lowland permanent farms (PF, indoor system) at the end of September.  

 Samples 

N 

Descriptive statistics: 
Herd ALP vs PF Interaction R2c RMSE 

Traits Mean ±SD 

Milk composition:         

Total solids, % 50 12.66 1.37 2.2 2.1 0.8 0.46 1.07 

Milk fat, % 50 3.63 1.37 4.3 ** 0.3 0.9 0.39 1.13 

Non-fat solids, % 50 9.14 0.53 7.0 *** 19.3 *** 5.4  ** 0.86 0.21 

Milk Protein, % 50 3.57 0.42 7.5 *** 20.1 *** 8.7  *** 0.83 0.18 

Fat/Protein ratio, % 50 1.01 0.36 5.4 ** 0.0 1.0 0.32 0.31 

Milk casein, % 50 2.85 0.29 8.9 *** 12.1 **  6.5  **  0.68 0.17 

Casein number, % 50 79.95 3.48 0.1 1.5 0.6 0.60 2.37 

Milk Urea, mg/dL 50 20.92 7.93 16.9 *** 4.6 * 9.6 *** 0.73 4.21 

Udder health traits:         

pH 51 6.45 0.14 10.7 *** 3.2 3.2 ** 0.49 0.10 

SCS, unit 51 3.45 2.01 2.7 5.3 * 0.9 0.83 0.95 

Milk lactose, % 50 4.83 0.34 6.9 *** 1.4  3.1 * 0.32 0.30 

Lactoferrin (mg/L) 50 181 152 0.9 0.1 0.8 0.50 114 

Vitamins, (μg/L):          

Thiamine (B1) 51 187 119 0.8 3.6 2.3 0.39 97.50 

Riboflavin (B2) 51 2,225 1,302 0.6 1.2 3.5 * 0.32 1,125 

Nicotinic Acid (B3) 50 2.72 2.43 0.1 4.6 * 1.8 0.38 2.00 

Folic Acid (B9) 49 0.37 0.43 0.6 0.3 2.4 0.80 0.20 

 

*P<0.05; **P<0.01; ***P<0.001; 

SCS= somatic cell score. RMSE= root mean square error. R2c = conditional R2. 
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Table 2. Contrast estimates between the values obtained during summer transhumance on Alpine 

pastures (mid-july) respect to lowland indoor permanent farms (mid-october) on the overall trial and 

within each herd (interaction) of milk composition, udder health traits and B-vitamins content  

 Difference of ALP respect PF: 

Traits Overall effect 
Single herds 

C M P F 

Milk composition:      

Total solids, % -1.30 -0.92  -1.98 ** -0.82 -1.48 * 

Milk fat, % -0.91 -0.35 -1.74 * -0.96 -0.56 

Non-fat solids, % -0.58 *** -0.62 *** -0.41 ** -0.26 -1.02 *** 

Milk Protein, % -0.55 *** -0.51 *** -0.67 *** -0.07 -0.94 *** 

Fat/Protein ratio, % -0.08 0.00 -0.30 -0.13 0.11 

Milk casein, % -0.33 ** -0.34 ** -0.37 ** 0.02 -0.64 *** 

Casein number, % 3.20 1.81 4.39 ** 3.56 * 3.00 

Milk Urea, mg/dL -5.90 * -5.31 * -14.09 *** -9.32 ** 5.08 

Udder health traits:      

pH 0.09 0.10 0.26 *** -0.02 0.00 

SCS, unit -1.14 * -1.46 * -0.87 -1.81* -0.42 

Milk lactose, % 0.06 -0.19 0.40 * 0.22 -0.18 

Lactoferrin (mg/L) 109 22.2 113.3 115.8 181.8 

Vitamins, (μg/L):       

Thiamine (B1) 72  106.0  101.1 146.2 * -62.4 

Riboflavin (B2) 966 669 1852 ** 2018 ** -676 

Nicotinic Acid (B3) 2.26 * 2.44 * 4.22 ** 0.66 1.68 

Folic Acid (B9) -0.03 -0.07 -0.20 -0.08 0.25 

*P<0.05; **P<0.01; ***P<0.001; 

SCS= somatic cell score. 
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Table 3. Descriptive statistics (mean ± standard deviation) and statistical analysis of the fixed effects 

(F-value and significance levels) of the Herds, Location (ALP vs PF) and interaction between Herd 

and Location of milk bacterial counts (expressed as log CFU/mL), the log10 relative abundances of 

milk bacterial taxa with known dairy (LAB), other probiotics, spoilage and pathogenic activities, and 

of other bacteria found in the milk of  cows from 4 permanent farms moved in June to four Alpine 

temporary farms (ALP, summer pasture) and moved back to lowland permanent farms (PF, indoor 

system) at the end of September. 

 

 Samples 

N 

Descriptive statistics: 
Herd ALP vs PF Interaction R2c RMSE 

Traits Mean ±SD 

Milk bacterial counts:          

PCA: aerobic TB 51 4.45 0.94 23.7 *** 66.8 *** 36.5 *** 0.82 0.40 

WC: anaerobic TB 50 4.46 0.92 8.7 *** 0.8 6.2 ** 0.57 0.62 

MRS: mesophilic lactobacilli 50 3.71 1.26 27.3 *** 48.82 *** 24.1 *** 0.85 0.50 

M17: mesophilic lactococci 50 4.17 1.32 11.9 *** 9.7 ** 21.3 *** 0.74 0.69 

YELA: putative Propionibacteria 49 1.06 1.18 502.1 *** 0 367.3 *** 0.98 0.16 

VRBA: coliforms 49 1.83 1.25 231.2 *** 175.4 *** 158.7 *** 0.97 0.23 

PCAp: proteolytics 51 3.04 1.37 4.0 * 46.4 *** 17.2 *** 0.68 0.79 

CBA: hemolytic streptococci 50 3.18 1.12 7.7 *** 75.1 *** 17.1 *** 0.73 0.59 

Metagenomic relative abundances:        

Lactic acid bacteria (LAB): 50 1.240 0.478 15.9 *** 17.5 ***  43.5 *** 0.89 0.172 

Lactobacillus 49 0.222 0.374 8.4 *** 0.2 44.1 *** 0.80 0.171 

Lactococcus 50 0.880 0.672 54.7 *** 48.9 *** 113.6 *** 0.93 0.185 

Enterococcus 51 0.227 0.305 11.3 *** 1.16 11.1 *** 0.85 0.119 

Streptococcus 51 0.330 0.353 15.4 *** 28.3 *** 4.9 **  0.57 0.238 

Other LAB 51 0.203 0.243 7.8 *** 16.9 *** 6.7 ** 0.49 0.181 

Other probiotics: 49 0.248 0.394 2.6 0.3 70.7 *** 0.89 0.134 

Propionibacterium 50 0.169 0.398 0.2 0.0 127.1 *** 0.94 0.097 

Bifidobacterium 50 0.095 0.119 4.7 **  0.3 4.9 ** 0.37 0.099 

Spoilage bacteria: 51 0.399 0.256  8.1 *** 5.3 *  5.2 ** 0.39 0.209 

Clostridiaceae 49 0.181 0.215 12.8 *** 41.3 ***  27.4 *** 0.73 0.115 

Pseudomonas 50 0.232 0.195 4.0* 1.1  3.9 * 0.42 0.155 

Pathogenic bacteria: 51 0.748 0.517 3.3 *   12.9 ** 4.9 ** 0.34 0.442 

Staphylococcus 51 0.528 0.577  4.6 **  14.2 *** 7.5 ** 0.49 0.427 

Enterobacteriaceae 51 0.291 0.363 41.9 *** 0.6 10.0 *** 0.76 0.180 

Other bacteria: 50 1.660 0.260 5.5 **  1.0 2.4 0.69 0.152 

Corynebacterium 51 0.327 0.424 11.5 *** 27.3 *** 22.9 *** 0.77 0.211 

Dermabacteraceae 50 0.172 0.275 18.9 *** 28.8 *** 28.9 *** 0.72 0.148 

Intrasporangiaceae 50 0.122 0.229  13.7 *** 1.7 13.6 *** 0.53 0.161 

Microbacteriaceae 50 0.340 0.277 8.9 *** 23.6 *** 12.2 *** 0.63 0.174 

Micrococcaceae 51 0.503 0.418 18.2 *** 8.0 **  9.8 *** 0.69 0.244 

Propionicimonas 50 0.085 0.165 4.1 * 0.8 2.0 0.45 0.128 

Other Actinobacteria 50 0.265 0.230 2.9 *  18.1 *** 2.7 0.58 0.156 
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Porphyromonas 49 0.003 0.009 0.0 11.6 ** 2.5 0.32 0.008 

Flavobacteriaceae 51 0.238 0.282 7.1 *** 1.7 5.2 ** 0.88 0.099 

Chryseobacterium 50 0.480 0.391 58.0 ***  177.6 *** 87.8 *** 0.92 0.112 

Wautersiella 49 0.100 0.221 104.6 *** 253.1 ***  57.4*** 0.89 0.072 

Chitinophagaceae 49 0.140 0.274 269.3 *** 2.3 8.1 ** 0.97 0.045 

Other bacteroidetes 51 0.212 0.196 6.6 *** 5.8 * 2.8 0.46 0.150 

Cyanobacteria 50 0.044 0.105 0.0 14.3 *** 2.7 0.37 0.088 

Solibacillus 50 0.189 0.310 40.7 *** 30.3 *** 39.6 *** 0.78 0.146 

Aerococcus 50 0.063 0.131 2.2 4.6 * 3.8 * 0.28 0.117 

Trichococcus 50 0.074 0.121 10.3 ***  16.9 ***  14.0 *** 0.55 0.084 

Turicibacter 50 0.220 0.270  15.3 ***  54.2 *** 31.7 *** 0.74 0.139 

Peptostreptococcaceae 49 0.401 0.389 31.4 *** 80.8 *** 45.1 *** 0.81 0.171 

Ruminococceae 50 0.091 0.139 7.6 *** 32.9 *** 16.4 *** 0.58 0.093 

Tissierellaceae 49 0.020 0.054 0.6 9.4 ** 3.3 * 0.23 0.050 

Other Firmicutes 50 0.213 0.259 2.4 33.6 *** 11.3 *** 0.66 0.154 

Agrobacterium 50 0.118 0.224 15.1 *** 19.2 *** 82.5 *** 0.93 0.058 

Paracoccus 50 0.189 0.352 127.7 *** 1.5 18.8 *** 0.92 0.099 

Sphingomonadaceae 50 0.079 0.103 5.8 ** 2.1 0.3 0.55 0.072 

Comamonadaceae 49 0.190 0.175 26.1 *** 160.1 *** 49.7 *** 0.94 0.045 

Acinetobacter 51 0.939 0.469 11.4 *** 31.0 *** 43.3 *** 0.79 0.216 

Enhydrobacter 51 0.242 0.327 25.3 *** 62.9 *** 13.3 *** 0.73 0.173 

Xanthomonadaceae 50 0.210 0.239 1.1 3.5 20.1 *** 0.79 0.111 

Other Proteobacteria 51 0.363 0.279 10.1 *** 1.4 0.8 0.62 0.177 

*P<0.05; **P<0.01; ***P<0.001  

RMSE= root mean square error. R2c = conditional R2. 
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Table 4. Contrast estimates between the values obtained during summer transhumance on Alpine 

pastures (mid-July) respect to lowland indoor permanent farms (mid-October) on the overall trial and 

within each herd (interaction) of milk bacterial counts (expressed as log CFU/mL), and the log10 

relative abundances of milk bacterial taxa (categories and other bacteria) 

