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A B S T R A C T

Over 90 percent of the world’s rice is produced and consumed in the Asia-Pacific region. Varieties such as Thai
Jasmine rice and Paw San (or “Myanmar pearl rice”) are globally recognised as premium, while more local high-
grade varieties include the Indonesian Ciherang and Inpari. Being able to trace the origin of these products has
become necessary, since they are marketed at relatively higher prices compared to other cultivars, and they often
become the target of fraudulent activities. In this work, we aimed to identify variables that could distinguish the
premium-producing regions within each country, by Isotope Ratio Mass Spectrometry (IRMS) and Inductively
Coupled Plasma- Mass Spectrometry (ICP-MS). Low-Level Data Fusion (LLDF) followed the analysis of more than
300 authentic samples, and (O)PLS-DA models yielded very high accuracy values. The most important geo-
differentiating variables (VIP>1.4) were identified as: δ13C, δ18O, δ2H, δ34S, Co, Rb, Cu, Ba and Zn.

1. Introduction

Most of the world’s rice production takes place in the Asia-Pacific
region (Shahbandeh, 2024). Thai Hom Mali (or Jasmine) rice is one of
the most popular rice varieties world-wide and, having also received the
Geographical Indication (GI) recognition from the European Union, it is
known for its high quality and unique characteristics (flavor, texture,
and aroma) (EUIPO, 2019). Thai HomMali GI premium rice is produced
in five provinces of the Thung Kula Rong-Hai area of northeastern
Thailand, namely Roi Et, Mahasarakham, Surin, Yasothon, and Sisaket
provinces.

Another premium aromatic rice is the Paw San, also known as

“Myanmar pearl rice”, which is characterized by elongation during
cooking and a strong aroma (Oo et al., 2015). The highly
photoperiod-sensitive varieties Paw San Bae Gyar and Paw San Hmwe
are grown in Ayeyarwady delta regions (such as Pathein and Pyapone),
while the higher priced and most valued, ShweBo Paw San, is grown in
the Sagaing central dry region of the country (Aye, Khaing, Tun, Htun,&
Win, 2019). Its harvest takes place once a year in the winter season from
November to January, and its price can be up to three times higher than
non-Paw San rice, also indicating the added value derived from its
geographical origin (Thantar et al., 2024).

The increase of rice production has become the main objective of the
Indonesian government’s efforts to improve the economy (Sitaresmi,
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Hairmansis, et al., 2023). Significant diversity is noted amongst Indo-
nesian rice species, with Ciherang variety being the most extensively
grown after having successfully replaced the previously dominant IR64,
and different Inpari varieties possessing characteristics such as high
yields, resistance to pests and diseases, and good grain quality
(Sitaresmi, Safitri, et al., 2023). Sixty percent of Indonesian rice pro-
duction takes place in irrigated lowland environments, predominantly
found in the northern part of Java Island (Sasmita & Nugraha, 2020).
Previously tin-mined land is being changed into rice fields in the Bangka
Belitung islands (Nurtjahya, Nur, & Mulyono, 2009), with continuous
increase of upland rice cultivation and research focusing on crossing
local Bangka rice with national varieties to achieve higher production
rates and resistance to lodging (Mustikarini, Prayoga, Santi, & Sari,
2021).

Considering its high quality and production costs, Asian aromatic
rice is sold at premium prices in the local and world market and is
susceptible to economically motivated food frauds such as mislabelling
or adulteration/substitution with less-costly cultivars (Cheajesadagul,
Arnaudguilhem, Shiowatana, Siripinyanond, & Szpunar, 2013; Thantar
et al., 2024). The institutional efforts to mitigate food fraud have led
emerging research to focus on techniques and concepts that enhance the
available traceability systems (Badia-Melis, Mishra, & Ruiz-García,
2015). Studies ascertain that consumers are willing to pay premium
prices for food products with traceability certification labels; Boonkong,
Jiang, Kassoh, and Srisukwatanachai (2023) revealed a positive pref-
erence and willingness to pay for the traceability attributes of rice by
Chinese and Thai consumers, while Antriyandarti, Agustono, Ani, Rus-
diyana, and Sukaton (2023) noted that Indonesian consumers preferred
to buy local rather than imported rice in their consumer study.

Multi-elemental analysis by Inductively Coupled Plasma - Mass
Spectrometry (ICP-MS) has been widely used in rice traceability studies
(Li et al., 2022). In geographic authentication cases, ICP-MS provides
insights into the geographical characteristics of the area of cultivation,
as it reflects the bioavailable and mobilized nutrients of the underlying
soil in the cultivation area (Bateman, Kelly, & Jickells, 2005). Recent
works utilizing this technique have achieved the differentiation between
Basmati and non-Basmati regions for Pakistani long grain rice (Arif
et al., 2021), the distinction between rice samples from China, India, and
Vietnam (Quinn et al., 2022), and the discrimination of rice produced in
South Brazilian regions (Suchecki Barnet, Harumi Yamashita, Anza-
nello, & Pozebon, 2023). Parameters such as the geo-climatic factors,
environmental conditions and cultivation practices have a decisive ef-
fect on isotopic fractionation processes, rendering Isotope Ratio Mass
Spectrometry (IRMS) a valuable tool for food authentication studies
(Sheng et al., 2022; Li et al., 2022). Rice geographic authentication has
recently been achieved from the combination of the stable isotope ratios
of 13C/12C, 15N/14N and 18O/16O (expressed as δ13C, δ15N and δ18O
values) for samples originating from different Asian countries (China,
Thailand, Malaysia, Philippines and Pakistan) (Wang et al., 2020), while
δ13C and δ15N values contributed to the regional discrimination of
Pakistani basmati rice (Wadood et al., 2024).

