
Journal Pre-proofs

Unveiling Diversity in amino acid stable isotope profiles for classifying rice
Varieties, refining types and cultivation systems

Zoe Giannioti, Alberto Roncone, Luana Bontempo

PII: S0963-9969(24)01638-7
DOI: https://doi.org/10.1016/j.foodres.2024.115567
Reference: FRIN 115567

To appear in: Food Research International

Received Date: 23 July 2024
Revised Date: 18 October 2024
Accepted Date: 28 December 2024

Please cite this article as: Giannioti, Z., Roncone, A., Bontempo, L., Unveiling Diversity in amino acid stable
isotope profiles for classifying rice Varieties, refining types and cultivation systems, Food Research International
(2024), doi: https://doi.org/10.1016/j.foodres.2024.115567

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.foodres.2024.115567
https://doi.org/10.1016/j.foodres.2024.115567


1

Unveiling Diversity in Amino Acid Stable Isotope Profiles for Classifying Rice 

Varieties, Refining Types and Cultivation Systems

Zoe Giannioti1,2, Alberto Roncone1, Luana Bontempo1,*

1 Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, TN, Italy
2 Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach Via E. 

Mach 1, 38098 San Michele all’Adige, TN, Italy

* Corresponding author. Email: luana.bontempo@fmach.it

Abstract 

Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication 

cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines 

worldwide for their unique qualitative properties. Organic authentication of rice by 

morphological assessment is unfeasible, while its market availability at different refining stages 

(brown, white) further increases the data variability. In this study, bulk and compound-specific 

(CS) - IRMS analysis of nine rice amino acids (AAs), by elemental analyser (EA) – IRMS and 

gas chromatography (GC) - combustion (C) - IRMS, respectively, were applied in order to 

explore their organic authentication potential in cases involving different rice varieties and 

refining types. The individual and interactive effects of the different variables were assessed 

on the δ13CAAs, δ15NAAs, δ13Cbulk and δ15Nbulk, and the sample classification was attempted by 

linear discriminant analysis (LDA) and decision tree analysis (DTA). Organic authentication of 

brown rice was achieved by CS-IRMS. Generic rice was differentiated from all Italian organic 

and conventional varieties (δ15Nleucine < 2.5 ‰). The δ13C values of glutamic acid, glycine, 

phenylalanine and proline, significantly contributed to the complete LDA separation of 

conventional Arborio, conventional Carnaroli and organic Carnaroli samples. This study 

showcases the interplay between refining type, variety and cultivation, which should be 

considered in cases of organic authentication by IRMS methods.

1. Introduction

Approximately 50% of rice (Oryza sativa L.) in the European Union is produced in Italy, 

predominantly in the Northern regions following the course of river Po, i.e. Piedmont, 

Lombardy, Veneto and Emilia, thanks to the presence of flat, sumptuous lands and irrigation 

channels (Riccio, 2022). The most common Italian rice cultivars belong to the japonica variety 

and their total number in the National Registry exceeds 130. These include Carnaroli, which 

is elastic, resistant and ideal for risotto dishes, Arborio, with wide grains and the ability to 

https://paperpile.com/c/dxtFcJ/mJik
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maintain large amounts of starch when cooking, and Baldo, which has an elongated grain and 

is the richest variety in minerals (Riso Delta Po PGI, 2020). Even though Italian cultivars 

possess different qualitative properties, such as starch, protein, fiber and lipid content, their 

morphological differences are minimal and dependent on stage-specific expression and 

environmental factors (Cirillo et al., 2009). Varieties with high commercial value such as 

Carnaroli, which is considered one of the most precious genotypes, can be targeted in 

fraudulent activities of adulteration or substitution with less costly cultivars (Grazina et al., 

2022). 

The transition towards organic agriculture in the Italian rice sector is a prominent topic 

(Vaglia et al., 2022), since rice crops are heavily dependent on the use of agrochemicals, 

resulting to significant water quality degradation in the Northern Italian areas. Surveys 

involving Italian consumers have confirmed their willingness to pay premium prices for organic 

products (Perrini et al., 2010), perceiving them as healthier, safer and richer in nutrients than 

conventional foods. However, it is not possible to morphologically assess the authenticity of 

organic products sold in the market. Furthermore, the availability of market choice between 

brown and white rice can have further implications on the identification of markers for organic 

rice authenticity. Brown rice includes the endosperm, embryo and bran layers and is superior 

to white rice as a source of vitamins, minerals, fibers and proteins, as these are unevenly 

distributed in the kernel, and are lost during the milling process (Mir et al., 2020). 

