

Novel Amplicon-Based Sequencing Approach to West Nile Virus

Moussa Moïse Diagne ^{1,*,†}[®], Marie Henriette Dior Ndione ^{1,†}[®], Giulia Mencattelli ^{2,3,4,†}[®], Amadou Diallo ⁵[®], El hadji Ndiaye ⁶[®], Marco Di Domenico ²[®], Diawo Diallo ⁶[®], Mouhamed Kane ¹, Valentina Curini ²[®], Ndeye Marieme Top ⁵, Maurilia Marcacci ²[®], Maïmouna Mbanne ¹, Massimo Ancora ²[®], Barbara Secondini ², Valeria Di Lollo ², Liana Teodori ², Alessandra Leone ², Ilaria Puglia ²[®], Alioune Gaye ⁶[®], Amadou Alpha Sall ¹, Cheikh Loucoubar ⁵[®], Roberto Rosà ³[®], Mawlouth Diallo ⁶, Federica Monaco ²[®], Ousmane Faye ¹, Cesare Cammà ²[®], Annapaola Rizzoli ⁴[®], Giovanni Savini ²[®] and Oumar Faye ¹[®]

- ¹ Virology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal; marie.ndione@pasteur.sn (M.H.D.N.); mouhamedkane2015@gmail.com (M.K.); maimounambanne16@gmail.com (M.M.); amadou.sall@pasteur.sn (A.A.S.); ousmane.faye@pasteur.sn (O.F.); oumar.faye@pasteur.sn (O.F.)
- ² Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100 Teramo, Italy; giulia.mencattelli@unitn.it (G.M.); m.didomenico@izs.it (M.D.D.); v.curini@izs.it (V.C.); m.marcacci@izs.it (M.M.); m.ancora@izs.it (M.A.); b.secondini@izs.it (B.S.); v.dilollo@izs.it (V.D.L.); l.teodori@izs.it (L.T.); a.leone@izs.it (A.L.); i.puglia@izs.it (I.P.); f.monaco@izs.it (F.M.); c.camma@izs.it (C.C.); g.savini@izs.it (G.S.)
- ³ Centre Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy; roberto.rosa@unitn.it
- ⁴ Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy; annapaola.rizzoli@fmach.it
- ⁵ Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar BP220, Senegal; amadou.diallo@pasteur.sn (A.D.); ndeyemarieme.top@pasteur.sn (N.M.T.); cheikh.loucoubar@pasteur.sn (C.L.)
- ⁶ Medical Zoology Department, Institut Pasteur de Dakar, Dakar BP220, Senegal; elhadji.ndiaye@pasteur.sn (E.h.N.); diawo.diallo@pasteur.sn (D.D.); alioune.gaye@pasteur.sn (A.G.); mawlouth.diallo@pasteur.sn (M.D.)
- Correspondence: moussamoise.diagne@pasteur.sn
- † These authors contribute equally to the work.

Abstract: West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.

Keywords: West Nile virus; lineages; next-generation sequencing; amplicon-based sequencing

1. Introduction

The threat from new re-emerging viruses has markedly increased in recent decades due to population growth, urbanization, and the expansion of global travel, facilitating the rapid spread of infection during an outbreak. West Nile virus (WNV), an arbovirus belonging to the flavivirus genus, was firstly isolated in 1937 in Uganda [1] before spreading throughout the world [2]. The enzootic cycle includes mosquitoes and several vertebrate species including birds, allowing long-distance viral spread during migratory seasons [3,4].

Citation: Diagne, M.M.; Ndione, M.H.D.; Mencattelli, G.; Diallo, A.; Ndiaye, E.h.; Di Domenico, M.; Diallo, D.; Kane, M.; Curini, V.; Top, N.M.; et al. Novel Amplicon-Based Sequencing Approach to West Nile Virus. *Viruses* **2023**, *15*, 1261. https:// doi.org/10.3390/v15061261

Academic Editors: Claudia Fortuna, Giulietta Venturi and Giulia Marsili

Received: 4 April 2023 Revised: 14 May 2023 Accepted: 17 May 2023 Published: 27 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Humans are considered WNV dead-end hosts because no human-to-mosquito transmission has been reported yet [5]. Most WNV infections are asymptomatic or may develop into self-limited febrile illness, but a very small percentage of cases progress to neuroinvasive disease with a range of symptoms and occasionally death [6,7].

Before 1990, WNV disease was considered to have a minor public health impact with only sporadic human cases. Since the first outbreaks reported in Algeria and Romania in 1994 and 1996, the virus has diffused to cause large epidemics in North America, Northern African, and Western and Eastern European countries [7].

In Italy, areas with either proven active asymptomatic WNV circulation or high probability of human infection have been previously reported [8,9], and an increasing number of neuroinvasive human infections have been described [10,11].

In Africa, little evidence of WNV epidemics has been noted. In Senegal, where WNV was first isolated in an acute human case in 1970, the virus has also been detected in mosquitoes, birds, horses, and human samples. From 2012 to 2021, active WNV circulation in mosquitoes and humans was documented following a reintroduction event from Europe [12].

WNV exhibits great genetic diversity with currently eight different lineages (excluding Koutango virus) circulating in the world [13]. Lineages 1 (WNV-L1) and 2 (WNV-L2) are the ones causing the main public health concern [7,12]. Genetic characterization of the strains detected yield potential tracking of the routes of the introduction of viruses, which is a particular interest for public health authorities in designing surveillance and countermeasures plans.

Genome sequencing of viruses has proven to be critical in the management of epidemics. Many approaches can be used to obtain viral whole genomes: (i) propagation with cell cultures followed by nucleic acids metagenomic (mNGS); (ii) hybrid capture using specific biotinylated probes; and (iii) a multiplex PCR-based target enrichment or amplicon-based protocol. This last approach became the most used one for the SARS-CoV-2 genomic surveillance during the COVID-19 pandemic due to its applicability in a wide range of input titers, yielding directly sequenced clinical samples, as well as its high specificity and scalability under resource-limited conditions with lower costs [14–17].

Due to the wide range of WNV hosts, many One Health studies focus on WNV. As genomic data are key information for understanding the mechanisms of the emergence and circulation of this virus, it is crucial to develop a rapid, reliable, and cost-effective sequencing tool that is more accessible than isolation methods or mNGS.

We describe here the development and evaluation of a whole-genome amplicon-based sequencing approach for WNV-L1 and WNV-L2 using Illumina technology in different types of vertebrates and mammals from Senegal and Italy.

2. Materials and Methods

2.1. Primers Design for Tiled Amplicon-Based Sequencing Systems for West Nile Virus

Primer design was made in IPD using a web-based tool entitled Primal Scheme [18] in order to obtain two non-overlapping pools of WNV targeting primers to perform multiplexed PCR reactions, generating approximately 400 bp amplicons tiled along the targeted genome. A WNV reference genome (accession number: NC009942) was chosen as the template. An alignment of WNV whole-genome sequences available on Genbank representative of all WNV lineages in both Africa and Europe was then used to identify nucleotide mismatches for potential correction at ambiguous sites of each primer to ensure both good coverage and high specificity for diverse WNV lineages. Overall, the approach used was a two-pool multiplex amplicon-based sequencing.

2.2. West Nile Virus Primer Pools Validation

Validation of the primer sets followed several steps: (i) inclusivity test by sequencing attempts on several WNV-L1 and WNV-L2 strains; (ii) specificity and sensitivity tests by sequencing attempts on several flaviviruses and other arboviruses, as well as serial dilutions

of WNV-L1 and WNV-L2 culture isolates; and (iii) final validation by sequencing confirmed positive WNV samples derived from different species of vertebrates and mosquitoes from Italy and Senegal.

