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Abstract—This article presents a novel system that produces
multiyear high-resolution irrigation water demand maps for agri-
cultural areas, enabling a new level of detail for irrigation support
for farmers and agricultural stakeholders. The system is based on
a scalable distributed deep learning (DL) model trained on dense
time series of Sentinel-2 images and a large training set for the
first year of observation and fine tuned on new labeled data for
the consecutive years. The trained models are used to generate
multiyear crop type maps, which are assimilated together with
the Sentinel-2 dense time series and the meteorological data into
a physically based agrohydrological model to derive the irrigation
water demand for different crops. To process the required large
volume of multiyear Copernicus Sentinel-2 data, the software ar-
chitecture of the proposed system has been built on the integration
of the Food Security thematic exploitation platform (TEP) and the
data-intensive artificial intelligence Hopsworks platform. While the
Food Security TEP provides easy access to Sentinel-2 data and the
possibility of developing processing algorithms directly in the cloud,
the Hopsworks platform has been used to train DL algorithms in a
distributed manner. The experimental analysis was carried out in
the upper part of the Danube Basin for the years 2018, 2019, and
2020 considering 37 Sentinel-2 tiles acquired in Austria, Moravia,
Hungary, Slovakia, and Germany.

Index Terms—AI4Copernicus, copernicus, deep learning (DL),
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I. INTRODUCTION

THE continuous acquisition of Sentinel-21 Copernicus data
represents a unique opportunity to constantly monitor the

Earth’s surface at high spatial resolution. In the context of water
irrigation management, Earth observation (EO) data are essential
to improve water resource planning, efficient irrigation prac-
tices, monitoring of irrigation infrastructure, and early detection
of droughts or floods, allowing the continuous monitoring of
large-scale hydrological processes without the need of in situ
measurements [1]. The extreme scale of such a growing volume
of data requires a paradigm shift from the traditional approach of
downloading, replicating, and exploiting data on local servers to
a dynamic and scalable approach where the data are processed
directly in the cloud. In this context, the European Space Agency
(ESA) launched the thematic exploitation platforms (TEPs) in
2014 covering seven main categories: Coastal, Forestry, Geohaz-
ards, Hydrology, Polar, Urban, and Food Security. Each platform
is a collaborative, virtual work environment that facilitates the
access to and the exploitation of the Copernicus Big Earth
observation data. Although the offered working environments
provide computational resources to develop processing algo-
rithms online, these are not sufficient for supporting cutting-
edge artificial intelligence (AI) techniques aimed at advanced
computing applications. In the remote sensing (RS) community,
Deep learning (DL) models are more and more considered to
classify effectively and efficiently continuously acquired satel-
lite data [2], [3], [4]. The development of distributed scalable
DL models requires high-performance computing platforms and
GPU accelerators, which should be properly integrated with the
thematic exploitation platforms (TEPs). In this context, such
data and architectures can bring significant advantages to food
security applications [5], [6]. These include the monitoring
of agricultural areas, and in particular, the mapping of water
availability and crop water demand both at field and regional
scale. Indeed, in recent years, severe droughts started to hit
regions typically not affected by such events, due to the lack
of rain in spring/summer. The increasing spatial distribution,
frequency, and severity of such events requires the monitor-
ing of the crop water demand to mitigate the implications on

1[Online]. Available: https://sentinels.copernicus.eu/web/sentinel/user-
guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/
content/id/636612/S2 Products Specification Document
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food availability and plan government interventions for new
infrastructures and irrigation strategies. The production of such
irrigation maps is essential not only to optimize the irrigational
resources, but also to improve the crop performance, mitigate
the environmental impacts, preserving the soil health, the water
quality, and the ecosystem integrity. Existing methods for water
demand estimation based on RS data often use hyperspectral
images [7] for crop mapping. While such data provide very
detailed spectral information, they lack in terms of both temporal
resolution and spatial coverage. This strongly limits their use at
the national or continental scale. Moreover, Sentinel-2 data are
freely accessible and available, with a short revisit time of five
days and spatial resolution of 10 m, making them suitable for
agricultural applications at the crop field level. Hyperspectral
images usually have a higher spatial resolution (30 m in average)
and a smaller geometric field of view (GFOV), resulting in
a wider revisit time gap. This limitation is common also to
methods that use data acquired from unmanned aerial vehicle
(UAV) [8]. Other methods [9] work at large scale using data
acquired by low-resolution sensors such as moderate resolution
imaging spectroradiometer (MODIS) thus making the field level
monitoring unfeasible, as parcel sizes are often smaller than the
MODIS spatial resolution.

In recent years, significant efforts have been made to link com-
puting platforms with cloud platforms [10], [11] storing high
spatial resolution EO data, to enable efficient and effective use
of satellite data for specific thematic applications. In particular,
the connection of such platforms is essential for the following:

1) access the data from various sources, removing the need
to search and retrieve data manually;

2) process the data and perform the analysis on RS data;
3) customize and automate the workflows to specific the-

matic needs;
4) integrate models and algorithms;
5) promote collaboration and knowledge sharing among re-

searchers and users in the RS community.
However, existing approaches are typically focused on a

single-year map production and on relatively small study areas,
whereas little has been done to study how to produce irrigation
maps at a large scale and on a continuous basis. This article aims
to address these issues by answering the following operational
and interrelated research questions.

1) How can an end-to-end workflow be designed to effec-
tively integrate and process satellite and meteorological
data to efficiently produce irrigation maps at large scale?

2) How can we define a system being able to ingest the
continuous stream of recently acquired satellite and mete-
orological data to regularly generate up-to-date irrigation
maps?

To address these issues, the main novelties of this article are
twofold.

1) To propose an end-to-end workflow that integrates the
Food Security TEP and the Hopsworks platform to imple-
ment a dynamic and scalable approach where the data are
processed directly in the cloud through computationally
demanding DL models.

2) To define a novel system for producing high-resolution
multiyear maps of water requirements at crop level to
enable effective agricultural water management activi-
ties (i.e., continuous irrigation recommendations at crop
level).

In greater detail, this article presents an efficient and effec-
tive workflow for the continuous production of high spatial
resolution (10 m) annual maps for large-scale water demand
assessment computed at crop level. The workflow makes ex-
tensive use of the information provided by the time series of
Sentinel-2 EO data to generate continuously updated crop type
maps (exploiting DL) and crop-based agrohydrological models
(designed to assimilate the leaf area index (LAI) and the same
Sentinel-2 EO data used for crop type mapping).

This article is organized into seven sections. Section II dis-
cusses related works. Section III presents the proposed system
architecture for crop mapping and assessment of irrigation de-
mand. Section IV describes the study area and the considered
dataset. Section V illustrates the experimental results in terms
of annual crop type maps (Sections V-A and V-B) and annual
irrigation water demand (Sections V-C and V-D). Section VI
reports the findings of the research and comments the results.
Finally, Section VII concludes this article, while details of the
processing architecture can be found in the Appendix.