Studies employing isotope ratio mass spectrometry (IRMS), have examined the 

individual effects of refining type, variety and cultivation on the stable isotope values of 

different food products. The distinct cultivation practices applied in organic and conventional 

agriculture directly affect the plant stable isotope profiles, due to the different fertilizer isotope 

values and the fertilizer effect on the plant respiration rates (Giannioti et al., 2024). 

Discrimination between organic and conventional milled rice has been achieved based on the 

bulk δ13C (Chi et al., 2024) and δ15N values (Chi et al., 2024; Chung et al., 2021). Moreover, 

significant cultivar differences were  observed in the δ13C and δ34S values of organic and 

conventional oranges, peaches and strawberries, with δ15N appearred to be less influenced 

(Camin et al., 2011). Studies on rice have reported contradictory results. Chung et al. (2016) 

reported no varietal effects on the δ13C and δ15N values of Korean brown rice, while other 

studies noted that both δ13C and δ15N values exhibited differences among rice varieties (Liu 

et al., 2020) (Chen et al., 2016). Lower bulk δ15N values in some varieties of organic rice 

(Oryza sativa L. Japonica), were potentially attributed to more rapid uptake of nutrients taking 

place prior to denitrification (Yuan et al., 2018). Lastly, differences in the refining stages of rice 

were observed between milled and brown rice in Korea, based on their bulk δ15N and δ34S 

https://paperpile.com/c/dxtFcJ/q3AF/?noauthor=1
https://paperpile.com/c/dxtFcJ/sEIB
https://paperpile.com/c/dxtFcJ/Nwbn
https://paperpile.com/c/dxtFcJ/Nwbn
https://paperpile.com/c/dxtFcJ/7vlO
https://paperpile.com/c/dxtFcJ/tul1
https://paperpile.com/c/dxtFcJ/8Cf7
https://paperpile.com/c/dxtFcJ/IlKX
https://paperpile.com/c/dxtFcJ/qJA8
https://paperpile.com/c/dxtFcJ/qJA8
https://paperpile.com/c/dxtFcJ/HCC7
https://paperpile.com/c/dxtFcJ/J1ib
https://paperpile.com/c/dxtFcJ/wyYi
https://paperpile.com/c/dxtFcJ/jJch
https://paperpile.com/c/dxtFcJ/jJch
https://paperpile.com/c/dxtFcJ/n3Z6
https://paperpile.com/c/dxtFcJ/PsIN
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values (Chi et al., 2024), while the δ13C values of wheat bran were found to be significantly 

lower than those of other fractions (Wadood et al., 2018). 

Compound-specific (CS) IRMS methods can prove more effective than bulk in the 

discrimination of organic and conventional food products, providing information on individual 

components (e.g. amino acids, fatty acids, nitrate) by the addition of a separation step prior to 

the isotope analysis (Kelly et al., 2018). In this work, bulk and CS amino acids analysis was 

applied by Elemental Analyser (EA) - IRMS and Gas Chromatography (GC) - Combustion (C) 

- IRMS, respectively. The aim was to obtain the stable isotope profile of different Italian rice 

varieties (Carnaroli, Arborio, Baldo, S. Andrea, Rosa Marchetti), refining types (brown/white) 

and cultivations (organic/conventional). All samples in this study were collected in Northern 

Italy, in order to ensure no effect of geographic origin variability on the isotope values of 

different varieties (Perez et al., 2006). The findings of this research aid in the identification of 

promising stable isotope markers for the organic authentication of cereals.

2. Materials & Methods

2.1 Sample Collection

Eighteen authentic organic rice samples harvested in 2022 were collected directly from 

certified organic producers in Northern Italy (Pavia and Vercelli provinces in the regions of 

Lombardy and Piedmont, respectively). Additionally, two organic and eighteen conventional 

samples were bought from local supermarkets in Northern Italy. All rice samples were 

medium- and long- grain Italian varieties, including Carnaroli, Arborio, Baldo, Rosa Marchetti 

and S. Andrea. The complete sampling details can be seen in Table A1.

