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Summary 

Global change is impacting grasslands through multiple processes and is driving severe 

consequences to their structure and functioning, and to the ecosystem services they provide. 

The recent advancements in remote sensing imagery availability offer new opportunities to 

tackle the challenge of grasslands monitoring, providing unprecedented revisiting frequency 

on wide areas at fine spatial resolution. Unfortunately, there are still few standardized 

indicators available to track grassland processes, and many processes still lack a thorough 

understanding.  

During my Ph.D., I focused on four main goals: i) assessing the grassland fractional vegetation 

cover prediction capability of newly available remote sensing products; ii) developing a easy 

to use, free, and cloud-based tool for grassland management intensity monitoring; iii) 

developing a workflow for grassland flowering phenology extraction using time-lapse cameras; 

iv) better understanding how plant phenological trends are shifting in climatically heterogenous 

mountain landscapes, and how this is affecting ecosystem productivity.  

Our findings demonstrated that the raw spectral signature of grasslands does not exhibit a 

linear variation across the fractional vegetation cover gradient, and that Sentinel-2 and 

PlanetScope have a higher fractional vegetation cover prediction capability compared to 

previously available imagery, especially in areas under patchy degradation and restoration 

processes. We introduced a model for estimating grassland mowing frequency, which can 

effectively be used under different management and environmental conditions. It was 

validated on small and fragmented parcels compared to previous studies, and it can be run 

using a provided ready to use code working on a cloud platform. We presented a new workflow 

for grassland flowering phenology extraction of single (or group of) species from time-lapse 

cameras. The workflow opened new possibilities for phenological studies, overcoming 

laborious and time-consuming ground-based vegetation observations. In the fourth study, we 

revealed substantial differences in the phenological response among vegetation types and 

across elevations in the European mountains over the last two decades. In grasslands, spring 

phenology was advanced at high altitudes and delayed at low altitudes, thus becoming more 

uniform along the elevational gradient, while in deciduous forests we observed the opposite 

trend. Remote sensing data indicated that growing season length has not been the primary 

factor limiting productivity over the last two decades. Therefore, it is crucial to incorporate the 

decoupling between phenology and productivity when simulating the potential carbon uptake 

of terrestrial ecosystems in future climate change scenarios.  
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Overall, these four studies showed that remote sensing images and processing workflows can 

greatly contribute to a better understanding of human- and climate-induced processes 

impacting grassland and forest ecosystems. 
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Riassunto 

Il cambiamento globale sta impattando le praterie attraverso molteplici processi, alterandone 

la struttura, il funzionamento e la capacità di erogare servizi ecosistemici. Negli ultimi decenni 

la disponibilità di immagini telerilevate è notevolmente aumentata, offrendo nuove opportunità 

per il loro monitoraggio. Le attuali immagini telerilevate, infatti, offrono una risoluzione spaziale 

elevata ed un tempo di rivisitazione senza precedenti su vaste aree. Nonostante ciò, sono 

ancora pochi gli indicatori standardizzati per il monitoraggio dei processi delle praterie e molti 

processi non sono ancora stati compresi a fondo. 

Nel mio dottorato mi sono concentrato su quattro obiettivi principali: i) valutare la capacità di 

stima della copertura erbacea da parte dei nuovi prodotti satellitari; ii) sviluppare uno 

strumento di facile utilizzo, gratuito e in cloud per il monitoraggio dell'intensità di gestione delle 

praterie; iii) sviluppare un metodo per estrarre la fenologia fiorale delle praterie utilizzando 

immagini ricavate da fotocamere fisse; iv) comprendere meglio come cambiano le tendenze 

fenologiche delle piante in paesaggi montani climaticamente eterogenei e come ciò influisce 

sulla produttività degli ecosistemi.  

Le analisi realizzate indicano che la firma spettrale delle praterie non varia linearmente lungo 

il gradiente di copertura erbacea e che Sentinel-2 e PlanetScope hanno una maggiore 

capacità di stima della copertura erbacea rispetto ai prodotti satellitari precedentemente 

disponibili, soprattutto nelle aree sottoposte a processi di degrado e di rivegetazione 

spazialmente eterogenei. Il modello per la stima della frequenza di sfalcio dei prati sviluppato 

ha dimostrato un’elevata accuratezza in diverse condizioni gestionali e ambientali. Il modello 

è stato validato su parcelle piccole e frammentate rispetto agli studi precedenti e può essere 

eseguito utilizzando un codice pronto all'uso su una piattaforma in cloud. È stato realizzato un 

nuovo flusso di lavoro per l'estrazione della fenologia fiorale di singole (o gruppi di) specie di 

prateria utilizzando immagini acquisite da fotocamere fisse. Il metodo proposto apre a nuove 

possibilità per gli studi fenologici, in quanto richiede quantità di manodopera decisamente 

inferiori rispetto alle osservazioni di campo. Nell'ultimo capitolo, ho presentato le differenze 

individuate nella risposta fenologica di praterie e foreste di latifoglie a diverse altitudini negli 

ultimi due decenni nelle montagne europee. Nelle praterie, la fenologia primaverile è stata 

anticipata ad alta quota e ritardata a bassa quota, risultando quindi più omogenea lungo il 

gradiente altitudinale, mentre nelle foreste di latifoglie ha mostrato una tendenza opposta. I 

dati satellitari analizzati indicano che la lunghezza del periodo vegetativo non è stata il 

principale fattore limitante per la produttività negli ultimi due decenni. È dunque necessario 

considerare il disaccoppiamento tra fenologia e produttività nella simulazione del potenziale 

assorbimento di carbonio degli ecosistemi terrestri nei futuri scenari di cambiamento climatico.  
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Nel complesso, questi quattro studi hanno dimostrato che le immagini satellitari e adeguati 

sistemi di processamento possono contribuire notevolmente a migliorare la comprensione dei 

processi indotti dall'uomo e dal clima sulle praterie e sulle foreste. 
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Introduction 

Grasslands and the global change 

Global change is impacting grasslands through multiple processes and is driving severe 

consequences for the ecosystem services they provide (Bardgett et al., 2021; Wang et al., 

2019). Monitoring ongoing changes in grasslands is crucial since grasslands cover one-third 

of the earth’s terrestrial surface and 70% of the global agricultural area (Reynolds & Frame, 

2005). Over 49% of grassland area experienced degradation, defined as a persistent decline 

or loss in biodiversity, ecosystem functions, or ecosystem services (Gang et al., 2014; IPBES, 

2018). Some of the drivers of grassland degradation are directly induced by human activities, 

some others are related to gradual changes in temperature and precipitation attributed to 

climate change (Bardgett et al., 2021). Human-induced drivers include overgrazing, 

eutrophication, land conversion to forest and crops, land abandonment, invasive species, and 

altered fire regimes (Kipling et al., 2016; Wang et al., 2019; Zarei et al., 2020). The urgency of 

grassland degradation monitoring and combatting stems from the fact that degraded 

grasslands not only contribute less to provisioning services, but also to erosion control, water 

purification, biodiversity conservation, cultural services, and carbon storage (Li et al., 2022). 

Responses of grassland carbon fluxes to climate warming can play a large role in driving 

changes in global carbon cycling since they store approximately one-third of the terrestrial 

carbon stock and their degradation can lead to significant carbon losses (Ahlström et al., 2015; 

Bai & Cotrufo, 2022). Changes in growing season length can be an additional driver of 

changes in grassland productivity (Peñuelas et al., 2009; Piao et al., 2019; Richardson et al., 

2013). Since the observed phenological change affects also managed grasslands, agricultural 

practice timing must be adjusted (Chang et al., 2017). 

Remote sensing for grassland monitoring 

The recent advancements in remote sensing (RS) imagery availability offer new opportunities 

to monitor grasslands with unprecedented revisiting frequency on wide areas at fine spatial 

resolution (Reinermann et al., 2020; Ustin & Middleton, 2021; Wachendorf et al., 2018). This 

is crucial since standardized indicators of grassland processes are needed to monitor 

grassland global change (Bardgett et al., 2021). RS has been used to monitor changes in 

grassland structural properties like biomass and fractional vegetation cover (FVC) (Guerini 

Filho et al., 2020; Kim et al., 2020), in composition (Wachendorf et al., 2018), in management 

intensity (Reinermann et al., 2020; Schwieder et al., 2021; Weber et al., 2023), and in 

phenology (Dronova & Taddeo, 2022; Xie et al., 2021). The Copernicus program, managed 



8 

by the European Commission, is delivering a huge quantity of freely available RS data with 

the aim of helping service providers, public authorities, and other international organizations 

improve the quality of life for the citizens of Europe. In particular, the Sentinels missions deliver 

radar and multispectral imaging for land monitoring at unprecedented spatial, temporal, and 

spectral resolution (Schiavon et al., 2021). Furthermore, a recent development involves 

private entities entering the RS sector, such as PlanetScope (PS), thereby enhancing the 

accessibility of timely and accurate imagery for vegetation monitoring.  

Knowledge gaps and research objectives 

We identified four knowledge gaps in previous literature regarding grassland monitoring using 

RS. With respect to grassland structural properties, the grassland FVC prediction capability of 

newly available RS products (PS and Sentinel-2 (S2)) has never been assessed and 

compared to previously available imagery at lower spatial and temporal resolution like 

Landsat-8. Regarding grassland management intensity, despite the existence of algorithms 

that can estimate mowing frequency using S2 data, there is a lack of freely accessible tools 

that utilize the computing capabilities offered by Google Earth Engine (GEE, Gorelick et al., 

2017). Moreover, there is no available method leveraging the improved S2 cloud masking and 

specifically designed for fragmented landscape typical of mountain regions. Although a wide 

literature and tools for grassland vegetative phenology monitoring using RS are available, only 

a few studies tried to monitor grassland flowering phenology. PhenoCams (PCs), i.e., digital 

cameras configured to capture timelapse images, are relatively cheap and can provide low-

cost information at the proper temporal and spatial resolution, but no method to extract 

grassland flowering phenology using PCs has been proposed. Lastly, we lack a clear picture 

of how plant phenological trends are shifting in climatically heterogenous mountain 

landscapes, and how this is affecting ecosystem productivity. In the following four paragraphs, 

we will provide an overview of the current state of the art in relation to the four knowledge 

gaps, as well as outline the objectives of the studies conducted to address these gaps. 

Grassland fractional vegetation cover monitoring 

Grassland FVC changes have widely been used as indicators of grassland degradation, since 

they well reflect changes in grasslands functioning caused by global change (Liang & Wang, 

2020; Wiesmair et al., 2016). There are two primary methods for estimating FVC: field 

measurement and RS retrieval. Under the first approach, FVC has initially been estimated 

using subjective methods like visual estimation, but later more objective methods like the grid 

method and the point count sampling method emerged as new standards (Liang & Wang, 

2020). In the last three decades, thanks to the easier access to digital photographic 
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equipment, image classification became the privileged method for FVC estimation (Booth et 

al., 2005). Empirical models linking grassland spectral properties detected by satellites to FVC 

have been used for a long time, since Graetz et al. (1988) predicted FVC using Landsat 

imagery. MODIS imagery has also proved to accurately monitor grassland degradation at 

coarse spatial resolution (500 m) (Guerschman et al., 2009; Kim et al., 2020; Liu et al., 2021; 

Yang et al., 2016). Long time series derived from images at medium spatial resolution are 

necessary to monitor gradual changes across large areas. Vegetation index time series 

derived from Landsat images during 1984-2021, for example, were used to assess the 

“greening” of two-thirds of the area above tree line in the Alps (Rumpf et al., 2022). The recent 

advent of S2 and PS imagery has the potential to revolutionize FVC global monitoring 

capabilities. They offer the ability to estimate FVC on a weekly to daily basis and provide near-

real-time monitoring at spatial resolutions ranging from 10 to 3 meters (Ustin & Middleton, 

2021). However, to our knowledge, no previous study assessed the capability of these 

imageries in grassland FVC estimation. In the first study we tackle this challenge, and we 

specifically aim to i) shed light on the sensitivity of spectral regions to changes in FVC and ii) 

compare the FVC prediction capability of models developed using different optical imagery. 

The developed models could be used to estimate grassland FVC in areas where it changes 

at a very fine scale. The developed models can be used for a variety of purposes, such as 

monitoring the recovery of grasslands following extreme weather events or ecological 

restoration, or monitoring the degradation of grasslands in overgrazed areas and steep slopes 

that are frequently affected by droughts or extreme precipitation events.. 

Grassland management intensity monitoring 

Since World War II, there has been a significant change in the management of grasslands, 

which has resulted in the intensification of their use in lowland areas and the abandonment of 

marginal areas (Cocca et al., 2012; Streifeneder et al., 2007). Grassland structure and 

composition are largely determined by these dynamics. Grassland management affects not 

only fodder production and quality, but also water purification, carbon storage, plant and 

animal diversity conservation, cultural and aesthetic value (Assandri et al., 2019; Benoit & 

Simon, 2004; Hilpold et al., 2018; Klaus et al., 2021; Xiaojun et al., 2010). For these reasons, 

policy makers need management intensity data to develop more targeted conservation and 

management measures. For example, targeted subsidies can specifically be assigned to 

farmers managing extensive biodiversity rich grasslands. This would prevent untargeted 

subsidies to cause further intensification and abandonment (Herzon et al., 2018; Pe’er et al., 

2017). Therefore, the importance of spatially aware data of grassland management intensity 

extends far beyond the mere update of productivity statistics. Grassland mowing frequency is 

the main factor determining grassland management intensity, and RS is emerging as a 
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promising method for mowing frequency estimation. Revisiting frequency, sometimes referred 

to as temporal resolution, is the frequency at which a satellite constellation revisits a particular 

location. This is a significant attribute of satellite constellations since it directly impacts their 

ability to effectively capture and describe vegetation processes as they unfold over time. The 

revisiting frequency of Landsat imagery (16 days) was high enough to monitor changes in 

natural grassland FVC over seasons or years on wide areas, but not to monitor sudden 

changes in vegetation caused by agricultural practices such as mowing events. European hay 

meadows are subjected to various management regimes depending on climatic, pedological, 

and socio-economic conditions. Mowing events are typically spaced at intervals of at least 20 

days to ensure the necessary time for the grassland to regrow, and their number per year 

ranges from 0 to 6. The revisiting frequency of S2 imagery spans from 2 to 5 days depending 

on the number of S2 orbits surveying each area, so that at least a few clear-sky observations 

are usually available for each regrowth period. The improved revisiting frequency and the 

higher spatial resolution (10 m) compared to previous imageries made S2 a good candidate 

for grassland mowing frequency detection using time series of vegetation indices. Several 

studies already explored the potential of S2 for mowing frequency monitoring (Griffiths et al., 

2020; Kolecka et al., 2018), but they did not include the new S2 product with improved cloud 

masking released by the European Space Agency after these studies started (Frantz et al., 

2018). Moreover, no freely available tool with open code that can be run on cloud computing 

platform is currently available. In the second study we aim to develop such a tool, an algorithm 

fully developed in GEE and including image processing, time series smoothing, mowing event 

detection and spatial majority analysis. To increase the usability of our work, we release the 

reference mowing frequency dataset, challenging other researchers to further improve our 

model. Our work aims at providing a more accurate estimation model that can easily be used 

by researchers and agencies to analyse spatial and temporal patterns at unprecedented 

spatial resolution.  

Grassland flowering phenology monitoring 

Dense vegetation index time series derived from RS products can be used to investigate 

grassland phenological development and track its trends in response to climate change. Plant 

phenology is defined as the study of recurring life cycle stages, especially their timing and 

relationships with weather and climate (Schwartz, 2013). Many researchers developed 

approaches to process digital images acquired from a variety of sources for phenological 

studies. They defined routines for data filtering, curve fitting and smoothing and phenological 

dates extraction (Filippa et al., 2016). Flowering is a key phenological stage, since its change 

may influence interactions across trophic levels (Thackeray et al., 2016) and may indicate 

adaptation of plant reproductive strategies to the warmer climate (Jentsch et al., 2009). 
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Warming induced phenological changes in flowering may differ from changes in vegetative 

phenology, as observed by Collins et al. (2021). In addition to warming, flowering phenology 

shift may be determined by other global change processes like biodiversity loss (Wolf et al., 

2017). The small size of grassland flowers currently limits flowering monitoring using RS to 

massive flowering of monospecific vegetations like eucalypt species (Dixon et al., 2021), oil 

seed rape fields (d’Andrimont et al., 2020), almond (Chen et al., 2019) and pear plantations 

(Wouters et al., 2013). The use of images for grassland flowering monitoring has been 

explored through repeated drone flights (Gallmann et al., 2022), but this approach is far too 

expensive to be extensively applied for agricultural and ecological phenological studies, and 

other technologies are therefore needed. In this context near-surface RS emerges as a 

potential candidate, since it is a relatively cheap and already well recognized method for 

phenology monitoring of vegetative development (Richardson, 2019). Despite the widespread 

use of PhenoCams (PC) in phenological studies and the frequent use of grasslands as model 

ecosystems in ecological studies, automated routines, and analysis processes to monitor 

grassland flowering phenology using PC still need to be developed. Many challenges currently 

limit the use of PC, including light conditions variability, low spectral detail, high number of 

species and grassland structure itself. Flowers have relatively small size compared to pixels 

and are often occluded by vegetative plant parts. In the third study we present a workflow to 

extract single (or group of) species flowering phenology from grassland species mixtures using 

time-lapse cameras. The workflow we developed addresses these challenges in PC imagery 

processing by leveraging the high temporal resolution of PC imagery, increasing the spectral 

separability through vegetation indices computation, and improving discrimination among 

flower species by their shapes through texture features calculation. We present an example 

application on experimental grassland plots of different diversity levels. Such a workflow may 

be used in basic and applied ecological research in both experimental as well as observational 

settings. 

Recent phenological trends in climatically heterogeneous mountain landscapes 

The advantage of satellite RS compared to direct human observations and to near-surface RS 

in tracking discrete phenological events such as budburst, flowering, autumn decolouring, and 

leaf-fall, relies in its capability of delivering data on regional to global scales (Dronova & 

Taddeo, 2022). RS was used to describe the phenological response to the extension of the 

potential thermal growing season, and consistent discrepancies were identified (Fu et al., 

2023; Menzel et al., 2006). These discrepancies were attributed to the lack of the necessary 

winter chilling requirement for leaf unfolding in a warmer climate (Fu et al., 2015, 2023; Menzel 

et al., 2020) and to the photoperiod control on spring phenology (Meng et al., 2021). Moreover, 

it was recently observed that the increased growing-season productivity may limit or 
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counteract the delaying trend in autumn leaf senescence led by warming, especially in years 

with warmer springs (Zani et al., 2020; Zohner et al., 2023). The aforementioned changes 

strongly interact with the climate system through complex feedbacks determined by changes 

in albedo, surface roughness, canopy conductance, water and energy flows, soil carbon 

decomposition, and emissions of biogenic volatile organic compounds (Peñuelas et al., 2009; 

Piao et al., 2008, 2019; Richardson et al., 2013). Even though some papers underline that the 

extended growing seasons determined a higher net carbon uptake from atmosphere in 

temperature-limited ecosystems (Dragoni et al., 2011; Keenan et al., 2014; Richardson et al., 

2009, 2010, 2013), the overall response of the carbon budget to current and future changes 

in phenology is not fully understood (Piao et al., 2019). Moreover, phenological trends show 

high spatial variability, with local trends not always reflecting regional and continental trends. 