2.2.1. Sequencing of WNV-L1 and WNV-L2 Isolates

The designed primer systems were challenged for amplicon-based whole-genome sequencing of well-characterized WNV-L1 and WNV-L2 isolates from Senegal and Italy. The experiments were undertaken by both the teams in Senegal and Italy with their local isolates. WNV-L1 (n = 10) and WNV-L2 (n = 8) well-characterized viral isolates from both countries were used to assess the ability of the designed primer pools for whole-genome amplicon-based sequencing. WNV strains from Senegal were obtained after infection of C6/36 monolayer cells with homogenized mosquito pools as previously described [12]. Isolates from Italy were obtained from birds' internal organ homogenates after two to three passages on Vero monolayer cell lines, followed by an infection on C6/36 cell lines. A genome coverage of 95% and above was targeted.

2.2.2. Specificity and Sensitivity of the WNV Amplicon-Based Sequencing Systems

The second step was to assess specificity by performing the experiment on several other arboviruses: Rift Valley fever virus (RVFV); yellow fever virus (YFV); Zika virus (ZIKV); dengue 2 virus (DENV-2); Wesselsbron virus (WSLV); Kedougou virus (KDGV); Usutu virus (USUV); and chikungunya virus (CHIKV). The sensitivity of the approach was evaluated using serial dilutions of WNV-L1 and WNV-L2 culture isolates at different concentrations (10^6-10^2 RNA copy/µL). Each concentration was sequenced in triplicate.

2.2.3. Validation on Confirmed Positive WNV Samples

Finally, sequencing attempts on both WNV-L1 and WNV-L2 positive samples from mosquitoes, birds, and horses from Italy and Senegal were conducted. The CT values of the samples were confirmed by RT-qPCR using a consensus WNV assay [6] in Senegal and a molecular WNV sub-typing assay [19] in Italy, prior to proceeding to the sequencing.

2.2.4. Next-Generation Sequencing and Genome Assembly

Viral RNAs were extracted using the QIAamp viral RNA mini-kit (QIAGEN, Hilden, Germany) and were reverse-transcribed into cDNAs using the Superscript IV Reverse Transcriptase enzyme (ThermoFisher Scientific, Waltham, MA, USA). The synthesized cDNAs served as templates for direct amplification to generate approximately 400 bp amplicons tiled along the genome using two non-overlapping pools of WNV targeting primers at 10 nM and Q5[®] High-Fidelity 2X Master Mix (New England Biolabs) with the following thermal cycling protocol: 98 °C for 30 s; 35 cycles of 95 °C for 15 s and 65 °C for 5 min; and a final cooling step at 4 °C.

In Senegal, libraries were then synthesized by tagmentation using the Illumina DNA Prep kit and the IDT[®] for Illumina PCR Unique Dual Indexes. After a cleaning step with the Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN), libraries were quantified using a Qubit 3.0 fluorometer (Invitrogen Inc., Waltham, MA, USA) for manual normalization before pooling in the sequencer. Cluster generation and sequencing were conducted with ab Illumina MiSeq instrument with 2 × 300 nt read length. Consensus genomes were generated using the nextflow-based nf-core viral reconstruction pipeline (https://github.com/nf-core/viralrecon, accessed on 20 January 2023) from the standardized nf-core pipelines [20,21]. The versions of nextflow and viralrecon used were v21.10.6 and v2.5, respectively. In Italy, amplified DNA was diluted to obtain a concentration of 100–500 ng, then used for library preparation with an Illumina DNA prep kit, and sequenced with a NextSeq 500 (Illumina Inc., San Diego, CA, USA) using a NextSeq 500/550 Mid Output Reagent Cartridge v2 for 300 cycles with standard 150 bp paired-end reads. After quality control and trimming with the Trimmomatic v0.36 (Usadellab, Düsseldorf, Germany) [22] and FastQC tool v0.11.5 (Bioinformatics Group, Babraham Institute,

Cambridge, UK) [23,24], reads were de novo assembled using SPADES v3.11.1 (Algorithmic Biology Lab, St Petersburg, Russia) [25]. The contigs obtained were analyzed with BLASTn to identify the best match reference. Mapping of the trimmed reads was then performed using the iVar computational tool [26] to obtain a consensus sequence.

3. Results

3.1. West Nile Virus Oligonucleotide Primers Sets

A first multiplex primer system was designed based on a WNV-L1 reference genome (accession number: NC009942), generating a set of 35 oligonucleotide primer pairs that amplify overlapping products spanning almost the whole WNV genome.

The primers set (set A) was subsequently compared to an alignment of 15 sequences representing the different WNV lineages (Table S1). Degeneration was then added in relevant ambiguous sites on each primer in order to cover a maximum of lineages while trying to maintain a balance for specificity. The list of WNV primers in set A can be found in Table 1. We should notice that two extra primers (KOUV_2_RIGHT and KOUV_7_LEFT) were incorporated into set A to potentially extend the sequencing to Koutango virus, even if this work was not carried out in this study.

Table 1. Sequences of the West Nile virus primers sets A and B.

	WNV Primers Set A	V	VNV Primers Set B
WNV 1 LEFT	GCCTGTGTGAGCTGACAAACTT	WNV-L2 1 LEFT	GCCTGTGTGAGCTGACAAACTT
WNV 1 RIGHT	TTCTTTTGTTTTGAGCTCCKCC	WNV-L2 1 RIGHT	TTCTTTTGTTTTGTGCTCCGGC
$WNV \overline{2} LEFT$	ACAGCGATGAAACACCTTCTGA	WNV-L $\overline{2}$ $\overline{2}$ LEFT	ACAGCGATGAAGCATCTCTTGA
WNV_2_RIGHT	CGTGTCTTGGTGCATCTTCCAT	WNV-L2 2 RIGHT	GBCGDGTYTTDGTGCATCTYCC
KOUV_2_RIGHT	TTYCCTCTGATGCATCTTCCAT	WNV-L2_3_LEFT	GTSYTRGCTGCTGGAAATGAYC
WNV_3_LEFT	CCRGTACTGTCGGCTGGTAATG	WNV-L2_3_RIGHT	CMACCCATGTAGCTCCAGAYAC
WNV_3_RIGHT	CVAGAACCAAATCCACCAWGT	WNV-L2_4_LEFT	ATNCTATTGCTCCTGGTRGCA
WNV_4_LEFT	ACAGCTTCAACTGCCTTGGAAT	WNV-L2_4_RIGHT	TCCADCCAGTTGCTTTGGTKGW
WNV_4_RIGHT	TGRTTCTTCCTATTGCCTTGGT	WNV-L2_5_LEFT	GTRGACAGRGGATGGGGAAAYG
WNV_5_LEFT	GGYTGCGGACTATTTGGMAAA	WNV-L2_5_RIGHT	GRTTCCTCCAHGYGGTGCTT
WNV_5_RIGHT	CTCCACACAGTACTTCCAGCAC	WNV-L2_6_LEFT	CCTTCCTGGTYCACCGAGARTG
WNV_6_LEFT	GGHACAAAGACGTTCTTGGTYC	WNV-L2_6_RIGHT	KGAVGAAATGGGCACYTTRCAR
WNV_6_RIGHT	GMACTTTGCAAGGTCCATCYGT	WNV-L2_7_LEFT	GCDTTYAAATTCGCYGGGACTC
WNV_7_LEFT	AYGCTTTCAAGTTTCTTGGGACT	WNV-L2_7_RIGHT	GTGTATRGCTTTCCCYACYGAG
KOUV_7_LEFT	AYGCTTTCAAGTTTCTTGGGCAT	WNV-L2_8_LEFT	ACTCAGAGGAGCTCAACGACTC
WNV_7_RIGHT	AASACTIGATGGACAGCCTICC	WNV-L2_8_RIGHT	ATTYTTGCTAGGCCTTGTGGHG
WNV_8_LEFT	ARMGACTAGCCGCTCTAGGAGA	WNV-L2_9_LEFT	CGGTGYGGAAGTGGAGTGTTYA
WNV_8_RIGHT	TGDGCTTTCTGAATGATCTTGGCT	WNV-L2_9_RIGHT	TRYTRITCCATGCTCGGTTSR
WNV_9_LEFT	AAYGATGTGGAGGCTTGGATGG	WNV-L2_10_LEFT	YGCDCCAGARCTAGCTAACAAYA
WNV_9_RIGHT	AWRCTATTCCAAGCGCGATTSK	WNV-L2_10_RIGHT	CCCIGGYCICCIGITRIGRIIGC
WNV_10_LEFT	TMTTTGCACCAGAACTCGCYAA	WNV-L2_11_LEFT	CACHYIGIGGGGGGGAGGGGAGT
WNV_10_RIGHT	CWGGTCTCCGATTGTGATTGCT	WNV-L2_11_RIGHT	CAGAAGGCCCAACTGAAAAGGA
WNV_II_LEFI	AYACCIIGIGGGGGGGAIGGARI	WNV-L2_I2_LEFI	GAYGAAAAGACCCICGIGCA
WNV_11_KIGH1	GGUUAAUIGAAAAGGGIUAAI	WNV-L2_12_KIGHI	
WINV_12_LEFT		WINV-L2_13_LEFT	
WNV_12_KIGH1		WNV-L2_13_KIGHT	
WINV_13_LEFT		WINV-L2_14_LEFT	
WINV_15_KIGHT		WINV-L2_14_KIGHT	
WINV_14_LEFT		WINV-L2_I5_LEFT	
WINV_14_KIGHT		WINV-L2_15_KIGHT	
WINV 15 DICUT		WINVL2_16_LEFT	
WINV_13_KIGHT		WNVL2_10_KIGHT	
WNV 16 PICHT	WATECCCTTATCTATC A HCCE	WINVL2 17 PICHT	
WNV 17 I FET		WNVI2 18 LEET	
WNV 17 RICHT	DCTCACCCTACCATCACACATC	WNV-L2_10_LEFT	TTRCCCATTTTCACACTTCCAACR
WNV 18 I FFT	ATCKCTCAACCACTCACRCCA	WNV-I 2 19 I FFT	ACMCAGCCTGGAACACTGGVTA
WNV 18 RICHT	CCATCTTGACACTAGGCACAA	WNV-I 2 19 RIGHT	CCTCC ATAGC A ATACTC ATC ACC A
WNV 19 LEFT	CGRGCTTGGAACTCTGGATAYG	WNV-L2 20 LFFT	TGATGGAAGAGTCATCCTGGGV
WNV 19 RIGHT	TACTCATCACCAACTTGCGAYG	WNV-L2 20 RIGHT	GTGTTGGTTCGAGGTCCATCAA
WNV 20 LEFT	GGAGAACCATCTGCAGTGACAG	WNV-L2 21 LEFT	CWGTCTGGCTCGCTTACAAAGT
WNV 20 RIGHT	CMACTTCGTTGTTGTCTTCTAAAATTG	WNV-L2 21 RIGHT	ARGCTATTGTCTGAAGGGCRTC
WNV_21_LEFT	CYTACAAGGTTGCAGCRGCT	WNV-L2_22_LEFT	TTKGACACGATGTATGTGGTKG

