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Abstract 

‘Candidatus Phytoplasma’ genus, a group of fastidious phloem-restricted bacteria, can infect a wide variety of both ornamental and agro- 
economically important plants. Phytoplasmas secrete effector proteins responsible for the symptoms associated with the disease. Identifying 
and characterizing these proteins is of prime importance for expanding our knowledge of the molecular bases of the disease. We faced the chal- 
lenge of identifying phytoplasma’s effectors by developing LEAPH, a machine learning ensemble predictor composed of four models. LEAPH 

was trained on 479 proteins from 53 phytoplasma species, described by 30 features. LEAPH achieved 97.49% accuracy, 95.26% precision and 
98.37% recall, ensuring a low false-positive rate and outperforming available state-of-the-art methods. The application of LEAPH to 13 phyto- 
plasma proteomes yields a comprehensive landscape of 2089 putative pathogenicity proteins. We identified three classes according to different 
secretion models: ‘classical’, ‘classical-like’ and ‘non-classical’. Importantly, LEAPH identified 15 out of 17 known experimentally validated effec- 
tors belonging to the three classes. Furthermore, to help the selection of no v el candidates for biological v alidation, w e applied the Self-Organizing 
Maps algorithm and de v eloped a Shin y app called EffectorComb. LEAPH and the EffectorComb app can be used to boost the characterization 
of putative effectors at both computational and experimental le v els, and can be emplo y ed in other phytopathological models. 
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ntroduction 

lants live in a constantly changing environment and have de-
eloped high phenotypic plasticity including responses and
daptations to environmental factors ( 1 ,2 ). In the case of
athogen infection, interactions are based on a molecular di-
log between the pathogen and its host. Plants and pathogens
re engaged in an arms race where plants have evolved
tratagems to detect the bio-aggressor while the latter aims
o bypass the host’s immune system ( 3–6 ). Plants modulate
heir immune response, cell signaling, metabolism and even
evelopment upon pathogen attack by acting on regulation
f its transcriptome ( 7–9 ). This modulation of gene expres-
ion relies on the secretion of specific pathogenicity factors
alled effector proteins. The effectors’ arsenal and their deliv-
ry system vary from species to species, although they have
he common aim of interfering with the host’s metabolism to
heir advantage, and to hamper the immune system, enhanc-
ng pathogen survival and, as a consequence, the development
f the disease ( 10–14 ). 
The increasing availability of genome sequences of plant

athogens has allowed dramatic advances in the characteri-
ation of pathogenicity mechanisms and the development of
ools to improve effector prediction. For instance, EffectorO
s a machine learning model exclusively trained on the N-
erminus of oomycete effector proteins ( 15 ). Another example
s EffectorP1.0 to 3.0, an ensemble of machine learning mod-
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els to predict both effectors and their localization (apoplastic
or cytoplasmic) trained on both fungi and oomycetes to search
for characteristic enrichment of amino acids and their prop-
erties ( 16–18 ). Deepredeff is a convolutional neural network
trained on sequences of bacteria (Gram positive and Gram
negative), fungi and oomycetes ( 19 ). DeepT3 combines dif-
ferent deep-learning algorithms to predict effectors secreted
by the bacterial type III secretion systems (T3SSs) in Gram-
negative bacteria ( 20 ). Finally, EffectiveT3 is a machine learn-
ing model to predict whether effector proteins are secreted
by the T3SS ( 21 ). Despite these tools allowing advances in
knowledge of effectors for some plant pathogens, there is still
a lack of prediction methods for several pathogens, hampering
a global characterization of pathogenic mechanisms. 

A clear example of this category is the ‘ Candidatus
Phytoplasma’ genus, a group of plant-pathogenic, phloem-
restricted, bacteria assigned to the Mollicutes class, cell wall-
less and pleomorphic bacteria, ranging from 0.2 to 0.8 μm in
size ( 22–25 ). Phytoplasmas are associated with diseases in a
large number of crops, ornamental plants and trees that result
in altered development and huge yield losses in plants ( 26–29 ).
Symptoms of the disease include, among the most common,
witches’ broom agglomerates of young branches, increased
proliferation of shoots, yellowing of the leaves, virescence
(flower organs become green), phyllody (flowers develop into
leaf-like flowers), dwarfism, reduction in size and tasteless
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fruits ( 24 , 30 , 31 ). The transmission from plant to plant oc-
curs by insects, which become vectors of the pathogen once
they acquire the phytoplasma during phloem feeding ( 32–34 ).
The pathogen behavior of phytoplasmas and the difficult chal-
lenge of cultivating them under in vitro conditions have hin-
dered experimental studies focusing on the identification of
effector proteins. Similarly, because of their high amino acid
sequence variability, the in silico identification of effector pro-
teins exclusively based on the overall sequence similarities is
inefficient ( 14 ). As a consequence, until a few years ago, only
certain types of effector proteins had been identified in phy-
toplasmas ( 35 ). The main feature of those candidate effectors
was the presence of signal peptides, restricting the diversity
of effectors to only a few classes. The possible role in disease
development of the following classes of effectors was mainly
studied by expressing them in transgenic plants. TENGU, a
small secreted peptide encoded by onion yellow phytoplasma,
causes dwarfism and altered flower structures ( 36 ). SAP05
which interferes with plant vegetative growth is a secreted pro-
tein found from ‘ Ca . P. asteris’ ( 37 ,38 ). SAP11-like proteins,
first identified from aster yellow witches’ broom phytoplasma,
cause abnormal proliferation of young shoots and changes in
leaf shape ( 37 ,39 ). SAP54 and PHYL1 are two homologous
effectors that belong to the phyllogen family and cause flower
malformations including phyllody, virescence and prolifera-
tion ( 37 , 40 , 41 ). 

Nowadays, standard methods for effector identification in
phytoplasmas are only based on the presence of a signal pep-
tide, fairly reconstructing the phytoplasmas’ secretome. How-
ever, it is important to consider that not all the secreted pro-
teins are effectors and that some effector proteins are secreted
by non-classical pathways ( 42 ,43 ). Moreover, it is shown that
in Gram-positive bacteria, ancestors of phytoplasmas, the hy-
drophobic region of signal peptides is longer than usual, mak-
ing them more similar to transmembrane regions and unde-
tectable by software specifically designed for signal peptide
prediction ( 44 ). Thus, recent methods rely on the combined
predictions by software designed for both signal peptide and
transmembrane domain detection ( 44 ,45 ), leading to a large
number of candidates to be tested without any prioritiza-
tion in assessment. Despite the recent attempt of Carreón-
Anguiano et al . ( 46 ) to build up an ad hoc pipeline suitable
for phytoplasma effectors, there is still an urgent need for a
tailored and reliable method to characterize, predict and pri-
oritize phytoplasma effectors. 