Multi-elemental concentrations are often measured in conjunction
with stable isotope ratios for a more nuanced assessment of geographic
origin, considering the global variation of the ‘light’ bioelements and
‘heavy’ geoelements (Bateman et al., 2005). δ34S, Mn, and Mg were
suggested as potential indicators of Asian rice, among 25 elements and 4
isotopes (δ13C, δ15N, δ18O and δ34S), able to discriminate between six
countries (Cambodia, China, Japan, Korea, Philippines and Thailand)
(Chung et al., 2018).

Data Fusion (DF) is a novel statistical approach, preferred when
dealing with complex data matrices. It finds applications in food
authentication cases, since it can improve the classification results of a
single technique (Callao & Ruisánchez, 2018). DF strategies are classi-
fied into low-level, mid-level, and high-level according to what infor-
mation is fused. In Low-Level Data Fusion (LLDF), the raw data from
different analytical techniques (represented by zeroth, first, or second

order matrices) are the input of the DF workflow (Azcarate et al.,
2021b). In this context, the application of DF requires handling multi-
variate datasets, thus utilizing multivariate data analysis or machine
learning techniques either for exploratory or classification purposes
(Smilde and Van Mechelen, 2019; Azcarate et al., 2021b).

In this work, we collected 340 authentic samples of different Asian
rice varieties from premium and non-premium producing areas of
Thailand, Myanmar, Indonesia, and China, with the aim to identify the
most important variables of the premium samples of each country. The
techniques used include ICP-MS for the analysis of 25 selected macro,
micro and trace elements, and stable isotope ratio analysis (SIRA) by
elemental analyser-isotope ratio mass spectrometry (EA-IRMS), using
both combustion and thermochemical conversion techniques for the
isotope ratios 13C/12C, 15N/14N, 34S/32S, and 18O/16O, 2H/1H, respec-
tively. Thereafter, we aimed to classify the rice samples based on their
geographic origin integrating the isotopic and multi-elemental data in
an LLDF approach. The results of this study contribute to the food
traceability database of low-income countries and suggest reliable in-
dicators for the authenticity of Asian varieties appreciated worldwide,
such as Jasmine and Paw San rice.

2. Materials & methods

2.1. Sampling

The rice sampling sites in Thailand, Myanmar, China, and Indonesia
are shown in Fig. 1. A total of 170 samples were collected from Thai
HomMali rice producers in Thailand. These were collected in 2018 from
Northeastern (Kalasin, Mukdahan, Yasothon, Amnat Charoen, Ubon
Ratchathani, Surin, Roi Et, and Mahasarakham) and Northern (Phayao,
Chiang Rai, and Chiang Mai) provinces, and in 2019 from Northeastern
(Bueng Kan, Nakhon Phanom, Sakon Nakhon, Udon Thani, Nong Khai,
Nong Bua Lam Phu, and Khon Kaen) and Northern (Phayao, Chiang Rai,
and Chiang Mai) provinces. Eighty-seven Paw San rice samples were
collected in 2020 from the Ayeyarwady Division (Pyapon, Bogalay,
Dedaye, Kyaiklat, Pathein, and Myaungmya), and Shwebo District of
Myanmar. Thirty-six rice samples were collected in 2017 from different
regions of China: Heilongjiang (HLJ), Jilin (JL) and Liaoning (LN) in the
northeast, Hubei (HB), Hunan (HN), Jiangxi (JX) and Anhui (AH) in the
center, Guangxi (GZ) in the south, Zhejiang (ZJ) and Jiangsu (JS) in the
southeast. Forty-six samples of Indonesian rice were collected between
2019 and 2022 in Java (Ciherang, Inpari, Basmati and Mokingga vari-
eties) and Bangka Belitung (Balok, Mahadi, Mayang Pandan, Radin, Mat
Merah varieties) Island Provinces.

2.2. Stable isotope ratio analysis

The samples were ground to a fine powder and weighed using a
microbalance into tin (6 mg for 13C/12C, 15N/14N and 34S/32S) or silver
capsules (0.2 mg for 2H/1H and 18O/16O). For the analysis of 2H/1H, the
comparative equilibration method was used (Wassenaar & Hobson,
2003). Samples and standards were left in lab air moisture for at least 96
h and then placed in a desiccator with P2O5 under nitrogen atmosphere.
Each sample was weighed and analysed in triplicate for C, N, S analysis
and in duplicate for O and H.

The 13C/12C, 15N/14N and 34S/32S ratios were measured simulta-
neously using an isotope ratio mass spectrometer (Elementar Analy-
sensysteme GmbH, Langenselbold, Germany) after total combustion in
an elemental analyser (Vario Isotope Cube; Elementar Analysensysteme
GmbH). The 2H/1H and 18O/16O ratios were measured simultaneously
using an isotope ratio mass spectrometer (Finnigan DELTA XP; Thermo
Fisher Scientific, Waltham, MA, USA) coupled with a pyrolyzer (Fin-
nigan DELTA TC/EA, high temperature conversion elemental analyser,
Thermo Scientific). The instrumental conditions were as described in
Campanelli et al. (2024).