Tabl	le 1.	Cont.

	WNV Primers Set A	W	NV Primers Set B
WNV 21 RIGHT	ACTCCCATGGTCATCACACWCA	WNV-L2 22 RIGHT	CAYTCTTGGTCTTGTCCAGCCA
$WNV \overline{22}LEFT$	GAGGMAGAGCTCACAGAATGGC	WNV-L2_23_LEFT	YCAGCTYGCCGTGTTTTTGATY
WNV_22_RIGHT	CCTTGACCTCAATTCTTTGCCC	WNV-L2_23_RIGHT	CYGCAGTCACAGTCACAGTCAG
WNV_23_LEFT	TTGTGTCATGACCCTTGTSAGC	WNV-L2_24_LEFT	YTTTGTVGACGTTGGTGTGTCA
WNV_23_RIGHT	GGDACCATGTAGGCATAGTGGC	WNV-L2_24_RIGHT	TYGTTGCRTTCCACACTGARCT
WNV_24_LEFT	TTYGTCGATGTTGGAGTKTCA	WNV-L2_25_LEFT	ARRACTGTCAGAGAGGCYGGAA
WNV_24_RIGHT	GTYGTTGCGTTCCAMACWGAGC	WNV-L2_25_RIGHT	GCCTTTCCACTAACCACCGYAR
WNV_25_LEFT	RGACHGTVCGAGAAGCYGGAAT	WNV-L2_26_LEFT	RHGCCAGGAGAGAGGGAAAYRT
WNV_25_RIGHT	GRTCGAGGAAACBCCGTTCGAC	WNV-L2_26_RIGHT	CCARTCTTCCACCATCTCCARR
WNV_26_LEFT	RAGAAGGCAAYRTCACYGGAGG	WNV-L2_27_LEFT	CACACTGCTCTGTGACATTGGA
WNV_26_RIGHT	ARAATTCCCTTGGCCCTCGG	WNV-L2_27_RIGHT	AGAATTGAGGAGAGGCTTCCCY
WNV_27_LEFT	TCAAGTGCTGAGGTTGAAGAGC	WNV-L2_28_LEFT	AAGAAAACVTGGAAGGGACCYC
WNV_27_RIGHT	GCCTGAGTCGTTCAATCCTGTT	WNV-L2_28_RIGHT	TBGTGGTCTCATTGAGGACGTR
WNV_28_LEFT	TGTAAACTTGGGAAGTGGAACCA	WNV-L2_29_LEFT	CTCCTTTCGGHCAACAACGRGT
WNV_28_RIGHT	TTTWTCKCTGGCCAYAAAVGCC	WNV-L2_29_RIGHT	CYCCBAGCCACATGAACCADAT
WNV_29_LEFT	GTGGAYACGAAAGCTCCTGARC	WNV-L2_30_LEFT	ACYTGCATCTACAACATGATGGG
WNV_29_RIGHT	ATTGAGAAAACCSAGAGCTTCG	WNV-L2_30_RIGHT	GGBCTCATCACTTTCACGACYT
WNV_30_LEFT	MAARGCCAARGGMAGCAGAG	WNV-L2_31_LEFT	CDAAGGTBCTTGARCTGCTDGR
WNV_30_RIGHT	CCYCTCTGATCTTCTCTGGAGA	WNV-L2_31_RIGHT	GGACCTTTGACATGGCATTBAGR
WNV_31_LEFT	TGAGCTCACCTATCGWCACAAA	WNV-L2_32_LEFT	GGHGATGACTGYGTGGTDAA
WNV_31_RIGHT	CAYCCAGTTGACGGTTTCCACT	WNV-L2_32_RIGHT	GRACCCAGTTVACAGGCACA
WNV_32_LEFT	TGGTRAAGCCCCTGGAYGAY	WNV-L2_33_LEFT	GCAGATGTGGCTGYTGCTTTAT
WNV_32_RIGHT	TCTCCTCCTGCATGGATSGA	WNV-L2_33_RIGHT	YRTCTTCATACCTCCTCARDGA
WNV_33_LEFT	AGWAGAGACCTGMGGYTCAT	WNV-L2_34_LEFT	GCGCHACTTGGGCTGAAAAYAT
WNV_33_RIGHT	TCTACAAAACTGTGTCCTCAACCA	WNV-L2_34_RIGHT	MYCTTCCGAGACGGTTCTGA
WNV_34_LEFT	AGTCAGWKCAATCATCGGRGAWG	WNV-L2_35_LEFT	GGAAGTTGAGTAGACGGTGCTG
WNV_34_RIGHT	CACTATCGCAGACTGCACTCTC	WNV-L2_35_RIGHT	TCCCAGGTGTCAATATGCTGTT
WNV_35_LEFT	CAGGAGGACTGGGTGAACAAAG		
WNV_35_RIGHT	TGGTTGTGCAGAGCAGAAGATC		

A second primer set (set B) was designed based on a WNV-L2 reference genome (accession number: MH021189) and was compared with an alignment of 82 WNV-L2 sequences (Table S2) to capture the diversity within the lineage. The list of WNV primers in set B can be found in Table 1.