To address these needs, we developed LEAPH (ensemb L e
model for E ffector cl A ssification in PH ytoplasmas) a compu-
tational method composed of an ensemble of four supervised
learning models to capture distinct sets of features and effi-
ciently predict putative effector proteins in phytoplasmas. In-
deed, LEAPH predicts effectors with ∼97% accuracy, outper-
forming existing prediction methodologies tailored for both
phytoplasmas and other pathogens. The ensemble model was
trained on 479 proteins coming from > 50 ‘ Ca . Phytoplasma’
species and then applied, as a use-case scenario, on 13 pro-
teomes (ranging from 327 to 730 proteins), allowing us to
identify a comprehensive landscape of putative candidate ef-
fectors. We used the Self-Organizing Map (SOM) algorithm
to describe the properties of this landscape, which combines
clustering and dimensionality reduction to embed the pro-
tein sequence similarities based on the feature profiles. There-
fore, neighboring points on the map represent proteins sharing
similar features, providing the first reference map for phyto-
plasma effectors. We developed a user-friendly Shiny applica- 
tion, called EffectorComb, to investigate the effector protein 

map. Overall, LEAPH and EffectorComb offer the possibility 
to predict, interpret and explore the resulting protein candi- 
dates, thus boosting the experimental validation process from 

the very beginning. 

Materials and methods 

Training datasets 

For sequence selection and curation of the training dataset,
we used the UniProt database (release 2022_01) ( 47 ), select- 
ing proteins uniquely belonging to the phytoplasmas TAXID 

33926. 

Positive dataset 
The positive dataset is created using two filters. Firstly the 
field ‘Protein Names’ is searched using the AND opera- 
tor and each of the following regular expressions: ‘*Effec- 
tor*’, ‘*TENGU*’, ‘*SAP54*’, ‘*SAP11*’, ‘*SAP05*’ and 

‘*PHYL1*’. Secondly, the resulting list is pruned from records 
that have the terms ‘putative’ or ‘fragment’ in the ‘Protein 

names’ field. The result is a set of 174 proteins from 53 

phytoplasma species (Figure 1 A). Another 10 experimentally 
validated proteins are retrieved from Hoshi et al . ( 36 ) for 
TENGU; Bai et al . ( 37 ) for SAP54; Bai et al ., 2008 and Kube et
al . ( 37 ,48 ) for SAP11; Bai et al . ( 37 ) for SAP05; and Maejima
et al . ( 41 ) for PHYL1. In total, the positive dataset accounts 
for 184 protein sequences ( Supplementary Table S1.1 ). 

Negative dataset 
The negative dataset is constructed by manual inspection of 
UniProt database entries having evidence for revision in the 
‘Protein existence’ field AND having a function not related to 

the known effectors’ activity (e.g. no ‘*SVM*’ or ‘*trigger fac- 
tor*’ in ‘Protein Name’ field). The remaining list is checked for 
the absence of a cross-reference with the PHI-base database 
( 49 ,50 ), meaning that there is no known interaction between 

these proteins and those of the host. The negative dataset is 
finally composed of 295 non-effector proteins from 12 phyto- 
plasma species ( Supplementary Table S1.2 ; Figure 1 A). 

Proteome datasets 

We used LEAPH to predict putative effector proteins in 

13 phytoplasma proteomes: ‘ Ca. P. asteris’ (strain AYWB- 
UP000001934 and OY-UP000002523), ‘ Ca. P. australiense’ 
(UP000008323) , ‘ Ca. P. mali’ (strain AT-UP000002020),
‘ Ca. P. oryzae’ (strain Mbita1-UP000070069 and S10- 
UP00024934), ‘ Ca. P. phoenicium’ (strain ChiP-UP00023867 

and SA213-UP00003708), ‘ Ca. P. pruni’ (strain CX- 
UP00003738), ‘ Ca. P. tritici’ [2568526557 from JGI-GOLD 

( 51 )], ‘flavescence dorée’ [CP097583.1 from NCBI-GeneBank 

( 52 )], ‘ Ca. P. ziziphi’ (CP091835.1 from NCBI-GeneBank) 
and ‘ Ca . P. asteris’ M3 (CP015149.1 from NCBI-GeneBank).
The proteomes are retrieved from UniProt if not indicated 

otherwise. The main characteristics of the 13 proteomes are 
summarized in Supplementary Table S2 . 

LEAPH method description 

The LEAPH workflow consists of four main steps described 

hereafter and shown in Figure 1 B. Briefly, in step 1, LEAPH 

takes as input the amino acid sequences of interest in FASTA 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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ormat and computes the 30 features, described in the follow-
ng paragraph, yielding as output the feature table. During
he training process (step 2), the feature table is used as input
or four classifier models to be trained. After a 5-fold cross-
alidation process, each of the best models is used to finally
ssign a class probability to every protein in the overall train-
ng dataset (step 3). LEAPH predicts a protein to be putatively
athogenic if at least one of the four models gives a class prob-
bility > 90% and thereby assigns a score ranging from 1 to 4
o each protein based on the models’ agreement (step 4). The
re-trained model can be used to predict putative pathogenic-
ty proteins in any set of protein sequences, producing an out-
ut table that contains the resulting classification along with
odel agreement, mean prediction probability and the corre-

ponding amino acid sequence for each protein. 