2.2 Bulk Analysis

Samples were weighed (ca. 2 mg) and placed in tin capsules to measure the δ15N and 

δ13C values simultaneously, using an isotope ratio mass spectrometer (Isoprime visION, 

Elementar Analysensysteme, Langenselbold, Germany) after total combustion in an elemental 

analyser (Vario Isotope Cube, Elementar Analysensysteme, Langenselbold, Germany). All 

samples were measured in triplicate.

https://paperpile.com/c/dxtFcJ/qJA8
https://paperpile.com/c/dxtFcJ/4TJn
https://paperpile.com/c/dxtFcJ/VFUK
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The isotope ratios were expressed in δ ‰ versus atmospheric nitrogen for δ15N, and 

V-PDB (Vienna − Pee Dee Belemnite) for δ13C, according to the equation below, where R 

is the ratio of the heavy (iE) to light (jE) isotope of an element E:

𝛿𝑖(𝐸𝑠𝑎𝑚𝑝𝑙𝑒/𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) =
𝑅(𝑖𝐸/𝑗𝐸)𝑠𝑎𝑚𝑝𝑙𝑒

𝑅(𝑖𝐸/𝑗𝐸)𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 ― 1 

International reference materials (U.S. Geological Survey), and an in-house working 

standard (wheat flour), were used to normalise the isotopic values, namely, USGS90 (millet 

flour, δ15N: 8.84 ‰, δ13C: -13.75 ‰) and USGS88 (collagen, δ15N: 14.96 ‰, δ13C: -16.06 ‰).

2.3 CS Amino Acids Analysis

2.3.1. Reagents and materials

L-Amino acid standards at ≥98% purity (alanine, aspartic acid, glutamic acid, 

glycine, isoleucine, norleucine, leucine, phenylalanine, proline, and valine) and analytical 

grade cation-exchange resin (Amberlite IR120 hydrogen form) were purchased from 

Sigma-Aldrich. All other solvents (isopropanol, acetone, and ethyl acetate) and reagents 

(triethylamine and acetic anhydride) used were of analytical grade and purchased from 

Sigma-Aldrich and VWR (Milan, Italy).

2.3.2 Sample preparation and analysis

A multi-step sample preparation process was followed for the GC-C-IRMS analysis of 

δ15N and δ13C wheat amino acids, as described by Paolini et al. (2015). This involved defatting 

the samples with a mixture of petroleum ether/ethyl ether, followed by protein hydrolysis with 

HCl, and amino acid purification using an ion-exchange chromatography resin. N-acetyl 

isopropyl derivatization was the final phase, which required acidified isopropanol for 

esterification and a mixture of acetic anhydride/trimethylamine/acetone for acetylation. 

The isotopic values of 8 amino acids, alanine (Ala), aspartate (Asx), glutamate (Glx), 

glycine (Gly), leucine (Leu), phenylalanine (Phe), proline (Pro), threonine (Thr), and valine 

(Val), were determined by a Trace GC Ultra (GC IsoLink + ConFlo IV, Thermo Scientific) 

interfaced with an IRMS (DELTA V, Thermo Scientific) through an open split interface and with 
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a single-quadrupole GC-MS (ISQ Thermo Scientific). Due to the conversion of asparagine 

(Asn) and glutamine (Gln) into aspartate (or aspartic acid) (Asp) and glutamate (or glutamic 

acid) (Glu), after the acid-hydrolysis step, the δ15N and δ13C reported in the samples represent 

their summaries as Asx and Glx.

All samples were measured in duplicate. Corrections accounting for the measured δ13C 

values of the derivatized amino acids were carried out as reported in Paolini et al. (2015).

2.4 Statistical analysis

All statistical analyses were carried out using R (version 4.4.0). 

Multivariate Analysis of Variance (MANOVA) was used to investigate whether the type 

of rice (brown or white), variety and cultivation (organic or conventional), or their interaction, 

had an effect on the stable isotope values of the amino acids analysed in this study. A 

correlogram was used to assess the randomness of the dataset.

Linear Discriminant Analysis (LDA) was carried out in order to separate the classes 

based on variety and cultivation method (conventional/ organic), regardless of the type 

(white, brown). The classes considered were the ones with sample number ≥ 5. The 

numerical variables included all δ15NAAs, δ13CAAs, δ15Nbulk and δ13Cbulk. Prior to fitting an LDA 

model, class weights were defined according to the number of instances in each class, the 

numerical variables were standardized and the data was split into Training and Test sets 

(80:20 split) using stratified sampling to maintain the proportion of each class in the split. 

Subsequently, predictions were made using the LDA model on the test set, ensuring that 

predicted and actual values were factors with the same levels. The model performance was 

evaluated using a confusion matrix and a 3D scatter plot was created for the visualization of 

the LDA scores and the class separation.