Traits 

Differences ALP respect PF 

Overall effect 
Single herds 

C M P F 

Milk bacterial counts:      

PCA: aerobic TB -1.16 *** -1.80 *** -2.50 *** 0.62 ** -0.96 ** 

WC: anaerobic TB -0.83  -0.32 -2.13 *** -0.37  -0.51 

MRS: mesophilic lactobacilli -1.72 *** -1.99 *** -2.37 *** 0.30 -2.82 *** 

M17: mesophilic Lactococci -1.25 ** -1.22 ** -3.82 *** 0.11 -0.07 

YELA: putative propionibacteria -0.10 0.00 2.35 *** -0.90 *** -1.86 *** 

VRBA: coliforms -0.85 *** -1.88 *** -1.86 *** 1.75 *** -1.39 *** 

PCAp: proteolytics -1.18 *** -2.94 *** -2.63 *** 0.46 0.40 

CBA: hemolytic streptococci -0.86 *** -2.93 *** -0.10 0.05 -0.57 

Metagenomics:      

  Lactic acid bacteria (LAB): -0.38 *** -0.45 *** -0.58 *** 0.63 *** -1.13 *** 

Lactobacillus 0.20 0.04 1.13 *** -0.42 *** 0.06 

Lactococcus -0.70 *** -0.74 *** -1.66 *** 0.97 *** -1.34 *** 

Enterococcus 0.14 -0.07 0.1 0.46 *** 0.08 

Streptococcus -0.29 *** -0.69 *** 0.00 -0.22 -0.24 

Other LAB 0.04 *** 0.40 *** 0.04 -0.15 -0.15 

  Other probiotics: 0.32 0.04 1.29 *** -0.16 * 0.09 

Propionibacterium 0.36 0.01 1.31 *** 0.02 0.09 

Bifidobacterium -0.02 0.03 0.08 -0.20 ** 0.01 

  Spoilage bacteria: 0.01 * 0.26 * 0.05 -0.36 ** 0.07 

Clostridiaceae -0.02 ***  0.42 *** 0.09  -0.33 *** -0.27 ** 

Pseudomonas 0.05 -0.09 0.00 -0.04 0.32 ** 

  Pathogenic bacteria: 0.13 ** 0.86 ** 0.16 -0.38 -0.13 

Staphylococcus 0.41 *** 0.89 *** 0.97 *** -0.43 0.22 

Enterobacteriaceae -0.23 -0.07 -0.65 *** 0.08 -0.26 * 

  Other milk bacteria:      

Corynebacterium -0.07 *** 0.67 *** 0.11 -0.82 *** -0.25 

Dermabacteraceae 0.10 *** -0.43 *** 0.68 *** 0.06 0.09 

Intrasporangiaceae -0.04 0.12 0.32 ** -0.07 -0.54 *** 

Microbacteriaceae -0.02 *** -0.46 *** 0.17 0.30 ** -0.08 

Micrococcaceae -0.16 ** -0.41 ** 0.38 * -0.63 *** 0.02 

Propionicimonas 0.06 -0.06 0.15 0 0.14 

Other Actinobacteria 0.20 *** 0.38 *** 0.14 0.27 ** 0.02 

Porphyromonas 0.01 ** 0.02 ** 0.017 * 0 0 

Flavobacteriaceae 0.08 -0.09 0.01 0.15 * 0.24 ** 

Chryseobacterium -0.40 *** -0.88 *** -0.88 *** 0.50 *** -0.35 *** 
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Wautersiella -0.21 *** -0.69 *** 0.02 -0.15 *** -0.02 

Chitinophagaceae -0.02 0.04 0.03 0.004 -0.16 *** 

Other bacteroidetes 0.09 * 0.20 * 0.05 -0.09 0.22 * 

Cyanobacteria 0.09 *** 0.19 *** 0.06 0 0.13 * 

Solibacillus -0.13 *** 0.44 *** 0 -0.80 *** -0.17 

Aerococcus -0.02 * 0.14 * 0 -0.17 * -0.02 

Trichococcus -0.01 *** 0.19 *** 0 -0.23 *** -0.018 

Turicibacter 0.02 *** 0.58 *** 0.11 -0.46 *** -0.14 

Peptostreptococcaceae 0.06 *** 0.87 *** 0.20 -0.65 *** -0.19 

Ruminococceae 0.06 *** 0.30 *** 0.06 -0.21 *** 0.09 

Tissierellaceae 0.02 ** 0.09 ** 0.03 -0.01 0 

Other Firmicutes 0.19 *** 0.50 *** 0.18 -0.22 * 0.30 ** 

Agrobacterium 0.11 *** -0.14 *** -0.01 -0.03 0.61 *** 

Paracoccus -0.15 -0.07 -0.012 0.06 -0.56 *** 

Sphingomonadaceae 0.06 0.06 0.05 0.03 0.09 

Comamonadaceae -0.10 *** -0.43 *** -0.09 ** -0.02 0.12 ** 

Acinetobacter -0.19 *** -0.70 *** -1.1 *** 0.53 *** 0.53 ** 

Enhydrobacter -0.26 *** -0.78 *** 0.0448 -0.18 -0.11 

Xanthomonadaceae 0.19 -0.12 -0.0125 0.40 *** 0.50 *** 

Other Proteobacteria 0.21 0.12 0.33 ** 0.20 0.21 

*P<0.05; **P<0.01; ***P<0.001  

LAB= lactic acid bacteria. 
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Table 7. Loadings on the latent explanatory factors of the milk composition, udder health traits, B-

Vitamins, milk bacterial counts and groups. 

 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

Communality 
Items Pro-dairy Probiotics Caseins 

Udder  

health 

Cheese  

yield 
Spoil-1 Spoli-2 B-vit. 

Milk composition:          

Total solids, %   0.40  0.86*    >0.90 

Milk fat, %     0.93*    >0.90 

Non-fat solids, %   0.80* 0.49     >0.90 

Milk Protein, %   0.88*      >0.90 

Fat/Protein ratio, %     0.93*    >0.90 

Milk casein, %   0.90*      >0.90 

Casein number, %   -0.41 0.66*     0.77 

Milk Urea, mg/dL 0.39      -0.49  0.56 

Udder health traits:          

pH -0.53*   -0.36     0.54 

SCS, unit    -0.66*     0.51 

Milk lactose, %    0.87* -0.35    >0.90 

Lactoferrin (μg/mL)         0.17 

Vitamins, (μg/L):           

Thiamine (B1)        0.46 0.34 

Riboflavin (B2)        0.57 0.45 

Nicotinic Acid (B3)  0.39  0.32     0.34 

Folic Acid (B9)    -0.73*     0.59 

Milk bacterial counts:          

PCA: aerobic TB 0.73* -0.37    -0.32   0.87 

WC: anaerobic TB 0.34 -0.39      -0.45 0.54 

MRS: mesophilic lactobacilli 0.75*        0.67 

M17: mesophilic lactococci  -0.64*      -0.45 0.81 

YELA: putative propionibacteria  0.39      0.37 0.46 

VRBA: coliforms BC 0.71*     -0.39   0.80 

PCAp: Proteolytics 0.52* -0.31    -0.40 0.40  0.80 

CBA: hemolytic streptococci   0.33      0.41 

Milk bacterial groups:          

  LAB 0.86*         0.31 0.87 

Lactobacillus  0.78*       0.70 

Lactcoccus 0.89*        >0.90 

Enterococcus       0.30 0.75* 0.79 

Streptococcus   0.40  -0.34    0.31 

Other LAB      0.78*   0.76 

  Other probiotics  0.93*       >0.90 

Propionibacteriaceae  0.91*       >0.90 

Bifidobacteriaceae      0.46   0.39 

  Spoilage bacteria      0.71* 0.62*  >0.90 

Clostridiaceae      0.90*   >0.90 

Pseudomonas       0.93*  >0.90 

  Pathogenic bacteria -0.34      -0.33  0.35 

Staphylococcus -0.70*        0.66 

Enterobacteriaceae 0.66*       -0.31 0.66 

*High loadings, >50. 
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Table 8. Descriptive statistics, and statistical analysis of the fixed effects (F-value and significance 

levels) of the Herds, Location (ALP vs PF) and interaction between Herd and Location of the latent 

explanatory factors of the milk bacterial taxa and milk composition. 

 

Latent explanatory factor Explained variance: Herd  ALP vs PF Interaction R2c RMSE 

Individual Cumulative 

Factor 1: “Pro-dairy” 14.4 % 14.4 % 28.4 *** 27.3 *** 26.7 *** 0.80 0.43 

Factor 2: “Probiotics” 10.3 % 24.7 % 0.8 1.7 55.9 *** 0.85 0.39 

Factor 3: “Caseins” 9.1 % 33.8 % 7.8 *** 16.6 *** 4.1 * 0.66 0.55 

Factor 4: “Udder 

health” 
8.7 % 42.4 % 2.6 0.2 0.3 0.24 0.69 

Factor 5: “Cheese 

yield” 
8.4 % 50.9 % 4.3 * 0.2 1.1 0.27 0.73 

Factor 6: “Spoil-1” 7.4 % 58.3 % 6.1 ** 16.0 *** 11.8 *** 0.52 0.69 

Factor 7: “Spoil-2” 5.8 % 64.1 % 3.4 * 6.0 * 6.2 ** 0.47 0.62 

Factor 8: “B-vit” 5.8 % 70.0 % 3.4 * 0.1  16.4 *** 0.79 0.44 

 

*P<0.05; **P<0.01; ***P<0.001 

RMSE= root mean square error. R2c = conditional R2. 
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Table 9. Contrast estimates between the values obtained during summer transhumance on Alpine 

pastures (mid-July) respect to lowland indoor permanent farms (mid-October) in the overall trial and 

within each herd (interaction) of the latent explanatory factor. 

 

Latent explanatory factor 

Differences ALP respect PF 

Overall effect  
Single herds 

C M P F 

Factor 1: “Pro-dairy” -0.93 *** -1.23 *** -1.59 *** 0.92 *** -1.84 *** 

Factor 2: “Probiotics” 0.46  -0.27  2.99 *** -0.64 ** -0.24 

Factor 3: “Caseins” -0.92 *** -1.32 *** -0.29 -0.41 -1.65 *** 

Factor 4: “Udder health” 0.28 0.18 0.58 0.28 0.08 

Factor 5: “Cheese yield” -0.266 0.16 -0.71 -0.57 0.05 

Factor 6: “Spoil-1” -0.332 *** 1.50 *** -0.21 -1.26 ** -1.36 ** 

Factor 7: “Spoil-2” 0.04 * -0.84 * 0.01 -0.35 1.35 ** 

Factor 8: “B-Vit” 0.93 0.08 1.03 *** 1.58 *** -0.92 ** 

*P<0.05; **P<0.01; ***P<0.001 
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Figure 1a. Sources of the variation (expressed as percentage of total variance) in individual milk 

bacterial counts, and milk taxa relative abundances (in italic) and their categories (in bold): effects of 

the Herds (dark blue), Location (ALP vs PF) (red), interaction between Herd and Location (orange), 

individual cow nested in the Herd (green), and the residual variability (light blue). 
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Figure 1b. Sources of the variation (expressed as percentage of total variance) in milk composition, 

udder health traits and B-vitamins: effects of the Herds (dark blue), Location (ALP vs PF) (red), 

interaction between Herd and Location (orange), individual cow nested in the Herd (green), and the 

residual variability (light blue). 
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Figure 2. Heat plot of the correlations among the milk composition traits, udder health traits and B-

vitamins included in the factor analysis. 
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Figure 3. Heat plot of the correlations among the milk bacterial counts and milk bacterial groups 

included in the factor analysis. 