eature calculation 

he first step of LEAPH is the annotation of protein sequences
nd the extraction of features to describe protein sequence
roperties. We included a total of 30 features: (i) sequence

ength; (ii) signal peptide presence [using the D-score of Sig-
alP 4.1 software ( 53 ) configured as in the work of Gar-
ion et al . ( 44 )]; and (iii) transmembrane (TM) domain pres-
nce [TMHMM2.0 ( 54 )]. Specifically, we included different
spects of the prediction of TM regions, namely the number
f predicted TMs, (iv) the expected number of amino acids
n TMs, (v) the number of expected amino acids in the first
0 positions of TM helices, (vi) the probability that the N-
erminus of the protein is in the cytoplasm and (vii) a warning
or possible misprediction of the TM regions [when feature
vi) is > 10], representing a potential signal peptide region
mispredicted transmembrane region (mTMR)]. Since effec-
or proteins can be composed of intrinsically disordered re-
ions (IDRs) ( 55 ), we also predicted (viii) the eventual pres-
nce and the length of IDRs [MobiDB-Lite1.0 ( 56 ,57 )]. Fi-
ally, we added 22 features concerning putative character-
stic motifs of effectors: (ix–xx) by using Prosite1.86 ( 58 );
e calculated the occurrences of functional protein motifs
elonging to the positive dataset, thus each of the 22 fea-
ures is the sum of the respective predicted motif in a protein
equence; (xxi–xxx) by using MOnSTER ( 59 ), we obtained
luster of Prosite motifs (CLUMPs) considering their physic-
chemical characteristics. From MOnSTER application, we
xtracted six features representing the occurrence of each se-
ected CLUMP and four additional features, namely the oc-
urrence of CLUMPs in four consecutive bins of 25% of the
rotein sequence. The configuration parameters for all tools
sed to obtain the 30 features and the main descriptions are
ndicated in Supplementary Table S3 . 

odels 
EAPH is based on an ensemble learning approach that
ses four classification algorithms: random forest ( 60 ) [Ran-
omForestClassifier() from sklearn.ensemble], XGBoost ( 61 )
XGBClassifier() from the xgboost python library], Gaussian
aive Bayes ( 62 ) [GaussianNB() from sklearn.naive_bayes]
nd multinomial naive Bayes ( 63 ) [MultinomialNB() from
klearn.naive_bayes]. The version of scikit-learn library is
.1.1 for all the methods ( 64 ). See the following section and
upplementary Table S4 for more information on usage and
arameter settings. 
Cross-validation and h yperpar ameter tuning 
Because of the size and the unbalanced distribution of proteins
between classes in the training set, we applied the stratified
5-fold cross-validation method (StratifiedKFold from scikit-
learn 1.1.1). Each model is trained and tested five times on a
different subset of the training data respecting class propor-
tion (80% of data for the training set and the remaining 20%
for non-overlapping test sets). 

We performed a hyperparameter tuning via GridSearchCV
from scikit-learn 1.1.1, for each fold, and for each classifier
except for Gaussian naive Bayes which was trained with the
default parameters. With the grid search, the parameters are
tested from a specified set of values. The starting parame-
ters used in the training process, which differ from the de-
fault ones, are included in Supplementary Table S4 . Altogether
cross-validation and hyperparameter tuning allow selection of
the best model for each classifier algorithm to be used to pre-
dict new putative pathogenicity proteins. 

To support the reproducibility of the machine learning
method of this study, the machine learning summary table
( Supplementary Table S4 ) is included in the supporting infor-
mation as per DOME recommendations ( 65 ). 

Classification method 

The best model for each classifier obtained from the previous
phase is used to finally assign a class probability to every pro-
tein in the overall training dataset: if for at least one model
the class probability is ≥ 90%, then the protein is consid-
ered as putatively pathogenic. LEAPH assigns a score rang-
ing from 1 to 4 to each protein based on the models’ agree-
ment. The pre-trained model can be used to predict novel pu-
tative pathogenicity proteins in any set of proteins, yielding
an output table containing the classification prediction, the
model agreement, the mean prediction probability and the cor-
responding amino acid sequence for each protein. 

Performance measures 

To assess the performance of the prediction models used in
this study, we used the following metrics: accuracy, precision,
recall and F 1 score defined as: 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(1)

Precision = 

T P 
T P + F P 

(2)

Recall = 

T P 
T P + F N 

(3)

F 1 = 

2 

(
Precision ∗Recall 

)

(
Precision + Recall 

) (4)

Where TP, TN, FP and FN refer to true positives, true neg-
atives, false positives and false negatives, respectively. These
measures are calculated using the sklearn.metrics library. 

Benchmark of effector prediction tools 

The state-of-the-art method commonly used in prediction of
phytoplasma effectors consists of a combination of two pre-
dictors: SignalP4.1 and TMHMM2.0. Specifically, a protein
is predicted as putatively pathogenic if both a signal pep-
tide and an mTMR are predicted. This method is included in

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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the benchmark as the reference method for phytoplasma ef-
fectors. Recently, Carreón-Anguiano et al . published the first
pipeline that identifies effectors in phytoplasmas, PhyEffector
( 46 ). This pipeline adds to the previous two tools, also Phobius
( 66 ), BLASTP ( 67 ) and SecretomeP2 ( 68 ), thus we included it
in the benchmarking. We also compared the performance of
LEAPH with other effector prediction tools on the training
set. We considered EffectorP3.0 ( 18 ), which is mainly suitable
for fungi and oomycete putative pathogenicity proteins, Ef-
fectorO ( 15 ), tested for oomycete putative effector prediction,
and Deepredeff ( 19 ), used for putative pathogenicity protein
prediction in bacteria, fungi and oomycetes. All the tools are
used with default parameters or, where possible, in a configu-
ration suitable for bacteria. 

Feature importance calculation 

We assessed the feature importance for each classification al-
gorithm using the SHapely Additive exPlanations (SHAP) ap-
proach ( 69 ). SHAP is widely used for explainable machine
learning and gives a more comparable spectrum of feature im-
portance across different models. It measures the contribution
of each feature to the final output using game theory concepts
and feature permutations, assigning a SHAP value to each
feature. Compared with the classical feature importance mea-
surements, this additive feature method relies on maintaining
the accuracy of the model, dealing with missing features and
consistency in model changing for the same data. 

SecretomeP2.0 

To predict non-classically secreted proteins, we used Secre-
tomeP2.0 ( 68 ). Since the Gram-positive bacteria model is cur-
rently unavailable for the latest version of the tool, we used
the Gram-negative bacteria model. We split the sequences into
100 sequences per fasta file [using seqkit split ( 70 ) and setting
the parameter ‘-s 100 

′′ ] to use the web server, and we cross-
checked each prediction with the presence of a signal peptide
predicted by both SignalP4.1 and TMHMM2.0, as per Secre-
tomeP2.0 web service recommendations. 

Exploratory and functional analysis 

We performed a principal component analysis (PCA) on scaled
values (MinMaxScaler from scikit-learn 1.1.1) of the 30 pro-
tein features described in the section ‘Feature calculation ’ ,
and InterProScan5 ( 71 ) to predict protein domains associ-
ated with a known biological function on the predicted pu-
tative pathogenicity proteins identified by LEAPH. We then
explored the differences in protein domains that occur in at
least 1% of the sequences, according to the secretion modal-
ity of the predicted proteins. 