3.2. WNV Primers Sets Validation

3.2.1. Validation of Set A

Inclusivity Test

After the design of set A, seven WNV-L1 and three WNV-L2 isolates from Senegal were selected, and three viral culture supernatants for each lineage from three different Italian regions were processed for amplicon-based sequencing in triplicate. Overall, tiled amplicon whole-genome sequencing undertaken on both strains from Senegal and Italy yielded 99–100% horizontal coverage with genome length between 10,961 nt and 11,018 nt for WNV-L1 and between 10,914 nt and 10,926 nt for WNV-L2 (Table 2).

Sensitivity Test

One representative isolate of each lineage, i.e., WNV 15217 (accession number: FJ483548) and WNV Thessaloniki_MC82m/2018 (accession number: MN652880) for WNV-L1 and WNV-L2, respectively, was selected to evaluate the detection limit of the set A primers under optimal conditions. Serial dilutions from 10^6 to 10^2 cp/µL were processed in triplicate for sequencing. The set A primers were able to detect more than 95% of the total WNV-L1 genome up to 10^4 cp/µL. At 10^3 cp/µL, the horizontal coverage was between 91% and 94%, while at 10^2 cp/µL, 80 to 82% of the WNV-L1 sequence was completed. However, poor coverage was observed in the WNV-L2 samples (between 17% and 35% completeness) as shown in Table 3.

RT-PCR Ct V	/alue	Total Number ofNumberTrimmate ReadsWNV Reads		% HCoverage	VCoverage	Consensus Sequence Length
	14	2369.723	649.022	99%	5802.67	10.969
Viral strain	14	1922.532	581.215	99%	5346.85	10.966
WNV L1 Italy	13	2715.830	754.081	99%	6244.36	10.966
	No	o. of replicates with cover	age $\geq 95\%$	3/3 (100%)		
	25	623.535	238.259	99%	7997	10.961
	28	5034.151	1035.983	99%	6862.12	10.965
Viral strain WNV L1	16	5034.151	547.775	99%	5183.83	10.966
	19	810.906	327.395	100%	3971.4	11.018
	17	924.142	363.236	99%	4412.7	10.963
Senegal	17	899.818	342.133	99%	3851.34	10.966
	17	819.552	358.631	99%	4306.94	10.961
	No	o. of replicates with cover	7/7 (100%)			
	18	2607.185	546.249	100%	3607.99	10.926
Viral strain	18.71	2466.682	511.381	100%	3488.1	10.926
WNV L2 Italy	18.13	2061.961	465.844	100%	3445.55	10.926
-	No	o. of replicates with cover	age $\geq 95\%$	3/3 (100%)		
Viral strain	14	4861.644	706.114	100%	3519.51	10.914
WNIV L 2	14	4087.737	835.098	100%	5593.58	10.914
Sepagal	14	4750.250	885.595	100%	5609.34	10.914
Seriegai	No	o. of replicates with cover	age $\geq 95\%$	3/3 (100%)		

 Table 2. Inclusivity test of the West Nile virus set A primers.

Table 3. Sensitivity test of the West Nile virus set A primers.

Viral Strain	Quantity Value (cp/µL)	Quantity Mean Value (Ct)	Total Number of Trimmate Reads	Number of WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
	106		1457.278	503.152	99%	5043.56	10.959
	10^{6}	18.68	1371.693	476.605	99%	4997.04	10.964
	10^{6}	10 ⁶	938.406	375.653	99%	4372.01	10.959
		No. of replicates	with coverage ≥ 9	95%	3/3 (100%)		
	10 ⁵		1342.407	426.914	99%	4587.33	10.960
	10^{5}	23.45	1174.155	397.215	99%	4435.79	10.959
	10^{5}		825.135	315.219	99%	3776.67	10.956
WNV L1		No. of replicates	with coverage ≥ 9	3/3 (100%)			
(reference used	104		906.690	292.718	96%	3456.26	10.964
for the mapping	10^{4}	27	984.952	297.351	97%	3414.38	10.959
on Genpat: WNV	10^{4}		1247.127	327.095	96%	3570.22	10.959
L1 FJ483548		No. of replicates	with coverage ≥ 9	3/3 (100%)			
	10 ³		1096.401	249.798	94%	2735.41	10.962
	10 ³	30	506.380	153.284	93%	1853.42	10.955
	10 ³		569.039	170.272	91%	2099.54	10.955
		No. of replicates	with coverage ≥ 9	95%	0/3 (0%)		
	10 ²		57.229	20.115	82%	295.76	10.366
	10 ²	33	53.435	18.515	81%	281.027	10.958
	10 ²		41426	15.149	80%	227.617	10.951
		No. of replicates	with coverage ≥ 9	95%	0/3 (0%)		

Viral Strain	Quantity Value (cp/µL)	Quantity Mean Value (Ct)	Total Number of Trimmate Reads	Number of WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
	10^{6}		1262.167	12.484	35%	391.547	10.028
	10^{6}	18.68	1315.568	11.576	33%	383.276	10.928
	10^{6}		1103.838	16.652	26%	706.146	10.928
		No. of replicates	with coverage ≥ 9	95%	0/3 (0%)		
	10 ⁵		1210.495	11.251	36%	347.197	10.928
	10^{5}	22.87	823.025	10.243	33%	345.101	10.928
	10^{5}		1478.160	12.253	34%	394.675	10.928
WNV L2		No. of replicates	with coverage ≥ 9	0/3 (0%)			
(reference used	10^{4}		1228.945	9.715	32%	337.862	10.928
for the mapping:	10^{4}	26.41	1090.849	9.547	32%	327.57	10.928
WNV L2	10^{4}		947.964	4.405	30%	159.122	10.928
MN652880)		No. of replicates	with coverage ≥ 9	0/3 (0%)			
	10 ³		442.063	2.796	26%	121.744	10.928
	10 ³	30	577.277	3.500	27%	143.439	10.926
	10^{3}		369.041	1.615	22%	79.118	10.245
		No. of replicates	with coverage ≥ 9	95%	0/3 (0%)		
	10 ²		35.426	1.362	17%	789.157	10.924
	10 ²	33.14	68.307	627	17%	360.495	10.926
	10^{2}		63.643	731	18%	571.297	10.926
		No. of replicates	with coverage ≥ 9	95%	0/3 (0%)		

Table 3. Cont.

Specificity Test

Amplicon-based whole-genome sequencing with set A primers was conducted on six flavivirus species (YFV, ZIKV, DENV-2, WSLV, KDGV, USUV), as well as RVFV and CHIKV, in order to assess the specificity of this WNV targeted approach. All the samples failed the bowtie2 1000 mapped-read threshold and no consensus genome could be assembled.

WNV Set A Primers Validation on Real Homogenates

Thirty-one (31) WNV-L1 and fifty-four (54) WNV-L2 homogenates with known Ct values by RT-qPCR were selected for targeted sequencing using the set A primers. Homogenates were obtained from mosquito pools and the internal organs of birds with low to high viral loads.

Among WNV-L1 homogenates, horizontal coverage was between 34% and 100%. A total of 35% of the samples reached above 95% horizontal coverage and about 65% of samples for 90% horizontal coverage. Most complete genomes had Ct values between 16 and 28. However, we also noted that among the least well-covered samples, Ct values ranged from 25 to 35, highlighting that factors other than the viral load could be involved. Additionally, five samples were WNV-L1/WNV-L2 co-infections, and the amplicon-based approach yielded from 87% to 96% WNV-L1 horizontal coverage, even when WNV-L2 had a higher viral load. Relatively correct coverage (between 74% and 92%) was obtained from other four samples from mosquitoes trapped in Senegal, for which viral co-infections with either alphaviruses, mesoniviruses, or flaviviruses were reported. All these results are summarized in Table 4.

