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Abstract: Curcuminoid complex, a mixture of curcumin, demethoxycurcumin and didemethoxy-
curcumin, is one of the most popular antioxidants of natural origin, and it has a multitude of other
health benefits. It is threatened by the proliferation of counterfeit products on the market containing
synthetic curcuminoids whose addition is difficult to identify as they present the three curcuminoid
forms in the correct ratios. Consequently, the necessity to detect this fraudulent practice is escalating.
Carbon-14 analysis is the most effective available method, but it is also expensive and difficult to
implement. This paper describes the first attempt to characterize natural curcuminoids and their
synthetic form, used as an adulterant, through the analysis of stable isotope ratios of carbon and
hydrogen (expressed as δ13C and δ2H). Carbon values greater than −28.6‰ and hydrogen values
greater than −71‰ may indicate the addition of synthetic curcuminoids to the natural ones.
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1. Introduction

Curcuminoids are natural polyphenolic compounds isolated from turmeric roots
(Curcuma longa and other Curcuma species (spp.) [1]), a perennial member of the Zingiberaceae
(Ginger) family. They are cultivated primarily in India and in parts of Southeast Asia and
are used as a medical herb due to their antioxidant, anti-inflammatory, antimutagenic,
antimicrobial, and anti-cancer properties [1]. While curcuminoids are typically present
in turmeric in concentrations between 1% and 6% [2], they comprise more than 90%
of the weight (w/w) in the purified extract. The extract, known as “Curcuminoids” or
simply “Curcumin,” is a mixture of curcumin (1,7-bis [4-hydroxy-3-methoxyphenyl]-1,6-
heptadiene-3,5-dione) [1], also called diferuloylmethane (about 75–80% w/w), demethoxy-
curcumin (about 15–20% w/w), and didemethoxycurcumin, also known as bisdemethoxy-
curcumin (below 5% w/w) [3,4]. Curcuminoids have been the top-selling antioxidant
herbal item in the U.S. natural and health food channel since 2013 [5]. Due to its chemical
structure [6], there is a considerable amount of consumer interest in its potential as a power-
ful antioxidant that can neutralize free radicals, promote heart, brain, and cognitive health,
enhance digestive and liver function, and boost physical performance and mood [7–9]. The
increase in demand, which is projected to reach $94.3 million by 2022, and the shortage of
available ingredients, which has been influenced not only by demand but also by occasional
poor harvests and the variable quality of turmeric roots, have led to the adulteration of
the curcuminoids.

As reported by Girme et al., the natural curcuminoid extract is increasingly purposely
blended with the cheaper synthetic curcumin to obtain a product that is less expensive
to produce [10]. This adulterated curcuminoid extract has not been tested for safety and
pharmacological activity, and curcumin-containing dietary supplements have recently been
blamed for causing acute hepatitis [11], probably due to the use of synthetic curcumin
and other toxic food contaminants [7–9]. Due to safety concerns, the United States Food
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and Drug Administration (FDA) has denied the “Generally Recognized As Safe (GRAS)”
designation for synthetic curcumin [12].

Two methods have recently been proposed to identify the fraudulent addition of syn-
thetic curcumin to the natural extract. The first is based on the high-performance thin-layer
chromatography (HPTLC) and high-performance liquid chromatography-photodiode array
(HPLC-PDA) quantification of CIMP-1 (1E, 4Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)
hexa-1,4-dien-3-one, a key intermediate in the synthesis of curcumin of synthetic origin [10].
The second is the identification of the by-product of the chemical synthesis of boron (10B),
using inductively coupled plasma mass spectrometry (ICP-MS) [10]. However, these
two approaches are highly dependent on the type of synthetic pathway used to produce
synthetic curcumin.

The United States Pharmacopeia lists specific ratios between the concentrations of
curcumin, demethoxycurcumin, and didemethoxycurcumin as a means for controlling
curcuminoids [13]. Theoretically, the detection of the last two mentioned forms by liquid
chromatography (LC) in turmeric extract can differentiate the natural product from the
synthetic one, which lacks both compounds [14]. This type of test is easily rendered useless
by a new sophisticated technique: the fraudulent dilution [13] of a natural curcuminoid
extract with synthetic curcuminoids, containing the three forms in the right ratios, to
obtain spiked curcuminoids. Since the onset of this issue, some analytical approaches to
identify adulterated products have been proposed. The most popular and robust method
is 14C radiocarbon dating, which is expensive, not easily accessible and provided by a
limited number of laboratories [15]. The dating method can detect the presence of synthetic
curcumin or curcuminoids by identifying the carbon isotopes derived from raw materials
of petrochemical derivatives used in the synthetic ingredient.