Effector protein map 

We used SOM ( 72 ) to exploit the properties of the putative
pathogenicity proteins identified by LEAPH from 13 phyto-
plasma proteomes . To build up the SOM, we firstly scaled the
values of each feature (MinMaxScaler from scikit-learn 1.1.1),
excluding mTMR as a categorical, thus not suitable, feature
and then used the aweSOM R package, which outputs a dy-
namic map. Through SOM visualization, points on the map in
the same hexagonal cell share a similar feature vector and thus
are indeed similar to each other. To find the optimal number
of hexagonal cells to create the map, we tried different sizes
of lattice grids from 8 × 8 up to 11 × 11, where we stopped 

because the 10 × 10 achieved the best balance between the er- 
rors (Quantization, Topographic and Kaski-Lagus) minimiza- 
tion and variance explained (see Supplementary Table S5 for 
further details). 

EffectorComb app 

We developed an interactive Shiny app to investigate the ob- 
tained SOM. The app allows the user to retrieve a set of 
pathogenicity proteins predicted by LEAPH with properties 
of interest along with their sequence identifier and amino acid 

composition. It is also possible to download SOM interactive 
image .html files. EffectorComb can be also used to project 
new proteins, predicted by LEAPH application, on the pre- 
obtained SOM for a deep result exploration and comparison.

Implementation 

LEAPH is implemented in python3.8.10 language (available 
at https:// www.python.org/ ). The build-up process is done 
using jupyter-notebook v6.4.8 ( 73 ) while the final LEAPH 

model and running software is a python3.8.10 script that can 

be used as stand-alone software or by executing a singularity 
v3.7 container ( 74 ) which includes all the required dependen- 
cies. EffectorComb was first implemented as R 4.3.2 (avail- 
able at https:// www.r-project.org/ ) script and then embedded 

into a Shiny app (v1.8.0, available at https:// shiny.posit.co/ ,
R version) and provided within a singularity v3.7 container.
Usage instructions and scripts are freely available at https: 
// github.com/ Plant-Net/ LEAPH-EffectorComb.git . 

Results and discussions 

A comprehensive collection of phytoplasma 

effectors and features to describe their sequence 

characteristics 

To fulfill the need for a method tailored for predictions of phy- 
toplasma effectors, we developed LEAPH, a machine learn- 
ing ensemble model. Careful selection of the training set and 

features to use for classification purposes are crucial in ma- 
chine learning applications. Therefore, by performing exten- 
sive literature and database mining, we collected 184 protein 

sequences from 53 ‘ Ca. Phytoplasma’ species that make up the 
‘positive dataset’. The ‘negative dataset’ is composed of 295 

proteins whose function is not related to the activity of the 
known effector and / or no interactions with host plant pro- 
teins are reported (Figure 1 A; Supplementary Tables S1.1 and 

S1.2 ). Intending to build a classifier for the prediction of novel 
effectors, we calculated 30 features to represent the salient 
characteristics of their sequences ( Supplementary Table S3 ).
We included eight features that describe the protein sequence 
properties and the mode of secretion, 12 features summa- 
rizing the presence of protein domains important for plant 
invasion and infection and 10 features relating to the pres- 
ence of characteristic sequence motifs found by using MOn- 
STER ( 59 ). To inspect whether these features are discrimi- 
nant of putative effector properties, we plotted the distribu- 
tion of each, for the positive and negative datasets, respec- 
tively ( Supplementary Figure S1 ). Twenty-four features show 

a significantly different distribution (Mann–Whitney test, P - 
value < 0.05) by comparing the two datasets. However, we 
decided to include all features because non-significantly dif- 
ferent features can be specific to a small class of putative effec- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://www.python.org/
https://www.r-project.org/
https://shiny.posit.co/
https://github.com/Plant-Net/LEAPH-EffectorComb.git
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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Figure 1. Training dataset composition and LEAPH w orkflo w. ( A ) Training dataset composition of the positive and negative set proportion (in the center) 
and phytoplasma species for the positive dataset (on the left) and negative dataset (on the right). Refer to Supplementary Tables S1.1 and S1.2 for details. 
( B ) LEAPH w orkflo w. T he dark green bo x highlights the training process while the light green bo x represents the application process of LEAPH; the 
dashed box depicts the particular use case in which a feature table is already available, thus ready to be used as input for the pre-trained LEAPH model. 
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ors, too small to reach statistical significance when including
ll the effector proteins together. 

Overall, both the datasets and the features are suitable for
etting up a classifier based on machine learning models. 

he four classifiers included in LEAPH captured 

istinct features to predict pathogenicity proteins 

ecause of the wide variety of hosts and infection symptoms,
e expect phytoplasmas’ effectors to have different charac-

eristics, thus the hypothesis is that different learning models
ould be able to capture diverse properties, yielding a more

omprehensive prediction. Therefore, we used an ensemble
earning composed of two tree-based algorithms, namely ran-
om forest and XGBoost ( 60 ,61 ), and two naive Bayes clas-
ifiers, i.e. a Gaussian and a multinomial model ( 62 ,63 ). We
ed the four classifiers with our training dataset and mea-
ured their performances on the test set ( Supplementary 
able S4 ). Overall, the four models showed very good and
omparable performance both within the cross-validation
folds and between methods, ranging from 95% to 99% for
the four measures used: precision, recall, accuracy and F 1

score ( Supplementary Table S6 ; Supplementary Figure S2 ).
The best performing model was selected for each classi-
fier method and included in the ensemble approach that we
call LEAPH (ensemb L e model for E ffector cl A ssification in
PH ytoplasmas). To each candidate pathogenicity protein pre-
dicted with LEAPH, a score ranging from one to four is asso-
ciated, corresponding to the number of classifiers that agree
on the outcome. 