Finally, a decision tree was constructed to aid in the decision-making process of 

classifying rice variety and cultivation. The steps included standardization of the numerical 

variables, stratified sampling while performing an 80:20 split of the data into Training and Test 

sets, fitting the decision tree model, predicting on testing data and ensuring that the predicted 

and actual values were factors of the same level, before plotting the decision tree. The pruning 

parameter was 0.01 (default), the minimum number of observations for a node to split was 10, 

the minimum number of observations in any leaf was 3, and the maximum depth of any node 

was set to 5 (moderate).

https://paperpile.com/c/dxtFcJ/G5OV
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3. Results & Discussion

3.1 Rice Variety, Refining Type and Cultivation Effects

The individual and combined effects of refining type, cultivation and variety on the 

amino acid and bulk stable C and N isotope values were initially examined and are shown in 

Table 1. Significant influence of the three different factors individually was observed in the 

amino acid δ15N and δ13C profile of the samples, with different effects seen for each amino 

acid separately. Alanine δ15N values were the most unaffected δ15NAAs  by all factors, while 

glutamic acid δ15N was the most affected. On the other hand, valine and isoleucine δ13C values 

were the only δ13CAA significantly affected. The interaction assessment showcases that the 

influence of Type on the AA δ13C profiles varies depending on the cultivation, and vice-versa. 

Similarly, but to a lesser extent, the influence of Type on the AA δ15N profiles varies according 

to the specific Variety of rice, and vice-versa.  

Table 1. MANOVA results for the interactive and individual effects between type, cultivation 

and variety on the C and N stable isotope values of AAs. Significance codes: 0 ‘***’ 0.001 ‘**’ 

0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

ala val ile leu gly pro asx glx phe bulk

C N C N C N C N C N C N C N C N C N C N

Type * . *** . * * *** *** *** .

Cultivation * * ** . * * ** *** . * *

Variety * *** *** ** *** ** *** .

Type:Cultivation

Type:Variety . .

The assessment of the effect of milling on the bulk δ13C and δ15N values has shown 

contradictory results in studies carried out in brown and white (milled) rice in South Korea (Chi 

et al., 2024; Yun et al., 2011). On the other hand, it has been documented that protein content 

decreases with increasing milling percentage (Liu et al., 2017), potentially affecting the amino 

acid stable isotope values. The effect of cultivation on the latter mainly derives from the 
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different fertilization methods of organic and conventional agriculture, allowing for the 

discrimination of organic from conventional milled rice based on amino acid δ13C and δ15N 

values (Chung et al., 2019). 

Significant differences were noted between the bulk δ13C of japonica and indica 

varieties in China (Wang&Chen et al., 2020), and between the bulk δ13C values of superior 

and inferior Chinese rice grains, which were attributed to differences in soluble carbohydrate 

accumulation and starch biosynthesis (Chen & Zhao et al., 2016). Moreover, significant 

difference was reported in both the bulk δ13C and δ15N values between basmati and non-

basmati cultivars, which were explained by the cultivar genetic variations and, specifically, the 

diffusive conductance, stomatal activity and water use efficiency (Wadood & Chunlin et al., 

2024). Lastly, significant differences were reported between both the protein and amylose 

content of different Italian rice varieties, including Arborio, S. Andrea and Carnaroli rice 

(Haxhari et al., 2023), which could explain the results of this study on the significance of 

cultivar as a variable in amino acid CS-IRMS studies.

The correlations revealed between the δ13C and δ15N values of rice AAs are shown in 

Figure 1. The lowest coefficients were observed for correlations between δ13C and δ15N, due 

to the different metabolic pathways associated with their fractionation (such as the plant 

photosynthetic pathway for δ13C or the nitrogen fixation and uptake for δ15N).

The amino acids with the highest δ15N correlations, i.e. δ15Nasx with δ15Nglx, δ15Nleu with 

δ15Nasx and δ15Nleu with δ15Nglx, also exhibited the highest δ13C correlations, with the addition 

of δ13Cala with δ13Cglx and δ13Casx, and of δ13Cval with δ13Cleu. The high correlations of most 

δ15NAAs with δ15Nglx and δ15Nasx can be explained by the amide-N of Gln being the primary 

nitrogen donor for the synthesis of the other AAs and the amide-N of asn especially 

contributing to nitrogen storage and transport (Styring et al., 2014). Furthermore, the 

significant correlations between δ13CAAs can be attributed to all correlated amino acids deriving 

from intermediates, such as pyruvate (ala, leu, val), α-ketoglutarate (glx) and oxaloacetate 

(asx), of central carbon metabolic pathways such as glycolysis and the TCA cycle (Lynch et 

al., 2016). 
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Figure 1. Correlations between the stable isotope ratios of rice AAs. 