In recent years, stable isotope ratio analysis (SIRA) found widespread use in food
science [16], not only to trace the geographical origin of products, but also to guarantee their
authenticity, differentiating between natural and synthetic or biosynthetic ingredients [17–21].
In the latter case, applications of the SIRA involved nutraceutical products or products
with pharmacological properties that are increasingly in demand due to their natural
origin [18,21,22]. The SIRA is based on the measurement of the ratio between the heavy
and light isotopes of the elements carbon (13C/12C), nitrogen (15N/14N), sulfur (34S/32S),
oxygen (18O/16O) and hydrogen (2H/1H). Chemically identical molecules may have com-
pletely different isotope ratios, that vary based on several factors. The carbon stable isotope
ratio (δ13C) is influenced by the C3, C4 or CAM photosynthetic cycle of the plant from
which the molecule derives, or by the fossil source used as a precursor for the chemical
synthesis of the molecule. On one hand, as reported by O’Leary at al., while C4 plants have
δ13C values between −14 and −12‰, C3 plants range from −29 to −25‰ [23]. On the
other hand, fossil fuels, which are the primary source in the chemical synthesis of various
molecules, have very low δ13C ranging from −42.5‰ to −25.5‰ [24]. Factors such as
the isotopic fractionation, occurring during chemical synthesis, can instead explain the
behavior of hydrogen isotopic ratio (δ2H), which has significantly more positive values
in non-natural molecules (e.g., average +63‰ in synthetic vanillin) than in natural ones
(e.g., average −32‰ in natural vanillin) [25].

This study investigates, for the first time, the possibility of identifying the fraudulent
dilution of natural antioxidant curcuminoids with synthetic curcuminoids by using this
powerful analytical approach. Samples of authentic natural curcuminoids, adulterant
synthetic curcuminoids, and natural curcuminoids spiked with the synthetic form were
analyzed for C and H stable isotope ratios using an isotope ratio mass spectrometer
(IRMS) interfaced with an elemental analyzer (EA) and a pyrolyzer (P). Moreover, to
ensure the natural and synthetic origin of the curcuminoids used and the percentage of
synthetic adulterant added in the spike samples, a 14C analysis was performed using a
fluid scintillation counter [26].
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2. Material and Methods
2.1. Sampling

Twenty-one samples of authentic (natural origin) curcuminoids were provided by
the producer INDENA S.p.A., Milan, Italy. The samples were produced in different years
between 2009 and 2017. Six synthetic curcuminoids samples were purchased on the market.
The extremely small number of global producers, all located in India, justifies this sample
size. In addition, seven curcuminoid complexes spiked with different concentrations of
synthetic curcuminoids were produced in the laboratory. The samples were lyophilized
and ground into a powder.

2.2. Simultaneous Determination of the Three Curcuminoids Components

The three curcuminoid components (curcumin, demethoxycurcumin and didemethoxy-
curcumin) were measured following the method reported by Sahu et al. [27]. In brief, an
HPLC system (Shimadzu, Kyoto, Japan), consisting of two pumps LC 20AD, a photodiode
array detector SPD-M20A, with an automatic sample injector, all from Shimadzu, was used.
The output signal was monitored and integrated using LC solutions software (Shimadzu,
Kyoto, Japan). An Agilent Eclipse XDB-C18 analytical column (4.6 mm × 150 mm, 3.5 mm)
was used for chromatographic analysis using a photodiode array (PDA) detection set at
425 nm. A 10 min gradient elution was used with a mixture of 0.1% trifluoroacetic acid
and 0.1% formic acid (50:50 v/v) (solvent 1) and acetonitrile (solvent 2). The percentage of
solvent 2 at the start of the gradient was 40% and was increased to 60% (6 min) and then
again to 40% up to the end of the analytical run. The flow rate was 0.8 mL/min.

A mixture of acetonitrile and water (50:50) was used as a sample diluent. Methanol
was used for the preparation of primary stocks solutions (1 mg/mL), accurately weighed
curcumin, demethoxycurcumin and didemethoxycurcumin. These were used to pre-
pare a series of calibration standards with appropriate concentrations, working standard
(100 mg/mL) and quality control (QC) samples. Calibration curves (six points) were con-
structed between the concentration range of 10 and 80 mg/mL.