 
PCA: mesophilic aerobic TB; WC: mesophilic anaerobic TB; MRS: mesophilic bacilli; M17: mesophilic lactococci; 

YELA: Propionibacteria; VRBA: Coliforms; PCAp: proteolytics and CBA: hemolytic Streptococci. 
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Figure 4. Heat plot of the correlation between the bacterial and chemical traits included in the factor 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCA: mesophilic aerobic TB; WC: mesophilic anaerobic TB; MRS: mesophilic bacilli; M17: mesophilic lactococci; 

YELA: Propionibacteria; VRBA: Coliforms; PCAp: proteolytics and CBA: hemolytic Streptococci. 
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INTERPRETIVE SUMMARY 

 

Variation of intestinal microbiota of dairy cows kept on Alpine pasture or indoor and 

relationships with milk microbiota and composition  

By Secchi et al., page 000. This study deals the relationship between intestinal metagenomics, milk 

metagenomics and milk composition of 4 herds (5-7 Italian Simmental cows/each) sampled during 

the summer highland pasture, and when moved back to indoor farming. A total of 14 bacterial taxa 

were obtained in faeces, which appear to be interrelated with the milk microbiome, at least with 

regarding to some taxa of particular interest for characterizing milk quality and health.  
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ABSTRACT 

Metagenomic approach allowed to obtain new knowledge on intestinal microbiota of the dairy 

cow, and which is known for having an important role in digestive processes, immune functions and 

the health of the animals. Less studied are the relationships with the microbiota of the udder and the 

quality of milk produced. To study this issue, four herds moved to Alpine pasture during summer 

transhumance and returning to lowland indoor permanent farms during the rest of the year were 

involved selecting 5-7 cows per herd and sampling them one month after summer transhumance (in 

July) and one month after returning indoor (in October). Milk was sampled during milking and fecal 

material was grab directly from the rectum. After DNA extraction  and Illumina Miseq sequencing, 

all fecal samples (n. 52) were also processed by means of an open source pipeline called Quantitative 

Insights Into Microbial Ecology (Qiime2, version 2020.11;  https://qiime2.org). 

The relative abundances of 14 intestinal bacterial taxa were analyzed using a model including 

the fixed effect of herds, farming system (Alpine pasture vs indoor feeding) and their interaction, and 

the random effect of cow within herd. The intestinal microbiota of dairy cows is based on many 

different bacterial taxa, each characterized by different proportions among the mail sources of 

variability. The differences among individual herds are very important for some taxa 

(Verrucomicrobia, Tenericutes and Lachnospiraceae, in particular), those between different farming 

systems (Alpine pasture vs lowland indoor feeding) affects strongly other taxa (Methanobacteriaceae, 

Actinobacteria-Bifidobacteriaceae, Bacteroidaceae, Peptostreptococcaceae, Other Clostridia and 

Proteobacteria), whereas their interaction is quantitatively less important but affect almost all 

intestinal bacterial taxa (Tenericutes and Verrucomicrobia are notable exceptions). The individual 

cow within herd represent a moderate source of variation in the majority of taxa, whereas residual 

variance is very different for different taxa, being the dominant source of variation in the case of 

Rikenellaceae, Paraprevotellaceae, and Ruminococcaceae. The very complex interrelationships 

among different bacterial taxa were analysed through Pearson correlations and multivariate factor 

https://qiime2.org/
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analysis. This allowed to extract 6 latent explanatory factors of intestinal microbiota representing 

72% of total variance. One factor (F2-im) could be used to characterize well different herds, whereas 

F1-im, F3-im, and in part also F5-im and F6-im could be very useful in discriminating farming 

systems.  

Intestinal microbiota appears to be interrelated also with milk microbiota, at least with some 

of the taxa having particular interest for characterizing quality and health of milk. Five out of eight 

latent factors obtained from the merging of data from intestinal and milk metagenomics (imm) 

combined taxa from both type of samples demonstrating the interrelations between cow’s intestine 

and udder. Furthermore, the milk taxa associated with intestinal taxa are known for being of interest 

for the dairy industry (lactic acid bacteria, other probiotics, spoilage bacteria and pathogenic bacteria). 

Finally, intestinal bacterial taxa have found to be associated also directly with some quality traits of 

milk. Four out of eight latent factors obtained merging the dataset of intestinal metagenomics with 

that of milk quality traits (imq) combined traits from both databases, linking the intestinal bacteria 

with the milk udder health traits (F4-imq), with B-vitamins content of milk (F5-imq), with cheese 

yield (F6-imq) and with Lactoferrin (F8-imq). If this study demonstrated the interest of cow’s 

intestinal metagenomics, because of the differences due to farming systems, herds and individual 

cows and the many interrelationships with milk metagenomics and milk quality, it demonstrated also 

the need for further research in the field. 

 

Keywords: Fecal metagenomics, MiSeq Illumina, summer transhumance, intestinal-milk 

relationships. 
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INTRODUCTION 

Metagenomic studies are opening new insight in the complex relationships between animal’s 

microbiota, metabolism regulation, immunological functions and quality and nutritional value of the 

animal’s product. Ruminants, and particularly dairy cows, are the very complex and interesting study 

subjects because of the relevance of microbial function in different compartments of the animal body 

and dairy chain, like: the fore-stomachs, the intestine, the udder, the milk produced and, finally, the 

cheese and other dairy products obtained from milk. Many sectorial studies have been carried out, 

especially in these last years, on all these microbiota compartments (Rainard, 2017; Frétin et al., 2018; 

Xin et al., 2019; Parente et al., 2020; Xu et al., 2021; Reuben et al., 2023). But research on 

relationships between the microbiota present in the different compartments are scarce, as are scarce 

the studies on relationships between the microbiota of the different compartments and the quality and 

technological properties of milk and cheese (Ferrocino et al., 2022). Moreover, rare are the holistic 

research on the effects of different dairy farming systems on microbiota and product quality (Gomes 

et al., 2020).  

In a research project on the comparison between indoor farming and Alpine pasture (Juribello 

project), we have analyzed the effect of farming system on milk microbiota composition (Carafa et 

al., 2020), on milk quality traits and technological properties (Saha et al., 2019), and especially on 

the sources of variation of milk microbiota and its complex relationships with milk characteristics 

(Secchi et al., 2023a). In this last study we showed the many correlations between bacterial taxa 

relative abundances in milk and several milk traits. Using the factor analysis, we have also 

demonstrated that four out of eight latent explanatory factors identified were based on the 

contemporary variation of microbiological and quality traits of milk. These four latent factors, 

because of their major loadings, were named: Gelation, Pro-Dairy, Udder health, and Caseins. 

Another chapter of the same project is dealing with the study of bacterial and yeast microbiota of 
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rumen liquor and their relationships with rumen fermentation pattern and the previously cited milk 

microbiota and quality traits. 

The effect of farming system (indoor feeding vs Alpine grazing), the major relationships 

between milk microbiota and chemical composition, and the nature of the major latent factors have 

been confirmed in a following project (Secchi et al., 2023b). But the objective of this last project 

(MilkBiota project) was also extended to the study of the microbiological functions in the cow’s 

intestine. So, the aims of this study were: a) to analyze the composition, the effect of farming system 

(indoor feeding vs Alpine pasture), the sources of variation and the aggregation (latent factors) of the 

relative abundances of bacterial taxa identified on intestinal material sampled from the rectum of the 

cows; b) to identify the possible relationships (correlations, latent factors) between the intestinal 

microbiota and the microbiota of milk produced by the same cows in the same day; c) to search for 

relationships (correlations, latent factors) between intestinal microbiota and milk quality traits. 

Moreover, studies available are generally carried out in single herds (experimental units or 

commercial farms) and variability/interaction between different herds is not much known. A study of 

150 dairy cows from 10 commercial farms across California by Hagey et al., (2019) found that fecal 

microbiota is significantly affected by farming type, individual farm and diet. 

The aims of this study were pursued in 4 different farms to consider the possible interaction 

with environmental, feeding and management of the herds. 
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MATERIALS AND METHODS 

Experimental design 

The experimental design was described in details in our previous study on the variation of 

milk microbiota and composition during summer transhumance in Alpine pasture (ALP) and after 

the return of the cows to the lowland indoor permanent farm (PF) conditions (Secchi et al., 2023b). 

In short, the experimental design was a 4 × 2 factorial design: 4 herds and two locations/seasons. 

Each herd was housed in a different PF (Vicenza and Trento provinces, north east Italy, 70-500 m 

a.s.l.) from autumn to spring, and was moved in a different ALP (Vezzena highland, Trento province, 

1380-1700 m a.s.l.) during summer transhumance, to return to the PF in autumn.  

At the end of June 2020 Simmental cows were moved from the four PF to their respective 

ALP, where the cows were free to graze day and night on Alpine pastures in different areas according 

to grass availability, without a rigid rotation plan. Each farm was also giving a compound feed 

supplement in the milking parlor according to milk yield. At the end of September, the herds were 

moved again indoor in the respective PF where cows received meadow and alfalfa hay and compound 

feeds.  

Intestinal material and milk sampling 

From 26 mid-lactation healthy cows (5-7 per herd), individual intestinal material and milk 

samples were collected once at the end of July, four weeks after the beginning of Alpine pasture, and 

once at the end of October four weeks after cows were moved back to the PF for a total of 52 fecal 

and 52 milk samples. Details on milk sampling were described in our previous study on the same 

project (Secchi et al., 2023b). 

Approximately 30 g of fecal material were collected from the rectum of each cow by use of 

individual plastic palpation sleeves, and immediately placed in a sterile 50 mL propylene tube, 

transported on ice to the laboratory on the same day and immediately stored at −80 °C until use. 
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Metagenomic analyses 

Total DNA extraction from intestinal and milk samples 

For total genomic DNA extraction, 4 mL of milk were centrifuged at 4,000 g for 10 min at 4 

°C, and the supernatant was discarded. Genomic DNA was extracted from the pellet using the 

DNeasyPower Food Microbial Kit (Qiagen, Milan, Italy) according to the manufacturer’s instructions 

and quantified by Nanodrop8800 Fluorospectrometer (Thermo Scientific, USA).  

The DNA was extracted from intestinal samples using FastDNA® Spin Kit for Feces (MP 

Biomedicals, LLC, Santa Ana, CA, USA) according to the manufacturer’s instructions with small 

modifications. Briefly, 0.4 – 0.5 g of thawed intestinal sample were added with the solution provided 

in vials filled with ceramic beads, ready for the process. The samples were incubated 65 °C for 10 

min and then homogenized twice at 6000 rpm for 30 s each with a 30-s pause in between, using 

FasrPrep-24 ™ Classic Instrument (MP Biomedicals). After homogenization, the suspension was 

incubated for lysis. Finally, DNA was bound into the spin filter, washed, and eluted according to the 

manufacturer’s instructions. At the end the samples were quantified by Nanodrop8800 

Fluorospectrometer (Thermo Scientific, USA). 