The isotope ratios were expressed in δ ‰ in relation to the
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international standard V-PDB (Vienna-Pee Dee Belemnite) for δ13C, V-
SMOW (Vienna-Standard Mean Ocean Water) for δ2H and δ18O, V-CDT
(Vienna Canyon Diablo Troilite) for δ34S and Air (atmospheric N2) for
δ15N, according to the equation below, where R is the ratio of the heavy
(iE) to light (jE) isotope of an element E:

δi
(
Esample/standard

)
=
R
( iE

/jE
)

sample

R
( iE

/jE
)

standard

− 1

International reference materials (U.S. Geological Survey), and an in-
house working standard (wheat flour), were used to normalise the

values, namely, USGS90 (Millet flour, δ15N: 8.84‰, δ13C: − 13.75‰,
δ34S: − 15.14‰) and USGS88 (collagen, δ15N: 14.96‰, δ13C: − 16.06‰,
δ34S: 17.1‰) for N, C, S, and USGS90 (millet flour, δ2H: − 13.9‰, δ18O:
35.9‰), USGS91 (rice flour, δ2H: − 45.7‰, δ18O: 21.13‰) for H, O.

2.3. Multi-elemental analysis

2.3.1. Sample digestion
The rice samples (0.20 g) were weighed into Teflon vials, mixed with

1 mL of concentrated HNO3 (Suprapur, Carlo Erba, Italy) and digested in

Fig. 1. Map of sampling locations.
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a microwave (UltraWAVE, Milestone, Italy) (20 min heating to 240 ◦C,
15 min hold at 240 ◦C). Reference materials and blanks were included in
each run (every tenth sample). The reference materials were NIST
(National Institute of Standards and Technology, USA) SRM 1568b Rice
Flour and NIST SRM 8436 Durum Wheat Flour. After digestion the
samples were diluted to 10 mL with Milli-Q water.

2.3.2. ICP-MS analysis
Measurement of 25 elements (Na, Mg, Al, P, S, K, Ca, V, Cr, Mn, Fe,

Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sn, Ba, Hg, and Pb) in rice digests
was performed by ICP-MS (Agilent ICP-QQQ 8800, California, USA),
equipped with an Octapole Reaction System (ORS). Instrumental con-
ditions were as follows: Scott-type spray chamber, MicroMist; spray
chamber temperature: 2 ◦C; plasma gas flow rate: 15 L min− 1; carrier gas
flow rate: 0.95 L min− 1; make-up gas flow rate: 0.1 L min− 1; sample
solution uptake flow rate, 1 mL min− 1; RF power 1550 W; reaction cell
gas: helium, oxygen, or hydrogen. Tuning of the instrument was per-
formed daily using a solution containing Li, Mg, Y, Ca, Tl and Co. Limits
of detection (LOD) (Table A1), calculated as three times the standard
deviation of blanks, were below the elemental concentrations encoun-
tered in the rice digests. Certified reference materials (CRMs) used are
included in Table A1.

2.4. Statistical analysis

All statistical analyses and graph designs were carried out in R Studio
(R Studio team, 2023).

2.4.1. Low-Level Data Fusion (LLDF) of IRMS and ICP-MS data
The zeroth-order data blocks (Mx1 column vectors where M is the

total number of samples) coming from IRMS (MxN where N is the
number of isotopes) and multi-elemental analysis (MxK where K is the
number of elements) were divided into training and validation test sets
separately before LLDF. Then, the data blocks were concatenated hori-
zontally to create the fused matrix of MxQ dimensions where Q is the
sum of N and K. The concatenated data were autoscaled prior to appli-
cation of multivariate models. (Orthogonal) Partial Least Squares -
Discriminant Analysis or (O)PLS-DA models were built for the three
fused data matrices with training sets containing an 80% of the total
number of rice samples. These classification models aim to find a divi-
sion of the space into two regions, one for each class. In the orthogonal
extension of the method, the predictive (correlated to Y) and orthogonal
(uncorrelated to Y) variations of the X block are modeled separately,
thus simplifying interpretation, and improving predictive performance.
In cases of two-class separation where the orthogonal variation was not
significant for the model, PLS-DA was performed, so for simplicity the
mention of (O)PLS-DA was adopted. For each (O)PLS-DA model, a per-
mutation test was performed to evaluate the significance and potential
overfitting. The chance that the current model is not statistically
improved by random permutation of the Y-block is measured by calcu-
lating R2Y (goodness of fit) and Q2Y (predictability) of the random
permutations. The root mean squared error of estimation (RMSEE) was
calculated for each model. K-fold cross-validation was applied to the
models (k = 7) and R2X (explained variance of the X-block), R2Y and
Q2Y were measured for the training set. The total inertia of the models
(this is, the resistance to fluctuations in the data) explained by the
selected components was plotted. Outlier diagnostics plots were ob-
tained for each model to evaluate the presence of outliers (Hubert,
Rousseeuw, & Vanden Branden, 2005). Confusion matrices were ob-
tained for each of the test sets and the classification accuracy was
measured based on the number of correctly classified samples by each
model. Variable selection was carried out by means of variable impor-
tance in projection scores (VIP). However, it has been demonstrated in
the case of OPLS modeling that the VIP remains intact irregardless of the
number of orthogonal components selected by the models
(Galindo-Prieto, Eriksson, & Trygg, 2014; Thévenot et al., 2015). So, a

new VIP measure of the predictive and orthogonal components was
proposed. The predictive component of the VIP score (VIP_pred) was
obtained for OPLS models (Galindo-Prieto et al., 2014). The variables
with a VIP score (either VIP or VIP_pred) higher than 1 were selected as
discriminant of the Asian rice varieties.