3.2 δ13C Variability Across Type, Variety and Cultivation 

The δ13CAAs results are summarized in Figure 2. Unpaired student’s t tests revealed 

statistically significant differences (p<0.05) between the bulk δ13C values of the following 

varieties: Arborio and Carnaroli (white, conventional), Baldo and Rosa Marchetti (white, 

organic), Baldo and Carnaroli (brown, organic) (Figure A1). Interestingly, none of the δ13CAAs 

were found significantly different between these combinations, which suggests that rice 

components different than AAs are what majorly contributes to the variability in the bulk values 

(such as starch, fatty acids or fibers). The δ13Cphe was the only δ13CAA for which a separation 

of varieties was seen, specifically between Rosa Marchetti and Baldo, however a bigger 

sample size would be necessary to determine the reliability of this result. 
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Figure 2. δ13CAAs variability across Italian rice varieties: Arborio (n=7), Baldo (n=5), Carnaroli 
(n=13), Dellarole (n=1), Generic (n=6), Rosa Marchetti (n=4), S. Andrea (n=1).

The small effect of variety on δ13CAAs, and its insignificant influence on type (Table 1), 

allows for the grouping together of the different varieties according to their type, whilst still 

keeping separate the two cultivation modes, given their significant effect on the former (Table 

1). Brown rice was found to exhibit significantly lower δ13Cval and δ13Cleu values, but higher 

δ13Cgly and δ13Cphe values overall in the conventional samples (p<0.05), while no significant 

differences were observed between the brown and white samples of organic cultivation 

(p>0.05). Interestingly, bulk δ13C values were not found to be significantly different between 

brown and white rice in neither organic nor conventional rice samples, which is in agreement 

with previous studies (Chi et al., 2024), exhibiting ranges that varied between -27.55 to -24.89 

‰ and -28.07 to -26.09 ‰ (for organic and conventional samples respectively). This highlights 

the added value of the extractable information from compound-specific IRMS analysis.

Upon grouping together the varieties (white type), organic samples exhibited lower 

bulk δ13C values (-27.12 ± 0.4 ‰) than the conventional samples (-26.45 ± 0.9 ‰) (p<0.05). 

In literature, the differences reported between δ13Cbulk of the two cultivation types have been 

< 1 ‰ (Chung et al., 2021), which can be expected since the major factor influencing the δ13C 

values in plants is their photosynthetic pathway, with C3 plants (including rice) exhibiting 
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values between -21 and -35 ‰ (Badeck et al., 2005). However, the slightly more negative 

δ13Cbulk values found in the organic samples were attributed to the depleted CO2 released from 

the decomposition of manures in the rice paddy fields (Yuan et al., 2018). As expected, the 

differentiation between organic and conventional brown rice samples was only achieved based 

on the δ13Cile values (-25.78 ± 1.8 ‰ for the former and -23.50 ± 2.4 ‰ for the latter). δ13Cile 

values were also able to distinguish between white organic and conventional rice in the study 

of Chung et al. (2019).

3.3 δ15NAAs for Organic Authentication

Due to the significant interaction between type and cultivation for the majority of 

δ15NAAs, as discussed in 3.1, the results in this section were examined separately for the brown 

and white rice samples. On the other hand, the varieties were grouped together, since no 

significant interaction was found between variety and cultivation.

Statistically significant separation (p<0.05) was achieved between the brown organic 

and brown conventional samples based on the δ15N values of ala, val, ile, leu, gly, pro, asx, 

glx and phe (Figure 3). The largest mean difference between organic and conventional brown 

rice was +5.0 ‰ observed for the δ15Nglx values, followed by phe and ile (+4.0 ‰). Notably, 

these were significantly higher than the difference between the bulk values. However, in the 

case of the white rice samples, discrimination between the two cultivation systems was only 

achieved based on δ15Nala, with the mean value being 6.9 for the organic and 7.8 for the 

conventional samples (p<0.05) (Figure A2). 

Earlier studies reported similar results for the discrimination between organic and 

conventional samples based on δ15NAAs, without the separation of white and brown samples, 

indicating δ15Nglx and δ15Nile, among others, for rice samples (Chung et al., 2019), and δ15Nala, 

δ15Nphe, δ15Nile for wheat, with differences of over +5.0 ‰ (Paolini et al., 2015). The significantly 

lower δ15N values noted for conventional brown rice compared to conventional white rice can 

be attributed to the prominent effect of the synthetic fertilizer in the nitrogen isotopic 

composition of the rice grain, especially in the outer layer, which is retained to a greater extent 

in the case of the former rather than the latter. On the other hand, organic brown and white 

rice exhibited more similar ranges, since the δ15N profile of organic fertilizers is closer to the 

natural background levels, resulting in some degree of homogeneity throughout the grain. As 

explained elsewhere (Choi et al., 2017), the δ15N values of synthetic fertilizers (−0.3 ± 0.2 

‰) are significantly lower than those of organic fertilizers such as manure (+7.8 ± 0.6 ‰) 

and compost (+16.3 ± 0.8 ‰), which is reflected in the δ15N of agricultural products. 