This is a crucial aspect since studies over wide regions are usually performed using coarse 

spatial resolution which may not be sufficient to detect processes happening along elevational 

gradients and in fragmented landscape (Vitasse et al., 2018; Zhang et al., 2017). However, 

elevational patterns in phenology and the coupling between phenology and productivity across 

major mountain chains remain unclear, hindering our understanding of the future functioning 

of mountain vegetation in a warming world. In the fourth study we aim to contribute to fill this 

existing knowledge gap by exploring the variability of trends in phenology at finer scale along 

elevational gradients in fragmented landscapes. Specifically, we aim to verify the entity and 

variability of the phenological trends across elevational gradients, mountain regions and 

vegetation types, the uniformization of phenology along elevational gradients and the 

concurrent change of growing season length and productivity. Such advancement in the 

knowledge is needed to update simulations of potential carbon uptake of terrestrial 

ecosystems in the future climate change scenarios and for the adaptation of grassland 

management practices timing. 

Research objective summary 

The four conducted studies aim to tackle fundamental methodological and ecological 

knowledge gaps in the field of grassland global change research. The preceding paragraphs 

provided a detailed definition of the research objectives, which are presented here in a more 

condensed manner. The objectives of this Ph.D. thesis are as follows: i) to assess the 

grassland fractional vegetation cover prediction capability of newly available remote sensing 

products; ii) to develop a easy to use, free, and cloud-based tool for grassland management 

intensity monitoring; iii) to develop a workflow for grassland flowering phenology extraction 

using time-lapse cameras; iv) to better understand how plant phenological trends are shifting 

in climatically heterogeneous mountain landscapes, and how this is affecting ecosystem 

productivity.  



13 

Study summaries 

Study I. Estimating grassland vegetation cover with remote 

sensing: A comparison between Landsat-8, Sentinel-2 and 

PlanetScope imagery 

Grassland fractional vegetation cover (FVC) accurate mapping on a large scale is crucial, 

since degraded grasslands contribute less to provisioning services, carbon storage, water 

purification, erosion control and biodiversity conservation. The spatial and temporal resolution 

of Sentinel-2 (S2) and PlanetScope (PS) data has never been explored for grassland FVC 

estimation so far and will enable researchers and agencies to quantify and map timelier and 

more precisely grassland processes. In this paper we compare FVC estimation models 

developed from Landsat-8 (L8), S2 and PS imagery. The reference grassland FVC dataset 

was obtained on the Paganella ski runs (46.15°N, 11.01°E, Italy) applying unsupervised 

classification to nadir grassland RGB photographs taken from 1.35 m above the soil. Fractional 

Response Models between reference FVC and 18 vegetation indices (VIs) extracted from 

satellite imagery were fitted and analysed. Then, leave-one-out cross validation and 

spatiotemporal change analysis were also performed. Our study confirms the robustness of 

the commonly used VIs based on the difference between NIR and the red wavelength region 

(R2 = 0.91 for EVI using S2 imagery) and indicate that VIs based on the red-edge spectral 

region are the best performing for PS imagery (R2 = 0.89 for RECI). Only medium to high 

spatial resolution imagery (S2 and PS) precisely mapped spatial patterns at the study site, 

since grasslands FVC varies at a fine scale. Previously available imagery at medium to low 

spatial and temporal resolution (e.g., L8) may still be interesting for analysis requiring long 

time-series of data. 

Study II. Detection of grassland mowing frequency using time 

series of vegetation indices from Sentinel-2 imagery 

Management intensity deeply influences meadow structure and functioning, therefore 

affecting grassland ecosystem services. Conservation and management measures, including 

European Common Agricultural Policy subsidies, should therefore be based on updated and 

publicly available data about management intensity. The mowing frequency is a crucial trait to 

describe meadows management intensity, but the potential of using vegetation indices from 

Sentinel-2 imagery for its retrieval has not been fully exploited. In this work we developed on 
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the Google Earth Engine platform a four-phases algorithm to identify mowing frequency, 

including i) vegetation index time-series computing, ii) smoothing and resampling, iii) mowing 

detection, and iv) majority analysis. Mowing frequency during 2020 of 240 ha of grassland 

fields in the Italian Alps was used for algorithm optimization and evaluation. Six vegetation 

indexes (EVI, GVMI, MTCI, NDII, NDVI, RENDVI783.740) were tested as input to the proposed 

algorithm. The Normalized Difference Infrared Index (NDII) showed the best performance, 

resulting in mean absolute error of 0.07 and 93% overall accuracy on average at the four sites 

used for optimization, at pixel resolution. A slightly lower accuracy (mean absolute error = 

0.10, overall accuracy = 90%) was obtained aggregating the maps to management parcels. 

The algorithm showed a good generalization ability, with a similar performance between global 

and local optimization and an average mean absolute error of 0.12 and an overall accuracy of 

89% on average on the sites not used for parameters optimization. The lowest accuracies 

occurred in intensively managed grasslands surveyed by one satellite orbit only. This study 

demonstrates the suitability of the proposed algorithm to monitor very fragmented grasslands 

in complex mountain ecosystems. Google Earth Engine was used to develop the model and 

will enable researchers, agencies and practitioners to easily and quickly apply the code to map 

grassland mowing frequency for extensive grasslands protection and conservation, for 

mowing event verification, or for forage system characterization. 

Study III. Extracting flowering phenology from grassland species 

mixtures using time-lapse cameras 

Understanding the impacts of climate change on plant phenology is crucial for predicting 

ecosystem responses. However, accurately tracking the flowering phenology of individual 

plant species in grassland species mixtures is challenging, hindering our ability to study the 

impacts of biotic and abiotic factors on plant reproduction and plant-pollinator interactions. 

Here, we present a workflow for extracting flowering phenology from grassland species 

mixtures using near-surface time-lapse cameras. We used 89 image series acquired in plots 

with known species composition at the Jena trait-based experiment (Germany) to develop 

random forest classifiers, which were used to classify images and compute time series of 

flower cover for each species. The high temporal resolution of time-lapse cameras allowed to 

select images in proper light conditions, and to extract vegetation indices and texture metrics 

to improve discrimination among flowering species. The random forest classifiers showed a 

high accuracy in predicting the cover of Leucanthemum vulgare, Ranunculus acris, and 

Knautia arvensis flowers, whereas graminoid flowers were harder to predict due to their green-

to-brownish colours. The proposed workflow can be applied in climate change studies, 



15 

ecosystem functioning, plant community ecology, and biodiversity change research, including 

the investigation of effects of species richness on individual species' flowering phenology. Our 

method could be a valuable tool for understanding the impacts of climate change on plant 

reproduction and ecosystem dynamics. 

Study IV. Diverging trends in plant phenology across European 

mountains in a warming world 

Global warming is affecting both the phenology and productivity of plant ecosystems, with big 

implications for carbon cycling on land. However, we continue to lack a clear picture of how 

plant phenological trends are shifting in climatically heterogeneous mountain landscapes, and 

how this is affecting ecosystem productivity. Using satellite data, our study reveals substantial 

differences in the phenological response among vegetation types and across elevations in the 

European mountains from 2001 to 2021. These divergent trends led to a more uniform spring 

phenology across elevations in natural grasslands, while broadleaved forests exhibited the 

opposite trend. Despite global warming increasing both the growing season length and gross 

primary productivity, we only found a weak correlation between the two (R2<0.02), indicating 

that phenology has not been the primary factor limiting productivity over the past two decades. 
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Conclusions and further perspectives 

In the four studies of the thesis, we provided significant advancements in the field of grassland 

monitoring using remote sensing (RS) and indicated paths for further investigation. 

Specifically, we developed user-friendly and extensively documented tools for monitoring 

grassland changes in response to global change and analysed the phenological response of 

European grasslands to global warming and its coupling with productivity. 

We developed tools for grassland Fractional Vegetation Cover (FVC), mowing frequency, and 

flowering phenology monitoring. The three models successfully estimated the key grassland 

parameters under investigation. Regarding FVC, our findings demonstrated that the raw 

spectral signature of grasslands does not exhibit a linear variation across the FVC gradient, 

and that vegetation indices computation can greatly improve the spectral separability of FVC 

levels. We confirmed the prediction capability of widely used vegetation indices based on the 

difference between near-infrared and red wavelength regions (Rouse et al., 1974), and indices 

including the red-edge wavelength region, available for Sentinel-2 and PlanetScope imageries 

(Gao et al., 2020). The spatio-temporal change analysis assessed the success of Sentinel-2 

and PlanetScope imageries for FVC monitoring. These two imageries showed a higher FVC 

prediction capability compared to previously available Landsat-8 imagery, especially in areas 

where FVC changes at a very fine scale in response to patchy degradation and restoration 

processes. Previously available imagery at medium to low spatial and temporal resolution may 

still be interesting for analysis requiring long time series. We suggest the following promising 

paths for further investigation: i) the comparison of multispectral images to hyperspectral 

images and radar images for FVC prediction, ii) the application of the developed models to 

analyse spatio-temporal patterns of grassland degradation and restoration. 

We introduced a model for estimating grassland mowing frequency, which can effectively be 

utilized under different management and environmental conditions. Thanks to the improved 

cloud masking (Frantz et al., 2018), time series pre-processing, and extensive calibration, the 

model's mean absolute error at validation sites is very low (0.12), while the overall accuracy 

is 89%. The major novel aspects of the presented algorithm are that it was validated on very 

small and fragmented parcels compared to previous studies, it works at pixel level allowing 

mowing frequency estimation in areas where management parcels are not available (Inglada 

et al., 2012), and it can be run using a provided ready to use code working on a planetary-

scale cloud platform (Gorelick et al., 2017). Paths for further improvement could be the 

inclusion of a classification algorithm for detecting management parcel geometries, a 

classification algorithm for detecting the type of grassland management, and the automatic 

definition of the start and the end of growing season at a pixel-size resolution (Jönsson & 
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Eklundh, 2004). Moreover, we identified Planetscope imagery as the best candidate for future 

mowing detection algorithms, even though the cost of this imagery currently limits the potential 

application on wide areas.  

We presented the first workflow for flowering phenology extraction of single (or group of) 

species from time-lapse cameras. We proposed an automated selection of vegetation indices 

and texture metric features to enhance the accuracy and processing time of a random forest 

classifier. Additional proposed phases were image selection, time series processing, and 

phenometric extraction. The workflow opened new possibilities for phenological studies, 

overcoming laborious and time-consuming ground-based vegetation observations in both 

experimental as well as observational settings (Szigeti et al., 2016). Fields of application span 

from climate change studies over ecosystem functioning to plant community ecology and 

biodiversity change research. For example, the workflow can be used to assess the effects of 

increased carbon dioxide concentrations and higher temperatures, heat and drought stress 

on reproductive phenology, and the mismatches between phenological responses to warming 

across trophic levels (Collins et al., 2021; Dorji et al., 2020). Paths for further improvement of 

the method are the use of active learning to reduce labelling effort and the application of 

computer vision methods (Tuia et al., 2009). Computer vision techniques require a much 

higher labelling effort, but the increasing availability of pre-trained models that can be fine-

tuned suggests that, in some cases, they could be applied to estimate species flower cover in 

grassland mixtures (Gallmann et al., 2022; Mann et al., 2022; Wäldchen & Mäder, 2017). 

The three presented models were published together with the necessary equations, codes, 

and reference materials according to FAIR (Findable, Accessible, Interoperable, and 

Reusable) principles. By following the FAIR principles, we aimed to maximize reproducibility, 

data reuse and facilitate the rapid advancement of scientific knowledge. For example, to our 

knowledge there was no previously available reference dataset of grassland mowing 

frequency. Our dataset is now uploaded in GitHub 

(https://github.com/andreattad/S2_mowing_detection) and may be used to improve the 

method we proposed 

(https://code.earthengine.google.com/5509a44086d9cc7b81fa00dc484a6dcf) or to develop 

new models with different imageries. The labelled dataset of flower images (9000 labelled 

pixels) uploaded on the ETH Zurich repository (https://www.research-

collection.ethz.ch/handle/20.500.11850/634004) can be used together with the tutorial 

provided in GitHub (https://github.com/andreattad/Flower_covers_phenocams) or to 

challenge the accuracy of our model, for example, by creating new models using computer 

vision algorithms. 

https://github.com/andreattad/S2_mowing_detection
https://code.earthengine.google.com/5509a44086d9cc7b81fa00dc484a6dcf
https://www.research-collection.ethz.ch/handle/20.500.11850/634004
https://www.research-collection.ethz.ch/handle/20.500.11850/634004
https://github.com/andreattad/Flower_covers_phenocams
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We used well established RS products to analyse the phenological response of natural 

grasslands and broadleaved forests to global warming across elevations and its coupling with 

productivity over the past two decades. Compared to previous studies we investigated 

phenological trends at finer spatial resolution along elevational gradients in fragmented 

landscapes, minimizing the mixed-pixel challenge of moderate-resolution satellite imagery, 

better accounting for vegetation type change and investigating a more recent period We 

observed a great spatial variability of phenological trends across altitudes and geographic 

regions. In contrast to previous studies (Piao et al., 2019), we observed a bigger change in 

autumn phenology (delay) than in spring phenology (advancement). Our study reveals 

substantial differences in the phenological response among vegetation types and across 

elevations. These divergent trends led to a more uniform spring phenology across elevations 

in natural grasslands, while broadleaved forests exhibited the opposite trend. Interestingly, we 

identified some vast areas where contiguous grasslands and broadleaved forests showed 

opposite trends, raising questions about the different physiological regulatory mechanisms 

and about the implications for vegetations interactions. Despite global warming increasing 

both the growing season length and gross primary productivity, we only found a weak 

correlation between the two (R2<0.02). This unexpected result (Keenan et al., 2014) suggests 

that in the last two decades phenology has not been the main factor limiting productivity. The 

patterns revealed in our analysis should be considered in simulations of the potential carbon 

uptake of terrestrial ecosystems in the future climate change scenarios (Bayar et al., 2023; 

Lovato et al., 2022). 

Our findings can support grassland management and its adaptation to the current climatic 

conditions by providing valuable insights into ongoing grassland processes. The FVC 

estimation model can be used to timely monitor grassland degradation and recovery at farm 

to regional scale to ensure fast interventions, whereas the mowing frequency estimation model 

can be used at regional scale to promote more targeted conservation and management 

measures. Lastly, the recent trends in grassland phenology and productivity in the European 

mountains suggest that alpine pastures grazing should start earlier, especially at higher 

elevations, and that the carrying capacity of natural grassland has recently increased. In these 

four studies, we aimed to address important issues in grassland global change research by 

providing methodological and ecological advancements. Overall, this thesis showed that 

remote sensing images and processing workflows can greatly contribute to a better 

understanding of human- and climate-induced processes impacting grassland and forest 

ecosystems. 
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ABSTRACT
Management intensity deeply influences meadow structure and functioning, therefore affecting 
grassland ecosystem services. Conservation and management measures, including European 
Common Agricultural Policy subsidies, should therefore be based on updated and publicly avail
able data about management intensity. The mowing frequency is a crucial trait to describe 
meadows management intensity, but the potential of using vegetation indices from Sentinel-2 
imagery for its retrieval has not been fully exploited. In this work we developed on the Google 
Earth Engine platform a four-phases algorithm to identify mowing frequency, including i) vegeta
tion index time-series computing, ii) smoothing and resampling, iii) mowing detection, and iv) 
majority analysis. Mowing frequency during 2020 of 240 ha of grassland fields in the Italian Alps 
was used for algorithm optimization and evaluation. Six vegetation indexes (EVI, GVMI, MTCI, NDII, 
NDVI, RENDVI783.740) were tested as input to the proposed algorithm. The Normalized Difference 
Infrared Index (NDII) showed the best performance, resulting in mean absolute error of 0.07 and 
93% overall accuracy on average at the four sites used for optimization, at pixel resolution. 
A slightly lower accuracy (mean absolute error = 0.10, overall accuracy = 90%) was obtained 
aggregating the maps to management parcels. The algorithm showed a good generalization 
ability, with a similar performance between global and local optimization and an average mean 
absolute error of 0.12 and an overall accuracy of 89% on average on the sites not used for 
parameters optimization. The lowest accuracies occurred in intensively managed grasslands 
surveyed by one satellite orbit only. This study demonstrates the suitability of the proposed 
algorithm to monitor very fragmented grasslands in complex mountain ecosystems. Google 
Earth Engine was used to develop the model and will enable researchers, agencies and practi
tioners to easily and quickly apply the code to map grassland mowing frequency for extensive 
grasslands protection and conservation, for mowing event verification, or for forage system 
characterization.
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1. Introduction

Grasslands are one of the most widespread ecosys
tems and they are rapidly changing in extent, struc
ture, and functioning (Zarei et al. 2020; Tasser et al. 
2007; Scotton, Sicher, and Kasal 2014). Grasslands 
functioning and stability are crucial as grasslands 
cover one-third of the earth’s terrestrial surface and 
70% of the global agricultural area: they are the basis 
of many livestock production systems, and provide 
carbon storage, water purification, erosion control, 
biodiversity, and recreation (Reynolds and Frame 
2005).

Meadow ecosystem services can strongly be 
affected by management intensity, commonly 
described using some parameters such as volume of 

cut grass, number of cuts per year, and nitrogen input 
levels as fertilizer or manure (Velthof et al. 2014). 
Among meadow regulating services, carbon storage 
is often under-considered despite grasslands globally 
store about 50% more carbon than forests due to 
their very wide geographic distribution (Conant 
2010). Management intensity can affect this trait as 
intensively managed grasslands are plowed every few 
years, a practice that releases carbon into the atmo
sphere (Xiaojun et al. 2010). Many authors found that 
cut grasslands have a better impact on water quality 
and water resources than crops, but sewage fertiliza
tion can cause an abrupt increase in nitrate leaching 
(Benoit and Claude Simon 2004). Intensively managed 
meadows host a limited number of wild bee species 
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(Johan et al. 2020; Klaus et al. 2021) and few rare and 
specialist plant species (Hilpold et al. 2018). Bird spe
cies richness is also negatively correlated with the 
abundance of intensive meadows, which host mostly 
generalist species (Assandri et al. 2019). 
Transformations in grassland management intensity 
have different drivers and severities in different 
regions (Oenema, De Klein, and Alfaro 2014).