II. RELATED WORKS

As recently remarked from the new European Green Deal
[12], sustainable food production plays a central role to guar-
antee food security. In this context, a critical issue is the imple-
mentation of agricultural policies for an efficient and sustainable
management of crops and in particular of the natural resources
such as water. For the generation of field specific irrigation water
demand maps, a key component is the knowledge of the planted
crop types. Knowing the crop type allows the derivation of
the photosynthetically active leaf area in a crop-type specific
way and ultimately allows to calculate the water demand of
different crops over the year [13], [14], [15]. Recently, several
works have focused on the production of crop type maps on
country or continental scale due to the availability of high-
resolution time series of multispectral satellite data acquired
with a short revisit time such as Sentinel-2 (i.e., up to 5 days)
[16], [17], [18]. The temporal information allows modeling the
phenological trends of different cultivation [19], which results
in an accurate mapping of the crop type [20], [21]. Ibrahim
et al. [16] present an automatic approach to map the main
cultivation present in Nigeria based on Sentinel-2 time-series
and very-high-resolution SkySat data. In [17], Sentinel-2 time
series are used together with the Eurostat land use and coverage
area frame survey (LUCAS) [22], [23] to generate a 10-m crop
type map for the European Union (EU) for 19 crop types in 2018.
Both approaches presented in [16] and [17] consider a random
forest (RF) classifier, which is widely used for large-scale map-
ping [24]. However, Rußwurm et al. [25] compared seven deep
neural networks classifiers with an RF baseline, showing that
multitemporal DL approaches significantly outperform the RF
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classifier for the crop type mapping problem. To emphasize the
temporal information provided by the time series of Sentinel-2
images, three main categories of DL models were considered,
i.e., attention-based models [26], recurrence-based models [27],
and time-convolution-based models [28]. The accuracies ob-
tained by the attention-based transformer model [29] and the
recurrent models (i.e., long-short-term memory (LSTM) [30]
and Star recurrent neural network (RNN) [31]) were similar, and
in overall, higher compared to those of RF and time-convolution-
based models [32].

In addition to the mapping of crop types, several approaches
have been defined for monitoring crop water stress and assessing
irrigation water demand. The latter is becoming ever more im-
portant, as water availability changes with climate change. Thus,
approaches using different types of remotely sensed information
are being developed. Thermal data have long been used as a basis
to determine water stress. The crop water stress index, originally
proposed by [33] and looking at the difference between crop
canopy and ambient air temperatures, is one of the earliest
examples of such indicators. More recently, this approach has
been adapted so that it can be derived purely based on RS data,
particularly Landsat 8 thermal data [34]. However, the bottle-
neck of Landsat 8 pertains to its low revisit frequency (16 daily),
making it less suitable for near-real-time monitoring of crop
water stress. In the absence of current high-resolution thermal
missions with high revisit frequencies, researchers have looked
for ways to detect crop water stress from optical imagery. Taking
advantage of different portions of the electromagnetic spectrum,
both multispectral and hyperspectral data are used to estimate
leaf water content [35], [36], [37], [38], [39], [40], chlorophyll
content [38], and xanthophyll content [38], [41] as indicators to
detect water stress. Early signs of water stress are well detectable
based on the near-infrared [35] or short-wave infrared part of
the spectrum due to the increased reflectance near the water
absorption bands or the visible (VIS) part reduced by changes
in chlorophyll content [42]. Algorithms range from narrow-
band spectral indices [42] over linear nonparametric regression
methods such as partial least squares regressions [43], [44] to
physically based radiative transfer models [36], [45], [46].

Beyond the variables that can be directly derived from EO
data, additional information about the crops can be derived by
crop growth modeling [47]. Using a crop growth model, soil
moisture can be modeled in different soil layers and the influence
of irrigation can be simulated. Thus, variables like plant water
demand, water availability, and water use efficiency can be
derived [48], [49]. Unlike approaches based on simple spectral
indices, crop growth models allow a precise agricultural analysis
at the crop level, thus enabling a better management of inputs
(e.g., irrigation). However, these models are generally not used in
large-scale operational workflows due to the need for crop type
maps. Ensuring accurate crop type maps implies integrating DL
models applied to long time series of data into the workflow,
which entails the need tohandle a large volume of EO data,
and have high computational resources. Existing virtual work
environments, which facilitate access to large volumes of data,
offer limited computational resources, thus requiring to transfer
large volumes of data to local servers where DL architectures

should be trained for accurate crop type mapping. Another
major limitation of the literature methods is their focus on
producing single year analysis. In order to monitor agricultural
areas, multiyear mapping is essential to continuously provide
up-to-date information. Due to both crop rotation practice and
changes in the image acquisition conditions as well as the
crop phenology, the class statistical distributions usually vary
between years leading to a decrease of performances of a DL
classifier trained on a given year when applied to a different
one [50]. For this reason, it is necessary to fine tune the initial
DL model on recently acquired EO data, which still requires
additional computational resources.

III. PROPOSED SYSTEM FOR CROP MAPPING AND IRRIGATION

DEMAND ASSESSMENT

Fig. 1 depicts the developed end-to-end work flow, which
starts with the Level 1c Sentinel-2 data available on the Food
Security TEP and ends with the annual irrigation water demand
maps. First, the dense time series of Sentinel-2 are preprocessed
in the Food Security TEP to perform the atmospheric correc-
tion, cirrus correction, cloud, and cloud shadow masking. The
obtained atmospherically corrected images are further processed
to generate a time series of 12 monthly composites per tile. To
this end, the scalable distributed DL model is trained on the
Hopsworks platform from scratch for the first year of operations,
whereas it is fined tuned for the next years. The Hopsworks per-
forms the training of the model on a parallel architecture while
abstracting away the complexities of distributed computing from
the user. This allows the user to focus only on the definition
and configuration of the model, simplifying and accelerating
the development and testing process. The trained models are
then deployed on the Food Security TEP where they are used
to perform the inference. In such a way, all the data processing
and inference is performed on the TEP independently of the
utilized model and its training. Finally, the crop type maps are
provided as input together with the meteorological data and
the atmospherically corrected images to the agrohydrological
model employed to assess the water demand per crop field. In
the following subsections, details are provided.