Viral Homogenate WNV L1—Sample Number	Host	RT-PCR Ct Value	Co- InfectionCt Value	# Total Trimmate Reads	# WNV L1 Reads	% HCoverage	VCoverage	Consensus Sequence Length
1	Accipiter gentilis	15	-	2,037,215	591,954	100%	6362.04	11,027
2 3 4	Pica pica Corvus cornix Pica pica	16 16 18	- -	14,648,025 6,447,209 2,923,237	1,333,187 657,948 387,986	100% 99% 99%	6381.67 5135.45 4264.56	11,016 10,966 10,966
5	Phalacrocorax	19	-	11,441,518	1,107,291	99%	5888.49	10,961
6 7 8 9	Corvus cornix Culex pipiens Culex pipiens Corvus cornix	19 20 22 22	- - -	2,347,380 3,495,685 7,571,826 5,382,363	351,292 744,562 597,499 629,364	99% 99% 98% 99%	4177.69 5560.68 3973.2 4806.11	10,963 10,968 10,967 10,960
10	Passer domesticus	22	-	3,942,375	304,215	97%	3084.4	10,962
11 12 13 * 14 *	Culex pipiens Corvus Cornix Culex pipiens Culex pipiens	23 24 25 25	- L2 Ct 28 L2 Ct 28	4,560,711 3,052,530 3,576,787 1,557,373	283,771 342,271 403,166 263,149	93% 93% 94% 90%	2899.47 3508.25 3761.48 2471.3	10,960 10,966 10,966 10,954
15	Larus michahellis	25	-	1,813,567	129,834	88%	1805.95	10,952
16	Streptopelia decaocto	26	-	1,439,897	203,172	91%	2592.09	10,961
17 18 19* 20 21 22*	Pica pica Parus major Culex pipiens Turdus merula Culex pipiens Culex pipiens	26 26 27 27 28 28	L2 Ct 32 L2 Ct 31	7,677,172 755,951 3,371,541 2,710,572 6,865,408 3,378,716	251,982 38,780 369,610 66,229 269,727 190,102	81% 69% 96% 82% 94% 87%	2920.03 747.61 3287.31 1039.08 2618.84 2201.29	10,963 9389 10,956 10,954 10,962 10,966
23	Streptopelia	28	-	1,842,010	22,006	68%	430.494	10,946
24 25	Equus caballus Athene noctua	28 29	-	1,805,957 3,394,989	159,703 15,767	92% 34%	$2101.31\\404$	10,960 10,802
26	Columba palumbus	31	-	835,362	9948	57%	211.706	10,960
27 *	Culex pipiens	33	L2 Ct 25	4,662,340	220,508	91%	2381.21	10,963
28 * (Alphavirus, Mesonivirus)	Culex neavei	28.5	-	391,494	1,135,180	92.42%	2514.3	10,194
29 ° (Barkedji, Mesonivirus)	Culex poicilipes	35.59	-	64,716	616,500	82.35%	1789.36	9083
30 * (Barkedji)	Culex neavei	29.52	-	302,175	1,394,466	89%	2001.3	9819
31 * (Alphavirus, Barkedji, Usutu)	Culex neavei	25.03	-	180,791	484,221	73.89%	822.02	8150

Table 4. Test of the West Nile virus set A primers with WNV-L1 homogenates. (* Samples withmultiple viral species/WNV lineage).

Regarding WNV-L2 homogenates, experiments undertaken with the set A primers were consistent with the data from inclusivity and specificity tests. Indeed, less than 6% of the samples processed had above 95% of the genome covered (3 out 54), and 87% had \leq 64% horizontal coverage, regardless of the viral load (Table 5).

Table 5. Test of the West Nile virus set A primers with WNV-L2 homogenates. (* Samples with multiple viral species/WNV lineage).

Viral Homogenate WNV L2—Sample Number	Host	RT- PCR Ct Value	Co- Infection Ct Value	# Total Trimmate Reads	# WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
1	Accipiter gentilis	16	-	3336.278	450.617	100%	3304.6	10.926
2	Accipiter gentilis	16	-	1773.333	393.125	99%	2982.38	10.926
3	Accipiter gentilis	19	-	2753.185	225.096	72%	1533.63	10.926

Viral Homogenate WNV L2—Sample Number	Host	RT- PCR Ct Value	Co- Infection Ct Value	# Total Trimmate Reads	# WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
4	Garrulus glandarius	20	-	3540.566	304.094	96%	1588.44	10.923
5	Culex pipiens	22	-	1092.527	517.44	58%	779.912	10.921
6	Culex pipiens	23	-	568.562	54.658	59%	905.155	10.834
7	Corvus cornix	23	-	1383.831	85.880	62%	1168.95	10.922
8	Passer italiae	24	-	476.120	45.644	47%	1089.79	10.923
0	Columba	2		1010 000		(10)	000.000	10.000
9	palumbus	26	-	1313.900	76.773	64%	908.822	10.923
10	Columba palumbus	27	-	5.377	7.319	25%	257.256	10.868
11	Columba	28	-	545.944	5073	23%	281.009	8.425
10	palumbus	01			70	40/	26.226	275
12	Iuraus merula	31	-	514.655	72	4%	26.336	375
13	Pica pica	31	-	330.374	280	5%	685.197	4.128
14	Phasianus colchicus	32	-	243.656	242	5%	543.463	7.510
15	Pica pica	33	-	341.153	613	9%	760.203	8.413
16	Pica pica	33	-	376.185	128	4%	307.715	3.779
17	Egretta garzetta	34	-	616.781	395	6%	715.396	7.923
18	Culex viviens	29	-	1537.448	24.517	33%	676.501	9.393
19	Culex pipiens	28	-	588.313	32.437	49%	749.224	10.924
20	Culex viviens	27	-	606.886	28.181	52%	494.551	10.923
21	Culex viviens	25	-	884.756	43.657	52%	864.517	10.891
22	Culex viviens	30	-	259.173	2.572	3%	989.276	381
23	Culex pipiens	28	-	436.461	14.473	29%	630.097	10.923
24	Culex viviens	24	-	2172.952	45.568	45%	716.974	10.923
25 *	Culex viviens	31	L1 Ct 28	3378.716	9.132	27%	447.986	10.928
26	Culex viviens	25		339.617	33.681	42%	827.229	10.790
27	Culex pipiens	21	-	1223.422	35.451	23%	1197.74	10.921
28	Culex pipiens	23	-	1832.341	38.134	15%	1569.34	10.555
29	Culex pipiens	25	-	686.602	25.509	18%	1178.55	10.609
30	Culex pipiens	27	-	502 162	8 253	3%	3113.1	388
31	Corvus cornix	28	-	1357 321	7 159	31%	312 307	10 475
32	Pica nica	20	_	6417 489	198 613	94%	1616 11	10.927
33 *	Culex pipiens	25	L1 Ct 33	4662.340	33.608	60%	534.955	10.926
34 *	Culex pipiens	24	USUV Ct	5133.183	77.022	61%	888.532	10.925
35	Culex pipiens	24	-	153.601	10	47%	275.337	556
36	Corvus cornix	29	-	877.218	0	0%	0	0
37	Culex niniens	23	-	199.550	99.490	88%	1126.14	10.890
38	Culex pipiens	24	-	323.115	5.048	23%	308.136	4.395
39 *	Culex pipiens	27	L1 Ct 25	3576787	9.461	51%	239.312	10.928
40	Culex pipiens	22	-	78.378	42.637	63%	824.461	10.922
41	Larus marinus	23	-	546.215	142.178	81%	1460.97	10.923
42 *	Culex niniens	27	L1 Ct 32	3371 541	5.603	47%	154.32	10.928
43	Culex niniens	29	-	153 413	4.367	31%	187.09	9.364
44	Culer niniens	28	-	66 202	7 786	36%	290 742	10 018
45 *	Culer ninione	28	L1 C+ 25	1557 373	8 945	48%	243 941	10.010
46	Culex pipiens	28	-	118 396	2 420	15%	219 733	7 809
10			USUV Ct	110.070	<u>_, 1</u> _U	10,0		
47 *	Culex pipiens	27	27	1516.324	230	44%	985.194	7.469

Table 5. Cont.