11

However, the mean δ15Nbulk value of white organic rice (4.5 ‰) was significantly lower 

than that of white conventional rice (5.5 ‰), while brown rice exhibited similar values for both 

cultivations (c. 4.3 ‰ for conventional and 4.6 ‰ for organic samples). Several of the organic 

samples analysed in this study were cultivated on soil where leguminous crops were 

previously grown. Leguminous plants are N2-fixing and exhibit δ15N values close to those of 

atmospheric nitrogen (0 ‰) (Bedard-Haughn et al., 2003), thus lowering the δ15N values of 

the organic rice crops.

 

Figure 3. Brown rice δ15NAA (‰) values of organic (O) and conventional (C) cultivation. 
p<0.05 between the O and C δ15N values of ala, val, ile, leu, gly, pro, asx, glx and phe.

3.4 Classification of Rice Variety and Cultivation

3.4.1 Linear Discriminant Analysis (LDA)

The rice samples were classified according to their variety and cultivation in an LDA 

approach, so as to explore the potential of IRMS in organic rice authentication when different 

varieties are considered. Type (brown or white) was not taken into consideration in this case 

since it can be easily assessed by visual inspection.

The confusion matrix and results are shown in Table A2. The model overall correctly 

classified 80% of the samples, which is satisfactory considering the limited sample size and 

large variability, with the Kappa coefficient (0.75) showing substantial agreement between 

raters (Landis&Koch, 1977), and the p<0.05 indicating that the model is significantly better 
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than the No Information Rate (NIR). Notably, the three major performance metrics of the 

predictive classification model (precision, recall and specificity), as well as the Receiver 

Operating Characteristic (ROC) curves (Figure A3), indicated that the model performance was 

excellent for the classes Arborio_Conv (conventional), Carnaroli_Conv (conventional) and 

Generic_OrgConv (organic and conventional) (AUC = 1). Moderate number of false positives 

and negatives was reported for the Carnaroli_Org (organic) class, which still exhibited perfect 

recall (= 1) and a good ability to distinguish this class from the others (AUC = 0.75). Lastly, 

the case of Baldo_Org (organic) was more complex, with the model exhibiting low precision, 

recall and sensitivity, but great specificity, AUC = 1, and clear separation in the 3D space 

(Figure 4). The low metrics are likely due to the small sample size rather than a limitation of 

the model. A brief explanation for the terminology of the model interpretation is included in 

Table A3.

The greatest proportion of Variance was explained by LD1 (c. 85%), followed by LD2 

(c. 0.1%) and finally LD3 and LD4 (both below 0.04%). The contribution of each variable to 

the LDs is depicted in Figure 5. The variables with the strongest positive contribution to LD1, 

and thus aiding in the separation of the classes Baldo_Org, Carnaroli_Org and 

Generic_OrgConv, were δ13Cglx and δ13Cgly (>6), while δ13Cphe and δ13Cpro exhibited the most 

negative contribution to LD1 (<-5), followed by δ15Nleu, δ13Cleu and δ15Npro (<-4), thus aiding in 

the classification of Arborio_Conv and Carnaroli_Conv. The strongest positive contribution to 

LD2 was exclusively exhibited by δ13Cleu (c. 8), separating Arborio_Conv, Carnaroli_Org and 

Generic_OrgConv, while the highest negative contribution to LD2 was noted by δ13Cglx (c. -8) 

and δ15Nleu (c. -6), aiding in the classification of Carnaroli_Conv. The positive coefficients 

indicate that higher values of these variables result in higher scores on the corresponding LDs, 

while negative values imply that higher values of these variables result in lower LD scores. 

Lastly, the greatest absolute variable contribution to LD3 was from δ15Nasx, which also 

exhibited the highest absolute coefficient of all other variables and LDs (c. 9), while δ15Nleu and 

δ13Cglx contributed the most to LD4 (c. 3). 

It can be concluded that the LDA model successfully separated the conventional from 

the organic Carnaroli rice, as well as the conventional Arborio from both the conventional and 

the organic Carnaroli samples. Generic rice was also clearly differentiated from all other 

classes. It is worth noting that δ13CAAs and δ15NAAs contributed significantly more to the LDs 

compared to the bulk values.
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Figure 4. LDA 3D Scatter Plot of LD1 vs LD2 vs LD3 scores for the different classes of rice. 
Org: Organic. Conv: Conventional.

Figure 5. Coefficients of Variables (bulk and AA δ13C and δ15N values) for each Linear 
Discriminant.