Changes in the socio-economic drivers on the Alps 
and other mountain region are exposing meadows to an 
intensification of their use in lowland areas and an aban
donment in marginal areas. In addition, the availability of 
cheaper feed and forages from lowlands opened the 
nutrient cycles in many mountain farming systems. 
Nitrogen loads increased in many areas, despite 
a decrease of Livestock Units (e.g. −17% between 1980 
and 2000 in Europe (Streifeneder et al. 2007; Cocca et al. 
2012)). Consequently, the amount of ecosystem services 
provided by grasslands is decreasing, so that several 
policies and measures were introduced in many coun
tries to support grassland management and 
conservation.

Among these, the 2013 EU Common Agricultural 
Policy (CAP) measure aiming at the conservation of per
manent grasslands subsidizes meadow mowing but 
does not distinguish among grassland management 
intensities. Many authors warn those untargeted subsi
dies may lead to further intensification and abandon
ment (Herzon et al. 2018; Pe’er et al. 2014, 2017). 
However, more targeted policy measures would require 
updated information about meadow management 
intensity that was almost unavailable until the last few 
years as field surveys are very expensive and manage
ment intensity data were not required to the farmers by 
the EU.

In the last decades, remote Sensing (RS) has increas
ingly been used for ecosystem monitoring, as it provides 
accessible and reliable data at a very high spatial and 
temporal resolution. RS has been used for land-use clas
sification, biomass estimation, disturbance detection, to 
monitor seasonal changes, and many other fundamental 
applications which enable an improved global change 
impact assessment and comprehension (Drusch et al. 
2012). In grassland studies, the number of RS applica
tions significantly increased in the last two decades 
(Reinermann, Asam, and Kuenzer 2020), spanning from 
botanical composition, structure and phenology to fod
der quality and quantity and management regimes 
(Wachendorf, Fricke, and Möckel 2018; Kim et al. 2020; 

Hua, Sirguey, and Ohlemüller 2021; Yan et al. 2020). By 
finding significant relationships with proper spectral 
vegetation indices (VIs), researchers were able to create 
models to assess fundamental grasslands traits. Mowing 
detection using remote sensing is a very new research 
field as the first algorithm was developed only in 2010 by 
Courault et al. (2010) and was based on LAI and NDVI 
time series derived from FORMO-SAT2 imagery. Other 
continuous monitoring optical sensors like MODIS 
(Halabuk et al. 2015; Estel et al. 2018) have been used, 
although their temporal and spatial resolution limited 
the application in intensively managed landscapes and 
in relatively large grasslands parcels (larger than 1 ha). 
The high temporal resolution and the continuity of syn
thetic aperture radar (SAR) backscatter data contributed 
to the adoption of this technology in many studies 
(Taravat, Wagner, and Oppelt 2019; Siegmund et al. 
2019; Grant et al. 2015; Tamm et al. 2016; Zalite et al. 
2016; Kaupo et al. 2013; Voormansik et al. 2016), but 
slope orientation and roughness of the parcels demon
strated to still hinder the detection of mowing events 
(Mathilde De, Radoux, and Defourny 2021; Wachendorf, 
Fricke, and Möckel 2018).

Thanks to its higher temporal and spatial resolution, 
Sentinel-2 (S2) imagery can overcome some of the lim
itations imposed by the previous optical sensors and has 
already been used for mowing detection at both regio
nal (Kolecka et al. 2018) and national scales, in combina
tion with Landsat images (Griffiths et al. 2020; Schwieder 
et al. 2021) and with active sensors (Lobert et al. 2021). 
The algorithm developed by Kolecka et al. (2018) 
allowed the correct detection of 77% of mowing events 
and is based on the detection of drops in the NDVI time 
series. Cloudy pixels dates are one of the major issues in 
VI time series (VITS) analysis and can be tackled by cloud 
masking and by VITS smoothing (Halabuk et al. 2015; Jin 
and Bing 2013; Garioud et al. 2019). Since Griffiths et al. 
(2020) and Kolecka et al. (2018) developed their models, 
S2 cloud masking improved (Frantz et al. 2018) leaving 
space to further algorithms development and increased 
efficiency of smoothing processes that perform better 
on less noisy time series.

Grasslands are changing rapidly and enhanced tools 
to monitor their management intensity are urgently 
needed to target conservation measures and actions. 
Despite the recent improvements in cloud masking of 
S2 images which provide more reliable high-resolution 
data, there are still few newly developed algorithms 
estimating grasslands mowing frequency. A more 
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accurate estimation model could be used to analyze 
grassland systems in terms of management intensity 
and to monitor extensively managed grasslands, which 
are typically associated with high conservation value and 
high abandonment risk, and therefore in compelling 
need of targeted subsidies.

Our study aims to develop a model for mowing fre
quency detection based on VITS analysis and integrating 
masking, smoothing, resampling, and drop detection 
processes. Since prior knowledge of management parcel 
geometries is often unavailable, mowing frequency 
should be estimated at both pixel and parcel resolution. 
To make the model affordable to agencies also in moun
tain areas the model is based on free S2 imagery, does 
not need local calibration and has been tested with 
reference data from fragmented and steep grassland 
areas. The algorithm was developed and can be run on 
Google Earth Engine platform (GEE) (Gorelick et al. 2017). 
This platform gives the possibility to build and optimize 
models testing various VIs with a high computational 
capacity and to provide local agencies with models 
which are replicable and easily applicable in different 
areas.

2. Materials and methods

2.1 Study sites

The algorithm was developed and tested on 240 ha of 
grassland fields located in the Province of Trento (north- 
east Italy), at the southern border of the European Alps 

(Figure 1). The local climate depends primarily on eleva
tion, which ranges from 60 to 3769 m a. s. l., and only 
secondarily on latitude. The province is classified as 
temperate oceanic according to the Worldwide 
Bioclimatic Classification System (Sboarina et al. 2004). 
Average yearly snow cover duration is between 20 and 
40 days at altitudes lower than 1350 m a.s.l., between 50 
and 65 days at altitudes between 1350 m a.s.l. and 
1600 m a.s.l. (Marcolini et al. 2017).

Grasslands represent one of the main land covers 
in the province as they occupy 17% of the total area 
and 81% of the utilized agricultural area. Over 80% of 
grassland area is managed as pasture and only less 
than 20% of them are mowed (ISTAT 2010). Pastures 
are mainly located on the steeper slopes and on high 
altitude sites and are grazed by cattle in the period 
between June and September. Mown meadows are 
distributed at the valley’s bottoms (where three or 
four cuts are carried out per vegetative season), on 
valley sides (one or two cuts) and on high-altitude 
plateaus (only one cut). Due to a fragmented property 
structure, the management is very patchy. Mowing- 
parcels are usually smaller than one hectare and the 
width of the parcels is often less than 30 m.

2.2 Field data

The reference data of mowing frequency used to opti
mize and validate the algorithm cover 240 grassland 
hectares at four sites (i.e. Lusia, Predazzo, Viote, 
Vigolana) and store information about the number of 

Figure 1. Location of the study areas in the Trento province inside Italy (left panel) and of the four study areas inside the Trento 
province (right panel).
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mowing events occurred in each meadow parcel dur
ing 2020 (Table 1). For the sites of Vigolana, and part of 
Lusia and Predazzo the information was acquired 
through farmers interviews. Farmers were asked to 
point on a map the exact location of the meadow 
they manage, to draw the parcels on a very high 
resolution RGB image (Bing Maps) and to indicate the 
number of mowing events they performed during 
2020 on each management parcel. Dates of mowing 
were not asked because we were interested only in 
mowing frequency and not in temporal accuracy, 
which is anyway at least partially lost during smooth
ing and resampling processes. For the site of Viote and 
part of Lusia and Predazzo photo interpretation on RGB 
daily Planet imagery (Planet Team 2018) at 3 m spatial 
resolution and visual inspection of a break in the NDVI 
curve were used to manually define the mows. All 
Planet images covering at least partially the study 
areas during the growing season were downloaded, 
resulting in an observed day every 1.39 days, 1.43 days 
and 1.64 days at the Lusia, Predazzo and Viote sites, 
respectively. To limit the edge effect, we selected only 
parcels large enough to contain a square of side 20 m 
which is twice the highest spatial resolution of S2 NIR 
and visible spectral bands. The parts of the parcels 
polygons narrower than 10 m were also removed 
from the dataset. To avoid mixed pixels all the parcels 
were shrunk by 5 m using the buffer tool in Qgis (QGIS 
Development Team 2021). Pastures and grazed mea
dows were identified through farmers’ and local 
experts’ interviews and were not included in the data
set. The average size of the (unshrunken) parcels 
ranges from 3689 m2 at the Vigolana site to 
15,000 m2 at the Viote site.

The Lusia and Viote sites are located at altitudes 
higher than 1200 m a. s. l. and are therefore managed 
very extensively, with zero to two mowing per year 
with uncut corresponding to meadows not mown in 
last few years and still not colonized by woody vegeta
tion. The Predazzo and Vigolana sites, on the other 
hand, are located at lower altitudes and managed 
more intensively, with one to four mowings per year. 
The slopes in the four considered sites are quite shal
low, with average parcels slope of 10°, 4°,9°,12° at the 
Lusia, Predazzo, Viote, Vigolana site, respectively.

2.3 Imagery data

Level 2A multispectral satellite data acquired by the 
Sentinel-2 (S2) constellation accessed through Earth 
Engine Data Catalog were used in this study. The S2 
images are characterized by 13 bands distributed in 
the visible, near infrared and shortwave infrared parts 
of the spectrum. Four bands are characterized by 
a 10 m spatial resolution (bands 2, 3, 4, 8), six by 
a 20 m spatial resolution (bands 5, 6, 7, 8A, 11 and 
12) and three by 60 m spatial resolution (bands 1, 9 
and 10). The S2 mission manages two identical polar 
orbiting satellites which survey earth from an altitude 
of 786 km. Their revisiting time is five days at the 
equator but nearer to the poles the orbits overlaps 
and therefore the revisiting time is shorter in over
lapping areas. The sites of Lusia and Predazzo are 
surveyed by one orbit (i.e. orbit 22) and their revisiting 
time is five days. The sites of Vigolana and Viote, 
instead, are surveyed by two orbits (22 and 65) and 
their revisiting time is between two and three days.

Table 1. Topographical and management data about the study sites. Pixel counts are referred to shrunken parcels.
Lusia Predazzo Viote Vigolana

Altitude range 
m a. s. l.

1260–1990 950–1095 1520–1705 450–1095

Mean altitude m a. s. l. 1543 990 1570 740
Area of parcels (ha) 44.7 49.5 118.5 28.4
Number of pixels of reference data From farmer/ 1588 235 0 1888

From photo interpretation 1646 3411 9413 0
Number of parcels of reference data From farmer/ 31 9 0 77

From photo interpretation 39 66 79 0
Average parcel size (m2) 6385 6601 14,998 3689
Number of mowings 

(area percentage)
1 (75%) 

2 (25%)
2 (42%) 
3 (50%) 
4 (7%)

0 (11%) 
1 (89%)

1 (37%) 
2 (63%)
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Only images acquired during the 2020 growing 
season were considered. To set the start and end 
of growing season we followed the references pro
posed by Gensler (1946). The start of grassland 
growing season can be set when the daily mean 
temperature determined on multiple year time ser
ies reaches 7.5 C° and the end of the growing 
season can be set at 5 C°. In our study we divided 
grassland parcels -according to their altitude- in 
low altitude grasslands (<1200 m a. s. l.) and high- 
altitude grasslands (>1200 m a. s. l.). We set the 
start of the growing season respectively on 
April 15th and on May 15th and the end of the 
growing season on November 15th and on 
October 15th.

2.4 Methods

In Figure 2 a scheme of the proposed mowing detec
tion algorithm is shown. In the following subsections 
every step is described in detail. The entire workflow 
was implemented in GEE (Gorelick et al. 2017).

In summary, the algorithm is based on the analysis 
of the VITS. Between the beginning and the end of the 
vegetative period, there are one or more growth per
iods and mowings of the grass. During the grass 
growth, the value of the VI increases until the farmer 
performs the cut which causes a sudden decrease in 
the index value. The number of sudden decreases in 
the index value followed by the slow increase in the 
index value represents the mowing frequency that 

Figure 2. Architecture of the proposed algorithm.
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the algorithm is expected to determine. The algo
rithm development was carried out at the pixel level. 
In a final step, the best model developed at the pixel 
level was tested for accuracy at the parcel level.

2.4.1 Masking and vegetation index computing 
(phase 1)
S2 image pixels with cloud probability higher than 5% 
were discarded as cloudy pixels provide erroneous index 
values, which the algorithm could erroneously interpret 
as a mowing event. The adopted cloud probability was 
the one created with the S2-cloud-detector library and 
was provided as pixel property for each image in GEE. 
We masked out pixels with snow probability higher than 
5% using MSK_SNWPRB band, distributed by ESA, and 
pixels identified as cirrus clouds and as shadows by the 
SCL band, distributed by ESA. Six VITS (EVI, GVMI, MTCI, 
NDII, NDVI, RENDVI783.740) were computed in GEE based 
on the formulas described in Table 2. VIs were chosen 
based on recommendation proposed by Davidson, 
Wang, and Wilmshurst (2006), Imran et al. (2020) and 

Reinermann, Asam, and Kuenzer (2020) and are pre
sented in Table 2. All the S2 bands used for VI computa
tion were resampled in GEE using nearest neighbor 
method to the resolution of the NIR and red 
band (10 m).

2.4.2 Smoothing and resampling (phase 2)
Omissions in cloud masking result in erroneous VIs 
values and a simple drop-detecting algorithm could 
wrongly consider the drops as mowing events and 
therefore rise the commission error. A smoothing pro
cess is therefore needed (Hird and McDermid 2009). 
We applied a running-median smoother to the raw 
VITS to overcome abrupt drops in the time series 
caused by unmasked cloudy observations (Jin and 
Bing 2013). A Smoothed Time Series (STS) is com
puted by identifying an observation dates list, includ
ing both cloudy and uncloudy observation. To each 
date in the list the median of VITS values falling in a N 
Days Window (NDW) before and after each point is 
assigned, omitting cloudy (masked) values. 

Figure 3. Annual curve of the raw (VITS) and derived (STS, RTS, MTS) vegetation index time-series of a grassland pixel at the Predazzo 
site mowed twice in 2020.

Table 2. Vegetation Indices (VIs) used to calculate time series. Wavelengths of S2 bands: B2 (blue) ~ 494.4 nm; B4 (red) ~ 664.8 nm; B5 
(Red Edge 1) ~ 703.9 nm; B6 (Red Edge 2) ~ 739.7 nm; B7 (Red Edge 3) ~ 781.1 nm; B8 (NIR) ~ 834.1 nm; B8A (Red Edge 4) ~ 864.4 nm; 
B11 (SWIR 1) ~ 1612.1 nm; B12 (SWIR 2) ~ 2194.1 nm.

Vegetation Index Formula using Sentinel-2 Bands Reference

EVI 
(Enhanced Vegetation Index)

2:5 B8� B4
B8þ6�B4� 7:5�B2ð Þþ1

(Huete et al. 2002)

GVMI 
(Global Vegetation Moisture Index)

B8þ0:1ð Þ� B12þ0:02ð Þ

B8þ0:1ð Þþ B12þ0:02ð Þ
(Ceccato et al. 2002)

MTCI 
(MERIS Terrestrial chlorophyll index)

B8A � B5ð Þ= B5 � B4ð Þ (Jadunandan and Curran 2004)

NDII 
(Normalized Difference Infrared Index)

B8 � B11ð Þ= B8þ B11ð Þ (Hardisky, Klemas, and Smart 1983)

NDVI 
(Normalized Difference Vegetation Index)

B8 � B4ð Þ= B8þ B4ð Þ (Rouse et al. 1974)

RENDVI783.740 

(Red edge Normalized Difference Vegetation Index)
B7 � B6ð Þ= B7þ B6ð Þ (Peng et al. 2017)
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A running-median smoother is resistant to outliers as 
it efficiently removes the invalid low values caused by 
unmasked cloudy observations.

In the preliminary analyses of our study, we found 
that in low-intensively managed grasslands, VI values 
can fluctuate during the summer for reasons that are 
different from mowing and are usually referable to 
water stress and heat stress. As we are interested only 
in major drops caused by mowing events, we reduced 
the temporal resolution of the time series using 
a fixed Resampling Interval (RI) to obtain Resampled 
Time Series (RTS). RTS is computed by defining 
a dates’ list starting from half RI after the start of the 
growing period date and prosecuting with dates at RI 
intervals until the end of the growing period. To each 
date in the list the mean of STS values falling in NDW 
before and after each point is assigned. Raw and 
derived vegetation index time series of a grassland 
pixel are displayed in Figure 3 as an example.

2.4.3 Mowing detection (phase 3)
Mowing events cause remarkable drops not only in 
the VITS (Stendardi et al. 2019), but also in the RTS, so 
we set the condition that a local minimum (i.e. an 
index value lower than previous value and following 
value) should reach a minimum drop (DROP) from the 
maximum in the last two points (MTS) of RTS to be 
interpreted as a mowing event. To obtain the Pixel 
Resolution Mowing Frequency (PiMF), the algorithm 
detects and counts the mowing events (defined as 
local minimum in the masked, smoothed, resampled 
time series) which cause a minimum drop from pre
vious values. The two conditions are mathematically 
stated in equation 1, where RTS is the Resampled 
Time Series, MTS is the Maximum Time Series and 
DROP is an optimized parameter that defines the 
minimum percentage difference between MTS and 
RTS to identify a mowing event. 

RTS t� 1ð Þ > RTS tð Þ < RTS tþ1ð Þ

RTS tð Þ <MTS tð Þ � 1 � DROPð Þ

�

(1) 

2.4.4 Majority analysis (phase 4)
To reduce the “salt and pepper” effect in the final 
mowing events map, we performed a majority analy
sis using a 3 × 3 pixels kernel, obtaining the Corrected 
pixel Mowing Frequency (CPiMF). This operation 
removes abnormal frequency values of some pixels 
(noise) from PiMF replacing them with values 

calculated from the majority of their neighboring 
cells. We have chosen a small kernel size (3x3 pixels) 
because the scale of management was often as small 
as a few pixels (Qian, Zhang, and Qiu 2005). Then, for 
each parcel we calculated the mode of the CPiMF of 
its pixels and obtained the Parcel Mowing Frequency 
(PaMF).