3. Results & discussion

3.1. Stable isotopes

The results of the IRMS analysis for the different countries are sum-
marized in Table 1. Significant differences (p< 0.05) were found between
all countries for δ13C, with the lowest values noted in Indonesia and the
highest in Thailand. Considering that the main determining factor for δ13C
in plants is the photosynthetic pathway (C3, CAM or C4), and that rice is a
C3 plant, the values measured were within the expected C3 range (− 21‰
to − 35‰) (Islam & Khan, 2019). The effect of variety on δ13C values of
plants has been found to be insignificant (Anderson & Smith, 2006),
therefore, discrimination between different varieties can be indirectly
attempted by discrimination between the premium and non-premium
producing regions. Climatic factors including humidity, sunshine and
temperature also affect δ13C values, with plants in warm and humid en-
vironments exhibiting lower 13C/12C ratios compared to those in cooler
and drier conditions, since they exhibit higher stomatal opening, increased
uptake of CO2 and enrichment of the plant tissues in 12C due to the pref-
erential uptake of the lighter isotope (12C) relative to the heavier isotope
(13C) during photosynthesis (Camin et al., 2007). Moreover, higher alti-
tudes, and lower levels of atmospheric CO2, are associated with higher
δ13C due to the carboxylation effect which results in decreased fraction-
ation of the carbon isotopes and smaller differences in δ13C between at-
mospheric CO2 and plant tissues (Körner, Farquhar, & Roksandic, 1988).
Generally, the regions included in this study such as Bangka Belitung
(Indonesia), Shwe Bo and Ayeyarwady (Myanmar), as well as most of the
Chinese regions are low-lying, without particularly high altitudes. How-
ever, significant difference was observed between the δ13C values of South
(GZ) and Northeast (HLJ, JL, LN) Chinese regions (Figure A1), since the
first exhibits a subtropical climate with high temperatures and heavy
rainfall and the latter have a temperate continental climate. Furthermore,
discrimination was achieved between the Northern and Northeastern
(premium) regions of Thailand for both 2018 and 2019 (Fig. 2) due to their
geoclimatic differences. Specifically, while both can experience hot and
humid conditions, Northern Thailand mostly exhibits cooler temperatures
and lower humidity compared to the Northeastern part of the country and
can exhibit higher altitudes than the latter. Kukusamude and Kongsri
(2018) reported δ13C values which ranged between − 27.8 and − 26.3 ‰
for Thai Jasmine rice produced in the Northeastern (including Yasothon,
Roi Et, Surin, Sisaket, and Mahasarakham provinces), in agreement with
our findings for the same provinces (total range − 27.5 to − 26.3 ‰).
Moreover, Wang et al. (2020) reported δ13C values of − 27.3 ± 0.6‰ for
Thai rice samples, as well as ranges from − 28.2± 0.5‰ to − 26.8± 0.4‰
for Chinese rice, with similar findings noted in literature for the latter (Li
et al., 2022; Li et al., 2021).

On the other hand, δ15N values are mainly affected by agricultural
practices, soil nutrients and fertilizer application (Bateman et al., 2005).
No significant differences were seen between the four countries studied,
except for Myanmar (Table 1), which had the lowest average value (1.9
‰) compared to averages of greater than 4 ‰ for the other countries.
This may be attributed to the low nitrogen tolerance of Paw San variety
(Thein, 2015), which exhibits high N use efficiency and selectively up-
takes N from natural sources and fertilizers, leading to lower δ15N values
in its tissues compared to other varieties. Moreover, higher δ15N values
were noted in ShweBo Paw San compared to Ayeyarwady (Fig. 3), which
could be attributed to the reduced application of both organic and
conventional fertilizers in the latter compared to the Sagaing region
(Myint & Napasintuwong, 2015).

Wide δ34S ranges have been reported in literature for plants (from − 30
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to +35‰), since they depend on both the mobile sulphate in the soil and
the atmospheric sulphate, with the first being influenced by factors
including the composition of bedrock, the presence of organic matter and
the degree of erosion, and the second being affected by the sea-spray ef-
fect, the occurrence of dimethyl sulphide (DMS), volcanic gas and
anthropogenic sources (Rodiouchkina, Rodushkin, Goderis, & Vanhaecke,
2022). As seen in Table 1, the highest δ34S values were found in Myanmar
rice, with an average of 10.9‰ against approximately 2–3‰ of Thailand,
China, and Indonesia. Myanmar contains an abundance of coal sources,
with mines along the Ayeyarwady river basin, which comprises one of the
main coal production areas in the country (JICA, 2013). The release of
sulphur-bearing minerals during extraction processes thus results in
increased δ34S values, which also explains the elevated average of
Ayeyarwady Paw San rice compared to the non-coal-producing ShweBo
(Fig. 3). Moreover, Ayeyawardy region is near the sea and can therefore
experience higher levels of sea spray contributing to the increase of δ34S
values, since marine sources exhibit higher δ34S values compared to
terrestrial (Rodiouchkina et al., 2022). The seaspray effect may also be
responsible for the higher values noted in the SE coastal regions of China
(ZJ and JS), while elevated δ34S values in NE and C may result from
anthropogenic sulphur emissions since these areas have significant in-
dustrial activity, unlike GZ in the south which exhibited the lowest values
(below 0 ‰) (Figure A1). Lastly, a difference of circa +5‰ was found
between themeans of the Indonesian regions of Java and Bangkla Belitung
(Figure A2), which can be explained by the volcanic arc and soils found in
the former (Philibosian & Simons, 2011).