A. Satellite Data and Time-Series Image Preprocessing

The time series of Sentinel-2 data are the input to the pro-
duction of both the crop type and the water demand maps.
Starting from Sentinel-2 Level 1c data, VISTA’s image pro-
cessing chain implemented in the Food Security TEP performs
a high-quality atmospheric correction, including high-accuracy
cloud and cloud shadow masking as well as cirrus correction.
After the atmospheric correction, we selected the bands having a
spatial resolution of 10 and 20 m, performing a nearest neighbor
interpolation on the 20-m bands to match the resolution of the
highest spatial resolution channels. The atmospherically cor-
rected data are further processed before training the DL model
to harmonize the time series from the temporal view point, i.e.,
generate time series of uniform length across the study area. To
this end, a time series of 12 monthly composites is computed per
Sentinel-2 tile using a statistic-based approach working at the
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Fig. 1. End-to-end work-flow of the proposed system. While the training of the DL models requires the distributed Hopsworks platform, the other steps are
processed directly in the Food Security TEP.

pixel level. Let us consider a time series of N Sentinel-2 images
acquired in a given month and let us focus on one individual
pixel. Let X = [x1,x2 . . . ,xS ] be the multitemporal spectral
vector of the individual pixel composed by S spectral channels,
where xs = [x1

s, x
2
s, . . . , x

N
s ] represent the reflectance values of

band s for each date, with s ∈ [1, . . . , S]. Working separately
on each spectral channel, the N reflectance values are collapsed
into a single one (representing the month) by computing their
median. Given the median operator M, the monthly composite
computation for one pixel is as follows:

xc,s = M{
x1
s, x

2
s, . . . , x

N
s

} ∀s ∈ [1, . . . , S]. (1)

The resulting spectral vector of the composite of one month for a
pixel is xc = [xc,1, xc,s, . . . , xc,S ]. This operation is performed
for each month and for each pixel obtaining a multitemporal
spectral vector composed of S × 12 features, i.e., S reflectance
values for 12 months. Note that the median operator is applied
after discarding cloudy, snowy, and shadowy samples using the
masks provided by the atmospheric correction step. If no images
are available for a given pixel for a month (e.g., due to cloud
coverage), the harmonization process sets all the reflectance
values of the month to zero. In this way, we ensure the uniform
length of the time series. Moreover, this allows the DL model to
handle the missing data by relying on the information provided
by the rest of the time series [51]. Indeed, the approach is
based on the assumption that a sufficient number of images is
available for each month to reliably generate the composite.
This assumption is reasonable due to the short revisit time of the
Sentinel-2 constellation (i.e., up to 5 days). Furthermore, this
step clearly mitigates the problem of missing data values in the
images due to cloud cover.

B. Distributed DL Model for Crop Type Mapping

In order to accurately perform crop type classification, it is
necessary to model the phenological trends of the different crops
during the year [52]. To extract this information from the time
series of 12 monthly composites, we considered a multitemporal
DL architecture based on the LSTM architecture. This model has
been selected due to its internal feedback connections, which

Fig. 2. Flow scheme showing the training of the LSTM model on the
Hopswork platform and its use on the Food Security TEP to generate the crop
type map.

are designed to model sequential data by exploiting previous
observations to analyze current ones [53], [54]. Fig. 2 provides
an overview of the training and classification flow for the crop
type map generation, which predicts the crop type at pixel level
focusing on the agricultural areas. The adopted network consists
in a multilayer LSTM, where the first three layers have 200,
125, and 100 hidden units, respectively, followed by a fully
connected layer and a softmax layer. The softmax layer is the
one where posteriors are extracted and pixel-level classification
is performed. The proposed architecture has been trained on
the Hopswork platform according to a distributed strategy to
distribute the workload across multiple workers each having
one GPU. In this work, the architecture has been trained on
two workers each having one GPU. It is worth mentioning
that training the network considering two GPUs is considerably
faster than training with single worker (i.e., ca. 50% of the
time saved using two GPUs). However, due to the Hopswork
platform, the distributed strategy can be easily scaled allow-
ing for the use of more GPUs, further reducing the training
time.

C. Crop Type Map Production and Update

After the LSTM has been trained, it is deployed on the Food
Security TEP where the Sentinel-2 data are prepared to be fed
to the network in the following two steps: 1) preprocessing, and
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2) masking of the pixels outside agricultural areas. The first step
aims to transform the time series into the format expected by
the network, i.e., the 12 monthly composites, each representing
a month in the selected agronomic year, according to what was
presented in Section III-A. The second step aims at focusing
the analysis only on agricultural areas. For this purpose, we
employed the publicly available PAN-European high-resolution
layer (HRL) [55], which provides information on several specific
land cover characteristics at 10-m spatial resolution, including
crop locations. The crop type map is generated by providing
the 12 masked monthly composites to the trained network per
Sentinel-2 tile to be classified. After the generation of the crop
type map, few standard morphological operators are applied.
This postprocessing step allows us to remove pixel-level noise
leveraging the spatial correlation. In particular, an opening oper-
ation followed by an erosion using a structuring element of size
2× 2 is applied to the crop type map at class level. Finally, all
labeled areas smaller than a minimum threshold of 15 pixels are
discarded. The filtering parameters have been defined according
to the spatial resolution of the Sentinel-2 data and the minimum
area of individual fields to be identified.

The architecture described so far illustrates the crop type
mapping approach for the one-year scenario. However, the goal
of the proposed workflow is to continuously monitor the con-
sidered agricultural area. To this end, we aim to exploit the DL
model trained in 2018 to classify the new target years, i.e., 2019
and 2020, as building a new dataset for training a new model
from scratch is not feasible at the operational level. However,
the application of a pretrained architecture to new target years
requires the definition of a domain adaptation strategy since the
spectral signature changes over time and the model gradually
loses its ability to correctly map crop types as the time gap
between different years increases.

In order to adapt the reference year architecture to the new
target years, first the irregular Sentinel-2 time series acquired in
2019 and 2020 are reprojected on the same regular time grid by
exploiting the monthly composite strategy described in Section
III-A. Then, the multiyear time series are harmonized in order
to match the radiometric characteristics of the one used in the
pretrained network, i.e., the time series of the reference year [56].
In particular, each monthly composite is initially normalized in
order to have zero mean and unit variance at band level, and
then, the normalized composite is processed to match the mean
and the variance of the corresponding monthly composite in
the reference year. Finally, we adapted the LSTM trained on
2018 considering a relatively small number of training samples
for 2019 and 2020 compared to the training set used to train the
architecture on the target year. These samples are used to perform
the fine tuning of the pretrained network in the following two
steps:

1) the last fully connected layer is trained, while the other
layers are frozen;

2) the whole unfrozen network is trained considering a low
learning rate.

The first step allows the network to quickly reach a con-
vergence, while the training of the previous layers allows the
optimization of computational time and avoids the divergence

Fig. 3. Modules of the PROMET model and their connections and interfaces
(modified from [58]).

from the original network [57]. By employing this approach, we
can adapt the performance of the DL architecture to the new
target years using a small number of training samples compared
to the number of model parameters.