2.4.5 Design of experiment and accuracy assessment
To define the most accurate prediction algorithm and 
to measure its generalization capability, the following 
four experiments were carried out:

(1) Experiment 1: parameters optimization and 
vegetation index choice. The accuracies obtain
able using different VIs were tested, optimizing 
the three parameters (NDW, RI, DROP) at the 
four sites. Parameters’ levels to be tested were 
chosen based on preliminary analyses which 
revealed the ranges in which the most promis
ing accuracies could be obtained in our study 
sites. We included 7 values of DROP (from 0 to 
0.35), 15 values of RI (from 6 to 20), 5 values of 
NDW (from 6 to 10). We defined the best gen
eral optimization as the combination of para
meters that gives the lowest Mean Absolute 
Error (MAE). We computed the mean MAE 
across all four sites for each parameter combi
nation and we chose the parameter combina
tion that determined the lowest MAE, as 
visually described in Figure 4. The MAE mea
sures the average error regardless of its sign 
and gives the magnitude of the error in the 
same unit as the prediction, in this case, the 
mowing frequency (Lobert et al. 2021; 
Congalton and Green 2009). The MAE was com
puted as follows: 

MAE ¼
1
n

Xn

i¼1

Ŷ i � Yi
�
�

�
� (2) 

(1) where n is the number of pixels, Ŷ is the 
predicted mowing frequency and Y is the refer
ence mowing frequency. Overall accuracy was 
also computed and reported. The overall accu
racy is simply the sum of the major diagonal (i.e. 
the correctly classified sample units) divided by 
the total number of sample units in the 
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confusion matrix (Congalton and Green 2009). 
We used the function ee.FeatureCollection. 
errorMatrix implemented within the GEE plat
form to obtain the error matrix, ee. 
ConfusionMatrix.accuracy to obtain the Overall 
Accuracy, whereas the MAE was computed in 
GEE following equation 2. To understand how 
much accuracy is lost by generalizing the opti
mization of the algorithm, we compared the 
accuracies of locally optimized (separately in 
each site) algorithms and globally optimized 
(on all four sites together) algorithms (Figure 4).

(2) Experiment 2: testing of algorithm phases. All 
phases of the algorithm were tested in order to 
see if they were necessary to remarkably 
increase its accuracy. The phases presented in 
Figure 2 were therefore combined as presented 
in Table 3.

At each phase combination, the parameters opti
mized in the previous phase combination were re- 
optimized, as their best values could change in the 
new phase combination. The optimization was per
formed finding the best parameter combination for 
all study sites (global optimization). In order to carry 
on such experiments, some adjustments were neces
sary to the algorithm code at the first phase combi
nation. In the algorithm considering only phases 1 
and 3, a daily time series was built by applying 
a linear interpolator between each valid observation. 
MTS were computed taking the maximum value in 
the N Days Backward (NDB). The best NDB was opti
mized, choosing between values in sequence from 
−30 to −5 with step 5.

(1) Experiment 3: comparison of pixel and parcel 
resolution accuracy. We calculated the mode of 
each parcel’s CPiMFs obtained with the best 
globally optimized model. The accuracy of the 
resulting PaMF was compared to that of CPiMF.

Figure 4. Architecture of parameters optimization process.

Table 3. Combinations of phases tested.
Phase 
combination Description

Parameter to 
optimize

1,3 Vegetation index time-series computing 
(phase 1), and mowing detection 
(phase 3)

DROP, NDB

1,2,3 Vegetation index time-series computing 
(phase 1), smoothing and resampling 
(phase 2), and mowing detection 
(phase 3)

DROP, NDW, 
RI

1,2,3,4 Vegetation index time-series computing 
(phase 1), smoothing and resampling 
(phase 2), mowing detection (phase 3), 
and majority analysis (phase 4)

DROP, NDW, 
RI

Table 4. Confusion matrix (pixel count in cells), mean absolute error and overall accuracy resulting at each site from the algorithm 
optimized at all four sites (global optimization: DROP = 15%, NDW = 9 days, RI = 11 days). NDII used as vegetation index.

Reference mowing frequency (no. mowing per year)

Lusia Predazzo Viote Vigolana

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Predicted mowing frequency (no. mowing 

per year)
0 0 0 0 0 0 0 0 0 0 0 968 81 0 0 0 0 0 0 0 0
1 25 2253 168 0 0 0 0 0 0 0 40 8324 0 0 0 2 651 17 0 0
2 0 87 701 0 0 0 31 1268 187 15 0 0 0 0 0 0 47 1163 8 0
3 0 0 0 0 0 0 0 273 1599 7 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 2 39 255 0 0 0 0 0 0 0 0 0 0

MAE 0.09 0.16 0.01 0.04
Overall 
Accuracy

91% 85% 99% 96%
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(2) Experiment 4: generalization error estimation. 
We performed a spatially stratified k-fold cross 
validation, using the sites as stratification layer 
to decrease correlation between optimization 
and validation pixels. We iteratively optimized 
the parameters of the model on three sites out 
of four, and we measured the accuracy 
obtained at the fourth site. We averaged the 
four accuracies obtained on the “left-out” site 
and we compared it to the four accuracies 
obtained on the optimization dataset to esti
mate the generalization capabilities of the pro
posed model.

3. Results

3.1 Masking processes

The number of available unmasked observations per 
pixel (Figure 5) considerably varied in the four study 
sites, depending on the topographical and geogra
phical location of the study site, on the number of 
cloudy days and on the length of the growing season. 
The topography -especially the altitude- affects cloud 
distribution and snow persistence and therefore also 
the spatial distribution of valid observations (i.e. 
cloud, shadows, and cirrus free). In addition, altitude 
is the main determinant for the length of the growing 
season and therefore for the total number of dates to 
be considered. The average interval between 
unmasked observations is 9.19 days, 8.33 days, 

4.15 days, and 4.25 days, respectively at the Lusia, 
Predazzo, Viote, Vigolana site. Sites located in the 
west of the province (Vigolana and Viote) are revisited 
every two to three days, so their time series is denser 
than the time series of sites located in the east of the 
province (Predazzo and Lusia), surveyed by one orbit 
only. The percentage of unmasked observations 
(average of site pixels) is similar in all four sites, 
between 57% (Lusia site) and 61% (Viote site).

3.2 Parameters optimization and vegetation index 
choice

NDII was chosen as the VI of the final algorithm, as it 
performed better than all other VIs, resulting in a MAE 
of 0.07 (average of all sites; Figure 6). Also, GVMI and 
NDVI performed quite well, with a MAE of 0.09 and 
0.12, respectively (average of all sites).

In Figures 7, 8, the accuracies of NDII models with 
different DROP, NDW, RI across the four sites are 
reported. Viote and Vigolana sites generally showed 
a higher accuracy compared to Lusia and Predazzo and 
parameters optimization affected in different ways the 
results across sites. For NDW higher than 9 days there 
was a strong increase in MAE for the Lusia site, while MAE 
decreased in the Viote site. Predazzo site performed 
better with shorter RI, while Vigolana and Viote with 
longer RI. DROP did not strongly influence the accuracy 
on all sites except the Vigolana site, where there was an 
increase in MAE for DROP higher than 20%. The best 
global (for the four sites together) optimization for NDII 
was: DROP = 15%, NDW = 9 days, RI = 11 days.

Figure 5. Average number of valid observations per pixel in the study sites in 14 days periods.
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In all four sites the commission and omission error 
were quite balanced, resulting in a percentage of pixels 
with predicted mowing frequency higher than refer
ence mowing frequency similar to the percentage of 

pixels with predicted mowing frequency lower than 
reference (Figure 9). In all four study sites, the overall 
accuracy was higher than 85% and the MAE was equal 
or lower than 0.16 (Figure 6, Table 4). The MAE 

Figure 6. Mean absolute error of algorithms with different vegetation indices. Pixel level.

Figure 7. Mean absolute error in the study sites. NDII used as vegetation index. Pixel level.
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obtained using locally optimized algorithms was 
slightly lower than MAE obtained using globally opti
mized algorithms in all four sites (Figure 10).

In Figures 11 and 12, reference and predicted 
mowing frequency maps of the Predazzo and Viote 
sites are displayed. Predicted values were obtained 
using the best global optimization.

3.3 Testing of algorithm phases

In all the four sites, the algorithm which included all 
phases was by far the one that provided the lowest 
MAE (best results displayed in Figure 13).

In the optimization of the algorithm involving 
only phases 1 (VITS preparation) and 3 (drop and 
local minimum detection), a DROP of 75% from pre
vious values and a NDB of ten days proved to be the 
best optimized parameters on average. The Viote 
and the Vigolana sites performed better with 
a higher DROP, with the lowest MAE (0.65 and 0.79 
respectively) in correspondence to a DROP of 95%. 
The Lusia and the Predazzo sites performed better 
with a lower DROP, with the lowest MAE (0.25 and 
0.39 respectively) in correspondence to a DROP of 
60% and 65%. Adding the smoothing and resam
pling phases to the algorithm contributed to 
a substantial improvement in accuracy across all 
four sites, and the best results on average were 
found using a DROP of 15%, an NDW of 9 days and 
a RI of 12 days. The final algorithm which also 
includes the majority analysis (phase 4) gave the 
best results and the best global optimization para
meters were DROP = 15%, NDW = 9, and RI = 11.

3.4 Comparison of pixel and parcel resolution 
accuracy

In the Viote and Vigolana sites, the aggregation of the 
parcel CpiMPs to PaMF through the mode rule did not 
impact the accuracy, while at the Lusia and Predazzo 
it determined a small increase in the MAE (Figure 14). 
On average at the four study sites we obtained a 90% 
overall accuracy and 0.10 MAE, and only 30 parcels 
out of 301 which were not correctly classified 
(Table 5).

Figure 8. Mean absolute error across the four study sites using algorithms with different NDW, RI, DROP. NDII used as vegetation 
index. Pixel level.

Figure 9. Types of errors in the four study sites at pixel level 
using the parameters of the global optimization, and NDII as 
vegetation index.

Figure 10. MAE at pixel level obtained using global optimization 
and local optimization, and NDII as vegetation index.
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Figure 11. Reference (left) and predicted (right) mowing frequency map at pixel level of the Predazzo site. Predicted values are 
obtained using best global optimization, and NDII as vegetation index.

Figure 12. Reference (left) and predicted (right) mowing frequency map at pixel level of the Viote site. Predicted values are obtained 
using best global optimization, and NDII as vegetation index.
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3.5 Generalization error estimation

The average MAE obtained on the validation dataset 
(0.12) was almost double than the average MAE 
obtained on optimization dataset (0.07) but it is still 
very low, indicating that just approximately one pixel 
out of ten was wrongly classified (Figure 15). The third 
iteration (the one excluding the Viote site from the 
optimization dataset) gave the highest MAE on the 
optimization dataset and the lowest MAE on the 

validation dataset, whereas the second iteration (the 
one excluding the Predazzo site from the optimiza
tion dataset), on the opposite, gave the lowest MAE 
on the optimization dataset and the highest MAE on 
the validation dataset.

4. Discussion

Mapping mowing frequency over complex land
scapes in mountain areas is crucial to inform conser
vation and management policies but is challenging as 
imagery with high spatial and temporal resolution is 
needed. In this study, we developed a new mowing 
detection algorithm based on S2 imagery in GEE, 
optimized and validated in four study sites. Results 
indicate that it can be successfully used, as the MAE of 
the complete model is 0.07, while the overall accuracy 
is 93% on average at the sites used for optimization 
and 0.12 and 89%, respectively, at sites not used for 
optimization.

4.1 Novel aspects

In addition to the use of S2 imagery for mowing 
detection, that has been exploited a few times so 
far, the major novel aspects of the present study 
are that very small and fragmented parcels were 
used as reference, that the algorithm works at 
pixel level and that the algorithm can be run 
using a provided ready to use code working on 
one planetary-scale cloud platform using free 
imagery.

Reference dataset consists of particularly small and 
fragmented hay meadows that are typical of moun
tain areas, whereas previous research work focused 
mainly on much more homogeneous landscapes, so 
their accuracy in complex landscapes was therefore 
not tested. In our study, 53% of unshrunken parcels 

Figure 13. MAE of algorithms with increasing complexity. NDII 
was used as vegetation index. For phase description see Table 3. 
The values indicate the highest accuracy obtained with global 
optimization. Pixel level.

Figure 14. MAE of the best optimized algorithm at pixel and 
parcel level. NDII used as vegetation index.

Table 5. Confusion matrix (parcel count in cells), Mean Absolute Error and overall accuracy resulting at each site from the algorithm 
optimized at all four sites (global optimization: DROP = 15%, NDW = 9 days, RI = 11 days). NDII used as vegetation index.

Reference mowing frequency (no. mowing per year)

Lusia Predazzo Viote Vigolana

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Predicted mowing frequency (no. mowing per year) 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0

1 0 44 4 0 0 0 0 0 0 0 0 72 0 0 0 0 24 2 0 0
2 0 3 19 0 0 0 3 27 6 1 0 0 0 0 0 0 2 48 1 0
3 0 0 0 0 0 0 0 7 27 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

MAE 0.10 0.24 0.01 0.06
Overall Accuracy 90% 77% 99% 94%
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were smaller than 0.5 ha and 78% were smaller than 
1 ha whereas in (Garioud et al. 2019) the parcel aver
age size was 5.1 ha and in (Griffiths et al. 2020) all 
parcels were larger than 1 ha. Only Kolecka et al. 
(2018) included parcels with sizes comparable to the 
ones we included.

The analysis concept in our study builds on the 
pixel level because in most of grassland systems 
management parcels, defined as grassland unfrag
mented parcels mowed on the same days, are not 
available a priori, as administrative boundaries often 
differ substantially from real field limits (Inglada et al. 
2012). An algorithm working at pixel level can ana
lyze a meadow system without prior information 
about management parcels and without losing the 
possibility to aggregate later the results at parcel 
level as we did at paragraph 3.4, which is very useful 
for various purposes such as subsidies granting and 
fertilization plan development. The accuracies 
obtained at parcel level were slightly lower than at 
the pixel level at the Lusia and Predazzo sites, where 
the size of the erroneously classified parcels was on 
average 35% and 50%, respectively, of a similar size 
to the correctly classified parcels. Also, in the other 
sites the wrongly predicted parcels are on average 
much smaller than the correctly predicted, 13% the 
size of correctly predicted parcels at the Viote site 
and 26% the size of correctly predicted parcels at the 

Vigolana site. This accuracy reduction was probably 
due to residual (after the initial edge pixels elimina
tion by buffering procedure) edge effect of mixed 
pixels.

The development of our algorithm in GEE allowed 
us to access, process and display S2 data on only one 
platform and will allow algorithm’s users to easily run 
the code on continuously updated imagery and in 
other regions, without needing to download and pro
cess the imagery. It is not possible to report exact 
computation times in GEE because they vary in each 
run, as the system handles resource allocation and 
parallelism. As an example, however, less than 
one minute is needed to compute and display the 
mowing frequency of hay-meadows in 20 km2, and 
2 minutes for exporting the mowing frequency map 
in “.tiff” format.

Mowing frequency maps produced adopting the 
proposed algorithm can be a valuable and reliable 
tool to identify extensively managed meadows need
ing protection and conservation measures. They can 
be used also to remotely verify that a mowing event 
occurred, which is frequently required not only to 
obtain CAP subsidies, but also to characterize forage 
systems at a regional level, using mowing events as 
a proxy to estimate nitrogen removal and forage 
production (Griffiths et al. 2020).

4.2 Accuracy and generalization capability

The possibility to reliably apply the algorithm to other 
areas after appropriate testing is suggested by the 
results of the k-fold cross validation. The average 
MAE obtained on the sites excluded from parameters 
optimization process is 0.12, with an overall accuracy 
of 89% on average. Also, local and global optimization 
did not give significantly different results, indicating 
that the algorithm is very flexible and that globally 
optimized parameters perform well in various differ
ent situations.

Some previous studies using SAR data reported an 
overall accuracy in mowing detection of 86% (Taravat, 
Wagner, and Oppelt 2019) using artificial neural net
works from a set of Sentinel-1 derived variables, but 
models were trained and tested on just ten inten
sively managed parcels. Grant et al. (2015) reached 
a detection rate of 74% and Mathilde De, Radoux, and 
Defourny (2021) correctly identified only 56% of 
grasslands. The highest overall accuracy reported 

Figure 15. Results of the k-fold cross validation. NDII used as 
vegetation index. Pixel level. CV iter. 1 = validation on the Lusia 
site, CV iter. 2 = validation on the predazzo site, CV iter. 3 = vali
dation on the viote site, CV iter. 4 = validation on the vigolana 
site. Average error on optimization datasets = 0.07, average 
error on validation datasets = 0.12.
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using optical sensors is 85% and was obtained by 
Halabuk et al. (2015) as the best result of a cut-uncut 
classification in extensively managed grasslands. In 
a time series analysis approach Kolecka et al. (2018) 
using a drop-detection algorithm achieved an overall 
accuracy of 77% of correctly detected mowing. Estel 
et al. (2018), detecting local minima in a MODIS NDVI 
time-series, correctly identified 80% of mowing fre
quency. The combination of Sentinel-2 and Landsat-8 
imagery resulted in denser time-series which were 
analyzed by Schwieder et al. (2021) using machine 
learning algorithms and leaded to a mean absolute 
percentage error between 35% (2020) and 40% (2018) 
whereas combining active and passive imagery 
Lobert et al. (2021) obtained a MAE of 0.369, 0.321, 
0.420, 1.44 on grasslands with one to four mowing 
events per year, respectively. Our work, which bene
fits from S2 high temporal resolution, novel cloud 
masking and smoothing and resampling processes, 
reached a MAE of 0.12 and an overall accuracy of 
89% on average on the sites excluded from para
meters optimization process.

4.3 Parameters optimization and vegetation index 
choice

Building a mowing frequency reference dataset from 
optical imagery is not a straightforward task because 
of lack of temporal resolution caused by cloudy observa
tions (Halabuk et al. 2015). In our experience the tem
poral resolution provided by Planet imagery was 
sufficient to detect mowing events, probably because 
farmers do not perform mowing in cloudy periods and 
wait a clear-sky window of at least 2 days to perform 
mowing. Furthermore, during summer clouds are much 
more common in the afternoon than in the morning 
(Whitcraft et al. 2015), when the Planet images are 
acquired.

NDVI is by far the most used index in previous 
studies about grasslands management and intensity 
and it describes the difference between reflectance in 
the red and near infrared regions (Reinermann, Asam, 
and Kuenzer 2020). In our study, however, NDII gave 
the best MAE, on average 0.05 points lower than 
NDVI. NDII is computed as the normalized difference 
between the red and the SWIR region, a wavelength 
that is sensitive to leaf water content. Observing NDVI 
and NDII profile we found that mowing events cause 
much more remarkable drops in NDII than in NDVI 

and that NDVI saturates before NDII as biomass 
increases. The canopy water content and canopy 
structure traits change strongly during the mowing 
event determining a wider range of NDII values. The 
wider range of values NDII can assume compared to 
VIs sensitive to chlorophyll content proved to result in 
a higher algorithm’s accuracy. The increase in accu
racy provided by the SWIR wavelength is higher than 
the decrease caused by the lower spatial resolution of 
the Sentinel SWIR band (20 m) compared to NIR band 
(10 m). GVMI, which is computed using the SWIR 2 
band (2.2 µm), gave accuracies that are comparable to 
that obtained using NDII (average MAE = 0.09 vs 0.07), 
whereas EVI, MTCI and RENDVI provided lower accura
cies although they have widely been used in remote 
sensing of grassland biophysical parameters 
(Sakowska, Juszczak, and Gianelle 2016; Reinermann, 
Asam, and Kuenzer 2020; Imran et al. 2020; Halabuk 
et al. 2015).