In Figure 2 A, we report the Venn diagram showing the
agreement of the prediction obtained by the four models.
Most candidate effectors were predicted by the four models
(96%), as expected. Interestingly, the two naive Bayes classi-
fiers, and mainly the multinomial model, were able to iden-
tify putative effectors that were not identified by the two tree-
based models, supporting our hypothesis that different classi-
fiers might capture different patterns of candidate pathogenic-
ity proteins. To further investigate this direction, we calculated
the feature importance for each classifier by using the SHAP

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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Figure 2. LEAPH and SHAP results on the training dataset. ( A ) Venn diagram representing the agreement of prediction on the training set from the four 
models included in LEAPH, namely random forest model (purple ellipse), XGBoost (dark blue ellipse), Gaussian naive Bayes model (aquamarine ellipse) 
and multinomial naive Bayes model (yellow ellipse). ( B ) The first 10 features in terms of SHAP value importance for each model included in LEAPH. Refer 
to Supplementary Figure S3 for the complete representation of SHAP importance. 
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Figure 3. Performances of LEAPH and state-of-the-art tools for effector prediction. Performances of each tested state-of-the-art tool compared with 
LEAPH performance. For each tool, the percentage of accuracy, F-measure, precision and recall after the application on the training set is reported. 
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lgorithm ( 69 ) which is a game theory approach to explain
he output of any machine learning model. Indeed, as shown
n Figure 2 B and Supplementary Figure S3 , we observe a quite
ifferent spectrum of features, with the highest contribution
cores depending on the classifier. While the feature describ-
ng the first 60 amino acids of the protein sequence is found
mong the top two for all methods, the other features seem to
ontribute differently, depending on the classifier. In particular,
e observed that only for the multinomial naive Bayes, the se-
uence length has a high impact on the model output. On the
ther hand, for the Gaussian naive Bayes model, the mTMRs
ake the greatest contribution. Moreover, the top 10 rank of

he contributing features for all the models include the pres-
nce of three functional motifs related to protein modifica-
ion sites: myristoylation, glycosylation and phosphorylation
ites. This means that the occurrence of these motifs in the pro-
ein is a discriminative predictive sign for each of the included
odels. 
Altogether these results show that the four classifiers in-

luded in LEAPH can identify potential pathogenicity proteins
ith different characteristics and confer good performance on

he test dataset. 

 

LEAPH outperformed other methods with regard to 

the prediction of effectors in phytoplasmas 

To assess the performances of LEAPH compared with state-
of-the-art tools for effector prediction, we compared LEAPH
application to the training dataset with five classifiers avail-
able for effector prediction, namely SignalP4.1 ( 53 ) in com-
bination, or not, with TMHMM2.0 ( 54 ) which we consider
here the conventional method to predict putative effectors in
phytoplasmas; the newly implemented PhyEffector ( 46 ) tai-
lored for phytoplasma effector prediction; EffectorO ( 15 ); Ef-
fectorP3.0 ( 18 ); and the three models for Deepredeff ( 19 )
that are built to predict putative effectors in other species
( Supplementary Table S7 ; Figure 3 ). LEAPH outperformed all
the other methods by considering the four metrics used in this
study, achieving a recall of 98.4%, thus predicting only three
false negatives. In this context, the minimization of false neg-
atives is crucial, to minimize the neglecting of putative true
effectors. Importantly, the tool LEAPH also achieved good
precision (95.3%), thus implying a low number of false pos-
itives as well (nine in total). Although experimental valida-
tion is central to validate putative candidate effectors pre-
dicted by computational methods, the low number of both

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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Figure 4. P utativ e pathogenicity proteins predicted b y LEAPH from 13 ph ytoplasma proteomes. ( A ) Percent age of put ative pathogenicit y proteins 
predicted by LEAPH (orange bars) compared with the total percentage of proteins (gray bars) for the corresponding phytoplasma proteome. ( B ) 
Comparison of the proportion of proteins predicted only by LEAH (green bars), predicted by the SignalP + TMHMM method and LEAPH (yellow bars) or 
by SectetomeP2.0 and LEAPH (magenta bars). 
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false negatives and false positives increases the confidence in
the prediction and will permit a more successful experimental
validation. 

Application of EffectorP3.0, EffectorO and Deepredeff-
fungi showed quite good recall but very low values for the
other metrics. This is due to the high number of false positives
identified by those methods that lower the accuracy (ranging
from 38.8% to 42.4%) and the precision (between 36.3%
and 39.6%). On the other hand, the use of EffectorP3.0 and
Deepredeff-fungi do not identify many false negatives, with a
recall of 98.9% and 91.8%, respectively. Lower performances
are obtained for EffectorO with a recall of 78.3%. The tools
Deepredeff-oomycetes and Deepredeff-bacteria showed very
poor performance. 

The three combinations of SignalP4.1 with TMHMM2.0,
namely SignalP4.1, SignalP4.1 + TMHMM2.0 and
SignalP4.1 / TMHMM2.0 (in Supplementary Table S7 ) ap-
plied to our data achieved comparable performances mainly
in terms of accuracy concerning LEAPH. However, their re-
calls are lower than the value achieved by our tool, suggesting
that these methods might miss potential bona fide effector
candidates. Since SignalP4.1 and TMHMM2.0 by definition
can identify only putative classically secreted effectors, we
hypothesize that these false negatives can be potential non-
classically secreted pathogenicity proteins that are captured
by LEAPH thanks to the four classifiers. As expected, PhyEf-
fector application showed good performances on the training
set, reaching 92.7% accuracy, 91.2% precision, 89.7% recall
and an overall F 1 score of 90.4% ( Supplementary Table S7 ;
Figure 3 ). Surprisingly, accuracy and F 1 score were found
to be slightly lower than those achieved by SignalP4.1 +
TMHMM2.0. 

Altogether these results highlight the importance of devel-
oping a more flexible and informative method tailored for
phytoplasmas to identify bona fide candidate effectors and
rule out EffectorP3.0, EffectorO, Deepredeff and PhyEffector
from further comparisons. 
LEAPH predicts classical, classical-like and 

non-classical secreted putative pathogenicity 

proteins from 13 phytoplasma proteomes 

To test the capability of LEAPH to identify potential novel ef- 
fectors, we selected 13 phytoplasma proteomes from 10 ‘ Ca.
Phytoplasma’ species with different characteristics in terms 
of the number of proteins, 16S group, type of symptoms and 

number of hosts ( Supplementary Table S8 ; Figure 4 ). On aver- 
age, LEAPH predicts as putative pathogenicity proteins ∼30 

± 2.7% of the proteomes except for three strains: CaPhoeni- 
cium_SA213, CaPhoenicium_ChiP and CaPoryzae_NGS-S10,
for which we have found 22.63, 27.65 and 28.32%, respec- 
tively (Figure 4 A). 