Hydrogen and oxygen isotope ratios in rice are influenced by those of
rainfall and irrigation water, with fractionation processes occurring
throughout the water cycle and altering the relative isotope values (Liu
et al., 2019). Higher δ2H and δ18O values are noted when evapotranspi-
ration rates increase, because of the consequential increase in the loss of
water molecules and the preferential loss of the lighter isotopologues of
water, such as when going from cool to warm environments, from high to
low altitudes, as well as upon decreasing inland distance from the coast (Li
et al., 2022). The lowest δ2H and δ18O values among the countries
examined herein were found in the Chinese rice samples (Table 1), ranging
between − 69.9 and − 23.2‰ and 17.5–27.1‰, respectively. Other works
have reported δ18O values in the same range (Chung et al., 2018), and
noted the same increasing trend between the δ18O of rice samples from
China, Myanmar, and Thailand (Li et al., 2015). Inter-country comparison
revealed the highest values in the southeast Chinese regions (ZJ, JS)
compared to inland areas (HLJ, JL, HN and GZ) (Wang et al., 2020; Liu
et al., 2019). Similarly, δ2H values in the southeast (ZJ, JS) were the
highest compared to the other regions (HLJ, JL, HN and GZ) (Liu et al.,
2019), in agreement with our findings (Figure A1). Thai jasmine rice from
northeastern regions (Yasothon, Roi Et, Surin, and Mahasarakham prov-
inces) was found to exhibit δ18O values between 23.44 and 26.69 ‰
(Kukusamude & Kongsri, 2018), which are lower than our findings
(Fig. 2). The yearly impact on the isotope ratios can be also seen in Fig. 2,
and it can be attributed to the significant annual rainfall variation noted in
the country (Chutsagulprom, Chaisee, Wongsaijai, Inkeaw, & Oonariya,
2022).

Table 1
Rice stable isotope values from the different countries of origin. Results expressed as mean, minimum and maximum of the measured values (‰).

δ (‰) Thailand Myanmar China Indonesia

Mean min max Mean min max Mean min max Mean min max

C − 26.8 − 28.1 − 25.1 − 27.2 − 28.0 − 25.8 − 27.6 − 29.0 − 25.9 − 28.4 − 29.4 − 27.2
N 4.5 1.3 10.2 1.9 0.1 4.5 4.3 2.3 6.5 4.5 1.9 8.8
S 2.8 − 9.0 10.2 10.9 − 4.1 21.6 2.7 − 6.2 8.6 2.2 − 5.2 7.7
O 27.5 22.6 31.4 25.1 21.7 29.9 22.3 17.5 27.1 23.2 19.7 28.4
H − 42 − 58 − 24 − 42 − 57 − 29 − 53 − 70 − 23 − 47 − 62 − 31

Fig. 2. Discrimination between Jasmine rice from the North and Northeast of Thai regions for the years 2018 and 2019 (TN18, TNE18, TN19, TNE19) based on δ13C,
δ2H and δ18O values. Northeast includes the premium-grade GI Jasmine rice regions of Roi Et, Mahasarakham, Surin, and Yasothon.
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Cultivar type is an additional factor which was found to contribute
significantly to the differences in δ2H and δ18O values between basmati
and non-basmati varieties, with plant morphology (height and leaf type)
and drought resistance influencing leaf water evaporation rates
(Wadood et al., 2024). This could explain the wide range of values and
the significant difference observed between the δ2H and δ18O values of

white rice varieties (Ciherang, Inpari, Basmati) from Java and the brown
rice varieties (Inpari, Balok, Mahadi) from Bangka Belitung (Figure A2).

Lastly, clear separation was seen between the δ2H and δ18O values of
Paw San rice from ShweBo and Ayeyarwady in Myanmar (Fig. 3), which
could be explained by the predominantly hotter and drier conditions of
ShweBo compared to Ayeyarwady region, as well as the higher

Fig. 3. Discrimination between Paw San rice from Ayeyarwady (M_AYA) division and Shwebo (M_SB) in Myanmar, based on δ13C, δ2H, δ15N, δ18O and δ34S values.