The sites surveyed by two orbits (Viote and 
Vigolana) gave much higher accuracies. In these 
sites the shorter revisiting time provides a denser 
time series that is less affected by missing (cloud 
masked) observations. Only at the most intensively 
managed site, the Predazzo site, the MAE increases 
using longer RIs, whereas in extensively managed 
sites like the Viote site the MAE decreases for longer 
RIs. The longer RI in extensively managed sites 
reduces the possibility of false detections caused by 
VI fluctuations, whereas in intensively managed grass
land is not able to describe the quick development of 
grassland biomass and cover.

4.4 Testing of algorithm phases

The complete algorithm -which includes all the four 
phases- provided the highest accuracies and was 
therefore chosen. The smoothing and resampling 
phases proved to be crucial to diminish the effect of 
invalid low values caused by unmasked cloudy obser
vations and by small fluctuations of index values. The 
simple drop detection algorithm (phases 1 and 3) 
gave very low accuracy for example at the Viote site 
where there were three unmasked cloudy observa
tions that caused abrupt drops in VITS that were 
detected as mowing events. These unmasked cloudy 
observations were smoothed by the running median, 
and the Viote sites is the one with the highest accura
cies using the complete algorithm.
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Following the experience of Halabuk et al. 
(2015) who obtained lower accuracies classifying 
cut and uncut hay meadows by smoothing NDVI 
and EVI time-series using the Fourier adjustment, 
smoothing processes were not included in past 
models because of the risk of losing small fluctua
tions which might be linked with mowing 
(Bekkema and Eleveld 2018). Also Jin and Bing 
(2013), proposing a temporal smoothing algorithm, 
advise that smoothing may not be suitable for 
modeling anthropogenic activities where an abrupt 
drop of the NDVI value reflects the actual situation 
rather than contamination. The running median 
smoother used in our work, however, proved to 
fix single invalid low values caused by unmasked 
cloudy observations. S2 temporal resolution proved 
to be sufficient to provide proper values and there
fore to describe biomass evolution under the con
sidered management intensities. Majority analysis 
significantly improved the algorithm accuracy, 
decreasing the MAE from 0.13 to 0.7 on average. 
Isolated pixels fixed by majority analysis are mainly 
located at parcel edge and in areas possibly sha
dowed by surrounding woodlands. Small and iso
lated trees were found to be one cause of “salt and 
pepper effect” at the Viote site. On more produc
tive grasslands, lodging could be a possible cause 
of patchy anomalous mowing frequency values. 
Lodging is not a rare phenomenon on productive 
grasslands and can significantly alter grasslands 
structure and physiology, and therefore their spec
tral signature.

4.5 Limitations and further improvement

The major limitations of the presented algorithm are 
the spatial resolution, the prior management type 
detection, the lack of temporal accuracy, the reliability 
in areas with very different phenology. The spatial 
resolution of S2 imagery limits the accuracy of the 
algorithm in very fragmented parcels and in long and 
narrow management parcels which frequently occur 
in mountain areas. The algorithm was tested only on 
hay-meadows, and the process does not include 
a prior management type detection (grazed, mowed, 
mixed) like the one presented by Dusseux, Corpetti, 
and Hubert-Moy (2013). Grazed parcels should there
fore be avoided, as grazing events with large stock 
density could be interpreted as mowing events.

The algorithm is specifically designed to detect 
annual grassland mowing frequency and not to pre
dict mowing dates. In fact, smoothing and resampling 
phases improved impressively the algorithm accu
racy, but changed the temporal resolution so that 
resampled dates can not be used to define precise 
mowing dates.

The algorithm should be tested and probably 
adapted before use in areas with very different cli
mate and phenology. In Mediterranean grasslands, for 
example, the growing season is limited by high tem
peratures and the sudden decrease of water content 
that may occurs at the start of summer may be 
wrongly interpreted as a mowing event by the algo
rithm. In more cloudy regions, on the other hand, the 
lower density of the time series could affect algorithm 
accuracy, since the algorithm has been tested only in 
sites where the average number of days between 
uncloudy observations ranges from 4.15 (Viote site) 
to 9.19 (Lusia site).

Further improvement and optimization of the algo
rithm could be the inclusion of a classification algo
rithm for detecting management parcel geometries, 
the type of grassland management and the automatic 
definition of the start and the end of growing season 
at a pixel-size resolution (Jönsson and Eklundh 2004). 
A pixel-level automatically defined growing season 
would avoid the necessity to manually define growing 
season based on available climatic data and would 
model a growing season more similar to real one in 
each grassland pixel. As the frequency of cloudy 
masked and invalid unmasked pixels proved to con
siderably affect the algorithm accuracy and algorithm 
performed less well when the mowing frequency was 
higher (Predazzo), its validation in other climatic 
regions would be important. In addition to these, 
orbit overlap giving better results suggests that accu
racy could be improved by increasing the density of 
the time series either by adding optical sensors 
(Griffiths et al. 2020; Lobert et al. 2021; Stumpf et al. 
2020) or by multimodal approaches (Garioud et al. 
2019; D’Andrimont, Lemoine, and Van der Velde 
2018).

5. Conclusions

This study assessed the potential of a new algorithm 
based on S2 imagery time series for detecting mow
ing events. Using reliable reference data obtained by 
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Planet daily imagery and farmers interview, it was 
possible to test several vegetation indices and proces
sing phases. Masking, smoothing and resampling 
phases and optimization of algorithm’s parameter 
allowed to correctly identify the mowing frequency 
in 93% of the pixels, with a MAE of 0.07 on average, 
and 90% of parcels were correctly classified (Overall 
accuracy at parcel level) on sites used for optimiza
tion. NDII performed better than other indices prob
ably because it assumes a wider range of values 
before and after mowing events.

The low MAE obtained on the sites excluded from 
parameters optimization process (MAE = 0.12, overall 
accuracy = 89%) suggest that the developed algo
rithm may be applicable on other grassland areas, 
and new studies are needed to confirm this. The 
code was developed in GEE, a platform that can 
access and process continuously updated images 
worldwide, so that agencies and practitioners can 
easily run the algorithm as only start and end of 
growing season, and hay-meadows parcel geometries 
are required as an input parameter. The resulting 
mowing frequency maps can inform grasslands con
servation and management policies by identifying 
extensively managed grasslands.
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A B S T R A C T   

Understanding the impacts of climate change on plant phenology is crucial for predicting ecosystem responses. 
However, accurately tracking the flowering phenology of individual plant species in grassland species mixtures is 
challenging, hindering our ability to study the impacts of biotic and abiotic factors on plant reproduction and 
plant-pollinator interactions. Here, we present a workflow for extracting flowering phenology from grassland 
species mixtures using near-surface time-lapse cameras. We used 89 image series acquired in plots with known 
species composition at the Jena trait-based experiment (Germany) to develop random forest classifiers, which 
were used to classify images and compute time series of flower cover for each species. The high temporal res
olution of time-lapse cameras allowed to select images in proper light conditions, and to extract vegetation 
indices and texture metrics to improve discrimination among flowering species. The random forest classifiers 
showed a high accuracy in predicting the cover of Leucanthemum vulgare, Ranunculus acris, and Knautia arvensis 
flowers, whereas graminoid flowers were harder to predict due to their green-to-brownish colours. The proposed 
workflow can be applied in climate change studies, ecosystem functioning, plant community ecology, and 
biodiversity change research, including the investigation of effects of species richness on individual species' 
flowering phenology. Our method could be a valuable tool for understanding the impacts of climate change on 
plant reproduction and ecosystem dynamics.   

1. Introduction 

Global change affects plant communities and their functioning in 
various ways. Consistent changes in the timing of phenological events 
are clear indicators of the impact of global change on plant life cycles 
(Piao et al., 2008; Schwartz, 2013). For instance, warming tends to 
advance the green-up and to delay the end of the vegetation growing 
season (Estiarte and Peñuelas, 2015; Liu et al., 2020; Menzel et al., 2006; 
Shen et al., 2011). However, recent studies revealed that the analysis of 

phenology at whole-ecosystem scale is not always suitable for describing 
the effect of global change on individual plant species, because pheno
logical responses to climate change can differ among species of the same 
ecosystem (Thackeray et al., 2016). Furthermore, Collins et al. (2021) 
challenged the expectation that all phenological events will advance in 
unison to warming. Instead, they observed that vegetative and repro
ductive phenology are differentially affected by experimental warming, 
suggesting that different aspects of phenology should be separately 
investigated. Moreover, it was observed that many plant species 
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flowered earlier in response to reductions in diversity, so that declining 
diversity could exacerbate phenological changes attributed to rising 
global temperatures (Wolf et al., 2017). To further investigate these 
multifaceted processes, there is an increasing need for effective methods 
to track single species flowering phenology in species mixtures. 

Thanks to their planetary-scale analysis capabilities and short 
revisiting time, remote sensing (RS) and proximal sensing are opening 
new possibilities for phenological studies, overcoming laborious and 
time-consuming ground-based vegetation observations (Szigeti et al., 
2016). The large-scale observation potential of RS has been applied to 
track vegetation reproductive phenology (Gonzales et al., 2022), but the 
coarse spatial resolution of satellite images restricts flowering estima
tion to massive homogeneous flowering events in rather homogeneous 
ecosystems such as of eucalypt species (Dixon et al., 2021), oil seed rape 
fields (d'Andrimont et al., 2020), almond (Chen et al., 2019) and pear 
plantations (Wouters et al., 2013). Flowers of different functional groups 
were mapped for the first time by Landmann et al. (2015), in African 
savannas using hyperspectral imagery. Images at finer spatial resolution 
captured by drones recently allowed Gallmann et al. (2022) to recognize 
flower species in permanent grasslands, a task that would not have been 
possible with satellite-resolution images. Frequent (sub-weekly) drones 
flights, however, are usually too expensive for agricultural and ecolog
ical phenological studies, and other technologies are therefore needed. 

PhenoCams (PCs), i.e., digital cameras configured to capture time- 
lapse images, can bridge the gap between satellite monitoring and 
traditional ground-based vegetation observations (Brown et al., 2016; 
D'Odorico et al., 2015; Richardson et al., 2010). Compared to RS, PC 
imagery can provide a very fine temporal and spatial resolution, 
allowing to explore the inter- and intraspecific variability in plant 
phenology at a sub-daily scale to a much lower cost than repeated drone 
flights. However, only in 2022, PC images were used for the first time to 
map flowering phenology of two Arctic species, the mountain avens 
Dryas octopetala and Dryas integrifolia (Mann et al., 2022). For more 
complex ecosystems, such as multi-species and multi-layered grasslands, 
different automation routines and analysis processes still need to be 
developed. 

Tracking floral phenology using time-lapse camera in grasslands is 
challenging due to many reasons: i) images are acquired under various 
light conditions, ii) sensors usually measure reflectance values only in 
the visible spectral region, iii) flower structures are relatively small and 
only cover a few pixels, iv) flowers might be occluded by vegetative 
plant parts, and v) grasslands are biodiversity rich compared to other 
ecosystems, to name a few (Andrew and Ustin, 2008; Gallmann et al., 
2022; Mann et al., 2022). Even though PC imagery has been used in 
phenological studies at whole-ecosystem scale to track greenness, and 
despite floral phenology (typically determined manually) being a key 
trait of grasslands ecosystems, no processing workflow to track flower
ing phenology in grasslands has been proposed so far. Nevertheless, a 
workflow to extract flower cover time series (FCTS) from PC imagery is 
urgently needed to, for example, study the response of reproductive 
phenology to environmental and biotic drivers. Moreover, such a 
workflow could easily be applied to different questions of biodiversity 
and climate impact research as well as land management to assess plant- 
pollinator interactions, grasslands cultural services evaluation, and 
grassland productivity monitoring, providing important inputs to 
vegetation and biogeochemical models (Inouye, 2020; Richardson et al., 
2012; Wolf et al., 2017). 

Here, we suggest a processing workflow to extract FCTS from RGB 
time-lapse cameras (RGB as Red, Green, Blue digital numbers). To 
address the aforementioned challenges, we i) leveraged the high tem
poral resolution of PC imagery by selecting only images in proper light 
condition, ii) based our classification on vegetation indices derived from 
RGB reflectance, iii) included texture metrics to improve discrimination 
among flower species by their shapes. More specifically, we applied 
image filtering, calculated features of selected pixels (vegetation indices 
and texture metrics), and then used the subset of features with highest 

accuracy to train random forest classifiers. Finally, we extracted FCTS 
and derived phenological metrics for single or groups of plant species. 
We present an example application on experimental grassland plots of 
different diversity levels. 

2. Materials and methods 

2.1. Study site 

Images used in this study were acquired in 2014 within the Trait- 
Based Biodiversity Experiment (TBE; Ebeling et al., 2014) at the field 
site of the Jena Experiment (Thuringia, Germany; 50◦55 N, 11◦35 E, 
130 m a.s.l.) (Roscher et al., 2005). The TBE was established in 2010 
following a design which covers gradients in plant species and func
tional richness, ranging from 1 to 8 species in 138 plots (3.5 m × 3.5 m). 
Species not belonging to the initially sown species pool were weeded 
every year in April, July and October to maintain the species richness 
gradient. Grasslands were mowed two times per year to mimic local 
traditional management. We included 89 plots, covering the whole 
species richness gradient. Selected plots were sown with a combination 
of 13 species, of which seven were grasses: Anthoxanthum odoratum, 
Avenula pubescens, Dactylis glomerata, Festuca rubra, Holcus lanatus, 
Phleum pratense, Poa pratensis; and six were forbs: Centaurea jacea, 
Geranium pratense, Knautia arvensis, Leucanthemum vulgare, Plantago 
lanceolata, and Ranunculus acris. Selected species were cultivated as 
monocultures (14 plots), in 2-species mixtures (32 plots), in 3-species 
mixtures (23 plots), in 4-species mixtures (18 plots), and in 8-species 
mixtures (2 plots). 

2.2. Image acquisition 

In spring 2014, 92 time-lapse cameras (TLC 100, Brinno) were 
installed on 1.5 m poles pointing north at 60◦ angle from horizontal, 
capturing an area of 3.5 m2 in each frame. Images were recorded hourly 
during daylight according to the automatic mode of the cameras from 
April 12th through August 22th, 2014 (Fig. 1). Here, we focus on the 
spring growing period, i.e., between the spring weeding (April 24th) and 
the first mowing (May 29th). Plots 20, 27 and 33 of the TBE plots were 
discarded because of failure in image collection. A total of 52′678 images 
stored in jpg format (1280 × 1040 pixels) were considered in the study. 

2.3. Workflow for data processing 

The proposed workflow (Fig. 2) can be divided in four main phases: 
1) image selection and pixel labelling, 2) feature computation, 3) feature 
selection and final classifier compilation, 4) FCTS extraction, smoothing 
and calculation of phenological metrics. All analyses were performed 
with the R version 4.3.0 (R Core Team, 2023). 

2.3.1. Image selection and pixel labelling (phase 1) 
In Phase 1, image selection phase aimed at increasing the spectral 

separability between six pixel classes. C. jacea and G. pratense did not 
flower during the spring and could therefore not be considered in the 
analyses, while the green-greyish P. lanceolata flowers were not big 
enough to be labelled separately from “Green vegetation”. The grami
noid species were combined for the flower identification because their 
flowers were not distinguishable, whereas the other three flowering 
species (R. acris, K. arvensis, and L. vulgare) were considered separately. 
The resulting classes used for labelling elements inside the plots were: 
“Green vegetation”, “Soil”, “Graminoids flowers”, “K. arvensis flowers”, 
“L. vulgare flowers”, “R. acris flowers”. Light conditions heavily affect 
pixel colours: images with high brightness were usually foggy, and im
ages with high contrast were usually acquired in direct sunlight condi
tions. We calculated brightness and contrast for all images using the 
“extractVIs” function of the R package “Phenopix” (Filippa et al., 2016) 
and tested which brightness and contrast combinations allow the 
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Fig. 1. Examples of analysed images. Left: Plot where G. pratense, H. lanatus, P. pratense and P. lanceolata were sown; image acquired May 27th, 2014. Right: Plot 
where C. jacea, K. arvensis and L. vulgare were sown; image acquired May 23th, 2014. 

Fig. 2. Structure of the proposed workflow with four phases to extract flower phenology from PhenoCam pictures of a grassland biodiversity experiment. Abbre
viations are as follows: RF = Random Forest; SFFS = Sequential Floating Forward Selection; FCTS = Flower Cover Time Series. 
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selection of images acquired in homogeneous light conditions. Images 
with uniform light conditions were retrieved by selecting brightness and 
contrast between the 10th and the 40th percentile within a 3-day win
dow. The selection of the best images within this 3-day window avoided 
including images taken on days with sub-optimal observations (e.g., all 
foggy or high contrast images). 

To develop a labelled dataset, 300 images were randomly selected 
(60 images in the period between Apr 24 and May 5; 60 images between 
May 6 and May 18; 180 images between May 19 and May 29, 2014). For 
each image, a 200 pixels × 200 pixels image patch was randomly 
selected and plotted in RGB colours using the “plotRGB” function of the 
“raster” package (Hijmans, 2022). Around 30 pixels per image were 
labelled by clicking on the image to retrieve the x and y coordinates 
using the “locator” function of the “graphics” package and assigning to 
each pixel the class to which it belongs (see subsection 2.1). To prevent 
duplicated pixels after downscaling the images (see the subsequent 
section for downscaling details), any labelled pixels that were within a 
distance of eight pixels from one another were removed from the data
set. The labelling phase resulted in a table where the class and pixel 
coordinates were stored. 

2.3.2. Feature computation (phase 2) 
To increase the spectral separability of pixels between different 

classes, we computed RGB-based features: vegetation indices and 
texture metrics, described in detail in Table 1. We selected four vege
tation indices well established in colour analysis literature (Lussem 
et al., 2018; Zhao, 2021). For pixels with a specific shade of purple 
colour, the calculation of the Visible Atmospherically Resistant Index 
(VARI) resulted in infinite values (for definition, see Table 1). Since only 

finite values can be used for classifier development, infinite VARI values 
were replaced with the highest finite value sampled (or lowest in case of 
negative infinite values), which occurred in <0.1% of the labelled pixels. 
The image textures were derived from co-occurrence matrices for each 
colour band, since we expected that the flower colours differed from the 
background (green vegetation or soil) surfaces (Guru et al., 2010), using 
the “glcm” package in R Studio (Zvoleff, 2020; Haralick et al., 1973). 
Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment, Mean, 
and Variance were computed in four directions (0◦, 45◦, 90◦ and 135◦) 
and then averaged to one rotation-invariant texture as commonly used 
in texture analysis (e.g., Guru et al., 2010). For the computation of 
texture metrics, we needed to define the size of the window used for co- 
occurrence matrices. Moreover, downscaling the images to a lower 
resolution before feature extraction can give the best detection accuracy 
while also vastly increasing processing speed compared to higher reso
lution images (Mann et al., 2022). We tested the influence of window 
size and downscaling factor on classification accuracy and processing 
time, and found that a downscaling factor equal to four and a window 
size equal to eleven resulted in the highest accuracy (Fig. S1). Processing 
time of the downscaled image (4 × 4 pixels) was 16 times shorter than 
the processing time of the full resolution image (24 s per image vs. 395 s 
per image, respectively). The feature values of the labelled pixels were 
then extracted. The feature computation phase resulted in a table where 
class, and features values of the labelled pixels were stored. 