To characterize the properties of these putative pathogenic- 
ity proteins, we compared them with the prediction of 
SignalP4.1 + TMHMM2.0 and SecretomeP2.0 ( 68 ). Sig- 
nalP4.1 + TMHMM2.0 is used to identify proteins having a 
signal peptide, usually present in classically secreted proteins,
whereas SecretomeP2.0 predicts non-classically secreted pro- 
teins. Importantly, both methods predict whether the protein 

is secreted or not without information on its pathogenicity.
LEAPH predicts between 40% and 61% of putative effec- 
tor proteins that were not identified by the other two meth- 
ods (Figure 4 B). Between 33% and 58% of LEAPH puta- 
tive effectors also show the signal peptide and the mTMR 

identified by TMHMM2.0, thus implying that they are clas- 
sically secreted. These results pinpoint that LEAPH, despite 
the fact that it was trained on a dataset composed mainly of 
classically secreted effector proteins, can capture characteris- 
tics to identify potential effectors beyond the classically se- 
creted ones. On the other hand, very few effectors predicted 

by LEAPH were also predicted by SecretomeP2.0. This was 
expected because the model used to run SecretomeP2.0 was 
suitable for Gram-negative bacteria, but no model was avail- 
able for Gram-positive bacteria. According to Gao et al . ( 75 ),
SecretomeP2.0 underestimates non-classically secreted pro- 
teins when using the Gram-negative bacteria model for Gram- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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ositive bacteria. Interestingly, between 77% and 89% of pu-
ative effectors predicted exclusively by LEAPH contain only
he mTMR (without the signal peptide), supporting the hy-
othesis that phytoplasma effectors might have a peculiar sig-
al peptide located in the so-called sequence variable mosaic
SVM) regions of some proteins ( 76 ). 

Finally, we checked whether the known validated phyto-
lasma effectors were correctly classified by LEAPH. Eleven
lassically secreted effectors were identified and validated by
revious studies: two SAP11-like proteins in two different ‘ Ca.
hytoplasma’ species [‘ Ca . P . asteris’ strain AYWB and ‘ Ca . P.
ali’ strain AT ( 37 ,48 )], SAP54 [‘ Ca . P asteris’ strain AYWB

 37 )], SAP05 [‘ Ca . P. asteris’ strain AYWB ( 37 )], PHYL1 [‘ Ca .
. asteris’ strain OY-M ( 41 )], TENGU [‘ Ca . P. asteris’ strain
Y-M ( 36 )], SWP1, SWP11, SWP12, SWP16 and SWP21 [‘ Ca .

. tritici’ ( 77–80 )]; and six non-classically secreted effectors in
he strain ‘ Ca . P. ziziphi’: ncSecP3, ncSecP12, ncSecP14, nc-
ecP22, ncSecP9 and ncSecP16 ( 75 ) ( Supplementary Table 
9 ). Remarkably, LEAPH could not only correctly identify the
1 classically secreted effectors, but also four out of six non-
lassically secreted validated effectors (ncSecP3, ncSecP12, nc-
ecP14 and ncSecP22). This result strengthens the potential of
EAPH to identify putative effectors independently of their

ype of secretion. 

escription of the effector protein landscape 

redicted by LEAPH 

o further characterize the putative effectors predicted using
EAPH, we performed a PCA on protein features (see the
aterials and methods). In Figure 5 , we observe three dis-

inct groups. To understand whether these groups could rep-
esent some property of protein sequences, we colored them
ccording to the type of secretion. We defined as ‘classically’
ecreted, those proteins in which both a signal peptide and
TMR are predicted; ‘classically like’ secreted, those hav-

ng only the prediction for the mTMR; and ‘non-classically’
ecreted, those proteins in which neither signal peptide nor
TMRs are predicted (Figure 5 A). The three groups identified
ith the PCA respectively follow the three secretion modali-

ies. Thus, we checked where the validated effectors are lo-
ated in the putative pathogenicity protein landscape identi-
ed with the PCA (Figure 5 B). The 11 classically secreted val-
dated effectors (two SAP11 in two different strains, SAP54,
AP05, PHYL1, TENGU, SWP1, SWP11, SWP12, SWP16 and
WP21) were localized in the cluster of classically secreted
s expected. Surprisingly, among the four non-classically se-
reted validated effectors, only two were found in the corre-
ponding cluster, namely ncSecP3 and ncSecP12. Unexpect-
dly, by inspecting the protein sequences, we found that nc-
ecP14 contains the signal peptide and the mTMR, and nc-
ecP22 only the mTMR, thus confirming their localization on
he PCA. 

Then, we mapped other properties on the three PCA groups.
nterestingly, inspecting the second principal component, we
oticed that the putative pathogenicity proteins found using
EAPH are stratified by the probability for the N-terminus to
ave a cytoplasmic location, as shown in Figure 5 C. When col-
ring by species, we observed that there are no specific clus-
ers, as expected, meaning that pathogenicity protein prop-
rties are not species specific ( Supplementary Figure S4 A).
n Supplementary Figure S4 B, we can observe that proteins
re stratified by sequence length. Surprisingly we observe that
ew proteins from the classically secreted and non-classically
secreted groups have a size larger than expected. Thus, we
mapped these proteins on the sequence length distribution of
the respective proteomes to see whether these sizes could be
potential outliers or not ( Supplementary Figure S4 C). We ob-
served that very few putative effectors, mainly predicted as
classically secreted, map on the tails of these distributions. 

To investigate other possible peculiar properties of LEAPH-
predicted putative pathogenicity proteins, we used Inter-
ProScan5 ( 71 ) to predict protein domains in the three classes
of secretion. We considered only domains with an occurrence
of at least 1% for at least one of the secretion classes, for a
total of 37 protein domains. As shown in Figure 5 D, classi-
cally secreted putative effectors mainly possess domains char-
acteristic of both SVM proteins, AAA+ ATPases and FtsH pro-
teins. SVM proteins were reported for the presence of a mod-
ified secretion signal ( 76 ). Recently, it has been demonstrated
that the AAA+ and Ftsh domains have a role in pathogenic-
ity for ‘ Ca. P. mali’ ( 81 ,82 ). Classical-like secreted candi-
date pathogenicity proteins, on the other hand, are mostly
characterized by periplasmic-binding proteins or ABC trans-
porters and only slightly enriched in AAA+ and Ftsh domains.
Although ABC transporters are found ubiquitously in eu-
karyotes and prokaryotes, they play a crucial role in patho-
genesis and virulence in pathogen bacteria ( 83 ). There are
different types of ABC transporters [10 according to Zeng
and Charkowski ( 84 )] and this might be linked to the pres-
ence of different ABC-related domains characterizing the non-
classically secreted group of predicted pathogenicity proteins.
In this class, ABC transporters are less frequent concerning the
P-ATPases and especially the IDRs. P-ATPases, particularly
copper exporter P-type ATPases, are reported to play a major
role in the virulence of diverse pathogenic bacteria even if the
underlying mechanisms remain partially understood ( 85–89 ).
These findings suggest that putative effectors are distinguished
not only by the secretion mode, but also by other characteris-
tics related to virulence properties embedded in the sequence
composition. 