D. Irrigation Water Demand Map Generation

To estimate the irrigation water demand at the parcel level, the
proposed end-to-end workflow leverages the well-established
processes of mass and energy transfer (PROMET) model. Over
the past three decades, this crop-based agrohydrological model
has been employed in both scientific and service operations
because of its capability of simulating all relevant energy and
mass fluxes on a physical basis. Currently, this model is opera-
tionally applied to smart farming services and specifically used
for irrigation advice. Moreover, the PROMET model has been
designed to assimilate the LAI and the same EO data used to
generate the crop type maps, thus leading to consistent output
products. The main advantages of using the PROMET growth
model in the considered workflow are as follows:

1) it allows a spatial and temporal dynamic calibration by
using observed variables like measured leaf area and phe-
nological developments [59];

2) it provides water recommendation at individual crop
level [60];

3) it can model 15 different crop types [61].
Fig. 3 shows the various components of the PROMET model,

which is able to integrate EO-derived land information (i.e.,
crop types and LAI) and meteorological data to receive an
up-to-date consistency between simulated and observed vari-
ables. The crop water demand for transpiration is calculated for
each hour based on the simulated potential photosynthesis. If
soil moisture conditions do not suffice this water demand and
irrigation is not applied, photosynthesis is reduced accordingly.
As an alternative, the amount of irrigation required to avoid water
stress of the crop can be calculated. Hourly values are aggregated
over a longer time period (e.g., 5–7 days) and irrigation advice
for the next days is provided to the farmers using meteorological
forecasts in the simulations.

Fig. 4 shows the reasoning for integrating the Sentinel-2
based crop type maps and the LAI monitoring for the land
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TABLE I
LIST OF DATASET USED TO PERFORM THE RESULT ASSESSMENT

Fig. 4. Approach used based on EO and crop type maps for water demand
calculations.

surface processing. Based on model simulations, all relevant
crop and water information layers can be obtained and the
related maps be generated. The spatial scale for the crop water
demand simulations is 10 × 10 m, which corresponds to the
spatial sampling distance of Sentinel-2. This allows us to do
a direct comparison with the 10 × 10 m Sentinel-2 image.
This means that for each sample point the crop type and the
leaf area development can be derived from the corresponding
Sentinel-2 pixel. The leaf area is retrieved by model inversion
using the radiative transfer model soil-leaf-canopy [46] over
the Sentinel-2 time series and temporally interpolated to daily
values using the harmonic analysis of time series (HANTS)
algorithm [62]. The leaf area information is then assimilated
into the crop growth model PROMET in order to realistically
simulate variables as photosynthesis and transpiration.

IV. DATASET DESCRIPTION AND EXPERIMENTAL SETUP

This section describes the considered study area, the EO and
meteorological data used to perform the experimental analysis,
and the validation dataset used to assess the accuracy of the
obtained results summarized in Table I. Finally, details on the
experimental setup are provided.

A. EO and Meteorological Data

The considered study area is covered by 37 Sentinel-2 tiles
located in the Danube catchment, Europe’s second largest river
basin. The basin is characterized by different geographic regions
ranging from the cold and humid Alps to the warm and more arid
regions in the East allowing for the testing of the method under

different conditions. Three agronomic years were considered
(i.e., 2018, 2019, and 2020), amounting to a total of more than
9 TB of preprocessed Sentinel-2 data made up of nine spectral
bands at 10-m spatial resolution. The data available in the Food
Security TEP include all the high spatial resolution spectral
bands (i.e., 10 and 20 m) except for Band 8, which is discarded
because of its coarser spectral resolution compared to Band 8A.

The meteorological data used in PROMET are based on
downscaled model outputs from the German Weather Service
German weather service (DWD). The used freely available
COSMO ICON EU dataset offers hourly time steps that fit with
the temporal resolution used in the PROMET model to simulate
water balance components (e.g., soil moisture, surface runoff,
transpiration, evaporation, and interception).

B. Validation Dataset

1) DL Model: To validate the crop type maps, we considered
the following:

1) publicly available land parcel identification system (LPIS)
crop type maps in Austria for the three agronomic years,
which are based on farmer declarations [63];

2) the 2018 LUCAS database samples available for the whole
study area for the 2017–2018 agronomic year;

3) the 2018 Bavarian crop type map, which is based on
farmer declarations and available within the ExtremeEarth
project provided by the Bavarian Ministry of Agricul-
ture (“Bayrisches Staatsministerium für Ernährung, Land-
wirtschaft und Forsten”).

The 2018 LUCAS database and the Bavarian map are used to
determine the spatial generalization capabilities of the model,
i.e., in areas where no training samples are available (all
Sentinel-2 tiles outside of Austria). The LUCAS database is
extremely reliable since is based on in situ surveys collected
by expert surveyors in the field. For more information, please
consult Eurostat’s technical reference document on the quality
control procedure.2 Similarly, the Bavarian map is a reliable
validation source since is based on farmer declaration. The self-
declaration maps follow the subsidy control in the framework
of the European Common Agriculture Policy (CAP).3 Controls

2[Online]. Available: https://ec.europa.eu/eurostat/documents/205002/
8072634/LUCAS2018-C4-QCProcedures.pdfLUCAS 2018:C4-Quality
Control Procedures

3[Online]. Available: https://www.eca.europa.eu/Lists/News/NEWS1610_
25/SR_LPIS_EN.pdfLand Parcel Identification System

https://ec.europa.eu/eurostat/documents/205002/8072634/LUCAS2018-C4-QCProcedures.pdf
https://ec.europa.eu/eurostat/documents/205002/8072634/LUCAS2018-C4-QCProcedures.pdf
https://www.eca.europa.eu/Lists/News/NEWS1610_25/SR_LPIS_EN.pdf
https://www.eca.europa.eu/Lists/News/NEWS1610_25/SR_LPIS_EN.pdf
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are performed periodically to check the validity of the farmer’s
declarations by national or regional producer accuracy (PAs),
responsible for the direct payments at a country level.4 These
maps are considered reliable products and have been extensively
used to generate training and validation dataset [25], [64], [65].

The 2019 and 2020 LPIS Austrian maps allow us to assess
the generalization capability of the DL model from the temporal
view point. Since the maps are used to generate the training
set used for the learning of the multiyear LSTM models, we
considered spatially uncorrelated portions of the study area to
assess the results. This condition allows us to generate spatially
uncorrelated training and test sets.

2) PROMET Model: To evaluate the simulation results, the
PROMET model outputs are aggregated in the temporal and
spatial domains. The annual maps representative of the three
agronomic years are generated through integration of the sim-
ulated hourly crop water demand values. Spatially, the sample
points were averaged over nomenclature of territorial units for
statistics (NUTS) 1 regions, since the visualization of all sample
points is not meaningful. Nevertheless, the information is gen-
erated for all of the simulated fields. To validate the observed
irrigation water demand and the underlying crop water stress,
we considered an indirect approach, as no large-scale in situ
measurements for crop water stress or crop water demand are
available for the Danube basin. Hence, the validation efforts
are based on the connection between precipitation and crop
water stress. We used the Copernicus Climate Data Store,5

aggregated to subcountry level, for our comparisons. Although
no direct validation can be performed in the considered study
area, we would like to remark that the PROMET model was
selected for the considered end-to-end workflow since it has
been extensively employed in several scientific studies [13],
[47], [48], [62], [66], [67], [68], [69]. In particular, the different
components of the PROMET model have been validated in
order to compare simulated soil moisture profiles with mea-
surements using time domain reflectometer (TDR) soil probes,
or simulated versus measured crop parameters in terms of leaf
area, biomass, crop height, and phenology. Evapotranspiration
estimations were validated with Eddy covariance stations, while
crop yield estimations using farm data. Several studies using
PROMET can be found for EO-based LAI retrieval and data
assimilation in [13], [47], and [62], for yield simulations at field
scale in [48], [66], and [67], for water balance components in
[68] and [69].