Fifteen mg of each curcuminoid sample under analysis were transferred to a 15 mL
Borosil glass centrifuge tube and centrifuged in acetonitrile at 1500 rpm for 30 min. The
supernatant layer (10 mL) was used for direct injection into the HPLC. An electronic balance
(Mettler Toledo, Albstadt, Germany), a centrifuge (Thermo Scientific, Bremen, Germany)
and an ultra sonicator (SONICA, Soltec, Milan, Italy) were used for sample preparation.

The content of curcumin, demethoxycurcumin and didemethoxycurcumin was ex-
pressed as a percentage.

2.3. 14C Analysis

The determination of biobased carbon content by analyzing the 14C content of pulver-
ized food material was performed in accordance with DIN EN 16640:2017-05 [28].

Approximately 20 g of the sample material was combusted in a bomb calorimeter. The
sample’s organic carbon content was completely oxidized to CO2. The CO2 was cleaned
for additional oxygen and other gaseous components by using cold traps and dissolving
in absorber fluid. After scintillator fluid had been added to the pure CO2 (cocktail with
6.8 g CO2), the sample cocktail was measured in two glass bottles in a liquid scintillation
counter (LSC), i.e., Packard Canberra Tri-Carb 2770 TR/SL, as a repeated measure. The
measurement time was approximately 1600 min. Each measurement lasted approximately
50 min, and each sample was measured approximately 10 to 20 times. The measurement
was calibrated using 14C standards of 14C-free CO2 and CO2 of known 14C content. The
results were determined by the background count rate and counting efficiency. The result is
given in pmC, which can be converted to the content of biogenic carbon using the correction
factor of 0.985 in accordance with DIN EN 16640:2017-05. The uncertainty of the method
(calculated as two standard deviations when analyzing the same sample at least ten times
under reproducible conditions) was 5%-modern.
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2.4. Stable Isotope Analysis

The 13C/12C ratio was measured using an isotope mass spectrometer (IsoPrime,
Isoprime Limited, Manchester, UK) after complete combustion in an elemental analyzer
(VARIO CUBE, Isoprime Limited, Manchester, UK). The 2H/1H ratio was measured us-
ing an IRMS (Finnigan DELTA XP, Thermo Scientific, Bremen, Germany) coupled with
a pyrolizer (Finningan DELTA TC/EA, high temperature conversion elemental analyzer,
Thermo Scientific, Bremen, Germany). The amount introduced into the above-mentioned
instruments to analyze the samples was 0.5 and 0.2 mg, respectively.

Based on the IUPAC protocol [29], 13C/12C and 2H/1H values are expressed in the
delta scale (δ‰) against the international V-PDB (Vienna PeeDee Belemnite) standard
according to Equation (1):

δre f (
iE/jE, sample) =

[
R(iE/jE, sample)

R(iE/jE, re f )

]
− 1 (1)

where ref is the international measurement standard, the sample is the analyzed sample,
and iE/jE is the ratio of heavier to lighter isotopes. The delta values were multiplied by
1000 and expressed in “per mil” (‰) units or, according to the International System of
Units (SI), in unit ‘milliurey’ (mUr).

The isotopic value δ13C was calculated against working in-house standards (caseins),
which were themselves calibrated against international reference materials: fuel oil NBS-22
with δ13C = −30.03‰, sucrose IAEA-CH-6 with δ13C = −10.45‰ (International Atomic
Energy Agency [IAEA], Vienna, Austria), and L-glutamic acid USGS 40 with δ13C = −26.39‰
(U.S. Geological Survey, Reston, VA, USA) for 13C/12C.

Before we carried out the analysis of δ2H, we left the sample to equilibrate with the
laboratory air for two days; it was subsequently placed inside a vacuum dryer with P2O5 for
48 h and finally placed in a zero-blank autosampler to comply with the principle of identical
treatment [30]. Keratins CBS (Caribou Hoof Standard, δ2H = −157 ± 2‰) and KHS (Kudu
Horn Standard, δ2H = −35 ± 1‰) from the U.S. Geological Survey were used to obtain
2H/1H values through the creation of a linear equation and by adopting a comparative
equilibration procedure [30]. We used these two keratinous standards because of the
absence of any international organic reference material with a similar matrix to our samples
(curcuminoids). The uncertainty of the method (calculated as two standard deviations
when analyzing the same sample at least ten times under reproducible conditions) was
0.3‰ for δ13C and 4.0‰ for δ2H values.