3.4.2 Decision Tree Analysis (DTA)

The most important variables indicated by the LDA model, exhibiting absolute 
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coefficients ≥ 3, were used to construct a decision tree. The confusion matrix and results 

are shown in Table A4. Similarly to the LDA results, Arborio_Conv and Generic_Conv 

exhibited perfect metrics (sensitivity, specificity, balanced accuracy and precision of 1), 

while better performance was achieved for Carnaroli_Org compared to Carnaroli_Conv, 

with some false positives detected in the latter, which was the opposite of what was noted 

in the LDA. Baldo_Org exhibited the least satisfactory performance, an issue which derives 

from its small sample size, as well as its overlapping features with the Carnaroli_Conv 

class. 

As shown in Figure 6, Generic rice could be differentiated from all other classes based 

solely on its δ15Nleu value, which was lower than 2.5 ‰, with a probability of 1. Additional 

information derived from the decision tree, is that the δ13Cbulk value proved to be a key 

differentiator between classes, with a value higher than or equal to -26 ‰ indicating 

Arborio_Conv, and a value between -27 and -26 ‰ indicating Carnaroli_Org, with a probability 

of 1, when the δ15Nleu value was higher than or equal to 2.5 ‰. Moreover, values lower than 

δ13Cbulk -27 ‰ could indicate Carnaroli_Conv or Baldo_Org, depending on the value of δ13Cval, 

with some overlap noted between the two classes resulting in reduced probabilities.

Figure 6. Decision Tree

Conclusions
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The variables examined in this study (rice variety, refining type and cultivation) were 

found to exhibit significant effects on the bulk and AAs δ13C and δ15N values, both individually 

and collectively. The effects were more pronounced on the bulk and δ15NAAs values, while 

δ13CAAs remained less influenced. Understanding these noticeable variations in the stable 

isotope values reduces the complexity of the data, providing a more in-depth understanding 

of the implications of bulk and CS-IRMS analysis in organic authentication cases. 

Considering exclusively the δ15NAAs, organic authentication was only possible for the 

brown rice samples. However, the addition of δ13CAAs and the results of bulk IRMS combined 

in an LDA classification, rendered possible the class separation not only of different cultivation 

systems (organic from conventional), but also of different rice varieties (Arborio from 

Carnaroli), regardless of refining type. The final application of decision tree analysis aided in 

the specification of thresholds that could identify the authentic Italian varieties, and separate 

them from the generic rice, at probabilities reaching 100%. 

The novel findings of this study suggest a possibility to apply CS-IRMS techniques, 

specifically AAs analysis by GC-C-IRMS, in the simultaneous authentication of organic 

cultivation and plant variety. In order to test the robustness of the method, a bigger number of 

replicates per class would be needed, as it would also allow for more complex multivariate 

analysis and potentially the separation of a bigger number of varieties. It would also be 

interesting to assess the class separation between varieties and cultivations in different 

sample types, potentially expanding beyond cereals to fruit/vegetables and other plant 

species.
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APPENDIX

Table A1. Italian rice samples list.

No Cultivation Variety Type Year Origin (Province)

1 Organic Rosa Marchetti White 2022 Rovasenda (VC)

2 Organic Dellarole Brown 2022 Rovasenda (VC)

3 Organic Carnaroli White 2022 Rovasenda (VC)
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4 Organic Baldo White 2022 Buronzo (VC)

5 Organic Baldo White 2022 Buronzo (VC)

6 Organic Carnaroli White 2022 Buronzo (VC)

7 Organic Carnaroli Brown 2022 Buronzo (VC)

8 Organic Baldo Brown 2022 Buronzo (VC)

9 Organic S Andrea White 2021 Rovasenda (VC)

10 Organic Baldo White 2021 Rovasenda (VC)

11 Organic Carnaroli Brown 2022 Rovasenda (VC)

12 Organic Carnaroli Brown 2019 Olevano (PV)

13 Organic Carnaroli White 2020 Olevano (PV)

14 Organic Rosa Marchetti Brown 2022 Rovasenda (VC)

15 Organic Carnaroli White 2020 Olevano (PV)

16 Organic Carnaroli White 2022 Robbio (PV)

17 Organic Rosa Marchetti Brown 2022 Nicorvo (PV)

18 Organic Rosa Marchetti White 2022 Nicorvo (PV)

19 Conventional Generic Brown 2023 Commerce

20 Conventional Arborio White 2023 Commerce

21 Conventional Arborio White 2023 Commerce

22 Conventional Carnaroli White 2023 Commerce

23 Conventional Arborio White 2023 Commerce

24 Conventional Carnaroli White 2023 Commerce

25 Conventional Arborio White 2023 Commerce

26 Conventional Carnaroli White 2023 Commerce

27 Conventional Carnaroli White 2023 Commerce

28 Conventional Arborio White 2023 Commerce

29 Conventional Arborio White 2023 Commerce
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30 Conventional Carnaroli White 2023 Commerce