C. Experimental Setup

To be efficient on a large scale, the presented software ar-
chitecture is based on the integration of the Food Security
TEP and the data-intensive AI Hopsworks platform. While the
former provides easy access to Sentinel-2 data and computa-
tional resources for processing the EO data, the latter is used

4[Online]. Available: https://agriculture.ec.europa.eu/common-agricultural-
policy/financing-cap/assurance-and-audit/managing-payments_enIntegrated
Administration and Control System (IACS)

5[Online]. Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-
energy-derived-reanalysis

to efficiently train the developed DL models in a distributed
and transparent manner. By combining the strengths of each
platform, the deployed end-to-end workflow ingests the Level
1c data acquired by the Sentinel-2 satellites and provides the
final products computed at large scale for multiple years.

1) DL Model: To successfully train the LSTM architecture
on the considered study area, a large amount of high-quality
informative training samples is required. As part of the Ex-
tremeEarth project, we defined the TimeSen2Crop6 dataset [52],
an open-source benchmark dataset consisting of more than one
million crop type samples associated with 16 different classes.
The TimeSen2Crop benchmark dataset models one agronomic
year ranging from September 2017 and August 2018. The la-
beled samples have a minimum-distance requirement of 120
m (12 pixels) from each other, in order to reduce spatial cor-
relation (please refer to [52] for more details on this training
database). The architecture parameters were selected following a
standard grid search approach, sampling the learning rate and the
weight decay from log-uniform distributions,Ulog([10

−2, 10−4])
and Ulog([10

−2, 10−8]), respectively. We considered different
numbers of cascaded layers L ∈ {2, 3, 4} and hidden represen-
tation H ∈ {25, 26, 27}. The architecture has been trained on
the Hopsworks platform considering synchronous distributed
training on two different GPUs. For fine tuning the DL model to
generate the multiyear classification, we selected 1500 samples
per crop type distributed throughout the entire Austria. The
seven Sentinel-2 tiles acquired in Austria were divided into
minipatches, to generate training and test sets having spatially
uncorrelated samples. The number of samples per crop type was
defined by comparing the performance of the network without
fine tuning, with 150 samples per class, and considering 1500
samples per class. The architecture performance showed limited
increment after the latter, leading us to the choice of this con-
figuration to have a good tradeoff between number of samples
and performance of the architecture [56]. The accuracies of the
crop type maps are reported considering the standard metrics
typically used to evaluate the classification results, i.e., user
accuracy (UA)%, PA%, and overall accuracy (OA)%. While the
UA% measures the number of pixels correctly classified in a
specific crop type with respect to the total number of pixels
classified as that crop type, the PA% measures the number of
pixels correctly classified in a specific crop type with respect
to the total number of pixels belonging to that crop type. The
OA% provides an overall assessment of the model’s perfor-
mance considering the accuracy of all crop types collectively. In
addition, the confidence intervals are reported for all the metrics,
calculated as in [70].

2) PROMET Model: In order to monitor crop development
and irrigation water demand, a sampling approach using mil-
lions of individual fields has been chosen (see Fig. 5). Using
distributed pixels reduces the number of calculations without
a significant loss of local and regional heterogeneity [71]. In
particular, samples are selected using a regular grid, by combin-
ing the classification result and a dynamic selection based on
geometry and a quality factor. Through the applied sampling, a

6[Online]. Available: https://rslab.disi.unitn.it/timesen2crop/

https://agriculture.ec.europa.eu/common-agricultural-policy/financing-cap/assurance-and-audit/managing-payments_en
https://agriculture.ec.europa.eu/common-agricultural-policy/financing-cap/assurance-and-audit/managing-payments_en
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-reanalysis
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-reanalysis
https://rslab.disi.unitn.it/timesen2crop/
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Fig. 5. Overview on the spatial setup of the PROMET simulations based on the crop type classification for the “winter wheat” crop type.

representative distribution within the administrative units con-
sidered (NUTS levels) is ensured. The crop type classification
is the basis for selecting sample points that are simulated with
PROMET. Samples are located at a minimum distance from field
boundaries or roads to guarantee pure crop-specific remotely
sensed information. Finally, more than 4 million sample points
have been selected randomly distributed over all classified crop
type classes in the investigated Danube basin. They cover five
countries.

V. EXPERIMENTAL RESULTS

This section presents the experimental analysis carried out
to assess the effectiveness of the proposed workflow. First, the
spatial and temporal generalization capabilities of the DL model
are assessed using the validation dataset. Then, the obtained
irrigation water demand recommendations are presented at a
aggregated level and crop level.

A. DL Model: Spatial Generalization Capability

To assess the spatial generalization capability of the DL
model, we analyze the accuracy obtained in the entire study
area. In particular, we compare the accuracy obtained in Austria
(where the TimeSen2Crop training dataset is available) with the
one obtained in the surrounding countries, i.e., Czech Republic,
Germany, Hungary, Slovakia, and Slovenia. Due to the avail-
ability of the 2018 LUCAS in situ survey, the results reported
focus on the first agronomic year (i.e., from September 2017
to August 2018). Table II shows the PA%, UA%, and OA%
obtained in Austria (i.e., “Training Country”) and the rest of the
study area (i.e., “Test Countries”). Please note that the results
obtained per country are reported in Table V of the Appendix.
The results show no noticeable drop in performance for any crop
type when applying the model outside Austria, even though no

TABLE II
UA%, PA%, AND OA% CONSIDERING A 95% CONFIDENCE INTERVAL

OBTAINED ON THE 2018 LUCAS IN SITU SAMPLES IN AUSTRIA WHERE

TRAINING DATA WERE AVAILABLE (TRAINING COUNTRY) AND OUTSIDE

AUSTRIA WHERE NO REFERENCE DATA WERE USED (TEST COUNTRIES)

samples were used to fine tune or train the network in any of the
Sentinel-2 tiles belonging to the Test Countries. In particular,
the OA% obtained in Austria is 89.10%, which is comparable
with the one obtained in the Test Countries, i.e., 84.38%. By
analyzing the accuracy obtained for the different crop types, as
expected the ones having the lowest accuracy are the following:

1) minoritarian classes such as “triticale” and “rye” (which
are often confused, since “triticale” is a hybrid cultivation
of “wheat–rye”);

2) mixed heterogeneous classes such as “Permanent Planta-
tions.”

However, both UA% and PA% are above 70% for most crop
types, even though a detailed classification scheme is considered
compared to those used in the literature that typically have less
than ten classes [25], [72].