Preparation of the MiSeq library  

Amplicon library preparation, quality and quantification of pooled libraries, and pair-end 

sequencing using the Illumina MiSeq system (Illumina, USA) were performed at the Sequencing 

Platform, Fondazione Edmund Mach (FEM, San Michele a/Adige, Italy). Briefly, for each sample, a 

464-nucleotide sequence of the V3-V4 region (Baker et al., 2003; Claesson et al., 2010), of the 16S 

rRNA gene (Escherichia coli positions 341 to 805) was amplified. Unique barcodes were attached 

before the forward primers to facilitate the pooling and subsequent differentiation of samples. To 

prevent preferential sequencing of the smaller amplicons, the amplicons were cleaned using the 

Agencourt AMPure kit (Beckman coulter) according to the manufacturer’s instructions; 

subsequently, DNA concentrations of the amplicons were determined using the Quant-iT PicoGreen 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/homogenization
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dsDNA kit (Invitrogen) following the manufacturer’s instructions. In order to ensure the absence of 

primer dimers and to assay the purity, the generated amplicon libraries quality was evaluated by a 

Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA) using the High Sensitivity DNA Kit (Agilent). 

Following the quantitation, cleaned amplicons were mixed and combined in equimolar ratios. 

Illumina data analysis and sequences identification by QIIME2 

Raw paired-end FASTQ files were demultiplexed using idemp 

(https://github.com/yhwu/idemp/blob/master/idemp.cpp) and imported into Quantitative Insights 

Into Microbial Ecology (Qiime2, version 2020.11, https://qiime2.org). Sequences were quality-

filtered, trimmed, de-noised, and merged using DADA2 (Callahan et al., 2016). Chimeric sequences 

were identified and removed via the consensus method in DADA2. Representative sequences were 

aligned with MAFFT and used for phylogenetic reconstruction in FastTree using plugins alignment 

and phylogeny (Price et al., 2009; Katoh and Standley, 2013); Taxonomic and compositional analyses 

were conducted by using plugins feature-classifier (https://github.com/qiime2/q2-feature-classifier). 

A pre-trained Naive Bayes classifier based on the Greengenes 13_8 99% Operational Taxonomic 

Units (OTUs) database (http://greengenes.secondgenome.com/), which had been previously trimmed 

to the V4 region of 16S rDNA, bound by the 341F/805R primer pair, was applied to paired-end 

sequence reads to generate taxonomy tables. The data generated by Illumina sequencing were 

deposited in the NCBI Sequence Read Archive (SRA) and are available under Ac. PRJNA903798 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA903798 ). 

Bacterial categories 

Due to the modest information on relationships of intestinal microbial taxa with dairy cow 

metabolism and milk production and quality, all bacterial taxa identified in cow’s feces were listed 

as one group. On the contrary, on the basis of our previous study (Secchi et al., 2023a), also in this 

work we decided to classify the relative abundances of the principal milk bacterial taxa identified by 

Qiime2 into four categories: the Lactic Acid Bacteria (LAB) category includes the taxa belonging to 

https://qiime2.org/
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the Lactobacillales order (Lactobacillus, Lactococcus and Enterococcus)  and Streptococcus (Khalid 

and Department, 2011; Gagnon et al., 2020); the “Other probiotics” category includes all the taxa 

belonging to the Propionibacterium (Rabah et al., 2017) and Bifidobacterium genera (Prasanna et al., 

2014); the “Spoilage bacteria” category includes all the taxa belonging to the Clostridiaceae 

(Burtscher et al., 2020) and the Pseudomonas (Meng et al., 2017); and at the end the “Pathogenic 

bacteria” category includes all the taxa belonging to the Staphylococcus genus (Gebremedhin et al., 

2022), and the Enterobacteriaceae family (Anand and Griffiths, 2011). 

The remaining 30 bacterial taxa were grouped as “other milk bacteria”. 

 

Milk composition traits 

Each individual milk sample was analyzed for protein, fat, lactose, and urea content with a 

MilkoScan FT2 infrared analyzer (Foss Electric A/S, Hillerød, Denmark) calibrated according to the 

following reference methods: ISO 8968-2/IDF 20-2 for protein, ISO 1211/IDF for fat, and ISO 

26462/IDF 214 for lactose. Somatic cell counts (SCC) were obtained with a Fossomatic Minor FC 

counter (Foss Electric A/S) and log-transformed to somatic cell score (SCS) using the formula SCS 

= log2(SCC/100,000)+3 as proposed by Ali and Shook, (1980)Ali and Shook .  

The content of lactoferrin in the milk was determined by commercial enzyme-linked 

immunosorbent assay (ELISA) test kits from Cloude-Clone, (Cat. SEA780Bo 96 test for Lactoferrin 

(LTF), organism species: Bos Taurus, CLOUD-CLONE CORP. Houston, USA), according to the 

manufacturer’s recommendations.  

The B-vitamins separation was performed with an Exion LC system provided by AB Sciex 

LLC (Framingham, MA, USA) using an Acquity UPLC BEH C18 (1.7 μm, 2.1 mm × 50 mm) column 

(Waters corporation, Milford, MA, USA) at 40 °C. Methanol and acetonitrile used were LC-MS 

grade, all the reagent and chromatographic solvents (including formic acid and B-vitamins standards) 
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were purchased from Sigma-Aldrich (St. Louis, MO, USA); Milli-Q water was used for the 

chromatography. Details are reported in our previous study (Secchi et al., 2023b).  

 

Statistical analysis 

The data regarding intestinal and milk bacterial abundances were log10 transformed. All 

bacterial and qualitative data were checked to identify and exclude outliers value (outside the interval 

± 3 SD of the mean).  

Mixed-model analysis of variance 

The log10 transformed relative abundances of bacterial taxa identified in intestinal samples 

were analyzed according to a linear mixed model (RStudio version 1.4.1106) including the fixed 

effects of Herds (four levels: C, M, P, F), Location (two levels: ALP and PF), their interaction, and 

the random effect of cow nested in the Herd. It is worth noting that the ALP vs PF contrast reflects 

not only the effects of location (geographical area, altitude, management, feeding, etc) but also the 

effect of season (July vs October) and of the lactation stage (mid-lactation vs late-lactation).  We used 

a function to estimate R2
GLMM statistic, r.squaredGLMM, included in the MuMln package for the R 

statistical software, and we consider the conditional R-squared because concern variance explained 

by both fixed and random factors (Nakagawa and Schielzeth, 2013). 

Contrasts were estimated to examine the difference between ALP and PF to test for the effect 

of summer transhumance on the main effects, but also within each herd to explain the interaction 

between herd and location. A similar model with all effects as random factors was run for quantifying 

the relative importance of the different herds and locations (and their interaction), of individual 

animals within herd, and of residual factors non accounted for by the model in the total variance of 

each trait. The variances of these five sources of variation were expressed as percentage of their sum 

(total variance). 
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Correlation analysis and latent explanatory factor analysis 

Three datasets were created: 

d) Intestinal metagenomics (im-dataset): including the relative abundances of the 14 

bacterial taxa identified in cow’s rectal samples; 

e) Intestinal and milk metagenomics (imm-dataset): merging the two sub-datasets of the 

relative abundances data of the 14 bacterial taxa identified in cow’s rectal samples and 

those of the 15 milk microbial traits considered of interest for the dairy sector and 

consumers according our previous study (Secchi et al., 2023b); 

f) Intestinal metagenomics and milk quality (imq-dataset): merging the two sub-datasets of 

the relative abundances of the 14 bacterial taxa identified in cow’s rectal samples and the 

16 traits related to milk composition, udder health and B-vitamins; 

Pearson correlations were carried out among the intestinal metagenomic relative abundances 

of the im-dataset, between the two sub-datasets included in the imm-dataset, and between those of 

the imq-dataset. 

We also used multivariate factor analysis (FA) to summarize the interrelated measured traits 

in a small number of unmeasured latent independent explanatory variables (factors). We ran three 

FA: within dataset a), dataset b), and dataset c), named respectively FN-im, FN-imm, and FN-imq 

latent factors, where N is the progressive number of factors (N: 1 to 8) within FA. For each FA, first 

we performed KMO (Kaiser-Meyer-Olkin) and Barlett’s tests, which showed that the traits were 

suitable for FA. The factor analysis was carried out with Varimax rotation in the R environment (R 

Core Team, 2016) using the psych package (available at CRAN: The Comprehensive R Archive 

Network) in three steps: (i) extraction of factors such that the minimum number of uncorrelated latent 

factors explained the greatest proportion of common variance; (ii) factor rotation until each factor 

was defined by a few variables with high loadings; and (iii) biological interpretation of the factors 
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based on the strength of the loadings of the variables. The eigenvalues of the factors and the 

communalities of the variables after rotation were also determined. 

A total of 6, 8, and 8 latent explanatory factors were extracted from the analyses of datasets 

a), b), and c). The loadings of each trait were used for calculating the scores of each latent factor for 

each sample analyzed. The scores of each factor were analyzed statistically according to the same 

linear model used for analysing the relative abundances of every bacterial taxon. 
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RESULTS AND DISCUSSION 

 

Metagenomics of dairy cows intestinal material 

The metagenomic approach allowed to select and identify the DNA of 14 major bacterial taxa 

and to calculate their relative abundances in each fecal material sample. The descriptive statistics of 

the relative abundances of bacterial taxa, after logarithmic transformation, are presented in Table 1. 

It is possible to see that the three most important taxa identified were Bacteroidaceae, Bacteroidetes, 

and Ruminococcaceae, followed by Rikenellaceae, Paraprevotellaceae, Lachnospiraceae, and Other 

Clostridia. Albonico et al. (2020) found similar result, Firmicutes and Bacteroidetes as the most 

dominant phyla, and Ruminococcaceae and Lachnospiraceae were the two most abundant families, 

followed by Paraprevotellaceae and Bacteroidaceae. In addition to being some of the prevalent taxa, 

Ruminococcaceae and Lachnospiraceae play an important role in starch and fiber digestion (Kim et 

al., 2014; Mao et al., 2015), over the positive association with the gut health of several mammalian 

species, such as cats, dogs, horses, laboratory mice, cattle (Raats et al., 2011; Rudi et al., 2012; 

Suchodolski et al., 2012; Hildebrand et al., 2013; Honneffer et al., 2014; Weese et al., 2015). 

Ruminococci are important bacterial species for ruminants due to their cellulolytic activity and ability 

to convert complex polysaccharides into a variety of nutrients in the host (Li et al., 2019); however a 

higher abundances of Ruminococcaceae sequences was found in the fecal samples of forage-fed 

animals than grain-fed animals (Callaway et al., 2010; Shanks et al., 2011). 

The results of the mixed model carried out on the 14 selected taxa are also summarized in 

Table 1. It is worth noting that 12 out of the 14 taxa were affected by one or more of the fixed effects 

included in the model: 9 taxa by herd effect, 3 taxa by location effect (ALP vs PF) and 7 taxa by their 

interaction (different ALP vs PF effect within each herd). The conditional coefficient of determination 

of the model (R2c, Table 1) ranged from a minimum of 0.29 for Ruminococcaceae to a maximum of 

0.91 for Verrucomicrobia taxon. 
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The R2c, as expected, is inversely related with the proportion of the residual variance on total 

variance obtained from the all-random model of analysis. The Figure 1, in fact, shows that 

Ruminococcaceae were characterized by the greater incidence of residual variance, and 

Verrucomicrobia by the smallest one. But Figure 1 shows also that all the major sources of variation 

analyzed are very different for different bacterial taxa. The peculiarity of Tenericutes and 

Verrucomicrobia are to be the taxa with the highest permanent differences among herds, whereas the 

peculiarity of Bacteroidaceae, Rikenellaceae, Other Clostridia, and Proteobacteria are to be those 

with the lowest permanent differences. This means that a herd (group of cows) having a high (or low) 

relative abundancy of one of the former two taxa tends to maintain these characteristics both in the 

ALP and PF. Viceversa, in the case of the latter four taxa, the average values of ALP and PF of the 

four herds are negligible. 