2.3.3. Feature selection and final classifier development (phase 3) 
In Phase 3, we selected a set of best suitable features to optimize 

processing time, and to reduce redundancy of highly correlated features. 
Decreasing the number of features typically increases the classifier 
generalisation capability, because it avoids overfitting (Ho, 1995). First, 
we randomly assigned 70% of images for training, and 30% of images for 
validation. Validating a classifier on a separate part of the dataset is a 
common technique used to evaluate the performance of the classifier 
and to avoid overfitting. For the feature selection, we used the training 
dataset and applied the “varSelSFFS” function from the “varSel” pack
age, which performs feature selection using the Sequential Forward 
Floating Selection search strategy and the Jeffries-Matusita distance 
(Bruzzone et al., 1995; Dalponte and Ørka, 2021; Pudil et al., 1994). The 
Jeffries-Matusita distance saturates at square root of two, when 
including a new feature does not increase class separation. Thus, the 
number of features to select was defined according to the saturation, as 
described in Richards and Jia (2006). In addition, we investigated the 
capability of RGB bands, vegetation indices, and texture metrics to 
distinguish classes. For this, we compared the accuracies of RF models 
trained on different subsets of features from the training dataset, 
including: i) features selected by SFFS, ii) RGB bands alone, iii) RGB 
bands combined with vegetation indices, iv) RGB bands combined with 
texture metrics, and v) all features. The accuracies were measured on the 
validation dataset. 

To perform RF classifications, we used the “randomForest” function 
of the “randomForest” package (Liaw and Wiener, 2002). The metric to 
calculate the accuracy of the RF classifiers was the mean F1 score of the 
six classes. The F1 score is derived from precision and recall metrics as 
described in eq. 1. The precision is intuitively the ability of the classifier 
not to label a sampled pixel as positive when it is negative, whereas the 
recall is the ability of the classifier to find all the positive sampled pixels. 
Precision and recall are described in eqs. 2 and 3, where tp is the number 
of true positives, tn is the number of true negatives, fp the number of 
false positives, and fn the number of false negatives. All the described 
metrics have their best score at 1 and their worst score at 0 (Congalton 
and Green, 2009). 

F1 =
2*(precision*recall)

precision + recall
(1)  

Table 1 
Image features tested for Phase 2. Pi,j is the probability of values i and j occurring 
in adjacent pixels in the original image within the window defining the neigh
bourhood. i and j are the labels of the columns and rows (respectively) of the co- 
occurrence matrixes. Because of the construction of the co-occurrence matrixes, i 
refers to the value of a target pixel, and j is the value of its immediate neighbour 
(Rook's case).  

Feature name Equation Reference 

Red Digital Number R  
Green Digital Number G  
Blue Digital Number B  
RGBVI (Red Green Blue Vegetation 

Index) 

( (
G2) − (R*B)

)

( (
G2

)
+ (R*B)

) Bendig et al. 
(2015) 

GLI (Green Leaf Index) (2*G − R − B)
(2*G + R + B) Louhaichi et al. 

(2001) 
VARI (Visible Atmospherically 

Resistant Index) 
(G − R)

(G + R − B) Gitelson et al. 
(2002) 

NGRDI (Normalised Green Red 
Difference Index) 

(G − R)
(G + R) Tucker (1979) 

Homogeneity ∑N− 1
i,j=0

Pi,j
(

1 + (i − j)2
) Haralick et al. 

(1973) 
Contrast ∑N− 1

i,j=0Pi,j(i − j)2 
Haralick et al. 
(1973) 

Dissimilarity ∑N− 1
i,j=0Pi,j ∣i − j∣ Haralick et al. 

(1973) 
Entropy ∑N− 1

i,j=0Pij
(
− lnPi,j

)

Haralick et al. 
(1973) 

Second Moment ∑N− 1
i,j=0P2

i,j Haralick et al. 
(1973) 

Mean μ =
∑N− 1

i,j=0i
(
Pi,j

)

Haralick et al. 
(1973) 

Variance σ2 =
∑N− 1

i,j=0Pi,j(1 − μ)2 Haralick et al. 
(1973)  
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precision =
tp

tp + fp
(2)  

recall =
tp

tp + fn
(3) 

We calculated the processing time for the calculation of all features 
and subsequent image classification for one image. For this, we used one 
core of an AMD Ryzen 73,700 U processor (CPU, 2300 MHz) with 16 GB 
RAM, and 500 GB solid-state drive storage device. The feature combi
nation providing the best trade-off between accuracy and processing 
time was selected for the RF final classifier compilation. 

2.3.4. Extraction of flower cover time series and phenological metrics 
(phase 4) 

Once the final RF classifier had been trained, the percentage of pixels 

in each class was computed for each image. For this, images were selected 
(see section 2.3.1), for each image the selected features were computed, 
and percentages of each class within each image were calculated using the 
RF classifier developed in subsection 2.3.3. We identified and removed 
outliers from the derived flower cover time series using the “tsclean” 
function of the “forecast” R package which is based on Friedman's 
SuperSmoother for non-seasonal series (Hyndman and Khandakar, 2008). 
Values were aggregated at daily temporal resolution by taking the 
arithmetic mean. A Local Polynomial Regression function was fitted to 
smooth the time series using the “loess” function of the “stats” package (R 
Core Team, 2023). Time series calculated from nine TBE plots were dis
played and analysed to show the potential applications and limitations of 
the proposed workflow. To obtain further insights into the reliability of 
FCTS, we conducted an analysis of flower cover of species that were not 
sown in each plot. For each image series (i.e., for each plot), we identified 
the predicted FCTS of unsown species, e.g., the predicted FCTS of L. 

Fig. 3. Identification of flowering phenological metrics based on time-lapse cameras. Panel a: Example of flower cover time series. Panel b: Flowering phenological 
metrics identification for the flower cover time series in panel a; onset was defined as the first day above 10% of the normalised cumulative sum of daily flower covers 
before the peak; end of the season was identified as the first day above 90% of the normalised cumulative sum of daily flower covers after the peak. Both approaches 
allow determination of onset and end of season when logistics or management prohibited recording the full flowering season (see main text). 
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vulgare in plots where L. vulgare was not sown. 
For each FCTS, onset, peak, and end of flowering were extracted. The 

peak was identified as the day of maximum in the FCTS, when the value 
was higher than the values before and after it. The onset of flowering 
was identified on the basis of the normalised cumulative sum of daily 
flower covers before the peak, whereas the end of flowering was iden
tified on the basis of the normalised cumulative sum of daily flower 
covers after the peak. This allowed the identification of flowering onset 
in FCTS when the end of the flowering was not observable (e.g., because 
of mowing) as well as the identification of the end of flowering in FCTS 
when the onset of flowering was not observable (e.g. image acquisition 
started later). The cumulative sums were min-max normalised (0%– 
100%), and the onset was defined as the first day when the normalised 
cumulative sum of daily flower cover exceeded 10% (Fig. 3). Moreover, 
the end of the season was identified as the first day when the normalised 
cumulative sum of daily flower cover after the peak exceeds 90%. The 
10% and 90% thresholds were chosen as a compromise between 
robustness against outliers and timely identification of changes. The 
onset of flowering was determined exclusively for FCTS exhibiting a low 
flower cover (< 1%) at the start of the observation period to avoid errors 
in plots for which the observation period started after the onset of 
flowering. Similarly, the end of flowering was defined exclusively for 
FCTS with a low flower cover (< 1%) at the end of the observation 
period to prevent the mischaracterization of the end of flowering in plots 
for which the observation period ended prior to the end of flowering. We 
expected a flower cover of unsown species above 0% due to wrongly 
classified pixels and therefore did not extract phenological metrics from 
time series for which the peak of the sown species was lower than 1% to 
avoid potential misclassification. The phenological metrics of single 
species that were calculated with this approach can easily be compared 
between treatments (i.e., multiple image time-series), and summary 
statistics can be derived from multiple plots, such as mean and standard 
deviation as well as further statistical analyses. 

3. Results 

With the proposed workflow we were able to successfully develop a 
RF model tailored to the recorded PC images, and thereby extract flower 
cover time-series and flowering phenology metrics of single species or 
groups of species from 89 image series. After the image selection based 
on light conditions in Phase 1 (see Fig. 2), there were on average more 
than three valid images per day per plot. The median number of images 

per plot in the period of interest was thereby reduced from 592 to 137 
images per plot, leaving in total 11′472 images out of the originally 
52′678. Tables and figures showing image availability before and after 
image selection are available in the supplementary material (Fig. S2, 
Table S1, Table S2). 

The dataset used for the RF classifiers training and validation con
sisted of 9073 pixels. The “Green vegetation” class was the most rep
resented, with 4281 pixels from 300 images. 1184 pixels were labelled 
as “Soil” from 139 images, 1570 pixels were labelled as “Graminoids 
flowers” from 115 images, 1160 as “L. vulgare flowers” from 65 images, 
506 as “K. arvensis flowers” from 36 images, and 372 as “R. acris flowers” 
from 40 images. The average number of labelled pixels per image was 
30. Labelling 9073 pixels in 300 images took around 300 min (labelled 
pixels highlighted on RGB images are available as supplementary ma
terials in the ETH Zurich repository). 

The distribution of pixel classes in the RGB space (Fig. 4) suggested a 
good spectral separability of some classes (e. g., “R. acris flowers” vs. 
“K. arvensis flowers”; “Green vegetation” vs “R. acris flowers”), whereas 
some other spectral signatures were not easily distinguishable in the 
RGB space (e.g., “Soil” vs. “Graminoids flowers” vs. “K. arvensis 
flowers”). The classifier developed using RGB bands resulted in an ac
curacy of 0.791 (Table 2). The addition of vegetation indices and texture 

Fig. 4. Spectral separability of the labelled pixels in the RGB space. Based on two digital numbers (R and B, R and G, B and G), the overlaps of the six classes are 
presented. R is the red band digital number, G is the green band digital number, B is the blue band digital number. Values were extracted from 300 pixels per class 
without downscaling. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Accuracy (mean F1 score of the six classes) and processing time (s image− 1) of 
random forest classifiers developed using different combinations of features 
(number of features in brackets). The set of eleven features selected using 
sequential floating forward selection (SFFS) gave a slightly lower accuracy 
compared to the model including all 28 features (0.888 vs. 0.905) but required 
less than half of the time for image processing (11 vs. 24 s). It was therefore 
chosen as the best feature set.   

RGB 
(3) 

RGB þ
vegetation 
indices 
(7) 

RGB þ
texture 
metrics 
(24) 

All 
features 
(28) 

Selected 
using SFFS 
(11) 

Mean F1 
score 0.791 0.800 0.883 0.905 0.888 

Processing 
time 
(s 
image− 1) 

4 4 23 24 11  
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metrics increased this accuracy up to 0.905. Sequential floating forward 
selection led to the identification of eleven features out of a total of 28 as 
the most informative (Phase 3). This reduction in feature number 
reduced the processing time from 24 s to 11 s per image, without 
remarkable changes in accuracy (mean F1 scores of the six classes were 
0.888 vs. 0.905). The eleven selected features were red, green and blue 
digital number, GLI, NGRDI, RGBVI, VARI, Second Moment computed 
on the red band, as well as Contrast, Second Moment, and Entropy 
computed on the blue band. 

The confusion matrix of the classification performed with the best RF 
classifiers gave insights into the quality of our proposed workflow 
(Table 3). All six classes had precisions above 0.78, indicating a low 
proportion of wrong pixels in the classified classes. “Graminoids 
flowers” were difficult to distinguish from “Soil”, and “K. arvensis 
flowers” were difficult to distinguish from “Graminoids flowers” (see 
also Fig. 4). The recall of “Graminoids flower” and “K. arvensis flowers” 
classes was therefore the lowest (0.79 and 0.76, respectively). 3.4% of 
the pixels labelled as “Soil” were classified as “Graminoids flower”. Even 
though this value appears to be low, it will result in a substantial 
overestimation of graminoids flowers, since a large number of the pixels 
in the images were classified as soil pixels at the start of the season. At 
the end of the season, conversely, “Graminoids flower” cover could be 
underestimated, since 9% of the pixels labelled as “Graminoids flower” 
were misclassified as soil. 

In Phase 4, we extracted time series of flower cover for all the plots, e. 
g., a plot where L. vulgare, R. acris, P. pratensis and G. pratense were sown 
(Fig. 5). In this example plot, we could observe that L. vulgare and 
R. acris were the dominant flowering species (left panel) and that clas
sified images showed a good match with RGB images. Moreover, 
L. vulgare flowered later than R. acris, reaching its peak five days before 
mowing date (May 25th). Graminoids flower cover showed positive 
values around 1.5% in the fitted time series, even though the flowers of 
P. pratensis, the only graminoid species sown, were not present in the 
RGB images (Fig. 5, right panel). This indicated that in this case the 
graminoids flower cover was overestimated. 

We applied the developed workflow and extracted time series for all 
plots. Here we show the result for nine exemplary plots, dominated by L. 
vulgare (Fig. 6 A, B, and C), by graminoids (Fig. 6 D, E, F), or by R. acris 
and K. arvensis (Fig. 6 G, H, I). L. vulgare and graminoid-dominated plots 
showed the highest maximum flower covers, whereas K. arvensis and 
R. acris showed lower flower covers. The peak day of flowering of each 
species differed among plots: graminoids started flowering more slowly 
compared to the other species, before developing faster than other 
species after mid-May. 

We further investigated the seasonal average of FCTS of species that 
were not sown in the plots (Figs. 7 and S3). Our findings showed that in 
four out of 89 plots, the flower cover of these unsown species exceeded 
10%, primarily due to the presence of pixels misclassified as graminoids 
flowers. However, the average flower cover for unsown species across all 
89 plots was relatively low with 2%. Furthermore, when the graminoids 

class was excluded, the error was almost negligible, being just 0.6%. In 
the experimental setting of the TBE, flowering started in some cases 
before the observation period had begun (i.e., before the spring weeding 
took place). These occurrences were identified (see Section 2.3.4) and 
the onset of flowering was not extracted for these cases. Similarly, in 
some cases flowering did not reach its peak before the end of the 
observation period (i.e., grassland mowing on May 30th) and conse
quently the end of flowering was not extracted. Peak day was extracted 
from 33 time-series, onset day from 16 time-series, and end of flowering 
from eight time-series. 

4. Discussion 

We propose a workflow to efficiently track flowering phenology of 
individual plant species or groups of plant species in grasslands using 
time-lapse cameras, which are widely applied in ecological studies. 
Therefore, sensor availability and installation are no limiting factors for 
ecologists who can use the proposed workflow for various applications 
(Brown et al., 2016; see subsection 4.1). Specifically, we propose an 
automated selection of vegetation indices and texture metric features to 
enhance the accuracy and processing time of a random forest classifier. 
The workflow can easily be replicated following FAIR principles and can 
be applied to new case studies. The codes have been developed in the 
free software R (R Core Team, 2023, GNU General Public License), and a 
tutorial is provided (https://github.com/andreattad/Flower_covers_phe 
nocams). 

4.1. Possible applications of flower cover extraction workflow 

Multiple opportunities to apply the developed procedure in basic and 
applied ecological research exist. Fields of application span from climate 
change studies over ecosystem functioning to plant community ecology 
and biodiversity change research, with both experimental as well as 
observational settings. 

Application is possible in biodiversity research such as biodiversity- 
ecosystem functioning experiments. The experimental site where the 
current study was conducted was designed to investigate species in
teractions and to mechanistically understand biodiversity-ecosystem 
functioning relationships (Ebeling et al., 2014). However, manual as
sessments of flowering phenology are very labour-intensive and cannot 
be carried out regularly. In contrast, time-lapse cameras with the pro
posed processing workflow can be applied to investigate if and how 
individual plant species change their flowering phenology. The pro
posed workflow opens new possibilities in the study of flowering 
phenology of individual species in response to a wide range of biotic and 
abiotic drivers, for example to assess the effects of increased carbon 
dioxide concentrations and higher temperatures, heat and drought stress 
on reproductive phenology (Collins et al., 2021; Dorji et al., 2020; 
Fernández-Pascual et al., 2019). Pollinator ecology is another research 
field that could benefit strongly from the availability of the proposed 

Table 3 
Confusion matrix of the final random forest classifier on the validation dataset used in Phase 3. The mean F1 Score of the six classes was 0.888, the mean recall was 
0.888, and the mean precision was 0.888.    

Reference pixel class     

K. arvensis flowers L. vulgare flowers Graminoids 
flowers 

R. acris flowers Green 
vegetation 

Soil Total Precision 

Predicted pixel class 

K. arvensis flowers 117 21 12 0 0 0 150 0.78 
L. vulgare flowers 6 363 21 1 1 0 392 0.93 
Graminoids 
flowers 

28 11 334 0 12 14 399 0.84 

R. acris flowers 0 2 1 163 2 0 168 0.97 
Green vegetation 2 4 16 5 1157 7 1191 0.97 
Soil 0 1 38 0 34 394 467 0.84  
Total 153 402 422 169 1206 415 2767   
Recall 0.76 0.90 0.79 0.96 0.96 0.95   
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workflow, since plant-pollinator interactions are strongly time-sensitive 
(Byers, 2017; Dicks et al., 2021; Freimuth et al., 2022; Vasiliev and 
Greenwood, 2021; Vázquez et al., 2023). 

Grasslands do not only provide animal feed, pollen and nectar, but 
they also provide cultural services, which are relevant for tourism, 
recreation, mental and physical human health, aesthetically appreci
ated, inspire art as well as design, and are considered a typical feature of 
cultural landscape in many world regions (Richter et al., 2021). Animal 
feed production could also benefit from the proposed workflow as 
grassland management requires accurate data on plant phenology in 
near real time as a predictor of forage quality. Flowering phenology is 
crucial also in plant breeding (Arzani et al., 2004; Jung and Müller, 
2009). 