These results are confirmed by the ones available in Ta-
ble III, which shows the classification accuracies obtained
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TABLE III
QUANTITATIVE RESULTS (FOR THE 2018 AGRONOMIC YEAR) IN TERMS OF

UA%, PA%, AND OA% CONSIDERING A 95% CONFIDENCE INTERVAL

OBTAINED IN AUSTRIA AND BAVARIA BY THE DL MODEL TRAINED USING THE

TIMESEN2CROP AUSTRIAN DATASET

in 2018 considering the test set of the TimeSen2Crop
dataset extracted from the Austrian crop type map based
on the farmers’ declarations (focusing on the Sentinel-2 tile
“33UVP”) and the Bavarian farmers’ declarations (i.e., Sentinel-
2 tiles “33UNA,” “33UPA,” “33UQA,” “32UNV,” “32UPV,”,
“32UQV,” “32UMU,” “32UNU,” “32UPU,” “32UQU,” and
“33UUQ”). Similar to the results presented in Table II, the
accuracy metrics are comparable for both countries. Indeed, the
network achieved an OA% of 94.22% and 90.71% in Austria
and Bavaria, respectively, and similar UA% and PA% in the
classes present in the Bavaria region. Moreover, also in Bavaria,
the “rye” class has the lowest accuracy because of its similarity
with other winter cereals. A more detailed assessment can be
performed in Austria due to the availability of all 15 crop
types. Here, the most critical classes are “Winter Caraway” and
“Permanent Plantations.” The former is mainly confused with
the “winter wheat” because of their similar spectral-temporal
behavior. The latter is difficult to represent adequately as it is
both affected by a low number of training samples (i.e., minori-
tarian class) and is a mixed heterogeneous class. Please note that,
due to the peculiarities of the presented large-scale analysis,
the availability of samples per class for different crop types
varies significantly in different countries [74], [75]. Despite
in the Bavaria scene only a subset of the considered classes
are present in the area analyzed (“grassland,” “corn,” “spring
cereals,” “rapeseed,” “potato,” “rye,” “sugarbeet,” “barley,” and
“winter wheat”), the results obtained are extremely valuable
since they show the generalization capacity of the network,
which achieves very similar accuracy regardless of the use of
training samples belonging to the Austrian country alone.

B. DL Model: Temporal Generalization Capability

To assess the temporal generalization capability of the DL
model, we evaluate the accuracy of the multiyear crop type
maps generated in Austria by comparing the results obtained
with 2018, 2019, and 2020 farmer’s based declaration LIPS

maps. Differently from Table III, the results obtained are not
evaluated only in tile “33UVP” but in the whole Austrian coun-
try. However, also in this case, the validation set considered
is statistical independent with respect to the training data. The
multiyear classification accuracies are shown in Table IV, which
compares the numerical results obtained with the fine-tuning
strategy (15 000 samples for the 2019 and 2020 agronomic
years) with the results obtained by using the initial DL model
without any adaptation. Moreover, a comparison between the
fine-tuned networks and the networks without adaptation is
reported. One can observe that the fine-tuned OA% show an
improvement of 7% and 5% when compared to the OA% score of
the network without adaptation, for 2019 and 2020, respectively.
These results demonstrate that the proposed system can be
easily adapted and applied to multiyear time series for long-term
monitoring analysis. Indeed, the obtained accuracies are stable
in the following two agronomic years, with a small decrease in
terms of performance when considering the 2020. In particular,
the network achieves an OA% of 88.75% in 2018, which is
comparable with 86.85% and 83.94% obtained in 2019 and
2020, respectively. The PA% and UA% values confirm these
results, showing similar accuracies with the reference agronomic
year. By analyzing the accuracies of different types of crops in
detail, one can see that the DL model achieves stable results
over time even for the most critical classes such as “triticale”
and “rye” crop types. In contrast, if no fine-tuning strategy is
considered, the crop type mapping accuracies decrease when the
target year is far from the reference year used initially to train the
architecture from scratch. Fig. 6 shows a qualitative example of
crop type map obtained over the same area in the three agronomic
years, i.e., 2018, 2019, and 2020. In particular, a true color
representation is reported together with the multiyear maps to
visually inspect the crop changes visible in the satellite data.
This qualitative analysis confirms the quantitative assessment.

C. PROMET Model: Crop Level Results

Fig. 7 shows an example of simulated crop water demand
estimated in 2018 and 2019 for the same crop parcels. From
these qualitative results, one can notice the importance of con-
sidering a crop growth model tailored to the specific properties
of different crop types. Because of the different weather patterns
of 2018 and 2019, different amounts of precipitation occurred
at different times of the year. The impact of such dryness was
not uniform across all crops, as different crop types reacted dif-
ferently to the varying weather conditions. In 2018, the dryness
primarily affected “soy,” causing significant challenges for their
growth and yield [76]. In 2019, both “soy” and “corn” were
affected, although the severity of the dry conditions on “corn”
was identified as relatively milder compared to “soy.” In both
years, the winter crops, i.e., “winter barley” and “winter wheat,”
which have their main growing phase in spring, demonstrated a
higher resilience to the dryness and were able to manage their
water requirements more efficiently during their crucial growth
stages.

Fig. 8 shows the obtained spatial irrigation recommendation
generated by the PROMET model for a specific parcel. The
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TABLE IV
QUANTITATIVE RESULTS (FOR THE 2018, 2019, AND 2020 AGRONOMIC YEARS), CONSIDERING A 95% CONFIDENCE INTERVAL, IN TERMS OF UA, PA, AND OA

OBTAINED BY THE ARCHITECTURES (A) TRAINED ON 2018 WITHOUT ADAPTATION ON THE 2019 AND 2020, (B) FINE TUNED ON THE 2019, AND (C) FINE TUNED

ON THE 2020

Fig. 6. Qualitative example of multiyear crop type mapping results obtained. (a) Aerial images of the patch analyzed from Environmental Systems Research
Institute (ESRI) world imagery [73]. (b) 2018 crop type maps. (c) 2019 crop type maps. (d) 2020 crop type maps.

Fig. 7. Simulated irrigation water demand estimated for the same parcels in: (a) 2018 and (b) 2019.
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Fig. 8. Example of spatial irrigation recommendation as provided opera-
tionally to farmers using the data assimilation concept using the PROMET model
and leaf area time series as retrieved from Sentinel-2.

presented example, which reports the water demand computed
for week 29, highlights the spatial sensitivity of the model.
Because of the model’s ability to take into account all the
relevant factors that can impact irrigation (e.g., soil moisture
levels, weather conditions, crop requirements, and agricultural
management options like fertilization), it is possible to generate
targeted recommendations at a very high spatial resolution.
Within the crop, the model is able to simulate all relevant energy
and mass fluxes on a physical basis at the pixel level (i.e.,
10-m spatial resolution), thus leading to extremely precise crop
water demand recommendations. For this reason, the PROMET
model has been extensively employed in the last 30 years
for smart farming services. Although this qualitative example
demonstrates the capability of the PROMET model to optimize
water usage and enhance crop yield at high spatial resolution,
the proposed end-to-end workflow is the first attempt to perform
such analysis at large scale. This is mainly due to the efficient
and effective production of crop-type maps for the entire study
area, which was made possible by the workflow.