Lastly, the model includes the random effect of individual cow within herd. It can be seen 

from Figure 1 that 9 out of 14 bacterial taxa identified in fecal material are characterized by a certain 

variability among the values (average of ALP and PF data) of different cows within herds. This result 

is much different than that found in the case of the milk microbiota of the same cows (only 4 out of 

15 microbial taxa and groups) (Secchi et al., 2023b). In a previous study (Secchi et al., 2023a), with 

5 monthly samples per cows, we found and intermediate result (7 out of 15 milk microbial traits). No 

other data that the authors are aware of is available in the literature. 

 

Effect of Alpine pasture vs indoor feeding on intestinal microbiota and herd interactions 

The average difference between the four ALP and corresponding PF was also very variable 

for different bacterial taxa. It was almost null in the case of the relative abundances of 

Paraprevotellaceae and Ruminococcaceae, very modest for Tenericutes and Verrucomicrobia, and 

moderate to very large for all the other taxa (Figure 1). For example, we have confirmation the 

Bacteroidetes are higher in ALP, as this is a prevalent phylum in animals with diet richer of plant 
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fiber, and they have strong ability to degrade crystalline cellulose (Henderson et al., 2015; Houlden 

et al., 2015; Johnson et al., 2017), while Li et al. (2020) was found less abundant in the summer 

season. The interaction between herd and location (the fact that the comparison ALP vs PF yields 

different results for different herds) is generally much less important than the variability caused by 

the two major factors of variations and is almost null for Tenericutes and Verrucomicrobia. The fact 

that interaction is significant in a greater number of taxa than location (Table 1) is due to the fact that 

the number of degrees of freedom at the numerator is 4 for interaction and 1 for location. 

The four degrees of freedom of interaction are corresponding to the differences (contrasts) 

between ALP and PF for each of the four herd, which are shown in Table 2. On average only the 

relative abundances of Methanobacteriaceae and Peptostreptococcaceae taxa were lower and those 

of Proteobacteria taxon were higher in ALP intestinal samples than in PF intestinal samples. Healthy 

cows have reported to have less than 4% of Proteobacteria, while an increase of this relative 

abundance has been associated with subacute ruminal acidosis (Khafipour et al., 2009; Pitta et al., 

2010; Xu et al., 2017). For all these taxa the contrasts calculated within each herd maintained the 

same sign of the average value and in three out of four herds the contrast was significant (Table 2). 

In any case the variability among herds was large and the interaction was significant for the former 

two taxa. Of the other 11 intestinal taxa, 4 taxa (Paraprevotellaceae, Ruminococcaceae, and Other 

Clostridia, and Tenericutes) did not present any significant contrast at herd level, whereas the 

remaining 7 taxa presented significant contrasts (for one to three herds), having always the same sign.  

No information about the effect of farming system tested on several herds, and of its 

interaction with individual herd is available in the literature, the authors are aware of.  

Albonico et al. (2020) investigated about 100 cows from 10 small alpine farms, and explored 

factors may influence their milk and fecal microbiota, highlighting the evident variation between 

individual cows. The microbiota of each farm could be influenced by several management choices, 

such as sources of dietary ingredient, water supply, bedding material, hygiene practices, use of 
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pastures, milking hygiene. Globally, intestinal microbiota, despite the variability among different 

herds, appears to be more stable than milk microbiota, both in this same project (Secchi et al., 2023b) 

and in our previous project (Secchi et al., 2023a), the influence of management types needed further 

study 

 

Correlations and latent factors explaining intestinal bacterial relative abundances covariance 

The peculiar individuality of the major sources of variation of relative abundances of bacterial 

taxa identified and the different susceptibility to the effect of different farming systems, individual 

herds and their interactions give us a partial picture of the intestinal microbiota. The next step is the 

knowledge of the relationships (association, competition or independency) among them. The 91 

Pearson correlations calculated among the 14 intestinal bacterial taxa are depicted as heat-map plot 

in Figure 2. The situation is very complex. Being “relative” abundances (their sum is a constant), it 

is expected that the increase of some taxa will be compensated by the decrease of others and then that 

the sign of correlation will be sometimes positive and sometimes negative. Anyway, the intestinal 

taxa present many correlations, in several cases high correlations, and in no cases a bacterial intestinal 

taxon was not or negligibly correlated with any other taxa. This means that all intestinal taxa are 

variably associated with each other and that Pearson correlation are not able to clarify easily the 

aggregation of bacterial taxa in groups. This is why we performed the factor analysis on the dataset 

of relative abundances of intestinal material bacterial taxa obtained from the metagenomic approach. 

Six latent explanatory factors were able to absorb 72% of the variance-covariance matrix of 

the 14 intestinal taxa (Table 4). The loadings of the 6 latent factors are listed in Table 3, together with 

the communality coefficient of each taxon. This last coefficient was >0.50 for all taxa, with the only 

exception of Porphyromonadaceae (0.404), the only taxon not well represented by the 6 latent factors 

obtained, even though also this taxon was included in one factor. Overall, 6 taxa were included in 

only one factor, 6 taxa were included in two factors contemporarily, and two taxa (Lachnospiraceae 
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and Peptostreptococcaceae) presented a more complex relationship with other taxa, being included 

in 3 factors each. Peptostreptococcaceae and Lachnospiraceae, belonging to Firmicutes phylum, play 

an important role in ruminal fermentation, as well as in other digestion-associated processes (Cortés 

et al., 2019; Uchiyama et al., 2020). Moreover Lachnospiraceae family was correlated with 

tryptophan metabolism and valine, leucine, and isoleucine degradations in the rumen of beef cattle, 

so it’s associated with feed efficiency (Li and Guan, 2017). 

As shown in Table 3, the first latent factor (F1-im) appears to be based on the strong 

antagonism between Actinobacteria - Bifidobacteriaceae (loading 0.783) and Bacteroidaceae taxon 

(loading -0.837). This is confirmed by the very strong negative correlation between these two taxa 

shown in Figure 2. In this first factor, Methanobacteriaceae, Lachnospiraceae and 

Peptostreptococcaceae also are included with positive moderate loadings, and Porphyromonadaceae 

and Rikenellaceae with negative moderate loadings. Seven out of 14 intestinal taxa are than involved 

in the F1-im, which represents 18.4% of total variance (Table 4). The scores of F1-im are not 

significantly different in different herds, whereas they present the strongest difference between ALP 

and PF (Table 4) among all 6 factors. The average value of these scores is in fact much lower in 

intestinal samples taken during the Alpine pasture in July than in indoor permanent farms in October. 

The interaction between location and herds was significant but not much relevant (Table 4). 

The second latent factors of intestinal microbiota of dairy cows (F2-im) included 6 bacterial 

taxa (4 with positive loadings and 2 negative). Also in this case two antagonist taxa showed the 

highest loadings (Table 3): Tenericutes (0.785) and Verrucomicrobia (-0.735). They represented 

15.6% of all variance (Table 4) and, differently from F1-im, the scores of F2-im were strongly 

affected by the herds, and more modestly by farming system and interaction. 

The third latent factor (F3-im), representing 12.7% of total variance, appears to be based on a 

taxon with a strong positive loading (Bacteroidetes, 0.824), and on two taxa with negative loadings 

(Methanobacteriaceae, -0.620, and Peptostreptococcaceae, -0.606). The scores of F3-im were 
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affected more by farming system than by individual herds and interaction (Table 4). The cows 

sampled showed a higher average score during summer transhumance to Alpine pasture, than during 

indoor rearing. 

The fourth intestinal latent factor (F4-im) was also based on three taxa: one negative 

(Ruminococcaceae, -0.785) and two positive (Rikenellaceae, 0.640, and Paraprevotellaceae, 0.514), 

representing 9.8% of total variance. In this case, only interaction was significant, with only one herd 

showing a significant difference between ALP and HF. 

The fifth intestinal latent factor (F5-im) is a mono-taxon factor based only on Proteobacteria 

taxon (-0.859) and representing 7,9% of total variance. The statistical analysis of the scores of this 

factor, as that of the relative abundancy of Proteobacteria taxon (but with opposite sign), showed a 

strong effect of farming system, with lower scores during summer transhumance than indoor rearing. 

The Proteobacteria could then be considered a taxon substantially independent from all the others.  

Lastly, the sixth intestinal latent factor (F6-im), representing 7.6% of total variance, appears 

to be based on two positive and two negative loadings, the only one >0.50 being Other Clostridia 

(0.689). 

Summarizing the results obtained, one latent factor (F2-im) seems very useful for 

characterizing the intestinal microbiota of different herds, independently from summer transhumance, 

all the factors, except F4-im, are affected by farming systems, whereas the interaction between herds 

and farming system seems to be less relevant than in the case of statistical analyses of individual 

bacterial taxa (Table 1 and 2). 

 

Relationships between intestinal and milk microbiota 

After having characterized the intestinal microbiota of dairy cows, the second major aim of 

this study is the analysis of possible interrelationships between intestinal microbiota and milk 

microbiota of samples from the same cows taken the same day. 
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The milk microbiota, analyzed according the metagenomic approach with the same methods 

and in the same laboratory used for intestinal microbiota, was the object of a previous study, where 

all the details are illustrated (Secchi et al., 2023b). In short, 41 bacterial taxa were identified in milk 

samples. Eleven of these taxa have been identified in a previous study on a different project (Secchi 

et al., 2023a) as interesting for characterizing the quality and technological properties of milk and 

classified in four groups of taxa: Lactic acid bacteria (LAB), Other probiotics, Spoilage bacteria, and 

Pathogenic bacteria. The remaining 30 taxa were grouped as Other bacteria. The list of the 41 bacterial 

taxa identified in milk, with the average and standard deviation of their relative abundances, and their 

classification in 5 groups are reported in Table 5. The major sources of variation, and the effects of 

herds, farming system and interaction were described and discussed in the previous study and are not 

the aims of this one. Here, as said before, the interest is on relationships between intestinal and milk 

microbiota. The Figure 3 depicts, as heat-map plot, the Pearson correlations between the relative 

abundances of the 14 intestinal bacterial taxa and the those of the 11 milk taxa and 4 groups of taxa 

having a direct interest for milk quality and dairy industry. The first impression is that these two 

microbiota are not independent but variably associated. Many of the 210 Pearson correlation 

coefficients summarized are moderate to high, both positively or negatively. Again the interpretation 

of results cannot be left to this level, but require the simplification of this complex picture searching 

for possible latent explanatory factors. 

The joint factor analysis of the two dataset of intestinal and milk relative abundances yielded 

8 latent factors explaining, all together, 71.2% of total variance (Table 7). The loadings of each latent 

factor obtained and the communality coefficients of each bacterial trait analyzed are listed in Table 

6. 

The first factor obtained from intestinal and milk microbiota (F1-imm) is a “intestinal factor”, 

which substantially mimics what obtained with the F1-im factor yielded by the analysis of intestinal 

taxa alone, the loadings of common taxa are obviously different but the signs are the same. The major 
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difference is that in the joint intestinal+milk factor analysis the F1-imm includes 8 intestinal taxa 

instead of 7 and represents 13.1% of total variance instead of 18.4%.  