2.5. Statistical Analysis

XLSTAT (XLSTAT, 2017) was used to statistically evaluate the data. The existence of
differences was verified by regression analysis with a confidence level of 95%. A one-way
ANOVA was performed to determine the spatially significant differences between variables.
Tukey’s honest significant difference (HSD) test for unequal sample sizes was implemented
to evaluate significant differences due to geographical origin. Probability (p) values of less
than 0.05 were used to indicate a significance level.

3. Results and Discussion

Based on the 14C (14C-org.) results, all the samples matched the claimed content
(natural or synthetic curcuminoids) (Table 1). Given the uncertainty of the analysis, samples
with 14C values between 0%-modern and 5%-modern were classified as synthetic, while
those with values higher than 85%-modern were classified as natural.

All the samples analyzed, regardless of their synthetic or natural origin, had not
dissimilar contents in the three forms: curcumin, demethoxycurcumin and didemethoxy-
curcumin (see Table 1). The quantification of curcuminoid forms was therefore not useful
for discriminating against counterfeit products [13].



Antioxidants 2023, 12, 498 5 of 10

Table 1. δ2H and δ13C stable isotopic variability, 14C content and % of curcumin, demethoxycurcumin
and didemethoxycurcumin of natural and synthetic curcuminoids from different geographical origins
(India and China). The threshold value 95% for δ2H and δ13C of natural curcuminoids are reported.

Geographical
Origin

%
Curcumin

%
Demethoxy
Curcumin

%
Didemethoxy

Curcumin
Carbon 14 % δ2H

(‰. vs. V-SMOW)
δ13C

(‰. vs. V-PDB)

Sy
nt

he
ti

c

India 79.0 17.0 3.9 0.0 52 −26.4
India 78.0 18.0 3.9 <2 58 −26.3
India 77.5 18.2 4.0 5.0 47 −26.7
India 77.6 17.8 3.9 5 42 −29.0
India 79.0 17.1 3.8 5 44 −29.0
India 78.0 18.1 3.7 <2 62 −28.4

Mean 51 −27.6
SD 8 1.3

N
at

ur
al

China 78.7 11.2 1.4 90.0 −108 −30.2
India 76.2 13.8 2.2 96.2 −86 −30.7
China 78.7 11.2 1.4 96.3 −108 −30.2
India 71.4 16.4 2.9 97.2 −83 −29.3
China 79.2 11.3 1.3 85.0 −98 −30.1
India 71.4 16.4 2.9 97.2 −86 −29.4
India 74.1 14.1 1.9 97.4 −82 −29.1
India 74.2 14.4 2.7 97.9 −92 −29.8
India 76.1 16.9 3.0 98.7 −97 −29.5
China 71.7 15.7 7.2 99.7 −95 −30.6
China 78.4 10.9 0.9 99.8 −120 −30.5
India 78.5 14.6 1.3 100.3 −86 −29.0
India 78.3 11.4 1.3 97.4 −83 −30.4
India 76.4 12.4 2.3 97 −84 −30.4
China 79.0 16.3 2.6 100.7 −110 −30.9
India 72.0 16.0 2.8 97.8 −83 −29.4
India 73.1 15.0 2.8 98.6 −87 −29.6
India 75.6 12.0 2.6 99.7 −90.2 −28.9
China 76.6 18.0 2.0 97.8 −109.8 −29.7
India 78.9 15.0 1.9 98.3 −87.5 −29.1
India 74.3 18.0 2.0 97.4 −87.1 −29.4

Mean −93 −29.8
SD 11 0.6

Limit 95% −71 −28.6

3.1. δ13C of Natural and Synthetic Curcuminoid Complex

The δ13C of the natural curcuminoid complex ranged between −30.7‰ and −29.0‰,
with an average value of −29.8‰. This behavior is in line with the matrix botanical origin.
Indeed, turmeric (Curcuma spp.) belongs to C3 plants, whose δ13C typically ranges from
−29 to −25‰ [23]. Regarding the specific plant used, Khatri et al. reported a value of
−25.68‰ for Curcuma domestica [31], whereas Marchese et al. determined the carbon
isotope composition of Curcuma longa L. to be −27.77 ± 0.63 [32].