Viral Homogenate WNV L2—Sample Number	Host	RT- PCR Ct Value	Co- Infection Ct Value	# Total Trimmate Reads	# WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
48	Corvus cornix	28	-	470.113	6.194	40%	207.827	10.923
49 *	Culex pipiens	23	USUV Ct 21	4272.994	248	29%	941.936	10.806
50	Culex pipiens	15	-	327.238	88.896	61%	1398.22	10.922
51	Ochlerotatus caspius	25	-	361.194	16.436	32%	684.576	10.844
52	Culex pipiens	24	-	401.408	25.091	42%	804.597	9.592
53	Pica pica	23	-	899.597	2.771	24%	150.215	8.402
54 *	Culex pipiens	29	USUV Ct 26	117.768	18.204	54%	451.546	10.907

Table 5. Cont.

3.2.2. Validation of Set B

Inclusivity Test

Five WNV-L2 isolates from Italy were selected to assess the set B primers. A total of 100% horizontal coverage was obtained for all the strains after sequencing on an Illumina MiSeq (Table 6).

Table 6. Inclusivity	y test of the	West Nile	virus set l	B primers.
----------------------	---------------	-----------	-------------	------------

RT-PCR (Ct Value	# Total Trimmate Reads	# WNV Reads	% HCover- age	VCoverage	Consensus Sequence Length
	15	1218.086	284.232	100%	3820.77	10.926
Viral strain	15	1792.478	402.082	100%	5234.36	10.926
WNIV I 2	15	1440.061	338.706	100%	4543.81	10.926
Italy	17	1711.005	328.182	100%	4374.41	10.926
Italy	18	941.641	224.716	100%	3023.77	10.926
	N of replic	cates with Cover	$rage \ge 95\%$	5/5 (100%)		

Sensitivity Test

In order to identify the set B primers' detection limit under optimal conditions, serial dilutions from 10^6 to 10^2 cp/µL of the strain WNV Thessaloniki_MC82m/2018 (accession number: MN652880) were processed in triplicate for sequencing (except the to 10^2 cp/µL concentration, which was carried out in duplicate due to insufficient volume during the experiment). A total of 100% horizontal coverage was obtained between 10^6 to 10^3 cp/µL, while the two replicates for to 10^2 cp/µL covered 93% and 95% of the genome, as shown by Table 7.

Specificity Test

Similar to the test conducted for set A, no amplification was observed using set B on the six flavivirus species mentioned above, as well as RVFV and CHIKV.

WNV Set B Primers Validation on Real Homogenates

Fifteen WNV-L2 homogenates from Italy with known CT values by RT-qPCR were selected for targeted sequencing using the set B primers. Homogenates were obtained from mosquito pools, as well as the internal organs of birds and horses with low to high viral loads. Overall, horizontal coverage between 97% and 100% was obtained on 14 out of 15 homogenates (93.3% with horizontal coverage > 95%). Only the horse sample exhibited 93% horizontal coverage. This sample was also the one with the lowest viral load (CT value: 35). All these results are summarized in Table 8.

Viral Strain	Quantity Value (cp/5 µL)	Quantity Mean Value (Ct)	# Total Trimmate Reads	# WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
	106		1808.185	381.930	100%	5038.73	10.913
	10^{6}	19	4928.502	673.900	100%	6845.55	10.926
	10^{6}		3099.180	511.446	100%	6107.38	10.913
-	No	. of replicates wit	h coverage \geq 95	3/3 (100%)			
	10 ⁵		2665.260	409.989	100%	5157.74	10.914
WNV L2 (reference used for the mapping: WNV L2 MN652880)	10^{5}	22	1049.020	237.471	100%	3194.36	10.926
	10^{5}		2820.387	429.662	100%	5335.99	10.912
	No	. of replicates wit	h coverage \geq 95	3/3 (100%)			
	10^{4}		1651.945	261.024	100%	3450.12	10.913
	10^{4}	26	2483.786	337.982	100%	4234.91	10.914
	10^{4}		2681.807	356.233	100%	4334.71	10.926
	No	. of replicates wit	h coverage \geq 95	3/3 (100%)			
	10 ³		1570.036	236.060	100%	3029.53	10.894
	10 ³	30	1153.288	196.257	100%	2614.91	10.904
	10^{3}		782.424	285.136	99%	3070.47	10.912
	No	. of replicates wit	h coverage \geq 95	3/3 (100%)			
	10 ²		1764.307	159.591	95%	2189.31	10.597
	10^{2}	33	2082.360	177.212	93%	2389.54	10.800
	10 ²		NA	NA	NA	NA	NA
-	No	. of replicates wit	h coverage \geq 95	1/2 (50%)			

Table 7. Sensitivity	y test of the	West Nile	virus set B	primers.

Table 8. Test of the West Nile virus set B primers with WNV-L2 homogenates.

Viral Homogenate WNV L2—Sample Number	RT-PCR Ct Value	Host	Total Number of Trimmate Reads	Number of WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
1	17	Pica pica	1134.961	295.649	100%	3977.58	10.892
2	27	Corvus cornix	1448.962	284.947	100%	3818.15	10.912
3	21	Culex pipiens	1733.553	385.088	100%	5042.35	10.913
4	23	Culex pipiens	1528.111	339.207	100%	4525.72	10.912
5	21	Athene noctua	1801.390	376.213	100%	4946.53	10.878
6	22	Culex pipiens	1407.784	312.376	99%	4201.89	10.879
7	19	Passer domesticus	1515.878	205.605	100%	2770.45	10.914
8	30	Corvus cornix	1470.367	209.316	98%	2799.57	10.872
9	30	Pica pica	2150.396	205.466	99%	2662.61	10.868
10	27	Sylvia atricapilla	3649.208	281.102	99%	3426.07	10.880
11	25	Culex pipiens	2094.249	349.710	100%	4076.35	10.878
12	29	Anopheles maculipennis	3435.959	563176	100%	5709.14	10.912
13	25	Culex pipiens	3120.601	281.102	100%	4601.81	10.912
14	27	Culex pipiens	2193.040	259.483	97%	3231.74	10.904
15	35	Equus ferus caballus	1623.442	133.088	93%	1814.74	10.936

3.2.3. Validation of Set A + B

In order to obtain a system able to efficiently sequence both WNV-L1 and WNV-L2 strains, the first set of primers (set A) was combined with the second one (set B) in equal

volume. The new system, set A + B primers, was evaluated and compared in parallel with set A and set B after sequencing the WNV-L1 (n = 4) and WNV-L2 (n = 7) positive samples from internal organs of birds and horses, as well as mosquito homogenates, at different CT values (Table 9).