D. PROMET Model: Aggregated Results

To demonstrate the effectiveness of the proposed end-to-end
workflow, crop water stress and irrigation water demand were
calculated using the PROMET model for the study site for
the most prevalent crop types in the years between 2018 and
2020. Indeed, to the best of the author’s knowledge, no in
situ data on water demand are available that cover the entirety
of Austria and the area analyzed during the three selected
agronomic years, making a quantitative large-scale validation
not possible. However, this indirect validation performed by
aggregating the results over the whole crop season and analyzing
the regional differences provides a comprehensive overview at
a higher level of abstraction. Fig. 9(a) shows the irrigation crop
water demand for the whole season for winter wheat for the
years 2018–2020. Winter wheat is harvested in July or early

August. In general, wheat does not require irrigation as can
be seen in the simulations with the blue colouring. This fits
with farming practice in this region. Only in the drought year
2018, some regions turn colour to red, which means that using
irrigation could have increased the yield. On the contrary, as
shown in Fig. 9(b), it is immediately visible that “corn” summer
crop is more strongly affected by water stress and has a much
higher irrigation water demand over the season. This difference
is visible both in the total water demand and in the affected
regions over the different years. In 2020, the total irrigation
water demand was lower than in the other two years. This
can be explained when looking at the precipitation variance
against the 20 year mean as seen in Fig. 10. In 2020, there is
overall less deviation from the mean, and especially in the third
quarter of the year, (which is the summer months) more water
was available than in 2018 and 2019. Nevertheless, for “corn,”
there was still water stress and irrigation water demand even
in 2020.

Fig. 11 shows exemplary daily modeling results for the “corn”
crop type in terms of crop water stress (where 1 means no stress
and lower values indicate higher water stress levels) and crop
water demand (in millimeter) for two Austrian regions. For
comparison, the precipitation used as modeling input is also
shown in the plots. Early “corn” growth stages were not affected
by water stress, but from late July through all of August, crop
water demand was almost consistently higher than the available
water supply, leading to water stress. In Styria, some heavier
rainfalls could reduce the water stress, but they did not manage
to fill the whole water demand. In order to avoid water stress for
each field under investigation, the irrigation demand is simulated
and displayed in the green line in Fig. 11.

VI. DISCUSSION

The objective of this article is to present a successful end-to-
end workflow for the production of irrigation water demand in an
operational scenario by integrating processing capabilities of the
TEPs, which provides access to the Sentinel-2 data and computa-
tional resources for data processing, and the parallel computing
architectures of the Hopsworks platform. By interconnecting
the two infrastructures, the proposed automatic end-to-end
workflow is able to process large volumes of Sentinel-2 images
and provides water irrigation recommendations at crop level.
This can be useful to both single farmers and stakeholders. By
exploiting the Food Security TEP, the different models can be
retrieved from the Hopsworks and used for the inference in a
fast and effective way. This agile method allows the definition
and the training of different models on the Hopsworks without
the need of changing the pipeline implemented on the thematic
platform. Moreover, since the TEPs allow the retrieval of
different sources of data and datasets, it is possible to implement
the data processing in the pipeline. One example can be found
in the masking procedure of nonagricultural areas, which has to
be performed before running the crop type classification. In this
case, we employed the HRL map to mask the noncrop pixels.
However, any other high-resolution land cover map available
can be used to focus only on cultivated areas [77], [78].
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Fig. 9. Simulated irrigation water demand for the 3 considered years for: (a) “wheat,” and (b) “corn.” The results obtained are presented aggregated on NUTS 1
level and vegetation period/year.

Fig. 10. Deviation of the precipitation water availability against long year statistics for the three considered years.

The LSTM DL model achieve accurate classification results
from both the spatial and temporal view point. Indeed, the LSTM
for 2018 obtained an OA of 85.39% and 85.20% on the LUCAS
validation dataset and the farmer’s declaration map, respectively.
These accuracies demonstrate that the network has good spatial
generalization capability, achieving similar accuracy over the
entire study area despite having been trained only on the Aus-
trian territory. Similar results are obtained for the new target
years 2019 and 2020 having an OA of 81.29% and 78.79%,
respectively, considering only 15 000 training samples per year.
Although the amount of labeled data used to train the network in
later years is much smaller than that used to train it in 2018, the
qualities of the maps obtained are visually comparable. From
the qualitative example reported in Fig. 6, one can notice that
the three crop type maps correctly distinguish the boundaries of

the different cultivated fields. Indeed, even though the network
performs a pixel-level classification, the shape of the fields is
clearly visible in the scene for all years. The results obtained
confirm the effectiveness of the architecture even under condi-
tions of multiyear maps production. Also, they accurately show
the changes that have occurred on the land in different agronomic
years due to crop rotation practices. Finally, we would like to
emphasize that the proposed DL model can work anywhere, as
long as a sufficient number of reference samples are available for
training or fine tuning the DL model. It is worth noting that many
efforts are currently being made to generate publicly available
mapping datasets of crop types to support agricultural monitor-
ing [72], [79]. In addition, several EU Member States are pub-
lishing agricultural information based on farmers’ declarations
(collected for the monitoring of European subsidies) for research
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Fig. 11. Simulated crop water stress and irrigation crop water demand for
“corn” for two regions in Austria in 2018.

purposes. Therefore, it is possible to conclude that the crop type
mapping component of the proposed end-to-end workflow can
be used to perform the continuous production of accurate crop
type maps. This enables precise agricultural analysis at the crop
level instead of considering basic approaches based on simple
spectral indices computed for the whole study area.

The water demand assessment allowed us to infer important
information about the crops under investigation. In particular, we
detected a crop demand that exceeded consistently the available
water supply for “corn,” leading to water stress. Examining the
aggregated results over the entire crop season also allowed for an
analysis of regional differences. In particular, certain crops such
as “winter wheat” typically do not require irrigation, which is
allineated to the farming practices in the region, but we detected
a drought year in 2018 where several regions displayed red
coloring, suggesting that irrigation could have increased yields.
“Corn” summer crops, instead, are significantly affected by wa-
ter stress [80] and require a much higher irrigation water demand
throughout the season. The variance in precipitation compared to
the 20-year mean also provides an explanation for the observed
differences. The results demonstrate the importance of assessing
crop-specific water requirements and irrigation needs based on
regional and yearly variations in water availability. Understand-
ing such dynamics can inform farmers and policymakers in im-
plementing effective irrigation strategies and water management
practices to mitigate crop water stress and optimize water use
efficiency. Overall, the study conducted emphasizes the need
of continuously monitoring and assessment of crop water stress

and irrigation water demand to ensure sustainable agricultural
practices in the face of changing climatic conditions and water
availability. Furthermore, the method suggested for choosing
and combining sample points, specifically within administrative
areas, involves integrating detailed data at the field level with the
summarized findings at the NUTS 1 level. This approach caters
to the specific requirements of individual farmers by providing
operational services tailored to their needs, while also presents
broader information to governmental bodies and other relevant
parties. Consequently, the results can be adjusted to meet the
distinct expectations of different user groups.