The gap between the typical δ13C value of Curcuma spp. and the natural curcuminoid
complex could be explained by the fact that the different compounds have a characteristic
isotope composition due to the different metabolic pathways involved in their synthesis [33].
The same behavior has already been observed in other molecules of vegetable origin, such
as Monakolin K. In fact, the average value of the product resulting from the extraction from
fermented red rice (RYR) is −25‰, while the average value of the Monakolin K produced
by fermentation is −30‰ [21].

The results of the δ13C analysis of synthetic samples are presented in Table 1. The iso-
topic values of the analyzed synthetic curcuminoids samples ranged from −29‰ to −26‰,
with an average value of −28‰. To understand why synthetic curcuminoids have this
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δ13C values, it is necessary to comprehend this molecule production technique. Synthetic
curcumin and curcuminoids are synthesized starting from petroleum-derived compounds.
Currently, many synthetic production routes to curcumin are variations of Pabon’s method
(Figure 1), which originally used acetylacetone and vanillin [34]. Acetylacetone is industri-
ally produced from petrochemicals. Natural vanillin is scarce and expensive to produce,
but it can also be manufactured synthetically with petrochemicals at a much lower cost.
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As reported by various authors [25,35,36], the range of δ13C values for synthetic
vanillin is between −31.4‰ and −29.4‰, which is outside the range of natural vanillin
from the Vanilla spp. (with a CAM [crassulacean acid metabolism] photosynthesis cycle),
while acetylacetone derived from fossils probably exhibits the typical variability range
between −32.5‰ and −23.3‰, as reported by Yeh et al. [37]. The isotopic value obtained
in synthetic curcuminoids (average −28‰) is, therefore, justifiable based on the isotopic
composition of the two aforementioned starting molecules. While some samples of syn-
thetic curcuminoids have δ13C values (average = −26.5‰) that are significantly higher
(p < 0.01) than those typical of natural curcuminoids, others have overlapping values
(average = −28.8‰). Therefore, δ13C analysis does not always detect fraudulent additions
of this adulterant to natural curcuminoids, but it could serve as a simple and rapid screen-
ing method. Furthermore, few laboratories still routinely carry out the δ2H analysis and it
is therefore necessary to provide reference δ2H intervals in addition to δ13C ones, to carry
out a more accurate data interpretation. Using a 95% probability level, it is possible to
identify a threshold value of −28.6‰ for the δ13C of the natural curcuminoid complex.
Higher δ13C values may indicate the addition of synthetic curcuminoids.

3.2. δ2H of Natural and Synthetic Curcuminoid Complex

The δ2H values found in the two sample types (natural and synthetic curcuminoid)
are significantly different and can be used to clearly differentiate between the two products.
The natural curcuminoid complex has highly negative values ranging from −120‰ to
−82‰ (Table 1). The δ2H measured in the extract is strictly correlated with that of the
source plant, whose isotopic composition mirrors that of the groundwater absorbed by
the roots. According to Gat et al. [38], the isotopic signature of precipitation (rainfall)
influences the hydrogen isotopic composition of groundwater. The Global Network of
Isotopes in Precipitation (GNIP) database, administered by the International Atomic Energy
Association (IAEA) and the World Meteorological Organization (WMO), is recognized as a
useful method to evaluate the correlation between the δ2H of rainwater and groundwater in
the absence of direct measurement [39]. The GNIP database (http://www-naweb.iaea.org/
napc/ih/documents/userupdate/Waterloo/, accessed on 1 January 2023) contains monthly
weighted average precipitation (δ2Hp and δ18Op) from all continents and islands between
1960 and the present. The temperature and the amount of precipitation significantly
influence the δ2H values of the water. Consequently, based on geographical parameters
(latitude, altitude and distance from the source of evaporation), the δ2H can vary in the

http://www-naweb.iaea.org/napc/ih/documents/userupdate/Waterloo/
http://www-naweb.iaea.org/napc/ih/documents/userupdate/Waterloo/
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precipitation from approximately −60 to +1% worldwide [39]. While δ2H values range
from −70 to −38‰ in China, they range from −38‰ to −6‰ in India. This data can
explain the low δ2H value of natural curcuminoids and, in particular, the lower value
found in Chinese samples (average −106‰) compared to Indian samples (average −87‰).
In order to proceed with the percentage estimate of natural curcuminoids adulterated
with synthetic curcuminoids, the evaluation of the geographical origin must be taken into
consideration, as discussed in more detail in Section 3.3.