Being based on 14+15=29 bacterial traits instead of only 14, it is expected that the factors 

obtained in the joint factor analysis be more in terms of number of factors (8 vs 6), each representing 

a smaller proportion of variance (like in the case of F1-imm vs F1-im) and that the significance level 

achieved be greater, because of the much larger number of degrees of freedom.  

Even though the majority of factors and contrasts included in the model resulted significant, 

the F1-imm (Table 7) respect to the corresponding values of the F1-im (Table 4) showed a similar 

ranking of importance, confirming that F1-imm is especially important for differentiating the two 

farming systems, with samples from Alpine pastures characterized by lower scores than those from 

indoor rearing. 

The second factor obtained from the joint intestinal+milk analysis (F2-imm) is a different 

story. This is a mixed intestinal-milk factor. It includes 5 intestinal bacterial taxa (4 of which in 

common with the F2-im, Table 3) and 5 milk taxa and groups of taxa (Table 6). This F2-imm seems 

very interesting from the point of view of dairy industry because it is positively associated to LAB 

group (and particularly Lactococcus taxon) and to Pathogenic bacteria (and particularly to 

Enterobacteriaceae taxon), and negatively to the Streptococcus taxon. This F2-imm represents 

11.90% of total variance and its scores are affected contemporarily by herds, farming system and 

their interaction (Table 7). 

The third joint factor (F3-imm) is mainly a milk factor, being strongly and positively based 

on Other probiotics group (and especially on Propionibacterium taxon) and on Lactobacillus taxon, 

but including moderate negative loadings with milk Lactococcus taxon and also with intestinal 

Lachnospiraceae taxon (Table 6). Also F3-imm, like F2-imm, represents a relevant proportion 

(11.3%) of total variance and is affected by herd, farming system and interaction (Table 7), beyond 

being of interest for dairy industry. 
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The fourth joint latent factor (F4-imm) is again a mixed intestinal-milk factor. Three of the 

four intestinal taxa of this joint factor (Table 6) are in common (same sign, smaller loadings) with the 

taxa included in the F2-im (Table 3). The four milk bacterial traits included in this factor, all 

positively, are Clostridiaceae taxon (strong loading), Spoilage group, Bifidobacterium taxon, and 

Other LAB taxa (Table 6). This interesting factor represents 9.5% of total variance and is affected 

mainly by interaction between herd and farming system (Table 7). 

Similarly to F3-imm, the fifth joint factor (F5-imm) is mainly based on milk microbiota but 

includes also an intestinal bacterial taxon (Proteobacteria, negatively). The milk bacterial traits 

included (Table 6) are, strongly and negatively, the Pathogenic group (Staphylococcus taxon), and 

positively and moderately the LAB group (Lactococcus taxon). Similarly to F4-imm, its quota of total 

variance is 9.1% of total variance but is not directly affected by the herd or farming system, but only 

by some interaction (Table 7). 

The sixth joint factor (F6-imm) is based moderately on only 3 intestinal taxa (Bacteroidaceae 

and Rikenellaceae taxon, positively, and, Lachnospiraceae negatively), and on 3 milk bacterial traits: 

2 positively (LAB group and Enterococcus taxon) and Enterobacteriaceae negatively. This factor, 

representing 6.5% of total variance, is affected especially by herd effect and interaction and slightly 

by the farming system (Table 7). 

The last two joint factors, the seventh (F7-imm) and the eighth (F8-imm), represents 

respectively only 5.8% and 4.1% of total variance, are affected mainly by interaction (the seventh). 

Both are based mainly on milk bacterial traits and then are not much interesting for the objective of 

this study. 

In summary, 5 out of 8 latent factors combine the relative abundances of bacterial intestinal 

and milk taxa, demonstrating many interrelationships between the microbiota living in the cow’s 

intestine (the intestinal samples were grabbed directly from the rectum) and those present in the udder 

or contaminating milk during milking, even though only some Clostridia were present in both type 
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of samples. Moreover, the milk taxa associated with some intestinal taxa in these latent factors are 

known for having a direct interest in milk quality and/or its technological properties. 

 

Relationships between intestinal microbiota and milk composition and udder health traits 

After having demonstrated the many relationships existing between the intestinal microbiota 

of the cow with the milk microbiota, the next step is to search for relationships between the intestinal 

microbiota and the quality traits measured on milk.  

The milk quality traits comprised 8 milk composition traits, 4 udder health traits and 4 B-

vitamins contents of milk. These 16 milk traits are listed in Table 8 together with their mean values 

and standard deviations. All these traits have been illustrated and discussed in the previous study of 

this project on milk quality and microbiota (Secchi et al., 2023b). The correlations with each other 

traits were shown to be relevant in the case of those representing milk composition (except milk urea 

content). Of the 4 traits related to udder content, as usual, lactose and SCS were negatively correlated 

and presented opposite sign for the correlations with all other traits, whereas milk pH was not much 

correlated with any other trait. Lastly, the milk contents of B-vitamins were correlated with each other 

(Folic acid-vit B9 excluded) but scarcely correlated with other milk traits. 

In this study we have calculated the Pearson correlations between the relative abundances of 

the 14 intestinal bacterial taxa and the 16 milk quality traits. The resulting 224 values are represented 

in the heat-map plot of Figure 4. It is possible to see that the correlations are more ordered in blocs 

respect to those of the Figure 3. Anyway, also in this case, we carried out a factor analysis on this 

third dataset and the result was again a set of 8 latent explanatory factors representing 71.4% of total 

variance (Table 10). 

Two out of 8 FN-imq factors were based only on intestinal microbiota (Table 9): the F5-imq 

and the F7-imq. These two factors do not strictly mimic any of the FN-im factors obtained analyzing 

the intestinal taxa alone. The F5-imq includes, with the same sign, 7 intestinal taxa present in F1-im, 
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F5-im and F6-im, represented 9.5% of total variance and is significantly affected by all fixed factors 

included in the statistical model (Table 10). The F7-imq includes, but with different signs, 5 intestinal 

taxa present in F3-im, F4-im and F6-im, represented 6.1% of total variance and was marginally 

affected by the fixed factors included in statistical analysis (Table 10). Therefore, these two FN-imq 

factors are of no interest for the third aim of this study (relationships between intestinal microbiota 

and milk quality). 

F1-imq, F2-imq, F3-imq, and F4-imq are of a certain interest. The first two are based mostly 

on milk quality traits which reproduce the latent explanatory factors of milk composition often named 

“caseins” and “cheese yield” (Secchi et al., 2023a; b). The only connection to the intestinal 

metagenomics is a moderate link to the Porphyromonadaceae taxon (negative) for the first factor and 

to the Proteobacteria (positive) for the second one. F1-imq represents 12.2% of total variance and, 

as expected, is strongly affected by farming system and also by its interaction with individual herds, 

while F2-imq represents 10.7% of total variance and seems to have only a slight influence of the herd 

(Table 10).  

The F3-imq is similar to F5-imq and F7-imq, been mainly based on intestinal microbiota 

except a moderate positive link to the milk pH, and includes, with the same sign, 7 intestinal taxa 

present in F2-im and F4-im (Table 3). It represents 9.7% of total variance and was affected 

substantially only by the effect of herd (Table 10). 

The F4-imq is substantially based on udder health traits, with the addition of folic acid content 

of milk and of the relative abundancy of only one intestinal taxa: the Bacteroidetes (Table 9). The 

meaning of the inclusion of folic acid contained in milk (with positive loading) and of the relative 

abundancy of Bacteroidetes (negative) is not very clear and further research are needed on this issues. 

This latent factor represents 9.6% of total variance and seems not affected by the effects included in 

the model (Table 10). 
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The remaining 2 latent factors (F6-imq and F8-imq) are even more interesting, combining 

together more intestinal metagenomic information with milk quality traits. 

The F6-imq is based on the other three B-vitamins (thiamine, riboflavin and nicotinic acid) on 

one side and on three intestinal bacterial taxa (all included in F1-im, but with opposite sign): 

Methanobacteriaceae (negatively) and Bacteroidaceae and Porphyromonadaceae (positively) on the 

other side (Table 9). This latent factor explains 8.6% of total variance and is affected mainly by the 

farming system. It is well known that some B-vitamins are produced in the intestine of humans and 

animals, and also in the pre-stomachs of ruminants (Najjar and Barrett, 1945; Hill, 1997) and they 

are important for human health (Graulet and Girard, 2017) 

Finally, the F8-imq represents only 5.0% of total variance and is not much affected by 

experimental sources of variation. The interest of this factor is that this is the only one based on 

lactoferrin (negatively) and SCS (positively). In some way it seems to represent another factor related, 

but negatively, to the udder health of the cow. It is worth noting that this factor includes three 

intestinal taxa (all represented in F1-im); the Bacteroidaceae (negatively), and the Actinobacteria-

Bifidobacteriaceae and the Lachnospiraceae (positively). The meanings of these associations are 

mainly to be studied in future research. 
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CONCLUSIONS 

The intestinal microbiota of dairy cows is based on many different bacterial taxa, each 

characterized by different proportions among the main sources of variability. The differences among 

individual herds are very important for some taxa (Verrucomicrobia, Tenericutes and 

Lachnospiraceae, in particular), those between different farming systems (Alpine pasture vs lowland 

indoor feeding) affect strongly other taxa (Methanobacteriaceae, Actinobacteria-Bifidobacteriaceae, 

Bacteroidaceae, Peptostreptococcaceae, Other Clostridia and Proteobacteria), whereas their 

interaction is quantitatively less important but affects almost all intestinal bacterial taxa (Tenericutes 

and Verrucomicrobia are notable exceptions). The individual cow within herd represents a moderate 

source of variation in the majority of taxa, whereas residual variance is very different for different 

taxa, being the dominant source of variation in the case of Rikenellaceae, Paraprevotellaceae, and 

Ruminococcaceae. The very complex interrelationships among different bacterial taxa allowed to 

extract 6 latent explanatory factors of intestinal microbiota representing 72% of total variance. One 

factor (F2-im) could be used to characterize well different herds, whereas F1-im, F3-im, and in part 

also F5-im and F6-im could be very useful in discriminating farming systems.  

Intestinal microbiota appears to be interrelated also with milk microbiota, at least with some 

of the taxa having particular interest for characterizing quality and health of milk. Five out of eight 

latent factors obtained from the merging of data from intestinal and milk metagenomics (imm) 

combined taxa from both type of samples demonstrating the interrelations between cow’s intestine 

and udder. Furthermore, the milk taxa associated with intestinal taxa are known for being of interest 

for the dairy industry (lactic acid bacteria, other probiotics, spoilage bacteria and pathogenic bacteria). 

Finally, intestinal bacterial taxa have found to be associated also directly with some quality traits of 

milk. Four out of eight latent factors obtained merging the dataset of intestinal metagenomics with 

that of milk quality traits (imq) combined traits from both databases, linking the intestinal bacteria 

with the milk udder health traits (F4-imq), with B-vitamins content of milk (F6-imq), with cheese 
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yield (F2-imq), and with lactoferrin (F8-imq). If this study demonstrated the interest of cow’s 

intestinal metagenomics, because of the differences due to farming systems, herds and individual 

cows and the many interrelationships with milk metagenomics and milk quality, it demonstrated also 

the need for further research in the field. 
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TABLES AND FIGURES 

Table 1. Descriptive statistics (mean ± standard deviation), and statistical analysis (F-value and 

significance levels) of the Herds, Location (ALP vs PF) and interaction between Herd and Location 

of the log10 relative abundances of intestinal bacterial taxa of cows from 4 permanent farms moved 

in June to four Alpine temporary summer pasture (ALP) and moved back to permanent farm (PF) at 

the end of September. 