Table 2
ICP-MS multi-elemental analysis results for the different countries reported as mean, minimum and maximum values measured (ng/g). They are summarized at the
bottom of the table and grouped in macro-elements (Mg, P, S, K, Ca, Na), micro-elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Se, Rb, Sr) and potentially toxic
elements (As, Cd, Sn, Ba, Hg, Pb).

ng/g Thailand Myanmar China Indonesia

mean min max mean min max mean min max mean min max

Na 1869 669 12648 12463 2391 55544 3450 1397 9408 6260 1993 139680
Mg 398255 111124 688927 815592 246426 1497274 167598 54359 412249 332805 98260 1836188
Al 754 92 7676 8034 560 74645 1713 117 9392 5090 335 94960
P 1295257 594999 2007710 2387013 978848 4011415 799922 484157 1389237 1245247 664996 5282524
S 920246 666748 1315495 1176370 928785 1494996 932975 656520 1177669 1221177 866782 2727762
K 1053601 545375 1459938 1769467 755905 2888531 701129 411688 1058879 989062 411949 3558152
Ca 50585 32698 76759 63465 36176 114219 46518 35173 74812 56199 12752 187328
V 1 0.4 8 11 2 93 5 1 56 5 0.4 78
Cr 68 20 182 116 15 905 380 38 1239 32 6 133
Mn 11466 6992 22892 17149 5603 34476 8943 5523 14918 7683 1932 15741
Fe 3208 1527 6704 11053 2819 49073 6753 1353 38373 8019 1944 83328
Co 17 4 99 25 7 70 7 1 18 12 0.5 58
Ni 363 25 2413 893 166 2812 532 111 1341 272 17 1007
Cu 6387 273 49690 2388 655 4491 2161 1063 3502 2360 512 4863
Zn 19399 11088 27109 21603 11302 29967 11741 7231 17543 17420 5889 44349
As 111 29 321 112 30 316 96 46 148 37 1 203
Se 50 8 357 40 7 129 30 12 99 64 6 203
Rb 6560 840 37376 1797 368 7568 2021 298 8390 6305 478 19178
Sr 96 33 579 260 76 523 83 28 171 151 31 527
Mo 481 143 1345 296 171 658 472 219 993 408 66 1042
Cd 53 1 539 20 2 73 70 1 310 19 1 82
Sn 495 0.4 4448 16 2 152 4 1 13 8 1 29
Ba 260 21 1079 122 27 364 277 99 607 137 15 869
Hg 4 1 39 2 1 4 3 1 7 2 0.2 14
Pb 5 1 47 13 3 38 5 1 17 7 1 32

Total, ng/g (sum of means) Thailand Myanmar China Indonesia
Macronutrients 3,719,814 6,224,370 2,651,593 3,850,749
Micronutrients/Trace elements 48,851 63,663 34,842 47,820
Potentially toxic 926 284 456 210
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precipitation levels noted in the latter, especially during monsoon sea-
son (Oo, Haishan, & Jonah, 2023).

3.2. Multi-elemental

The results of the ICP-MS analysis of the 25 elements are summarized
for each country in Table 2, including the total sum of different
elemental groups, i.e. macronutrients (required in large amounts by
plants), micronutrients (required in small amounts but still essential)
and potentially toxic elements. The concentrations of both macronutri-
ents and micronutrients were the highest in Myanmar, being double the
ones of Chinese samples, while Thailand exhibited similar concentra-
tions with Indonesia, both being lower than Myanmar and higher than
China. Traces of elements with increased toxicity risks were detected
within the internationally accepted Codex maximum levels (MLs) for
rice and cereals (200–350 ng/g for As, 400 ng/g for Cd, 200 ng/g for Pb)
(Codex Alimentarius, 1995).

A preliminary inter-country comparison of the elemental content in
the different regions can be seen in Fig. 4. The northeastern regions of
Thailand, which include the premium Jasmine rice-producing Roi Et,
Yasothon, Surin, among others, exhibited higher concentrations of Ba,
Co, Cr, Cu, Ni, Pb, Rb, and Sn compared to the northern regions such as
Phayao, Chiang Rai and Chiang Mai. Paw San rice samples from
Ayeyarwady region of Myanmar exhibited higher values of Al, Ba, Ca,
Fe, Hg, Mg, Sn, Sr and V compared to those from ShweBo, with the latter
being more concentrated in Pb and Rb. Ciherang and Inpari samples
from Java Island exhibited higher concentrations of Al, As, Cd, Co, and
Hg than the Bangka Belitung varieties which were more concentrated in
Ca, Ni, Pb, Se and Sn. Among the different areas in China, the southern
samples (GZ) exhibited the highest concentrations of Al, Fe, Se and V.
The lowest concentrations among all regions were those of Pb in the
Northeast, while the highest concentrations of Cr, Hg and Na were found
in the Southeastern. Central areas exhibited a similar profile to the NE,

except for Pb which was lower and Mn which was higher in NE.
Such differences in the elemental compositions arise from the distinct

climatic conditions and the characteristics of the soils influencing the
availability and uptake of elements in the rice growing period (Zhao,
Wang, & Yang, 2020). The soil pH conditions strongly impact the
bioavailability of heavy metals (e.g. Al, Pb), which is higher in
weakly-acidic soils than in weakly-alkaline soils, such as in the case of
southern compared to northern China (Liu et al., 2019). The heavy
dependance of Paw San rice cultivation on pesticides treatment, as well as
on super phosphate (P2O5) fertilizer, which reaches triple levels on average
between Ayeyarwady and ShweBo compared to non-Paw San cultivation
(Myint & Napasintuwong, 2015), could result in an elemental profile
higher in P and inorganic ions introduced from common fertilizers (e.g.
KNO3, Ca(H2PO4)2) (Zhi, Yuan, Yudi et al., 2023). Moreover, soils of major
rice-producing areas in Thailand and southern China were formed from
river sediments naturally rich in trace elements, and thus require less fer-
tilizer application compared to other areas in Asia, resulting in lower
macro- but higher micro element concentrations (Zhi, Yuan, Yudi et al.,
2023). Lastly, tin mining processes which prevailed in the Bangka Belitung
Islands province have had significant effects in its soil characteristics, with
studies noting low pH, lower available phosphate and exchangeable K
(Wulandari, Agus, Rosita, Mansur, & Fikri Maulana, 2022), as well as
elevated S levels released from the pyrite layers during excavations and the
presence of micro- and toxic elements (Mn, Cu, Zn, Sn, Pb, Cd and Hg)
(Sukarman, Gani, & Asmarhansyah, 2020), always within tolerable limits
for rice.