Synthetic curcuminoids had very high and positive δ2H values, ranging between
+42‰ and +58‰. Considering the synthesis reaction illustrated in Section 3.1, it is evident
that most of the hydrogens present in the molecule (eight out of ten) can be traced back
to the vanillin molecules. As reported by Greule et al. and Perini et al., the biosynthetic
pathways employed in the industrial production of this molecule (replacing the extremely
time-consuming and expensive extraction from the orchid) result in a product with a
specific hydrogen isotopic composition [25,36]. Positive values (ranging between +38‰
and +104‰) are characteristic of synthetic vanillin.

The significant difference (p < 0.01) in hydrogen isotopic composition between natural
curcuminoids and their adulterant makes this parameter the most promising for detecting
the fraudulent addition of synthetic curcuminoids to the natural product.

Using a 95% probability level, it is possible to identify a threshold value of −71‰ for
the δ2H of natural curcuminoids. Higher values may indicate that a synthetic complex has
been added to curcuminoids.

3.3. Natural Curcuminoids Complex Spiked with Different Concentrations of
Synthetic Curcuminoids

The averages of δ2H (Figure 2) and δ13C (Figure 3) were used to quantify the percentage
of synthetic curcuminoids added to the natural ones. For each parameter, a graph was
created based on the standard deviation (multiplied by t-student) and increasing the
percentage of the addition of synthetic curcuminoids to natural ones from 0% to 100%. The
mean values of the mixture for each isotopic parameter were calculated as the sum of the
mean values of the two groups, multiplied by the percentage contribution to the mixture.
The standard deviation resulted from the sum of the standard deviation of the two groups
multiplied by the percentage of contribution, according to the propagation of error law
in the case of the sum of two or more variables. Seven natural curcuminoids added to
the synthetic complex in increasing percentage (from 18% to 72%) were used to validate
the graph. The values of these seven samples are shown as orange dots in Figure 2 for
hydrogen and in Figure 3 for carbon. The nature of the adulterated samples was confirmed
by 14C analysis. This 14C analysis confirmed the amount of added synthetic components
derived from fossil sources in the examined sample (Table S1).

The analysis of the δ2H was found to be an effective alternative to the analysis of 14C
for the detection of fraudulent additions of synthetic complex to natural curcuminoids.
With additions of synthetic curcuminoids between 20% and 30%, the δ2H exceeded the
range of variability proposed in Section 3.2 for a natural product (Figure 2).

In adulterated samples with low concentrations of synthetic curcuminoids (between
20% and 30%), the δ13C (Figure 3) does not differ significantly from the estimated limit
value in Section 3.1 (see Figure 3). Therefore, the δ13C alone cannot be considered as an
effective parameter for the detection of synthetic curcuminoid additions; it must always be
considered together with hydrogen analysis to correctly evaluate the product, by using the
limit suggested in Section 3.2.

Finally, in samples containing substantial additions of synthetic curcuminoids (about
70%), both parameters demonstrated their effectiveness in identifying the presence of
synthetic ingredients with significant deviations from the proposed limits.
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4. Conclusions

The protection of natural antioxidant curcuminoids against a recent new type of
adulteration consisting in the addition of synthetic curcuminoids requires the development
of increasingly sophisticated, yet rapid and cost-effective, analytical techniques. The 14C
analysis, despite its undeniable effectiveness, requires a large amount of sample (about 20 g),
it is time-consuming (hours considering pretreatment and analyses) and it is performed
by few accredited laboratories worldwide only. The isotope ratios of hydrogen and, in
some cases, carbon, exhibit significantly different ranges of variability between natural
curcuminoids and their synthetic adulterant. These outcomes allow for the identification
of not only the sample origin (whether natural or synthetic), but also for the fraudulent
addition of synthetic products to the natural complex (spiked samples). Consequently,
the analysis of hydrogen isotope ratios can be an effective response because it is relatively
quick, inexpensive, and routinely performed in laboratories around the world.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox12020498/s1. Table S1: δ2H and δ13C stable isotopic composition
and 14C content of curcuminoids adulterated with different % of synthetic curcuminoids.
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