Table 9. Test of the west thile virus set A + b primers with with v-L1 and with v-L2 homogena

Viral Homogenate WNV L1	RT-PCR Ct Value	Host	Used Primers	Total Number of Trimmate Reads	Number of WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
1	L1 19	Corvus cornix	Set A Set A + B	2347.380 1118.615	351.292 287.672	99% 99%	4177.69 3987.12	10.963 10.963
2	L1 25	Larus michahellis	Set A Set A + B	1813.567 651.723	129.834 91.642	88% 93%	1805.95 1305.83	10.952 10.960
3	L1 18	Pica pica	Set A Set A + B	2923.237 4965.722	387.986 512.725	99% 99%	4264.56 4562.28	10.966 10.966
4	L1 28	Equus ferus caballus	Set A Set A + B	1805.957 2319.560	159.703 165.376	92% 92%	2101.31 2200.39	10.960 10.960
Viral Homogenate WNV L2	RT-PCR Ct Value	Host	Used Primers	Total Number of Trimmate Reads	Number of WNV Reads	% HCoverage	VCoverage	Consensus Sequence Length
1	L2 17	Pica pica	Set B Set A + B	2059.659 1134.961	351.670 295.649	100% 100%	4232.78 3977.58	10.892 10.892
2	L2 27	Corvus cornix	Set B Set A + B	1793.046 1448.962	187.826 284.947	100% 100%	2156.81 3818.15	10.926 10.912
3	L2 21	Culex pipiens	Set B Set A + B	2219.785 1733.553	312.851 385.088	100% 100%	3515.05 5042.35	10.926 10.913
4	L2 23	Culex pipiens	Set B Set A + B	2045.957 1528.111	275.354 339.207	100% 100%	2943.77 4525.72	10.926 10.912
5	L2 21	Athene noctua	Set B Set A + B	3413.467 1801.390	359.916 376.213	100% 100%	4106.39 4946.53	10.892 10.878
6	L2 22	Culex pipiens	Set B Set A + B	3109.597 1407.784	239.795 312.376	95% 99%	2761.23 4201.89	10.892 10.879
7	L2 19	Passer domesticus	Set B Set A + B	1621.442 1515.878	123.813 205.605	89% 100%	1836.85 2770.45	10.924 10.914

In WNV-L1 samples, no loss of sensitivity was observed between set A and set A + B for all the samples tested. Notably, for one sample from a yellow-legged gull at CT value 25, a gain of sensitivity was observed at 88% horizontal coverage using set A to 93% using set A + B joined. In the same way, sequencing conducted on WNV-L2 samples worked just as well with set B as with set A + B, regardless of Ct values. Indeed, almost 72% of the samples had 100% full genome (n = 5 out of 7).

4. Discussion

NGS is now an essential tool in the study of infectious diseases, both at the fundamental level and in its application to public health. The COVID-19 pandemic has thus been a patent example of the importance of being able to obtain information on the genetic signature of pathogens in real time. However, it should be noted that sequencing technology, and in particular whole-genome sequencing, remains an expensive approach with significant experimental constraints (for instance, the host genome background with a relatively lower amount of genetic material of the pathogen of interest in clinical specimens) in order to have some quality of data generated. A multiplex PCR-based target enrichment or amplicon-based protocol [14] was mostly used to overcome these challenges during SARS-CoV-2 genomic surveillance, yielding more than 14 million genomes in the GISAID platform at the time of writing this manuscript [27].

WNV is becoming a major health problem in Europe and cases have also recently been detected in Africa [7,12].

WNV cases are mainly due to lineages 1 and 2. The mechanisms of diffusion of viral strains, in particular by the migratory movements of birds, are actively studied. The genetic characterization of the identified strains allow better control of the dissemination routes for effective sanitary measures. NGS showed the persistence of a WNV strain after winter in Andalusia in Spain, suggesting endemicity with potential future epidemics in the area [28]. Another recent genomic study evidenced continuous WNV-L2 circulation in Italy throughout the year [29], while a reintroduction event was identified from Europe to Senegal, highlighting a potential threat [12].

Genomic characterization is even more important because it has been shown that West African lineages have higher virulence and replicative efficiency in vitro and in vivo compared to similar lineages circulating in the United States and Europe [6]. Genomic surveillance is thus essential as it allows a better understanding of the dissemination and dynamic of WNV strains.

In order to ensure the sustainability of this type of surveillance, we describe here the development and evaluation of a whole-genome amplicon-based sequencing approach for WNV-L1 and WNV-L2 by Illumina technology in different types of vertebrate and mosquito species from Senegal and Italy.

Three sets of primers were then designed and assessed with WNV-L1 and WNV-L2 strains. Set A and set B are specific to WNV-L1 and WNV-L2 strains, respectively, while the third one, a mixture of the two previous sets, is able to amplify both lineages.

Thus, the use of one set or another depends on the context. Indeed, in the case where the lineage is already well defined, it is appropriate to use the specific sets, whereas set A + B fits more in a context where no lineage characterization could be made before sequencing.

The evaluation in this study could only be carried out with the WNV-L1 and WNV-L2 strains. Because set A was designed from at least one representative of all the WNV lineages, it would be appropriate to undertake a similar evaluation with at least set A and set A + B on other lineages than WNV-L1 and WNV-L2. Moreover, the repetition of these experiments by other groups allows the observed results to be refined, particularly in terms of correlation with Ct values. Indeed, even if this work was carried out with rigor and with two teams in Senegal and Italy, external factors such as the sample quality after long-term storage or the sample type may have impacted the outputs of the results.

In any case, the approach presented in this manuscript could be a valuable tool for any WNV genomic investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/v15061261/s1, Table S1: WNV Sequences aligned for set A primers design, Table S2: WNV-L2 Sequences aligned for set B primers design.

Author Contributions: Conceptualization, M.M.D., M.H.D.N., G.M., O.F., C.C., A.R., G.S., and O.F. (Oumar Faye); methodology, M.M.D., M.H.D.N., G.M., A.D., M.D.D., C.C., A.R., G.S., and O.F. (Oumar Faye); software, A.D., M.M.D., G.M., C.C., and C.L.; validation, M.M.D., M.H.D.N., G.M., M.D.D., V.C., M.M., C.L., O.F. (Ousmane Faye), and C.C.; formal analysis, M.M.D., M.H.D.N., G.M., A.D., M.K., N.M.T., and M.M. (Maïmouna Mbanne); investigation, M.M.D., M.H.D.N., G.M., E.h.N., D.D., M.K., N.M.T., M.M. (Maïmouna Mbanne), M.A., B.S., V.D.L., L.T., A.L., I.P., and A.G.; resources, M.M.D., M.H.D.N., G.M., A.D., E.h.N., D.D., N.M.T., L.T., A.L., and I.P.; writing—original draft preparation, M.M.D.; writing—review and editing, M.H.D.N., G.M., A.D., M.D.D., E.h.N., M.D., C.C., A.R., G.S., and O.F. (Oumar Faye); visualization, M.M.D., M.D.D., V.C., M.M., M.A., B.S., V.D.L., L.T., A.L., I.P., R.R., F.M., C.C., A.R., and G.S.; supervision, M.M.D., M.H.D.N., M.D., V.C., C.C., G.S., and O.F. (Oumar Faye); visualization, M.M.D., M.D.D., V.C., M.M., M.A., B.S., V.D.L., L.T., A.L., I.P., R.R., F.M., C.C., A.R., and G.S.; supervision, M.M.D., M.H.D.N., M.D.D., V.C., C.C., G.S., and O.F. (Oumar Faye); project administration, A.R., G.S., and O.F. (Oumar Faye); funding

acquisition, M.M.D., A.A.S., O.F. (Ousmane Faye), A.R., G.S., and O.F. (Oumar Faye). All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Africa Pathogen Genomics Initiative (Africa PGI) through the Bill & Melinda Gates Foundation (4306-22-EIPHLSS-GENOMICS), the Institut Pasteur de Dakar internal funds, and an international PhD initiative including Fondazione Edmund Mach, University of Trento, and Istituto Zooprofilattico of Teramo.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the results section of the article as well as in the supplementary materials. No new data were created or analyzed in this study.

Acknowledgments: We are grateful to all the logistic and administrative teams in Senegal and Italy who have indirectly contributed to the completion of this work.

Conflicts of Interest: The authors declare no conflict of interest. All authors have read and agreed to the published version of the manuscript.