3.3. Low-Level Data Fusion (LLDF) of IRMS and ICP-MS data

The results from the (O)PLS-DA models for the geographic discrimi-
nation of Myanmar, Thai, and Indonesian rice samples are presented in
Figs. 5 and 6, and A3, respectively. For the case of Thai rice samples, the
separation of samples in the first 2 latent variables did not allow the

Fig. 4. Heatmap of the 25 elemental concentrations (logarithmic form) in different regions of the four countries (irrespective of year). Colors range from white
(lowest concentration) to dark purple (highest concentration). Thailand: Northeast (T_NE), North (T_N). Myanmar: ShweBo (M_SB), Ayeyarwady (M_AYA). Indonesia:
Java (I_J), Bangka Belitung (I_BB). China: Southeast (C_SE), South (C_S), Northeast (C_NE), Central (C_C). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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application of an OPLS-DA model because the first orthogonal component
was already not significant to the model. So, a PLS-DAmodel was applied.
One predictive and one orthogonal component were selected for Indone-
sian samples (Figure A3, top left plot); one predictive and two orthogonal
components were selected for Myanmar samples (Fig. 5, top left plot); and
two predictive components were selected for Thai samples (Fig. 6, top left
plot). Each model was presented with 4 plots. A model overview plot that
shows the inertia captured by the number of selected components results
of cross-validation on the training set. All 3 models showed high inertia
captured by the first two predictive components in the case of PLS-DA and
by the first predictive and consecutive orthogonal components in the case
of OPLS-DA models. This was also reflected in the very good goodness-of-
fit (between 0.79 and 0.92) and predictability (between 0.75 and 0.84)
parameters observed for all the models. The RMSEE values in the three
models were presented below the score plot of eachmodel. They all ranged
between 0.14 and 0.2 indicating that the predictions on the samples from
the training set was very good. Permutation testing showed that all the
models were not overfitted. The score plots showed an excellent separation
of the training samples in all the models. The observation diagnostics plots
showed that some samples showed good leverage (samples with high score
distance within the plane) and some with high orthogonal distance
(orthogonal distance between the sample and its projection in the new
system of coordinates). No samples fell in the second quarter of the plot so
the statistical results along with a re-inspection of analytical data disclosed
no formal outliers. Excellent accuracy values (Myanmar - 94,1%, Thailand
- 96.9%, and Indonesia - 100%) were obtained for the separate test set of
samples of each of the models. The confusion matrices of each model are
presented in Table A2. The VIP scores from each of the models are pre-
sented in Table A3 (VIP>1), with a summary shown in Table A4. It could
be observed that Zn and Ni were selected as geographically discriminant
for the 3 countries, along with δ2H and δ18O. Of all the stable isotopes,

δ18O showed the highest VIP score in all the models, followed by δ2H,
confirming their strong relationship with the climatic conditions that in-
fluence the rice varieties in different geographic regions. Some elements
were selected for two out of the three countries such as Mg, Co, and P,
whereas another set of elements was selected for only one country such as
Fe, Pb, Hg, Rb, Cd, Se, Cu, Sn, Ba, S, K, Ca, and Mn. All the stable isotopes
were selected for Thai rice varieties. However, δ18O and δ13C showed the
highest VIP scores, followed by δ34S and δ2H. This confirmed that δ18Owas
still the most important stable isotope in terms of discrimination of Asian
rice varieties.

4. Conclusions

Clear discrimination of the premium rice-producing areas of Thailand,
Myanmar and Indonesia was achieved by stable isotope ratio and multi-
elemental analysis. IRMS proved to be a valuable tool in this geographic
authentication study, with δ18O being the most robust variable, as it was
the only one, among 25 elements and 5 isotopes, able to discriminate the
premium samples in all three countries. Moreover, ICP-MS results show-
cased that the micro-elements exhibited higher discriminating potential
compared to macro-elements. Differences were also noted in the rice
samples originating from China, with all isotopes (δ13C, δ2H, δ15N, δ18O
and δ34S) able to separate the south from the southeastern samples, and Al,
Fe and Mg able to characterise the central regions. Considering the very
satisfactory (O)PLS-DA accuracy (90–100%) values obtained following
LLDF, it is concluded that the combination of the two analytical techniques
can correctly classify the premium Asian rice varieties ShweBo Paw San,
Thai Jasmine rice, and the Indonesian Ciherang and Inpari. Lastly, inter-
annual differences were prominent in the Thai samples, thus high-
lighting the importance of the sample collection year as a parameter in
food authentication studies and traceability databases.