4.2. Challenges in flower detection and limitations of the proposed 
workflow 

Classifier development for PC image classification is challenging 
since light conditions vary substantially during the recording times, and 
some classes are likely to be strongly underrepresented, for example 
flowers of rare species. Here we propose an efficient labelling phase with 
analyses of image patches from many images, allowing the representa
tion of also rare species in the labelled sample. We aggregate all gra
minoids flowers in a single pixel class, since taxonomically and 
phenotypically close plant species are often too similar to be distin
guished reliably, especially in the case of sedge, rush and grass species. 
We expect that a similar aggregation of different species in one class 
might also be necessary in future applications in biodiversity-rich 
grasslands that include many closely-related species. 

Not all flower species can be spectrally easily distinguished. For 
example, young K. arvensis head colours are very similar to green- 
greyish graminoids flowers. On the other hand, D. glomerata mature 
flowerheads may be red- to purple‑tinged, very similar to K. arvensis 
flowers. Their classes were described by very similar feature charac
teristics, which can result in lower classification accuracy (cf. Table 3 
and Fig. 4). Following these observations, we expect that with increasing 
complexity of the study system in terms of plant diversity, maintaining 

the accuracy of the method will become more challenging, even though 
texture metrics considerably increased the separability of different 
flower structures in our study. But in such very rich grasslands, plant 
biodiversity is then often described with plant functional types, e.g., 
grasses, forbs and legumes, instead of plant species, and their flower 
separation using time-lapse images could follow the presented, albeit 
further developed approach. However, low-diversity grasslands are 
common both in nature and as a research infrastructure, where sown 
swards are studied in field or pot experiments, typically to investigate 
the role of biodiversity and environmental factors on ecosystem func
tioning (Jentsch et al., 2009; Roscher et al., 2005; Wolf et al., 2017). 

Phenological metrics that are automatically extracted through the 
proposed method can be related to metrics identified with traditional 
field methods. Field observation of plant flowering phenology is usually 
repeated at daily to weekly intervals and thus describes plant develop
ment at various degrees of detail. Simple metrics such as the first and last 
day with flowering individuals in the plots, or the day with the highest 
number of flowering individuals per plot are frequently used in 
ecological studies dealing with the effect of global change on plant 
phenology (Cleland et al., 2006; Dorji et al., 2020; Wolf et al., 2017). 
They are conceptually similar to the metrics proposed here. However, 
very detailed scales for the description of plant development such as the 
BBCH scale (Meier et al., 2009) with >50 distinct plant development 
stages, separately determined for groups of species or single species, can 
be more difficult to relate to the metrics proposed here. The BBCH scale 
is not based on flower count or flower cover, but on the description of 
developmental characteristics, which currently cannot be derived from 
images through the proposed automated workflow. Thus, future 
research should attempt to implement pathways to measure more 
traditional plant phenology metrics that are currently not assessed via 
automated remote sensing techniques. 

When investigating plots with highest average seasonal flower cover 
of unsown species (i.e., the nine plots shown in Fig. S3), we found these 
had higher soil cover compared to the overall seasonal average (25% vs. 
10%). As already reported in the confusion matrix in Table 3, some soil 
pixels were misclassified as flowers, and the number of pixels in the 
flower classes were therefore overestimated. The image dataset we 

Fig. 5. Left panel: Time series of flower cover extracted from images from an example plot where L. vulgare, R. acris, P. pratensis and G. pratense were growing. Time 
series were fitted using Local Polynomial Regression, and 0.95 confidence intervals are displayed. Right panel: RGB and classified images acquired on the same 
example plot on May 5th, May 19th and May 26th, 2014 are presented. Green and brown pixels represent the “Green vegetation” and “Soil” classes, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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analysed in the current study captured an area of 3.5 m2, which resulted 
in a pixel size (ground sampling distance) lower than ¼ of the flower 
size. This ¼ is the suggested minimum ratio between pixel and object 
dimension for accurate classification (Hengl, 2006). PC images are 
usually acquired capturing larger areas to describe vegetation patches at 
landscape scale (Wingate et al., 2015). Thus, for the study design of 
future studies on the monitoring of reproductive phenology, an opti
mised field of view should be chosen, considering flowers size and PC 
resolution. For example, a camera pointing at an angle of 60◦ from 
horizontal, the field of view of 49.5◦ and an optical resolution of 1280 ×
1040 pixels should be installed at a maximum height of 1.5 m to classify 
flowers of size 5 mm and at a maximum height of 3 m to classify flowers 
of size 10 mm. To ensure the observation of the onset of flowering, it is 
crucial to establish an experimental setting for phenological observation 
that spans the entire growing season, whenever possible. However, in 
this study, this was not always possible as the observation period began 
after spring weeding of the experiment, preventing the observation of 
the onset of flowering in some cases. 

4.3. Paths for further investigation 

New technologies and methodologies are opening new possibilities 
in grassland phenological studies. Active learning is a promising meth
odology for balanced sample collection with reduced labelling effort, 
and was already proposed, for example, for the reduction of sampling 

effort in forestry inventories (Malek et al., 2019; Persello et al., 2014). 
The use of active learning could facilitate the labelling phase in biodi
versity rich grasslands. 

Computer vision (CV) techniques are increasingly being used in 
ecological studies and have recently been applied to classify grassland 
images acquired from drones as well as PC images of arctic vegetation 
(Gallmann et al., 2022; Mann et al., 2022; Wäldchen and Mäder, 2017). 
However, to our knowledge, no study about grassland flowering 
phenology using CV techniques to classify PC imagery has been carried 
out so far. In this study, we applied a pixel approach rather than CV 
techniques, and quantified flower cover rather than flower count as 
abundance metric, because CV techniques require a much larger label
ling effort and computational capacity, and might not be suited for 
graminoids flowers and occluded or overlapping flowers. Furthermore, 
we favoured pixel classification over CV techniques, because the former 
requires highly specialised knowledge, which is not always available to 
both biologists and ecologists (Wäldchen and Mäder, 2018). Flower 
cover is an informative metric also because it can better capture the 
effect of flowering on greenness, which is widely used to describe 
vegetation status (Shen et al., 2010). Nevertheless, the increasing 
availability of pre-trained models that can be fine-tuned, and the recent 
higher accessibility of these techniques suggest that, in some cases, they 
could be applied to estimate species flower cover in grassland mixtures 
(Kirillov et al., 2023; Mann et al., 2022; Wäldchen and Mäder, 2018). 
Thus, the availability of the proposed workflow opens up new 

Fig. 6. Time series of flower cover extracted from images acquired in nine experimental plots in spring 2014 (before first mowing). Time series are fitted using Local 
Polynomial Regression. Confidence intervals (0.95) and sown species names are given in each panel. 
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possibilities in many ecological research fields, including the investi
gation of species richness effects on individual species flowering 
phenology. 
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Abstract 

Global warming is affecting both the phenology and productivity of plant ecosystems, with big 

implications for carbon cycling on land. However, we continue to lack a clear picture of how 

plant phenological trends are shifting in climatically heterogenous mountain landscapes, and 

how this is affecting ecosystem productivity. Using satellite data, our study reveals substantial 

differences in the phenological response among vegetation types and across elevations in the 

European mountains from 2001 to 2021. These divergent trends led to a more uniform spring 

phenology across elevations in natural grasslands, while broadleaved forests exhibited the 
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opposite trend. Despite global warming increasing both the growing season length and gross 

primary productivity, we only found a weak correlation between the two (R2<0.02), indicating 

that phenology has not been the primary factor limiting productivity over the past two decades. 

One-Sentence Summary 

Satellite data uncovers surprising elevation-dependent patterns in plant phenology, and 

implications for carbon cycling. 

Introduction 

Global warming is increasing the length of the potential thermal growing season in temperature 

limited ecosystems, with big implications for vegetation phenology and carbon cycling1. 

However, while in some cases extending the growing season length will result in a higher net 

carbon uptake in temperate, boreal, and alpine ecosystems2–5 , there is also evidence to the 

contrary6–8, underscoring the complexity of how phenological responses to climate change 

ultimately influence carbon cycling 9–11. Identifying spatial and temporal phenological trends 

and better understanding climate-phenology feedbacks is urgent to forecast changes in the 

climate system. 

The actual green season start advance lagged three times behind the advance of the potential 

thermal season start in the last two decades1,12–14. This discrepancy has been attributed to the 

lack of the necessary winter chilling requirement for leaf unfolding in a warmer climate1 and to 

the photoperiod control on spring phenology13,15. The mismatch between the actual and the 

potential thermal autumn phenology were directly related to productivity-phenology 

feedbacks16–20. Recent findings suggested that the increased ecosystem productivity can 

potentially limit the current delaying trend in autumn leaf senescence because of the limited 

availability of “carbon sink” tissues, i.e., the impossibility to stock the additional products of 

photosynthesis in the last part of the season19,20. However, it was also observed that 

interannual trends do not always match decadal trends, because the acclimation of phenology 

has enabled plants to transcend premature carbon sink saturation over the course of several 

decades21. 

In mountainous regions, the combination of elevation and regional climate plays a crucial role 

in determining the length of the potential thermal growing season, and this interaction occurs 

across very small spatial scales. The complex topography, characterized by significant 

variations in elevation over short distances, results in a large spatial heterogeneity of plant 

phenology. Previous studies carried out in the Alps showed that the factors that regulate plant 

phenology vary in importance at different elevations. At high elevations correlations between 
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snow cover duration and the start of the growing season were more pronounced22, at mid to 

low elevation the start of the growing season was more influenced by spring temperatures23,24.  

Since the various climatic variables do not vary uniformly between each other nor uniformly in 

space, it is reasonable to anticipate a phenological response that is dependent on elevation. 

However, the typical spatial resolution adopted in most recent phenological studies9,25 cannot 

provide a clear understanding of processes happening along elevational gradients in areas 

with complex topography and of the different phenological responses of vegetation types in 

fragmented landscapes26,27. While field observations can offer valuable insights into 

phenological trends across different elevations28, satellite observations at a relatively fine 

scale must be used to obtain consistent, long-term data on phenology and productivity over 

large regions. However, elevational patterns in phenology and the coupling between 

phenology and productivity across major mountain chains remain unclear, hindering our 

understanding of the future functioning of mountain vegetation in a warming world. 

Here, we want to contribute to fill this knowledge gap by verifying: i) the entity and variability 

of the phenological trends across elevational gradients, mountain regions and vegetation 

types; ii) the uniformization of phenology along the elevational gradient28; iii) the concurrent 

increase of Growing Season Length (GSL) and Gross Primary Productivity (GPP). To test the 

aforementioned hypothesis we i) selected four of the biggest mountain regions in Europe: the 

Alps, the Carpathians, the Nordic Mountains, and the Pyrenees as study sites to explore 

patterns along elevation gradients; ii) removed the potential noise caused by mixed pixels by 

selecting areas with permanent land-cover in the last two; iii) compared two widely distributed 

vegetation types: natural grasslands and broadleaved forests; and iv) identified phenological 

and productivity trends using MODIS imagery at 500 m resolution.  

Trends in phenometrics 

Compared to previous studies we investigated phenological trends at finer spatial resolution 

(500 m) along elevational gradients in fragmented landscapes, minimizing the mixed-pixel 

challenge of moderate-resolution satellite imagery, better accounting for vegetation type 

change and investigating a more recent period (2001-2021) (Materials and methods are 

available as supplementary materials).The pixel dataset consisted of 142,128 pixels, whose 

frequency distribution in geographic regions, vegetation type and Mean Annual Temperature 

(MAT) is displayed in Fig. 2b. Our study revealed (Fig. 1) a bigger shift in Mid Greendown 

(MGDO) rather than in the Mid Greenup (MGUP). We observed a much smaller advance in 

MGUP in forests compared to previous findings1 (0.06 d y-1 during 2001-2021 vs. 0.31 d y-1 

during 1980-2016 in central Europe), but a larger delay in MGDO (0.19 d y-1 vs -0.03 d y-1, 

Fig. S1). The average regional advance of MGUP showed different magnitude in grasslands 
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compared to forests, but not consistently across geographic areas: on the Alps MGUP 

advanced more in forests than in grasslands (0.11 d y-1 vs 0.07 d y-1), whereas on the 

Carpathians and on the Pyrenees MGUP advanced more in grasslands than in forests (0.26 

d y-1 vs 0.07 d y-1 and 0.14 d y-1 vs 0.09 d y-1, respectively). Nordic Mountain forests showed 

no MGUP trend on average, but we detected clear spatial patterns. The northern-western 

region showed an intense delay of MGUP (up to >0.40 d y-1), whereas the southern-eastern 

region showed an intense advance of MGUP (up to >0.30 d y-1) (Fig. 1). Other hotspots of 

forest MGUP advance are the outer Alps, western Carpathians, and eastern Pyrenees. 

Grassland MGUP was notably advanced in the central-eastern Pyrenees whereas it was 

delayed in western Pyrenees. We observed the largest delays in MGDO on the Alps 

(grasslands 0.33 d y-1 and forests 0.24 d y-1), on the Pyrenees (grasslands 0.32 d y-1 and 

forests 0.19 d y-1), and on the Carpathian forests (0.24 d y-1). We observed weaker MGDO 

delays in the Nordic Mountains forests (0.07 d y-1). In the Carpathian grasslands we observed 

an advance in MGDO (-0.15 d y-1). The clearest spatial pattern in MGDO is in the Nordic 

Mountains, where in north-eastern and south-western areas MGDO showed an advance and 

in the other areas MGDO showed a delay (Fig. S1). Only a small proportion of pixels showed 

significant trends in phenometrics (p-value <0.1), with percentages of 4%, 25%, and 25% 

observed in MGUP, MGDO, and GSL, respectively (Fig S3). 

Climatic trends poorly explained the spatial variability of phenological trends (Fig. S4, S5, S6). 

We observed the clearest relationship in Nordic Mountains, where trends in pre-season 

temperatures and in pre-season precipitations are related to trends in MGUP (Fig. 1, S4a, 

S4c, S6; Pearson correlation coefficient= 0.56, and 0.4). The R2 of multiple linear regression 

models estimating phenological trends based on climatic trends are consequently low, both at 

regional (R2<0.42) and at continental scale (R2<0.17) (Fig. S6). 
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Fig. 1. Spatial distribution of trends in Mid Greenup in broadleaved forests and natural grasslands during 

2001-2021 in the Alps, in the Carpathians, in the Nordic Mountains, and in the Pyrenees. Frequency 

distributions of trends in Mid Greenup, Mid Greendown and Growing Season Length are displayed in 

the small panels. All trends were estimated using the Theil-Sen estimator. Averages of trends are 

reported in the small panels as numbers and as vertical dashed lines in frequency distributions. Spatial 

Distribution of trends in MGDO and in GSL are available as Fig. S1 and Fig. S2, respectively. 

Abbreviations are as follows: MGUP = Mid Greenup; MGDO = Mid Greendown; GSL = Growing Season 

Length. 
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Elevational patterns in the phenological response 

Our findings highlighted phenological patterns across elevations, which are not usually 

considered when phenological trends are described at 0.5° spatial resolution. The results 

obtained both under the approach followed by Vitasse et al. 28 and the linear mixed model 

analysis challenged previous findings. We found no evidence of more uniform spring 

phenology across elevations in forests in European mountains. Following the first approach, 

we observed an increasing trend in spring Elevation induced Phenological Shift (EPS) during 

2001-2021 in the Alpine forests (range: 12-24 d 1000 m-1) i.e., MGUP was advanced at low 

elevation and was delayed at high elevation, whereas Vitasse et al.28 reported a decreasing 

EPS between 1960 and 2016 in Switzerland based on field observations (range: 22-34 d 1000 

m-1) (Fig. S7). The only decreasing spring EPS was in the Nordic Mountains where higher 

elevations are in the southern areas which experienced an advance in MGUP (Fig. 1). In this 

case, we attributed the observed EPS average trend to a spatial pattern rather than to an 

elevational pattern. Grassland spring EPS showed a decreasing trend on the Carpathians, 

i.e., MGUP advance was larger at higher elevations, but we identified no significant trend on 

the Alps and on the Pyrenees. Autumn phenology did not show clear variability across 

elevational (MAT) gradients (Fig. 2a), resulting in autumn EPS which are usually negative (i.e., 

earlier MGDO at higher elevations), but close to zero (Fig. S7). The only significant trend in 

autumn EPS was in Carpathian forests, where autumn phenology became more uniform 

across elevational gradients during 2001-2021 because of a larger MGDO delay at higher 

elevations. 

The second approach we developed gave a better nuance of elevational pattern in 

phenological change (Tab. S1). In particular, the use of MAT instead of Elevation allowed the 

comparison of regions and sites at different latitudes. Regarding MGUP, MAT*Year interaction 

indicated a significant decrease in the uniformity of spring phenology across elevations in all 

forests except Nordic Mountains, because of MGUP advances at low elevations and MGUP 

delays at high elevations. On the contrary, we observed a more uniform spring phenology 

across elevations in natural grasslands, because of large advances at high elevations +and 

of delays at low elevations. Regarding MGDO, MAT*Year interaction indicated a more uniform 

autumn phenology across elevations, significant in all regions and vegetations but Pyrenean 

forests. The coefficient estimates for MAT in the MGUP models consistently showed negative 

values, indicating that MGUP occurred later in colder areas compared to warmer ones. 

Conversely, MAT control on autumn phenology was less clear and consistent. Grassland 

MGDO in the Alps and in the Carpathians occurred earlier in warmer areas compared to colder 

ones. 
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In some cases, we observed contrasting phenology trends at similar elevations between 

forests and grasslands (Fig 2.). We observed the most pronounced divergence in MGUP at 

low elevations in the Pyrenees (9 ≤ MAT ≤ 11), and the most pronounced divergence in MGDO 

at mid elevations in the Carpathians (4 ≤ MAT ≤ 7). As shown in Fig. S8 and Fig. S9, these 

diverging trends coexisted in adjacent areas. 

 

Fig. 2. Changes in broadleaved forest and natural grassland phenology during 2001-2021 in the Alps, 

Carpathians, Nordic Mountains, and Pyrenees along the temperature gradient. Panel a: Estimated 

change of Mid Greenup and of Mid Greendown from 2001 to 2021. Mid Greenup in 2001 and 2021 

were estimated considering the average Mid Greenup and average trend in Mid Greenup in each class 

(i.e., after grouping based on region, vegetation type, rounded mean annual temperature). The average 

Mid Greenup was attributed to the central year of the observation period, values in 2001 (and 2021) 

were computed by subtracting (or adding) to it the average trend multiplied by ten (difference between 

central year and initial and final year). Mid Greendown estimates were computed in the same way. The 
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most evident patterns are that spring phenology is becoming less uniform along the elevational gradient 

in the Alpine, Carpathian and Pyrenean broadleaved forests, whereas it is becoming more uniform in 

natural grasslands. Autumn phenology is becoming more uniform, especially in Alpine and Carpathian 

broadleaved forests. Only classes with more than 100 observations were displayed. Panel b: Frequency 

distribution of pixels in each region and vegetation type across the temperature gradient. 