VII. CONCLUSION

In this article, we have presented a system for the production of
multiyear water availability maps by assessment of the irrigation
water demand at the crop level. We exploited time series of
Sentinel-2 data for agricultural areas at 10 m of spatial resolution
for wide-scale irrigation support. The end-to-end workflow was
developed by integrating the Food Security TEP, which provides
access to the Sentinel-2 data and computational resources for
data processing, and the data-intensive AI Hopsworks platform,
designed for training distributed DL models. First, the data are
atmospherically corrected and preprocessed in the TEP to gen-
erate the atmospherically corrected time series of Sentinel-2 and
the time series of spatially and temporally harmonized 12-month
composites. Then, a scalable distributed LSTM DL model is
trained on the Hopsworks platform from scratch for the first
year of observation, while being fine tuned for the subsequent
years. The trained models are used in the Food Security TEP to
generate multiyear crop type maps, which are combined together
with the meteorological data and the atmospherically corrected
time series of Sentinel-2 images to assess the irrigation water
demand for millions of agricultural fields by the PROMET
agrohydrological model. The experimental results obtained in
the upper part of the Danube Catchment for the 2018, 2019, and
2020 demonstrate the effectiveness of the proposed system.

The results obtained for crop water stress and irrigation water
demand demonstrate the model’s ability to identify at which
growth stages the water demand exceeds water supply. In par-
ticular, the multiyear results obtained pointed out the capability
of the proposed system to capture the different levels of water
stress and irrigation water demand for different crops, under
different weather conditions and for different seasons. As future
developments, we plan to test the proposed system architecture
for multiple target years (i.e., for a 10-year window), in order to
assess its robustness from the temporal view point. Moreover, we
would like to test it on different countries to further evaluate its
generalization capability from the spatial view point. Finally, we
would like to explore the possibility of generating in-season (i.e.,
before the end of the year) crop type maps to be combined with
short- and mid-season weather forecasts to generate predictive
analyses of water stress. These early water demand forecasts can
be extremely useful in providing irrigation policy advice at the
local and regional levels.
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APPENDIX

PROPOSED SYSTEM: PROCESSING ARCHITECTURE

The entire pipeline has been implemented on cloud comput-
ing platforms to exploit their distributed processing power and
eliminate the need of downloading/uploading large amounts
of data. Moreover, the use of such platforms allows for easy
access to the entire processing pipeline by the service providers
and final users, thus guaranteeing effective exploitation of the
developed methods and generated products. According to the
properties of the considered platforms, the Food Security TEP7

was used to implement the complete pipeline starting with the
pre-processing of the Level 1c Sentinel-2 data and ending with
the production of the irrigation water demand maps, whereas
Hopsworks8 was used to specifically perform the training of
the distributed DL model taking the TimeSen2Crop database
as input. This condition allows us to minimize the amount of
data volume transferred from one platform to the other. Indeed,
to train the DL model on the Hopsworks platform, only the
TimeSen2crop database has to be uploaded, without the need
of transferring the whole time series of Sentinel-2 images. The
obtained LSTM models can be downloaded to the TEP directly
using the Hopsworks API,9 so that the inference procedure (i.e.,
production of crop type maps) can be carried out where the
satellite data are available.

A. Food Security TEP Implementation

The Food Security TEP is an online platform that provides
access to EO and non-EO data and the services to process them.
The basic principle is to bring algorithms to the data. All the
Level 1c Sentinel-2 datasets are available on the Food Security
TEP via the Copernicus services within the Data and Information
Access Services concept10 on the Creodias.11 The Food Security
TEP, operated by VISTA, holds data access mechanisms, tools
for data processing and data analytics, and all solutions for
scientists and service providers to process, analyze, and share
data.

On the Food Security TEP, the different services components
are available as processors based on docker containers associated
with bash files that automatically execute the python scripts
related to each particular service. Services (or processors) can be
used and combined by users, according to their account level and
access rights. In the considered pipeline, the steps implemented
in the TEP are as follows:

1) the preprocessing of the Sentinel-2 data to generate the
bottom-of-atmosphere images;

2) the preparation of the time series of 12 monthly composites
per year according (see Section III-A);

3) the production of the multiyear crop type maps;
4) the crop type maps postprocessing based on morphologi-

cal operators (see Section III-C).

7[Online]. Available: https://foodsecurity-tep.net/
8[Online]. Available: https://www.hopsworks.ai/
9[Online]. Available: https://hops-py.logicalclocks.com/index.html
10[Online]. Available: https://www.copernicus.eu/en/access-data/dias
11[Online]. Available: https://creodias.eu/

Fig. 12. GUI of the Food Security TEP showing the service for monthly
composite generation.

The final crop type maps and mechanisms are stored inside
a collection in the Food Security TEP, and therefore, available
to other users. Fig. 12 presents an example of the graphical user
interface (GUI) of the Food Security TEP with the left part of
the screen showing the service selection and setting and the right
part the map over which the results are displayed.

Hopsworks is used for the distributed training of the model.
It is a data-intensive platform for AI that is horizontally scalable
and enables the development of end-to-end machine learning
and DL pipelines. It provides the software development kit for
a wide variety of operations including the following.

1) Machine learning feature management with a Feature
Store.

2) Horizontally scalable distributed training on multiple ma-
chines with both CPUs and GPUs.

3) Model serving using Kubernetes for the deployment of
the model in a container environment with Hopsworks
managing secure authentication and authorization access
to the model.

4) Model management and monitoring to manage model and
experiment metadata as well as analyze the model usage
in near real time.

To perform the distributed training, first the TimeSen2Crop
database stored on the Hopsworks file system (HopsFS) is
moved to the local machine using the Hopsworks API, and
then, the temporal harmonization (see Section III-A) is applied
to all the samples. Then, the distributed training of the LSTM
is performed according to a multiworker mirrored strategy. In
such a way, the training is performed synchronously on multiple
workers, each with one GPU, by replicating the variables and
computations on each device. Note that the distributed strategy
can easily be scaled to run on many GPUs. From the user
perspective, few modifications are required that are mostly re-
lated to enable the distributed training in the code and to define
the settings of the distributed environment in the Hopsworks
interface. Finally, the model is saved in HopsFS so that it can be
retrieved by the Food Security TEP for the inference.

B. Extra Experimental Results

Table V reports the accuracies on the LUCAS dataset per
country analyzed. Please note that some countries lack samples
for all the considered classes. For both this reason and the small
number of validation samples present in some countries, the

https://foodsecurity-tep.net/
https://www.hopsworks.ai/
https://hops-py.logicalclocks.com/index.html
https://www.copernicus.eu/en/access-data/dias
https://creodias.eu/
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TABLE V
QUANTITATIVE RESULTS (FOR THE 2018 AGRONOMIC YEAR) IN TERMS OF UA%, PA%, AND OA% OBTAINED BY THE ARCHITECTURE ON THE LUCAS SAMPLES

(DANUBE BASIN)

confidence intervals were not calculated per class but were only
considered in the OA% analysis.
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