Fig. 5. OPLS-DA results of the geographical discrimination of Myanmar rice varieties. Ayeyarwady (AYA) (blue); ShweBo (SB) (red). Top left: Inertia plot (bar plot);
Top right: Permutation test; Bottom left: Observation diagnostics test; Bottom right: Score plot. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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APPENDIX

Fig. 6. PLS-DA results of the geographical discrimination of Thai rice varieties. North (2018& 2019) (blue); Northeast (2018 & 2019) (red). Top left: Inertia plot (bar
plot); Top right: Permutation test; Bottom left: Observation diagnostics test; Bottom right: Score plot. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Table A1
CRMs and Limits of detection (LODs) of the 25 elements analysed by ICP-MS

Elements Na Mg Al P S K Ca V Cr Mn Fe Co Ni Cu Zn As Se Rb Sr Mo Cd Sn Ba Hg Pb

LOD sample (ng/g) 150 180 60 350 30000 420 800 0.04 4.5 2.5 30 0.06 4 1.5 60 0.25 0.6 1.0 0.5 0.2 0.1 0.4 0.5 0.1 0.2
Rice flour 1568b:
Reference value (ng/g) 6740 559000 4210 1530000 1200000 1282000 118400 19200 7420 18 2350 19420 285 365 6198 1451 22 5.0 5.91 8.0
Uncertainty of reference value 190 10000 340 40000 10000 11000 3100 1800 440 1 160 260 14 29 26 48 1 1.0 0.36 3.0
Measured value - average (ng/g) 6426 517880 3985 1536368 1210152 1238728 120482 4.4 31.8 19016 7010 19 209,8 2312 18762 285 365 5901 131,9 1430 21 5.0 114.0 5.91 7.4
Measured value - rsd (%) 10.5 11.6 3.8 6.5 5.7 9.2 11.9 9.6 4.3 8,2 9,8 7,2 4,1 6,4 8,3 6,0 6,3 7,6 6,6 8,5 9,7 14.8 8.1 10.3 5.0
Durum wheat flour 8436:
Reference value (ng/g) 16000 1070000 11700 2900000 1930000 3180000 278000 21 23 16000 41500 8.0 170 4300 22200 2000 1190 700 110 2110 23
Uncertainty of reference value 6100 80000 4700 220000 280000 140000 26000 6 9 1000 4000 4,0 80 690 1700 400 90 120 50 470 6
Measured value - average (ng/g) 16746 1148710 12325 2887931 1913673 3287337 273112 21.0 23.0 16154 43792 7.2 170 4370 22953 2096 1190 710 116 2110 24.8
Measured value - rsd (%) 7.37 9.89 1.38 6.52 6.58 7.84 10.72 13.44 3.72 6.77 8.90 7.98 4.71 3.93 7.07 6.47 5.68 4.02 7.07 6.46 3.47
Repeatability 9 6 8 4.5 4 5 5 9 11 6 7 6 8 8 5 5 8 5 7 5 8 18 6 6 11
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Fig. A1. Discrimination between Chinese rice from the Northeast (NE: HLJ, JL, LN), Central (C: HB, HN, JX, AH), Southern (S: GZ) and Southeastern (SE: ZJ, JS)
regions, based on δ13C, δ2H, δ15N, δ18O and δ34S values.

Fig. A2. Discrimination between Indonesian rice from Bangka Belitung Islands (I_Bl) and Java (I_J), based on δ13C, δ2H, δ15N, δ18O and δ34S values.
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Table A2
Confusion matrices of the (O)PLS-DA models.

(A) Indonesia

Bangka Belitung Java

Bangka Belitung 4 0
Java 0 4

(B) Myanmar
Ayeyarwady ShweBo

Ayeyarwady 14 1
ShweBo 0 2

(C) Thailand
North Northeast

North 9 1
Northeast 0 23

Fig. A3. OPLS-DA results of the geographical discrimination of Indonesian rice varieties. Bangka Belitung (blue); Java (red). Top left: Inertia plot (bar plot); Top
right: permutation test; Bottom left: observation diagnostics test; Bottom right: score plot.

Table A3
Variable selection results of the (O)PLS-DA models (VIP>1).

(A) Indonesia - Bangka Belitung vs Java

Variable VIP

δ18O 1.697
δ2H 1.669
δ34S 1.668
Co 1.544
Rb 1.526
Zn 1.373
Mg 1.371
Cd 1.32
Ni 1.236
Ca 1.225
Se 1.143

(continued on next page)

Z. Giannioti et al. LWT 209 (2024) 116752 

12 



Table A3 (continued )

(A) Indonesia - Bangka Belitung vs Java

Variable VIP

Sn 1.061
P 1.058
S 1.016

(B) Myanmar - Paw San ShweBo vs Ayeyarwady
Variable VIP
δ18O 1.67
Zn 1.586
δ2H 1.486
Cu 1.476
Mn 1.27
K 1.243
Mg 1.238
P 1.183
Pb 1.129
δ15N 1.089
Ni 1.074
Fe 1.049
Hg 1.033

(C) Thailand - Jasmine rice - North vs Northeast
Variable VIP
δ18O 2.402
δ13C 2.366
Ba 1.582
δ34S 1.46
Zn 1.422
δ2H 1.369
Co 1.196
Ni 1.095
δ15N 1.024

Table A4
Summary of (O)PLS-DA discriminant variables with VIP>1.4 for the models (denoted in grey).
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