SOM clustering allowed us to build a pathogenicity 

protein reference map for phytoplasmas 

To study whether other properties are characteristic of sub-
classes of pathogenicity proteins beyond the type of secretion,
we performed a clustering analysis on the LEAPH-predicted
proteins using the SOM model ( 72 ). This analysis allowed us
to create a 2D map composed of a 10 × 10 lattice where
each hexagonal cell is characterized by a particular combina-
tion of features and closer cells have more similar properties
than cells further away. Thus, the 2093 putative pathogenicity
proteins, including the 15 validated effectors, identified with
LEAPH across 13 phytoplasma proteomes are distributed into
the map and associated with a specific hexagonal cell ac-
cording to their sequence properties. Consistent with PCA,
the two main properties that stratify the hexagons in the lat-
tice are the signal peptide and the mTMR on the x -axis, and
the probability for the N-terminus to have a cytoplasmic lo-
cation on the y -axis (Figure 6 A). Therefore, we can visual-
ize on the map the hexagons that correspond to the three
groups found by the PCA: 49 hexagons for classically secreted,
31 for classically like and seven for non-classically secreted
putative pathogenicity predicted proteins. Furthermore, eight
hexagons that contain proteins from both groups of classically
like and non-classically secreted and five empty hexagons can
be identified on the map. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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Figure 5. Description of the effector protein landscape predicted by LEAPH. ( A ) PCA of predicted pathogenicity proteins by LEAPH from 13 phytoplasma 
proteomes colored by secretion methodology; group1 (dark green points) predicted by SignalP4.1 to bear a signal peptide (classically secreted), group2 
(light y ello w) contains an mTMR in the first 60 amino acids of the sequence from TMHMM2.0 and no prediction of signal peptide b y SignalP4.1 
(classically like secreted) and group3 (light green points) do not have the signal peptide and the mTMR (non-classically secreted). ( B ) The same as (A) with 
the position of the 15 experimentally validated effectors from the literature (dark red dots). ( C ) Same as (A) colored by the probability that the N-terminal 
region of the protein is in the inner part of the membrane. ( D ) The abundance of each protein domain predicted by InterProScan in each PCA group. 
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Interestingly, the 15 validated effectors are projected in
nine different and close hexagons [including ncSecP14 pro-
posed by Gao et al . ( 75 ) as non-classically secreted but having
the signal peptide as discussed in previous paragraphs] (Fig-
ure 6 A). As expected the two homologous phyllogen proteins
(PHYL1 and SAP54) are in the same hexagon (h38). Simi-
larly, SWP21 and TENGU are in the same hexagon (h77).
The SAP11-like proteins do not fall in the same hexagon
but in hexagons next to each other, suggesting more vari-
ability in the sequence properties of proteins in this class de-
pending on the phytoplasma species. Intriguingly, SWP1 and
SWP11, which have different roles in disease development
( 77 ), are in the same hexagon (h18). Interestingly, both in-
teract with the TEOSINTE BRANCHED 1 / CYCLOIDEA /

PROLIFERATING CELL FA CT OR 1 and 2 (TCP) transcrip-
tion factors, thus suggesting shared sequence properties to
enhance the interaction with similar partners to investigate
further ( 90 ). The two non-classically secreted validated effec-
tors (ncSecP12 and ncSecP3) are mapped in the same hexagon
(h35), also suggesting very similar sequence properties. Im-
portantly, LEAPH predicted new putative effectors which
are mapped in the same hexagons as the biologically val-
idated effectors offering novel potential effector candidates
with similar sequence characteristics to be experimentally
validated. 
EffectorComb: a Shiny app to inspect the map of 
the pathogenicity proteins 

To further inspect other properties and characteristics of the 
sequences contained in the pathogenicity protein map, we 
have developed a Shiny application, called EffectorComb,
enabling us to show which features are enriched in each 

hexagon ( Supplementary Figure S5 ). For instance, we notice 
that the enrichment of phosphorylation sites is mainly present 
in hexagons collecting togethger classically secreted putative 
pathogenicity proteins. Specifically, hexagon h70 is character- 
ized by a high presence of the domain cAMP- and cGMP- 
dependent protein kinase phosphorylation site. Similarly, the 
Protein kinase C phosphorylation site and Casein kinase II 
phosphorylation site were found predominantly in h90. Ty- 
rosine kinase phosphorylation sites 1 and 2 were also found 

enriched in h25, h99, h100 and h48. Protein phosphorylation 

is a widely used mechanism in bacteria to adapt to changes 
in their environment (where the conditions can alter rapidly),
but it is also used for intercellular communication. The N - 
glycosylation site, specific to the consensus sequence Asn–
Xaa–Ser / Thr, was found enriched in both classically like (h74) 
and classically secreted (h89) candidate pathogenicity pro- 
teins. Bacteria have evolved diverse glycosylation systems for 
pathogenesis. Bacterial glycosylation not only allows adhesion 