31 Conventional Carnaroli White 2023 Commerce

32 Conventional Arborio White 2023 Commerce

33 Conventional Generic Brown 2023 Commerce

34 Organic Generic Brown 2023 Commerce

35 Conventional Generic Brown 2023 Commerce

36 Conventional Generic Brown 2023 Commerce

37 Conventional Generic Brown 2023 Commerce

38 Organic Baldo Brown 2023 Commerce

Figure A1. δ13Cbulk variability across Italian rice varieties
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Figure A2. White rice δ15NAA values of organic (O) and conventional (C) cultivation.

Table A2. LDA confusion matrix and results
Confusion Matrix

Arborio_Conv Baldo_Org Carnaroli_Conv Carnaroli_Org Generic_OrgConv

Arborio_Conv 1 0 0 0 0

Baldo_Org 0 0 0 0 0

Carnaroli_Conv 0 0 1 0 0

Carnaroli_Org 0 1 0 1 0

Generic_OrgConv 0 0 0 0 1

Overall Statistics:

Accuracy : 0.8

95% CI : (0.2836, 0.9949)

No Information Rate : 0.2

P-Value [Acc > NIR] : 0.00672

Kappa : 0.75

Statistics by Class: Class: 
Arborio_Conv Class: Baldo_Org

Class: 
Carnaroli_Conv

Class: 
Carnaroli_Org

Class: 
Generic_OrgConv

Sensitivity 1 0 1 1 1
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Specificity 1 1 1 0.75 1

Balanced Accuracy 1 0.5 1 0.875 1

Precision 1 0 1 0.5 1

Recall 1 0 1 1 1

Figure A3. ROC curves obtained for all LDA classes.

Table A3. Terminology of LDA model interpretation
Kappa Coefficient A measure of inter-rater agreement that assesses how 

well the predicted classifications agree with actual 
classifications, adjusting for chance. It ranges from -1 to 1, 
where higher values indicate better agreement.

No Information Rate (NIR) The expected accuracy of a model if it always predicts the 
most common class. A model should perform significantly 
better than the NIR to demonstrate its effectiveness.

Area Under the Curve (AUC) A metric derived from the Receiver Operating 
Characteristic (ROC) curve that represents the ability of 
the model to distinguish between classes. The AUC 
ranges from 0 to 1, with 1 indicating perfect classification 
ability.

Precision The ratio of true positive predictions to the total predicted 
positives. It measures the accuracy of the positive 
predictions made by the model. High precision indicates 
fewer false positives.

Recall (Sensitivity) The ratio of true positive predictions to the total actual 
positives. It reflects the model’s ability to identify all 
relevant instances. High recall indicates fewer false 
negatives.
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Specificity The ratio of true negative predictions to the total actual 
negatives. It measures the model’s ability to correctly 
identify negative instances. High specificity indicates 
fewer false positives.

Receiver Operating 
Characteristic (ROC) Curve

A graphical representation of a classifier’s performance 
across different threshold values, plotting the true positive 
rate (sensitivity) against the false positive rate.

Table A4. Decision Tree confusion matrix and results
Confusion Matrix

Arborio_Conv Baldo_Org Carnaroli_Conv Carnaroli_Org Generic_OrgConv

Arborio_Conv 1 0 0 0 0

Baldo_Org 0 0 0 0 0

Carnaroli_Conv 0 1 1 0 0

Carnaroli_Org 0 0 0 1 0

Generic_OrgConv 0 0 0 0 1

Overall Statistics:

Accuracy : 0.8

95% CI : (0.2836, 0.9949)

No Information Rate : 0.2

P-Value [Acc > NIR] : 0.00672

Kappa : 0.75

Statistics by Class: Class: 
Arborio_Conv Class: Baldo_Org

Class: 
Carnaroli_Conv

Class: 
Carnaroli_Org

Class: 
Generic_OrgConv

Sensitivity 1 0 1 1 1

Specificity 1 1 0.75 1 1

Balanced Accuracy 1 0.5 0.875 1 1

Precision 1 0 0.5 1 1

Recall 1 0 1 1 1
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Highlights
● Simultaneous classification of variety and cultivation was achieved by CS-IRMS data

● Generic rice was separated from the premium Italian varieties with 100% accuracy

● δ15NAAs fluctuated significantly more than δ13CAAs across all variables
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