 

 Samples 

N 

Descriptive statistics: 
Herd ALP vs PF Interaction R2c RMSE 

Traits Mean ±SD 

Methanobacteriaceae  50 0.074 0.086  9.6 *** 15.7 *** 3.7 * 0.67 0.050 

Actinobacteria – Bifidobact. 51 0.304 0.287 1.6 2.1 1.2 0.45 0.221 

Bacteroidaceae 51 1.279 0.104 5.2 ** 1.3 5.5 **  0.76 0.052 

Porphyromonadaceae 50 0.514 0.091 0.5 0.1 3.1 * 0.59 0.061 

Rikenellaceae 51 0.923 0.060 1.9 2.0 3.9 * 0.42 0.048 

Paraprevotellaceae 51 0.870 0.111  8.0 *** 3.9 3.2 * 0.42 0.089 

Bacteroidetes 51 1.251 0.074 5.7 ** 0.7 2.4 0.66 0.045 

Lachnospiraceae 51 0.895 0.149 3.9 * 0.4 3.2 *   0.71 0.083 

Peptostreptococcaceae 49 0.623 0.298  18.7 *** 22.3 *** 8.8 *** 0.77 0.145 

Ruminococcaceae 51 1.306 0.048 6.4 ** 3.0 2.2 0.29 0.042 

Other Clostridia 50 0.906 0.075 2.7 1.0 1.4 0.45 0.058 

Proteobacteria 50 0.310 0.123 1.5 15.6 *** 3.0 0.54 0.087 

Tenericutes 51 0.494 0.171 12.1 *** 1.6 0.4 0.64 0.105 

Verrucomicrobia 51 0.341 0.210 24.3 *** 1.5 0.6 0.91 0.062 

*P<0.05; **P<0.01; ***P<0.001 

RMSE= root mean square error. R2c = conditional R2. 
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Table 2. Contrast estimates and their significance levels (average and for each farm) during the 

summer transhumance on Alpine pastures (mid-July) respect to indoor farming (mid-october) after 

transhumance for the log10 relative abundances of intestinal bacterial taxa 

 

Traits 

Difference of ALP respect PF: 

Overall effect 
Single herds 

C M P F 

Methanobacteriaceae  -0.11*** -0.11*** -0.05 -0.18*** -0.11** 

Actinobacteria Bifidobact. -0.31 -0.18 -0.31* -0.49*** -0.27 

Bacteroidaceae 0.13 0.04 0.11** 0.18*** 0.20*** 

Porphyromonadaceae 0.08 -0.01 0.12** 0.12** 0.08 

Rikenellaceae 0.04 -0.04  0.04 0.07* 0.09* 

Paraprevotellaceae 0.02 -0.10 -0.02 0.08 0.10 

 Bacteroidetes 0.06  0.02 0.04 0.12*** 0.08* 

Lachnospiraceae -0.11 0.03 -0.22*** -0.15** -0.05 

Peptostreptococcaceae -0.36*** -0.37*** -0.01 -0.57*** -0.50*** 

Ruminococcaceae -0.01 0.04 -0.04 0.01 -0.03 

Other Clostridia -0.08 -0.03 -0.10 -0.05 -0.12 

Proteobacteria 0.13*** 0.20*** 0.02 0.11* 0.20** 

Tenericutes 0.06 0.07 0.01 0.07 0.10 

Verrucomicrobia -0.08  -0.05 -0.11** -0.07 -0.11* 

*P<0.05; **P<0.01; ***P<0.001  
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Table 3. Latent explanatory factors of the intestinal microbiota (im): loadings of each factor and 

communality coefficient of each trait included in the factor analysis ( χ2 = 38.8; 22 degrees of freedom; 

P=0.015). 

 

 Latent explanatory factors: 
Communality 

 F1-im F2-im F3-im F4-im F5-im F6-im 

        

Methanobacteriaceae  0.555*  -0.620*    0.789 

Actinobacteria Bifidobact. 0.783*      0.731 

Bacteroidaceae -0.837*     -0.429 >0.900 

Porphyromonadaceae -0.473      0.404 

Rikenellaceae -0.385   0.640*   0.666 

Paraprevotellaceae  0.463  0.514*   0.568 

 Bacteroidetes   0.824*   -0.314 0.855 

Lachnospiraceae 0.444 0.521*    0.418 0.683 

Peptostreptococcaceae 0.513* -0.496 -0.606*    >0.900 

Ruminococcaceae    -0.765*   0.707 

Other Clostridia      0.689* 0.646 

Proteobacteria  0.337   -0.859*  >0.900 

Tenericutes  0.785*     0.689 

Verrucomicrobia  -0.735*     0.622 
*High loadings, >0.50. 
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Table 4. Latent explanatory factors of the intestinal microbiota (im): percentage fraction of total 

variance explained by each factor, significance of the fixed effects of Herd, Location (ALP vs PF) 

and their interaction, contrast between ALP and PF as effect and as interaction within each herd, and 

root mean square error (RMSE). 

 

 Latent explanatory factors: 

F1-im F2-im F3-im F4-im F5-im F6-im 

Explained variance:        

- individual, % total 18.4% 15.6% 12.7% 9.8% 7.9% 7.6% 

- cumulative, %/total 18.4% 34.0% 46.7% 56.5% 64.4% 72.0% 

Fixed effects:        

Herd, F-value 2.30 37.33 *** 3.33 * 1.77 0.65 0.83 

ALP vs PF, F-value 54.42 *** 6.41 * 9.27 ** 0.22 7.97 * 7.13 * 

ALP vs PF, contrast -1.19*** 0.31* 0.59** 0.11 -0.40* -0.50* 

Interaction, F-value 2.47 4.12 * 2.22 3.72 * 1.33 1.75 

Herd C, contrast -0.63 0.40 0.58 -1.14* -0.86** 0.04 

Herd M, contrast -0.93** -0.35 -0.07 0.68 -0.18 -0.70 

Herd P, contrast -1.76** 0.33 1.30** 0.26 -0.16 -0.25 

Herd F, contrast -1.44*** 0.85** 0.55 0.63 -0.42 -1.11* 

R2c 0.69 0.80 0.55 0.26 0.39 0.50 

RMSE 0.54 0.42 0.65 0.80 0.48 0.63 

*P<0.05; **P<0.01; ***P<0.001 

RMSE= root mean square error. R2c = conditional R2. 
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Table 5. Descriptive statistics (mean ± standard deviation) of the log10 relative abundances of milk 

bacterial taxa with known dairy (LAB), other probiotics, spoilage and pathogenic activities, and of 

other bacteria found in the milk of cows. 

 

 Samples 

N 

Descriptive statistics: 

Traits Mean ±SD 

Lactic acid bacteria (LAB): 50 1.240 0.478 

Lactobacillus 49 0.222 0.374 

Lactococcus 50 0.880 0.672 

Enterococcus 51 0.227 0.305 

Streptococcus 51 0.330 0.353 

Other LAB 51 0.203 0.243 

Other probiotics: 49 0.248 0.394 

Propionibacterium 50 0.169 0.398 

Bifidobacterium 50 0.095 0.119 

Spoilage bacteria: 51 0.399 0.256 

Clostridiaceae 49 0.181 0.215 

Pseudomonas 50 0.232 0.195 

Pathogenic bacteria: 51 0.748 0.517 

Staphylococcus 51 0.528 0.577 

Enterobacteriaceae 51 0.291 0.363 

Other bacteria: 50 1.660 0.260 

Corynebacterium 51 0.327 0.424 

Dermabacteraceae 50 0.172 0.275 

Intrasporangiaceae 50 0.122 0.229 

Microbacteriaceae 50 0.340 0.277 

Micrococcaceae 51 0.503 0.418 

Propionicimonas 50 0.085 0.165 

Other Actinobacteria 50 0.265 0.230 

Porphyromonas 49 0.003 0.009 

Flavobacteriaceae 51 0.238 0.282 

Chryseobacterium 50 0.480 0.391 

Wautersiella 49 0.100 0.221 

Chitinophagaceae 49 0.140 0.274 

Other bacteroidetes 51 0.212 0.196 

Cyanobacteria 50 0.044 0.105 

Solibacillus 50 0.189 0.310 

Aerococcus 50 0.063 0.131 

Trichococcus 50 0.074 0.121 

Turicibacter 50 0.220 0.270 

Peptostreptococcaceae 49 0.401 0.389 

Ruminococceae 50 0.091 0.139 

Tissierellaceae 49 0.020 0.054 

Other Firmicutes 50 0.213 0.259 

Agrobacterium 50 0.118 0.224 
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Paracoccus 50 0.189 0.352 

Sphingomonadaceae 50 0.079 0.103 

Comamonadaceae 49 0.190 0.175 

Acinetobacter 51 0.939 0.469 

Enhydrobacter 51 0.242 0.327 

Xanthomonadaceae 50 0.210 0.239 

Other Proteobacteria 51 0.363 0.279 
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Table 6. Latent explanatory factors of the intestinal and milk microbiota (imm): loadings of each factor and communality 

coefficient of each trait included in the factor analysis (χ2 = 529.2; 202 degrees of freedom; P<0.0001). 

 

 

 Latent explanatory factors: Communality 

 F1-imm F2-imm F3-imm F4-imm F5-imm F6-imm F7-imm F8-imm 

Intestinal bacterial taxa:          

Methanobacteriaceae  0.862*        0.772 

Actinobacteria Bifidobact. 0.558*       0.342 0.598 

Bacteroidaceae -0.638*     0.334   0.689 

Porphyromonadaceae -0.440        0.403 

Rikenellaceae      0.400   0.399 

Paraprevotellaceae  -0.531*       0.502 

Bacteroidetes -0.623*   -0.305     0.568 

Lachnospiraceae  -0.389 -0.477 0.312  -0.341   0.704 

Peptostreptococcaceae 0.898*        0.870 

Ruminococcaceae  0.590*       0.359 

Other Clostridia 0.417        0.380 

Proteobacteria -0.422    -0.384    0.465 

Tenericutes  -0.600*  0.310     0.665 

Verrucomicrobia  0.710*  -0.320     0.714 

Milk bacterial taxa:          

Lactic acid bacteria (LAB):  0.590*   0.511* 0.305 -0.400  0.879 

Lactobacillus   0.820*      0.719 

Lactococcus  0.596* -0.375  0.537*    >0.900 

Enterococcus      0.804*   0.718 

Streptococcus  -0.398       0.295 

Other LAB    0.746*     0.657 

Other probiotics:   0.913*      >0.900 

Propionibacterium   0.929*      >0.900 

Bifidobacterium    0.331    0.832* >0.900 

Spoilage bacteria:    0.722*   0.633*  >0.900 

Clostridiaceae    0.874*     >0.900 

Pseudomonas       0.890*  >0.900 

Pathogenic bacteria:  0.323   -0.877*    >0.900 

Staphylococcus     -0.928*    >0.900 

Enterobacteriaceae  0.746*    -0.436   >0.900 
*High loadings, >0.50. 
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Table 7. Latent explanatory factors of the intestinal and milk microbiota (imm): percentage fraction 

of total variance explained by each factor, significance of the fixed effects of Herd, Location (ALP 

vs PF) and their interaction, contrast between ALP and PF as effect and as interaction within each 

herd, and root mean square error (RMSE). 