References

- 1. Smithburn, K.; Hugues, T.; Burke, A.; Paul, J. A neurotropic virus isolated from the blood of a native of uganda. *Am. J. Trop. Med. Hyg.* **1940**, *s*1-20, 471. [CrossRef]
- Kramer, L.D.; Styer, L.M.; Ebel, G.D. A global perspective on the epidemiology of West Nile virus. *Annu. Rev. Entomol.* 2008, 53, 61–81. [CrossRef] [PubMed]
- Bergsman, L.D.; Hyman, J.M.; Manore, C.A. A mathematical model for the spread of West Nile virus in migratory and resident birds. *Math. Biosci. Eng.* 2016, 13, 401–424. [CrossRef]
- 4. Komar, N.; Langevin, S.; Hinten, S.; Nemeth, N.; Edwards, E.; Hettler, D.; Davis, B.; Bowen, R.; Bunning, M. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerg. *Infect. Dis.* 2003, *9*, 311–322.
- 5. Sule, W.F.; Oluwayelu, D.O.; Hernandez-Triana, L.M.; Fooks, A.R.; Venter, M.; Johnson, N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. *Parasit. Vectors* **2018**, *11*, 414. [CrossRef]
- 6. Fall, G.; Di Paola, N.; Faye, M.; Dia, M.; Freire, C.C.d.M.; Loucoubar, C.; Zanotto, P.M.d.A.; Faye, O.; Sall, A.A. Biological and Phylogenetic Characteristics of West African Lineages of West Nile Virus. *PLoS Negl. Trop Dis.* **2017**, *11*, e0006078. [CrossRef]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile virus in Africa: An underestimated threat. *PLoS Negl. Trop. Dis.* 2022, 16, e0010075. [CrossRef]
- Marchi, S.; Montomoli, E.; Viviani, S.; Giannecchini, S.; Stincarelli, M.A.; Lanave, G.; Camero, M.; Alessio, C.; Coluccio, R.; Trombetta, C.M. West Nile Virus Seroprevalence in the Italian Tuscany Region from 2016 to 2019. *Pathogens* 2021, 10, 844. [CrossRef]
- 9. Marini, G.; Rosà, R.; Pugliese, A.; Rizzoli, A.; Rizzo, C.; Russo, F.; Montarsi, F.; Capelli, G. West Nile Virus Transmission and Human Infection Risk in Veneto (Italy): A Modelling Analysis. *Sci. Rep.* **2018**, *8*, 14005. [CrossRef]
- Falcinella, C.; Allegrini, M.; Gazzola, L.; Mulè, G.; Tomasoni, D.; Viganò, O.; d'Arminio Monforte, A.; Marchetti, G.; Tincati, C. Three case reports of West Nile virus neuroinvasive disease: Lessons from real-life clinical practice. *BMC Infect. Dis.* 2021, 21, 1132. [CrossRef]
- Riccardo, F.; Bella, A.; Monaco, F.; Ferraro, F.; Petrone, D.; Mateo-Urdiales, A.; Andrianou, X.D.; del Manso, M.; Venturi, G.; Fortuna, C.; et al. Rapid Increase in Neuroinvasive West Nile Virus Infections in Humans, Italy, July 2022. *Eurosurveillance* 2022, 27, 2200653. [CrossRef]
- 12. Ndione, M.H.D.; Ndiaye, E.H.; Faye, M.; Diagne, M.M.; Diallo, D.; Diallo, A.; Sall, A.A.; Loucoubar, C.; Faye, O.; Diallo, M.; et al. Re-Introduction of West Nile Virus Lineage 1 in Senegal from Europe and Subsequent Circulation in Human and Mosquito Populations between 2012 and 2021. *Viruses* **2022**, *14*, 2720. [CrossRef] [PubMed]
- Fall, G.; Diallo, M.; Loucoubar, C.; Faye, O.; Sall, A.A. Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus. *Am. J. Trop. Med. Hyg.* 2014, 90, 747–754. [CrossRef] [PubMed]
- 14. Tyson, J.R.; James, P.; Stoddart, D.; Sparks, N.; Wickenhagen, A.; Hall, G.; Choi, J.H.; Lapointe, H.; Kamelian, K.; Smith, A.D.; et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. *BioRxiv* 2020.
- Arana, C.; Liang, C.; Brock, M.; Zhang, B.; Zhou, J.; Chen, L.; Cantarel, B.; SoRelle, J.; Hooper, L.V.; Raj, P. A short plus longamplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. *PLoS ONE* 2022, 17, e0261014. [CrossRef] [PubMed]
- Liu, H.; Li, J.; Lin, Y.; Bo, X.; Song, H.; Li, K.; Li, P.; Ni, M. Assessment of two-pool multiplex long-amplicon nanopore sequencing of SARS-CoV-2. J. Med. Virol. 2022, 94, 327–334. [CrossRef] [PubMed]

- Lambisia, A.W.; Mohammed, K.S.; Makori, T.O.; Ndwiga, L.; Mburu, M.W.; Morobe, J.M.; Moraa, E.O.; Musyoki, J.; Murunga, N.; Mwangi, J.N.; et al. Optimization of the SARS-CoV-2 ARTIC Network V4 Primers and Whole Genome Sequencing Protocol. *Front Med.* (*Lausanne*) 2022, 9, 836728. [CrossRef]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. *Nat. Protoc.* 2017, 12, 1261–1276. [CrossRef]
- Del Amo, J.; Sotelo, E.; Fernández-Pinero, J.; Gallardo, C.; Llorente, F.; Agüero, M.; Jiménez-Clavero, M.A. A novel quantitative multiplex real-time RT-PCR for the simultaneous detection and differentiation of West Nile virus lineages 1 and 2, and of Usutu virus. J. Virol. Methods 2013, 189, 321–327. [CrossRef]
- 20. Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The nf-core framework for community-curated bioinformatics pipelines. *Nat. Biotechnol.* **2020**, *38*, 276–278. [CrossRef]
- 21. Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow enables reproducible computational workflows. *Nat. Biotechnol.* **2017**, *35*, 316–319. [CrossRef] [PubMed]
- 22. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. *Bioinformatics* 2014, 30, 2114–2120. [CrossRef] [PubMed]
- Cito, F.; Pasquale, A.D.; Cammà, C.; Cito, P. The Italian Information System for the Collection and Analysis of Complete Genome Sequence of Pathogens Isolated from Animal, Food and Environment. *Int. J. Infect. Dis.* 2018, 73, 296–297. [CrossRef]
- Aprea, G.; Scattolini, S.; D'Angelantonio, D.; Chiaverini, A.; Di Lollo, V.; Olivieri, S.; Marcacci, M.; Mangone, I.; Salucci, S.; Antoci, S.; et al. Whole Genome Sequencing Characterization of HEV3-e and HEV3-f Subtypes among the Wild Boar Population in the Abruzzo Region, Italy: First Report. *Microorganisms* 2020, *8*, 1393. [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *J. Comput. Biol.* 2012, 19, 455–477. [CrossRef]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An Amplicon-Based Sequencing Framework for Accurately Measuring Intrahost Virus Diversity Using PrimalSeq and IVar. *Genome Biol.* 2019, 20, 8. [CrossRef] [PubMed]
- 27. hCoV-19 Data Sharing via GISAID. Available online: https://gisaid.org/ (accessed on 29 January 2023).
- Ruiz-López, M.J.; Muñoz-Chimeno, M.; Figuerola, J.; Gavilán, A.M.; Varona, S.; Cuesta, I.; Martínez-de la Puente, J.; Zaballos, Á.; Molero, F.; Soriguer, R.C.; et al. Genomic Analysis of West Nile Virus Lineage 1 Detected in Mosquitoes during the 2020–2021 Outbreaks in Andalusia, Spain. *Viruses* 2023, 15, 266. [CrossRef]
- 29. Mencattelli, G.; Iapaolo, F.; Polci, A.; Marcacci, M.; Di Gennaro, A.; Teodori, L.; Curini, V.; Di Lollo, V.; Secondini, B.; Scialabba, S.; et al. West Nile Virus Lineage 2 Overwintering in Italy. *Trop. Med. Infect. Dis.* **2022**, *7*, 160. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.