Temporal decoupling of growing season length and 

gross primary productivity 

Spatial and temporal GPP-GSL coupling showed different patterns. The two variables were 

highly spatially correlated both at regional and at continental scale: vegetation with longer 

growing seasons were associated to higher ecosystem productivity (Fig. 3a, 3c). Conversely, 

the relationships between temporal trends in GPP and temporal trends in GSL were much 

weaker (Fig. 3b, 3d). Both GSL and GPP have increased indeed during 2001-2021, but the 

extension of GSL explained <2% of the variance in the increase in GPP. The divergence of 

trends in GSL and trends in GPP showed clear spatial patterns (Fig. 4): in the western 

Carpathians and in the central area of the Nordic Mountains the extension in GSL was not 

followed by an increase in GPP, whereas in the Pyrenees and western Alps there was not 

large GSL extensions, but large increases in GPP occurred. Separate maps for GSL and GPP 

are available as Fig. S2 and Fig. S10, respectively. 
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Fig. 3. Spatial and temporal coupling of Growing Season Length (GSL) and Gross Primary 

Productivity (GPP) at regional and continental scale. Spatial coupling was much stronger than 

temporal coupling. All trends were significant at probability level <0.001. 
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Fig. 4. Spatial distribution of differences in Percentile Ranks (PRs) of Gross Primary Productivity (GPP) 

and of Growing Season Length (GSL) trends. Values close to +1 indicate a large increase in GPP and 

a decrease in GSL, intermediate values indicate that GPP and GSL have the same direction and 

magnitude, and values close to -1 indicate a decrease in GPP and a large increase in GSL. The small 

panels show the trend value corresponding to each PR. Horizontal dashed lines indicate the mean 

trend. 
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Discussion 

We observed clear spatial and elevational patterns in vegetation phenology trends in the 

European mountains, which challenge previous findings in literature. Forests MGUP showed 

a less uniform spring phenology during 2001-2021 because of advances at low elevations, no 

changes at mid-elevations and delays at high elevations. Despite GSL and GPP both showed 

positive temporal trends, the portion of variation in GPP increase explained by GSL extension 

is <2%, contrasting with the previously observed temporal coupling2,3,5. 

The smaller advance we observed at the beginning of the season compared to previous 

studies1 may be attributed to the control of photoperiod, which limits further advances of spring 

phenology, and to warmer winter temperatures, which make it harder to meet chilling 

requirements for leaf unfolding1,13,15. A decrease in phenological sensitivity to warming has 

already been observed in widely distributed species in the European mountains broadleaved 

forests13. Regarding autumn phenology, our study revealed large delays in MGDO, which 

contradicts previous research indicating no trend during 1998-201429 and earlier leaf 

senescence in response to higher productivity20. However, our findings are consistent with 

numerous free-air CO2 enrichment experiments, which have also demonstrated delayed 

autumn phenology in response to increased CO2 levels and experimental warming 30. 

Additionally, remote sensing data from 1985 to 2015 have shown similar autumn trends31, and 

recent studies have provided evidence that plants can both extend their growing season and 

enhance productivity through acclimation21. 

The finer spatial resolution of our study compared to previous studies allowed us to assess 

the variability of phenological trends across space and to explore the nuances of their 

elevational patterns27. Differently from previous findings28, we report a less uniform spring 

phenology across the elevational gradient in broadleaved forests. This pattern was consistent 

across sites and was determined by advances in spring phenology at low elevation and by 

delays at high elevation. Elevational patterns in grassland and broadleaved forest phenology 

were opposite. Grassland spring phenology was delayed at low elevations and was advanced 

at high elevations, leading to a more uniform grassland spring phenology across elevations. 

Elevational patterns in grassland phenology trends have rarely been explored, but a few 

studies studied them in the European Alps23,32. Even though the trends we observed are much 

smaller in magnitude (MGUP trend ≈ 0.1 d y-1 vs. ≈ 1 d y-1), our findings are consistent with 

the reported larger advance at mid-high elevations compared to low elevations23. The 

divergent phenological trends observed in broadleaved forests and grasslands at similar 

elevations raise inquiries regarding the distinct physiological mechanisms that govern plant 

phenology, thereby suggesting paths for additional research. Moreover, these diverging 

phenological responses to the changing climate are increasingly recognized as major forces 
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structuring natural communities through the alteration of species interactions33. Regarding 

autumn phenology, our findings confirm that MAT poorly explained the spatial variation in 

MGDO34. In fact, autumn phenology is controlled by many interacting factors in addition to 

temperatures, including photoperiod, spring and summer photosynthesis20, and water 

availability35. We observed a more pronounced MGDO delay at high elevations compared to 

low elevations, leading to a more uniform autumn phenology across elevations especially in 

forests (Fig. 2, Alps, Carpathians). We hypothesised that spring and summer droughts, along 

with heatwaves, exerted a more pronounced influence in low elevation vegetations, where a 

further delay of autumn phenology was therefore constrained35,36. 

Climatic trends poorly explained phenological trends, suggesting that there is not a single 

regionally or continentally valid major climatic driver of changes in phenology. Moreover, the 

low prediction capability of the climate variables can be attributed to the large deviation 

between climate variables estimated by downscaling coarse resolution global products and 

the actual microclimate near buds37. 

The observed temporal decoupling of GSL and GPP suggests a weakening of the ‘warmer 

spring–bigger sink’ mechanism38. In the observed area and period, growing season length 

was not the main limiting factor to the increase in productivity. Other key factors constraining 

the tree growth following the extension of the growing season could be disturbances, reduced 

water supply and shortened trees′ lifespan39–42. Given these findings, it is crucial for 

biogeochemical models to incorporate this decoupling when simulating the potential carbon 

uptake of terrestrial ecosystems in future climate change scenarios.  
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Supplementary Materials 

This section includes: 

• Materials and Methods 

• Figs. S1 to S10 

• Table S1 
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Materials and methods 

All the workflow is fully reproducible, and we provide a structured document reporting and 

commenting in detail all the codes used for this study at the link 

https://drive.google.com/file/d/1oSCTsJ-

PqcEi1UV6lM11bnAMiXgW_IlZ/view?usp=drive_link. We accessed a set of datasets 

including phenological, climatic, productivity and topographical information through the Google 

Earth Engine Data Catalog (https://developers.google.com/earth-engine/datasets). We 

considered the Alps, the Carpathians, the Pyrenees, and the Nordic Mountains as delineated 

in the European Mountain Areas dataset (European Environment Agency, 2008).  

Phenology, productivity, terrain, and vegetation datasets 

We obtained phenological dates from the Terra and Aqua combined Moderate Resolution 

Imaging Spectroradiometer Land Cover Dynamics product Version 6.1 at 500m resolution, 

which in previous studies showed a good agreement with phenometrics derived from eddy 

covariance data21,43,44. We chose Mid Greenup (MGUP) and Mid Greendown (MGDO) as 

phenometrics, since Greenup and Dormancy metrics are more prone to errors in high 

elevation areas21,44. We computed Growing Season Length (GSL) as the difference between 

MGDO and MGUP. We selected only pixels with all phenological observations from 2001 to 

2021 flagged as «best» quality or «good» quality according to the quality assurance scores 

bands. We derived Yearly Gross Primary Productivity (GPP) from the MODIS Terra Net 

Primary Production Gap-Filled Yearly L4 Global 500 m, which has proved to reliably quantify 

spatiotemporal variability in GPP45. Moreover, for each selected pixel we extracted Elevation 

from the Copernicus Digital Elevation Model GLO-30 dataset. All these datasets were rescaled 

to the spatial resolution of 500 m and reprojected to ETRS89-LAEA Europe coordinate 

reference system46. We investigated two widely distributed vegetation types: “natural 

grasslands” and “broadleaved forests”, as defined in the Corine Land Cover taxonomy47,48. 

“Natural grasslands” class excludes “pastures, meadows and other permanent grasslands 

under agricultural use”, but includes grasslands affected by “sporadic extensive grazing with 

low livestock unit/ha”48. Since vegetation index time series may be affected by biomass 

removal through grazing and not only by phenological development, grassland MGDO 

estimates should be considered with caution. To calculate rescaled pixels at a resolution of 

500 m while filtering areas at the boundaries between different vegetation types, we initially 

chose pixels with consistent classification across the four available Corine Land Cover 

products (2000, 2006, 2012, 2018). Subsequently, we rescaled the Corine Land Cover pixels, 

originally at a resolution of 100 m, to a resolution of 500 m. We then focused solely on the 

rescaled pixels where at least 90% of the area was characterized by the same vegetation type. 
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Climate datasets 

We used ERA5-Land monthly aggregated ECMWF Climate Reanalysis product49, extracting 

trends in the mean temperatures of the pre-season, and of the growing season. We defined 

the pre-season as the average month of Mid Greenup for each pixel during the 21-year 

investigation, as well as the two preceding months. We defined the growing season as the 

months encompassing both the average month of Mid Greenup and Mid Greendown for each 

pixel during the 21-year investigation period. To match phenology spatial resolution, we 

downscaled temperatures from 11132 m spatial resolution to 500 m by applying an approach 

based on lapse rate14: first, for each temperature map and for each region, we computed the 

lapse rate. Then, we adjusted the ERA5 temperatures by adding the product of the lapse rate 

and the difference between the elevation of each pixel at 500 m resolution and the mean 

elevation of the overlapping ERA5 pixel. We chose Mean Annual Temperature (MAT) during 

2001-2021 as a proxy variable to investigate phenological patterns across elevational 

gradients, since it is more informative than elevation when comparing climates across different 

regions and latitudes, and phenological variation is well explained by annual mean 

temperature34. 

Temporal trends 

We estimated trends using the Theil-Sen estimator, a nonparametric method not affected by 

outliers and therefore frequently used in phenological studies50–52. We evaluated the 

significance of the trends by applying the Mann-Kendall nonparametric test53,54. We used the 

“sens.slope” function of the “trends” R package to estimate trends and significance. We 

displayed and inspected the spatial distributions of the trends, and identified local hotspots 

and coldspots. To explore the role of climatic trends in shaping phenological response, we 

computed the Pearson correlation coefficients between each phenometric and a set of climatic 

variables including trend of precipitations and temperature of the pre-season and of the 

growing season. Lastly, we fitted multiple linear regression models to estimate the amount of 

variability in phenological changes which can be explained by climatic trends at regional scale 

and at continental scale. 

Elevational patterns in the phenological response 

To assess the uniformization of spring phenology across elevations, we first applied the same 

analysis performed by Vitasse et al.28, then we further analysed the patterns using mixed effect 

models. Under both approaches we developed a separate model for each region and 

vegetation type. The Elevation Induced Phenological Shift (EPS), expressed as d 1000 m-1, 

was determined for each year by calculating the slope of the linear regression between MGUP 

and Elevation. Once we computed EPSs, we identified temporal trends by fitting linear 
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regressions between EPS and Year. We analysed autumn EPSs following the same 

procedure. Regarding the second approach, we defined mixed models including MGUP (or 

MGDO) as a response variable, Year, MAT and their interaction as fixed effect, and pixel ID 

as a random intercept effect. The coefficient of the interaction between Year and MAT 

therefore indicates the increase of effectiveness of Year on MGUP for a one unit increase in 

MAT. We used the “lmer” function of the “lme4” R package to fit the mixed effect models55, 

and the “r.squared.GLMM” function of the “MuMIn” R package to compute the conditional R2, 

which gives the amount of variance explained by both fixed and random factors 56. 

Temporal coupling of growing season length and gross primary 

productivity 

We first assessed the spatial coupling of GSL and GPP by fitting a linear regression between 

mean GSL during 2001-2021 in each pixel and mean GPP during 2001-2021 in each pixel. 

Then, we evaluated the existence of temporal coupling by regressing trends in GSL during 

2001-2021 and trends in GPP during 2001-2021. We estimated trends with Theil-Sen 

estimator. We investigated the relationships both at regional and at continental scale (i.e., 

analysing the dataset without separating into the four regions under investigation). To 

investigate spatial patterns in GSL-GPP coupling we analysed the difference in percentile 

ranks (PRs) computed for GPP and for GSL. First, we computed the PR of each value i.e., the 

proportion of values in the input vector that are less than or equal to that value, for GPP and 

GSL using the “ecdf” function of the “stats” package in R57. Then we calculated the difference 

between PRGPP and the PRGSL. Values close to +1 indicate a large increase in GPP and a 

decrease in GSL, intermediate values indicate that GPP and GSL trends have the same 

direction and magnitude, and values close to -1 indicate a decrease in GPP and a large 

increase in GSL. 
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Supplementary figures 

 
Fig. S1. Spatial distribution of trends in Mid Greendown in broadleaved forests and natural grasslands 

during 2001-2021 in the Alps, in the Carpathians, in the Nordic Mountains, and in the Pyrenees. 

Trends were estimated using the Theil-Sen estimator. 
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Fig. S2. Spatial distribution of trends in Growing Season length in broadleaved forests and natural 

grasslands during 2001-2021 in the Alps, in the Carpathians, in the Nordic Mountains, and in the 

Pyrenees. Trends were estimated using the Theil-Sen estimator. 
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Fig. S3. Statistical significance and direction of phenological trends in broadleaved forests and natural 

grasslands during 2001-2021 in the Alps, in the Carpathians, in the Nordic Mountains, and in the 

Pyrenees. Trends were estimated using the Theil-Sen estimator. Significance was evaluated by 

applying the Mann-Kendall nonparametric test, considering statistically significant probability value 

<0.1. Abbreviations are as follows: MGUP = Mid Greenup; GSL = Growing Season Length, MGDO = 

Mid Greendown.  
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Fig. S4. Spatial distribution of trends in temperatures and precipitations during 2001-2021 in the Alps, 

in the Carpathians, in the Nordic Mountains, and in the Pyrenees. Trends were estimated using the 

Theil-Sen estimator. The pre-season was defined as the average month of Mid Greenup for each pixel 

during the 21-year investigation, as well as the two preceding months. The growing season was defined 

as the months encompassing both the average month of Mid Greenup and Mid Greendown for each 

pixel during the 21-year investigation period".  
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Fig. S5 Regional averages of climatic trends in temperature and in precipitation during 2001-2021. 

Colours indicate the period under consideration: the pre-season was defined as the average month of 

Mid Greenup for each pixel during the 21-year investigation, as well as the two preceding months. The 

growing season was defined as the months encompassing both the average month of Mid Greenup 

and Mid Greendown for each pixel during the 21-year investigation period".   

  



26 
Diverging trends in plant phenology across European mountains in a warming world  
Andreatta et al. (2024), unpublished 

 

Fig. S6. Climatic drivers of phenological trends. Panel a: Pearson correlation between climatic and 

phenological trends. White cell background indicates non-significant (p<0.05) correlations. 

Abbreviations are as follows: MGUP, Trend in Mid Greenup; MGDO, Trend in Mid Greendown; GSL, 

Trend in Growing Season Length; Temp, trend in mean monthly temperatures during the pre-season 

(PS) and during the growing season (GS); Prec, trend in precipitations cumulated during the pre-season 

(PS) and during the growing season (GS). The pre-season was defined as the average month of Mid 

Greenup for each pixel during the 21-year investigation, as well as the two preceding months. The 

growing season was defined as the months encompassing both the average month of Mid Greenup 

and Mid Greendown for each pixel during the 21-year investigation period. Panel b: Accuracy (R2) of 

Multiple Linear Regression models estimating trends in phenometrics based on trends in the climatic 

variables listed in panel a. Trends in the climatic variables explained little of the variability of 

phenological trends. 
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Fig. S7. Changes of the spring (upper panel) and autumn (lower panel) Elevation-induced Phenological 

Shift (EPS) for broadleaves forests and natural grasslands during 2001–2021 in the Alps, Carpathians, 

Nordic Mountains, and Pyrenees. R2 and p-values of linear models are reported. Regression line and 

95% confidence level interval of significant trends are displayed. 
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Fig. S8. Diverging Mid Greenup (MGUP) trend in the Pyrenean broadleaved forests (BL) and natural 

grasslands (GL) at low elevations(mean annual temperature between 9°C and 11°C). Panel a: detail of 

spatial distribution map of the MGUP trend. Panel b: locator map showing the whole Pyrenees (white 

line) and the extent of the map shown in panel a (red rectangle). The background image is a cloudless 

2017 composite of Sentinel-2 images.  
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Fig. S9. Diverging Mid Greendown (MGDO) trend in the Carpathian broadleaved forests (BL) and 

natural grasslands (GL) at mid elevations (mean annual temperature between 4°C and 7°C). Panel a 

and b: details of the spatial distribution of the MGDO trend. Panel c: locator map showing the whole 

Carpathians (white line) and the extents of the maps shown in panel a and b (red rectangles). The 

background image is a cloudless 2017 composite of Sentinel-2 images. 
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Fig. S10. Spatial distribution of trends in Gross Primary Productivity in broadleaved forests and natural 

grasslands during 2001-2021 in the Alps, in the Carpathians, in the Nordic Mountains, and in the 

Pyrenees. Trends were estimated using the Theil-Sen estimator. 
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Supplementary table 

Tab S1. Regression table of mixed effect models separately defined for each phenometric, 

vegetation type (GL= natural grasslands, BL= broadleaved forests) and region. The 

phenometric was defined as a response variable, Year, Mean Annual Temperature (MAT) and 

their interaction as fixed effect, and pixel ID as a random intercept effect. The fourth column 

reports the models’ conditional R2; columns from five to seven report the coefficient estimates, 

columns from eight to ten report coefficient p-values.  

Phen. Veg Reg 
Cond. 

R2 

Estimates p-value 

Year MAT Year*MAT Year MAT Year*MAT 

MGUP 

GL 

Alps 0.59 -0.102 -4.786 0.012 <0.001 <0.001 <0.001 

Carpathians 0.62 -0.568 -6.671 0.075 <0.001 <0.001 <0.001 

Pyrenees 0.60 -0.497 -4.433 0.057 <0.001 <0.001 <0.001 

BL 

Alps 0.57 0.284 -1.652 -0.040 <0.001 <0.001 <0.001 

Carpathians 0.58 0.178 -3.752 -0.028 <0.001 <0.001 <0.001 

Nordic M. 0.51 0.024 -4.150 -0.002 <0.001 <0.001 0.067 

Pyrenees 0.65 0.031 -2.722 -0.012 0.013 <0.001 <0.001 

MGDO 

GL 

Alps 0.30 0.326 -0.097 0.008 <0.001 0.047 <0.001 

Carpathians 0.14 0.021 1.640 -0.033 0.563 <0.001 <0.001 

Pyrenees 0.30 0.036 -1.495 0.047 0.316 <0.001 <0.001 

BL 

Alps 0.61 0.500 1.596 -0.027 <0.001 <0.001 <0.001 

Carpathians 0.42 0.909 2.172 -0.078 <0.001 <0.001 <0.001 

Nordic M. 0.43 0.088 0.994 -0.005 <0.001 <0.001 <0.001 

Pyrenees 0.48 0.212 0.500 -0.002 <0.001 <0.001 0.298 

 



 