 

 Latent explanatory factors: 

F1-imm F2-imm F3-imm F4-imm F5-imm F6-imm F7-imm F8-imm 

Explained variance:          

- individual, % total 13.10% 11.90% 11.30% 9.50% 9.10% 6.50% 5.80% 4.10% 

- cumulative, %/total 13.10% 24.90% 36.20% 45.70% 54.80% 61.30% 67.00% 71.20% 

Fixed effects:          

Herd, F-value 12.62*** 31.79*** 42.92*** 9.27*** 0.82 41.49*** 4.69** 1.75 

ALP vs PF, F-value 94.79*** 12.13** 46.31*** 0.61 3.63 7.47* 6.47* 3.29 

ALP vs PF, contrast -1.26*** -0.50** 0.65*** 0.13 -0.41 0.27* 0.42* -0.30 

Interaction, F-value 12.96*** 11.37*** 90.88*** 15.03*** 6.86** 17.33*** 10.94*** 0.62 

Herd C, contrast -1.16*** 0.52 -0.10 1.82*** -1.60** -0.64** -0.11 -0.41 

Herd M, contrast -0.02 -1.25*** 3.34*** 0.19 -0.46 0.66** 0.26 -0.53 

Herd P, contrast -2.16*** 0.13 -0.64** -0.39 0.97* 1.20*** -0.55 -0.36 

Herd F, contrast -1.69*** -1.38*** -0.01 -1.11** -0.55 -0.14 2.10*** 0.10 

R2c 0.78 0.74 0.89 0.61 0.35 0.88 0.56 0.18 

RMSE 0.45 0.50 0.33 0.57 0.75 0.33 0.57 0.58 

*P<0.05; **P<0.01; ***P<0.001 

RMSE= root mean square error. R2c = conditional R2. 
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Table 8. Descriptive statistics (mean ± standard deviation) of milk composition, udder health traits, 

and B-vitamins of milk of cows.  

 Samples 

N 

Descriptive statistics: 

Traits Mean ±SD 

Milk composition:    

Total solids, % 50 12.66 1.37 

Milk fat, % 50 3.63 1.37 

Non-fat solids, % 50 9.14 0.53 

Milk Protein, % 50 3.57 0.42 

Milk casein, % 50 2.85 0.29 

Fat/Protein ratio, % 50 1.01 0.36 

Casein number, % 50 79.95 3.48 

Milk Urea, mg/dL 50 20.92 7.93 

Udder health traits:    

pH 51 6.45 0.14 

SCS, unit 51 3.45 2.01 

Milk lactose, % 50 4.83 0.34 

Lactoferrin (mg/L) 50 181 152 

Vitamins, (μg/L):     

Thiamine (B1) 51 187 119 

Riboflavin (B2) 51 2,225 1,302 

Nicotinic Acid (B3) 50 2.72 2.43 

Folic Acid (B9) 49 0.37 0.43 

SCS= somatic cell score.  
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Table 9. Latent explanatory factors of the intestinal microbiota and milk quality traits (imq): loadings 

of each factor and communality coefficient of each trait included in the factor analysis (χ2 = 577.9; 

182 degrees of freedom; P<0.0001).  

 

 

 Latent explanatory factors: 
Communality 

 F1-imq F2-imq F3-imq F4-imq F5-imq F6-imq F7-imq F8-imq 

Intestinal bacterial taxa:          

Methanobacteriaceae      0.838* -0.365   >0.900 

Actinobacteria Bifidobact.     0.503*   0.367 0.591 

Bacteroidaceae     -0.378 0.335  -0.657* >0.900 

Porphyromonadaceae -0.314     0.321   0.415 

Rikenellaceae       0.781*  0.733 

Paraprevotellaceae   0.381    0.514*  0.614 

 Bacteroidetes    -0.351 -0.596*  0.341  0.668 

Lachnospiraceae   0.556*     0.352 0.608 

Peptostreptococcaceae   -0.314  0.726*    0.778 

Ruminococcaceae   -0.360    -0.584*  0.539 

Other Clostridia     0.322  -0.397  0.384 

Proteobacteria  0.364 0.507*  -0.443    0.634 

Tenericutes   0.851*      0.858 

Verrucomicrobia   -0.820*      0.803 

Milk composition:          

Total solids, % 0.417 0.848*       >0.900 

Milk fat, %  0.926*       >0.900 

Non-fat solids, % 0.876*   -0.360     >0.900 

Milk Protein, % 0.847*   0.348     >0.900 

Fat/Protein ratio, %  0.940*       >0.900 

Milk casein, % 0.930*        >0.900 

Casein number, %    -0.757*     0.844 

Milk Urea, mg/dL 0.475        0.283 

Udder health traits:          

pH -0.347  0.349 0.418     0.537 

SCS, unit    0.524*    0.307 0.521 

Milk lactose, %  -0.379  -0.807*     >0.900 

Lactoferrin (μg/mL)        -0.585* 0.537 

B-vitamins, (μg/L):           

Thiamine (B1)      0.912*   >0.900 

Riboflavin (B2)      0.878*   0.827 

Nicotinic Acid (B3)      0.485   0.336 

Folic Acid (B9)    0.701*     0.539 
*High loadings, >0.50. 
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Table 10. Latent explanatory factors of the intestinal microbiota and milk quality traits (imq): 

percentage fraction of total variance explained by each factor, significance of the fixed effects of 

Herd, Location (ALP vs PF) and their interaction, contrast between ALP and PF as effect and as 

interaction within each herd, and root mean square error (RMSE). 

 

 Latent explanatory factors: 

F1-imq F2-imq F3-imq F4-imq F5-imq F6-imq F7-imq F8-imq 

Explained variance:          

- individual, % total 12.20% 10.70% 9.70% 9.60% 9.50% 8.60% 6.10% 5.00% 

- cumulative, %/total 12.20% 22.90% 32.60% 42.20% 51.70% 60.20% 66.40% 71.40% 

Fixed effects:          

Herd, F-value 2.87 2.98* 53.27*** 0.83 8.04*** 0.05 1.02 1.63 

ALP vs PF, F-value 21.80*** 1.59 5.41* 0.68 24.41*** 8.90** 2.43 8.84* 

ALP vs PF, contrast -0.96*** -0.27 0.28* -0.15 -0.83*** 0.69** 0.33 -0.49* 

Interaction, F-value 3.30* 1.36 3.31* 0.75 7.45** 3.43* 6.13** 3.39* 

Herd C, contrast -1.12* -0.08 0.70** 0.15 -1.00** 0.70 -1.11* 0.20 

Herd M, contrast -1.13* -0.96* 0.03 -0.56 0.47 1.47** 0.33 -0.22 

Herd P, contrast 0.10 -0.27 -0.19 -0.13 -1.65*** 1.18* 0.70 -0.70 

Herd F, contrast -1.69** 0.23 0.58* -0.05 -1.14** -0.58 1.41** -1.26** 

R2c 0.51 0.26 0.82 0.34 0.63 0.36 0.39 0.57 

RMSE 0.71 0.75 0.42 0.61 0.58 0.81 0.74 0.54 

*P<0.05; **P<0.01; ***P<0.001 

RMSE= root mean square error. R2c = conditional R2. 
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Figure 1. Sources of the variation (expressed as % of total variance) in individual fecal bacterial taxa 

relative abundances and their categories (in bold): effects of the Herds (dark blue), ALP vs PF (red), 

their interaction (orange), individual cow nested in the Herd (green), and the residual variability (light 

blue). 
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Figure 2. Heat map plot of the correlations among the relative abundances of intestinal bacterial taxa. 
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Figure 3. Heat map plot of the correlations among the intestinal bacterial taxa and the milk bacterial 

groups and taxa included in the factor analysis. 
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Figure 4. Heat map plot of the correlations between the relative abundances of the intestinal bacterial 

taxa and milk chemical traits. 
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 GENERAL CONCLUSION AND FUTURE PERSPECTIVES 

In the last decades the livestock sector in mountain areas experienced a relevant evolution. 

The number of traditional, small and low input farms has been drastically decreased, while a trend 

towards modern farms, oriented to high production and less labour has been remarked. These changes, 

however, have economic, social and environmental consequences that need to be quantified. 

Metagenomic analysis of different biological matrices has also gained much interest in recent years 

to better understand the microbial composition and the resulting functional and phylogenetic aspect. 

The latter applied to the microbiota of milk, and of rumen and intestinal contents appears to be a 

powerful tool for studying the complex relationship among farming and feeding system, individual 

cow, the complexity of the rumen environment, milk quality and cheese-making value, and for human 

and animal health. In fact, studies generally focus on the microbiome of dairy ruminants, but focusing 

on how the milk microbiome changes when it becomes a food product, instead of investigating, for 

example, influences on the context of animal health and physiology. Another aspect about on which 

previous hypotheses are being re-evaluated is the fact that the milk microbiota is not given only by a 

mere contamination at the time of secretion, but several authors have described the outcome of 

pathways by the microorganisms from the intestine to the udder. All this researches are the beginning 

of new perspectives and discoveries. Scientific knowledge should be assembled to better understand 

these complex relationships and this Doctoral thesis has been realised within this general framework.  

The PhD thesis consists of four main parts. In particular, the first study contribution clearly 

shows the extent to which the ruminal microbiome is influenced by summer transhumance to summer 

pasture, with a modest carryover effect once the animals have returned to the lowland permanent 

farm. Given the complexity of the interactions between microbiome, the trait considered and the 

environment, the use of the multivariate approach aided the understanding of the strong relationship 

highlighted between ruminal fermentations and the ruminal microbiota. 
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The second part discusses the effect of transhumance of lactating cows on temporary summer 

farms comparing with a control group that remained at the permanent farm throughout the trial, milk 

metagenomics. It shows that there is a very significant effect of pasture on the positive influence of 

different useful taxa, and decreases the abundances of spoilage bacteria. Compared with the ruminal 

samples, no carryover effects were evident in the milk microbiome when the cows return indoors in 

autumn. 

In the third contribution, we confirmed that milk produced during alpine grazing is very 

different in terms of composition, udder health, B-Vitamin content and microbiological 

characteristics in respect to the milk obtained indoor by feeding strategy. We consider the single 

animal samples, but in this study we also showed the difference among farms in the same area. 

The last contribution highlighted the very complex interrelations among the different 

intestinal taxa, but also with milk microbiota. This might be of interest for the dairy industry mainly 

for the lactic acid bacteria, other probiotics, spoilage and pathogenic bacteria. In addition, we found 

other connection with some milk quality traits. In general, this study has shown interest regarding gut 

metagenomics, but opened the field for the need for deeper detailed future studies. 

The results of this research show a great potential interest in the dairy farming, with particular 

interest for the summer farming to Alpine highland pasture. Especially it has laid the foundation for 

expanding future research with this multidisciplinary approach. The most original aspects to be 

investigated more in the future are, for example, understanding the interactions between the rumen 

and fecal microbiome, or even more in detail how the ruminal microbiome influencing the udder 

microbiome and consequently the milk and dairy products derived from it. Lastly, the extension of 

metagenomic studies to cheese production on one side and the enlargement of microbial populations 

studied to yeasts seem to be particularly promising.  
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