to the host cell but also functions to modulate crucial host 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae087#supplementary-data
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Figur e 6. P athogenicity protein reference map f or ph ytoplasmas. ( A ) LEAPH predicted proteins projected on an SOM and colored b y their secretion 
group: classically secreted (dark green points and dark green he xagons), classically lik e secreted (light y ello w points and green hexagons), non-classically 
secreted (light green points and light green hexagons) and mixed secretion modality (olive green hexagons). Dark red contours indicate the hexagons 
containing the validated effectors from the literature. Empty gray hexagons represent profiles of features that are not represented by the predicted 
proteins. ( B ) The same as (A) showing the abundance of features for each hexagon. 
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cellular processes ( 91 ). Notably, glycosylation has been re-
ported as an important process in the interaction between the
‘flavescence dorée’ phytoplasma and its insect vector ( 92 ), but
also of phytoplasma strains and host plants ( 93 ,94 ). Interest-
ingly the hexagon h74 is also characterized by the presence of
the N -myristoylation site. N -myristoylation is an irreversible
protein lipidation; in plants it is recognized as a major modi-
fication and concerns nearly 2% of all plant proteins ( 95 ,96 ).
Attachment of a myristoyl group increases specific protein–
protein interactions leading to the subcellular localization of
myristoylated proteins with their signaling partners ( 97 ). In-
triguingly, Medina-Puche et al . ( 98 ) identified novel mecha-
nisms involving protein relocation due to the presence of the
N -myristoylation site from the plasma membrane to chloro-
plasts that are utilized in plants for defense responses against
pathogens. Furthermore, amidation sites were found mainly
in the hexagons h10 and h40. C-terminal amidation reduces
the overall charge of a peptide; therefore, its overall solubility
might decrease. Modifications at the C-terminus have already
been shown to have consequences on the pathogenicity of phy-
toplasmas; for instance, deletions at the C-terminus of the ef-
fector SWP1 impaired the induction of witches’ broom ( 99 ).
The enrichment of this domain might suggest that changes in
protein solubility are important for phytoplasma effectors and
might reflect distinct functions also depending on the different
hosts (insect / plant). The leucine zipper domain is found only
in the classically secreted putative pathogenicity proteins lying
in h19. This pattern is present in many gene regulatory pro-
teins, making this cluster very interesting for further investiga-
tion ( 100 ). Finally, the ‘RGD’ tripeptide that has been shown
to play a role in cell adhesion ( 101 ) is abundant in both clas-
sically (h82 and h98) and non-classically (h1, h17 and h25)
predicted pathogenicity proteins. 

Overall, the SOM map allowed us to identify distinct classes
of putative pathogenicity proteins with particular properties
probably linked to their function and type of interaction with
the plant and / or insect. 

Conclusions 

The few known biologically validated effectors in phytoplas-
mas are implicated in a huge spectrum of different functions,
ranging from the regulation of plant morphogenesis to at-
tracting insect vectors. They possess a variety of strategies to
manipulate the host plants. Therefore, it is unlikely for phy-
toplasma effectors to be described by a few common char-
acteristics. However, the most widely used method to select
pathogenicity candidates for phytoplasmas is to screen protein
sequences and look only for the presence of the signal peptide.
Recently, a novel tool was introduced, PhyEffector, consisting
of a pipeline of four different tools aimed at the identification
of signal peptides and TM domains, and inspecting sequence
similarity ( 46 ). Despite the promising performances of this
tool, the results still lack a wider comprehension of effector
physicochemical characteristics, a system by which to prior-
itize and evaluate the accuracy of the predictions and tools
to help speed up the experimental validation process. Lever-
aging four machine learning classifiers coupled with a novel
voting score for assessing the prediction score, we have devel-
oped LEAPH specifically conceived for phytoplasma effector
candidate prediction. We have shown that using LEAPH, it
is possible to predict putative effector candidates with high
reliability and outperform existing tools not adapted for phy-
toplasmas. A major advantage of LEAPH consists of its abil- 
ity to predict candidate pathogenicity proteins independently 
by the presence of the signal peptide and with many differ- 
ent sequence characteristics. Furthermore, as our knowledge 
of effector proteins increases, the early stage of LEAPH can 

be refined by constituting a novel training dataset to re-train 

the models to improve their performances. 
The application of LEAPH on 13 phytoplasma proteomes 

led to the identification of 2093 putative candidates showing 
sequence characteristics linked to virulence and pathogenic- 
ity. To investigate the properties of those proteins, we used 

the SOM algorithm and obtained the first pathogenicity pro- 
tein map for this pathogen. To provide an easy exploration 

of the pathogenicity protein map, we have developed an easy- 
to-use Shiny application called EffectorComb. To the best of 
our knowledge, this is the first time that a comprehensive 
characterization of putative pathogenicity proteins has been 

provided for phytoplasmas. The use of this map goes beyond 

the identification of groups of putative pathogenicity proteins 
having similar properties, but can be used as a reference map 

to project new predicted pathogenicity proteins from other 
proteomes in a predictive perspective. Therefore, when using 
this map as a reference to analyze a new sample, the position- 
ing of each predicted pathogenicity protein of a new proteome 
on the 2D plane can be used to assess its pathogenicity prop- 
erties and overall sequence characteristics. The pathogenicity 
protein map can also be used to accelerate the choice of novel 
candidates for biological validation, for instance by focusing 
on proteins in the same group of known validated effectors or 
on groups showing particular sequence properties of interest.

Overall, an ensemble of four learning model never used 

before in phytoplasma effector prediction, the introduction 

of a prediction prioritization score based on model agree- 
ment, the delineation of the phytoplasma effector reference 
map coming from a wide range of phytoplasma proteomes 
and the possibility to easily explore it, interact with it and re- 
trieve protein sequences from it, make LEAPH and Effector- 
Comb novel and valuable tools to improve our understand- 
ing of effectors in plant–phytoplasma interactions. Finding 
novel experimentally validated effectors can be used to set up 

novel methods to improve plant resistance to these devastating 
bacteria. 

Data availability 

The datasets supporting the conclusions of this article are in- 
cluded within the article and its additional files. 

Project name: LEAPH-EffectorComb 

Project home page: https:// github.com/ Plant-Net/ LEAPH- 
EffectorComb.git . 

Archived version: 10.5281 / zenodo.10276703 

Operating system(s): platform independent but software re- 
quirements to be fulfilled 

Programming language: Python3.8, R for shiny-app 

Other requirements: biopython, pandas, joblib, Sig- 
nalP4.1,TMHMM2.0, MobiDB-lite1.0, Prosite1.86, singu- 
larity3.7 (at least) 

License: e.g. GNU GPL 

LEAPH, along with training sequences, feature tables 
and the Shiny app are available on GitHub at: https: 
// github.com/ Plant-Net/ LEAPH-EffectorComb.git . The pre- 
trained LEAPH and the Shiny app are also available as 
a definition file for container usage (Singularity 3.7 rec- 

https://github.com/Plant-Net/LEAPH-EffectorComb.git
https://github.com/Plant-Net/LEAPH-EffectorComb.git
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mmended). Data are available in the Zenodo repository:
0.5281 / zenodo.10276703 

upplementary data 

upplementary Data are available at NARGAB Online. 
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